National Library of Energy BETA

Sample records for local degradation phenomena

  1. Unique photoluminescence degradation/recovery phenomena in trivalent ion-activated phosphors

    SciTech Connect (OSTI)

    Sawada, Kenji; Adachi, Sadao

    2015-09-14

    Photo-induced luminescence intensity degradation in red-emitting Tb{sub 3}Ga{sub 5}O{sub 12}:Eu{sup 3+} (TGG:Eu{sup 3+}) phosphor is observed and studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay analysis. The red-emitting TGG:Eu{sup 3+} phosphor exhibits remarkable degradation in the PL intensity under weak UV light (λ < 350 nm) exposure in the seconds time scale. The PL degradation characteristics can be well expressed by the exponential formulation with respect to exposure time. Interestingly, the PL intensity recovers after a few minutes when the phosphor is stored in a dark room or exposed to the long-wavelength (λ > 350 nm) light. The luminescence decay dynamics measured by excitation at λ{sub ex} = 355 and 266 nm suggest that the present degradation/recovery processes are caused by the electron traps formed in the TGG:Eu{sup 3+} phosphor. The Tb{sup 3+} emission in TGG shows the essentially same degradation characteristics as those observed in the TGG:Eu{sup 3+} phosphor. The present luminescence degradation/recovery phenomena of the trivalent ions (4f → 4f transitions) may universally occur in various oxide phosphors such as TGG (Tb{sup 3+} emission) and CaTiO{sub 3}:Eu{sup 3+}.

  2. Critical Phenomena of the Disorder Driven Localization-Delocalization Transition

    SciTech Connect (OSTI)

    Marc Ruhlander

    2002-12-31

    Metal-to-insulator transitions are generally linked to two phenomena: electron-electron correlations and disorder. Although real systems are usually responding to a mixture of both, they can be classified as undergoing a Mott-transition, if the former process dominates, or an Anderson-transition, if the latter dominates. High-T{sub c} superconductors, e.g., are a candidate for the first class. Materials in which disorder drives the metal-to-insulator transition include doped semiconductors and amorphous materials. After briefly reviewing the previous research on transport in disordered materials and the disorder-induced metal-to-insulator transition, a summary of the model and the methods used in subsequent chapters is given.

  3. A creep-damage model for mesoscale simulations of concrete expansion-degradation phenomena

    SciTech Connect (OSTI)

    Giorla, Alain B; Le Pape, Yann

    2015-01-01

    Long-term performance of aging concrete in nuclear power plants (NPPs) requires a careful examination of the physical phenomena taking place in the material. Concrete under high neutron irradiation is subjected to large irreversible deformations as well as mechanical damage, caused by a swelling of the aggregates. However, these results, generally obtained in accelerated conditions in test reactors, cannot be directly applied to NPP irradiated structures, i.e., the biological shield, operating conditions due to difference in time scale and environmental conditions (temperature, humidity). Mesoscale numerical simulations are performed to separate the underlying mechanisms and their interactions. The cement paste creep-damage model accounts for the effect of the loading rate on the apparent damage properties of the material and uses an event-based approach to capture the competition between creep and damage. The model is applied to the simulation of irradiation experiments from the literature and shows a good agreement with the experimental data.

  4. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    SciTech Connect (OSTI)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C.

    2001-02-02

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement.

  5. Targeted polypeptide degradation

    DOE Patents [OSTI]

    Church, George M.; Janse, Daniel M.

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  6. Deep Data Analysis of Conductive Phenomena on Complex Oxide Interfaces...

    Office of Scientific and Technical Information (OSTI)

    This approach conjoins multivariate statistical analysis with physics-based ... local transport and other functional phenomena in other spatially inhomogeneous systems. ...

  7. Ion exchange phenomena

    SciTech Connect (OSTI)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  8. Synchrotron Investigations of SOFC Cathode Degradation

    SciTech Connect (OSTI)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-?} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  9. Durability Improvements Through Degradation Mechanism Studies

    SciTech Connect (OSTI)

    Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan; Baker, Andrew M.; Lujan, Roger W.; Langlois, David Alan; Ahluwalia, Rajesh; Papadia, D. D.; Weber, Adam Z.; Kusoglu, Ahmet; Shi, Shouwnen; More, K. L.; Grot, Steve

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  10. Natural Phenomena Hazards (NPH) Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department Natural Phenomena Hazards (NPH) Workshop, sponsored by the Chief of Nuclear Safety and the Chief of Defense Nuclear Safety, was held October 25-26, 2011, in Germantown,...

  11. Natural Phenomena Hazards Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Phenomena Hazards Program Natural Phenomena Hazards Program Natural Phenomena Hazards Overview The Department of Energy (DOE) Natural Phenomena Hazards Program develops and maintains state-of-the-art program standards and guidance for DOE facilities exposed to natural phenomena hazards (NPHs). This program applies to both conventional, nuclear hazard category 1, 2, and 3, and radiological facilities. Direction and guidance is given for seismic, extreme wind, tornado, precipitation,

  12. New phenomena searches at CDF

    SciTech Connect (OSTI)

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  13. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  14. "Multiscale Capabilities for Exploring Transport Phenomena in...

    Office of Scientific and Technical Information (OSTI)

    in Batteries": Ab Initio Calculations on Defective LiFePO4 Citation Details In-Document Search Title: "Multiscale Capabilities for Exploring Transport Phenomena in Batteries": Ab ...

  15. Canister storage building natural phenomena hazards

    SciTech Connect (OSTI)

    Tallman, A.M.

    1996-06-01

    This document specifies the natural phenomena loads for the canister storage building in the 200 East Area of the Hanford Site.

  16. Natural Phenomena Hazards (NPH) Meeting- October 2014

    Broader source: Energy.gov [DOE]

    On October 21-22, 2014, the DOE Chief of Nuclear Safety (CNS) hosted a Natural Phenomena Hazards (NPH) working meeting in Germantown, Maryland.

  17. Interference phenomena observed during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. )

    1992-03-01

    In this paper the interference phenomena of waves observed during a cold fusion experiment are described. Nuclear emissions have successfully recorded two different interference phenomena of waves from an electrolyzing cell. It is inferred that the waves might be gravitational and antigravitational waves, which can be expected to be radiated from gravity decays of quad-neutrons.

  18. Targeted polypeptide degradation (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    localization andor polypeptide degradation. The invention also provides research tools for the study of protein function. Authors: Church, George M. 1 ; Janse, Daniel M....

  19. Resistive switching phenomena: A review of statistical physics approaches

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  20. Fast flow phenomena in a toroidal plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flow phenomena in a toroidal plasma* D. J. Den Hat-tog,+ A. F. Almagri, J. T. Chapman, H. ... figure prominently in a variety of plasma phe- nomena, including particle ...

  1. Exploring high temperature phenomena related to post-detonation...

    Office of Scientific and Technical Information (OSTI)

    Exploring high temperature phenomena related to post-detonation by an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena related to ...

  2. DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...

    Office of Environmental Management (EM)

    DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE ...

  3. CRAD, Review of Preparedness for Severe Natural Phenomena Events...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 21, 2012 CRAD, Review of Preparedness for Severe Natural Phenomena Events - August 21, 2012 August 21, 2012 Review of Preparedness for Severe Natural Phenomena Events at the...

  4. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells Citation Details In-Document Search Title: Transport Phenomena and ...

  5. Review of Natural Phenomena Hazards (NPH) Requirements Currently...

    Office of Environmental Management (EM)

    Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH)...

  6. The Science of Battery Degradation.

    SciTech Connect (OSTI)

    Sullivan, John P; Fenton, Kyle R; El Gabaly Marquez, Farid; Harris, Charles Thomas; Hayden, Carl C.; Hudak, Nicholas; Jungjohann, Katherine Leigh; Kliewer, Christopher Jesse; Leung, Kevin; McDaniel, Anthony H.; Nagasubramanian, Ganesan; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M; Zavadil, Kevin R.

    2015-01-01

    This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy

  7. DOE Natural Phenomena Hazards (NPH) Workshop- Opening Remarks & Agenda

    Broader source: Energy.gov [DOE]

    DOE Natural Phenomena Hazards (NPH) Workshop - Opening Remarks & Agenda October 25-26, 2011 Germantown, MD

  8. Evaluation of the performance degradation at PAFC effect of catalyst degradation on electrode performance

    SciTech Connect (OSTI)

    Nishizaki, K.; Uchida, H.; Watanabe, M.

    1996-12-31

    Aiming commercialization of Phosphoric Acid Fuel Cell (PAFC) power plant, many researches and developments have been contributed. Over 20000 hours operations have been demonstrated by many PAFC power plants. But there is no effective method for the estimation of lifetime of electrochemical cells without a practical long-term operation. Conducted by New Energy and Industrial Technology Development Organization (NEDO), cooperative research projects aiming development of PAFC lifetime estimation method have started since 1995 FY in Japan. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, Phosphoric Acid Fuel Cell Technology Research Association (PAFC-TRA) and PAFC manufacturers (Toshiba Co., Mitsubishi Electric Co, Fuji Electric Co.). Among several main causes of the cell performance degradation, effects of catalyst degradation (reduction in metal surface area, dealloying, changes in catalyst support) on PAFC cathode performances are discussed in this work.

  9. New observatory studies universe's most energetic phenomena

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New observatory Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit New observatory studies universe's most energetic phenomena Facility replaces Milagro Observatory near Los Alamos May 1, 2015 From its perch atop the highest accessible peak in Mexico, Milagro's replacement will have 15 percent of the sky within its sights at any given time. From its perch atop the highest accessible peak

  10. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  11. An interpretation of passive containment cooling phenomena

    SciTech Connect (OSTI)

    Chung, Bum-Jin; Kang, Chang-Sun,

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  12. Advances in modelling of condensation phenomena

    SciTech Connect (OSTI)

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  13. Natural Phenomena Hazards Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Reports Natural Phenomena Hazards Program Reports Listed below are some of the relevant Natural Phenomena Hazards (NPH) Program Publications. As material and research is completed the reports will be added below. Reports: NFSP-2015-TD01, Report on the Implementation of Periodic Natural Phenomena Hazards Assessment Reviews at Department of Energy Sites

  14. Novel nuclear phenomena in quantum chromodynamics

    SciTech Connect (OSTI)

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  15. Threshold Phenomena in a Throbbing Complex Plasma

    SciTech Connect (OSTI)

    Mikikian, Maxime; Coueedel, Lenaiec; Cavarroc, Marjorie; Tessier, Yves; Boufendi, Laiefa

    2010-08-13

    In complex plasmas, the trapped dust particle cloud is often characterized by a central dust-free region ('void'). The void induces a spatial inhomogeneity of the dust particle distribution and is at the origin of many intricate unstable phenomena. One type of this kind of behavior is the so-called heartbeat instability consisting of successive contractions and expansions of the void. This instability is characterized by a strong nonlinear dynamics which can reveal the occurrence of incomplete sequences corresponding to failed contractions. Experimental results based on high-speed imaging are presented for the first time and underline this threshold effect in both the dust cloud motion and the evolution of the plasma light emission.

