Powered by Deep Web Technologies
Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sensor network localization based on natural phenomena  

E-Print Network [OSTI]

Autonomous localization is crucial for many sensor network applications. The goal of this thesis is to develop a distributed localization algorithm for the PLUG indoor sensor network by analyzing sound and light sensory ...

Kim, Daniel Sang

2006-01-01T23:59:59.000Z

2

Degradation phenomena in PEM fuel cell with dead-ended anode  

E-Print Network [OSTI]

Degradation phenomena in PEM fuel cell with dead-ended anode Toyoaki Matsuura, Jixin Chen*, Jason B of Energy (DOE) target of 30 $/kW for automotive application by 2015 [1], cost reduction in both fuel cell currently ac- counts for around 50% of the fuel cell system cost, is also essential [1]. Conventional fuel

Stefanopoulou, Anna

3

Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems  

E-Print Network [OSTI]

Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP://www.iet.aau.dk ­ * Corresponding author: mpn@iet.aau.dk Abstract: Degradation phenomena in HTPEM fuel cells for use in CHP systems monitored during experiments. Introduction Fuel cell based combined heat and power production (CHP) systems

Berning, Torsten

4

Local scale invariance and its applications to strongly anisotropic critical phenomena  

E-Print Network [OSTI]

The generalization of dynamical scaling to local scale invariance is reviewed. Starting from a recapitulation of the phenomenology of ageing phenomena, the generalization of dynamical scaling to local scale transformation for any given dynamical exponent $z$ is described and the two distinct types of local scale invariance are presented. The special case $z=2$ and the associated Ward identity of Schr\\"odinger invariance is treated. Local scale invariance predicts the form of the two-point functions. Existing confirmations of these predictions for (I) the Lifshitz points in spin systems with competing interactions such as the ANNNI model and (II) non-equilibrium ageing phenomena as occur in the kinetic Ising model with Glauber dynamics are described.

Malte Henkel; Alan Picone; Michel Pleimling; Jeremie Unterberger

2003-07-25T23:59:59.000Z

5

Computationally efficient algorithms for modelling thermal degradation and spiking phenomena in polymeric materials  

E-Print Network [OSTI]

resistance are the key factors that determine a wide spread success of these materials (Flipsen et al., 1996. These phenomena may contribute substantially to the overall thermal degrada- tion of the material at the stage of material applications. To predict the onset of thermal spiking is not an easy task, and in order

Melnik, Roderick

6

Localization of degradation in InP/InGaAsP mushroom stripe lasers  

SciTech Connect (OSTI)

The rapid degradation observed in InP/InGaAsP mushroom stripe lasers covered with phosphosilicate glass (PSG) was investigated by comparing the light-current characteristics as a function of the preparation technique. We were able to show that the PSG-covering layer is not the reason for the rapid degradation. By inspecting the light-current characteristics before and after degradation and by additional underetching the laser structure after degradation we were able to localize the degraded regions on the open side walls of the InGaAsP active layer.

Jung, H.; Marschall, P.

1987-07-13T23:59:59.000Z

7

Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique  

SciTech Connect (OSTI)

In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100?°C could be observed.

Sabelström, N., E-mail: sabelstrom.n.aa@m.titech.ac.jp; Hayashi, M. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Watanabe, T. [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Nagata, K. [Department of Conservation Science, Tokyo University of the Arts, 12-8 Ueno Park, Taito-ku, Tokyo (Japan)

2014-10-28T23:59:59.000Z

8

Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment  

SciTech Connect (OSTI)

Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

Dutta, Paramita; Karmakar, S. N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata-700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108 (India)

2014-09-15T23:59:59.000Z

9

The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation  

SciTech Connect (OSTI)

The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

Fusaro, Adriana F. [University of Sydney, NSW 2006 (Australia) [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Correa, Regis L. [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia) [CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia); Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Nakasugi, Kenlee; Jackson, Craig [University of Sydney, NSW 2006 (Australia)] [University of Sydney, NSW 2006 (Australia); Kawchuk, Lawrence [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada)] [Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1 (Canada); Vaslin, Maite F.S. [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil)] [Depto. de Virologia, IMPPG, UFRJ, 21941-902 (Brazil); Waterhouse, Peter M., E-mail: peter.waterhouse@sydney.edu.au [University of Sydney, NSW 2006 (Australia); CSIRO Plant Industry, Canberra, P.O. Box 1600, ACT 2601 (Australia)

2012-05-10T23:59:59.000Z

10

Synchrotron Investigations of SOFC Cathode Degradation  

SciTech Connect (OSTI)

The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-?} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

Idzerda, Yves

2013-09-30T23:59:59.000Z

11

Ion exchange phenomena  

SciTech Connect (OSTI)

Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

Bourg, I.C.; Sposito, G.

2011-05-01T23:59:59.000Z

12

MULTISCALE PHENOMENA IN MATERIALS  

SciTech Connect (OSTI)

This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

A. BISHOP

2000-09-01T23:59:59.000Z

13

Emergent Phenomena at Oxide Interfaces  

SciTech Connect (OSTI)

Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.

Hwang, H.Y.

2012-02-16T23:59:59.000Z

14

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High- importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy...

15

Mathematical Modeling of Transport and Degradation of Feedstuffs in the Small Intestine  

E-Print Network [OSTI]

We describe a mathematical modeling of the digestion in the small intestine. The main interest of our work is to consider, at the same time, different aspects of the digestion i.e. the transport of the bolus all along the intestine, feedstuffs degradation according to the enzymes and local physical conditions, and nutrients absorption. A system of coupled ordinary differential equations is used to model these phenomena. The major unknowns of this system are the position of the bolus and its composition. This system of equations is solved numerically. We present different numerical computations for the degradation, absorption and transport of the bolus with acceptable accuracy with experimental data. The main feature and interest of this model are its generality. Even if we are at an early stage of development, our approach can be adapted to treat any kind of feedstuffs in any non-ruminant animal to predict the composition and velocity of bolus in the small intestine.

Taghipoor, Masoomeh; Georgelin, Christine; Licois, Jean-René; Barles, Guy

2011-01-01T23:59:59.000Z

16

Natural convection phenomena in a nuclear power plant during a postulated TMLB' accident  

SciTech Connect (OSTI)

After the TMI (Three Mile Island) accident, there has been significant interest in analyzing and understanding the phenomena that may occur in a PWR (Pressurized Water Reactor) accident which may lead to partial or total core meltdown and degradation. Natural convection is one of the important phenomena. In the present paper the results of two numerical simulations of (1) four-loop PWR and (2) three-loop PWR are presented. The simulations were performed with the COMMIX(2) computer code. Our analysis shows that in severe accident scenarios, natural convection phenomena does occur and that it helps to delay core degradation by transferring decay heat from the reactor core to other internal structures of the reactor system. The amount of heat transfer and delay in core degradation depends on the geometry and internal structures of the system and on the events of an accident.

Domanus, H.M.; Schmitt, R.C.; Sha, W.T.; Shah, V.L.; Han, J.T.

1987-01-01T23:59:59.000Z

17

Nuclear pairing: basic phenomena revisited  

E-Print Network [OSTI]

I review the phenomena associated with pairing in nuclear physics, most prominently the ubiquitous presence of odd-even mass differences and the properties of the excitation spectra, very different for even-even and odd-A nuclei. There are also significant dynamical effects of pairing, visible in the inertias associated with nuclear rotation and large-amplitude shape deformation.

G. F. Bertsch

2012-03-25T23:59:59.000Z

18

Graphene tests of Klein phenomena  

E-Print Network [OSTI]

Graphene is characterized by chiral electronic excitations. As such it provides a perfect testing ground for the production of Klein pairs (electron/holes). If confirmed, the standard results for barrier phenomena must be reconsidered with, as a byproduct, the accumulation within the barrier of holes.

Stefano De Leo; Pietro Rotelli

2012-02-07T23:59:59.000Z

19

Induction Phenomena in Laser-Sustained Scramjets  

SciTech Connect (OSTI)

A preliminary study on induction phenomena in a laser-sustained scramjet was conducted. The induction processes include absorption process of a laser pulse by a reactive mixture, plasma formation, diffusion of active species, shock formation, thermalization process of ambient mixture, induction of local turbulence, etc. For observation of the initial phenomena, an experimental study on effects of a focused laser pulse (Nd:YAG, 335mJ/pulse, pulse width 5nsec) into a hydrogen-air mixture was conducted. Temporal evolutions of typical line spectrum of a laser-induced plasma of the mixture were measured with the photodiode or the photo-multiplier-tube through specific band-pass filters for each spectrum for OH, O+, N+, H, and O. It was shown that the emission from O abruptly increased at 2 nsec, peaked at about 5 nsec, followed by an abrupt drop at 6 nsec. The emission from H atoms secondly increased. Other emissions of N+, O+, and OH peaked at about 17 nsec and continued for about 1 msec.

Ohkawa, Yoko; Tamada, Kazunobu; Horisawa, Hideyuki [Department of Aeronautics and Astronautics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259-1292 (Japan); Kimura, Itsuro [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8856 (Japan)

2005-04-27T23:59:59.000Z

20

Accretion Disks and Eruptive Phenomena  

E-Print Network [OSTI]

This paper describes eruptive phenomena in pre-main sequence stars. The eruptions of FU Orionis stars have much in common with outbursts in other accreting systems, such as dwarf novae and some symbiotic stars. These common features are best understood as increases in the rate material flows through an accretion disk. The spectroscopic properties, decay of the light curves, and outflow phenomena suggest that these outbursts arise from thermal instabilities in the disk. Available data and estimates for recurrence times indicate that young stars can accrete much, perhaps all, of their mass in FU Ori accretion events. Future observations can test this notion and place better constraints on the importance of eruptive events in the early life of a low mass star.

Scott J. Kenyon

1999-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New phenomena searches at CDF  

SciTech Connect (OSTI)

The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

Soha, Aron; /UC, Davis

2006-04-01T23:59:59.000Z

22

Irradiation-induced phenomena in carbon  

E-Print Network [OSTI]

Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

Krasheninnikov, Arkady V.

23

Natural phenomena hazards, Hanford Site, Washington  

SciTech Connect (OSTI)

This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

Conrads, T.J.

1998-09-29T23:59:59.000Z

24

PEM fuel cell degradation  

SciTech Connect (OSTI)

The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

25

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

26

CFD Analysis of Core Bypass Phenomena  

SciTech Connect (OSTI)

The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

2010-03-01T23:59:59.000Z

27

CFD Analysis of Core Bypass Phenomena  

SciTech Connect (OSTI)

The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

2009-11-01T23:59:59.000Z

28

WESF natural phenomena hazards survey  

SciTech Connect (OSTI)

A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

Wagenblast, G.R., Westinghouse Hanford

1996-07-01T23:59:59.000Z

29

Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation  

E-Print Network [OSTI]

Photovoltaic Lifetime & Degradation Science Statistical Pathway Development: Acrylic Degradation, USA ABSTRACT In order to optimize and extend the life of photovoltaics (PV) modules, scientific photovoltaics. The statisti- cally significant relationships were investigated using lifetime and degradation

Rollins, Andrew M.

30

Analysis of nuclear reactor instability phenomena  

SciTech Connect (OSTI)

The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

Lahey, R.T. Jr.

1993-01-01T23:59:59.000Z

31

Fractal Geometry and Spatial Phenomena A Bibliography  

E-Print Network [OSTI]

Fractal Geometry and Spatial Phenomena A Bibliography January 1991 Mark MacLennan, A. Stewart. MEASUREMENT ISSUES........................................................... 8 II.1 ESTIMATION OF FRACTAL DIMENSION - GENERAL ISSUES .......... 8 II.2 ESTIMATION OF FRACTAL DIMENSION FOR CURVES/PROFILES ... 9 II.3

California at Santa Barbara, University of

32

Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This paper discusses the U.S. Nuclear Regulatory Commission’s Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems and components. The PMMD program is examining LWR component materials and the degradation phenomena that affect them. Of particular interest is how such phenomena can be monitored to predict degradation and prevent component failure. Some forms of degradation, such as stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase. Monitoring such long-term degradation will require new NDE methods and measurement procedures. A critical analysis of all reactor components is required to determine if new inspection strategies are required to effectively manage slow degradation mechanisms that may lead to component failure. As reactor lifetimes are extended, degradation mechanisms previously considered too long-term to be of consequence (such as concrete and wiring insulation degradation) may become more important. This paper includes a review of techniques with potential for sensing and monitoring degradation in its early stages and will concisely explain the basic principles of PMMD and its relationship to in-service inspection, condition based maintenance, and advanced diagnostics and prognostics.

Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy; Malik, Shah

2011-02-26T23:59:59.000Z

33

Damage Assessment Technologies for Prognostics and Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has undertaken a program to lay the groundwork for defining proactive actions to manage degradation of materials in light water reactors (LWRs). This paper discusses the U.S. Nuclear Regulatory Commission’s Proactive Management of Materials Degradation (PMMD) program and its application to nuclear power plant structures, systems and components. The PMMD program is examining LWR component materials and the degradation phenomena that affect them. Of particular interest is how such phenomena can be monitored to predict degradation and prevent component failure. Some forms of degradation, including some modes of stress corrosion cracking, are characterized by a long initiation time followed by a rapid growth phase. Monitoring such long-term degradation will require new non-destructive evaluation (NDE) methods and measurement procedures. A critical analysis of all reactor components is required to determine if new inspection strategies are required to effectively manage slow degradation mechanisms that may lead to component failure. As reactor lifetimes are extended, degradation mechanisms previously considered too long-term to be of consequence (such as concrete and wiring insulation degradation) may become more important. This paper includes a review of techniques with potential for sensing and monitoring degradation in its early stages and will concisely explain the basic principles of PMMD and its relationship to in-service inspection, condition based maintenance, and advanced diagnostics and prognostics.

Bond, Leonard J.; Doctor, Steven R.; Griffin, Jeffrey W.; Hull, Amy B.; Malik, Shah

2011-01-01T23:59:59.000Z

34

Mixed Hydrologic Recovery of a Degraded Mesquite Rangeland  

E-Print Network [OSTI]

landscapes become more common, an understanding of these new environments becomes essential. The ability of rangelands to rebound from past degradation is a factor of interest and one this study attempts to quantify. How a localized hydrologic cycle responds...

Lukenbach, Maxwell

2011-08-08T23:59:59.000Z

35

Reproductive phenomena of a sexual buffelgrass plant  

E-Print Network [OSTI]

REPRODUCTIVE PHENOMENA OF A SEXUAL EUFFELGRASS PLANT A Thesis 3y Charles Millard Taliaferro . Submitted to the Graduate School of the A & M University of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... January 1964 Major Sub?'ect Agronomy REPRODUCTIVE PHENOMENA OF A SEXUAL BUFFELGRASS PLANT A Thesis Charles Millard Taliaferro Approved as to style and content by: (Chairman of Committee) (Head of Department) / ember) (Member) Memb er) January...

Taliaferro, Charles Millard

1965-01-01T23:59:59.000Z

36

DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...  

Broader source: Energy.gov (indexed) [DOE]

1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities...

37

Static Friction Phenomena The following static friction phenomena have a direct dependency on velocity.  

E-Print Network [OSTI]

Coulomb Friction Viscous Friction Stribeck Friction Static Friction Phenomena The following static friction phenomena have a direct dependency on velocity. Static Friction Model: Friction force opposes the direction of motion when the sliding velocity is zero. Coulomb Friction Model: Friction force

Simpkins, Alex

38

Dissipative phenomena in quark-gluon plasmas  

SciTech Connect (OSTI)

Transport coefficients of small-chemical-potential quark-gluon plasmas are estimated and dissipative corrections to the scaling hydrodynamic equations for ultrarelativistic nuclear collisions are studied. The absence of heat-conduction phenomena is clarified. Lower and upper bounds on the shear-viscosity coefficient are derived. QCD phenomenology is used to estimate effects of color-electric and -magnetic shielding, and nonperturbative antiscreening. Bulk viscosity associated with the plasma-to-hadron transition is estimated within the relaxation-time approximation. Finally, effects of dissipative phenomena on the relation between initial energy density and final rapidity density are estimated.

Danielewicz, P.; Gyulassy, M.

1985-01-01T23:59:59.000Z

39

Drift Degradation Analysis  

SciTech Connect (OSTI)

Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA code, which determines structurally controlled key-block failure, is not applicable for stress-controlled failure in the lithophysal units. To address these limitations, additional numerical codes have been included that can explicitly apply seismic and thermal loads, providing significant improvements to the analysis of drift degradation and extending the validity of drift degradation models.

D. Kicker

2004-09-16T23:59:59.000Z

40

Degradation Of Cementitious Materials Associated With Saltstone Disposal Units  

SciTech Connect (OSTI)

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

Flach, G. P; Smith, F. G. III

2013-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Degradation phenomena and design principles for stable and active Pt/C fuel cell catalysts.  

E-Print Network [OSTI]

??Stabile und aktive Elektrodenmaterialien sind entscheidend für moderne elektrochemische Energiewandler wie Brennstoffzellen. Diese Arbeit untersucht die Aktivität und insbesondere Stabilität von Pt/ C Brennstoffzellenkatalysatoren. In… (more)

Meier, Josef Christian

2013-01-01T23:59:59.000Z

42

PHASE COHERENCE PHENOMENA IN DISORDERED SUPERCONDUCTORS  

E-Print Network [OSTI]

PHASE COHERENCE PHENOMENA IN DISORDERED SUPERCONDUCTORS A. LAMACRAFT AND B. D. SIMONS Cavendish on the quasi­particle properties of disordered superconductors. Again, attempts to develop a consistent theory has been formulated. Yet, a complete description of the phenomenology of the disordered superconductor

Simons, Ben

43

Resonant phenomena in slowly perturbed elliptic billiards  

E-Print Network [OSTI]

We consider an elliptic billiard whose shape slowly changes. During slow evolution of the billiard certain resonance conditions can be fulfilled. We study the phenomena of capture into a resonance and scattering on resonances which lead to the destruction of the adiabatic invariance in the system.

A. P. Itin; A. I. Neishtadt

2005-12-11T23:59:59.000Z

44

Possible new wave phenomena in the brain  

E-Print Network [OSTI]

We propose to search for new wave phenomena in the brain by using interference effects in analogy to the well-known double slit (Young) experiment. This method is able to extend the range of oscillation frequencies to much higher values than currently accessible. It is argued that such experiments may test the hypothesis of the wave nature of information coding.

Jerzy Szwed

2009-08-10T23:59:59.000Z

45

Photovoltaic Degradation Risk: Preprint  

SciTech Connect (OSTI)

The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

46

Detection of pump degradation  

SciTech Connect (OSTI)

This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

1995-08-01T23:59:59.000Z

47

Natural phenomena hazards site characterization criteria  

SciTech Connect (OSTI)

The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

Not Available

1994-03-01T23:59:59.000Z

48

Method of microbially degrading trinitrotoluene  

DOE Patents [OSTI]

A method of degrading trinitrotoluene (TNT) includes contacting the TNT with intra-amoebic isolate CR-1, ATCC 75528.

Tyndall, Richard L. (Clinton, TN); Vass, Arpad (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

49

TALSPEAK Solvent Degradation  

SciTech Connect (OSTI)

Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

Leigh R. Martin; Bruce J. Mincher

2009-09-01T23:59:59.000Z

50

Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes  

SciTech Connect (OSTI)

The long-term stability of anode-supported YSZ electrolyte SOFCs utilizing (La0.6Sr0.4)0.98Co0.2Fe0.8O3-? (LSCF-6428) cathodes was assessed. Samples tested for 500 hours at 750 C and 0.7V indicated ?50% degradation. While scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis indicated no obvious microstructural or chemical phenomena that could explain the high degradation, x-ray photon spectroscopy (XPS) revealed that enrichment of Sr at the cathode-electrolyte and cathode-current collector interfaces was at least partially responsible for the observed degradation.

Simner, Steve P.; Anderson, Michael D.; Engelhard, Mark H.; Stevenson, Jeffry W.

2006-08-17T23:59:59.000Z

51

Analysis of hydrodynamic phenomena in simulant experiments investigating cavity interactions following postulated vessel meltthrough  

SciTech Connect (OSTI)

An analysis of hydrodynamic phenomena in simulant experiments examining aspects of ex-vessel material interactions in a PWR reactor cavity following postulated core meltdown and localized breaching of the reactor vessel has been carried out. While previous analyses of the tests examined thresholds for the onset of sweepout of fluid from the cavity, the present analysis considers the progression of specific hydrodynamic phenomena involved in the dispersal process: crater formation due to gas jet impingement, radial wave motion and growth, entrainment and transport of liquid droplets, liquid layer formation due to droplet recombination, fluidization of liquid remaining in the cavity, removal of fluidized liquid droplets from the cavity, and the ultimate removal of the remaining liquid layer within the tunnel passageway. Phenomenological models which may be used to predict the phenomena are presented.

Sienicki, J.J.; Spencer, B.W.

1984-01-01T23:59:59.000Z

52

Studies of Novel Quantum Phenomena in Ruthenates  

SciTech Connect (OSTI)

Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated electron has been among central topics of contempary condensed matter physics. Ultrfast phase transitions accompanied by switching of conductivity or magnetization in stronly correlated materials are believed to be promising in developing next generation of transistors. Our work on layered ruthenates has remarkably advanced our understanding of how the exotic phenomena of correlated electrons is governed by the complex interplay between charge, spin, lattice and orbital degrees of freedom. In addition to studies on ruthenates, we have also expanded our research to the emerging field of Fe-based superconductors, focusing on the iron chalcogenide Fe1+y(Te1-xSex) superconductor system. We first studied the superconductivity of this alloy system following the discovery of superconductivity in FeSe using polycrystalline samples. Later, we successfuly grew high-quality single crystals of these materials. Using these single crystals, we have determined the magnetic structure of the parent compound Fe1+yTe, observed spin resonance of superconducting state in optimally doped samples, and established a phase diagram. Our work has produced an important impact in this burgeoning field. The PI presented an invited talk on this topic at APS March meeting in 2010. We have published 19 papers in these two areas (one in Nature materials, five in Physical Review Letters, and nine in Physical Review B) and submitted two (see the list of publications attached below).

Mao, Zhiqiang

2011-04-08T23:59:59.000Z

53

Advances in modelling of condensation phenomena  

SciTech Connect (OSTI)

The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

1997-07-01T23:59:59.000Z

54

Outdoor PV Degradation Comparison  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

55

WHC natural phenomena hazards mitigation implementation plan  

SciTech Connect (OSTI)

Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

Conrads, T.J.

1996-09-11T23:59:59.000Z

56

Shock phenomena in baryonless strongly interacting matter  

SciTech Connect (OSTI)

Shock phenomena associated with the quark-to-hadron matter phase transition are studied using the concept of adiabats. To allow for an analysis of a medium with vanishing baryon density, the shock and Poisson adiabats are formulated in terms of hydrodynamic fluxes, rather than only thermodynamic variables. The bag-model equation of state is used to describe the phase transition. It is shown that deflagrations from the quark phase above the critical temperature and strong detonations from the supercooled quark phase to the superheated hadron phase are unlikely. Instead the possibility of weak condensation detonations from the supercooled quark phase to a mixed phase is indicated. Strong detonations can occur if the latent energy density of the phase transition is small compared to the energy density of the hadron gas. Simple properties of the adiabats and of the equation of state are employed to derive several analytic results.

Danielewicz, P.; Ruuskanen, P.V.

1987-01-01T23:59:59.000Z

57

Critical phenomena in N=2* plasma  

E-Print Network [OSTI]

We use gauge theory/string theory correspondence to study finite temperature critical behaviour of mass deformed N=4 SU(N) supersymmetric Yang-Mills theory at strong coupling, also known as N=2* gauge theory. For certain range of the mass parameters, N=2* plasma undergoes a second-order phase transition. We compute all the static critical exponents of the model and demonstrate that the transition is of the mean-field theory type. We show that the dynamical critical exponent of the model is z=0, with multiple hydrodynamic relaxation rates at criticality. We point out that the dynamical critical phenomena in N=2* plasma is outside the dynamical universality classes established by Hohenberg and Halperin.

A. Buchel; C. Pagnutti

2010-10-16T23:59:59.000Z

58

October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...  

Office of Environmental Management (EM)

Tuesday, October 21st Session Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday, October 21st Session Presentations Presentations Relative Movements for...

59

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Office of Environmental Management (EM)

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final...

60

MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved  

E-Print Network [OSTI]

MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved Heat the system, decreases the oper- ation noise and the pumping cost. Another major consideration for a heat

Aguilar, Guillermo

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fluctuations around Bjorken Flow and the onset of turbulent phenomena  

E-Print Network [OSTI]

We study how fluctuations in fluid dynamic fields can be dissipated or amplified within the characteristic spatio-temporal structure of a heavy ion collision. The initial conditions for a fluid dynamic evolution of heavy ion collisions may contain significant fluctuations in all fluid dynamical fields, including the velocity field and its vorticity components. We formulate and analyze the theory of local fluctuations around average fluid fields described by Bjorken's model. For conditions of laminar flow, when a linearized treatment of the dynamic evolution applies, we discuss explicitly how fluctuations of large wave number get dissipated while modes of sufficiently long wave-length pass almost unattenuated or can even be amplified. In the opposite case of large Reynold's numbers (which is inverse to viscosity), we establish that (after suitable coordinate transformations) the dynamics is governed by an evolution equation of non-relativistic Navier-Stokes type that becomes essentially two-dimensional at late times. One can then use the theory of Kolmogorov and Kraichnan for an explicit characterization of turbulent phenomena in terms of the wave-mode dependence of correlations of fluid dynamic fields. We note in particular that fluid dynamic correlations introduce characteristic power-law dependences in two-particle correlation functions.

Stefan Floerchinger; Urs Achim Wiedemann

2012-08-17T23:59:59.000Z

62

Performance Degradation of LSCF Cathodes  

SciTech Connect (OSTI)

This final report summarizes the progress made during the October 1, 2008 - September 30, 2013 period under Cooperative Agreement DE-NT0004109 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled “Performance Degradation of LSCF Cathodes”. The primary objective of this program is to develop a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). Strategies to mitigate performance degradation are developed and implemented. In addition, thermal spray manufacturing of SOFCs is explored. Combined, this work establishes a basis for cost-effective SOFC cells.

Alinger, Matthew

2013-09-30T23:59:59.000Z

63

Petrovay: Solar physics Activity phenomena 1 Overall structure: umbra + penumbra.  

E-Print Network [OSTI]

Petrovay: Solar physics Activity phenomena 1 SUNSPOTS Overall structure: umbra + penumbra in decaying spots (hysteresis-like behaviour). #12;Petrovay: Solar physics Activity phenomena 1 Temperature, H2, CH, CN Maltby effect: Umbrae slightly hotter in solar maximum than in minimum. Recent studies

Petrovay, Kristóf

64

Diagnostics for transport phenomena in strongly coupled dusty plasmas  

E-Print Network [OSTI]

Diagnostics for transport phenomena in strongly coupled dusty plasmas J Goree, Bin Liu and Yan Feng@gmail.com #12;Diagnostics for transport phenomena in strongly coupled dusty plasmas 2 1. Introduction Dusty]. This paper is based on a presentation at the EPS Satellite Conference on Plasma Diagnostics 2013. Our

Goree, John

65

CHAPTER 1. COLLECTIVE PLASMA PHENOMENA 1 Collective Plasma  

E-Print Network [OSTI]

CHAPTER 1. COLLECTIVE PLASMA PHENOMENA 1 Chapter 1 Collective Plasma Phenomena The properties of a medium are determined by the microscopic processes in it. In a plasma the microscopic processes is actually limited to a distance of order the Debye length in a plasma. On length scales longer than

Callen, James D.

66

Contributions to accelerated destructive degradation test planning.  

E-Print Network [OSTI]

??Many failure mechanisms can be traced to underlying degradation processes. Degradation eventually leads to a weakness that can cause a failure for products. When it… (more)

Shi, Ying

2010-01-01T23:59:59.000Z

67

Seawater degradation of polymeric composites  

E-Print Network [OSTI]

SEAWATER DEGRADATION OF POLYMERIC COMPOSITES A Thesis by TIMOTHY SEAN GRANT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1991 Major... Subject: Mechanical Engineering SEAWATER DEGRADATION OF POLYMERIC COMPOSITES A Thesis by TIMOTHY SEAN GRANT Approved as to style and content by: Walter L. Bradley (Chair of mmittee) lan Letton (Member) arry ogan (Member) r John Whitcomb...

Grant, Timothy Sean

1991-01-01T23:59:59.000Z

68

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs  

SciTech Connect (OSTI)

The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures for on-site welding, post-weld heat treatment (PWHT), and inspections will be required for the materials of construction. High-importance phenomena related to the RPV include crack initiation and subcritical crack growth; field fabrication process control; property control in heavy sections; and the maintenance of high emissivity of the RPV materials over their service lifetime to enable passive heat rejection from the reactor core. All identified phenomena related to the materials of construction for the IHX, RPV, and other components were evaluated and ranked for their potential impact on reactor safety.

Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

69

Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II  

SciTech Connect (OSTI)

Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

Manohar Motwani

2011-09-01T23:59:59.000Z

70

Clad Degradation - FEPs Screening Arguments  

SciTech Connect (OSTI)

The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796]).

E. Siegmann

2004-03-17T23:59:59.000Z

71

Analysis of nuclear reactor instability phenomena. Progress report  

SciTech Connect (OSTI)

The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

Lahey, R.T. Jr.

1993-03-01T23:59:59.000Z

72

High speed imaging of transient non-Newtonian fluid phenomena  

E-Print Network [OSTI]

In this thesis, I investigate the utility of high speed imaging for gaining scientific insight into the nature of short-duration transient fluid phenomena, specifically applied to the Kaye effect. The Kaye effect, noted ...

Gallup, Benjamin H. (Benjamin Hodsdon), 1982-

2004-01-01T23:59:59.000Z

73

CRAD, Review of Preparedness for Severe Natural Phenomena Events...  

Office of Environmental Management (EM)

Review of Preparedness for Severe Natural Phenomena Events at the Savannah River Site Tritium Facility (HSS CRAD 45-54) This Criteria Review and Approach Document (HSS CRAD 45-54)...

74

Simulation and design optimization for linear wave phenomena on metamaterials  

E-Print Network [OSTI]

Periodicity can change materials properties in a very unintuitive way. Many wave propagation phenomena, such as waveguides, light bending structures or frequency filters can be modeled through finite periodic structures ...

Saà-Seoane, Joel

2011-01-01T23:59:59.000Z

75

Infrared thermometry study of nanofluid pool boiling phenomena  

E-Print Network [OSTI]

Abstract Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). ...

Gerardi, Craig

76

Renewal sequences, disordered potentials, and pinning phenomena  

E-Print Network [OSTI]

We give an overview of the state of the art of the analysis of disordered models of pinning on a defect line. This class of models includes a number of well known and much studied systems (like polymer pinning on a defect line, wetting of interfaces on a disordered substrate and the Poland-Scheraga model of DNA denaturation). A remarkable aspect is that, in absence of disorder, all the models in this class are exactly solvable and they display a localization-delocalization transition that one understands in full detail. Moreover the behavior of such systems near criticality is controlled by a parameter and one observes, by tuning the parameter, the full spectrum of critical behaviors, ranging from first order to infinite order transitions. This is therefore an ideal set-up in which to address the question of the effect of disorder on the phase transition,notably on critical properties. We will review recent results that show that the physical prediction that goes under the name of Harris criterion is indeed fully correct for pinning models. Beyond summarizing the results, we will sketch most of the arguments of proof.

Giambattista Giacomin

2008-07-27T23:59:59.000Z

77

Local Cohomology  

E-Print Network [OSTI]

ian there is t(a) 2N :(. p. a)t(a) ...... ian local A-algebra (B;n) over a Noetherian local ring (A;m) such that for ...... Since in the above displayed sequence= R1,.

78

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

2010-06-01T23:59:59.000Z

79

Methods of degrading napalm B  

DOE Patents [OSTI]

Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates are deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

Tyndall, R.L.; Vass, A.

1995-09-12T23:59:59.000Z

80

Methods of degrading napalm B  

DOE Patents [OSTI]

Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates include is deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

Tyndall, Richard L. (Clinton, TN); Vass, Arpad (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chemical behavior of degradation products of tributylphosphate in purex reprocessing  

SciTech Connect (OSTI)

Chemical behavior of butyl nitrate/butyl alcohol, degradation products from dealkylation of tri-n-butylphosphate(TBP) in PUREX reprocessing, which has not so far been reported, was investigated. No accumulation of those compounds in the organic phase of TBP(30%)-dodecane was observed in any separation cycle of PUREX despite the fact that the apparent distribution of the compounds lies to the organic phase at their high concentrations. The distribution of butyl nitrate/butyl alcohol between organic/aqueous phases is found to be dependent on their concentrations and on nitric acid concentration, which could explain the above phenomena. Only butyl nitrate of the above two compounds was slightly detected in the organic streams. It is probable from this investigation that butyl nitrate is removed into aqueous waste stream primarily through alkali scrubber.

Kuno, Y.; Sato, S.; Masui, J. [Power Reactor and Nuclear Fuel Development Corp., Ibaraki (Japan)] [and others

1995-12-01T23:59:59.000Z

82

Energy Localization in Molecules, Bifurcation Phenomena, and Their Spectroscopic Signatures: The Global View  

E-Print Network [OSTI]

of which require a comprehensive understanding of molecular dynamics. Generally, elementary chemical analysis, valid at low excitation energies, inaccurate. The molecular potential energy surfaces (PESs of vibrationally excited and reacting molecules. As found for general nonlinear dynamical systems with a few

83

PEM Degradation Investigation Final Technical Report  

SciTech Connect (OSTI)

This project conducted fundamental studies of PEM MEA degradation. Insights gained from these studies were disseminated to assist MEA manufacturers in understanding degradation mechanisms and work towards DOE 2010 fuel cell durability targets.

Dan Stevenson; Lee H Spangler

2010-10-18T23:59:59.000Z

84

Computer Modeling Illuminates Degradation Pathways of  

E-Print Network [OSTI]

Computer Modeling Illuminates Degradation Pathways of Cations in Alkaline Membrane Fuel Cells Cation degradation insights obtained by computational modeling could result in better performance are effective in increasing cation stability. With the help of computational modeling, more cations are being

85

Modified Phenomena Identification and Ranking Table (PIRT) for Uncertainty Analysis  

SciTech Connect (OSTI)

This paper describes a methodology of characterizing important phenomena, which is also part of a broader research by the authors called 'Modified PIRT'. The methodology provides robust process of phenomena identification and ranking process for more precise quantification of uncertainty. It is a two-step process of identifying and ranking methodology based on thermal-hydraulics (TH) importance as well as uncertainty importance. Analytical Hierarchical Process (AHP) has been used for as a formal approach for TH identification and ranking. Formal uncertainty importance technique is used to estimate the degree of credibility of the TH model(s) used to represent the important phenomena. This part uses subjective justification by evaluating available information and data from experiments, and code predictions. The proposed methodology was demonstrated by developing a PIRT for large break loss of coolant accident LBLOCA for the LOFT integral facility with highest core power (test LB-1). (authors)

Gol-Mohamad, Mohammad P.; Modarres, Mohammad; Mosleh, Ali [University of Maryland, College Park, MD 20742 (United States)

2006-07-01T23:59:59.000Z

86

Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report  

SciTech Connect (OSTI)

Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

Mark Holbrook

2007-07-01T23:59:59.000Z

87

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

88

Methods for degrading lignocellulosic materials  

SciTech Connect (OSTI)

The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

Vlasenko, Elena (Davis, CA); Cherry, Joel (Davis, CA); Xu, Feng (Davis, CA)

2011-05-17T23:59:59.000Z

89

Degradation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear Security |CreatingA Sign In

90

RELAP5-3D Code Validation for RBMK Phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, James Ebberly

1999-09-01T23:59:59.000Z

91

RELAP5-3D code validation for RBMK phenomena  

SciTech Connect (OSTI)

The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

Fisher, J.E.

1999-09-01T23:59:59.000Z

92

Calorimetric analysis of fungal degraded wood  

SciTech Connect (OSTI)

Endothermic transition and gross heat of combustion of aspenwood subjected to degradation by Lenzites trabea and Polyporus versicolor were determined by using differential scanning calorimetry (DSC) and an adiabatic O bomb. Endothermic peak areas of undegraded and fungi-degraded wood differed from each other at all levels of weight loss. The regression analysis of the DSC data vs. weight loss revealed a significant relations, although not highly correlated, for P. versicolor-degraded specimens and a nonsignificant relation for L. trabea-degraded specimens; weight loss and gross heat of combustion values of degraded specimens were significantly correlated.

Blankenhorn, P.R.; Baldwin, R.C.; Merrill, W. Jr.; Ottone, S.P.

1980-01-01T23:59:59.000Z

93

Measuring Degradation Rates Without Irradiance Data  

SciTech Connect (OSTI)

A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

2011-02-01T23:59:59.000Z

94

Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells  

E-Print Network [OSTI]

Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells by Roongrojana of Proton Exchange Membrane Fuel Cells by Roongrojana Songprakorp BSc, Prince of Songkhla University to the modeling and under- standing of the dynamic behavior of proton exchange membrane fuel cells (PEMFCs

Victoria, University of

95

Critical phenomena of asymmetric nuclear matter in the extended  

E-Print Network [OSTI]

Critical phenomena of asymmetric nuclear matter in the extended Zimanyi-Moszkowski model K nuclear matter produced by heavy-ion reactions is isospin asymmetric. Although the critical exponents. Miyazaki Abstract We have studied the liquid-gas phase transition of warm asymmetric nuclear matter

96

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN  

E-Print Network [OSTI]

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN A FINITE ELEMENT between pore fluid flow and the concurring deformation of the solid rock matrix. The governing equations and constitutive relations of fluid flow are coupled to stress-strain relations. With the appropriate boundary

97

Computational analysis of temperature rise phenomena in electric induction motors  

E-Print Network [OSTI]

Computational analysis of temperature rise phenomena in electric induction motors Ying Huai Institute, University of Southern Denmark, Grundvigs Alle 150, Sonderborg, DK-6400, Denmark c Danfoss Drives A/S, Denmark Received 12 October 2002; accepted 20 December 2002 Abstract In developing electric

Melnik, Roderick

98

FOREST FIRES AND OIL FIELDS AS PERCOLATION PHENOMENA.  

E-Print Network [OSTI]

size distribution model for estimating oil reserves and for use in forest management under the `natural estimates of oil reserves, and be of use for ecosystem based forest management under the `naturalFOREST FIRES AND OIL FIELDS AS PERCOLATION PHENOMENA. William J. Reed #3; JUNE, 1999. Abstract

Reed, W.J.

99

General Search for New Phenomena in ep Scattering at HERA  

E-Print Network [OSTI]

General Search for New Phenomena in ep Scattering at HERA The IVIIth Rencontres de Moriond on QCD algorithm investigate all final states produced at high PT in ep collisions do not rely on assumptions about 3 General Search @ H1 Data samples HERA I (1992-2000) HERA II (2002-2007) HERA I: e+p dominated (GS

100

Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding  

E-Print Network [OSTI]

) Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding A. H. DILAWARI, J for the Electroslag Welding Process. In the formulation, allowance has been made {or both etee- tromagnetic and b in the use of electroslag welding (ESW), particularly for the construction of thick walled pressure vessels

Eagar, Thomas W.

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Phenomena identification and ranking tables (PIRT) for LBLOCA  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission is sponsoring a program to provide validated reactor safety computer codes with quantified uncertainties. The intent is to quantify the accuracy of the codes for use in best estimate licensing applications. One of the tasks required to complete this program involves the identification and ranking of thermal-hydraulic phenomena that occur during particular accidents. This paper provides detailed tables of phenomena and importance ranks for a PWR LBLOCA. The phenomena were identified and ranked according to perceived impact on peak cladding temperature. Two approaches were used to complete this task. First, a panel of experts identified the physical processes considered to be most important during LBLOCA. A second team of experienced analysts then, in parallel, assembled complete tables of all plausible LBLOCA phenomena, regardless of perceived importance. Each phenomenon was then ranked in importance against every other phenomenon associated with a given component. The results were placed in matrix format and solved for the principal eigenvector. The results as determined by each method are presented in this report.

Shaw, R.A.; Dimenna, R.A.; Larson, T.K.; Wilson, G.E.

1987-01-01T23:59:59.000Z

102

Chapter 7. Renewal Phenomena Renewal is life reborn.  

E-Print Network [OSTI]

51 Chapter 7. Renewal Phenomena Renewal is life reborn. 7.1. Definitions and basic concepts. 7. Then, N(t) : t 0, is a renewal process. A mathematical definition: N(t) = max{n : n i=0 Xi t, } where, ...} or continuous: [0, ). Obviously, the path of a renewal process is non-decreasing. The renewal literally means

Chen, Kani

103

Geophysical phenomena during an ionospheric modication experiment at Troms, Norway  

E-Print Network [OSTI]

Geophysical phenomena during an ionospheric modi®cation experiment at Tromsù, Norway N. F-9037, Tromsù, and The University Courses of Svalbard, Svalbard, Norway 3 EISCAT, N-9027 Ramfjùrdbotn, Norway Received: 13 October 1997 / Revised: 11 May 1998 / Accepted: 26 May 1998 Abstract. We present

Paris-Sud XI, Université de

104

Fundamental phenomena of quantum mechanics explored with neutron interferometers  

E-Print Network [OSTI]

Ongoing fascination with quantum mechanics keeps driving the development of the wide field of quantum-optics, including its neutron-optics branch. Application of neutron-optical methods and, especially, neutron interferometry and polarimetry has a long-standing tradition for experimental investigations of fundamental quantum phenomena. We give an overview of related experimental efforts made in recent years.

J. Klepp; S. Sponar; Y. Hasegawa

2014-07-09T23:59:59.000Z

105

STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.  

SciTech Connect (OSTI)

This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

2001-03-22T23:59:59.000Z

106

Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant  

SciTech Connect (OSTI)

Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior in the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)

Nagase, F.; Ishikawa, J.; Kurata, M.; Yoshida, H.; Kaji, Y.; Shibamoto, Y.; Amaya, M; Okumura, K.; Katsuyama, J. [Fukushima Project Team, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

2013-07-01T23:59:59.000Z

107

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

108

Gamma-Ray Bursts: Super-Explosions in the Universe and Related High-Energy Phenomena  

E-Print Network [OSTI]

The recent progress in studies of gamma-ray bursts, their afterglows, and host galaxies is discussed. The emphasis is given to high-energy phenomena associated with gamma-ray burst explosions: high-energy cosmic rays, neutrinos, gravitational waves. We also show how the relativistic fireball model for GRBs can be used to constrain modern theories of large and infinite extra-dimensions. In particular, in the frame of 5D gravity with the Standard Model localized on 3D brane (Dvali et al. 2000), the very existence of relativistic fireballs of $\\sim 10^{53}$ ergs puts the lower bound on the quantum gravity scale $\\sim 0.1$ eV.

K. A. Postnov

2001-07-06T23:59:59.000Z

109

ESM of Ionic and Electrochemical Phenomena on the Nanoscale  

SciTech Connect (OSTI)

Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

2011-01-01T23:59:59.000Z

110

Search for Higgs and new phenomena at colliders  

SciTech Connect (OSTI)

The present status of searches for the Higgs boson(s) and new phenomena is reviewed. The focus is on analyses and results from the current runs of the HERA and Tevatron experiments. The LEP experiments have released their final combined MSSM Higgs results for this conference. Also included are results from sensitivity studies of the LHC experiments and lepton flavor violating searches from the B factories, KEKB and PEP-II.

Lammel, Stephan; /Fermilab

2006-01-01T23:59:59.000Z

111

Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1  

SciTech Connect (OSTI)

This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

Not Available

1993-12-31T23:59:59.000Z

112

Degradation Mechanisms and Development of Protective Coatings...  

Broader source: Energy.gov (indexed) [DOE]

analyses before degradation tests. 5 Project Tasks per Period Phase 1 (FY13) * Task 1.1: Identification and characterization of candidate protective coatings for particular molten...

113

Photovoltaic Degradation Rates -- An Analytical Review  

SciTech Connect (OSTI)

As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

Jordan, D. C.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

114

CLAD DEGRADATION - FEPS SCREENING ARGUMENTS  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database.

R. Schreiner

2004-10-21T23:59:59.000Z

115

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS,  

E-Print Network [OSTI]

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS, AND ANALYSIS Luis A. Escobar Dept are often accelerated by testing at higher than usual levels of accelerating variables like temperature. This chapter describes an important class of models for accelerated destructive degradation data. We use

116

Lattice analysis for the energy scale of QCD phenomena  

E-Print Network [OSTI]

We formulate a new framework in lattice QCD to study the relevant energy scale of QCD phenomena. By considering the Fourier transformation of link variable, we can investigate the intrinsic energy scale of a physical quantity nonperturbatively. This framework is broadly available for all lattice QCD calculations. We apply this framework for the quark-antiquark potential and meson masses in quenched lattice QCD. The gluonic energy scale relevant for the confinement is found to be less than 1 GeV in the Landau or Coulomb gauge.

Arata Yamamoto; Hideo Suganuma

2008-12-09T23:59:59.000Z

117

Natural Phenomena Hazards (NPH) Meeting - October 2011 | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNational Environmental Policy ActEnergy 1 Natural Phenomena

118

Anderson localization of partially incoherent light  

SciTech Connect (OSTI)

We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems), any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior of the incoherent beam is similar to that of a single instantaneous coherent realization of the beam.

Capeta, D.; Radic, J.; Buljan, H. [Department of Physics, University of Zagreb, PP 332, 10000 Zagreb (Croatia); Szameit, A.; Segev, M. [Physics Department and Solid State Institute, Technion, Haifa 32000 (Israel)

2011-07-15T23:59:59.000Z

119

Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging  

E-Print Network [OSTI]

Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic appraoch under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering, and predict the switching between one minimum and another under squeezing and charging.

R. Capozza; A. Vanossi; A. Benassi; E. Tosatti

2014-12-22T23:59:59.000Z

120

Local Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,Local Correlations and Multi-Fractal Behaviour

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Local Universities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D E F G HLoanTexasLocal

122

Altered Composition and Microbial versus UV-Mediated Degradation of  

E-Print Network [OSTI]

Altered Composition and Microbial versus UV-Mediated Degradation of Dissolved Organic Matter versus UV degradation) from soils of upland forest and peat- land ecosystems. Soil C solubility Munster, Germany ABSTRACT Production, transport, and degradation of terrestrial dissolved organic matter

Turetsky, Merritt

123

Probing the Degradation Mechanisms in Electrolyte Solutions for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy. Probing the Degradation Mechanisms in Electrolyte Solutions for...

124

Project Profile: Degradation Mechanisms for Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Degradation Mechanisms for Thermal Energy Storage and Heat Transfer Fluid Containment Materials Project Profile: Degradation Mechanisms for Thermal Energy Storage and Heat Transfer...

125

Degradation mechanism and surface modification of biomedical magnesium alloy.  

E-Print Network [OSTI]

???The degradability of magnesium and magnesium alloys in a physiological environment makes them desirable biodegradable biomaterials in many applications. However, their fast degradation rates in… (more)

Xin, Yunchang (???)

2010-01-01T23:59:59.000Z

126

In-situ characterization and diagnostics of mechanical degradation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

In-situ characterization and diagnostics of mechanical degradation in electrodes In-situ characterization and diagnostics of mechanical degradation in electrodes 2011 DOE Hydrogen...

127

Characterization of Trapped Lignin-Degrading Microbes in Tropical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trapped Lignin-Degrading Microbes in Tropical Forest Soil. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil. Abstract: Lignin is often the most...

128

Method of degrading pollutants in soil  

DOE Patents [OSTI]

Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

Hazen, T.C.; Lopez-De-Victoria, G.

1994-07-05T23:59:59.000Z

129

Method of degrading pollutants in soil  

DOE Patents [OSTI]

A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

Hazen, Terry C. (Augusta, GA); Lopez-De-Victoria, Geralyne (Irmo, SC)

1994-01-01T23:59:59.000Z

130

Chemotactic selection of pollutant degrading soil bacteria  

DOE Patents [OSTI]

A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

Hazen, T.C.

1991-03-04T23:59:59.000Z

131

Tetrachloroethylene Degradation by Dithionite with Ultraviolet Activation  

E-Print Network [OSTI]

. This project has conducted research on degrading PCE with an ARP that combines dithionite and ultraviolet activation. The purpose of the project is to provide knowledge for the development of potential wastewater treatment technologies. Several control...

Zhang, Jingyuan

2013-07-30T23:59:59.000Z

132

Degradation of Structural Alloys Under Thermal Insulation  

E-Print Network [OSTI]

Wet thermal insulation may actively degrade steel and stainless steel structures by general corrosion or stress-corrosion cracking. Two different mechanisms of water ingress into insulation are discussed; flooding from external sources...

McIntyre, D. R.

1984-01-01T23:59:59.000Z

133

Synthetic biology approach to cellulose degradation   

E-Print Network [OSTI]

Cellulose, the most abundant biopolymer on earth, is composed of ? – 1,4 – linked glucose units, which in turn form a highly ordered crystalline structure that is insoluble and recalcitrant to degradation. It is the ...

Lakhundi, Sahreena Saleem

2012-06-22T23:59:59.000Z

134

Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)  

SciTech Connect (OSTI)

Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.

Jordan, D.; Kurtz, S.; Hansen, C.

2014-04-01T23:59:59.000Z

135

Soil degradation, global warming and climate impacts  

E-Print Network [OSTI]

will demonstrate one methodology for assessing the potential large-scale impacts of soil degradation on African climates and water resources. In addition it will compare and contrast these impacts to those expected from global warming and compare impacts for differ...- ent watershed regions on the continent. 2. METHODS In order to make a similar comparison between pro- jected climate change scenarios due to global warming © Inter-Research 2001 *E-mail: feddema@ku.edu Soil degradation, global warming and climate...

Feddema, Johannes J.; Freire, Sergio Carneiro

2001-01-01T23:59:59.000Z

136

Types of Land Degradation in Bhutan  

E-Print Network [OSTI]

of other nutrients Possible eutrophication or contamination of streams Excessive P fertiliser (potato and apple crops) Possible excess P fertiliser applied to apples in W Bhutan Eutrophicatio n unlikely in fast flowing streams... highly vulnerable to surface erosion Effluents from plants, workshops & urban waste Not extensive – but some cases around Thimphu & in South Table 2: Types of Degradation (In Situ Degradation-Physical) 1. Soil Type: Topsoil...

Chencho Norbu et al,

2003-01-01T23:59:59.000Z

137

Key Thermal Fluid Phenomena In Prismatic Gas-Cooled Reactors  

SciTech Connect (OSTI)

Several types of gas-cooled nuclear reactors have been suggested as part of the international Generation IV initiative with the proposed NGNP (Next Generation Nuclear Plant) as one of the main concepts [MacDonald et al., 2003]. Meaningful studies for these designs will require accurate, reliable predictions of material temperatures to evaluate the material capabilities; these temperatures depend on the thermal convection in the core and in other important components. Some of these reactors feature complex geometries and wide ranges of temperatures, leading to significant variations of the gas thermodynamic and transport properties plus possible effects of buoyancy during normal and reduced power operations and loss-of-flow (LOFA) and loss-of-coolant scenarios. Potential issues identified to date include ''hot streaking'' in the lower plenum evolving from ''hot channels'' in prismatic cores. In order to predict thermal hydraulic behavior of proposed designs effectively and efficiently, it is useful to identify the dominant phenomena occurring.

D. M. McEligot; G. E. McCreery; P. D. Bayless; T. D. Marshall

2005-06-01T23:59:59.000Z

138

Lorentz violation at high energy: concepts, phenomena and astrophysical constraints  

E-Print Network [OSTI]

We consider here the possibility of quantum gravity induced violation of Lorentz symmetry (LV). Even if suppressed by the inverse Planck mass such LV can be tested by current experiments and astrophysical observations. We review the effective field theory approach to describing LV, the issue of naturalness, and many phenomena characteristic of LV. We discuss some of the current observational bounds on LV, focusing mostly on those from high energy astrophysics in the QED sector at order E/M_Planck. In this context we present a number of new results which include the explicit computation of rates of the most relevant LV processes, the derivation of a new photon decay constraint, and modification of previous constraints taking proper account of the helicity dependence of the LV parameters implied by effective field theory.

Ted Jacobson; Stefano Liberati; David Mattingly

2005-06-11T23:59:59.000Z

139

Magnetic Phenomena in Holographic Superconductivity with Lifshitz Scaling  

E-Print Network [OSTI]

We investigate the effects of Lifshitz dynamical critical exponent z on a family of minimal D=4+1 holographic superconducting models, with a particular focus on magnetic phenomena. We see that it is possible to have a consistent Ginzburg-Landau approach to holographic superconductivity in a Lifshitz background. By following this phenomenological approach we are able to compute a wide array of physical quantities. We also calculate the Ginzburg-Landau parameter for different condensates, and conclude that in systems with higher dynamical critical exponent, vortex formation is more strongly unfavored energetically and exhibit a stronger Type I behavior. Finally, following the perturbative approach proposed by Maeda, Natsuume and Okamura, we calculate the critical magnetic field of our models for different values of z.

Dector, Aldo

2015-01-01T23:59:59.000Z

140

Analogue gravitational phenomena in Bose-Einstein condensates  

E-Print Network [OSTI]

Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which...

Finazzi, Stefano

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites  

SciTech Connect (OSTI)

Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

Anthony, P.L.; /SLAC; Delayen, J.R.; /Jefferson Lab; Fryberger, D.; /SLAC; Goree, W.S.; Mammosser, J.; /Jefferson Lab /SNS Project, Oak Ridge; Szalata, Z.M.; II, J.G.Weisend /SLAC

2009-08-04T23:59:59.000Z

142

Final Report Inspection of Aged/Degraded Containments Program.  

SciTech Connect (OSTI)

The Inspection of Aged/Degraded Containments Program had primary objectives of (1) understanding the significant factors relating corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and liners of reinforced concrete containments; (2) providing the United States Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments, and concrete containments as limited by liner integrity; (3) providing recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation; and (4) providing technical assistance to the USNRC (as requested) related to concrete technology. Primary program accomplishments have included development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of high-frequency acoustic imaging, magnetostrictive sensor, electromagnetic acoustic transducer, and multimode guided plate wave technologies for inspection of inaccessible regions of containment metallic pressure boundaries; development of a continuum damage mechanics-based approach for structural deterioration; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion. In addition, data and information assembled under this program has been transferred to the technical community through review meetings and briefings, national and international conference participation, technical committee involvement, and publications of reports and journal articles. Appendix A provides a listing of program reports, papers, and publications; and Appendix B contains a listing of program-related presentations.

Naus, Dan J [ORNL; Ellingwood, B R [Georgia Institute of Technology; Oland, C Barry [ORNL

2005-09-01T23:59:59.000Z

143

Preliminary Phenomena Identification and Ranking Tables (PIRT) for SBWR start-up stability  

SciTech Connect (OSTI)

Phenomena Identification and Ranking Tables (PIRT) have been developed for start-up transient for SBWP. The information used for PIRT came from RAMONA-4B and TRACG analyses of the transient and from related small scale tests. The transient was divided into four distinct phases, namely, Subcooled Core Heat-up, Subcooled Chimney, Saturated Chimney and Power Ascension. The assessment criterion selected was Minimum Critical Power Ratio. The SBWR system was divided into ten components. A total of 33 distinct phenomena among the components were identified. The Phase I has 28 ranked phenomena with 17 low, 6 medium and 5 high ranking. The Phase II has 39 ranked phenomena with 18 low, 13 median and 8 high ranking. The Phase III has 47 ranked phenomena with 22 low, 10 medium and 15 high ranking. The Phase IV has 46 ranked phenomena with 16 low, 12 medium and 18 high ranking. 12 refs., 22 figs., 21 tabs.

Rohatgi, U.S.; Cheng, H.S.; Khan, H.J.; Wulff, K.W.

1997-03-01T23:59:59.000Z

144

E-Print Network 3.0 - atmospheric phenomena Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Dynamical Processes. Summary: . TRANSPORT PHENOMENA Microscopic description of transport processes for particles Random walks and relation... with grey atmospheres Defining...

145

E-Print Network 3.0 - atmospheric pressure phenomena Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

flow solver Master Project Summary: , commonly accepted as well if Mach > 5 sees the rise of more complex phenomena at molecular and atomic level... , due to the high...

146

Reasoning about Probabilistic Phenomena: Lessons Learned and Applied in Software Design  

E-Print Network [OSTI]

Probabilistic Phenomena: Lessons Learned and Applied inand empirical data. The lessons learned from students’ worksome of the key lessons learned within each of these

Lee, Hollylynne S; Lee, J. Todd

2009-01-01T23:59:59.000Z

147

Quantum Locality?  

SciTech Connect (OSTI)

Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do not upset the proof in question. It is show here in detail why the precise statement of this theorem justifies the specified application of CQT. It is also shown, in response to his challenge, why a putative proof of locality that he has proposed is not valid.