  16. Drift Degradation Analysis

    SciTech Connect (OSTI)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  17. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    SciTech Connect (OSTI)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed saltstone. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate

  18. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  19. Antifoam degradation testing

    SciTech Connect (OSTI)

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.; Williams, M. S.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  20. Modeling Degradation in Solid Oxide Electrolysis Cells

    SciTech Connect (OSTI)

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  1. HAWC Observatory to study universe's most energetic phenomena

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HAWC Observatory to study universe's most energetic phenomena HAWC Observatory to study universe's most energetic phenomena Inaugural ceremony to mark completion of powerful system to detect gamma rays and cosmic rays March 20, 2015 HAWC Observatory HAWC Observatory to study universe's most energetic phenomena Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email University of Maryland Matthew Wright (30) 405-9267 Email "HAWC will be more than 10

  2. DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for DOE Facilities | Department of Energy Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, provides criteria and guidance for the analysis and design of facility structures, systems, and components (SSCs) that are necessary to

  3. CRAD, Review of Preparedness for Severe Natural Phenomena Events - January

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2013 | Department of Energy Review of Preparedness for Severe Natural Phenomena Events - January 3, 2013 CRAD, Review of Preparedness for Severe Natural Phenomena Events - January 3, 2013 January 3, 2013 Review of Preparedness for Severe Natural Phenomena Events for DOE/NNSA sites and nuclear facilities (HSS CRAD 45-56, Rev. O) The focus of this Criteria Review and Approach* Document (CRAD) is on evaluating processes for identifying emergency response capabilities and maintaining them in

  4. Probing surface & transport phenomena in energy materials under...

    Office of Scientific and Technical Information (OSTI)

    Title: Probing surface & transport phenomena in energy materials under operating conditions. Authors: Chueh, William ; El Gabaly Marquez, Farid ; McCarty, Kevin F. ; McDaniel, ...

  5. Natural Phenomena Hazards Analysis and Design Criteria for DOE...

    Office of Environmental Management (EM)

    to existing hazard category 1, 2, and 3 nuclear facilities, and for 10-year NPH ... of Natural Phenomena Hazards for DOE Nuclear and Non-Nuclear Facilities; ...

  6. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    Soil Structure Interaction Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday, October 22nd Soil Structure Interaction Presentations Presentations for ...

  7. Natural Phenomena Hazard Analysis and Design Criteria for Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-2012, Natural Phenomena Hazard Analysis and Design Criteria for Department of Energy Facilities by Diane Johnson This Department of Energy (DOE) Standard (STD)-1020-2012,...

  8. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

  9. In situ observations and tuning of physical and chemical phenomena...

    Office of Scientific and Technical Information (OSTI)

    on the surfaces of strongly correlated oxides Citation Details In-Document Search Title: In situ observations and tuning of physical and chemical phenomena on the surfaces of ...

  10. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration ... More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary ...

  11. The Adequacy of DOE Natural Phenomena Hazards Performance Goals...

    Office of Environmental Management (EM)

    Adequacy of DOE Natural Phenomena Hazards Performance Goals from an Accident Analysis Perspective Jeff Kimball Defense Nuclear Facilities Safety Board Staff Department of Energy NPH ...

  12. CRAD, Review of Preparedness for Severe Natural Phenomena Events...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    phenomena event occurs that exceeds the design basis of site facilities. This CRAD is intended to ensure that planning, preparedness, and performance expectations identified in ...

  13. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Office of Environmental Management (EM)

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final ...

  14. Transport Phenomena and Interfacial Kinetics in Planar Microfluidic

    Office of Scientific and Technical Information (OSTI)

    Transport Phenomena and Interfacial Kinetics in Planar Microfluidic Membraneless Fuel Cells Abruna, Hector Daniel Cornell University 30 DIRECT ENERGY CONVERSION Our work is...

  15. The Adequacy of DOE Natural Phenomena Hazards Performance Goals...

    Office of Environmental Management (EM)

    Hazards Performance Goals from an Accident Analysis Perspective The Adequacy of DOE Natural Phenomena Hazards Performance Goals from an Accident Analysis Perspective The Adequacy ...

  16. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Broader source: Energy.gov [DOE]

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

  17. Conference on Non-linear Phenomena in Mathematical Physics: Dedicated...

    Office of Scientific and Technical Information (OSTI)

    current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current womens contribution to mathematics. less Authors:...

  18. TALSPEAK Solvent Degradation

    SciTech Connect (OSTI)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  19. Detection of pump degradation

    SciTech Connect (OSTI)

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  20. Conceptual Framework to Enable Early Warning of Relevant Phenomena (Emerging Phenomena and Big Data)

    SciTech Connect (OSTI)

    Schlicher, Bob G; Abercrombie, Robert K; Hively, Lee M

    2013-01-01

    Graphs are commonly used to represent natural and man-made dynamic systems such as food webs, economic and social networks, gene regulation, and the internet. We describe a conceptual framework to enable early warning of relevant phenomena that is based on an artificial time-based, evolving network graph that can give rise to one or more recognizable structures. We propose to quantify the dynamics using the method of delays through Takens Theorem to produce another graph we call the Phase Graph. The Phase Graph enables us to quantify changes of the system that form a topology in phase space. Our proposed method is unique because it is based on dynamic system analysis that incorporates Takens Theorem, Graph Theory, and Franzosi-Pettini (F-P) theorem about topology and phase transitions. The F-P Theorem states that the necessary condition for phase transition is a change in the topology. By detecting a change in the topology that we represent as a set of M-order Phase Graphs, we conclude a corresponding change in the phase of the system. The onset of this phase change enables early warning of emerging relevant phenomena.

  1. Method of microbially degrading trinitrotoluene

    DOE Patents [OSTI]

    Tyndall, R.L.; Vass, A.

    1996-11-26

    A method of degrading trinitrotoluene (TNT) includes contacting the TNT with intra-amoebic isolate CR-1, ATCC 75528.

  2. Self-degradable Temporary Cementitious

    Office of Energy Efficiency and Renewable Energy (EERE)

    Self-degradable Temporary Cementitious presentation at the April 2013 peer review meeting held in Denver, Colorado.

  3. Method of microbially degrading trinitrotoluene

    DOE Patents [OSTI]

    Tyndall, Richard L.; Vass, Arpad

    1996-01-01

    A method of degrading trinitrotoluene (TNT) includes contacting the TNT with intra-amoebic isolate CR-1, ATCC 75528.

  4. Modeling mesoscopic phenomena in extended dynamical systems

    SciTech Connect (OSTI)

    Bishop, A.; Lomdahl, P.; Jensen, N.G.; Cai, D.S. [Los Alamos National Lab., NM (United States); Mertenz, F. [Bayreuth Univ. (Germany); Konno, Hidetoshi [Tsukuba Univ., Ibaraki (Japan); Salkola, M. [Stanford Univ., CA (United States)

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). We have obtained classes of nonlinear solutions on curved geometries that demonstrate a novel interplay between topology and geometric frustration relevant for nanoscale systems. We have analyzed the nature and stability of localized oscillatory nonlinear excitations (multi-phonon bound states) on discrete nonlinear chains, including demonstrations of successful perturbation theories, existence of quasiperiodic excitations, response to external statistical time-dependent fields and point impurities, robustness in the presence of quantum fluctuations, and effects of boundary conditions. We have demonstrated multi-timescale effects for nonlinear Schroedinger descriptions and shown the success of memory function approaches for going beyond these approximations. In addition we have developed a generalized rate-equation framework that allows analysis of the important creation/annihilation processes in driven nonlinear, nonequilibiium systems.

  5. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    ANS Standards to Support DOE NPH Design Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants? Review of Natural Phenomena Hazards (NPH)...

  6. Resistive switching phenomena: A review of statistical physics...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Resistive switching phenomena: A review of ... Export Metadata Endnote Excel CSV XML Save to My Library Send to Email Send to Email ...

  7. Degradative and Morphological Characterization of POSS Modified...

    Office of Scientific and Technical Information (OSTI)

    Degradative and Morphological Characterization of POSS Modified Nanohybrid Polyurethane Elastomers Citation Details In-Document Search Title: Degradative and Morphological ...

  8. Durability Improvements Through Degradation Mechanism Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Modeling * Fundamental degradation mechanisms (LBNL) * Individual degradation models - kineticrate based (ANL) * Integrated comprehensive model (ANL) Characterization Methods to ...

  9. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday, October

    Office of Environmental Management (EM)

    22nd Session Presentations | Department of Energy Session Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday, October 22nd Session Presentations Presentations from the October 2014 Natural Phenomena Hazards Meeting - Wednesday, October 22nd Session Presentations Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile State of Practice Approaches in Geomorphology, Geochronology and Probabilistic Analyses for Addressing Fault Capability at

  10. NOx Adsorber Regeneration Phenomena In Heavy Duty Applications | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Adsorber Regeneration Phenomena In Heavy Duty Applications NOx Adsorber Regeneration Phenomena In Heavy Duty Applications 2003 DEER Conference Presentation: Oak Ridge National Laboratory 2003_deer_west.pdf (197.06 KB) More Documents & Publications Fuel-Borne Reductants for NOx Aftertreatment: Preliminary EtOH SCR Study Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report APBF-DEC Heavy Duty NOx Adsorber/DPF Project: Heavy Duty Linehaul Platform Project

  11. Natural Phenomena Hazards (NPH) Meeting - October 2011 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 1 Natural Phenomena Hazards (NPH) Meeting - October 2011 On October 25-26, 2011, the DOE Chief of Nuclear Safety (CNS) hosted a Natural Phenomena Hazards (NPH) working meeting in Germantown, Maryland. The meeting brought together approximately 80 experts involved in the characterization of, and mitigation against, natural hazards that can impact critical facilities. The meeting was valuable for sharing and discussing research in NPH analysis and mitigation, as well as best practices

  12. Natural Phenomena Hazards (NPH) Program - Guidelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NPH) Program - Guidelines Natural Phenomena Hazards (NPH) Program - Guidelines Current Natural Phenomena Hazards Program requirements of the Department reside in the documents listed below separated out by Federal Government Wide Requirements to Primary Department of Energy Documents. Key industry consensus standards and guidance documents are also listed below for reference. Federal Government-wide Requirements Public Law 101-614 Executive Order 12941 Primary DOE Requirements Documents 10

  13. Thermal battery degradation mechanisms

    SciTech Connect (OSTI)

    Missert, Nancy A.; Brunke, Lyle Brent

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  14. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    SciTech Connect (OSTI)

    Corwin, William R; Ballinger, R.; Majumdar, S.; Weaver, K. D.

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  15. Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report

    SciTech Connect (OSTI)

    Mark Holbrook

    2007-07-01

    Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

  16. Deep Data Analysis of Conductive Phenomena on Complex Oxide Interfaces: Physics from Data Mining

    SciTech Connect (OSTI)

    Strelcov, Evgheni; Belianinov, Alex; Hsieh, Ying-Hui; Jesse, Stephen; Baddorf, Arthur P; Chu, Ying Hao; Kalinin, Sergei V

    2014-01-01

    Spatial variability of electronic transport in BiFeO3-CoFe2O4 (BFO-CFO) self-assembled heterostructures is explored using spatially resolved first order reversal curve (FORC) current voltage (IV) mapping. Multivariate statistical analysis of FORC-IV data classifies statistically significant behaviors and maps characteristic responses spatially. In particular, regions of grain, matrix, and grain boundary responses are clearly identified. K-means and Bayesian demixing analysis suggests the characteristic response be separated into four components, with hysteretic type behavior localized at the BFO-CFO tubular interfaces. The conditions under which Bayesian components allow direct physical interpretation are explored, and transport mechanisms at the grain boundaries and individual phases are analyzed. This approach conjoins multivariate statistical analysis with physics-based interpretation, actualizing a robust, universal, data driven approach to problem solving, which can be applied to exploration of local transport and other functional phenomena in other spatially inhomogeneous systems.

  17. RELAP5-3D Code Validation for RBMK Phenomena

    SciTech Connect (OSTI)

    Fisher, James Ebberly

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  18. RELAP5-3D code validation for RBMK phenomena

    SciTech Connect (OSTI)

    Fisher, J.E.

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  19. Local Toolkit

    Energy Science and Technology Software Center (OSTI)

    2007-05-31

    The LOCAL Toolkit contains tools and libraries developed under the LLNL LOCAL LDRD project for managing and processing large unstructured data sets primrily from parallel numerical simulations, such as triangular, tetrahedral, and hexahedral meshes, point sets, and graphs. The tools have three main functionalities: cache-coherent, linear ordering of multidimensional data; lossy and lossless data compression optimized for different data types; and an out-of-core streaming I/O library with simple processing modules for unstructed data.

  20. Local Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local Information Local Information Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. Contacts Director Misa Cowee Email Administrative Assistant Lynea Koshar Email Request more information Email Housing, transportation Every year several hundred students come to Los Alamos to work and live here. Housing can get quite scarce, and options will be more expensive and less attractive than you expect

  1. Performance Degradation of LSCF Cathodes

    SciTech Connect (OSTI)

    Alinger, Matthew

    2013-09-30

    This final report summarizes the progress made during the October 1, 2008 - September 30, 2013 period under Cooperative Agreement DE-NT0004109 for the U. S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled “Performance Degradation of LSCF Cathodes”. The primary objective of this program is to develop a performance degradation mitigation path for high performing, cost-effective solid oxide fuel cells (SOFCs). Strategies to mitigate performance degradation are developed and implemented. In addition, thermal spray manufacturing of SOFCs is explored. Combined, this work establishes a basis for cost-effective SOFC cells.

  2. Recent LEP2 results on searches for new phenomena

    SciTech Connect (OSTI)

    Pan Yibin

    1998-05-29

    Recent results of searches for supersymmetric particles, Higgs bosons, and other new phenomena at LEP2 are summarized. These results are based on data and analyses from the four LEP experiments: ALEPH, DELPHI, L3, and OPAL. The data were collected during the summer and fall of 1996 with center-of-mass energies of 161 and 172 GeV.

  3. New Phenomena in NC Field Theory and Emergent Spacetime Geometry

    SciTech Connect (OSTI)

    Ydri, Badis

    2010-10-31

    We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar {phi}{sup 4} field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at {theta} = 0 there must exist a novel fixed point at {theta} = {infinity} corresponding to the quartic hermitian matrix model.

  4. October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Soil Structure Interaction Presentations

    Broader source: Energy.gov [DOE]

    Presentations for the Soil Structure Interaction session at the October 2014 Natural Phenomena Hazards (NPH) Meeting.

  5. October 2014 Natural Phenomena Hazards (NPH) Meeting- Tuesday, October 21st Session Presentations

    Broader source: Energy.gov [DOE]

    Presentations from the October 2014 Natural Phenomena Hazards Meeting - Tuesday, October 21st Session

  6. Search for Higgs and new phenomena at colliders

    SciTech Connect (OSTI)

    Lammel, Stephan; /Fermilab

    2006-01-01

    The present status of searches for the Higgs boson(s) and new phenomena is reviewed. The focus is on analyses and results from the current runs of the HERA and Tevatron experiments. The LEP experiments have released their final combined MSSM Higgs results for this conference. Also included are results from sensitivity studies of the LHC experiments and lepton flavor violating searches from the B factories, KEKB and PEP-II.

  7. Structure for identifying, locating and quantifying physical phenomena

    DOE Patents [OSTI]

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  8. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  9. DOE Standard Natural Phenomena Hazards Site Characterization Criteria

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-94 March 1994 Change Notice No. 1 January 1996 Reaffirmed with Errata April 2002 DOE STANDARD NATURAL PHENOMENA HAZARDS SITE CHARACTERIZATION CRITERIA U.S. Department of Energy AREA FACR Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Environment Safety and Health Technical Information Services, U.S. Department of

  10. 8th International symposium on transport phenomena in combustion

    SciTech Connect (OSTI)

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  11. Natural phenomena evaluations of the K-25 site UF{sub 6} cylinder storage yards

    SciTech Connect (OSTI)

    Fricke, K.E.

    1996-09-15

    The K-25 Site UF{sub 6} cylinder storage yards are used for the temporary storage of UF{sub 6} normal assay cylinders and long-term storage of other UF{sub 6} cylinders. The K-25 Site UF{sub 6} cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF{sub 6} cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF{sub 6}, one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs.

  12. Natural Phenomena Hazards Modeling Project: Preliminary flood hazards estimates for screening Department of Energy sites, Albuquerque Operations Office

    SciTech Connect (OSTI)

    McCann, M.W. Jr.; Boissonnade, A.C.

    1988-05-01

    As part of an ongoing program, Lawrence Livermore National Laboratory (LLNL) is directing the Natural Phenomena Hazards Modeling Project (NPHMP) on behalf of the Department of Energy (DOE). A major part of this effort is the development of probabilistic definitions of natural phenomena hazards; seismic, wind, and flood. In this report the first phase of the evaluation of flood hazards at DOE sites is described. Unlike seismic and wind events, floods may not present a significant threat to the operations of all DOE sites. For example, at some sites physical circumstances may exist that effectively preclude the occurrence of flooding. As a result, consideration of flood hazards may not be required as part of the site design basis. In this case it is not necessary to perform a detailed flood hazard study at all DOE sites, such as those conducted for other natural phenomena hazards, seismic and wind. The scope of the preliminary flood hazard analysis is restricted to evaluating the flood hazards that may exist in proximity to a site. The analysis does involve an assessment of the potential encroachment of flooding on-site at individual facility locations. However, the preliminary flood hazard assessment does not consider localized flooding at a site due to precipitation (i.e., local run-off, storm sewer capacity, roof drainage). These issues are reserved for consideration by the DOE site manager. 11 refs., 84 figs., 61 tabs.

  13. Local Universities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universities Local Universities Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. Contact Us dualcareers@lanl.gov The listing of schools, colleges and universities in New Mexico is organized by region. Northern New Mexico Area Espanola Public Schools District (K-12) Los Alamos Public Schools McCurdy Charter School New Mexico School for the Deaf Northern New Mexico Community College Pojoaque Valley Schools

  14. LINKoln Locale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TEAM LINKoln U.S. DEPARTMENT OF ENERGY RACE TO ZERO STUDENT DESIGN COMPETITION LINKoln Locale TEAM INTRODUCTION 22 students 8 majors 1 university 2 INTRODUCTION TEAM STRUCTURE 3 INTRODUCTION OBJECTIVES PROJECT SUMMARY OVERVIEW Deep energy retrofit Existing Student Housing Multi-family 4 INTRODUCTION PROJECT LOCATION 5 Urbana, IL Climate Zone: 5B DESIGN GOALS & PROJECT CONTEXT PROJECT LOCATION 6 DESIGN GOALS & PROJECT CONTEXT WHY RETROFIT? 7 DESIGN GOALS & PROJECT CONTEXT 82.0% Single

  15. Clad Degradation - FEPs Screening Arguments

    SciTech Connect (OSTI)

    E. Siegmann

    2004-03-17

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796]).

  16. Visualization of atomic-scale phenomena in superconductors: application to FeSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Choubey, Peayush; Berlijn, Tom; Kreisel, Andreas; Cao, Chao; Hirschfeld, Peter J.

    2014-10-31

    Here we propose a simple method of calculating inhomogeneous, atomic-scale phenomena in superconductors which makes use of the wave function information traditionally discarded in the construction of tight-binding models used in the Bogoliubov-de Gennes equations. The method uses symmetry- based first principles Wannier functions to visualize the effects of superconducting pairing on the distribution of electronic states over atoms within a crystal unit cell. Local symmetries lower than the global lattice symmetry can thus be exhibited as well, rendering theoretical comparisons with scanning tunneling spectroscopy data much more useful. As a simple example, we discuss the geometric dimer states observedmore » near defects in superconducting FeSe.« less

  17. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    SciTech Connect (OSTI)

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  18. Methods of degrading napalm B

    DOE Patents [OSTI]

    Tyndall, R.L.; Vass, A.

    1995-09-12

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates are deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  19. Methods of degrading napalm B

    DOE Patents [OSTI]

    Tyndall, Richard L.; Vass, Arpad

    1995-01-01

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates include is deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  20. Modelling transport phenomena in a multi-physics context

    SciTech Connect (OSTI)

    Marra, Francesco

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  1. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

    2010-06-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INLs test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems

  2. Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX...

    Office of Scientific and Technical Information (OSTI)

    Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX Citation Details In-Document Search Title: Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX A variety ...

  3. CRAD, Review of Preparedness for Severe Natural Phenomena Events- August 21, 2012

    Broader source: Energy.gov [DOE]

    Review of Preparedness for Severe Natural Phenomena Events at the Savannah River Site Tritium Facility (HSS CRAD 45-54)

  4. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdeljawad, Fadi; Foiles, Stephen M.

    2016-05-04

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less

  5. Degradation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opened cryostat 5 LBNE Optical System photon detection paddle PMT 10 paddles per APA plane Long light guiding acrylic bars between wireplanes 6 or SiPM 7 8 9 Impurities...

  6. Fungal degradation of organophosphorous insecticides

    SciTech Connect (OSTI)

    Bumpus, J.A.; Kakar, S.N.; Coleman, R.D.

    1992-07-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  7. Fungal degradation of organophosphorous insecticides

    SciTech Connect (OSTI)

    Bumpus, J.A. ); Kakar, S.N.; Coleman, R.D. )

    1992-01-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  8. Methods for degrading lignocellulosic materials

    DOE Patents [OSTI]

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2008-04-08

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  9. Methods for degrading lignocellulosic materials

    DOE Patents [OSTI]

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2011-05-17

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  10. PEM Degradation Investigation Final Technical Report

    SciTech Connect (OSTI)

    Dan Stevenson; Lee H Spangler

    2010-10-18

    This project conducted fundamental studies of PEM MEA degradation. Insights gained from these studies were disseminated to assist MEA manufacturers in understanding degradation mechanisms and work towards DOE 2010 fuel cell durability targets.

  11. Used Fuel Degradation: Experimental and Modeling Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The report describes the strategy for coupling process level models to produce an integrated Used Fuel Degradation Model (FDM), and addresses fractional degradation rate, instant release fractions, other continuum modeling approaches, and experimental support.

  12. Anderson localization of partially incoherent light

    SciTech Connect (OSTI)

    Capeta, D.; Radic, J.; Buljan, H.; Szameit, A.; Segev, M.

    2011-07-15

    We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems), any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior of the incoherent beam is similar to that of a single instantaneous coherent realization of the beam.