Stapp, Henry

2011-11-10T23:59:59.000Z

148

Analytical Improvements in PV Degradation Rate Determination  

SciTech Connect (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

149

Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository  

SciTech Connect (OSTI)

This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

K.G. Mon; F. Hua

2005-04-12T23:59:59.000Z

150

Quantum entanglement phenomena in photosynthetic light harvesting complexes  

E-Print Network [OSTI]

We review recent theoretical calculations of quantum entanglement in photosynthetic light harvesting complexes. These works establish, for the first time, a manifestation of this characteristically quantum mechanical phenomenon in biologically functional structures. We begin by summarizing calculations on model biomolecular systems that aim to reveal non-trivial characteristics of quantum entanglement in non-equilibrium biological environments. We then discuss and compare several calculations performed recently of excitonic dynamics in the Fenna-Matthews-Olson light harvesting complex and of the entanglement present in this widely studied pigment-protein structure. We point out the commonalities between the derived results and also identify and explain the differences. We also discuss recent work that examines entanglement in the structurally more intricate light harvesting complex II (LHCII). During this overview, we take the opportunity to clarify several subtle issues relating to entanglement in such biomolecular systems, including the role of entanglement in biological function, the complexity of dynamical modeling that is required to capture the salient features of entanglement in such biomolecular systems, and the relationship between entanglement and other quantum mechanical features that are observed and predicted in light harvesting complexes. Finally, we suggest possible extensions of the current work and also review the options for experimental confirmation of the predicted entanglement phenomena in light harvesting complexes.

K. Birgitta Whaley; Mohan Sarovar; Akihito Ishizaki

2010-12-18T23:59:59.000Z

151

Advanced computational simulation of flow phenomena associated with orifice meters  

SciTech Connect (OSTI)

This paper presents and discusses results from a series of computational fluid dynamics (CFD) simulations of fluid flow phenomena associated with orifice meters. These simulations were performed using a new, state-of-the-art CFD code developed at Southwest Research Institute. This code is based on new techniques designed to take advantage of parallel computers to increase computational performance and fidelity of simulation results. This algorithm uses a domain decomposition strategy to create grid systems for very complex geometries composed of simpler geometric subregions, allowing for the accurate representation of the fluid flow domain. The domain decomposition technique maps naturally to parallel computer architectures. Here, the concept of message-passing is used to create a parallel algorithm, using the Parallel Virtual Machine (PVM) library. This code is then used to simulate the flow through an orifice meter run consisting of an orifice with a beta ratio of 0.5 and air flowing at a Reynolds number of 91,100. The work discussed in this paper is but the first step in developing a Virtual Metering Research Facility to support research, analysis, and formulation of new standards for metering.

Freitas, C.J. [Southwest Research Inst., San Antonio, TX (United States)

1995-12-31T23:59:59.000Z

152

Kinetic theory of nonlinear transport phenomena in complex plasmas  

SciTech Connect (OSTI)

In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

2013-03-15T23:59:59.000Z

153

Understanding Degradation Pathways in Organic Photovoltaics (Poster)  

SciTech Connect (OSTI)

Organic Photovoltaics (OPVs) recently attained power conversion efficiencies that are of interest for commercial production. Consequently, one of the most important unsolved issues facing a new industry is understanding what governs lifetime in organic devices and discovering solutions to mitigate degradation mechanisms. Historically, the active organic components are considered vulnerable to photo-oxidation and represent the primary degradation channel. However, we present several (shelf life and light soaking) studies pointing the relative stability of the active layers and instabilities in commonly used electrode materials. We show that engineering of the hole/electron layer at the electrode can lead to environmentally stable devices even without encapsulation.

Lloyd, M. T.; Olson, D. C.; Garcia, A.; Kauvar, I.; Kopidakis, N.; Reese, M. O.; Berry, J. J.; Ginley, D. S.

2011-02-01T23:59:59.000Z

154

DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION  

SciTech Connect (OSTI)

Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an ''upper-limit'' (i.e., instantaneous degradation) model for use in the TSPA-LA model. ''Best-estimate'' models for the degradation of the fuels in each of the DSNF groups are discussed to provide a basis for selecting the upper limit model for use in the TSPA-LA model. The instantaneous degradation model is chosen for use in the TSPA-LA model because the available information shows that the degradation rate of the N Reactor fuel (which constitutes most of the DSNF inventory) is very high and because the available qualified information is insufficient to justify use of a less conservative approach. The commercial spent nuclear fuel model will be used for naval spent nuclear fuel because it has been shown to be conservative for representing naval spent nuclear fuel.

J. CUNNANE

2004-11-19T23:59:59.000Z

155

Localization on the Landscape and Eternal Inflation  

E-Print Network [OSTI]

We investigate the validity of the assertion that eternal inflation populates the landscape of string theory. We verify that bubble solutions do not satisfy the Klein Gordon equation for the landscape potential. Solutions to the landscape potential within the formalism of quantum cosmology are Anderson localized wavefunctions. Those are inconsistent with inflating bubble solutions. The physical reasons behind the failure of a relation between eternal inflation and the landscape are rooted in quantum phenomena such as interference between wavefunction concentrated around the various vacua in the landscape.

Laura Mersini-Houghton; Malcolm J. Perry

2014-04-22T23:59:59.000Z

156

WAPDEG Analysis of Waste Package and Drip shield Degradation  

SciTech Connect (OSTI)

As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of scale in Section 6.3.4). The weld flaw portion of this report takes input from an engineering calculation (BSC 2004 [DIRS 170024]) and uses standard mathematical methods to enable easier implementation. The IWPD analysis also provides guidance on implementation of early failures (importance sampling and multinomial distribution usage). These manipulations are evident from standard scientific practices, approaches, or methods and do not require changes to the previously validated models. The IWPD analysis itself (Section 6.4), not the resultant curves from executing the IWPD analysis presented in Section 6.5 (which are for illustrative purposes), is used directly in total system performance assessment (TSPA). The IWPD analysis simulates general corrosion and stress corrosion cracking of the waste package outer barrier and general corrosion of the drip shield. The effects of igneous and seismic events and localized corrosion on drip shield and waste package performance are not evaluated in this report. The outputs of this report are inputs and methodologies used by TSPA to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. The analyses presented in this report are for the current repository design (BSC 2004 [DIRS 168489]).

K. Mon

2004-09-29T23:59:59.000Z

157

Investigating the Physical Origin of Unconventional Low-Energy Excitations and Pseudogap Phenomena in Cuprate Superconductors  

E-Print Network [OSTI]

Investigating the Physical Origin of Unconventional Low-Energy Excitations and Pseudogap Phenomena associated with the pseudogap phenomena, with the high-energy pseudogap probably of magnetic origin with the competing order, whereas the higher-energy pseudogap seems to be of magnetic origin. In this work, we

Yeh, Nai-Chang

158

FINITE VOLUME METHODS APPLIED TO THE COMPUTATIONAL MODELLING OF WELDING PHENOMENA  

E-Print Network [OSTI]

1 FINITE VOLUME METHODS APPLIED TO THE COMPUTATIONAL MODELLING OF WELDING PHENOMENA Gareth A.Taylor@brunel.ac.uk ABSTRACT This paper presents the computational modelling of welding phenomena within a versatile numerical) and Computational Solid Mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat

Taylor, Gary

159

Chemotactic selection of pollutant degrading soil bacteria  

DOE Patents [OSTI]

A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

Hazen, Terry C. (Augusta, GA)

1994-01-01T23:59:59.000Z

160

WoodChemistry Wood Degradation & Preservation  

E-Print Network [OSTI]

31 WoodChemistry Wood Degradation & Preservation Chemical Utilization of Wood Pulp & Paper and carbohydrates is of considerable interest in connection with a number of issues in wood chemistry, such as the reactions taking place during the formation of wood, the natural molecular weight distribution of lignin

Geldenhuys, Jaco

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Supplemental Data Degradation-Mediated Protein  

E-Print Network [OSTI]

Supplemental Data Degradation-Mediated Protein Quality Control in the Nucleus Richard G. Gardner:FITC) and DAPI (UV-2E/C) were from Chroma Technology Corp (Brattleboro, Vermont). Images were captured were assayed on YEPD plates containing 0.01­0.3% MMS or EMS. UV sensitivity was assayed by plating 400

Gardner, Rich

162

Original article Variation in protein degradability  

E-Print Network [OSTI]

represented by 1 to 16 cultivars, were studied: lucerne (Medicago sativa), white clover (Trifolium repens cultivars of lucerne harvested in the autumn of 1998 were incubated in nylon bags in 3 fistulated cows degradation. In a second experiment, lucerne (5), birdsfoot trefoil (5), white clover (4) and crownvetch (1

Paris-Sud XI, Université de

163

Method of restoring degraded solar cells  

DOE Patents [OSTI]

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

Staebler, D.L.

1983-02-01T23:59:59.000Z

164

Method of restoring degraded solar cells  

DOE Patents [OSTI]

Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

Staebler, David L. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

165

DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION  

SciTech Connect (OSTI)

The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix.

T.A. Thornton

2000-12-20T23:59:59.000Z

166

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report  

SciTech Connect (OSTI)

A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

Ball, Sydney J [ORNL

2008-03-01T23:59:59.000Z

167

ENVIRONENTAL DEGRADATION OF ADVANCED AND TRADITIONAL ENGINERING Chapter 14. Forms of Polymer Degradation: Overview  

E-Print Network [OSTI]

ENVIRONENTAL DEGRADATION OF ADVANCED AND TRADITIONAL ENGINERING MATERIALS Chapter 14. Forms more recent. The modern plastics industry is often dated from the mid- nineteenth century, with John Hyatt's invention of celluloid (a synthetic modification of natural cellulose). The first wholly

Roylance, David

168

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

169

Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)  

SciTech Connect (OSTI)

The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.

PLYS, M.G.

2000-10-10T23:59:59.000Z

170

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

171

Temperature dependence of ssrA-tag mediated protein degradation  

E-Print Network [OSTI]

Building synthetic gene networks with highly transient dynamics requires rapid protein degradation. We show that the degradation conferred by two commonly used ssrA tags is highly temperature dependent. Synthetic gene ...

Purcell, Oliver

172

Accelerated Destructive Degradation Test Planning Dept. of Statistics  

E-Print Network [OSTI]

Accelerated Destructive Degradation Test Planning Ying Shi Dept. of Statistics Iowa State Ames, IA 50011 wqmeeker@iastate.edu Abstract Accelerated Destructive Degradation Tests (ADDTs) provide reliability information quickly. An ADDT plan specifies factor level combinations of an accelerating variable

173

Accelerated Destructive Degradation Tests Robust to Distribution Misspecification  

E-Print Network [OSTI]

1 Accelerated Destructive Degradation Tests Robust to Distribution Misspecification Shuen-Lin Jeng, Taiwan, ROC William Q. Meeker Iowa State University, Ames, IOWA, USA Abstract Accelerated repeated. In certain products, measurements are destructive leading to accelerated destructive degradation test (ADDT

174

Planning Accelerated Destructive Degradation Test with Competing Risks  

E-Print Network [OSTI]

Planning Accelerated Destructive Degradation Test with Competing Risks Ying Shi Dept. of Statistics University Ames, IA 50011 wqmeeker@iastate.edu Abstract Accelerated destructive degradation tests (ADDTs plan specifies the test conditions of accelerating variables, running time, and the corresponding

175

Elastomer degradation sensor using a piezoelectric material  

DOE Patents [OSTI]

A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

Olness, Dolores U. (Livermore, CA); Hirschfeld, deceased, Tomas B. (late of Livermore, CA)

1990-01-01T23:59:59.000Z

176

Water and UV degradable lactic acid polymers  

DOE Patents [OSTI]

A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

Bonsignore, P.V.; Coleman, R.D.

1994-11-01T23:59:59.000Z

177

Water and UV degradable lactic acid polymers  

DOE Patents [OSTI]

A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

Bonsignore, Patrick V. (Joliet, IL); Coleman, Robert D. (Wheaton, IL)

1994-01-01T23:59:59.000Z

178

Water and UV degradable lactic acid polymers  

DOE Patents [OSTI]

A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

Bonsignore, P.V.; Coleman, R.D.

1996-10-08T23:59:59.000Z

179

Water and UV degradable lactic acid polymers  

DOE Patents [OSTI]

A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

Bonsignore, Patrick V. (Joliet, IL); Coleman, Robert D. (Wheaton, IL)

1996-01-01T23:59:59.000Z

180

Degradation of Materials in Combustion Environments  

E-Print Network [OSTI]

and oxide structural ceramics materials. involved formation of new liquid,glass, and solid phases. which resulted in loss of structural This paper briefly reviews the contents of 23 integrity. Destructi ve stresses a!iSOc i ated wi th ORNL reports... furnaces are During the past decade workers at Oak Ridge being used to study the effects of specific chemical National Laboratory (ORNL) and elsewhere have species on metallic and ceramic materials. Tests investigated the degradation of refractory...

Robbins, J. M.; Federer, J. I.; Parks, W. P. Jr.; Reid, J. S.

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - acid degradation progress Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

membrane extension, corresponding to degradation... for detection. A 50-msec exposure to UV light was used to initiate MT degradation; progress... and environment. Degradation of...

182

Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil  

E-Print Network [OSTI]

Characterization of Trapped Lignin-Degrading Microbes inCharacterization of Trapped Lignin-Degrading Microbes inCharacterization of Trapped Lignin-Degrading Microbes in

DeAngelis, Kristen

2012-01-01T23:59:59.000Z

183

E-Print Network 3.0 - aromatic hydrocarbon-degrading bacteria...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ydrocarbonDegradation It was hypothesized... aromatic hydrocarbon degradation. Hypothesis Test Result Groundwater stimulates Fe(lll) reduction Cell... Hydrocarbon Degradation At...

184

Degradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet  

E-Print Network [OSTI]

, combined exposure to UV radiation and water vapor, which are predominantly responsible for degradationDegradation of Carbon Fiber-reinforced Epoxy Composites by Ultraviolet Radiation and Condensation) ABSTRACT: The degradation of an IM7/997 carbon fiber-reinforced epoxy exposed to ultraviolet radiation and

Nakamura, Toshio

185

Model Compound Studies of Fuel Cell Membrane Degradation  

Broader source: Energy.gov (indexed) [DOE]

2 C SO 3 H F 3 C C F O F 2 C F 2 C F 2 C F 2 C SO 3 H F 3 C Route 3 Route 1 Route 2 UVH UVH 2 2 O O 2 2 Photolysis Degradation Photolysis Degradation 19 F NMR of Degraded MC2 a...

186

The Degradation of Organic Pollutants Using Supercritical Water  

E-Print Network [OSTI]

Organic Carbon (TOC) and UV-Vis analyses. The general trend for phenol degradation to increase was collected and subjected to COD, TOC and UV-Vis analysis to determine phenol degradation IV) Total time Not Degraded Vs. UV-Vis Absorption at 270 nm Results #12;0 20 40 60 80 100 120 0 50 100 150 residence time

New Hampshire, University of

187

Bayesian Methods for Accelerated Destructive Degradation Test Planning  

E-Print Network [OSTI]

Bayesian Methods for Accelerated Destructive Degradation Test Planning Ying Shi Dept. of Statistics University Ames, IA 50011 wqmeeker@iastate.edu Abstract Accelerated Destructive Degradation Tests (ADDTs methods for ADDT planning under a class of nonlinear degradation models with one accelerating variable. We

188

Methods For Planning Accelerated Repeated Measures Degradation Tests  

E-Print Network [OSTI]

Methods For Planning Accelerated Repeated Measures Degradation Tests Brian P. Weaver Statistical of Statistics Iowa State University Ames, IA 50010 wqmeeker@iastate.edu September 3, 2013 Abstract Accelerated-variable accelerated repeated measures degradation test plan when the (possibly transformed) degradation is linear

189

Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site  

SciTech Connect (OSTI)

The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

Snow, Robert L.; Ross, Steven B.

2011-09-15T23:59:59.000Z

190

Dynamical features of interference phenomena in the presence of entanglement  

SciTech Connect (OSTI)

A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or ''private'' potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are ''private'' potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well as its uncertainty throughout an interference experiment or entanglement event. We thus complement the Born-Oppenheimer approximation for interference states.

Kaufherr, T. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978 (Israel); Physics Department, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Aharonov, Y. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978 (Israel); Chapman University, Schmid College of Sciences, Orange, California 92866 (United States); Nussinov, S. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv 69978 (Israel); Popescu, S. [H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TK (United Kingdom); Tollaksen, J. [Chapman University, Schmid College of Sciences, Orange, California 92866 (United States)

2011-05-15T23:59:59.000Z

191

Aggregation phenomena in telechelic star polymer solutions Federica Lo Verso,1,* Athanassios Z. Panagiotopoulos,2  

E-Print Network [OSTI]

recently shown to assemble into interpenetrating networks, featuring mul- tiple critical points 5Aggregation phenomena in telechelic star polymer solutions Federica Lo Verso,1,* Athanassios Z Received 16 October 2008; published 16 January 2009 Telechelic star polymers are macromolecules

Likos, Christos N.

192

Models of fragmentation phenomena based on the symmetric group S sub n and combinational analysis  

SciTech Connect (OSTI)

Various models for fragmentation phenomena are developed using methods from permutation groups and combinational analysis. The appearance and properties of power laws in these models are discussed. Various exactly soluble cases are studied.

Mekjian, A.Z. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory); Lee, S.J. (Rutgers--the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy)

1991-01-29T23:59:59.000Z

193

Models of fragmentation phenomena based on the symmetric group S{sub n} and combinational analysis  

SciTech Connect (OSTI)

Various models for fragmentation phenomena are developed using methods from permutation groups and combinational analysis. The appearance and properties of power laws in these models are discussed. Various exactly soluble cases are studied.

Mekjian, A.Z. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory; Lee, S.J. [Rutgers--the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

1991-01-29T23:59:59.000Z

194

Optical, electronic, and dynamical phenomena in the shock compression of condensed matter  

E-Print Network [OSTI]

Despite the study of shock wave compression of condensed matter for over 100 years, scant progress has been made in understanding the microscopic details. This thesis explores microscopic phenomena in shock compression of ...

Reed, Evan J. (Evan John), 1976-

2003-01-01T23:59:59.000Z

195

PHYSICS OF FLUIDS 26, 052001 (2014) Capturing non-equilibrium phenomena in rarefied  

E-Print Network [OSTI]

PHYSICS OF FLUIDS 26, 052001 (2014) Capturing non-equilibrium phenomena in rarefied polyatomic: 142.104.86.60 On: Mon, 05 May 2014 20:27:14 #12;052001-2 B. Rahimi and H. Struchtrup Phys. Fluids 26

Struchtrup, Henning

196

Comparison of the Phenomena of Light Refraction and Gravitational Bending  

E-Print Network [OSTI]

The properties of light in the presence of electromagnetic and gravitational fields are compared. Once one takes account of the fact that clock rates vary with distance from a massive object, it is argued that in an absolute sense light frequencies remain constant in both interactions. It is also pointed out that the criterion used by Einstein for the angle of curvature of light rays passing close to the sun is not their actual trajectory but rather Huygens' Principle. The latter only requires that the speed of light vary with distance from a gravitational source in order to produce a measurable effect. As a result, the observed displacement of star images during solar eclipses can be explained on the basis of a rotation of the wave front of light without assuming that individual photons are actually deflected by the sun. A calculation reported by Schiff in 1960 based on the assumption that light travels in a straight line for all local observers obtains the same closed expression for the angle of displacement of star images as in Einstein's original work, in support of this interpretation. Since light is believed to follow a straight-line trajectory within any given homogeneous transparent medium, it is argued that light refraction and gravitational bending have more in common than is generally realized.

Robert J. Buenker

2009-04-21T23:59:59.000Z

197

Ionizing radiation induces ATM-independent degradation of p21Cip1 in transformed cells  

E-Print Network [OSTI]

the degradation after UV and the degradation in S-phase haverepair (18). This UV- induced degradation of p21 cip1 wasof Cdt1 and the UV-induced degradation of p21 cip1 (

Stuart, Scott

2008-01-01T23:59:59.000Z

198

CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION  

SciTech Connect (OSTI)

The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

J.C. CUNNANE

2004-08-31T23:59:59.000Z

199

Clad Degradation- Summary and Abstraction for LA  

SciTech Connect (OSTI)

The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO{sub 2}, which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO{sub 2}. The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the component models, developed for the two stages noted above, that are used as inputs to TSPA-LA. The model concludes that less than two percent of the fuel, including all of the stainless-steel clad fuel, received at the repository is failed (perforated) upon receipt at the repository. All failed fuel is assumed to axially split upon waste package failure exposing the fuel to oxidation from the in-package environment. TSPA-LA then calculates the release of radionuclides from the exposed volume of oxidized fuel.

D. Stahl

2004-10-01T23:59:59.000Z

200

Cyanide-degrading enzymes for bioremediation  

E-Print Network [OSTI]

............................. 27 Figure 7 Ability of N. crassa, G. sorghi, G. zeae, and A. nidulans to Degrade KCN and Cyanide in Waste-Water Samples Containing High Concentrations of Silver or Copper............................. 31 ix LIST OF TABLES...H 7.4), 100mM NaCl, 12.5mM imidazole (pH 7.4), and 1mg mL-1 17 lysozyme. After incubation on ice for 15 minutes, cells were lysed by five cycles of freezing at -80 oC, and thawing. Viscous DNA was removed by the addition of a crude preparation...

Basile, Lacy Jamel

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Photovoltaic Degradation Rates -- An Analytical Review: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministrationPhotometric(dmpePhotovoltaic Degradation

202

Biocarrier composition for and method of degrading pollutants  

DOE Patents [OSTI]

The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.

Fliermans, C.B.

1994-01-01T23:59:59.000Z

203

US Department of Energy natural phenomena design/evaluation guidelines/lessons learned  

SciTech Connect (OSTI)

In the spring of 1988, DOE Order 6430.1A, General Design Criteria (1), was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards (2), which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards (3). It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings.

Conrads, T.J.

1991-08-01T23:59:59.000Z

204

US Department of Energy natural phenomena design/evaluation guidelines/lessons learned  

SciTech Connect (OSTI)

In the spring of 1988, DOE Order 6430.1A, General Design Criteria [1], was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards [2], which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards [3]. It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings.

Conrads, T.J.

1991-08-01T23:59:59.000Z

205

Design and evaluation guidelines for Department of Energy facilities subjected to natural phenomena hazards  

SciTech Connect (OSTI)

The Department of Energy (DOE) and the DOE Natural Phenomena Hazards Panel have developed uniform design and evaluation guidelines for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of the guidelines is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. The guidelines apply to both new facilities (design) and existing facilities (evaluation, modification, and upgrading). The intended audience is primarily the civil/structural or mechanical engineers conducting the design or evaluation of DOE facilities. The likelihood of occurrence of natural phenomena hazards at each DOE site has been evaluated by the DOE Natural Phenomena Hazard Program. Probabilistic hazard models are available for earthquake, extreme wind/tornado, and flood. Alternatively, site organizations are encouraged to develop site-specific hazard models utilizing the most recent information and techniques available. In this document, performance goals and natural hazard levels are expressed in probabilistic terms, and design and evaluation procedures are presented in deterministic terms. Design/evaluation procedures conform closely to common standard practices so that the procedures will be easily understood by most engineers. Performance goals are expressed in terms of structure or equipment damage to the extent that: (1) the facility cannot function; (2) the facility would need to be replaced; or (3) personnel are endangered. 82 refs., 12 figs., 18 tabs.

Kennedy, R.P. (Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA)); Short, S.A. (ABB Impell Corp., Mission Viejo, CA (USA)); McDonald, J.R. (Texas Tech Univ., Lubbock, TX (USA)); McCann, M.W. Jr. (Benjamin (J.R.) and Associates, Inc., Mountain View, CA (USA)); Murray, R.C. (Lawrence Livermore National Lab., CA (USA)); Hill, J.R. (USDOE Assistant Secretary for Environment, Safety, and He

1990-06-01T23:59:59.000Z

206

Intracellular protein degradation in cultured rat muscle cells  

E-Print Network [OSTI]

1982 Major Subject: Biochemistry INTRACELLULAR PROTEIN DEGRADATION IN CULTURED RAT MUSCLE CELLS A Thesis by GWENDOLYN BETH MILLER Approved as to style and content by: hairman of Committee) p I 'P) (Member) (M r) (Head of Department) August... 1982 "BOGS-'. 4( 3 3q ABSTRACT Intracellular Protein Degradation in Cultured Rat Muscle Cells (August 1982) Gwendolyn Beth Miller, B. S. , Texas Asm Dniversity Chairman of Advisory Committee: Dr. J. martyn Gunn Intra:elMlar protein degradation...

Miller, Gwendolyn Beth

1982-01-01T23:59:59.000Z

207

Methods for enhancing the degradation or conversion of cellulosic material  

DOE Patents [OSTI]

The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

Harris, Paul (Carnation, WA); Rey, Michael (Davis, CA); Ding, Hanshu (Davis, CA)

2012-04-03T23:59:59.000Z

208

Model Compound Studies of Fuel Cell Membrane Degradation  

Broader source: Energy.gov [DOE]

Presentation on Model Compound Studies of Fuel Cell Membrane Degradation to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

209

High-Resolution Crack Imaging Reveals Degradation Processes in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reveals Degradation Processes in Nuclear Reactor Structural Materials. Abstract: Corrosion and cracking represent critical failure mechanisms for structural materials in many...

210

Methods for enhancing the degradation or conversion of cellulosic material  

DOE Patents [OSTI]

The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

Harris, Paul (Carnation, WA) Rey, Michael (Davis, CA); Ding, Hanshu (Davis, CA)

2009-10-27T23:59:59.000Z

211

Membrane degradation Accelerated Stress Test | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Membrane degradation Accelerated Stress Test Re-direct Destination: Abstract Not Provided times redirected to final destination ShortURL Code Published Current state Most recent...

212

Deciphering Active Estrogen-Degrading Microorganisms in Bioreactors  

E-Print Network [OSTI]

in biological wastewater treatment processes. This dissertation investigated factors affecting estrogen biodegradation in bioreactors. Specifically, research efforts were placed on characterization of several bacterial estrogen degraders (model strains...

Roh, Hyung Keun

2010-10-12T23:59:59.000Z

213

Using Thermally-Degrading, Partitioning, and Nonreactive Tracers...  

Broader source: Energy.gov (indexed) [DOE]

Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and FractureHeat Transfer Surface Area in Geothermal Reservoirs Using Thermally-Degrading,...

214

Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint  

SciTech Connect (OSTI)

Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

215

Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium  

E-Print Network [OSTI]

Pol, L.W.H. , and Lettinga, G. (1999) Anaerobic degradationRebac, S. , and Lettinga, G. (1997) High-rate anaerobic

Lykidis, Athanasios

2012-01-01T23:59:59.000Z

216

HYDROCARBON-DEGRADING BACTERIA AND SURFACTANT ACTIVITY  

SciTech Connect (OSTI)

Fate of benzene ethylbenzene toluene xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted petroleum hydrocarbon contaminated soils. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. Biodegradation was measured using each organism individually and in combination. Both bacteria were shown to degrade each of the BTEX compounds. Alcaligenes piechaudii biodegraded BTEXs more efficiently while mixed with BP-20 and individually. Biosurfactant production was observed by culture techniques. In addition 3-hydroxy fatty acids, important in biosurfactant production, was observed by FAME analysis. In the all experiments toluene and m+p- xylenes were better growth substrates for both bacteria than the other BTEX compounds. In addition, the test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbons (BTEX) pollution increase biodegradation through the action by biosurfactants.

Brigmon, R; Topher Berry, T; Grazyna A. Plaza, G; jacek Wypych, j

2006-08-15T23:59:59.000Z

217

Local Energy Landscape in a Simple Liquid  

E-Print Network [OSTI]

It is difficult to relate the properties of liquids and glasses directly to their structure because of complexity in the structure which defies precise definition. The potential energy landscape (PEL) approach is a very insightful way to conceptualize the structure-property relationship in liquids and glasses, particularly on the effect of temperature and history. However, because of the highly multi-dimensional nature of the PEL it is hard to determine, or even visualize, the actual details of the energy landscape. In this article we introduce a modified concept of the local energy landscape (LEL) which is limited in phase space, and demonstrate its usefulness using molecular dynamics simulation on a simple liquid at high temperatures. The local energy landscape is given as a function of the local coordination number, the number of the nearest neighbor atoms. The excitations in the LEL corresponds to the so-called beta-relaxation process. The LEL offers a simple but useful starting point to discuss complex phenomena in liquids and glasses.

Takuya Iwashita; Takeshi Egami

2014-10-31T23:59:59.000Z

218

Exclusive Processes: Tests of Coherent QCD Phenomena and Nucleon Substructure at CEBAF -  

E-Print Network [OSTI]

Measurements of exclusive processes such as electroproduction, photoproduction, and Compton scattering are among the most sensitive probes of proton structure and coherent phenomena in quantum chromodynamics. The continuous electron beam at CEBAF, upgraded in laboratory energy to 10--12 GeV, will allow a systematic study of exclusive, semi-inclusive, and inclusive reactions in a kinematic range well-tuned to the study of fundamental nucleon and nuclear substructure. I also discuss the potential at CEBAF for studying novel QCD phenomena at the charm production threshold, including the possible production of nuclear-bound quarkonium.