  13. Experimental Studies of Light Emission Phenomena in Superconducting RF Cavitites

    SciTech Connect (OSTI)

    Anthony, P.L.; Delayen, J.R.; Fryberger, D.; Goree, W.S.; Mammosser, J.; Szalata, Z.M.; II, J.G.Weisend /SLAC

    2009-08-04

    Experimental studies of light emission phenomena in superconducting RF cavities, which we categorize under the general heading of cavity lights, are described. The cavity lights data, which were obtained using a small CCD video camera, were collected in a series of nine experimental runs ranging from {approx} 1/2 to {approx} 2 h in duration. The video data were recorded on a standard VHS tape. As the runs progressed, additional instrumentation was added. For the last three runs a LabVIEW controlled data acquisition system was included. These runs furnish evidence for several, possibly related, light emission phenomena. The most intriguing of these is what appear to be small luminous objects {le} 1.5 mm in size, freely moving about in the vacuum space, generally without wall contact, as verified by reflections of the tracks in the cavity walls. In addition, on a number of occasions, these objects were observed to bounce off of the cavity walls. The wall-bounce aspect of most of these events was clearly confirmed by pre-bounce and post-bounce reflections concurrent with the tracks. In one of the later runs, a mode of behavior was observed that was qualitatively different from anything observed in the earlier runs. Perhaps the most perplexing aspect of this new mode was the observation of as many as seven luminous objects arrayed in what might be described as a macromolecular formation, coherently moving about in the interior of the cavity for extended periods of time, evidently without any wall contact. It is suggested that these mobile luminous objects are without explanation within the realm of established physics. Some remarks about more exotic theoretical possibilities are made, and future plans are discussed.

  14. Quantum Locality?

    SciTech Connect (OSTI)

    Stapp, Henry

    2011-11-10

    not upset the proof in question. It is show here in detail why the precise statement of this theorem justifies the specified application of CQT. It is also shown, in response to his challenge, why a putative proof of locality that he has proposed is not valid.

  15. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect (OSTI)

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  16. Research subjects for analytical estimation of core degradation at Fukushima-Daiichi nuclear power plant

    SciTech Connect (OSTI)

    Nagase, F.; Ishikawa, J.; Kurata, M.; Yoshida, H.; Kaji, Y.; Shibamoto, Y.; Amaya, M; Okumura, K.; Katsuyama, J.

    2013-07-01

    Estimation of the accident progress and status inside the pressure vessels (RPV) and primary containment vessels (PCV) is required for appropriate conductance of decommissioning in the Fukushima-Daiichi NPP. For that, it is necessary to obtain additional experimental data and revised models for the estimation using computer codes with increased accuracies. The Japan Atomic Energy Agency (JAEA) has selected phenomena to be reviewed and developed, considering previously obtained information, conditions specific to the Fukushima-Daiichi NPP accident, and recent progress of experimental and analytical technologies. As a result, research and development items have been picked up in terms of thermal-hydraulic behavior in the RPV and PCV, progression of fuel bundle degradation, failure of the lower head of RPV, and analysis of the accident. This paper introduces the selected phenomena to be reviewed and developed, research plans and recent results from the JAEA's corresponding research programs. (authors)

  17. PROJECT PROFILE: Degradation Assessment of Fielded CIGS Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Assessment of Fielded CIGS Photovoltaic Module Technologies PROJECT PROFILE: Degradation Assessment of Fielded CIGS Photovoltaic Module Technologies Funding ...

  18. Waste Form Degradation Model Integration for Engineered Materials...

    Office of Environmental Management (EM)

    Waste Form Degradation Model Integration for Engineered Materials Performance Waste Form Degradation Model Integration for Engineered Materials Performance The collaborative ...

  19. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect (OSTI)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  20. Kinetic theory of nonlinear transport phenomena in complex plasmas

    SciTech Connect (OSTI)

    Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

    2013-03-15

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  1. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    SciTech Connect (OSTI)

    R. Schreiner

    2004-10-21

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database.

  2. Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook Mark Blackburn P.E. Office of Nuclear Facility Safety Programs AU, 32 October 21, 2014 Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook (267.25 KB) More Documents & Publications Application of Engineering and Technical Requirements for DOE Nuclear Facilities Standard Review Plan

  3. CRAD, Targeted Review of Site Preparedness for Severe Natural Phenomena Events- November 17, 2011

    Broader source: Energy.gov [DOE]

    Emergency Management Program Inspection Criteria, Approach, and Lines of Inquiry - Targeted Review of Site Preparedness for Severe Natural Phenomena Events (HSS CRAD 45-51, Rev. 0)

  4. Thermal Degradation Behavior of Siloxane Elastomer Impregnated...

    Office of Scientific and Technical Information (OSTI)

    Impregnated Carbon Nanotube Areogel Networks Citation Details In-Document Search Title: Thermal Degradation Behavior of Siloxane Elastomer Impregnated Carbon Nanotube Areogel ...

  5. Photovoltaic Degradation Rates -- An Analytical Review: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Degradation Rates - An Analytical Review Dirk C. Jordan and Sarah R. Kurtz To ... Abstract As photovoltaic penetration of the power grid increases, accurate predictions of ...

  6. Degradation Mechanisms and Development of Protective Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment ...

  7. Degradation Mechanisms of Urea Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction Materials

  8. electrochemical battery stress-induced degradation mechanisms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electrochemical battery stress-induced degradation mechanisms - Sandia Energy Energy ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  9. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  10. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  11. Thermocapillary and arc phenomena in stainless steel welding

    SciTech Connect (OSTI)

    Pierce, S.W.; Olson, D.L.; Burgardt, P.

    1999-02-01

    This investigation characterized the effects of power level and Gaussian heat source size on thermocapillary-induced weld shape and estimated the relative influence of various possible arc phenomena in determining weld shape. Welds made with the CTAW process were compared with similar ones made with a conduction-mode EBW process and the differences were related to arc effects. Evidence of thermocapillary flow was readily apparent in both the GTA welds and the conduction-mode EB welds and was qualitatively similar in both. The similarity between the results obtained with the two processes serves to demonstrate that thermocapillary convection is the dominant factor in heat-to-heat weld shape variability. However, a similar one-to-one correspondence between welds produced with the two processes does not exist. Especially at high power, the EB welds showed stronger thermocapillary convection than the GTA welds. One important arc factor that limits thermocapillary flow in ar welds appears to be an increase in arc size with arc length and arc current. A non-Gaussian arc power distribution in GTAW seems to be most important in limiting the fluid flow. Apparently, the arc power distribution is more nearly rectangular in shape for an argon gas arc. At higher currents, above 200 A, plasma shear force may also be an important contributor to weld shape development. The conduction-mode EB welds demonstrate that thermocapillary flow reversal probably does not occur in welds made with a simple Gaussian heat source. The complex shape behavior is likely a result of an arc effect such as plasma shear.

  12. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    SciTech Connect (OSTI)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3) Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method

  13. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 1: Main Report

    SciTech Connect (OSTI)

    Ball, Sydney J

    2008-03-01

    A phenomena identification and ranking table (PIRT) process was conducted for the Next Generation Nuclear Plant (NGNP) design. This design (in the conceptual stage) is a modular high-temperature gas-cooled reactor (HTGR) that generates both electricity and process heat for hydrogen production. Expert panels identified safety-relevant phenomena, ranked their importance, and assessed the knowledge levels in the areas of accidents and thermal fluids, fission-product transport and dose, high-temperature materials, graphite, and process heat for hydrogen production. This main report summarizes and documents the process and scope of the reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings of the phenomena, plus a summary of each panel's findings, are presented. Individual panel reports for these areas are provided as attached volumes to this main report and provide considerably more detail about each panel's deliberations as well as a more complete listing of the phenomena that were evaluated.

  14. Modeling of transport phenomena in tokamak plasmas with neural networks

    SciTech Connect (OSTI)

    Meneghini, O.; Luna, C. J.; Smith, S. P.; Lao, L. L.

    2014-06-15

    A new transport model that uses neural networks (NNs) to yield electron and ion heat flux profiles has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest fidelity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport profiles. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range of plasma regimes. Although each radial location is calculated independently from the others, the heat flux profiles are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-defined, non-stochastic relationship between the input parameters and the experimentally measured transport fluxes. The numerical efficiency of this method, requiring only a few CPU-?s per data point, makes it ideal for scenario development simulations and real-time plasma control.

  15. Resources for Local Policymakers

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to local policymakers, organized by topic.

  16. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam; Belianinov, Alex; Somnath, Suhas

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study

  17. Unraveling the physics of nanofluidic phenomena at the single-molecule level

    SciTech Connect (OSTI)

    Fornasiero, Francesco

    2015-10-13

    Despite groundbreaking potential in a broad application space, several nanofluidic phenomena remain poorly understood. Toward advancing the understanding of fluid behavior under nanoscale confinement, we developed a novel, ideal platform for fundamental molecular transport studies, in which the fluidic channel is a single carbon nanotube (CNT). CNTs offer the advantage of simple chemistry and structure, which can be synthetically tuned with nanometer precision and accurately modeled. With combined experimental and computational approaches, we demonstrated that CNT pores with 1-5 nm diameters conduct giant ionic currents that follow an unusual sublinear electrolyte concentration dependence. The large magnitude of the ionic conductance appears to originate from a strong electro-osmotic flow in smooth CNT pores. First-principle simulations suggest that electro-osmotic flow arises from localized negative polarization charges on carbon atoms near a potassium (K+) ion and from the strong cation-graphitic wall interactions, which drive K+ ions much closer to the wall than chlorides (Cl-). Single-molecule translocation studies reveal that charged molecules may be distinguished from neutral species on the basis of the sign of the transient current change during their passage through the nanopore. Together with shedding light on a few controversial questions in the CNT nanofluidics area, these results may benefit LLNL’s Security Mission by providing the foundation for the development of advanced single-molecule detection system for bio/chem/explosive analytes. In addition, these experimental and computational platforms can be applied to advance fundamental knowledge in other fields, from energy storage and membrane separation to superfluid physics.

  18. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    SciTech Connect (OSTI)

    Zhai, Yuhu; Calzolaio, Ciro; Senatore, Carmine

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  19. [Research in two-dimensional critical phenomena and conformal field theory]. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    A very theoretical description is given of research in two- dimensional critical phenomena and conformal field theory. Major progress is reported in the field of fluctuating two-dimensional surfaces. A discretized representation of fluctuating geometry is used where surfaces are represented by triangulations; continuum surfaces are recovered by taking the size of the triangles to zero. One of the central goals of the theory of critical phenomena is to find all possible universality classes of n-dimensional critical phenomena; this goal has been translated into the problem of clasifying all possible scale-invariant euclidean quantum field theories. (RWR)

  20. Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site

    SciTech Connect (OSTI)

    Snow, Robert L.; Ross, Steven B.

    2011-09-15

    The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).

  1. Method of degrading pollutants in soil

    DOE Patents [OSTI]

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  2. Method of degrading pollutants in soil

    DOE Patents [OSTI]

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  3. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  4. Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)

    SciTech Connect (OSTI)

    Jordan, D.; Kurtz, S.; Hansen, C.

    2014-04-01

    Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.

  5. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Toward Local Failure Local Recovery (LFLR) Resilience Model Using MPI-ULFM. Citation Details In-Document Search Title: Toward Local Failure Local Recovery (LFLR) Resilience Model ...

  6. Service water system failures and degradations

    SciTech Connect (OSTI)

    Lam, P.; Leeds, E.

    1989-01-01

    The Office for Analysis and Evaluation of Operational Data (AEOD) of the U.S. Nuclear Regulatory Commission (NRC) has completed a comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes and have adverse impact on a large number of safety-related systems and components that are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core-cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units.

  7. In-situ characterization and diagnostics of mechanical degradation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-situ characterization and diagnostics of mechanical degradation in electrodes In-situ characterization and diagnostics of mechanical degradation in electrodes 2011 DOE Hydrogen ...

  8. Degradation and (de)lithiation processes in the high capacity...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Degradation and (de)lithiation processes in the high capacity battery material LiFeBOsubscript 3 Citation Details In-Document Search Title: Degradation and ...

  9. The Science of Battery Degradation. (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    The Science of Battery Degradation. Citation Details In-Document Search Title: The Science of Battery Degradation. This report documents work that was performed under the ...

  10. Encapsulant-based Solution to Potential Induced Degradation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic Modules Encapsulant-based Solution to Potential Induced Degradation of Photovoltaic Modules Presented at ...

  11. Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered by In-Situ Scanning ... to evaluate stability and degradation in battery electrolytes Developed a rapid method ...

  12. Roles of Small Laccases from Streptomyces in Lignin Degradation...

    Office of Scientific and Technical Information (OSTI)

    Roles of Small Laccases from Streptomyces in Lignin Degradation Citation Details In-Document Search Title: Roles of Small Laccases from Streptomyces in Lignin Degradation Authors: ...

  13. Key Parameters Affecting DPF Performance Degradation and Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy ...

  14. Potential Induced Degradation (PID) Tests for Commercially Available...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Presented at the PV ...

  15. Call for Papers for October 2016 DOE Natural Phenomena Hazards (NPH) Meeting

    Broader source: Energy.gov [DOE]

    The document below is an announcement and call for discussion topics for the 2016 DOE Natural Phenomena Hazards (NPH) technical meeting. The meeting will be held October 18-19, 2016, in Germantown MD.

  16. Depth-dependent ordering, two-length-scale phenomena, and crossover...

    Office of Scientific and Technical Information (OSTI)

    a skin layer with defects Citation Details In-Document Search Title: Depth-dependent ordering, two-length-scale phenomena, and crossover behavior in a crystal featuring a skin ...

  17. [open quotes]Abnormal[close quotes] nuclear phenomena and possible nuclear process

    SciTech Connect (OSTI)

    Jiefu Yang; Dexiu Chen; Guanghui Zhou; Qiangsheng Wu; Jianping Huang; Lijun Tang; Xiaomei Cheng; Dongzhu Xie; Liming Gu )

    1994-03-01

    A careful study of [open quotes]abnormal[close quotes] nuclear phenomena in a cold fusion experiment indicates that cold fusion is a new problem in ultralow energy, and one cannot use the traditional idea of deuteron-deuteron fusion to understand and appraise cold fusion. The contradiction between the new phenomena and traditional theory is analyzed, and a possible new nuclear process is suggested. 8 refs., 2 figs., 1 tab.

  18. State-of-the Art Simulations of Liquid Phenomena | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility The surface affinity of ions in aqueous solution can have a profound effect on the chemistry in a range of atmospheric phenomena. Credit: Spencer R. Pruitt, Argonne National Laboratory State-of-the Art Simulations of Liquid Phenomena PI Name: Mark Gordon PI Email: mark@si.msg.chem.iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 200 Million Year: 2015 Research Domain: Materials Science This project will study liquid

  19. Natural Phenomena Hazard Analysis and Design Criteria for Department of Energy Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-08-03

    This Department of Energy (DOE) Standard (STD)-1020-2012, Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, provides criteria and guidance for the analysis and design of facility structures, systems, and components (SSCs) that are necessary to implement the requirements of DOE Order (O) 420.1C, Facility Safety, and to ensure that the SSCs will be able to effectively perform their intended safety functions under the effects of natural phenomena hazards (NPHs).

  20. Final Report Inspection of Aged/Degraded Containments Program.

    SciTech Connect (OSTI)

    Naus, Dan J; Ellingwood, B R; Oland, C Barry

    2005-09-01

    The Inspection of Aged/Degraded Containments Program had primary objectives of (1) understanding the significant factors relating corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and liners of reinforced concrete containments; (2) providing the United States Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments, and concrete containments as limited by liner integrity; (3) providing recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation; and (4) providing technical assistance to the USNRC (as requested) related to concrete technology. Primary program accomplishments have included development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of high-frequency acoustic imaging, magnetostrictive sensor, electromagnetic acoustic transducer, and multimode guided plate wave technologies for inspection of inaccessible regions of containment metallic pressure boundaries; development of a continuum damage mechanics-based approach for structural deterioration; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion. In addition, data and information assembled under this program has been transferred to the technical community through review meetings and briefings, national and international conference participation, technical committee involvement, and publications of reports and journal articles. Appendix A provides a listing of program reports, papers, and publications; and Appendix B contains a listing of

  1. Self-degradable Cementitious Sealing Materials

    SciTech Connect (OSTI)

    Sugama, T.; Butcher, T., Lance Brothers, Bour, D.

    2010-10-01

    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final

  2. PEM Degradation Investigation Final Technical Report

    SciTech Connect (OSTI)

    Dan Stevenson; Lee H Spangler

    2007-11-02

    The objectives of this paper are: (1) Develop a system capable of measuring current and voltage performance for each membrane in a Polymer Electrolyte Membranes (PEM) fuel cell stack and record the performance of each individual cell; (2) Develop a single cell PEM FC to allow in situ synchrotron x-ray measurements of the cell in operation and to perform spatially resolved x-ray measurements on fuel cell elements before and after degradation; and (3) Perform initial magnetic resonance microimaging experiments on membrane materials. The Montana State University PEM Membrane Degradation program is geared towards determining how and why membranes in fuel cells degrade and fail. By monitoring every individual membrane in a fuel cell 2000 times/sec while the cell is subjected to real-world type use, we hope to: (1) cause the types of degradation users see, but in a controlled environment; (2) determine an electrical signature that will identify what causes failure, or at least warns of impending failure; (3) allows us to perform advanced x-ray and MRI characterization of the degraded membranes to provide information that may result in improvements of the membrane material; and (4) perhaps allow design of electronic control systems that will prevent fuel cells from operating under conditions where damage is likely to occur.

  3. New Method to Characterize Degradation of First Surface Aluminum Reflectors: Preprint

    SciTech Connect (OSTI)

    Sutter, F.; Heller, P.; Meyen, S.; Pitz-Paal, R.; Kennedy, C.; Fernandez-Garcia, A.; Schmucker, M.

    2010-10-01

    This paper reports the development of a new optical instrument capable of characterizing the aging process of enhanced first surface aluminum reflectors for concentrating solar power (CSP) application. Samples were exposed outdoors at different sites and in accelerated exposure tests. All samples exposed outdoors showed localized corrosion spots. Degradation originated from points of damage in the protective coating, but propagated underneath the protective coating. The degraded samples were analyzed with a microscope and with a newly designed space-resolved specular reflectometer (SR)2 that is capable of optically detecting and characterizing the corrosion spots. The device measures the specular reflectance at three acceptance angles and the wavelengths with spatial resolution using a digital camera's CMOS sensor. It can be used to measure the corrosion growth rate during outdoor and accelerated exposure tests. These results will allow a correlation between the degraded mirror surface and its specular reflectance.

  4. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  5. Polymer scaffold degradation control via chemical control

    DOE Patents [OSTI]

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  6. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    SciTech Connect (OSTI)

    J. CUNNANE

    2004-11-19

    Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an ''upper-limit'' (i

  7. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    SciTech Connect (OSTI)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  8. Method of restoring degraded solar cells

    DOE Patents [OSTI]

    Staebler, David L.

    1983-01-01

    Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200.degree. C. for at least 30 minutes restores their efficiency.

  9. Method of restoring degraded solar cells

    DOE Patents [OSTI]

    Staebler, D.L.

    1983-02-01

    Amorphous silicon solar cells have been shown to have efficiencies which degrade as a result of long exposure to light. Annealing such cells in air at a temperature of about 200 C for at least 30 minutes restores their efficiency. 2 figs.

  10. Overview of Field Experience - Degradation Rates & Lifetimes

    SciTech Connect (OSTI)

    Jordan, Dirk; Kurtz, Sarah

    2015-09-14

    The way a PV module fails may depend not only on its design and the materials used in its construction, but also on the weather it experiences, the way it is mounted, and the quality control during its manufacture. This presentation gives an overview of Field Experience - what degradation rates and what lifetimes are being observed in various regions.

  11. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  12. Process for degrading hypochlorite and sodium hypochlorite

    DOE Patents [OSTI]

    Huxtable, William P.; Griffith, William L.; Compere, Alicia L.

    1990-01-01

    A process for degrading hypochlorite waste and lithium hypochlorite solutions uses a cobalt oxide/molybdenum oxide catalyst formed from about 1-10 w/w % cobalt oxide and 1-15 w/w % molybdenum oxide disposed on a suitable substrate. The major advantage of the catalyst lies in its high degree of effectiveness and its very low cost.

  13. Analysis of thermally-degrading, confined HMX

    SciTech Connect (OSTI)

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  14. State and Local Incentives

    Broader source: Energy.gov [DOE]

    To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs.

  15. Mesoscopic modeling of multi-physicochemical transport phenomena in porous media

    SciTech Connect (OSTI)

    Kang, Qinjin; Wang, Moran; Mukherjee, Partha P; Lichtner, Peter C

    2009-01-01

    We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.

  16. Fundamental investigation of Duct/ESP phenomena: 1. 7 MW pilot parametric testing results

    SciTech Connect (OSTI)

    McGuire, L.M.; Brown, C.A.

    1991-07-22

    Radian Corporation was contracted to investigate duct injection and electrostatic precipitator phenomena in a 1.7-MW pilot plant constructed for this test program. This study was an attempt to resolve previous problems and to answer remaining questions with the technology using an approach which concentrated on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of the duct injection process to an existing ESP particulate collection device. (VC)

  17. Local energy landscape in a simple liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Iwashita, T.; Egami, Takeshi

    2014-11-26

    It is difficult to relate the properties of liquids and glasses directly to their structure because of complexity in the structure that defies precise definition. The potential energy landscape (PEL) approach is a very insightful way to conceptualize the structure-property relationship in liquids and glasses, particularly the effect of temperature and history. However, because of the highly multidimensional nature of the PEL it is hard to determine, or even visualize, the actual details of the energy landscape. In this article we introduce a modified concept of the local energy landscape (LEL), which is limited in phase space, and demonstrate itsmore » usefulness using molecular dynamics simulation on a simple liquid at high temperatures. The local energy landscape is given as a function of the local coordination number, the number of the nearest-neighbor atoms. The excitation in the LEL corresponds to the so-called β-relaxation process. The LEL offers a simple but useful starting point to discuss complex phenomena in liquids and glasses.« less

  18. Toward Local Failure Local Recovery (LFLR) Resilience Model Using...

    Office of Scientific and Technical Information (OSTI)

    Motivation for Local Failure-Local Recovery (LFLR) Architecture for LFLR Application Recovery Results Discussion Conclusions Sandia Motivation for ...