Stanley J. Brodsky; SLAC

1994-07-22T23:59:59.000Z

219

The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena  

E-Print Network [OSTI]

The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.

Reginald D. Smith

2010-09-05T23:59:59.000Z

220

Mesoscopic modeling of multi-physicochemical transport phenomena in porous media  

SciTech Connect (OSTI)

We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

Kang, Qinjin [Los Alamos National Laboratory; Wang, Moran [Los Alamos National Laboratory; Mukherjee, Partha P [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Degraded states, novel ecosystems, or reconfigured landscapes  

E-Print Network [OSTI]

. Specify state-and-transition model for ecological sites T1, T2--local management drivers; R1--restoration Changing management Stationarity or constant change? Disturbance/feedbacks Changes in survival and transition models vs. alternative regime models 2. How do we gather evidence for the models? broader spatial

222

Effects of TNT and its metabolites on anaerobic TNT degradation  

SciTech Connect (OSTI)

The effects of the presence of 2,4,6-trinitrotoluene (TNT), 4-amino-2,6-dinitrotoluene, and 2,4-diamino-6-nitrotoluene on the anaerobic treatment procedure developed for munitions-contaminated soil were examined. When 4-amino-2,6-dinitrotoluene was spiked in increasing levels into cultures containing TNT, inhibition of the rate of TNT degradation was observed. The degradation of 4-amino-2,6-dinitrotoluene did not proceed while TNT was present in the cultures. When 2,4-diamino-6-nitrotoluene was spiked into cultures that also contained TNT, TNT degradation rates were inhibited, and 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene were not degraded at all. When 2,4-diamino-6-nitrotoluene was spiked into cultures containing 4-amino-2,6-dinitrotoluene, degradation of 4-amino-2,6-dinitrotoluene was not effected but 2,4-diamino-6-nitrotoluene was not degraded. These results suggest that the rapid removal of TNT from the treatment system, before the intermediates have a chance to accumulate, or the rapid removal of the intermediates of TNT degradation is of utmost importance during the remediation of TNT-contaminated soils. If these intermediates are allowed to accumulate above inhibitory levels, the degradation of TNT will be slowed and the removal of the intermediates will halt completely.

Roberts, D.J. [Univ. of Houston, TX (United States). Dept. of Civil and Environmental Engineering; Pendharkar, S. [Computron, Phoenix, AZ (United States); Ahmad, F. [Booz, Allen and Hamilton, San Antonio, TX (United States)

1998-07-01T23:59:59.000Z

223

Scleral Reinforcement Through Host Tissue Integration with Biomimetic Enzymatically Degradable  

E-Print Network [OSTI]

. Wildsoet, O.D., Ph.D.1 Enzymatically degradable semi-interpenetrating polymer networks (edsIPNs) were Polymer Network James Su, M.Eng.,1 Samuel T. Wall, Ph.D.,2 Kevin E. Healy, Ph.D.,2,3 and Christine FScleral Reinforcement Through Host Tissue Integration with Biomimetic Enzymatically Degradable Semi-Interpenetrating

Healy, Kevin Edward

224

PHOTOINDUCTIVE DEGRADATION OF TWO ESTROGENS BY NATURAL DISSOLVED ORGANIC  

E-Print Network [OSTI]

PHOTOINDUCTIVE DEGRADATION OF TWO ESTROGENS BY NATURAL DISSOLVED ORGANIC MATTER UNDER SIMULATED on the nature and origin of the media (Thurman 1985) Photodegradation - degradation (break of aromatic HPLC-UV Spectrophotometer, Fluorimeter, TOCmeter Suntest 8h, 250 W/m2, 900 kJ/h : - ~ 800 nM E1 or E2

Boyer, Edmond

225

System Performances under Automation Degradation E. Hollnagel3  

E-Print Network [OSTI]

System Performances under Automation Degradation (SPAD) E. Hollnagel3 , C. Martinie1 , P. Palanque1 of the project objectives augmented by some early findings. Abstract - Increased automation is one of the main changes foreseen by SESAR in ATM. This will pose new challenges including possible automation degradation

Boyer, Edmond

226

Composition and biological degradability of lignin modified transgenic plants  

E-Print Network [OSTI]

Composition and biological degradability of lignin modified transgenic plants MA Bernard Vailhé, JM The influence of lignin quality on cell wall degradation was studied using, as model plants, control (C matter (DM) and lignin content were determined according to Jarrige (1961, Ann Biol Anim Biophys, 1, 163

Paris-Sud XI, Université de

227

Local Writhing Dynamics  

E-Print Network [OSTI]

We present an alternative local definition of the writhe of a self-avoiding closed loop which differs from the traditional non-local definition by an integer. When studying dynamics this difference is immaterial. We employ a formula due to Aldinger, Klapper and Tabor for the change in writhe and propose a set of local, link preserving dynamics in an attempt to unravel some puzzles about actin.

Randall D. Kamien

1997-03-13T23:59:59.000Z

228

Degradation in Solid Oxide Cells During High Temperature Electrolysis  

SciTech Connect (OSTI)

Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

Manohar Sohal

2009-05-01T23:59:59.000Z

229

Local Incentives (Massachusetts)  

Broader source: Energy.gov [DOE]

The Massachusetts Office of Business Development helps companies to identify communities interested in offering locally-negotiated incentives, such as Tax Increment Financing (TIF), Special Tax...

230

State and Local Incentives  

Broader source: Energy.gov [DOE]

To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs.

231

Wave Turbulence in Superfluid 4 Energy Cascades, Rogue Waves & Kinetic Phenomena  

E-Print Network [OSTI]

Outline Wave Turbulence in Superfluid 4 He: Energy Cascades, Rogue Waves & Kinetic Phenomena Conference, Chernogolovka, 3 August 2009 McClintock Efimov Ganshin Kolmakov Mezhov-Deglin Wave Turbulence in Superfluid 4 He #12;Outline Outline 1 Introduction Motivation 2 Modelling wave turbulence Need for models

Fominov, Yakov

232

Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell  

E-Print Network [OSTI]

Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell by Torsten or other means, without permission of the author. #12;Supervisor: Dr. N. Djilali Abstract Fuel cells-isothermal computational model of a proton exchange membrane fuel cell (PEMFC). The model was developed to improve

Victoria, University of

233

Atomization and Sprays 20(4), 297310 (2010) SPLASHING PHENOMENA DURING LIQUID  

E-Print Network [OSTI]

sound speed in liquid, m/s Tsat saturation temperature of droplet at 1 atm, C F force, N V droplet number (V µ/) tc characteristic spreading time, s Cg sound speed in ambient gas, m/s T temperature, C ClAtomization and Sprays 20(4), 297­310 (2010) SPLASHING PHENOMENA DURING LIQUID DROPLET IMPACT Jie

Aguilar, Guillermo

234

Paradoxical games, ratchets, and related phenomena Juan M.R. Parrondo Luis Dinis Javier Buceta  

E-Print Network [OSTI]

Paradoxical games, ratchets, and related phenomena Juan M.R. Parrondo Luis Din´is Javier Buceta states in spatially extended systems [2, 3, 4]. Brownian ratchets show that noise can be rectified a Brownian ratchet. In fact, the paradox came up as a translation to gambling games of the flashing ratchet

Lindenberg, Katja

235

PHYSICAL REVIEW B 85, 125424 (2012) Probing biological light-harvesting phenomena by optical cavities  

E-Print Network [OSTI]

. INTRODUCTION Plants and some types of bacteria can efficiently process solar light by converting photonsPHYSICAL REVIEW B 85, 125424 (2012) Probing biological light-harvesting phenomena by optical Fiorentino, Italy 3 Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street

Saikin, Semion

2012-01-01T23:59:59.000Z

236

Critical phenomena of nuclear matter in the extended Zimanyi-Moszkowski model  

E-Print Network [OSTI]

Critical phenomena of nuclear matter in the extended Zimanyi-Moszkowski model K. Miyazaki Abstract in nuclear multifragmentation reactions and the critical temperature has been derived as TC = 20 3 MeV in Ref] to estimate the critical temperature for in...nite nuclear matter, that is, TC = 16:6 0:86 Me

237

Abstract --In electromagnetic applications, hysteresis phenomena in magnetic materials are responsible of  

E-Print Network [OSTI]

rotation. Furthermore, based on the balance of chemical equation analogies, this model has the advantage13. M M Abstract -- In electromagnetic applications, hysteresis phenomena in magnetic materials the implementation proceeding used for some hysteresis material models and how they are applied in a sensor study

Boyer, Edmond

238

A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena  

E-Print Network [OSTI]

A mechanical covariant equation is introduced which retains all the effectingness of the Lagrange equation while being able to describe in a unified way other phenomena including friction, non-holonomic constraints and energy radiation (Lorentz-Abraham-Dirac force equation). A quantization rule adapted to the dissipative degrees of freedom is proposed which does not pass through the variational formulation.

E. Minguzzi

2014-10-01T23:59:59.000Z

239

International Symposium on Transport Phenomena 2-5 November, 2010, Kaohsiung City, Taiwan  

E-Print Network [OSTI]

are needed to harness or transport energy from various process industry operations. The available thermalThe 21st International Symposium on Transport Phenomena 2-5 November, 2010, Kaohsiung City, Taiwan Institute of Technology Kanpur, Kanpur (UP) 208016 India ABSTRACT We explore and scrutinize two possible

Khandekar, Sameer

240

EXPERIENCE USING PHENOMENA IDENTIFICATION AND RANKING TECHNIQUE (PIRT) FOR NUCLEAR ANALYSIS.  

SciTech Connect (OSTI)

THE PHENOMENA IDENTIFICATION AND RANKING TECHNIQUE (PIRT) IS A SYSTEMATIC WAY OF GATHERING INFORMATION FROM EXPERTS ON A SPECIFIC SUBJECT, AND RANKING THE IMPORTANCE OF THE INFORMATION, IN ORDER TO MEET SOME DECISION MAKING OBJECTIVE. IT HAS BEEN APPLIED TO MANY NUCLEAR TECHONLOGY ISSUES INCLUDING NUCLEAR ANALYSIS IN ORDER TO HELP GUIDE RESEARCH OR DEVELOP REGULATORY REQUIREMENTS.

DIAMOND, DAVID J.

2006-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Spin-dependent phenomena in digital-magnetic heterostructures: Clustering and phase-space filling effects  

E-Print Network [OSTI]

appreciated in the context of Mn-based heterostructures. In digital-magnetic heterostructures DMH's Mn-1829 98 51848-6 Spin-related phenomena are most conveniently studied in Mn-based semiconductors the correct or- der of magnitude of the energy splittings as a function of B as in bulk Mn-based systems and

Wilkins, John

242

Singular Strings in the Rotating Astrophysical Sources: a New Conjecture on the QPOs and Jet Phenomena  

E-Print Network [OSTI]

Stringy and disklike sources of the rotating compact astrophysical objects are considered on the base of the Kerr geometry. It is argued that analyticity of the Kerr solutions may result the appearance of singular strings, which may be the source of two important astrophysical effects: the jets and QPOs phenomena.

A. Burinskii

2005-07-29T23:59:59.000Z

243

Separation phenomena in the tritium source and numerical simulations of turbo-molecular pumps  

E-Print Network [OSTI]

Separation phenomena in the tritium source and numerical simulations of turbo-molecular pumps Felix In the previous works [1, 2], the results of numerical calculations of tritium flow from the buffer vessel up to the first vacuum system were reported. Two values of the tritium source temperature were considered, i.e. 27

Sharipov, Felix

244

ELSEVIER Journal of ElectronSpectroscopyand Related Phenomena 73 (1995) 1-11 ELECTRON SPECTROSCOPY  

E-Print Network [OSTI]

1994;in finalform 9 August 1994 Abstract The adsorption of titanium on titanium dioxide TiO2(110) has SPECTROSCOPY andRelatedPhenomena Titanium and reduced titania overlayers on titanium dioxide(110) J.T. Mayer a spectroscopy I. Introduction Titanium dioxide has received extensive attention in the surface science community

Diebold, Ulrike

245

Eurographics Workshop on Natural Phenomena (2009) E. Galin and J. Schneider (Editors)  

E-Print Network [OSTI]

phenomenon able to evoke great beauty in all kinds of scenes. However, there still does not exist an all.g. smoke as in [SB08], or water [IGLF06] or plants [DL05]). However, there are many phenomena where innovation is our model's founda- tion on real snow observations. We condensed these obser- vations

Gumhold, Stefan

246

Ultrafast Phenomena XIV, pp. 650-654 , Springer, Berlin (2005). 650 Ultrafast Dynamics of Light Transmission  

E-Print Network [OSTI]

of ultrafast pulse propagation through nano-hole arrays reported a 10-fs delay in transmission [6 of ultrafast light propagation through plasmonic nano-crystals using light pulses much shorter than the SPPUltrafast Phenomena XIV, pp. 650-654 , Springer, Berlin (2005). 650 Ultrafast Dynamics of Light

Peinke, Joachim

247

Interconnection phenomena in $W^+W^-$ and $t\\bar t$ events  

E-Print Network [OSTI]

I will attempt to survey some selected physics issues on QCD interconnection phenomena in the processes $e^+e^-\\to W^+W^-\\to$ 4 jets and $e^+e^-\\to t\\bar t \\to b W^+\\bar b W^-$. Possible consequences for LEP2 and future linear $e^+e^-$ colliders are briefly discussed.

Valery A. Khoze

1998-05-29T23:59:59.000Z

248

Modeling of elasto-capillary phenomena David L. Henann*a  

E-Print Network [OSTI]

energy, driving a uid body to minimize its surface area in an effort to minimize free energy.1 However, and surface area A. Surface energy will scale as gA, while volumetric strain energy scales as GV. DeningModeling of elasto-capillary phenomena David L. Henann*a and Katia Bertoldi*bc Surface energy

249

Transport phenomena in metal-halide lamps a poly-diagnostic study  

E-Print Network [OSTI]

/ spectroscopie. Subject headings: gas discharges / metal-halide lamps / plasma diagnostics / plasma properties-halide arc lamps . . . . . . . . . . . 7 1.3 Scope of ThesisTransport phenomena in metal-halide lamps a poly-diagnostic study Tanya Nimalasuriya #12;Copyright

Eindhoven, Technische Universiteit

250

NEST Scientific Report 2007-2009 Transport phenomena in self-assembled nanowires  

E-Print Network [OSTI]

NEST Scientific Report 2007-2009 Transport phenomena in self-assembled nanowires 21 S elf incompatible materials can be combined into advanced ­ in some cases unprecedented ­ nanostructures and charge transport in self-assembled structures as well as Josephson coupling in devices combining

Abbondandolo, Alberto

251

Computer modelling and natural phenomena Author: Giuseppe Longo Ecole Normale Suparieure, Paris et CREA, Ecole Polytechnique  

E-Print Network [OSTI]

CREA, Ecole Polytechnique Published in: ESEC/FSE-11 Proceedings of the 9th European software engineering conference held jointly with 11th ACM SIGSOFT international symposium on Foundations of software projection of our fantastic machine onto Biological and Cognitive phenomena. The conference lecture

Longo, Giuseppe

252

INTERFACIAL AND TRANSPORT PHENOMENA IN CLOSED-CELL FOAMS Submitted to the Faculty  

E-Print Network [OSTI]

INTERFACIAL AND TRANSPORT PHENOMENA IN CLOSED-CELL FOAMS A Thesis Submitted to the Faculty Sylvania, Techneglas, and Owens Corning provided the glass samples as well as help- ful criticisms the Purdue Glass Laboratory for sharing his expertise on glass and for letting me use his laboratory

Pilon, Laurent

253

SURVEY OF MODELS FOR CONCRETE DEGRADATION  

SciTech Connect (OSTI)

Concrete has been used in the construction of nuclear facilities because of two primary properties: its structural strength and its ability to shield radiation. Concrete structures have been known to last for hundreds of years, but they are also known to deteriorate in very short periods of time under adverse conditions. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. The goal of this report is to review and document the main aging mechanisms of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.

Spencer, Benjamin W [Idaho National Laboratory; Huang, Hai [Idaho Nation Laboratory

2014-08-01T23:59:59.000Z

254

Thermal degradation of cellulose in alkali  

SciTech Connect (OSTI)

Biomass in an alkaline aqueous slurry can be liquefied by heat and pressure. Understanding the mechanisms of biomass liquefaction to improve the efficiency of converting biomass to useful products, particularly chemicals and synthetic fuels is discussed. To study the chemical mechanisms of this process, pure cellulose, the main component of biomass, was liquefied. The 78 cellulose liquefaction products that were identified by gas chromatography/mass spectrometry include polyols, furans, ketones, hydrocarbons, and aromatic compounds. Polyols may be formed by hydrogenolytic cleavage. Furans an cyclic ketones may be cyclization products of dicarbonyl intermediates formed by aldol condensation of small initial degradation products such as acetone and acrolein. Several of these small carbonyl compounds were used as model compounds to test proposed mechanisms for furans and cyclic ketones and obtained products supporting five of the mechanisms. For the best case of 26 cellulose liquefaction experiments, 34% of the initial mass of the cellulose was converted to acetone-soluble oil with a heat of combustion of 14,000 Btu/lb.

Miller, R.K.; Molton, P.M.; Russell, J.A.

1980-12-01T23:59:59.000Z

255

Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities  

SciTech Connect (OSTI)

The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena such as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.

NONE

1996-01-01T23:59:59.000Z

256

Wigner-PDC description of photon entanglement can still be made completely local  

E-Print Network [OSTI]

Allegedly, a realistic theory for the process of detection within the Wigner description of PDC-generated (Parametric Down Conversion) photon-entanglement cannot be formulated as entirely local-realistic. Here we show the falseness of such an assertion, at least when based, as customarily is, on the unavoidable appearance of negative probabilities. Yet, locality is not guaranteed: it simply is not excluded, either. On the other hand, the immediacy with which the so-called phenomena of "enhancement" arises in this framework would also suggest that the Wigner-PDC theory may be the right track if Quantum Mechanics and local realism are to be, after all, reconciled.

Rodriguez, David

2011-01-01T23:59:59.000Z

257

EPS HEP2005, Lisboa, 21.-27.07.2005General Search for New Phenomena at HERA and a Search for Magnetic Monopoles, Ana Dubak 1 General Search for New Phenomena  

E-Print Network [OSTI]

EPS HEP2005, Lisboa, 21.-27.07.2005General Search for New Phenomena at HERA and a Search for new phenomena at HERA · Direct Search for Magnetic Monopoles #12;EPS HEP2005, Lisboa, 21, have we missed something? General search ± e p 27.6 GeV (till 1998 EP = 820 GeV ) s = 320 GeV HERA

258

Non-phosphate degradation products of tributyl phosphate  

SciTech Connect (OSTI)

Tributyl phosphate(TBP) was compulsively degraded with nitric acid and/or uranium nitrate at elevated temperature around 105{degrees}C. Experimental results indicates major non-phosphate degradation products are butyl nitrate (C{sub 4}H{sub 9}NO{sub 3}), propionic acid (C{sub 2}H{sub 5}COOH), acetic acid (CH{sub 3}COOH), butyric acid (C{sub 3}H{sub 7}COOH) and butyl alcohol (C{sub 4}H{sub 9}OH) in ascending order of quantity. Degrading rate in uranium free system is less than that in uranium coexisting system. Carboxylic acids were not produced in uranium free system, and only acetic acid was identified in case of without supplying nitric acid from aqueous phase. Moreover, from the experimental study on the reactivity of each non-phosphate product with nitric acid, carboxylic acids were identified as byproducts of butyl alcohol and butyl nitrate, and each carboxylic acid was stable in these degrading conditions. Finally, butyl alcohol is considered as one of intermediate products to butyl nitrate and carboxylic acids. From this study, the non-phosphate degradation products of TBP is identified and the degrading reaction pass is proposed. Extraction behavior of each non-phosphate product and reactivity of degraded TBP are also elucidated.

Tashiro, Y.; Kodama, R.; Sugai, H. [Japan Nuclear Fuel Ltd., Aomori (Japan)] [and others

1995-12-01T23:59:59.000Z

259

Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package  

SciTech Connect (OSTI)

In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{sub eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.

S.F.A. Deng; M. Saglam; L.J. Gratton

2001-05-23T23:59:59.000Z

260

An investigation in the hygrothermal degradation of an E- glass/vinyl-ester composite in humid and immersion environments  

E-Print Network [OSTI]

known to accelerate UV degradation of polymer materials [with increased UV exposure [13], the degradation of materialthe UV spectrum has been observed to result in degradation

Svetlik, Stephanie Laura

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

229 nm UV Photochemical Degradation of Energetic Molecules Luling Wang, David Tuschel, Sanford A. Asher*  

E-Print Network [OSTI]

229 nm UV Photochemical Degradation of Energetic Molecules Luling Wang, David Tuschel, Sanford A photochemical degradation of energetic molecules upon UV resonance Raman (UVRR) excitation of the 229 nm UVRR degradation quantum yields of UV resonance Raman, photodegradation, explosive detection

Asher, Sanford A.

262

Effects of Environmental Degradation on Flexural Failure Strength of Fiber Reinforced Composites  

E-Print Network [OSTI]

reinforced epoxy were sub- jected to environmental degradation using controlled ultraviolet radiation (UV Composites . Environmental degradation . UV radiation . Moisture . Fatigue . Residual strength Introduction are susceptible to degradation by moisture, temperature, ultraviolet (UV) radiation, thermal cycling and me

Nakamura, Toshio

263

SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES  

SciTech Connect (OSTI)

PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

Flach, G.

2014-10-28T23:59:59.000Z

264

Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

2000-03-28T23:59:59.000Z

265

Self-Organization, Plasticity, and Low-level Visual Phenomena in a Laterally Connected Map Model of the Primary Visual Cortex  

E-Print Network [OSTI]

Based on a Hebbian adaptation process, the afferent and lateral connections in the RF-LISSOM model organize simultaneously and cooperatively, and form structures such as those observed in the primary visual cortex. The neurons in the model develop local receptive fields that are organized into orientation, ocular dominance, and size selectivity columns. At the same time, patterned lateral connections form between neurons that follow the receptive field organization. This structure is in a continuously-adapting dynamic equilibrium with the external and intrinsic input, and can account for reorganization of the adult cortex following retinal and cortical lesions. The same learning processes may be responsible for a number of low-level functional phenomena such as tilt aftereffects, and combined with the leaky integrator model of the spiking neuron, for segmentation and binding. The model can also be used to verify quantitatively the hypothesis that the visual cortex forms a sparse, redun...

1997-01-01T23:59:59.000Z

266

E-Print Network 3.0 - aromatic hydrocarbon pah-degrading Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

degradation Summary: Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation N... , terminate in the sludge, and can be released to the...

267

Degradation Study of the Peel Strength of Mini-Modules Under...  

Broader source: Energy.gov (indexed) [DOE]

be further investigated to understand the degradation behaviour. Both T and RH are accelerators of the degradation. The rate of T acceleration is faster than that of RH....

268

E-Print Network 3.0 - aging degradation study Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

investigation of the influence of molecular structure on natural and accelerated UV degradation Summary: . Many studies 2,4e10 shown that degradation initiated by UV...

269

E-Print Network 3.0 - acid degradation genes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

degradation, necessitating a gene inactivation... ). Several genes involved in steroid degradation were cloned by functional complementation of different UV... , a kstD gene...

270

E-Print Network 3.0 - alkane degradation pathway Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the degradation occurring principally at domain boundaries.19... that the mechanism of UV degradation of ODS SAMs to be similar to that of photooxidation of gas-phase...

271

E-Print Network 3.0 - arresting environmental degradation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the arrested replication fork but prevents nascent DNA degradation from occurring after UV irradiation... arrest, but no degradation is observed in dnaEts mutants... B HELICASE...

272

E-Print Network 3.0 - anaerobic protein-degrading hyperthermophilic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

protein-degrading hyperthermophilic Search Powered by Explorit Topic List Advanced Search Sample search results for: anaerobic protein-degrading hyperthermophilic Page: << < 1 2 3...

273

Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding contact  

E-Print Network [OSTI]

Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding degradation of the contact interface of a fluorocarbon monolayer-coated polycrystalline silicon microdevice

Krim, Jacqueline

274

Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)  

SciTech Connect (OSTI)

The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, calcium ions, and galvanic coupling to less noble metals are further considered. It is concluded that, as far as materials degradation is concerned, the materials and design adopted in the U.S. Yucca Mountain Project will provide sufficient safety margins within the 10,000-years regulatory period.

F. Hua; P. Pasupathi; N. Brown; K. Mon

2005-09-19T23:59:59.000Z

275

Local Public Finance  

E-Print Network [OSTI]

24. How to cite this article Quigley, John M. "local publicEW P ALGRAVE ) By John M. Quigley May 2008 These papers arelocal public finance John M. Quigley From The New Palgrave

Quigley, John M.

2008-01-01T23:59:59.000Z

276

Local Public Finance  

E-Print Network [OSTI]

cite this article Quigley, John M. "local public finance."HE N EW P ALGRAVE ) By John M. Quigley May 2008 These paperslocal public finance John M. Quigley From The New Palgrave

Quigley, John M.

2008-01-01T23:59:59.000Z

277

Enzymatic degradation of guar galactomannans: A rheological study  

SciTech Connect (OSTI)

Aqueous gels of guar gum and its derivatives are widely used in hydraulic fracturing for enhancing oil or gas production. Subsequently, these gels need to be degraded and flushed out of the wells to provide passage for oil or gas flow. The use of thermostable enzymes to hydrolyze the guar gums offers a novel and viable approach to polymer degradation for this application. Most wells of commercial interest are at high temperatures and the use of enzymatic degradation can lead to a significant expansion in the use of hydraulic fracturing for oil and gas recovery. In this study, steady shear measurements are used to determine the effect of several enzymes on polymer viscosity. The effect of various parameters such as enzyme type and concentration, temperature of hydrolysis and pH of the solutions on the extent and kinetics of polymer degradation are discussed.

Tayal, Akash; Khan, S.A. [North Carolina State Univ., Raleigh, NC (United States)

1995-12-01T23:59:59.000Z

278

Waste Form Degradation Model Integration for Engineered Materials...  

Broader source: Energy.gov (indexed) [DOE]

models of glass waste form and metallic waste form degradation and the major corrosion products expected from these processes (e.g., gel and secondary phases such as clays...

279

Seismic Fragility Analysis of a Degraded Condensate Storage Tank  

SciTech Connect (OSTI)

The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences of structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed for five cases: (1) a baseline analysis where the design condition (undegraded) is assumed, (2) a scenario with degraded stainless steel tank shell, (3) a scenario with degraded anchor bolts, (4) a scenario with anchorage concrete cracking, and (5) a perfect correlation of the above three degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study. To achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs), the Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic fragility analysis methods that consider age-related degradation of SPCs. The rate of age-related degradation of SPCs was not found to be significantly large, but increasing as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). In this paper, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. This paper will present the methodology for the time-dependent fragility calculation and discuss the insights drawn from this study.

Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Kim, M.K.; Choi, I-K.

2011-05-16T23:59:59.000Z

280

Unravelling the Performance Degradation Mechanisms in High-voltage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unravelling the Performance Degradation Mechanisms in High-voltage Lithium-ion Battery Composite Oxide Electrodes Apr 11 2014 02:00 PM - 03:00 PM Debasish Mohanty, ORNL, Oak Ridge...

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Investigation of the Photocatalytic Degradation of Ethanol and Acetone  

E-Print Network [OSTI]

In-situ transmission Fourier-transform infrared spectroscopy has been used to study the photocatalytic oxidation of acetone, ethanol and the interaction between acetone and ethanol. Compared with the degradation of acetone alone, it cannot...

Liu, Y.; Ding, B.; Dong, S.

2006-01-01T23:59:59.000Z

282

Microbial petroleum degradation enhancement by oil spill bioremediation products  

E-Print Network [OSTI]

was conducted using unpolluted, natural seawater. The products were tested in triplicate using 250 ml Erlenmeyer flasks and evaluated over a 28 day period to determine the products' capabilities based on the extent of petroleum degradation. Toxicity...

Lee, Salvador Aldrett

1996-01-01T23:59:59.000Z

283

Small-Molecule Control of Protein Degradation Using Split Adaptors  

E-Print Network [OSTI]

Targeted intracellular degradation provides a method to study the biological function of proteins and has numerous applications in biotechnology. One promising approach uses adaptor proteins to target substrates with ...

Davis, Joseph H.

284

A Study on Performance Degradation of PEMFC by Water Freezing...  

Broader source: Energy.gov (indexed) [DOE]

Study on Performance Degradation of PEMFC by Water Freezing Workshop on Fuel Cell Operation at Sub-Freezing Temperatures Feb. 1-2, 2005 EunAe Cho Fuel Cell Research Center Korea...

285

Degradation Pathway Models for Photovoltaics Module Lifetime Performance  

E-Print Network [OSTI]

Degradation Pathway Models for Photovoltaics Module Lifetime Performance Nicholas R. Wheeler, Laura data from Underwriter Labs, featuring measurements taken on 18 identical photovoltaic (PV) modules in modules and their effects on module performance over lifetime. Index Terms--photovoltaics, statistical

Rollins, Andrew M.

286

Computational Modeling of Degradation of Substituted Benzyltrimethyl Ammonium: Preprint  

SciTech Connect (OSTI)

The degradation of cations on the alkaline exchange membranes is the major challenge for alkaline membrane fuel cells. In this paper, we investigated the degradation barriers by density functional theory for substituted benzyltrimethyl ammonium (BTMA+) cations, which is one of the most commonly used cations for alkaline exchange membranes. We found that substituted cations with electron-releasing substituent groups at meta-position of the benzyl ring could result in improved degradation barriers. However, after investigating more than thirty substituted BTMA+ cations with ten different substituent groups, the largest improvement of degradation barriers is only 1.6 kcal/mol. This implies that the lifetime of alkaline membrane fuel cells could increase from a few months to a few years by using substituted BTMA+ cations, an encouraging but still limited improvement for real-world applications.

Long, H.; Pivovar, B. S.

2014-09-01T23:59:59.000Z

287

Identifying Efficiency Degrading Faults in Split Air Conditioning Systems  

E-Print Network [OSTI]

Studies estimate that as much as 50% of packaged air conditioning systems operate in faulty conditions that degrade system efficiency. Common faults include: under- and over-charged systems (too much or too little refrigerant), faulty expansions...

Terrill, T. J.; Brown, M. L.; Cheyne, R. W. Jr.; Cousins, A. J.; Daniels, B. P.; Erb, K. L.; Garcia, P. A.; Leutermann, M. J.; Nel, A. J.; Robert, C. L.; Widger, S. B.; Williams, A. G.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

288

Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility  

SciTech Connect (OSTI)

In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

289

Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena  

SciTech Connect (OSTI)

Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

Vivek Agarwal; Magdy Samy Tawfik; James A Smith

2014-07-01T23:59:59.000Z

290

Studies of Intermittency-like Phenomena in Plasma turbulence at IPR  

SciTech Connect (OSTI)

The observation of intermittency in the turbulent scrape-off layer plasma of ADITYA tokamak was first reported about one and a half decade ago. In the last decade or so, several aspects of intermittency-like phenomena have been observed on tokamaks and other fusion devices throughout the world. A review of the research carried out at the Institute for Plasma Research (IPR) is presented, which closely follow the research trend on intermittency-like phenomena in plasmas worldwide. We also present our analysis of particle flux data in order to test the recently proposed fluctuation theorem, which states that the probability of 'entropy consuming' flux events falls off exponentially with the averaging time. This theorem, proposed in the context of small systems, is applied to macroscopic system like tokamak edge plasma by invoking an 'effective temperature' of the bath of drift waves from which, plasma objects take energy and carry out work of transporting matter

Jha, R.; Das, A.; Bisai, N.; Kaw, P. [Institute for Plasma Research, Bhat, Near Indira Bridge, Gandhinagar-382428 (India)

2010-11-23T23:59:59.000Z

291

Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities  

SciTech Connect (OSTI)

This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.

Not Available

1994-04-01T23:59:59.000Z

292

Thermal degradation chemistry of poly[bis(phenoxy)phosphazene  

E-Print Network [OSTI]

THERMAL DEGRADATION CHEMISTRY OF POLY[BIS(PHENOXY)PHOSPHAZENE] A Thesis by SHAWN JOSEPH MAYNARD Submitted to the Office of Graduate Studies of Texas A&M University in Partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1989 Major subject: Chemistry THERMAL DEGRADATION CHEMISTRY OF POLY[BIS(PHENOXY)PHOSPHAZENE] A Thesis by SHAWN JOSEPH MAYNARD Approved as to style and content by: J. F. Haw (Chair of Committee) Mic ael B. Hal (Head...

Maynard, Shawn Joseph

1989-01-01T23:59:59.000Z

293

Inhibition of protein degradation by peptide protease inhibitors  

E-Print Network [OSTI]

INHIBITION OF PROTEIN DEGRADATION BY PEPTIDE PROTEASE INHIBITORS A Thesis by REBECCA ANNE OWENS Submitted to the Graduate College of Texas ALN Universi. ty in partial fulfillment of the requirement for the degree of NASTER OF SCIENCE August... 1980 Major Subj ect: Biochemistry INHIBITION OF PROTEIN DEGRADATION BY PEPTIDE PROTEASE INHIBITORS A Thesis by REBECCA ANNE OWENS Approved as to style and content by: ~ C&irman qf M~ttee) I ), (Member) (Member) (Head of Department) August...

Owens, Rebecca Anne

1980-01-01T23:59:59.000Z

294

Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant  

SciTech Connect (OSTI)

The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

Blanchat, T.K.; Allen, M.D.; Pilch, M.M. [Sandia National Labs., Albuquerque, NM (United States); Nichols, R.T. [Ktech Corp., Albuquerque, NM (United States)

1994-06-01T23:59:59.000Z

295

Palladium chloride to palladium metal two-dimensional nucleation and growth phenomena  

SciTech Connect (OSTI)

The reduction of a monolayer of surface-bound Pd(II) to Pd(0) on a palladium substrate reveals two-dimensional nucleation and growth phenomena. Using well-known 2D nucleation-growth theories, this reduction is shown to proceed by an instantaneous nucleation and growth mechanism. However, when a submonolayer of Pd(II) is present, this mechanism fails to account for the experimentally observed high cathodic currents seen at zero time. A model incorporating preexisting Pd(0) cylindrical sites on the partially oxidized Pd(0) surface has been successfully applied to account for the discrepancy between the experimental results and current 2D theories. Using this modified 2D model, values for the mathematical product of cylindrical growth rate and the square root of the nucleation site densities have been determined, and the overpotential dependence of the growth rate has been confirmed and quantified. These 2D nucleation-growth phenomena have practical consequences on the performance of the Pd(II)/Pd(0) system as a faradaic supercapacitor, and probably on the performance of other 2D faradaic supercapacitor systems. In addition, because many electrodes undergo monolayer surface oxidation-reduction reactions in other solvent systems, especially aqueous electrolytes, these 2D nucleation-growth phenomena may play a role in these important surface-modifying redox systems as well.

Long, H.C. de; Carlin, R.T. [Air Force Academy, CO (United States). Frank J. Seiler Research Lab.

1995-08-01T23:59:59.000Z

296

Technology and Climate Trends in PV Module Degradation: Preprint  

SciTech Connect (OSTI)

To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

2012-10-01T23:59:59.000Z

297

Technology and Climate Trends in PV Module Degradation (Presentation)  

SciTech Connect (OSTI)

To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

Jordan, D.; Wohlgemuth, J.; Kurtz, S.

2012-10-01T23:59:59.000Z

298

MAPPING FLOW LOCALIZATION PROCESSES IN DEFORMATION OF IRRADIATED REACTOR STRUCTURAL ALLOYS - FINAL REPORT. Nuclear Energy Research Initiative Program No. MSF99-0072. Period: August 1999 through September 2002. (ORNL/TM-2003/63)  

SciTech Connect (OSTI)

Metals that can sustain plastic deformation homogeneously throughout their bulk tend to be tough and malleable. Often, however, if a metal has been hardened it will no longer deform uniformly. Instead, the deformation occurs in narrow bands on a microscopic scale wherein stresses and strains become concentrated in localized zones. This strain localization degrades the mechanical properties of the metal by causing premature plastic instability failure or by inducing the formation of cracks. Irradiation with neutrons hardens a metal and makes it more prone to deformation by strain localization. Although this has been known since the earliest days of radiation damage studies, a full measure of the connection between neutron irradiation hardening and strain localization is wanting, particularly in commercial alloys used in the construction of nuclear reactors. Therefore, the goal of this project is to systematically map the extent of involvement of strain localization processes in plastic deformation of three reactor alloys that have been neutron irradiated. The deformation processes are to be identified and related to changes in the tensile properties of the alloys as functions of neutron fluence (dose) and degree of plastic strain. The intent is to define the role of strain localization in radiation embrittlement phenomena. The three test materials are a tempered bainitic A533B steel, representing reactor pressure vessel steel, an annealed 316 stainless steel and annealed Zircaloy-4 representing reactor internal components. These three alloys cover the range of crystal structures usually encountered in structural alloys, i.e. body-centered cubic (bcc), face-centered cubic (fcc), and close-packed hexagonal (cph), respectively. The experiments were conducted in three Phases, corresponding to the three years duration of the project. Phases 1 and 2 addressed irradiations and tensile tests made at near-ambient temperatures, and covered a wide range of neutron fluences. Phase 3 was aimed at a higher irradiation and test temperature of about 288 C, pertinent to the operating temperature of commercial reactor pressure vessel steels. Phase 3 explored a narrower fluence range than Phases 1 and 2, and it included an investigation of the strain rate dependence of deformation.

Farrell, K.

2003-09-26T23:59:59.000Z

299

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs  

SciTech Connect (OSTI)

Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV) concepts, such as the NGNP, it is fully expected that the behavior of these graphites will conform to the recognized trends for near isotropic nuclear graphite. Thus, much of the data needed is confirmatory in nature. Theories that can explain graphite behavior have been postulated and, in many cases, shown to represent experimental data well. However, these theories need to be tested against data for the new graphites and extended to higher neutron doses and temperatures pertinent to the new Gen IV reactor concepts. It is anticipated that current and planned future graphite irradiation experiments will provide the data needed to validate many of the currently accepted models, as well as providing the needed data for design confirmation.

Burchell, Timothy D [ORNL; Bratton, Rob [Idaho National Laboratory (INL); Marsden, Barry [University of Manchester, UK; Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission; Penfield, Scott [Technology Insights; Mitchell, Mark [PBMR (Pty) Ltd.; Windes, Will [Idaho National Laboratory (INL)

2008-03-01T23:59:59.000Z

300

Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment  

SciTech Connect (OSTI)

The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sampling based on local bandwidth  

E-Print Network [OSTI]

The sampling of continuous-time signals based on local bandwidth is considered in this thesis. In an intuitive sense, local bandwidth refers to the rate at which a signal varies locally. One would expect that signals should ...

Wei, Dennis

2007-01-01T23:59:59.000Z

302

Degradation and Failure Characteristics of NPP Containment Protective Coating Systems  

SciTech Connect (OSTI)

A research program to investigate the performance and potential for failure of Service Level I coating systems used in nuclear power plant containment is in progress. The research activities are aligned to address phenomena important to cause failure as identified by the industry coatings expert panel.

Sindelar, R.L.

2000-12-01T23:59:59.000Z

303

Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes  

SciTech Connect (OSTI)

The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ? A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ? Receptor fragmentation is not required for endocytosis of ErbB2. ? Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ? ErbB2-Ub4 is internalized clathrin-dependently.

Vuong, Tram Thu [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway)] [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Berger, Christian [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)] [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Bertelsen, Vibeke; Rødland, Marianne Skeie [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway)] [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Stang, Espen [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)] [Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway); Madshus, Inger Helene, E-mail: i.h.madshus@medisin.uio.no [Institute of Clinical Medicine, University of Oslo, Rikshospitalet, 0027 Oslo (Norway); Department of Pathology, Oslo University Hospital, Rikshospitalet, P.O. Box 4950 Nydalen, 0424 Oslo (Norway)

2013-02-01T23:59:59.000Z

304

Orleans Local Coastal Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Local Coastal Programs Section provides technical assistance, guidance, and management to parishes in the development, approval, and implementation of local coastal programs (LCP). Once an LCP...

305

Enhanced regeneration of degraded polymer solar cells by thermal annealing  

SciTech Connect (OSTI)

The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

2014-05-12T23:59:59.000Z

306

Recent progress in degradation and stabilization of organic solar cells  

SciTech Connect (OSTI)

Stability is of paramount importance in organic semiconductor devices, especially in organic solar cells (OSCs). Serious degradation in air limits wide applications of these flexible, light-weight and low-cost power-generation devices. Studying the stability of organic solar cells will help us understand degradation mechanisms and further improve the stability of these devices. There are many investigations into the efficiency and stability of OSCs. The efficiency and stability of devices even of the same photoactive materials are scattered in different papers. In particular, the extrinsic degradation that mainly occurs near the interface between the organic layer and the cathode is a major stability concern. In the past few years, researchers have developed many new cathodes and cathode buffer layers, some of which have astonishingly improved the stability of OSCs. In this review article, we discuss the recent developments of these materials and summarize recent progresses in the study of the degradation/stability of OSCs, with emphasis on the extrinsic degradation/stability that is related to the intrusion of oxygen and water. The review provides detailed insight into the current status of research on the stability of OSCs and seeks to facilitate the development of highly-efficient OSCs with enhanced stability.

Cao, Huanqi; He, Weidong; Mao, Yiwu; Lin, Xiao; Ishikawa, Ken; Dickerson, James H.; Hess, Wayne P.

2014-10-15T23:59:59.000Z

307

Lithium Local Pseudopotential Using  

E-Print Network [OSTI]

Lithium Local Pseudopotential Using DFT Sergio Orozco Student Advisor: Chen Huang Faculty Mentor Lithium LPS Test Lithium LPS #12;Density Functional Theory (DFT) Successful quantum mechanical approach (1979) #12;Building LPS for Lithium Create a LPS using NLPS density for Lithium Test LPS by comparing

Petta, Jason

308

Local microwave background radiation  

E-Print Network [OSTI]

An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

Domingos Soares

2014-11-13T23:59:59.000Z

309

Local Safety Committee Engineering  

E-Print Network [OSTI]

Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code J. Pannell ECE Support Engineer x Ken Jodrey E-Shops, for B. Wilson x * co-chairs Brad Hayes Safety, no report. Pending C. Safety Day Planning Committee Planning for Safety Days on Sept. 10 & 11 continues

Saskatchewan, University of

310

Local Safety Committee Engineering  

E-Print Network [OSTI]

Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code-Shops Tech x R. Dahlgren Safety Resources x L. Wilson (support) Dean's Office x D. Hart Safety Resources x T involving chemicals. C. Safety Day Planning Committee L. Roth reported that the schedule of speakers

Saskatchewan, University of

311

Construction Local engineering.  

E-Print Network [OSTI]

Construction Structures Geotech Local engineering. World-class engineers. World-class results. Constructed Facilities Division tti.tamu.edu #12;Expertise & Equipment ExpErtisE & EquipmEnt Created in 2005. The Texas Transportation Institute's (TTI's) Constructed Facilities Division represents a collaboration

312

Hydrodynamic and transport phenomena at the interface between flow and aquatic vegetation : from the forest to the blade scale  

E-Print Network [OSTI]

From the canopy scale to the blade scale, interactions between fluid motion and kelp produce a wide array of hydrodynamic and scalar transport phenomena. At the kilometer scale of the kelp forest, coastal currents transport ...

Rominger, Jeffrey T. (Jeffrey Tsaros)

2014-01-01T23:59:59.000Z

313

Self-consistent description of coexistence phenomena in medium mass nuclei  

SciTech Connect (OSTI)

Shape coexistence and mixing, isospin mixing, the competition between neutron-proton and like-nucleon pairing correlations have been identified as the main characteristic features of nuclei near the N = Z line in the A{approx_equal}70 mass region. The self-consistent treatment of exotic phenomena dominated by their interplay represents a challenge for the nuclear many-body models. The realistic description of tiny effects in this mass region aiming to test the fundamental interactions and symmetries as well as the required theoretical predictions concerning the nuclear properties relevant for astrophysical scenarios are still open problems of the low-energy nuclear physics today.

Petrovici, A. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania); Institut fuer Theoretische Physik, Universitaet Tuebingen, D-72076 Tuebingen (Germany); Schmid, K. W.; Faessler, Amand [Institut fuer Theoretische Physik, Universitaet Tuebingen, D-72076 Tuebingen (Germany); Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

2010-11-24T23:59:59.000Z

314

DZero (D0) Experiment Results for New Phenomena from the Fermilab Tevatron  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the New Phenomena Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

315

Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

316

Possibility of coherent phenomena such as Bloch oscillations with single photons via W states  

SciTech Connect (OSTI)

We examine the behavior of single photons at multiport devices and inquire if coherent effects are possible. In particular we study how single photons need to be manipulated in order to study coherent phenomena. We show that single photons need to be produced in W states which lead to vanishing mean amplitude but nonzero correlations between the inputs at different ports. Such correlations restore coherent effects with single photons. As a specific example we demonstrate Bloch oscillations with single photons and thus provide strict analog of Bloch oscillation of electrons.

Rai, Amit; Agarwal, G. S. [Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

2009-05-15T23:59:59.000Z

317

Survey of degradation modes of four nickel-chromium-molybdenum alloys  

SciTech Connect (OSTI)

This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

Gdowski, G.E. [KMI Energy Services, Livermore, CA (United States)] KMI Energy Services, Livermore, CA (United States)

1991-03-01T23:59:59.000Z

318

Materials Degradation in Light Water Reactors: Life After 60,???  

SciTech Connect (OSTI)

Nuclear reactors present a very harsh environment for components service. Components within a reactor core must tolerate high temperature water, stress, vibration, and an intense neutron field. Degradation of materials in this environment can lead to reduced performance, and in some cases, sudden failure. A recent EPRI-led study interviewed 47 US nuclear utility executives to gauge perspectives on long-term operation of nuclear reactors. Nearly 90% indicated that extensions of reactor lifetimes to beyond 60 years were likely. When polled on the most challenging issues facing further life extension, two-thirds cited plant reliability as the key issue with materials aging and cable/piping as the top concerns for plant reliability. Materials degradation within a nuclear power plant is very complex. There are many different types of materials within the reactor itself: over 25 different metal alloys can be found with can be found within the primary and secondary systems, not to mention the concrete containment vessel, instrumentation and control, and other support facilities. When this diverse set of materials is placed in the complex and harsh environment coupled with load, degradation over an extended life is indeed quite complicated. To address this issue, the USNRC has developed a Progressive Materials Degradation Approach (NUREG/CR-6923). This approach is intended to develop a foundation for appropriate actions to keep materials degradation from adversely impacting component integrity and safety and identify materials and locations where degradation can reasonably be expected in the future. Clearly, materials degradation will impact reactor reliability, availability, and potentially, safe operation. Routine surveillance and component replacement can mitigate these factors, although failures still occur. With reactor life extensions to 60 years or beyond or power uprates, many components must tolerate the reactor environment for even longer times. This may increase susceptibility for most components and may introduce new degradation modes. While all components (except perhaps the reactor vessel) can be replaced, it may not be economically favorable. Therefore, understanding, controlling, and mitigating materials degradation processes are key priorities for reactor operation, power uprate considerations, and life extensions. This document is written to give an overview of some of the materials degradation issues that may be key for extend reactor service life. A detailed description of all the possible forms of degradation is beyond the scope of this short paper and has already been described in other documents (for example, the NUREG/CR-6923). The intent of this document is to present an overview of current materials issues in the existing reactor fleet and a brief analysis of the potential impact of extending life beyond 60 years. Discussion is presented in six distinct areas: (1) Reactor pressure vessel; (2) Reactor core and primary systems; (3) Reactor secondary systems; (4) Weldments; (5) Concrete; and (6) Modeling and simulations. Following each of these areas, some research thrust directions to help identify and mitigate lifetime extension issues are proposed. Note that while piping and cabling are important for extended service, these components are discussed in more depth in a separate paper. Further, the materials degradation issues associated with fuel cladding and fuel assemblies are not discussed in this section as these components are replaced periodically and will not influence the overall lifetime of the reactor.

Busby, Jeremy T [ORNL; Nanstad, Randy K [ORNL; Stoller, Roger E [ORNL; Feng, Zhili [ORNL; Naus, Dan J [ORNL

2008-04-01T23:59:59.000Z

319

Degradation Mechanisms and Accelerated Testing in PEM Fuel Cells  

SciTech Connect (OSTI)

The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel or oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability.

Borup, Rodney L. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

320

Towards understanding junction degradation in cadmium telluride solar cells  

SciTech Connect (OSTI)

A degradation mechanism in cadmium telluride (CdTe/CdS) solar cells is investigated using time-dependent numerical modeling to simulate various temperature, bias, and illumination stress conditions. The physical mechanism is based on defect generation rates that are proportional to nonequilibrium charge carrier concentrations. It is found that a commonly observed degradation mode for CdTe/CdS solar cells can be reproduced only if defects are allowed to form in a narrow region of the absorber layer close to the CdTe/CdS junction. A key aspect of this junction degradation is that both mid-gap donor and shallow acceptor-type defects must be generated simultaneously in response to photo-excitation or applied bias. The numerical approach employed here can be extended to study other mechanisms for any photovoltaic technology.

Nardone, Marco, E-mail: marcon@bgsu.edu [Department of Environment and Sustainability, Bowling Green State University, Bowling Green, Ohio 43403 (United States)

2014-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation  

SciTech Connect (OSTI)

Many different degradation reactions of chlorinated hydrocarbons are possible in natural ground waters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data is usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4?-DDT.

Bylaska, Eric J.

2006-08-01T23:59:59.000Z

322

Statistical Modeling of Photovoltaic Reliability Using Accelerated Degradation Techniques (Poster)  

SciTech Connect (OSTI)

We introduce a cutting-edge life-testing technique, accelerated degradation testing (ADT), for PV reliability testing. The ADT technique is a cost-effective and flexible reliability testing method with multiple (MADT) and Step-Stress (SSADT) variants. In an environment with limited resources, including equipment (chambers), test units, and testing time, these techniques can provide statistically rigorous prediction of lifetime and other interesting parameters, such as failure rate, warranty time, mean time to failure, degradation rate, activation energy, acceleration factor, and upper limit level of stress. J-V characterization can be used for degradation data and the generalized Eyring model can be used for the thermal-humidity stress condition. The SSADT model can be constructed based on the cumulative damage model (CEM), which assumes that the remaining test united are failed according to cumulative density function of current stress level regardless of the history on previous stress levels.

Lee, J.; Elmore, R.; Jones, W.

2011-02-01T23:59:59.000Z

323

Chemical Degradation Studies on a Series of Dithiophosphinic Acids  

SciTech Connect (OSTI)

A significant increase in the stability of a series of dithiophosphinic acids (DPAHs) under oxidizing acidic conditions was achieved. The degradation behavior of a series of DPAHs, designed for lanthanide/actinide separation, was examined. The stability of the DPAHs, when contacted with varying nitric acid concentrations, was tested and monitored using 31P {1H} NMR. Changes in the functional groups of the DPAHs resulted in substantial increases in the stability. However, when placed in contact with 2 M HNO3 all the DPAHs eventually showed signs of degradation. The addition of a radical scavenger, hydrazine, inhibited the degradation of the DPAHs. In the presence of a small concentration of hydrazine, five of the DPAHs remained stable for over a month in direct contact with 2 M HNO3.

Melissa E. Freiderich; Dean R. Peterman; John R. Klaehn; Philippe Marc; Laetitia H. Delmau

2014-04-01T23:59:59.000Z

324

'Long-Cell Action' Corrosion: A Basic Mechanism Hidden Behind Components Degradation Issues in Nuclear Power Plants  

SciTech Connect (OSTI)

In spite of industries' effort over the last 40 years, corrosion-related issues continue to be one of the largest unresolved problems for nuclear power plants worldwide. There are several types of strange corrosion phenomena from the point of view of our current understanding of corrosion science established in other fields. Some of these are IGSCC, PWSCC, AOA, and FAC (Erosion-Corrosion). Through studying and coping with diverse corrosion phenomena, the author believes that they share a common basis with respect to the assumed corrosion mechanism (e.g., 'local cell action' hypothesis). In general, local cell action is rarely severe since it produces a fairly uniform corrosion. The 'long cell action' that transports electrons through structures far beyond the region of local cell corrosion activities has been identified as a basic mechanism in soil corrosion. If this mechanism is assumed in nuclear power plants, the structure becomes anodic in the area where the potential is less positive and cathodic where this potential is more positive. Metallic ions generated at anodic corrosion sites are transported to remote cathodic sites through the circulation of water and deposits as corrosion products. The SCC, FAC (E-C) and PWSCC occur in the anodic sites as the structure itself acts as a short-circuiting conductor between the two sites, the action is similar to a galvanic cell but in a very large scale. This situation is the same as a battery that has been short-circuited at the terminals. No apparent external potential difference exists between the two electrodes, but an electrochemical reaction is still taking place inside the battery cell with a large internal short current. In this example what is important is the potential difference between the local coolant and the surface of the structural material. Long cell action corrosion is likely enhancing the local cell action's anodic corrosion activities, such as SCC, FAC/E-C, and PWSCC. It tends to be more hazardous because of its localized nature compared with the local cell action corrosion. There exist various mechanisms (electrochemical cell configurations) that induce such potential differences, including: ionic concentration, aeration, temperature, flow velocity, radiation and corrosion potentials. In this paper, the author will discuss these potential differences and their relevance to the un-resolved corrosion issues in nuclear power plants. Due to the importance of this potential mechanism the author is calling for further verification experiments as a joint international project. (author)

Genn Saji [Ex-Secretariate of Nuclear Safety Commission of Japan (Japan)

2006-07-01T23:59:59.000Z

325

Degradation of dome cutting minerals in Hanford waste  

SciTech Connect (OSTI)

At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however.

Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

2013-01-11T23:59:59.000Z

326

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect (OSTI)

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

327

Degradation of Dome Cutting Minerals in Hanford Waste - 13100  

SciTech Connect (OSTI)

At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however. (authors)

Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

328

Materials Degradation and Detection (MD2): Deep Dive Final Report  

SciTech Connect (OSTI)

An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas is discussed in the paper.

McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hu, Shenyang Y.; Li, Yulan; Henager, Charles H.; Johnson, Bradley R.

2013-02-01T23:59:59.000Z

329

Complexity Phenomena and ROMA of the Magnetospheric Cusp, Hydrodynamic Turbulence, and the Cosmic Web  

E-Print Network [OSTI]

Dynamic Complexity is a phenomenon exhibited by a nonlinearly interacting system within which multitudes of different sizes of large scale coherent structures emerge, resulting in a globally nonlinear stochastic behavior vastly different from that could be surmised from the underlying equations of interaction. The hallmark of such nonlinear, complex phenomena is the appearance of intermittent fluctuating events with the mixing and distributions of correlated structures at all scales. We briefly review here a relatively recent method, ROMA (rank-ordered multifractal analysis), explicitly constructed to analyze the intricate details of the distribution and scaling of such types of intermittent structures. This method is then applied to the analyses of selected examples related to the dynamical plasmas of the cusp region of the magnetosphere, velocity fluctuations of classical hydrodynamic turbulence, and the distribution of the structures of the cosmic gas obtained through large scale, moving mesh simulations. Differences and similarities of the analyzed results among these complex systems will be contrasted and highlighted. The first two examples have direct relevance to the geospace environment and are summaries of previously reported findings. The third example on the cosmic gas, though involving phenomena much larger in spatiotemporal scales, with its highly compressible turbulent behavior and the unique simulation technique employed in generating the data, provides direct motivations of applying such analysis to studies of similar multifractal processes in various extreme environments. These new results are both exciting and intriguing.

Tom Chang; Cheng-chin Wu; Marius Echim; Herve Lamy; Mark Vogelsberger; Lars Hernquist; Debora Sijacki

2014-02-26T23:59:59.000Z

330

Single channel flow blockage accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor  

SciTech Connect (OSTI)

The Advanced Candu Reactor (ACRTM) is an evolutionary advancement of the current Candu 6{sup R} reactor, aimed at producing electrical power for a capital cost and at a unit-energy cost significantly less than that of the current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by a heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper documents the results of Phenomena Identification and Ranking Table (PIRT) results for a very limited frequency, beyond design basis event of the ACR design. This PIRT is developed in a highly structured process of expert elicitation that is well supported by experimental data and analytical results. The single-channel flow blockage event in an ACR reactor assumes a severe flow blockage of one of the reactor fuel channels, which leads to a reduction of the flow in the affected channel, leading to fuel cladding and fuel temperature increase. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the flow blockage phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the finalized PIRT tables. (authors)

Popov, N.K.; Abdul-Razzak, A.; Snell, V.G.; Langman, V. [Atomic Energy of Canada Ltd., 2251 Speakman Drive, Mississauga, Ontario, L5K 1B2 (Canada); Sills, H. [Consultant, Deep River, Ontario (Canada)

2004-07-01T23:59:59.000Z

331

Position-dependent photon operators in the quantization of the electromagnetic field in dielectrics at local thermal equilibrium  

E-Print Network [OSTI]

It has very recently been suggested that asymmetric coupling of electromagnetic fields to thermal reservoirs under nonequilibrium conditions can produce unexpected oscillatory behavior in the local photon statistics in layered structures. Better understanding of the predicted phenomena could enable useful applications related to thermometry, noise filtering, and enhancing optical interactions. In this work we briefly review the field quantization and study the local steady state temperature distributions in optical cavities formed of lossless and lossy media to show that also local field temperatures exhibit oscillations that depend on position as well as the photon energy.