  19. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially

  20. Degradative capacities and bioaugmentation potential of an anaerobic benzene-degrading bacterium strain DN11

    SciTech Connect (OSTI)

    Yuki Kasai; Yumiko Kodama; Yoh Takahata; Toshihiro Hoaki; Kazuya Watanabe

    2007-09-15

    Azoarcus sp. strain DN11 is a denitrifying bacterium capable of benzene degradation under anaerobic conditions. The present study evaluated strain DN11 for its application to bioaugmentation of benzene-contaminated underground aquifers. Strain DN11 could grow on benzene, toluene, m-xylene, and benzoate as the sole carbon and energy sources under nitrate-reducing conditions, although o- and p-xylenes were transformed in the presence of toluene. Phenol was not utilized under anaerobic conditions. Kinetic analysis of anaerobic benzene degradation estimated its apparent affinity and inhibition constants to be 0.82 and 11 {mu}M, respectively. Benzene-contaminated groundwater taken from a former coal-distillation plant site in Aichi, Japan was anaerobically incubated in laboratory bottles and supplemented with either inorganic nutrients (nitrogen, phosphorus, and nitrate) alone, or the nutrients plus strain DN11, showing that benzene was significantly degraded only when DN11 was introduced. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments, and quantitative PCR revealed that DN11 decreased after benzene was degraded. Following the decrease in DN11 16S rRNA gene fragments corresponding to bacteria related to Owenweeksia hongkongensis and Pelotomaculum isophthalicum, appeared as strong bands, suggesting possible metabolic interactions in anaerobic benzene degradation. Results suggest that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations. 50 refs., 6 figs., 1 tab.

  1. Nonlinear phenomena in RF wave propagation in magnetized plasma: A review

    SciTech Connect (OSTI)

    Porkolab, Miklos

    2015-12-10

    Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].

  2. Report on the Implementation of Periodic Natural Phenomena Hazards Assessment Reviews at Department of Energy Sites

    Broader source: Energy.gov [DOE]

    This report provides the results of a review conducted by the Office of Nuclear Safety (AU-30) of the implementation of periodic Natural Phenomena Hazards (NPH) assessment reviews by sites reporting to the National Nuclear Security Administration (NNSA), and the Offices of Environmental Management, Nuclear Energy, and Science.

  3. Highlights of papers presented at the workshop on cold fusion phenomena

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This report contains highlights of formal oral papers presented at the Workshop on Cold Fusion Phenomena, hosted by Los Alamos National Laboratory and held May 23--25, 1989, in Santa Fe, New Mexico. General topics covered are: physics of fusion reactions; neutron and gamma-ray spectroscopy; colorimetry; and applicable condensed-matter physics, electrochemistry, and analytical chemistry.

  4. Surface reflectance degradation by microbial communities

    SciTech Connect (OSTI)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophic microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.

  5. Surface reflectance degradation by microbial communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Meng -Dawn; Allman, Steve L.; Graham, David E.; Cheng, Karen R.; Pfiffner, Susan Marie; Vishnivetskaya, Tatiana A.; Desjarlais, Andre Omer

    2015-11-05

    Building envelope, such as a roof, is the interface between a building structure and the environment. Understanding of the physics of microbial interactions with the building envelope is limited. In addition to the natural weathering, microorganisms and airborne particulate matter that attach to a cool roof tend to reduce the roof reflectance over time, compromising the energy efficiency advantages of the reflective coating designs. We applied microbial ecology analysis to identify the natural communities present on the exposed coatings and investigated the reduction kinetics of the surface reflectance upon the introduction of a defined mixture of both photoautotrophic and heterotrophicmore » microorganisms representing the natural communities. The result are (1) reflectance degradation by microbial communities follows a first-order kinetic relationship and (2) more than 50% of degradation from the initial reflectance value can be caused by microbial species alone in much less time than 3 years required by the current standard ENERGY STAR® test methods.« less

  6. Elastomer degradation sensor using a piezoelectric material

    DOE Patents [OSTI]

    Olness, Dolores U.; Hirschfeld, deceased, Tomas B.

    1990-01-01

    A method and apparatus for monitoring the degradation of elastomeric materials is provided. Piezoelectric oscillators are placed in contact with the elastomeric material so that a forced harmonic oscillator with damping is formed. The piezoelectric material is connected to an oscillator circuit,. A parameter such as the resonant frequency, amplitude or Q value of the oscillating system is related to the elasticity of the elastomeric material. Degradation of the elastomeric material causes changes in its elasticity which, in turn, causes the resonant frequency, amplitude or Q of the oscillator to change. These changes are monitored with a peak height monitor, frequency counter, Q-meter, spectrum analyzer, or other measurement circuit. Elasticity of elastomers can be monitored in situ, using miniaturized sensors.

  7. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  8. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  9. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  10. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  11. Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian uncertainty quantification

    SciTech Connect (OSTI)

    Yurko, J. P.; Buongiorno, J.

    2012-07-01

    Propagating parameter uncertainty for a nuclear reactor system code is a challenging problem due to often non-linear system response to the numerous parameters involved and lengthy computational times; issues that compound when a statistical sampling procedure is adopted, since the code must be run many times. The number of parameters sampled must therefore be limited to as few as possible that still accurately characterize the uncertainty in the system response. A Quantitative Phenomena Identification and Ranking Table (QPIRT) was developed to accomplish this goal. The QPIRT consists of two steps: a 'Top-Down' step focusing on identifying the dominant physical phenomena controlling the system response, and a 'Bottom-Up' step which focuses on determining the correlations from those key physical phenomena that significantly contribute to the response uncertainty. The Top-Down step evaluates phenomena using the governing equations of the system code at nominal parameter values, providing a 'fast' screening step. The Bottom-Up step then analyzes the correlations and models for the phenomena identified from the Top-Down step to find which parameters to sample. The QPIRT, through the Top-Down and Bottom-Up steps thus provides a systematic approach to determining the limited set of physically relevant parameters that influence the uncertainty of the system response. This strategy was demonstrated through an application to the RELAP5-based analysis of a PWR Total Loss of main Feedwater Flow (TLOFW) accident, also known as feed and bleed' scenario, . Ultimately, this work is the first component in a larger task of building a calibrated uncertainty propagation framework. The QPIRT is an essential piece because the uncertainty of those selected parameters will be calibrated to data from both Separate and Integral Effect Tests (SETs and IETs). Therefore the system response uncertainty will incorporate the knowledge gained from the database of past large IETs. (authors)

  12. Controlling degradation pathways in organic electrochemistry via

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    redox-mediated Li+ coordination - Joint Center for Energy Storage Research March 24, 2016, Research Highlights Controlling degradation pathways in organic electrochemistry via redox-mediated Li+ coordination Scientific Achievement Exhaustive DFT experiments are well-matched to in-situ spectroscopic data showing Li+ coordination to basic methoxy groups. Li+ coordination promotes improved redox reversibility within Li+ electrolytes. Significance and Impact Redox-mediated Li+ interactions are

  13. Degradation and (de)lithiation processes in the high capacity...

    Office of Scientific and Technical Information (OSTI)

    Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3 Citation Details In-Document Search Title: Degradation and (de)lithiation processes in the ...

  14. Genomics of wood-degrading fungi (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Genomics of wood-degrading fungi Prev Next Title: Genomics of wood-degrading fungi Authors: Ohm, Robin A. ; Riley, Robert ; Salamov, Asaf ; Min, Byoungnam ; Choi, In-Geol ; ...

  15. Independent Oversight Lessons Learned from the 2013 Targeted Reviews of Emergency Preparedness for Severe Natural Phenomena Events at Selected Department of Energy Facilities- February 2014

    Broader source: Energy.gov [DOE]

    Targeted Reviews of Emergency Preparedness for Severe Natural Phenomena Events at Selected Department of Energy Facilities

  16. Superdiffusive transport and energy localization in disordered granular crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martinez, Alejandro J.; Kevrekidis, Panagiotis G.; Porter, Mason A.

    2016-02-12

    We study the spreading of initially localized excitations in one-dimensional disordered granular crystals. We thereby investigate localization phenomena in strongly nonlinear systems, which we demonstrate to be fundamentally different from localization in linear and weakly nonlinear systems. We conduct a thorough comparison of wave dynamics in chains with three different types of disorder: an uncorrelated (Anderson-like) disorder and two types of correlated disorders (which are produced by random dimer arrangements), and for two families of initial conditions: displacement perturbations and velocity perturbations. We find for strongly precompressed (i.e., weakly nonlinear) chains that the dynamics strongly depends on the initial condition.more » Furthermore, for displacement perturbations, the long-time asymptotic behavior of the second moment m~2 has oscillations that depend on the type of disorder, with a complex trend that is markedly different from a power law and which is particularly evident for an Anderson-like disorder.« less

  17. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, Marc A.; Tunesi, Simonetta; Xu, Qunyin

    1991-01-01

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light.

  18. Preconditioning for Data Locality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preconditioning for Data Locality Quickly selecting nearest particles in the Friends-of-Friends component of Gadget Luigi Iapichino Leibniz-Rechenzentrum (LRZ), Garching b. München, Germany Collaborators: V. Karakasis, N. Hammer, A. Karmakar (LRZ) in the framework of the Intel® Parallel Computing Center in Garching (LRZ - TUM) Partners: M. Petkova, K. Dolag (USM München, Germany) Intel contributors to this presentation: CJ Newburn, Michael Brown, Ashish Jha, David Kunzman Managing locality of

  19. Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28

    This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

  20. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C.; Brock, W.R.; Denton, D.R.

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  1. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  2. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect (OSTI)

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  3. Apparent critical phenomena in the superionic phase transition of Cu2-xSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; Avdeev, Maxim; Studer, Andrew; Snyder, G. Jeffrey

    2016-01-11

    The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less

  4. Studies of Intermittency-like Phenomena in Plasma turbulence at IPR

    SciTech Connect (OSTI)

    Jha, R.; Das, A.; Bisai, N.; Kaw, P. [Institute for Plasma Research, Bhat, Near Indira Bridge, Gandhinagar-382428 (India)

    2010-11-23

    The observation of intermittency in the turbulent scrape-off layer plasma of ADITYA tokamak was first reported about one and a half decade ago. In the last decade or so, several aspects of intermittency-like phenomena have been observed on tokamaks and other fusion devices throughout the world. A review of the research carried out at the Institute for Plasma Research (IPR) is presented, which closely follow the research trend on intermittency-like phenomena in plasmas worldwide. We also present our analysis of particle flux data in order to test the recently proposed fluctuation theorem, which states that the probability of 'entropy consuming' flux events falls off exponentially with the averaging time. This theorem, proposed in the context of small systems, is applied to macroscopic system like tokamak edge plasma by invoking an 'effective temperature' of the bath of drift waves from which, plasma objects take energy and carry out work of transporting matter

  5. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    SciTech Connect (OSTI)

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  6. Nano-photonic phenomena in van der Waals heterostructures | MIT-Harvard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Excitonics Nano-photonic phenomena in van der Waals heterostructures March 31, 2015 at 4:30 PM/ RLE Haus 36-428 Dmitri Basov Department of Physics, University of California, San Diego Dimitri_basov_01 abstract: Layered van der Waals (vdW) crystals consist of individual atomic planes weakly coupled by vdW interaction, similar to graphene monolayers in bulk graphite. These materials can harbor superconductivity and ferromagnetism with high transition temperatures, emit light and

  7. Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.

  8. Method and apparatus for identifying, locating and quantifying physical phenomena and structure including same

    DOE Patents [OSTI]

    Richardson, John G.

    2006-01-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  9. State-of-the Art Simulations of Liquid Phenomena | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility a nitrate anion solvated by 32 water molecules The image shows a nitrate anion solvated by 32 water molecules after a molecular dynamics simulation. Spencer Pruitt, Argonne National Laboratory State-of-the Art Simulations of Liquid Phenomena PI Name: Mark Gordon PI Email: mark@si.msg.chem.iastate.edu Institution: Iowa State University Allocation Program: INCITE Allocation Hours at ALCF: 200 Million Year: 2016 Research Domain: Materials Science Under this INCITE award,

  10. Corrosion degradation mechanisms in coiled tubing

    SciTech Connect (OSTI)

    Kane, R.D.; Cayard, M.S.