Mikko Partanen; Teppo Häyrynen; Jani Oksanen; Jukka Tulkki

2014-12-02T23:59:59.000Z

332

Eurographics Workshop on Natural Phenomena (2005) E. Galin, P. Poulin (Editors)  

E-Print Network [OSTI]

.g. water trans- portation or wind. On the other hand some algorithms gen- erate the eroded terrain from are simply displaced around the actual point if the local inclination is greater than a specified material be dissolved, transported and deposited. Now in the simulation, depending on the local inclination and water

Reiterer, Harald

333

Enhanced local tomography  

DOE Patents [OSTI]

Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.

Katsevich, Alexander J. (Los Alamos, NM); Ramm, Alexander G. (Manhattan, KS)

1996-01-01T23:59:59.000Z

334

Sustainable Energy Solutions Task 4.2: UV Degradation Prevention on Fiber-Reinforced Composite Blades  

SciTech Connect (OSTI)

EXECUTIVE SUMARRY Use of wind energy has expanded very quickly because of the energy prices, environmental concerns and improved efficiency of wind generators. Rather than using metal and alloy based wind turbine blades, larger size fiber (glass and carbon) reinforced composite blades have been recently utilized to increase the efficiency of the wind energy in both high and low wind potential areas. In the current composite manufacturing, pre-preg and vacuum-assisted/heat sensitive resin transfer molding and resin infusion methods are employed. However, these lighter, stiffer and stronger composite blades experience ultraviolet (UV) light degradation where polymers (epoxies and hardeners) used for the blades manufacturing absorb solar UV lights, and cause photolytic, thermo-oxidative and photo-oxidative reactions resulting in breaking of carbon-hydrogen bonds, polymer degradation and internal and external stresses. One of the main reasons is the weak protective coatings/paints on the composite blades. This process accelerates the aging and fatigue cracks, and reduces the overall mechanical properties of the blades. Thus, the lack of technology on coatings for blade manufacturing is forcing many government agencies and private companies (local and national windmill companies) to find a better solution for the composite wind blades. Kansas has a great wind potential for the future energy demand, so efficient wind generators can be an option for continuous energy production. The research goal of the present project was to develop nanocomposite coatings using various inclusions against UV degradation and corrosion, and advance the fundamental understanding of degradation (i.e., physical, chemical and physiochemical property changes) on those coatings. In pursuit of the research goal, the research objective of the present program was to investigate the effects of UV light and duration on various nanocomposites made mainly of carbon nanotubes and graphene nanoflakes, contribute the valuable information to this emerging field of advanced materials and manufacturing and advance the Kansas economy through creation of engineering knowledge and products in the wind energy. The proposed work was involved in a multidisciplinary research program that incorporates nanocomposite fabrication, advanced coating, characterization, surface and colloidal chemistry, physicochemistry, corrosion science, and analysis with a simple and effective testing methodology. The findings were closely related to our hypothesis and approaches that we proposed in this proposal. The data produced in the study offered to advance the physical understanding of the behavior of nanostructured materials for the prevention of UV light at different exposure time and salt fogging. Founding of this proposal enabled the first UV resistive nanocomposite corrosion coating effort in Kansas to impact the local and national wind mill industry. Results of this program provided valuable opportunities for the multidisciplinary training of undergraduate and graduate students at Wichita State University (WSU), as well as a number of aircraft companies (e.g., Cessna, Hawker Beechcraft, Spirit, Boeing and Bombardier/Learjet) and other local and regional industries.

Janet M. Twomey, PhD

2010-04-30T23:59:59.000Z

335

"Reliability Inference Based on Multistate and Degradation Models"  

E-Print Network [OSTI]

"Reliability Inference Based on Multistate and Degradation Models" Vijay Nair Department of Georgia Department of Statistics Colloquium Series Reliability or survival analysis is traditionally based on time-to-failure data. In high- reliability applications, there is usually a high degree of censoring

Arnold, Jonathan

336

Original article Degradation in the rumen of treated  

E-Print Network [OSTI]

Original article Degradation in the rumen of treated and untreated soya bean meal proteins Jocelyne both for a control soya bean meal (cSBM) and a treated one (tSBM) to assess simultaneously the kinetics % control meal (cSBM 40 % and cSBM 20 %), 40 % treated meal (tSBM) and a control diet based on hay alone

Paris-Sud XI, Université de

337

Degradation of organic and inorganic contaminants by zero valent iron  

E-Print Network [OSTI]

/Feo. The only product observed in the reduction of 2,4-DNT was 2,4-diaminotoluene (2,4-DAT). The 2,4-DAT produced accounted for 83-100% and only 42-54% of the initial mass of 2@4.DNT under anaerobic and aerobic conditions respectively. Since no degradation of 2...

Malla, Deepak Babu

1997-01-01T23:59:59.000Z

338

Degradation of Selenocyanate with an Advanced Reduction Process(ARP)  

E-Print Network [OSTI]

cannot improve selenocyanate removal. However, UV light is able to degrade selenocyanate, and the reaction rate increases as pH decreases. The ARP in this system (ferrous iron and UV) cannot improve the reaction rate from that of only UV light...

Luo, Guofan

2014-08-05T23:59:59.000Z

339

Original article Degradation in the rumen of proteins from  

E-Print Network [OSTI]

Original article Degradation in the rumen of proteins from fresh lucerne forage in various stages lucerne forages. These forages included fresh lucerne cut at the vegetative or bud stage, fresh lucerne from lucerne at the bud stage, with or without formic acid were also given. The hay was dried

Paris-Sud XI, Université de

340

Robust Design of Reliability Test Plans Using Degradation Measures.  

SciTech Connect (OSTI)

With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus, it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. Generally, the assumption is made that the error associated with a degradation measure follows a known distribution, usually normal, although in practice cases may arise where that assumption is not valid. In this paper, we examine such degradation measures, both simulated and real, and present non-parametric methods to demonstrate reliability and to develop reliability test plans for the future production of components with this form of degradation.

Lane, Jonathan Wesley; Lane, Jonathan Wesley; Crowder, Stephen V.; Crowder, Stephen V.

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker  

E-Print Network [OSTI]

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker Dept. of Statistics. Frequently few or no failures occur during such tests, even with acceleration. Thus, it is difficult models. Acceleration is modeled by having an acceleration model that describes the effect

342

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker  

E-Print Network [OSTI]

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker Dept. of Statistics. Frequently few or no failures occur during such tests, even with acceleration. Thus, it is di cult to assess models. Acceleration is modeled by having an acceleration model that describes the e ect that temperature

343

Land degradation and climate change: a sin of omission?  

E-Print Network [OSTI]

not solely responsible for the lack of awareness of the impacts of poor management practices, but we do play temperatures and the consequent increase in evaporative demand. During large rainfall events, land degradation a contributing role. At best, our increasing focus on climate change has an opportunity cost: there is less time

344

Cometabolic Degradation of TCE Vapors in a Foamed Emulsion  

E-Print Network [OSTI]

A R C A . D E S H U S S E S * Department of Chemical and Environmental Engineering, University resulting in widespread contamination of soil, groundwater, and air (1, 2). TCE is a significant to complete degradation of TCE to harmless end products. Unfortunately, no microorganism can grow on TCE

345

Ris-R-1261(EN) Fatigue Degradation and Failure of  

E-Print Network [OSTI]

. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energyRisø-R-1261(EN) Fatigue Degradation and Failure of Rotating Composite Structures ­ Materials Characterisation and Underlying Mechanisms E. Kristofer Gamstedt and Svend Ib Andersen Materials Research

346

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

347

Fracture mechanics applied to the analysis of the degradation of anti-corrosion glass/resin pipes as a function of the fiber/matrix interface quality  

SciTech Connect (OSTI)

The aim of this paper is to propose a characterization method of the damage of glass/epoxy pipes, based on mode 1 fracture mechanics, making it possible to separate the cracks initiation and cracks propagation mechanisms that exist in practice. In a first part, it is shown that this technique is highly sensitive (in factors 4 to 5) to the fiber/matrix interface quality, the latter being either modified by the use of different sizings or degraded by hydrothermal aging. In a second part, the application of this method to pipes under pressure shows that mode I fracture mechanics tests performed on unidirectionally fiber reinforced flat test pieces monoaxially loaded allow the explanation of the short term as well as long term behavior and damage of complex composite structures under biaxial loading, and this on the basis of the participation of the fiber/matrix interface to the observed phenomena.

Krawczak, P.; Pabiot, J. [Ecole des Mines de Douai (France). Dept. Technologie des Polymeres et Composites

1995-10-01T23:59:59.000Z

348

On the initial phenomena occurring in lead/lead collisions at relativistic energies  

E-Print Network [OSTI]

A new study of the initial phenomena occurring in the fireball should confirm the predicted creation of a new state of nuclear matter having a lifetime of 0.17 yoctosecond and releasing an energy of 3.87 GeV. The energy-time uncertainty relation might be connected with an up to now unsuspected momentum-position uncertainty relation holding in a three-dimensional time. This new point of view leads to the interpretation of the charge of a particle as being a rotational motion in time, to a new interpretation of inertia, and to a new interpretation of the color of a particle. The transverse momentum observed in the study of the fireball might be the signature of this motion in time of the charge.

C. Ythier; G. Mouze

2012-12-18T23:59:59.000Z

349

Adaptive Event Horizon Tracking and Critical Phenomena in Binary Black Hole Coalescence  

E-Print Network [OSTI]

This work establishes critical phenomena in the topological transition of black hole coalescence. We describe and validate a computational front tracking event horizon solver, developed for generic studies of the black hole coalescence problem. We then apply this to the Kastor - Traschen axisymmetric analytic solution of the extremal Maxwell - Einstein black hole merger with cosmological constant. The surprising result of this computational analysis is a power law scaling of the minimal throat proportional to time. The minimal throat connecting the two holes obeys this power law during a short time immediately at the beginning of merger. We also confirm the behavior analytically. Thus, at least in one axisymmetric situation a critical phenomenon exists. We give arguments for a broader universality class than the restricted requirements of the Kastor - Traschen solution.

Scott A. Caveny; Richard A. Matzner

2003-04-30T23:59:59.000Z

350

Two-phase power-law modeling of pipe flows displaying shear-thinning phenomena  

SciTech Connect (OSTI)

This paper describes work in modeling concentrated liquid-solids flows in pipes. COMMIX-M, a three-dimensional transient and steady-state computer program developed at Argonne National Laboratory, was used to compute velocities and concentrations. Based on the authors` previous analyses, some concentrated liquid-solids suspension flows display shear-thinning rather than Newtonian phenomena. Therefore, they developed a two-phase non-Newtonian power-law model that includes the effect of solids concentration on solids viscosity. With this new two-phase power-law solids-viscosity model, and with constitutive relationships for interfacial drag, virtual mass effect, shear lift force, and solids partial-slip boundary condition at the pipe walls, COMMIX-M is capable of analyzing concentrated three-dimensional liquid-solids flows.

Ding, Jianmin; Lyczkowski, R.W.; Sha, W.T.

1993-12-31T23:59:59.000Z

351

Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations  

E-Print Network [OSTI]

We investigate the nontrivial interplay between geometry and temperature in the Casimir effect for the sphere-plate and cylinder-plate configurations. At low temperature, the thermal contribution to the Casimir force is dominated by this interplay, implying that standard approximation techniques such as the PFA are inapplicable even in the limit of small surface separation. Thermal fluctuations on scales of the thermal wavelength lead to a delocalization of the thermal force density at low temperatures. As a consequence, the temperature dependence strongly differs from naive expectations. Most prominently, thermal forces can develop non-monotonic behavior below a critical temperature. We perform a comprehensive study of such geothermal phenomena in these Casimir geometries, using analytical and numerical worldline techniques for Dirichlet scalar fluctuations.

Alexej Weber; Holger Gies

2010-03-17T23:59:59.000Z

352

A Simplified Self-Consistent Probabilities Framework to Characterize Percolation Phenomena on Interdependent Networks : An Overview  

E-Print Network [OSTI]

Interdependent networks are ubiquitous in our society, ranging from infrastructure to economics, and the study of their cascading behaviors using percolation theory has attracted much attention in the recent years. To analyze the percolation phenomena of these systems, different mathematical frameworks have been proposed including generating functions, eigenvalues among some others. These different frameworks approach the phase transition behaviors from different angles, and have been very successful in shaping the different quantities of interest including critical threshold, size of the giant component, order of phase transition and the dynamics of cascading. These methods also vary in their mathematical complexity in dealing with interdependent networks that have additional complexity in terms of the correlation among different layers of networks or links. In this work, we review a particular approach of simple self-consistent probability equations, and illustrate that it can greatly simplify the mathemati...

Feng, Ling; Hu, Yanqing

2015-01-01T23:59:59.000Z

353

Geothermal Casimir phenomena for the sphere-plate and cylinder-plate configurations  

E-Print Network [OSTI]

We investigate the nontrivial interplay between geometry and temperature in the Casimir effect for the sphere-plate and cylinder-plate configurations. At low temperature, the thermal contribution to the Casimir force is dominated by this interplay, implying that standard approximation techniques such as the PFA are inapplicable even in the limit of small surface separation. Thermal fluctuations on scales of the thermal wavelength lead to a delocalization of the thermal force density at low temperatures. As a consequence, the temperature dependence strongly differs from naive expectations. Most prominently, thermal forces can develop non-monotonic behavior below a critical temperature. We perform a comprehensive study of such geothermal phenomena in these Casimir geometries, using analytical and numerical worldline techniques for Dirichlet scalar fluctuations.

Weber, Alexej

2010-01-01T23:59:59.000Z

354

Influence of Impurities in Module Packaging on Potential-Induced Degradation  

SciTech Connect (OSTI)

Chemical compounds were added into crystalline silicon cell mini modules, including in the encapsulant, interfaces, and glass, to determine their effect on potential-induced degradation (PID). Fe, either in the glass or at the glass/encapsulant interface, was found to be correlated with increased PID, but the difference in module power loss was not statistically significant compared to controls. Additions of Cu, Cr, Pb, Sn, Ag, and Na compounds to either the encapsulant or at the glass/encapsulant interface did not appear correlated with PID. Lock-in thermography on bare cells affected by PID removed from the mini modules show highly localized areas of junction breakdown, and SIMS analysis indicates localized impurities as well, though a spatial relation between the two was not established. Deposition of a conductive layer on the front surface of the cell, either with semitransparent Ta or Poly 3,4-ethylenedioxythiophene (PEDOT), eliminated PID when the cells were stressed at -1000 V bias, 50 degrees C, with the glass face grounded for 140 h.

Hacke, P.; Glick, S.; Johnston, S.; Reedy, R.; Pankow, J.; Terwilliger, K.; Kurtz, S.

2012-09-01T23:59:59.000Z

355

Technical Potential for Local Distributed  

E-Print Network [OSTI]

the impact of high penetrations of solar PV on wholesale power markets (energy and capacity Technical Potential for Local Distributed Photovoltaics in California Preliminary.391.5100 www.ethree.com Technical Potential for Local Distributed Photovoltaics in California Preliminary

356

Local Government Energy Loan Program  

Broader source: Energy.gov [DOE]

Through a public-private partnership with PowerSouth, Alabama's Local Government Energy Loan Program offers zero-interest loans to local governments, K-12 schools, and public colleges and...

357

Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents  

SciTech Connect (OSTI)

The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

2008-12-01T23:59:59.000Z

358

Generalized local emission tomography  

DOE Patents [OSTI]

Emission tomography enables locations and values of internal isotope density distributions to be determined from radiation emitted from the whole object. In the method for locating the values of discontinuities, the intensities of radiation emitted from either the whole object or a region of the object containing the discontinuities are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the isotope density discontinuity. The asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA..sup.(.PHI.) knowing pointwise values of the attenuation coefficient within the object. In the method for determining the location of the discontinuity, the intensities of radiation emitted from an object are inputted to a local tomography function .function..sub..LAMBDA..sup.(.PHI.) to define the location S of the density discontinuity and the location .GAMMA. of the attenuation coefficient discontinuity. Pointwise values of the attenuation coefficient within the object need not be known in this case.

Katsevich, Alexander J. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

359

Termination Detection of Local Computations  

E-Print Network [OSTI]

Termination Detection of Local Computations Emmanuel Godard1 , Yves M´etivier2 and Gerard Tel3 1 is glob- ally finished. This paper investigates the problem of the detection of the termination of local computations. We define four types of termination detection: no detection, detection of the local termination

Paris-Sud XI, Université de

360

Corrosion-induced degradation of GaAs PHEMTs under operation in high humidity conditions  

E-Print Network [OSTI]

We have comprehensively investigated the degradation mechanism of AlGaAs/InGaAs pseudomorphic high-electron-mobility transistors (PHEMTs) under operation in high humidity conditions. PHEMTs degradation under high humidity ...

Hisaka, Takayuki

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)  

SciTech Connect (OSTI)

Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

Lee, J.; Elmore, R.; Suh, C.; Jones, W.

2010-10-01T23:59:59.000Z

362

Diverse mechanisms of pectic polysaccharide degradation distinguished in fruit cell walls in vivo   

E-Print Network [OSTI]

Cell wall loosening and degradation are important processes in major stages of plant development including fruit ripening. Three main mechanisms have been proposed to contribute towards cell wall polysaccharide degradation ...

Othman, Babul Airianah

2012-11-30T23:59:59.000Z

363

Degradation Study of the Peel Strength of Mini-Modules Under...  

Broader source: Energy.gov (indexed) [DOE]

Degradation Study of the Peel Strength of Mini-Modules Under Damp Heat Condition Degradation Study of the Peel Strength of Mini-Modules Under Damp Heat Condition Presented at the...

364

Free Energies for Degradation Reactions of 1,2,3-Trichloropropane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Free Energies for Degradation Reactions of 1,2,3-Trichloropropane from ab initio Electronic Structure Theory. Free Energies for Degradation Reactions of 1,2,3-Trichloropropane from...

365

Understanding and harnessing energy-dependent proteolysis for controlled protein degradation in bacteria  

E-Print Network [OSTI]

Regulated intracellular protein degradation is critical for cellular viability. In many organisms, degradation controls cell-cycle progression, executes responses to stress-inducing environmental changes, and enables the ...

Davis, Joseph H. (Joseph Harry), III

2010-01-01T23:59:59.000Z

366

The effects of degraded oil and pre-frying treatments on the quality of tortilla chips  

E-Print Network [OSTI]

Refined soybean oils were degraded at 190C for 60 hours. It was observed that degradation time correlated well with free fatty acid contents, total polar materials, convective heat transfer coefficient, color, specific gravity, viscosity...

Tseng, Yi-Chang

1995-01-01T23:59:59.000Z

367

Petri-Net Simulation Model of a Nuclear Component Degradation Process , E. Zioa,b  

E-Print Network [OSTI]

1 Petri-Net Simulation Model of a Nuclear Component Degradation Process Y.F. Lia* , E. Zioa,b , Y models [2-5] and simulation models [1, 6, 7]. The analytical degradation models can be further classified

Paris-Sud XI, Université de

368

Stable local oscillator microcircuit.  

SciTech Connect (OSTI)

This report gives a description of the development of a Stable Local Oscillator (StaLO) Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. The StaLO uses a comb generator followed by surface acoustic wave (SAW) filters. The comb generator creates a set of harmonic components of the 100MHz input signal. The SAW filters are narrow bandpass filters that are used to select the desired component and reject all others. The resulting circuit has very low sideband power levels and low phase noise (both less than -40dBc) that is limited primarily by the phase noise level of the input signal.

Brocato, Robert Wesley

2006-10-01T23:59:59.000Z

369

Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.  

SciTech Connect (OSTI)

We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

2012-03-01T23:59:59.000Z

370

Environmental consequences of postulated plutonium releases from Exxon Nuclear MOFP, Richland, Washington, as a result of severe natural phenomena  

SciTech Connect (OSTI)

Potential environmental consequences in terms of radiation dose to people are presented for postulated plutonium releases caused by severe natural phenomena at the Exxon Nuclear Company Mixed Oxide Fabrication Plant (MOFP), Richland, Washington. The severe natural phenomena considered are earthquakes, tornadoes, high straight-line winds, and floods. Maximum plutonium deposition values are given for significant locations around the site. All important potential exposure pathways are examined. The most likely 50-year committed dose equivalents are given for the maximum-exposed individual and the population within a 50-mile radius of the plant. The maximum plutonium deposition values most likely to occur offsite are also given.

Jamison, J.D.; Watson, E.C.

1980-02-01T23:59:59.000Z

371

E-Print Network 3.0 - assess environmental degradation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

assessment. COURSES Advanced Environmental Chemistry Advanced Topics in Air Pollution Air Pollution... and physiology of microorgan- isms involved in degradation...

372

E-Print Network 3.0 - anaerobic degradation pathways Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Biotechnology 22 Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation Summary: Removal of polycyclic aromatic...

373

Methods for degrading or converting plant cell wall polysaccharides  

DOE Patents [OSTI]

The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

Berka, Randy (Davis, CA); Cherry, Joel (Davis, CA)

2008-08-19T23:59:59.000Z

374

Challenges in Modeling the Degradation of Ceramic Waste Forms  

SciTech Connect (OSTI)

We identify the state of the art, gaps in current understanding, and key research needs in the area of modeling the long-term degradation of ceramic waste forms for nuclear waste disposition. The directed purpose of this report is to define a roadmap for Waste IPSC needs to extend capabilities of waste degradation to ceramic waste forms, which overlaps with the needs of the subconsinuum scale of FMM interests. The key knowledge gaps are in the areas of (i) methodology for developing reliable interatomic potentials to model the complex atomic-level interactions in waste forms; (ii) characterization of water interactions at ceramic surfaces and interfaces; and (iii) extension of atomic-level insights to the long time and distance scales relevant to the problem of actinide and fission product immobilization.

Devanathan, Ramaswami; Gao, Fei; Sun, Xin

2011-09-01T23:59:59.000Z

375

Materials Degradation Studies for High Temperature Steam Electrolysis Systems  

SciTech Connect (OSTI)

Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

2007-06-01T23:59:59.000Z

376

Moving Beyond NDE to Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

There is growing interest in life extensions to enable longer term operation (LTO) for both existing nuclear power plants (NPPs) and proposed new NPPs. In order to justify an initial license extension for the 40-60 year period, new non-destructive examination (NDE) approaches have been developed and deployed by NPP operators in their Aging Management Programs (AMPs). However, to achieve the goals of even longer term operation, and specifically for the USA in looking at methodologies to support subsequent license renewal periods (i.e., 60-80 years, and beyond), it is necessary to understand the capabilities of current NDE methods to detect, monitor and trend degradation and hence enable timely implementation of appropriate corrective actions. This paper discusses insights from past experience, the state-of-the-art, and current activities in the move towards providing a capacity for proactive management of materials degradation (PMMD) to support NPP LTO.

Bond, Leonard J.

2010-07-20T23:59:59.000Z

377

Moving Beyond Nondestructive Examination to Proactive Management of Materials Degradation  

SciTech Connect (OSTI)

There is growing interest in life extensions to enable longer term operation (LTO) for both existing nuclear power plants (NPPs) and proposed new NPPs. In order to justify an initial license extension for the 40-60 year period, new non-destructive examination (NDE) approaches have been developed and deployed by NPP operators in their Aging Management Programs (AMPs). However, to achieve the goals of even longer term operation, and specifically for the USA in looking at methodologies to support subsequent license renewal periods (i.e., 60-80 years, and beyond), it is necessary to understand the capabilities of current NDE methods to detect, monitor and trend degradation and hence enable timely implementation of appropriate corrective actions. This paper discusses insights from past experience, the state-of-the-art, and current activities in the move towards providing a capacity for proactive management of materials degradation (PMMD) to support NPP LTO.

Bond, Leonard J.

2010-07-01T23:59:59.000Z

378

Proactive Management of Materials Degradation (PMMD) and Enhanced Structural Reliability  

SciTech Connect (OSTI)

This paper discusses the U.S. Nuclear Regulatory Commission’s (NRC) activities to further the Proactive Management of Materials Degradation (PMMD), including those to determine the effectiveness of emerging NDE techniques. The paper discusses the first part of the development of a methodology to determine the effectiveness of these emerging NDE techniques for managing metallic degradation. This methodology draws on experience derived from evaluating techniques that have ‘emerged’ in the past. The methodology will follow five stages: a definition of inspection parameters, a technical evaluation, laboratory testing, round-robin testing, and the design of a performance demonstration program. This methodology will document the path taken for previous techniques and set a standardized course for future NDE techniques.

Doctor, Steven R.; Bond, Leonard J.; Cumblidge, Stephen E.; Hull, Amy; Malik, Shah

2009-09-01T23:59:59.000Z

379

Application of Municipal Sewage Sludge to Forest and Degraded Land  

SciTech Connect (OSTI)

The paper summarizes research done over a decade at the Savannah River Site and elsewhere in the South evaluating the benefits of land application of municipal wastes. Studies have demonstrated that degraded lands, ranging from borrow pits to mine spoils can be successfully revegetated using a mixture of composed municipal sewage sludge and other amendments. The studies have demonstrated a practical approach to land application and restoration.

D.H. Marx, C. R. Berry, and P. P. Kormanik

1995-09-30T23:59:59.000Z

380

Degradation mechanisms and accelerated testing in PEM fuel cells  

SciTech Connect (OSTI)

The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.

Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Intergranular degradation assessment via random grain boundary network analysis  

DOE Patents [OSTI]

A method is disclosed for determining the resistance of polycrystalline materials to intergranular degradation or failure (IGDF), by analyzing the random grain boundary network connectivity (RGBNC) microstructure. Analysis of the disruption of the RGBNC microstructure may be assess the effectiveness of materials processing in increasing IGDF resistance. Comparison of the RGBNC microstructures of materials exposed to extreme operating conditions to unexposed materials may be used to diagnose and predict possible onset of material failure due to

Kumar, Mukul (San Ramon, CA); Schwartz, Adam J. (Pleasanton, CA); King, Wayne E. (San Ramon, CA)

2002-01-01T23:59:59.000Z

382

Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons  

DOE Patents [OSTI]

A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

Fliermans, Carl B. (Augusta, GA)

1989-01-01T23:59:59.000Z

383

Rheological investigation of the influence of molecular structure on natural and accelerated UV degradation  

E-Print Network [OSTI]

to natural and accelerated weather conditions. The degree of UV degradation of exposed samples was measured]. In outdoor applications many simultaneous factors determine the degradation such as ultra-violet (UV, abrasion, rain, wind, etc. [2]. Of these factors UV is the most important cause of degradation of PEs [3

Hussein, Ibnelwaleed A.

384

In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index  

E-Print Network [OSTI]

In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index L. G), In-flight degradation correction of SCIAMACHY UV reflectances and Absorbing Aerosol Index, J. Geophys degradation in the ultraviolet (UV) wavelength range, from which the AAI is determined. An exception

Stoffelen, Ad

385

Impact of Branching on the UV Degradation of metallocene LLDPE Ibnelwaleed A. Hussein1  

E-Print Network [OSTI]

Impact of Branching on the UV Degradation of metallocene LLDPE Ibnelwaleed A. Hussein1 *, Ayuba A & Petrochemicals, KFUPM, Dhahran, Saudi Arabia Abstract The effect of UV degradation on metallocene linear low by Mechanical, FTIR and GPC testings. This paper addresses the structural modifications due to UV degradation

Hussein, Ibnelwaleed A.

386

A study on failure prediction and design criteria for fiber composites under fire degradation  

E-Print Network [OSTI]

A study on failure prediction and design criteria for fiber composites under fire degradation Ming Diego, La Jolla, CA 92093, USA Abstract Polymer matrix composites can be severely degraded/damaged under thermal loading caused by fire. Fire degradation of fiber composites is a serious concern in large load

Dao, Ming

387

A framework for modeling the consequences of the propagation of automation degradation: application to  

E-Print Network [OSTI]

A framework for modeling the consequences of the propagation of automation degradation: application of automation degradation in the context of a socio-technical network. This modelling approach involves two integrating these two views for describing the evolution of system performances under automation degradation

Paris-Sud XI, Université de

388

Molecular Evolution and Diversity of Lignin Degrading Heme Peroxidases in the Agaricomycetes  

E-Print Network [OSTI]

Molecular Evolution and Diversity of Lignin Degrading Heme Peroxidases in the Agaricomycetes Ingo peroxidases, including the lignin degrading enzymes manganese per- oxidase (MnP), lignin peroxidase (Li Lignin peroxidase Á Versatile peroxidase Á Lignin degradation Á Agaricomycetes Á Fungi Introduction Heme

Hibbett, David S.

389

A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus  

E-Print Network [OSTI]

A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest of the global carbon cycle. This substrate is composed of lignin, hemicellulose and cellulose and is degraded

Fried, Jeremy S.

390

Poly(lactic acid) degradable plastics, coatings, and binders  

SciTech Connect (OSTI)

Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

1992-01-01T23:59:59.000Z

391

Poly(lactic acid) degradable plastics, coatings, and binders  

SciTech Connect (OSTI)

Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

1992-05-01T23:59:59.000Z

392

Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint  

SciTech Connect (OSTI)

To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

2011-09-01T23:59:59.000Z

393

Role of fungal ligninolytic enzymes in pollutant degradation  

SciTech Connect (OSTI)

The ligninolytic fungi that cause white rot of wood have recently become the object of increasing attention from hazardous waste management specialists. The metabolic pathways that they employ for ligninolysis appear to have unusual xenobiotic capabilities, and there is some preliminary evidence that their extracellular lignin peroxidases, which normally catalyze the depolymerization of lignin, could bring about the initial oxidation of certain aromatic pollutants in vivo. However, it remains to be demonstrated that high levels of lignin peroxidase activity will necessarily lead to improved rates of pollutant degradation, or indeed that these enzymes are actually involved in any of the fungal xenobiotic oxidations that have been observed. To address these questions, the authors have begun a study of anthracene metabolism in the lignin degrader Phanerochaete chrysosporium: this simple model pollutant is quantitatively oxidized to anthraquinone by purified lignin peroxidases, is at least to some extent oxidized to the same quinone by whole fungal cultures, and is also mineralized at appreciable rates in vivo. The results point to a role for lignin peroxidases in organopollutant degradation by Phanerochaete, but more work is required to elucidate the pathways involved.

Hammel, K.E.; Tardone, P.J.; Price, L.A.

1989-02-01T23:59:59.000Z

394

Local quantum ergodic conjecture  

E-Print Network [OSTI]

The Quantum Ergodic Conjecture equates the Wigner function for a typical eigenstate of a classically chaotic Hamiltonian with a delta-function on the energy shell. This ensures the evaluation of classical ergodic expectations of simple observables, in agreement with Shnirelman's theorem, but this putative Wigner function violates several important requirements. Consequently, we transfer the conjecture to the Fourier transform of the Wigner function, that is, the chord function. We show that all the relevant consequences of the usual conjecture require only information contained within a small (Planck) volume around the origin of the phase space of chords: translations in ordinary phase space. Loci of complete orthogonality between a given eigenstate and its nearby translation are quite elusive for the Wigner function, but our local conjecture stipulates that their pattern should be universal for ergodic eigenstates of the same Hamiltonian lying within a classically narrow energy range. Our findings are supported by numerical evidence in a Hamiltonian exhibiting soft chaos. Heavily scarred eigenstates are remarkable counter-examples of the ergodic universal pattern.

E. Zambrano; W. P. Karel Zapfe; Alfredo M. Ozorio de Almeida

2015-02-11T23:59:59.000Z

395

Long-period fading in atmospherics during severe meteorological activity and associated solar geophysical phenomena at low latitudes  

E-Print Network [OSTI]

Long-period fading in atmospherics during severe meteorological activity and associated solar activity with the solar geophysical phenomena was studied. The results are indicative of an interesting sequence of solar- terrestrial events. A tentative conclusion is reached, suggesting an origin

Boyer, Edmond

396

Onset and Subsequent Transient Phenomena of Liquid Loading in Gas Wells: Experimental Investigation Using a Large Scale Flow Loop  

E-Print Network [OSTI]

was carried out to study the onset of liquid loading and the subsequent transient phenomena, using a large scale flow loop to visualize two-phase flow regimes, and to measure pressure and liquid holdup along a 42-m long vertical tube. From this investigation...

Waltrich, Paulo

2012-10-19T23:59:59.000Z

397

An Introduction to Fuel Cells and Related Transport Phenomena Matthew M. Mench, Chao-Yang Wang and Stefan T. Thynell  

E-Print Network [OSTI]

much work to be done. The fuel cell is a unique and fascinating system. For optimal performance1 An Introduction to Fuel Cells and Related Transport Phenomena Matthew M. Mench, Chao-Yang Wang of fuel cell systems for primary or auxiliary power for stationary, portable, and automotive systems has

Mench, Matthew M.

398

REPORT ON 6TH U.S.-JAPAN JOINT SEMINAR ON NANOSCALE TRANSPORT PHENOMENA.SCIENCE AND ENGINEERING  

E-Print Network [OSTI]

and heat transfer community and the importance of nanoscale transport phenomena for nanostructured sessions, as well as a dedicated poster session of selected presentations from an open call for papers. All for each session were summarized by session chairs. Following is a brief summary of the sessions. OPENING

Maruyama, Shigeo

399

Power variations of Schumann resonances related to El Nin~o and La Nin~a phenomena  

E-Print Network [OSTI]

Power variations of Schumann resonances related to El Nin~o and La Nin~a phenomena Heng Yang1 with the realistic conductivity profile is employed to study the intensity variations of Schumann resonances (SR and the previous studies by other authors on related subjects shows that the intensity of the Schumann resonances

Pasko, Victor

400

Material Aging and Degradation Detection and Remaining Life Assessment for Plant Life Management  

SciTech Connect (OSTI)

One of the major factors that may impact long term operations is structural material degradation, Detecting materials degradation, estimating the remaining useful life (RUL) of the component, and determining approaches to mitigating the degradation are important from the perspective of long term operations. In this study, multiple nondestructive measurement and monitoring methods were evaluated for their ability to assess the material degradation state. Metrics quantifying the level of damage from these measurements were defined, and evaluated for their ability to provide estimates of remaining life of the component. An example of estimating the RUL from nondestructive measurements of material degradation condition is provided.

Ramuhalli, Pradeep; Henager, Charles H.; Griffin, Jeffrey W.; Meyer, Ryan M.; Coble, Jamie B.; Pitman, Stan G.; Bond, Leonard J.

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Performing a local barrier operation  

DOE Patents [OSTI]

Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value of the counter, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

2014-03-04T23:59:59.000Z

402

Performing a local barrier operation  

DOE Patents [OSTI]

Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

2014-03-04T23:59:59.000Z

403

Theoretical Study of Steam Condensation Induced Water Hammer Phenomena in Horizontal Pipeline  

E-Print Network [OSTI]

We investigate steam condensation induced water hammer (CIWH) phenomena and present new theoretical results. We use the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to Relap5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. This model was validated with different CIWH experiments which were performed in the PMK-2 facility, which is a full-pressure thermo-hydraulic model of the nuclear power plant of VVER-440/312 type in the Energy Research Center of the Hungarian Academy of Sciences in Budapest and in the Rosa facility in Japan. In our recent study we show the first part of a planned large database which will give us the upper and lower flooding mass flow ...

Barna, Imre Ferenc

2014-01-01T23:59:59.000Z

404

Multiple-distribution-function lattice Boltzmann kinetic model for combustion phenomena  

E-Print Network [OSTI]

A hybrid kinetic model for combustion phenomena is proposed. The chemical reaction process is described by a phenomenological rate function. The flow behavior is described by a Lattice Boltzmann Kinetic Model (LBKM) with any number of distribution functions. As an example, we illustrate the case with only two distribution functions. One distribution function is used to describe the reactant, and the other one is used to describe the reaction product. Compared with the traditional fluid model for combustion, the new model can be used to study simultaneously both the hydrodynamic and the thermodynamic nonequilibrium behaviors. Compared with the previous LBKM-hybrid models with single distribution function, the new model can be used to study more carefully the combustion process, for example, the variations of the particle number densities, particle mass densities, flow velocities, internal energies per unit volume, internal energies per unit mass, temperatures, and pressures of each species and the whole of the system. It is found that both of chemical reactant and reaction product have different levels of deviation from their equilibrium state in different degrees of freedom. For a special degree of freedom, the deviation of chemical reactant from its equilibrium state is different from that of reaction product from its equilibrium state.

Chuandong Lin; Aiguo Xu; Guangcai Zhang; Yingjun Li

2014-05-21T23:59:59.000Z

405

Solvation Phenomena in Dilute Solutions: Formal, Experimental Evidence, and Modeling Implications  

SciTech Connect (OSTI)

We review the fundamentals underlying a general molecular-based formalism for the microscopic interpretation of the solvation phenomena involving sparingly soluble solutes in compressible media, an approach that hinges around the unambiguous splitting of the species correlation function integrals into short-(finite) and long-ranged (diverging) contributions at infinite dilution, where this condition is taken as the reference system for the derivation of composition expansions. Then, we invoke the formalism (a) to illustrate the well-behaved nature of the solvation contributions to the mechanical partial molecular properties of solutes at infinite dilution, (b) to guide the development of, and provide molecular-based support to, the macroscopic modeling of high-temperature dilute aqueous-electrolyte solutions, (c) to study solvation effects on the kinetic rate constants of reactions in near-critical solvents in an attempt to understand from a microscopic perspective the macroscopic evidence regarding the thermodynamic pressure effects, and (d) to interpret the microscopic mechanism behind synergistic solvation effects involving either co-solutes or co-solvents, and provide a molecular argument on the unsuitability of the van der Waals one-fluid (vdW-1f) mixing rules for the 2 description of weakly attractive solutes in compressible solvents. Finally, we develop thermodynamically consistent perturbation expansions, around the infinite dilution reference, for the species residual properties in binary and ternary mixtures, and discuss the theoretical and modeling implications behind ad hoc first-order truncated expansions.

Chialvo, Ariel A [ORNL

2013-01-01T23:59:59.000Z

406

Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)  

SciTech Connect (OSTI)

The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ?2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ?10× improvement over conventional framing cameras currently employed on the NIF (?100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ?64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

2014-11-15T23:59:59.000Z

407

Is Bell's theorem relevant to quantum mechanics? On locality and non-commuting observables  

E-Print Network [OSTI]

Bell's theorem is a statement by which averages obtained from specific types of statistical distributions must conform to a family of inequalities. These models, in accordance with the EPR argument, provide for the simultaneous existence of quantum mechanically incompatible quantities. We first recall several contradictions arising between the assumption of a joint distribution for incompatible observables and the probability structure of quantum-mechanics, and conclude that Bell's theorem is not expected to be relevant to quantum phenomena described by non-commuting observables, irrespective of the issue of locality. Then, we try to disentangle the locality issue from the existence of joint distributions by introducing two models accounting for the EPR correlations but denying the existence of joint distributions. We will see that these models do not need to resort explicitly to non-locality: the first model relies on conservation laws for ensembles, and the second model on an equivalence class by which different configurations lead to the same physical predictions.

A. Matzkin

2009-01-12T23:59:59.000Z

408

Localization of eigenvalues with applications  

E-Print Network [OSTI]

LOCALIZATION OF EIGENVALUES WITH APPLICATIONS A Thesis by CHARLOTTE NYQUIST DE SPIEGEL Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1975... Major Subject: Mathematics LOCALIZATION OP EIGENVALUES WITH APPLICATIONS A Thesis by CHARLOTTE NYQUIST DE SPIEGEL Approved as to style and content by: ca% (Head of Department) gr (Member (Memb a (g December 1975 AB STRACT Localization...

Spiegel, Charlotte Nyquist de

1975-01-01T23:59:59.000Z

409

Local Government Revenue Bonds (Montana)  

Broader source: Energy.gov [DOE]

Limited obligation local government bonds ("special revenue bonds") may be issued for qualified electric energy generation facilities, including those powered by renewables. These bonds generally...

410

AGE-RELATED DEGRADATION OF NUCLEAR POWER PLANT STRUCTURES AND COMPONENTS.  

SciTech Connect (OSTI)

This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what are the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

BRAVERMAN,J.

1999-03-29T23:59:59.000Z

411

Age-Related Degradation of Nuclear Power Plant Structures and Components  

SciTech Connect (OSTI)

This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

1999-03-29T23:59:59.000Z

412

Computational model of local intravascular drug delivery  

E-Print Network [OSTI]

Drug-eluting stents (DES) virtually eradicate the clinical phenomena of vessel restenosis; yet, they also increase the short and long term risks for stent thrombosis. To improve their safety and efficacy, it is critical ...

Balakrishnan, Brinda

2007-01-01T23:59:59.000Z

413

Microbial degradation of low-level radioactive waste. Final report  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission stipulates in 10 CFR 61 that disposed low-level radioactive waste (LLW) be stabilized. To provide guidance to disposal vendors and nuclear station waste generators for implementing those requirements, the NRC developed the Technical Position on Waste Form, Revision 1. That document details a specified set of recommended testing procedures and criteria, including several tests for determining the biodegradation properties of waste forms. Information has been presented by a number of researchers, which indicated that those tests may be inappropriate for examining microbial degradation of cement-solidified LLW. Cement has been widely used to solidify LLW; however, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. The purpose of this research program was to develop modified microbial degradation test procedures that would be more appropriate than the existing procedures for evaluation of the effects of microbiologically influenced chemical attack on cement-solidified LLW. The procedures that have been developed in this work are presented and discussed. Groups of microorganisms indigenous to LLW disposal sites were employed that can metabolically convert organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this final report. Data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW and subsequent release of radionuclides developed during this study are presented.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr

1996-06-01T23:59:59.000Z

414

Solar Cell/Module Degradation and Failure Diagnostics  

SciTech Connect (OSTI)

Solar cell/module degradation and failure diagnostics are reviewed. Cell and packaging failure are distinguished. Failure relevant to photovoltaics(PV) is caused by and can be accelerated with each or combination of each of the following stresses: temperature, voltage, moisture, current, and thermal cycling. Failure mechanisms for the different module technologies are summarized. Diagnostic tools for locating the affected area within a large-area module are pointed out along with the importance of interpretation of the visual appearance of the different damage mechanisms.

McMahon, T.J.

2008-01-01T23:59:59.000Z

415

Sandia National Laboratories: Degradation Study of Components and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BER NASASubsystems Degradation Study

416

Advanced Materials for RSOFC Dual Operation with Low Degradation  

SciTech Connect (OSTI)

Reversible solid oxide fuel cells (RSOFCs) are energy conversion devices. They are capable of operating in both power generation mode (SOFC) and electrolysis modes (SOEC). RSOFC can integrate renewable production of electricity and hydrogen when power generation and steam electrolysis are coupled in a system, which can turn intermittent solar and wind energy into "firm power." In this DOE EERE project, VPS continuously advanced RSOFC cell stack technology in the areas of endurance and performance. Over 20 types of RSOFC cells were developed in the project. Many of those exceeded performance (area specific resistance less than 300 mohmcm2) and endurance (degradation rate less than 4% per 1000 hours) targets in both fuel cell and electrolysis modes at 750C. One of those cells, RSOFC-7, further demonstrated the following: Steady-state electrolysis with a degradation rate of 1.5% per 1000 hours. Ultra high current electrolysis over 3 A/cm2 at 75% water electrolysis efficiency voltage of 1.67 V. Daily SOFC/SOEC cyclic test of over 600 days with a degradation rate of 1.5% per 1000 hours. Over 6000 SOFC/SOEC cycles in an accelerated 20-minute cycling with degradation less than 3% per 1000 cycles. In RSOFC stack development, a number of kW-class RSOFC stacks were developed and demonstrated the following: Steady-state electrolysis operation of over 5000 hours. Daily SOFC/SOEC cyclic test of 100 cycles. Scale up capability of using large area cells with 550 cm2 active area showing the potential for large-scale RSOFC stack development in the future. Although this project is an open-ended development project, this effort, leveraging Versa Power Systems' years of development experience, has the potential to bring renewable energy RSOFC storage systems significantly closer to commercial viability through improvements in RSOFC durability, performance, and cost. When unitized and deployed in renewable solar and wind installations, an RSOFC system can enable higher availability for intermittent renewable resources, thereby improving the commercial viability of these types of energy resources.

Eric, Tang; Tony, Wood; Sofiane, Benhaddad; Casey, Brown; Hongpeng, He; Jeff, Nelson; Oliver, Grande; Ben, Nuttall; Mark, Richards; Randy, Petri

2012-12-27T23:59:59.000Z

417

Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors  

SciTech Connect (OSTI)

The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation reactions at general boundaries, along with extensive modeling cooperative effects of dislocation interactions and migration in crystals and polycrystals using continuum models.

Deo, Chaitanya; Zhu, Ting; McDowell, David

2013-11-17T23:59:59.000Z

418

PS-wave moveout inversion for tilted TI media: A physical-modeling study Pawan Dewangan and Ilya Tsvankin , Center for Wave Phenomena, Colorado School of Mines (CSM),  

E-Print Network [OSTI]

PS-wave moveout inversion for tilted TI media: A physical-modeling study Pawan Dewangan and Ilya Tsvankin , Center for Wave Phenomena, Colorado School of Mines (CSM), Mike Batzle, Center for Rock Abuse, CSM, Kasper van Wijk, Physical Acoustics Laboratory, CSM, and Matt Haney, Center for Wave Phenomena

419

The low threshold parametric decay instabilities leading to anomalous phenomena at ECRH in toroidal devices  

SciTech Connect (OSTI)

A possibility of 3D electron Bernstein wave trapping in intensive magnetic field aligned density fluctuation or blob in toroidal plasma is demonstrated. Semi-analytic approach for description of associated plasma cavity is developed. A mechanism of low-threshold parametric decay instability driven by 2{sup nd} harmonic extraordinary pump microwave and leading to excitation of localized electron Bernstein wave and low frequency heavily damped oscillations is proposed and analyzed.

Gusakov, E.; Popov, A.; Saveliev, A. [Ioffe Physical Technical Institute of RAS, St. Petersburg (Russian Federation)

2014-02-12T23:59:59.000Z

420

Degradation and failure characteristics of NPP containment protective coating systems  

SciTech Connect (OSTI)

A research program to investigate the performance and potential for failure of Service Level 1 coating systems used in nuclear power plant containment is in progress. The research activities are aligned to address phenomena important to cause failure as identified by the industry coatings expert panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are discussed in this report and the application of these elements to the System 5 coating system (polyamide epoxy primer, carbon steel substrate) is used to evaluate performance.

Sindelar, R.L.

2000-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Degradation and Failure Characteristics of NPP Containment Protective Coating Systems  

SciTech Connect (OSTI)

A research program to investigate the performance and potential for debris formation of Service Level I coating systems used in nuclear power plant containment is being performed at the Savannah River Technology Center. The research activities are aligned to address phenomena important to cause coating disbondment as identified by the Industry Coatings Expert Panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are described in this report and the application of these elements to evaluate the performance of the specific coating system of Phenoline 305 epoxy-phenolic topcoat over Carbozinc 11 primer on a steel substrate. This system is one of the predominant coating systems present on steel substrates in NPP containment.

Sindelar, R.L.

2001-02-22T23:59:59.000Z

422

Interactions of chlorosulfonated polyethylene geomembranes with aliphatic esters: Sorption and diffusion phenomena  

SciTech Connect (OSTI)

The resistance of chlorosulfonated polyethylene geomembranes to nine aliphatic esters viz., methyl acetate, ethyl acetate, methyl acetoacetate, n-butyl acetate, diethyl oxalate, iso-amyl acetate, diethyl malonate, and diethyl succinate was investigated in the temperature interval 25--60 C by measuring the liquid sorption using a gravimetric method. A Fickian diffusion equation was used to calculate the diffusion coefficients, and these data were dependent on the type of ester molecules and their interactions with the geomembrane in additions to temperature and solvent concentration. The activation energy values for the diffusion process were in the range 18--41 kJ/mole and the heat of sorption varied from 0.61 to 18.50 kJ/mole. the sorption/swelling results were found to follow the first order kinetics. Solvent front velocities were calculated from the sorption data. The statistical error analysis has been presented in order to judge the reliability of the technique used. The experimental data and calculated parameters were used to discuss transport results in terms of membrane-solvent interactions. None of the esters showed any degradative effects on the geomembrane used.

Aminabhavi, T.M.; Munnolli, R.S. [Karnatak Univ. (India). Dept. of Chemistry] [Karnatak Univ. (India). Dept. of Chemistry; Ortego, J.D. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

1995-07-01T23:59:59.000Z

423

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

424

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect (OSTI)

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

425

Degradation of Ionic Pathway in PEM Fuel Cell Cathode  

SciTech Connect (OSTI)

The degradation of the ionic pathway throughout the catalyst layer in proton exchange membrane fuel cells was studied under an accelerated stress test of catalyst support (potential hold at 1.2 V). Electrochemical behaviors of the cathode based on graphitic mesoporous carbon supported Pt catalyst were examined using electrochemical impedance spectroscopy and cyclic voltammetry. Impedance data were plotted and expressed in the complex capacitance form to determine useful parameters in the transmission line model: the double-layer capacitance, peak frequency, and ionic resistance. Electrochemical surface area and hydrogen crossover current through the membrane were estimated from cyclic voltammogram, while cathode Faradaic resistance was compared with ionic resistance as a function of test time. It was observed that during an accelerated stress test of catalyst support, graphitic mesoporous carbon becomes hydrophilic which increases interfacial area between the ionomer and the catalyst up to 100 h. However, the ionic resistance in the catalyst layer drastically increases after 100 h with further carbon support oxidation. The underlying mechanism has been studied and it was found that significant degradation of ionic pathway throughout the catalyst layer due to catalyst support corrosion induces uneven hydration and mechanical stress in the ionomer.

Park, Seh Kyu; Shao, Yuyan; Wan, Haiying; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Wang, Yong

2011-11-12T23:59:59.000Z

426

Data Filtering Impact on PV Degradation Rates and Uncertainty (Poster)  

SciTech Connect (OSTI)

To sustain the commercial success of photovoltaics (PV) it becomes vital to know how power output decreases with time. In order to predict power delivery, degradation rates must be determined accurately. Data filtering, any data treatment assessment of long-term field behavior, is discussed as part of a more comprehensive uncertainty analysis and can be one of the greatest sources of uncertainty in long-term performance studies. Several distinct filtering methods such as outlier removal and inclusion of only sunny days on several different metrics such as PVUSA, performance ratio, DC power to plane-of-array irradiance ratio, uncorrected, and temperature-corrected were examined. PVUSA showed the highest sensitivity while temperature-corrected power over irradiance ratio was found to be the least sensitive to data filtering conditions. Using this ratio it is demonstrated that quantification of degradation rates with a statistical accuracy of +/- 0.2%/year within 4 years of field data is possible on two crystalline silicon and two thin-film systems.

Jordan, D. C.; Kurtz, S. R.

2012-03-01T23:59:59.000Z

427

General Corrosion and Localized Corrosion of the Drip Shield  

SciTech Connect (OSTI)

The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

F. Hua; K. Mon

2003-06-24T23:59:59.000Z

428

Ab-initio simulations of chemical stability indicators of the bis-DGA-type molecule and its radiation degradation products  

SciTech Connect (OSTI)

For hydrometallurgical treatment of the high level liquid waste (HLLW) in the DIAMEX and SANEX processes, organic compounds of the bis-DGA family are used as cation extractants in apolar solvents. For the compound of m-xylylene-bis-diglycolamide high distribution coefficients for Eu and Am were found. Since the environment of the process is highly radioactive and acidic (nitric acid), it is necessary to ensure the stability of the extractants. In order to analyse the process theoretically, the molecule of m-xylylene-bis- diglycolamide and two of its degradation products were simulated by the DFT computational methods (PBE, RPBE, BLYP, B3LYP) available within the simulation environment DMol{sup 3} 6.1 and Gaussian 09 software. The local chemical stability of some locations of the molecule was assessed from the calculated stability indicators (electrostatic potential, Fukui function, HOMO localization). In connection with the chemical treatment, especially the stability against an electrophilic attack was tested. The results of calculated bond orders and spatial distribution of electrostatic potential and HOMO were are successfully correlated with the local and general stability determined by the experiment. These results should be helpful for the further development of the separation process. (authors)

Koubsky, T.; Kalvoda, L.; Drab, M. [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Dept. of Solid State Engineering, Trojanova 13, 120 00 Prague 2 (Czech Republic)

2013-07-01T23:59:59.000Z

429

Local order variations in confined hard-sphere fluids  

E-Print Network [OSTI]

Pair distributions of fluids confined between two surfaces at close distance are of fundamental importance for a variety of physical, chemical, and biological phenomena, such as interactions between macromolecules in solution, surface forces, and diffusion in narrow pores. However, in contrast to bulk fluids, properties of inhomogeneous fluids are seldom studied at the pair-distribution level. Motivated by recent experimental advances in determining anisotropic structure factors of confined fluids, we analyze theoretically the underlying anisotropic pair distributions of the archetypical hard-sphere fluid confined between two parallel hard surfaces using first-principles statistical mechanics of inhomogeneous fluids. For this purpose, we introduce an experimentally accessible ensemble-averaged local density correlation function and study its behavior as a function of confining slit width. Upon increasing the distance between the confining surfaces, we observe an alternating sequence of strongly anisotropic versus more isotropic local order. The latter is due to packing frustration of the spherical particles. This observation highlights the importance of studying inhomogeneous fluids at the pair-distribution level.

Kim Nygård; Sten Sarman; Roland Kjellander

2013-10-31T23:59:59.000Z

430

A System Degradation Study of 445 Systems Using Year-Over-Year Performance Index Analysis  

Broader source: Energy.gov [DOE]

This graphic summarizes the results of a study conducted by the SunPower Corporation, to assess the median degradation of a large number of systems. This is important because solar investors need proof of low degradation. The study, a project under DOE's SunShot Initiative, makes use of year-over-year performance index change analysis, a powerful and practical technique for assessing the median degradation of a large fleet of systems, which in this case includes a sample of 445.

431

E-Print Network 3.0 - acid degradation final Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNIVERSITY Significance of Steroid Hormones in the Summary: -A light, but the rate of degradation was unaffected by the presence of humic acid. Finally, 17- estradiol......

432

E-Print Network 3.0 - aerobic nonylphenol degradation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

et al. 2006) has led to an intense scientific and public debate... . Emissions from UV irradiation are almost instantaneous, indicating a direct degradating photochemical......

433

E-Print Network 3.0 - aerobic vanillate degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

et al. 2006) has led to an intense scientific and public debate... . Emissions from UV irradiation are almost instantaneous, indicating a direct degradating photochemical......

434

E-Print Network 3.0 - aerobic microbial degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

et al. 2006) has led to an intense scientific and public debate... . Emissions from UV irradiation are almost instantaneous, indicating a direct degradating photochemical......

435

E-Print Network 3.0 - accelerated method degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONSIDERATIONS ABOUT WEATHERING EXPOSURE AND UV... 201 Summary: WEATHERING EXPOSURE AND UV DEGRADATION OF POLYMERIC GEOMEMBRANES Paulo Csar Lodi Department of Civil......

436

E-Print Network 3.0 - atoms prevent degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grafts Summary: control exhibited the most intense phosphate peaks. Strength Degradation Atomic Absorption Spectroscopy... @gmail.com Objective: To develop a ceramic material with...

437

E-Print Network 3.0 - assess soil degradation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or degradation in ecosystem management. Case Scenarios: Forestry: Impacts of mechanical disturbance on soil... and human health. Case Scenarios: Forestry: Forest...

438

E-Print Network 3.0 - anaerobic benzene degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topic List Advanced Search Sample search results for: anaerobic benzene degradation Page: << < 1 2 3 4 5 > >> 1 Biodegradation 11: 107116, 2000. 2001 Kluwer Academic...

439

E-Print Network 3.0 - aflatoxin b1 degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explorit Topic List Advanced Search Sample search results for: aflatoxin b1 degradation Page: << < 1 2 3 4 5 > >> 1 Mycopathologia 153: 4148, 2001. 2002 Kluwer Academic...

440

E-Print Network 3.0 - anaerobic microbial degradation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Biodegradation 11: 107116, 2000. 2001 Kluwer Academic Publishers. Printed in the Netherlands. Summary: . 107 Anaerobic benzene degradation Derek R. Lovley Department of...

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - anaerobic carbon degradation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Biodegradation 11: 107116, 2000. 2001 Kluwer Academic Publishers. Printed in the Netherlands. Summary: . 107 Anaerobic benzene degradation Derek R. Lovley Department of...

442

PATTERNS OF DIFFUSIBILITY OF LIGNIN AND CARBOHYDRATE DEGRADING SYSTEMS IN WOOD-ROTTING FUNGI  

E-Print Network [OSTI]

J. Biochem. 57: 405-409. lignins by Bacillus megaterium.microorganisms, Berg, B, 1975, Lignin degradation andEffects of microorganisms on lignin. Phytopathol. ~: Kirk.

Rosenberg, S. L.