    1994-12-31

    This paper reviews the historical aspects related to the development of coiled tubing for oilfield drilling, logging, workover and production operations. It focuses on the metallurgical and process variables of coiled tubing and their interrelationship with aspects of the downhole service environment and the resultant corrosion performance. Special emphasis is placed on (1) operating conditions that can lead to excessive corrosion and/or cracking damage and corrosion fatigue and (2) metallurgical and processing parameters which can be controlled to maximize coiled tubing resistance to corrosion degradation.

  11. Combined surface analytical methods to characterize degradative...

    Office of Scientific and Technical Information (OSTI)

    a silane monolayer, and local displacement of silane molecules from the Si surface.more We have applied this analytical methodology at the Si coupon level up to MEMS devices. ...

  12. Local STAR Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local STAR Libraries Local STAR Libraries The libraries listed below are built locally at PDSF and are available under the chos environment sl53. The 32sl44 chos environment has been retire but the libraries are still listed for reference. Version Tag ROOT Version Status Mode Date Comment SL12b (new) SL12b 5.22.00 built debug 4/17/12 SL5.3 SL12a SL12a 5.22.00 built debug 3/14/12 SL5.3 SL11e SL11e 5.22.00 built debug 11/30/11 SL5.3 SL11d (pro) SL11d 5.22.00 built debug 8/1/11 SL5.3 SL11c SL11c_1

  13. Quench degradation limit of multifilamentary AgBi2Sr2CaCu2Ox round wires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Liyang; Li, Pei; Shen, Tengming; Schwartz, Justin

    2016-02-02

    Understanding safe operating limits of composite superconducting wires is important for the design of superconducting magnets. Here we report measurements of quench-induced critical current density Jc degradation in commercial Ag/Bi2Sr2CaCu2Ox (Bi-2212) round wires using heater-induced quenches at 4.2 K in self magnetic field that reveal a general degradation behavior. Jc degradation strongly depends on the local hot spot temperature Tmax, and is nearly independent of operating current, the temperature gradient along the conductor dTmax/dx, and the temperature rising rate dTmax/dt. Both Jc and n value (where n is an index of the sharpness of the superconductor-to-normal transition) exhibit small butmore » irreversible degradation when Tmax exceeds 400-450 K, and large degradation occurs when Tmax exceeds 550 K. This behavior was consistently found for a series of Bi-2212 wires with widely variable wire architectures and porosity levels in the Bi-2212 filaments, including a wire processed using a standard partial melt processing and in which Bi-2212 filaments are porous, an overpressure processed wire in which Bi-2212 filaments are nearly porosity-free and that has a Jc(4.2 K, self field) exceeding 8000 A/mm2, and a wire that has nearly no filament to filament bridges after reaction. Microstructural observations of degraded wires reveal cracks in the Bi-2212 filaments perpendicular to the wire axis, indicating that the quench-induced Ic degradation is primarily driven by strain. These results further suggest that the quench degradation temperature limit depends on the strain state of Bi-2212 filaments and this dependence shall be carefully considered when engineering a high-field Bi-2212 magnet.« less

  14. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  15. Advanced Cell Development and Degradation Studies

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; J. S. Herring; R. C. O'Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  16. Multiscale Concrete Modeling of Aging Degradation

    SciTech Connect (OSTI)

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  17. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs

    SciTech Connect (OSTI)

    Burchell, Timothy D; Bratton, Rob; Marsden, Barry; Srinivasan, Makuteswara; Penfield, Scott; Mitchell, Mark; Windes, Will

    2008-03-01

    Here we report the outcome of the application of the Nuclear Regulatory Commission (NRC) Phenomena Identification and Ranking Table (PIRT) process to the issue of nuclear-grade graphite for the moderator and structural components of a next generation nuclear plant (NGNP), considering both routine (normal operation) and postulated accident conditions for the NGNP. The NGNP is assumed to be a modular high-temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GTMHR) version [a prismatic-core modular reactor (PMR)] or a pebble-bed modular reactor (PBMR) version [a pebble bed reactor (PBR)] design, with either a direct- or indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production. NGNP design options with a high-pressure steam generator (Rankine cycle) in the primary loop are not considered in this PIRT. This graphite PIRT was conducted in parallel with four other NRC PIRT activities, taking advantage of the relationships and overlaps in subject matter. The graphite PIRT panel identified numerous phenomena, five of which were ranked high importance-low knowledge. A further nine were ranked with high importance and medium knowledge rank. Two phenomena were ranked with medium importance and low knowledge, and a further 14 were ranked medium importance and medium knowledge rank. The last 12 phenomena were ranked with low importance and high knowledge rank (or similar combinations suggesting they have low priority). The ranking/scoring rationale for the reported graphite phenomena is discussed. Much has been learned about the behavior of graphite in reactor environments in the 60-plus years since the first graphite rectors went into service. The extensive list of references in the Bibliography is plainly testament to this fact. Our current knowledge base is well developed. Although data are lacking for the specific grades being considered for Generation IV (Gen IV

  18. An atomistic description of the high-field degradation of dielectric polyethylene

    SciTech Connect (OSTI)

    Bealing, Clive R.; Ramprasad, R.

    2013-11-07

    A microscopic mechanism governing the initiating step in the high-field aging of crystalline polyethylene is proposed, based on density functional calculations and ab initio molecular dynamics simulations. It is assumed that electrons, holes, and excitons are present in the system. While the additional individual electrons or holes are not expected to lead to significant degradation, the presence of triplet excitons are concluded to be rather damaging. The electron and hole states of the exciton localize on a distorted region of polyethylene, significantly weakening nearby CH bonds and facilitating CH bond scission. The barrier to cleavage of the weakened CH bonds is estimated and is comparable to the thermal energy, suggesting that this mechanism may be responsible for the degradation of polyethylene when placed under electrical stress, e.g., in high-voltage cables.

  19. Comparative study of two- and three-dimensional modeling on arc discharge phenomena inside a thermal plasma torch with hollow electrodes

    SciTech Connect (OSTI)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-02-15

    A comparative study between two- and three-dimensional (2D and 3D) modeling is carried out on arc discharge phenomena inside a thermal plasma torch with hollow electrodes, in order to evaluate the effects of arc root configuration characterized by either 2D annular or 3D highly localized attachment on the electrode surface. For this purpose, a more precise 3D transient model has been developed by taking account of 3D arc current distribution and arc root rotation. The 3D simulation results apparently reveal that the 3D arc root attachment brings about the inherent 3D and turbulence nature of plasma fields inside the torch. It is also found that the constricted arc column near the vortex chamber plays an important role in heating and acceleration of injected arc gases by concentrating arc currents on the axis of the hollow electrodes. The inherent 3D nature of arc discharge is well preserved inside the cathode region, while these 3D features slowly diminish behind the vortex chamber where the turbulent flow begins to be developed in the anode region. Based on the present simulation results, it is noted that the mixing effects of the strong turbulent flow on the heat and mass transfer are mainly responsible for the gradual relaxation of the 3D structures of plasma fields into the 2D axisymmetric ones that eventually appear in the anode region near the torch exit. From a detailed comparison of the 3D results with the 2D ones, the arc root configuration seems to have a significant effect on the heat transfer to the electrode surfaces interacting with the turbulent plasma flow. That is, in the 2D simulation based on an axisymmetric stationary model, the turbulence phenomena are fairly underestimated and the amount of heat transferred to the cold anode wall is calculated to be smaller than that obtained in the 3D simulation. For the validation of the numerical simulations, calculated plasma temperatures and axial velocities are compared with experimentally measured ones

  20. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    SciTech Connect (OSTI)

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  1. Simulation of ENSO-like phenomena with a low-resolution coupled GCM of the global ocean and atmosphere

    SciTech Connect (OSTI)

    Lau, Ngarcheung; Philander, S.G.H.; Nath, M.J. )

    1992-04-01

    A 140-year simulation of the ocean-atmosphere climate system has been performed by the GFDL Climate Dynamics Project using a low-resolution coupled general circulation model (GCM). The model was subjected to annually averaged insolation throughout the integration. This coupled system exhibits well-defined fluctuations in the tropical Pacific, with a preferred time scale of 3-4 years. The characteristics of these recurrent anomalies were examined by applying an extended empirical orthogonal function (EEOF) analysis to selected model variables. These results indicate that the simulated oscillations are accompanied by coherent changes in the atmospheric and oceanic circulation. The spatial patterns associated with the leading EEOF mode indicate that SST anomalies make their first appearance off the Peru-Ecuador coast and then migrate steadily westward, with an average transit time of 12-15 months. The arrival and eventual decay of SST fluctuations in the western Pacific is typically followed by the initiation of anomalies of the opposite polarity along the American coasts. The space-time evolution of various meteorological and oceanographic signals exhibits well-defined phase relationships with the SST perturbations. Some aspects of the model behavior during these warm and cold episodes are reminiscent of observed phenomena associated with the El Nino-Southern Oscillation (ENSO). Analysis of the climatological heat budget for the top ocean layer indicates a near balance between horizontal and vertical temperature advection by the time-mean flow, vertical diffusion, and heat input from the overlying atmosphere. The principal mechanisms associated with the simulated ENSO-like cycles were then studied by examining the local heat budget for the SST perturbations. The relative importance of various linear advective processes in the heat budget exhibits a notable dependence on geographical location and on the specific phase of the ENSO-like cycle.

  2. [Research in two-dimensional critical phenomena and conformal field theory]. [Rutgers, The State Univ. , New Brunswick, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    A very theoretical description is given of research in two- dimensional critical phenomena and conformal field theory. Major progress is reported in the field of fluctuating two-dimensional surfaces. A discretized representation of fluctuating geometry is used where surfaces are represented by triangulations; continuum surfaces are recovered by taking the size of the triangles to zero. One of the central goals of the theory of critical phenomena is to find all possible universality classes of n-dimensional critical phenomena; this goal has been translated into the problem of clasifying all possible scale-invariant euclidean quantum field theories. (RWR)

  3. Biocarrier composition for and method of degrading pollutants

    DOE Patents [OSTI]

    Fliermans, C.B.

    1994-01-01

    The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.

  4. Characterization of thermally degraded energetic materials

    SciTech Connect (OSTI)

    Renlund, A.M.; Miller, J.C.; Trott, W.M.; Erickson, K.L.; Hobbs, M.L.; Schmitt, R.G.; Wellman, G.W.; Baer, M.R.

    1997-12-31

    Characterization of the damage state of a thermally degraded energetic material (EM) is a critical first step in understanding and predicting cookoff behavior. Unfortunately, the chemical and mechanical responses of heated EMs are closely coupled, especially if the EM is confined. The authors have examined several EMs in small-scale experiments (typically 200 mg) heated in both constant-volume and constant-load configurations. Fixtures were designed to minimize free volume and to contain gas pressures to several thousand psi. The authors measured mechanical forces or displacements that correlated to thermal expansion, phase transitions, material creep and gas pressurization as functions of temperature and soak time. In addition to these real-time measurements, samples were recovered for postmortem examination, usually with scanning electron microscopy (SEM) and chemical analysis. The authors present results on EMs (HMX and TATB), with binders (e.g., PBX 9501, PBX 9502, LX-14) and propellants (Al/AP/HTPB).