2011-01-01T23:59:59.000Z

443

E-Print Network 3.0 - anaerobic hydrocarbon degradation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: anaerobic hydrocarbon degradation Page: << < 1 2 3 4 5 > >> 1 APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-22409704.00 0 Summary: . Rabus, R., and F. Widdel. 1995....

444

E-Print Network 3.0 - anaerobic 2-methylnaphthalene degradation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provides a general overview of anaero- Summary: that can be degraded by bacteria. Biogas: the gas produced by anaerobic bacteria in the anaerobic digestion... at Virginia...

445

E-Print Network 3.0 - aging-related degradation occurrences Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

41 Abstract Biological treatment methods are effective at destroying polycyclic aromatic hydro- Summary: of HMW PAH degradation is a common occurrence in nature as these...

446

Environmental aging degradation in continuous fiber ceramic composites  

SciTech Connect (OSTI)

The thermal stability of two-continuous fiber ceramic composites (CFCC`s) has been assessed. A Nicalon/CaO-Al{sub 2}O{sub 3}-SiO{sub 2} (CAS) glass-ceramic composite has been subjected to unstressed, oxidation heat treatments between 375 and 1200{degrees}C, after which the material was tested in flexure at room temperature. The static fatigue behavior of a chemical vapor infiltrated (CVI) Nicalon/SiC ceramic matrix composite has been assessed in air, between 425 and 1150{degrees}C, both with and without protective seal coating. Severe property degradation was observed due to oxidation of the graphite fiber/matrix interlayer in both CFCC`s.

Plucknett, K.P.; Lin, H.T.; Braski, D.N.; Becher, P.F.

1995-12-31T23:59:59.000Z

447

Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?  

SciTech Connect (OSTI)

Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

2008-10-01T23:59:59.000Z

448

Engineered Barrier System Degradation, Flow, and Transport Process Model Report  

SciTech Connect (OSTI)

The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

E.L. Hardin

2000-07-17T23:59:59.000Z

449

Apparent adsorption and microbial degradation of phenol by soil  

SciTech Connect (OSTI)

The objective of this study was to determine effects of pretreatment, equilibrium time, and concentration on adsorption of the labile organic chemical phenol by two soils: Captina silt loam (Typie Fragiudult) and Palouse silt loam (Ultic Haploxeroll). Adsorption of phenol by soil was determined by radioassay using the batch technique. Since loss from solution is equated with adsorption with the batch method, degradation of phenol is also recorded as adsorption. Adsorption of phenol was low, as evidenced by Freudlich K values of 0.57 and 1.19 for the sterile Captina and Palouse soils, respectively. The addition of water, glucose, or nutrient broth to the non-sterile soil increased the apparent adsorption by reducing the phenol concentration in the solution phase. As equilibration time increased, the apparent adsorption of phenol by the non-sterile soil also increased. When compared with the sterilized soil, this increase suggested that the loss of phenol from solution was largely due to microbial decomposition. As the concentration of phenol increased, there was a corresponding increase in the lag phase and a decrease in the degradation rate constant indicating inhibition and microbial activity by phenol at higher concentrations. The length of time in the lag phase was linearly related to the log of the phenol concentration. At a given concentration, the lag phase of the Captina soil was longer and more sensitive to changes in phenol concentration than was the lag phase in the Palouse soil. This was attributed to its lower phenol adsorption, organic matter content, and initial microbial population.

Scott, H.D.; Wolf, D.C.; Lavy, T.L.

1982-01-01T23:59:59.000Z

450

LMFBR operational and experimental local-fault experience, primarily with oxide fuel elements  

SciTech Connect (OSTI)

Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS- and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

Warinner, D.K.

1980-01-01T23:59:59.000Z

451

LMFBR operational and experimental in-core local-fault experience, primarily with oxide fuel elements  

SciTech Connect (OSTI)

Case-by-case reviews of selective world experience with severe local faults, particularly fuel failure and fuel degradation, are reviewed for two sodium-cooled thermal reactors, several LMFBRs, and LMFBR-fuels experiments. The review summarizes fuel-failure frequency and illustrates the results of the most damaging LMFBR local-fault experiences of the last 20 years beginning with BR-5 and including DFR, BOR-60, BR2's MFBS-and Mol-loops experiments, Fermi, KNK, Rapsodie, EBR-II, and TREAT-D2. Local-fault accommodation is demonstrated and a need to more thoroughly investigate delayed-neutron and gaseous-fission-product signals is highlighted in view of uranate formation, observed blockages, and slow fuel-element failure-propagation.

Warinner, D.K.

1980-08-10T23:59:59.000Z

452

Kinetic viscoelasticity modeling applied to degradation during carbon–carbon composite processing  

E-Print Network [OSTI]

Kinetic viscoelasticity modeling has been successfully utilized to describe phenomena during cure of thermoset based carbon fiber reinforced matrices. The basic difference from classic viscoelasticity is that the fundamental ...

Drakonakis, Vassilis M.

453

Techniques to evaluate the importance of common cause degradation on reliability and safety of nuclear weapons.  

SciTech Connect (OSTI)

As the nuclear weapon stockpile ages, there is increased concern about common degradation ultimately leading to common cause failure of multiple weapons that could significantly impact reliability or safety. Current acceptable limits for the reliability and safety of a weapon are based on upper limits on the probability of failure of an individual item, assuming that failures among items are independent. We expanded the current acceptable limits to apply to situations with common cause failure. Then, we developed a simple screening process to quickly assess the importance of observed common degradation for both reliability and safety to determine if further action is necessary. The screening process conservatively assumes that common degradation is common cause failure. For a population with between 100 and 5000 items we applied the screening process and conclude the following. In general, for a reliability requirement specified in the Military Characteristics (MCs) for a specific weapon system, common degradation is of concern if more than 100(1-x)% of the weapons are susceptible to common degradation, where x is the required reliability expressed as a fraction. Common degradation is of concern for the safety of a weapon subsystem if more than 0.1% of the population is susceptible to common degradation. Common degradation is of concern for the safety of a weapon component or overall weapon system if two or more components/weapons in the population are susceptible to degradation. Finally, we developed a technique for detailed evaluation of common degradation leading to common cause failure for situations that are determined to be of concern using the screening process. The detailed evaluation requires that best estimates of common cause and independent failure probabilities be produced. Using these techniques, observed common degradation can be evaluated for effects on reliability and safety.

Darby, John L.

2011-05-01T23:59:59.000Z

454

Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes  

SciTech Connect (OSTI)

The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

2011-08-01T23:59:59.000Z

455

POLICY PERSPECTIVE Protecting degraded rainforests: enhancement of forest carbon  

E-Print Network [OSTI]

; carbon-offset; CDM; community development; Kyoto protocol; selective logging; silviculture, and employment opportunities for poor local communities. As with other forms of forest-based carbon offsets- der REDD+ and voluntary carbon offset markets. Con- cerns about restoration as a REDD+ mechanism stem

Vermont, University of

456

Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators  

E-Print Network [OSTI]

We study a system of phase oscillators with non-local coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

Matthias Wolfrum; Oleh Omel'chenko; Jan Sieber

2015-01-30T23:59:59.000Z

457

Phenomenology and physical origin of shear-localization and shear-banding in complex fluids  

E-Print Network [OSTI]

We review and compare the phenomenological aspects and physical origin of shear-localization and shear-banding in various material types, namely emulsions, suspensions, colloids, granular materials and micellar systems. It appears that shear-banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity towards two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view shear-banding in these systems has a common physical origin: two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition and, depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.

Guillaume Ovarlez; Stéphane Rodts; Xavier Chateau; Philippe Coussot

2010-02-09T23:59:59.000Z

458

Finite Element Analysis of the Amontons-Coulomb's Model using Local and Global Friction Tests  

SciTech Connect (OSTI)

In spite of the abundant number of experimental friction tests that have been reported, the contact with friction modeling persists to be one of the factors that determine the effectiveness of sheet metal forming simulation. This difficulty can be understood due to the nature of the friction phenomena, which comprises the interaction of different factors connected to both sheet and tools' surfaces. Although in finite element numerical simulations friction models are commonly applied at the local level, they normally rely on parameters identified based on global experimental tests results. The aim of this study is to analyze the applicability of the Amontons-Coulomb's friction coefficient identified using complementary tests: (i) load-scanning, at the local level and (ii) draw-bead, at the global level; to the numerical simulation of sheet metal forming processes.

Oliveira, M. C.; Menezes, L. F.; Ramalho, A. [CEMUC, Department of Mechanical Engineering, University of Coimbra, Polo II, Rua Luis Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra (Portugal); Alves, J. L. [Department of Mechanical Engineering, University of Minho, Campus de Azurem, 4800-058, Guimaraes (Portugal)

2011-05-04T23:59:59.000Z

459

Anytime Replanning Using Local Subplan Replacement  

E-Print Network [OSTI]

Anytime Replanning Using Local Subplan Replacement A Dissertation Presented to the faculty how local subplan replacement can be utilized to implement an anytime planning system that devises new plans to accommodate plan failures. Local subplan replacement consists of selecting subsequences

Ferrer, Gabriel J.

460

Proton Exchange Membrane Fuel Cell degradation prediction based on Adaptive Neuro Fuzzy Inference Systems  

E-Print Network [OSTI]

Proton Exchange Membrane Fuel Cell degradation prediction based on Adaptive Neuro Fuzzy Inference online XX XX XXXX Keywords: Proton Exchange Membrane fuel cell degradation, Prognostic and Health nominal operating condition of a PEM fuel cell stack. It proposes a methodology based on Adaptive Neuro

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PhD Studentship in Environmental Fate of Amine and Amine Degradation Products  

E-Print Network [OSTI]

; Modelling the fate of amines and their by-products and estimating their air and ground level concentrationsPhD Studentship in Environmental Fate of Amine and Amine Degradation Products Imperial College and nitrosamine - nitramine degradation products emitted from a CO2 capture plant and to identify acceptable

462

Zinc ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation  

SciTech Connect (OSTI)

Graphical abstract: Photocatalytic degradation of Reactive Red 198 and Reactive Red 120 by the synthesized zinc ferrite nanoparticle. - Highlights: • Magnetic zinc ferrite nanoparticle was synthesized and characterized. • Photocatalytic dye degradation by magnetic nanoparticle was studied. • Formate, acetate and oxalate were detected as dominant dye degradation aliphatic intermediates. • Nitrate and sulfate ions were detected as mineralization products of dyes. • Zinc ferrite nanoparticle was an effective magnetic photocatalyst to degrade dyes. - Abstract: In this paper, magnetic zinc ferrite (ZnFe{sub 2}O{sub 4}) nanoparticle was synthesized and its photocatalytic dye degradation ability from colored wastewater was studied. Reactive Red 198 (RR198) and Reactive Red 120 (RR120) were used as model dyes. The characteristics of ZnFe{sub 2}O{sub 4} were investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Photocatalytic dye degradation by ZnFe{sub 2}O{sub 4} was studied by UV–vis spectrophotometer and ion chromatography (IC). The effects of ZnFe{sub 2}O{sub 4} dosage, initial dye concentration and salt on dye degradation were evaluated. Formate, acetate and oxalate anions were detected as dominant aliphatic intermediate. Inorganic anions (nitrate and sulfate anions) were detected as dye mineralization products. The results indicated that ZnFe{sub 2}O{sub 4} could be used as a magnetic photocatalyst to degrade dyes from colored wastewater.

Mahmoodi, Niyaz Mohammad, E-mail: mahmoodi@icrc.ac.ir

2013-10-15T23:59:59.000Z

463

Soil Biology & Biochemistry 38 (2006) 22922299 Modifications of degradation-resistant soil organic matter by soil  

E-Print Network [OSTI]

Soil Biology & Biochemistry 38 (2006) 2292­2299 Modifications of degradation-resistant soil organic matter by soil saprobic microfungi Veronika R eza´ c ova´ a,b,Ã, Hana Hrs elova´ a , Hana Gryndlerova in their solutions and in sterile soil by microfungal species and two well-known HA degraders were studied

Miksik, Ivan

2006-01-01T23:59:59.000Z

464

RRR Degradation and Gas Absorption in the Electron Beam Welding Area of High Purity  

E-Print Network [OSTI]

1 RRR Degradation and Gas Absorption in the Electron Beam Welding Area of High Purity Niobium W degradation and gas absorption of high purity niobium welded at different electron beam (EB) facilities are summarized. The oxygen and nitrogen content is increased as a rule at the welding seam. The absorption

465

Mechanical Degradation Onset of Polyethylene Oxide Used as a Hydrosoluble Model Polymer  

E-Print Network [OSTI]

Mechanical Degradation Onset of Polyethylene Oxide Used as a Hydrosoluble Model Polymer Degradation Onset of Polyethylene Oxide Used as a Hydrosoluble Model Polymer for Enhanced Oil Recovery and for both dilute and semi dilute polyethylene oxide aqueous solutions. It reveals that the exponent k

Boyer, Edmond

466

Electronic structure calculations of radical reactions for poly(methyl methacrylate) degradation  

E-Print Network [OSTI]

exposed to UV light in low-Earth orbit (LEO) conditions experience degradation. Under LEO conditionsElectronic structure calculations of radical reactions for poly(methyl methacrylate) degradation to calculate the reaction energetics for decomposition reactions of radicals formed from UV radiation

467

Photocatalytic Degradation of VOC's by TOTO's Hydrotect (TiO2 Impregnated) Surfaces  

E-Print Network [OSTI]

1 Photocatalytic Degradation of VOC's by TOTO's Hydrotect (TiO2 Impregnated) Surfaces Eva Land. This report describes the photocatalytic degradation of formaldehyde and methanol, two common VOC's, by TiO2 to produce measurable gas phase concentrations. The extended UV illumination of the tiles resulted in a 50

Bergin, Mike

468

SCIAMACHY MONITORING FACTORS: OBSERVATION AND END-TO-END CORRECTION OF INSTRUMENT PERFORMANCE DEGRADATION  

E-Print Network [OSTI]

DEGRADATION Klaus Bramstedt1 , Stefan No¨el1 , Heinrich Bovensmann1 , John P. Burrows1 , Christophe Lerot2Y) is a grating spectrometer in the UV-Vis-NIR spectral range. SCIA- MACHY is part of the ENVISAT payload-factors. Key words: SCIAMACHY; m-factors; degradation; mon- itoring. 1. INTRODUCTION SCIAMACHY [1] is now seven

Tilstra, Gijsbert

469

The EMBO Journal (2002) 21, 17041712 Tip60 is targeted to proteasome-mediated degradation by  

E-Print Network [OSTI]

The EMBO Journal (2002) 21, 1704­1712 Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation Gaëlle Legube1 , Laetitia K. Linares2 , Claudie Lemercier3 , Martin Scheffner ubiquitylation and proteasome-dependent degradation. Moreover, a ubiquitin ligase-defective mutant of Mdm2 had

Paris-Sud XI, Université de

470

Degradation of Back-Surface Acrylic Mirrors for Low Concentration and  

E-Print Network [OSTI]

. Degradation of these mirrors can occur from UV induced photodegradative processes and metallization corrosionDegradation of Back-Surface Acrylic Mirrors for Low Concentration and Mirror on a module. Back-surface mirrors can spectrally filter incoming solar radiation reducing the ultraviolet (UV

Rollins, Andrew M.

471

Post-Doctoral Research Associate Position in Photovoltaic Lifetime and Degradation Science  

E-Print Network [OSTI]

Post-Doctoral Research Associate Position in Photovoltaic Lifetime and Degradation Science A Post establish a facility for PV lifetime and degradation studies, including solar and environmental exposures and optical characterization techniques including UV/vis, FTIR and light scattering, and will develop

Rollins, Andrew M.

472

Chemical Engineering Journal 97 (2004) 241248 Effects of Pt and Ag on the photocatalytic degradation  

E-Print Network [OSTI]

degradation of 4-chlorophenol and its by-products Mantana Moonsiria, Pramoch Rangsunvigita,, Sumaeth Chavadeja Accepted 19 May 2003 Abstract Photocatalytic degradation of 4-chlorophenol (4-CP) was studied using TiO2 pressure mercury lamp emitting UV light in 200­280 nm window. The results show that, with TiO2 (sol

Gulari, Erdogan

473

Structural evolution and degradation mechanism of Vectran upon exposure to UV-radiation  

E-Print Network [OSTI]

Structural evolution and degradation mechanism of VectranÃ? fibers upon exposure to UV performance fibers. How- ever, they are susceptible to degradation and undergo structural changes when exposed to ultraviolet (UV) irradiation in service. The focus of this work is to investigate the photochemical aging

Guo, John Zhanhu

474

Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin microcystin-LR  

E-Print Network [OSTI]

Photocatalytic cellulosic electrospun fibers for the degradation of potent cyanobacteria toxin of titania nanoparticle (visible light activated or UV light activated), the surface area of the fiber mat-LR degradation under both visible and solar light irradiation. The difference in titania coverage, determined

Steckl, Andrew J.

475

Minerva, 5(3): 231-234 DEGRADATIONS ANALYSIS OF POLYMERIC GEOMEMBRANES... 231  

E-Print Network [OSTI]

words: geomembranes, weathering exposure, UV degradation, mechanical properties. Introduction In someMinerva, 5(3): 231-234 DEGRADATION´S ANALYSIS OF POLYMERIC GEOMEMBRANES... 231 DEGRADATION´SASTM D1435 standard was used like a guide to evaluate the weathering degradation. The results showed

Zornberg, Jorge G.

476

Degradation of Polymers Coating Nano-scale Zero Valent Iron Particles used in Groundwater Remediation  

E-Print Network [OSTI]

Degradation of Polymers Coating Nano-scale Zero Valent Iron Particles used in Groundwater chemicals (Zhang, 2003). Nano-scale zero valent iron (NZVI) can be injected into the soil to degrade centrifugation. UV spectrophotometer: The polymers could be quantified when dissolved in pure water or in mineral

Barthelat, Francois

477

Original article Comparison of in situ degradation of cell-wall  

E-Print Network [OSTI]

linked to cell walls for fresh lucerne and 2 lucerne silages J Aufrère, D Boulberhane D Graviou C degradation was studied on fresh lucerne and 2 silages prepared from fresh for- age, one without added degradations of 2 lucerne silages, one without preservative and the other with added formic acid were compared

Paris-Sud XI, Université de

478

Microstructural Degradation of Ni-YSZ Anodes for Solid Oxide Fuel  

E-Print Network [OSTI]

Microstructural Degradation of Ni- YSZ Anodes for Solid Oxide Fuel Cells Karl Thydén Risø-PhD-32(EN 2008 #12;Author: Karl Thydén Title: Microstructural Degradation of Ni-YSZ Anodes for Solid Oxide Fuel Cells Department: Fuel Cells and Solid State Chemistry Department Risø-PhD-32(EN) March 2008 This thesis

479

Degradation of Total Petroleum Hydrocarbon and BTEX Compounds in Produced Water  

SciTech Connect (OSTI)

Petroleum Environmental Technologies, LLC entered into a Cooperative Research and Development agreement with the Rocky Mountain Oilfield Testing Center to an in-situ pit treatment demonstration and produced water treatment demonstration. The purpose of the test is to demonstrate the degradation of petroleum hydrocarbon compounds in soil and aqueous matrices where ECOSAFE is applied to enhance the degradation of these contaminants.

Jackson, Lorri

2002-04-01T23:59:59.000Z

480

Degradation Characteristics of Elastomeric Gasket Materials in a Simulated PEM Fuel Cell Environment  

E-Print Network [OSTI]

Degradation Characteristics of Elastomeric Gasket Materials in a Simulated PEM Fuel Cell; in revised form December 9, 2007) Polymer electrolyte membrane (PEM) fuel cell stack requires gaskets after exposure to the simulated PEM fuel cell environment over time. Keywords ATR-FTIR, degradation

Van Zee, John W.

Note: This page contains sample records for the topic "local degradation phenomena" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mechanism-based Representative Volume Elements (RVEs) for Predicting Property Degradations in Multiphase Materials  

SciTech Connect (OSTI)

Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material hinges upon the availability of quantitative statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more representative than 2D models in general, they are usually computationally expensive and difficult to be reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability of reproducing the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes.

Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.

2013-02-01T23:59:59.000Z

482

Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.  

SciTech Connect (OSTI)

Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

Dugger, Michael Thomas; Dickrell, Daniel John, III

2006-02-01T23:59:59.000Z

483

Integrated Diagnostic/Prognostic Experimental Setup for Capacitor Degradation and Health  

E-Print Network [OSTI]

degradation is typically measured by the increase in Equivalent series resistance and decrease in capacitance Vibrations and high ripple current attribute to the failure in these components. These degraded units affect. Such electronic devices often contain several sub- circuits with different voltage requirements (sometimes higher

Koutsoukos, Xenofon D.

484

Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes  

E-Print Network [OSTI]

Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes genes from the manganese peroxidase (MnP), lignin peroxidase (LiP) and versatile peroxidase (VP. Incorporation of an exposed tryptophan residue involved in oxidative degradation of lignin in a short Mn

Hibbett, David S.

485

Lignin degradation in wood-feeding insects Scott M. Geib*, Timothy R. Filley  

E-Print Network [OSTI]

Lignin degradation in wood-feeding insects Scott M. Geib*, Timothy R. Filley , Patrick G. Hatcher, Deerfield, WI, and approved July 7, 2008 (received for review May 30, 2008) The aromatic polymer lignin lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using

486

Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil  

E-Print Network [OSTI]

Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil Kristen M. DeAngelis1 Abstract Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents

Hazen, Terry

487

Rumen microbial degradation of modified lignin plants observed by electron microscopy  

E-Print Network [OSTI]

Rumen microbial degradation of modified lignin plants observed by electron microscopy C Mign6, E-Genès-Champanelle, France The microbial degradation of modified lignin tobacco (Samson variety) plants (homozygous line 40 to the corresponding cinnamyl alcohols which are the direct monomeric precursors of the lignin. Only the stems were

Paris-Sud XI, Université de

488

Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by  

E-Print Network [OSTI]

ARTICLE Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by Two: Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells

Alvarez-Cohen, Lisa

489

Local non-equilibrium thermodynamics  

E-Print Network [OSTI]

Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

Jinwoo, Lee

2015-01-01T23:59:59.000Z

490

Localization via Automorphisms of the CARs. Local gauge invariance  

E-Print Network [OSTI]

The classical matter fields are sections of a vector bundle E with base manifold M. The space L^2(E) of square integrable matter fields w.r.t. a locally Lebesgue measure on M, has an important module action of C_b^\\infty(M) on it. This module action defines restriction maps and encodes the local structure of the classical fields. For the quantum context, we show that this module action defines an automorphism group on the algebra A, of the canonical anticommutation relations on L^2(E), with which we can perform the analogous localization. That is, the net structure of the CAR, A, w.r.t. appropriate subsets of M can be obtained simply from the invariance algebras of appropriate subgroups. We also identify the quantum analogues of restriction maps. As a corollary, we prove a well-known "folk theorem," that the algebra A contains only trivial gauge invariant observables w.r.t. a local gauge group acting on E.

Hendrik Grundling; Karl-Hermann Neeb

2010-01-07T23:59:59.000Z

491

The Local Dimension of Energy  

E-Print Network [OSTI]

 and international experience, several bespoke energy strategies are identified  that have significant potential to contribute to local energy demand reduction and lower  CO2 emissions  in  the UK. The  strategies  identified  include, Combined Heat and Power  with  District  Heating  (CHP?DH),  Energy  from  Waste  Facilities  (Ef... . Monitoring and managing own energy and carbon emissions. Implementation of energy efficiency schemes within local government buildings such as schools, halls and sporting facilities etc. Using CHP (Combined Heat and Power) to supply heat and power...

Kelly, Scott

2011-01-31T23:59:59.000Z

492

FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents  

SciTech Connect (OSTI)

The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

2011-01-01T23:59:59.000Z

493

Furthering Your Local Governments' Energy Efficiency Goals: Getting Support from Local Leaders  

Broader source: Energy.gov [DOE]

Power Point presentation from the Furthering your Local Governments Energy Efficiency Goals part 1 Getting Support From Local Leaders webcast.

494

Local  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material response dotted curves and signal to noise ratio for ESM response divided by noise func- tion f 0 f + 1 with f 0 3 kHz solid curves. Diffu- sion...

495

Local  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011LiisaInnovationorganizationLizLobbying

496

Local  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011LiisaInnovationorganizationLizLobbyingplasma ion

497

Local  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011LiisaInnovationorganizationLizLobbyingplasma

498

Methods And Systms For Analyzing The Degradation And Failure Of Mechanical Systems  

DOE Patents [OSTI]

Methods and systems for identifying, understanding, and predicting the degradation and failure of mechanical systems are disclosed. The methods include measuring and quantifying stressors that are responsible for the activation of degradation mechanisms in the machine component of interest. The intensity of the stressor may be correlated with the rate of physical degradation according to some determinable function such that a derivative relationship exists between the machine performance, degradation, and the underlying stressor. The derivative relationship may be used to make diagnostic and prognostic calculations concerning the performance and projected life of the machine. These calculations may be performed in real time to allow the machine operator to quickly adjust the operational parameters of the machinery in order to help minimize or eliminate the effects of the degradation mechanism, thereby prolonging the life of the machine. Various systems implementing the methods are also disclosed.

Jarrell, Donald B. (Kennewick, WA); Sisk, Daniel R. (Richland, WA); Hatley, Darrel D. (Kennewick, WA); Kirihara, Leslie J. (Richland, WA); Peters, Timothy J. (Richland, WA)

2005-02-08T23:59:59.000Z

499

Thermal degradation of poly({alpha}-methylstyrene) in solution. [Quarterly report, July--September 1995  

SciTech Connect (OSTI)

The thermal degradation of poly({alpha}-methylstyrene) in solution was investigated at various temperatures (150-225 C) and polymer concentrations (2.00-20.0 g/L) at 6.8 MPa (1000 psig). The molecular weight distributions (MWDs) of the reacted polymer at these conditions were examined at four different residence times. Experimental data indicated that the polymer degraded to its monomer, {alpha}-methylstyrene. No other degradation products were observed. Continuous-mixture kinetics was used to examine the MWDs and to obtain the rate coefficient for degradation and its activation energy. The rate was first-order in polymer concentration with a rate constant at 225 C of 0.01 min{sup {minus} 1} and an activation energy of 66.5 kJ/mol (16.0 kcal/mol). The maximum conversion observed at 275 C was 1.2%. Hydrogen-donor solvent, tetralin, had no effect on the degradation.

Madras, G.; Smith, J.M.; McCoy, B.J.

1995-11-11T23:59:59.000Z

500

Development of materials resistant to metal dusting degradation.  

SciTech Connect (OSTI)

The deposition of carbon from carbonaceous gaseous environments is prevalent in many chemical and petrochemical processes such as, hydrogen-, ammonia-, and methanol-reforming systems, syngas production systems, and iron-ore reduction plants. One of the major consequences of carbon deposition is the degradation of structural materials by a phenomenon known as ''metal dusting''. There are two major issues of importance in metal dusting. First is formation of coke and subsequent deposition of coke on metallic structural components. Second is the initiation and subsequent propagation of metal dusting degradation of the structural alloy. In the past, we reported on the mechanism for metal dusting of Fe- and Ni-base alloys. In this report, we present metal dusting data on both Fe- and Ni-base alloys after exposure in high and atmospheric pressure environments that simulate the gas chemistry in operating hydrogen reformers. We have also measured the progression of pits by measuring the depth as a function of exposure time for a variety of Fe- and Ni-base structural alloys. We have clearly established the role of transport of iron in forming a non-protective spinel phase in the initiation process and presence of carbon transfer channels in the oxide scale for the continued propagation of pits, by nano-beam X-ray analysis using the advance photon source (APS), Raman scattering, and SEM/EDX analysis. In this report, we have developed correlations between weight loss and pit progression rates and evaluated the effects of carbon activity, system pressure, and alloy chemistry, on weight loss and pit propagation. To develop pit propagation data for the alloys without incurring substantial time for the initiation of pits, especially for the Ni-base alloys that exhibit incubation times of thousands of hours, a pre-pitting method has been developed. The pre-pitted alloys exhibited pit propagation rates similar to those of materials tested without pre-pitting. We have also developed a substantial body of metal-dusting data on the performance of Fe- and Ni-base weldments. During the course of this project, we have developed new Ni-base and Cu-base alloys and tested them in simulated metal dusting environments at 1 atm and at high pressures. Results clearly showed superior performance of both classes of alloys in resisting metal dusting. We also developed an approach to mitigate metal dusting by performing an intermediate oxidation step for extending the life of alloys in which metal dusting has initiated and pits are in progression. Finally, we have analyzed several components that have failed in plants such as hydrogen plant, pilot plant reformer, and a gas boiler.

Natesan, K.; Zeng, Z.; Nuclear Engineering Division

2007-12-07T23:59:59.000Z