  5. Waste Form Degradation Model Integration for Engineered Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance | Department of Energy Waste Form Degradation Model Integration for Engineered Materials Performance Waste Form Degradation Model Integration for Engineered Materials Performance The collaborative approach to the glass and metallic waste form degradation modeling activities includes process model development (including first-principles approaches) and model integration-both internally among developed process models and between developed process models and PA models, and cross

  6. Fundamental Study of the Mechanical Strength Degradation Mechanisms of PFSA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membranes and MEAs | Department of Energy Fundamental Study of the Mechanical Strength Degradation Mechanisms of PFSA Membranes and MEAs Fundamental Study of the Mechanical Strength Degradation Mechanisms of PFSA Membranes and MEAs Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC huang_htmwg_2008.pdf (2.27 MB) More Documents & Publications Membrane Durability in PEM Fuel Cells: Chemical Degradation Automotive Perspective on PEM

  7. Solvent degradation and cleanup: a survey and recent ORNL studies

    SciTech Connect (OSTI)

    Mailen, J.C.; Tallent, O.K.

    1984-01-01

    This paper surveys the mechanisms for degradation of the tributyl phosphate and diluent components of Purex solvent by acid and radiation, reviews the problems encountered in plant operations resulting from the presence of these degradation products, and discusses methods for minimizing the formation of degradation products and accomplishing their removal. Scrubbing solutions containing sodium carbonate or hydroxylamine salts and secondary cleanup of solvents using solid sorbents are evaluated. Finally, recommendations for improved solvent cleanup are presented. 50 references, 4 figures, 3 tables.

  8. Membrane Durability in PEM Fuel Cells: Chemical Degradation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Durability in PEM Fuel Cells: Chemical Degradation Membrane Durability in PEM Fuel Cells: Chemical Degradation Presentation at the 2008 High Temperature Membrane Working Group Meeting held June 9, 2008, in Washington, DC motupally_htmwg_2008.pdf (962.33 KB) More Documents & Publications Highly Dispersed Alloy Cathode Catalyst for Durability Fundamental Study of the Mechanical Strength Degradation Mechanisms of PFSA Membranes and MEAs New Membranes for PEM Fuel Cells

  9. Model Compound Studies of Fuel Cell Membrane Degradation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Model Compound Studies of Fuel Cell Membrane Degradation Model Compound Studies of Fuel Cell Membrane Degradation Presentation on Model Compound Studies of Fuel Cell Membrane Degradation to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005. htmwg05_schiraldi.pdf (549.62 KB) More Documents & Publications Some durability considerations for proton exchange membranes Processing-Performance Relationships for Perfluorosulfonate Ionomer Membrane

  10. Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy | Department of Energy Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Key Parameters Affecting DPF Performance Degradation and Impact on Lifetime Fuel Economy Summarizes latest findings on impact of specific parameters affecting ash-related diesel particulate filter performance degradation and information useful to enhance performance and extend service life deer11_sappok.pdf (3.32 MB) More Documents & Publications Characteristics and

  11. Enhanced local tomography

    DOE Patents [OSTI]

    Katsevich, Alexander J.; Ramm, Alexander G.

    1996-01-01

    Local tomography is enhanced to determine the location and value of a discontinuity between a first internal density of an object and a second density of a region within the object. A beam of radiation is directed in a predetermined pattern through the region of the object containing the discontinuity. Relative attenuation data of the beam is determined within the predetermined pattern having a first data component that includes attenuation data through the region. In a first method for evaluating the value of the discontinuity, the relative attenuation data is inputted to a local tomography function .function..sub..LAMBDA. to define the location S of the density discontinuity. The asymptotic behavior of .function..sub..LAMBDA. is determined in a neighborhood of S, and the value for the discontinuity is estimated from the asymptotic behavior of .function..sub..LAMBDA.. In a second method for evaluating the value of the discontinuity, a gradient value for a mollified local tomography function .gradient..function..sub..LAMBDA..epsilon. (x.sub.ij) is determined along the discontinuity; and the value of the jump of the density across the discontinuity curve (or surface) S is estimated from the gradient values.

  12. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    SciTech Connect (OSTI)

    Soloveichik, Grigorii

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  13. Heavy ion precompound phenomena: A glance at hard gamma and subthreshold pion production

    SciTech Connect (OSTI)

    Blann, M.; Remington, B.A.

    1987-08-01

    We test a relaxation model based on two body nucleon-nucleon scattering processes to interpret phenomena observed in heavy ion reactions. We use the Boltzmann master equation to accomplish this. By assuming that the projectile nucleons share the total excitation with equal a-priori probability of all configurations, we are able to reproduce several sets of neutron spectra from /sup 20/Ne and /sup 12/C induced reactions on /sup 165/Ho. With no additional free parameters our model successfully reproduces subthreshold pion production cross sections, high energy ..gamma..-ray spectra, and angular distributions of high energy ..gamma..-rays. 40 refs., 12 figs., 2 tabs.

  14. Stress-related phenomena in transient radiation-induced absorption in optical fibers

    SciTech Connect (OSTI)

    Looney, L.D.; Lyons, P.B.; Kelly, R.E.

    1988-01-01

    The optical properties of materials can be modified by exposure to radiation and research to investigate these radiation-induced phenomena has intensified over the last several decades. The advent of optical fiber technology and the many applications of optical fiber for information transmission have sharply increased the interest in these investigations. Optical fibers present a long optical transmission path and that path may traverse different adverse environments, including radiation areas. The long tranmission path provides increased potential for interactions between the optical information signal and the optical medium. 10 refs., 10 figs.

  15. DZero (D0) Experiment Results for New Phenomena from the Fermilab Tevatron

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the New Phenomena Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  16. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  17. Degradation of Algal Cell Walls by Enzymes and Dyes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation of Algal Cell Walls by Enzymes and Dyes National Renewable Energy Laboratory ... for extracting the oils from the cells by first weakening the cell walls using enzymes. ...

  18. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul Rey, Michael; Ding, Hanshu

    2009-10-27

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  19. Sandia Energy - Goal 1: Degradation Study of Components and Subsystems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Degradation Study of Components and Subsystems Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Inverter Reliability Program...

  20. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul; Rey, Michael; Ding, Hanshu

    2012-04-03

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  1. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  2. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and FractureHeat Transfer Surface Area in Geothermal Reservoirs Using ...

  3. Unraveling DPF Degradation using Chemical Tracers and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Opportunities for Extending Filter Life Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life A unique electrochemical sensing strategy ...

  4. The Science of Battery Degradation. (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on ...

  5. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect (OSTI)

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  6. Degradation of organic chemicals with titanium ceramic membranes

    DOE Patents [OSTI]

    Anderson, M.A.; Tunesi, S.; Xu, Q.

    1991-07-30

    Complex organic molecules, such as polychlorinated biphenyls can be degraded on porous titanium ceramic membranes by photocatalysis under ultraviolet light. 3 figures.

  7. Compaction localization and constitutive behavior of weak porous sandstone.

    SciTech Connect (OSTI)

    Holcomb, David Joseph; Dewers, Thomas A.; Issen, Kathleen

    2009-06-01

    A combined experimental and constitutive modeling program for weak porous sandstone deformation is described. A series of axisymmetric compression tests were performed over a range of mean stresses to study dilatational, compactional and transitional regimes. Experimental results were used both to derive constitutive parameters for testing localization theory and to parameterize a poroelastic-plastic model. Observed strain localization, imaged syn-deformationally using acoustic emissions, includes high- and low-angle shear and low angle compactional features or 'bands'. Isotropic elastic moduli measured via unloading loops show a progressive degradation pre-failure as decreasing functions of work-conjugate plastic strains and increasing functions of stress magnitude. The degradation pathway is unique for samples which underwent localization versus those that underwent spatially pervasive pore collapse. Total shear and volume strains are partitioned into elastic and plastic portions including the ''coupling'' strain associated with modulus degradation. Plastic strain calculated with and without the coupling term is compared with regard to localization predictions. Both coupled and uncoupled cases predict high angle shear bands for uniaxial and low mean stress conditions on the dilatational side of the yield surface. Uncoupled predictions show progressively lower angle shear bands approaching the transitional regime (stress conditions approaching the 'cap' surface). When elastic-plastic coupling is accounted for, compaction bands are predicted for the transitional regime, as are observed in the experiments. Finite element modeling efforts are described using a 3-invariant, mixed-hardening, continuous yield surface, elasto-plasticity model that includes several features important for porous sandstone constitutive behavior and observed experimentally, including non-associativity, nonlinear elasticity, elastic-plastic coupling, and kinematic hardening. Modeled

  8. Comminution phenomena during the fluidized bed combustion of a commercial refuse-derived fuel

    SciTech Connect (OSTI)

    Arena, U.; Cammarota, A.; Chirone, R.; D`Anna, G.

    1995-12-31

    A commercial densified refuse-derived fuel (RDF), obtained as pellets from municipal solid wastes, was burned in two laboratory scale bubbling fluidized bed combustors, having an internal diameter of 41 mm. The apparatus were both batchwise operated at 850 C by injecting batches of RDF particles into a bed of silica sand (300--400 {micro}m as size range) fluidized at a superficial gas velocity of 0.8 m/s. RDF particles with equivalent mean diameter ranging from 4 to 9 mm were used. Different experimental procedures were set up to separately investigate comminution phenomena of fuel particles. Results were compared with those obtained burning a South African bituminous coal. Results pointed out that RDF particles undergo a strong primary fragmentation phenomenon, with a probability of particle breakage equal to 1 for fuel particles larger than 6 mm. Attrition and char fragmentation phenomena are particularly relevant under both inert and oxidizing conditions, generating a large amount of unburned fines which may affect overall combustion efficiency.

  9. The corrosion phenomena in the coin cell BR2325 of the ``superstoichiometric fluorocarbon-lithium'' system

    SciTech Connect (OSTI)

    Mitkin, V.N.; Galkin, P.S.; Denisova, T.N.

    1998-07-01

    It was noted at the earlier study and at the longer observations of the novel various types of superstoichiometric fluorocarbon materials CF{sub 1+x}, where x = 0.1--0.33 (FCM) and their behavior, that despite of their known hygroscopity during a storage of samples in laboratory and technological utensils nevertheless occurs an appreciable sorption of atmospheric moisture. The color of samples does not change but sometimes there appears a smell of hydrogen fluoride and even corrosion of glasswares at a long storage. On the basis of these facts was assumed that at a long storage the slow reactions of HF producing with a sorption moisture can proceed. This phenomena is necessary to take into account for successful manufacturing of long life lithium cells based on superstoichiometric fluorocarbon composite cathodes (FCC). The chemistry of such slow hydrolytic process and especially of processes which can proceed at manufacturing of FCC earlier was not investigated also of any data in the literature in this occasion is not present. Just for this reason the authors undertook a study of the corrosion phenomena which can proceed in industrial sources of a current at a long storage under influence of slow hydrolysis of C-F bonds by moisture. The goal of the study was to search long term damages in the slightly wet FCM and based on these materials cathodic composites for fluorocarbon-lithium cells. As a model for corrosion process investigation they have chosen a standard coin lithium battery of a type BR2325.

  10. Golden - Local Information | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Golden-Local Information This page provides travel information for visitors to the Golden offices and laboratories of the National Renewable Energy Laboratory. Transportation NREL is accessible via bus on the RTD route 20 from Aurora and Denver. Route 20 travels along 20th Avenue and ends at the NREL Education Center. Visit the RTD Web site or call 303-299-6000 to plan your trip or for more information. Visit the Denver International Airport site to find: Car rental agencies Shuttle services,