National Library of Energy BETA

Sample records for loblolly pine pinus

  1. Community Loblolly Pine Slash Pine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community _ Loblolly Pine _ Slash Pine oMixed Pine/Hardwood D Upland Hardwod LJ Bottomland Hardwood IJ::J Carolina Bay Wetland * Wastesites N Streams I)iI, Utility ROW /l\W Roads oTES Plants (2) o SRS Bays D Three Rivers Landfill E2J Hydric Soils 280 o Soils Soil Series and Phase D BcB 1iii0g DOrA _ OrB D Rm _ TrB D WaB 280 I Il~ I ~ Figure 23-1. Plant cOllllllunities and soils associated with the Dry Bay Set-Aside Area. 23-7 Set-Aside 23: Dry Bay

  2. Vegetation Loblolly Pine N Site Boundary N Streams Roads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loblolly Pine N Site Boundary N Streams Roads [2J Other Set-Asides 6£] Hy~ric Soils < ____ n ____ ** __ ._ ** _______ 300 0 - L " " " " , 300 781 .3a 600 Meters Soils Soil Series and Phase _TrB Figure 4-1. Plant CO/lllllllllties and soils associated with the Loblolly Pine Stand Set-Aside Area. sc 4-5 Set-Aside 4: Loblolly Pine Stand

  3. Community Loblolly Pine Longleaf Pine Slash Pine D Mixed Pine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pine D Mixed PineHardwood D Bottomland Hardwood II Carolina Bay Wetland Water NI Rails -0 Openwells N Utility ROW Streams N Site Boundary NRoads .** TES Plants (1)...

  4. AmeriFlux US-Dk3 Duke Forest - loblolly pine

    SciTech Connect (OSTI)

    Novick, Kim; Oishi, Chris; Stoy, Paul

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Dk3 Duke Forest - loblolly pine. Site Description - The site was established in 1983 following a clear cut and a burn. Pinus taeda L. (loblolly pine) seedlings were planted at 2.4m by 2.4m spacing and ecosystem development has not been managed after planting. Canopy height increased from 16m in 2001 to 18m in 2004. The canopy is comprised primarily of P. taeda with some emergent Liquidambar styraciflua L. and a diverse and growing understory with 26 different woody species of diameter breast height 42.5 cm. The flux tower lies upwind of the CO2-enriched components of the free atmosphere carbon enrichment (FACE) facility located in the same pine forest. EC instrumentation is at 20.2m on a 22m tower.

  5. Community Loblolly Pine Longleaf Pine D Mixed Pine/Hardwood

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Mixed Pine/Hardwood D Bottomland Hardwood _ Water _ Bottomland Hardwood/Pine IIIIiI Scrub/Shrub E2:I SRS Bays i&. Roads NUtility ROW EEl Hydric Soils 230 o 230 Vegetation Meters Soils Soil Series and Phase D BaB _w .Wm Figure 10-2. Plant communities and soils associated with the Risher Pond Set-Aside Area. 10-9 Set-Aside 10: Risher Pond

  6. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    SciTech Connect (OSTI)

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

  7. Snag characteristics and dynamics following natural and artificially induced mortality in a managed loblolly pine forest.

    SciTech Connect (OSTI)

    Zarnoch, Stanley J.; Vukovich, Mark A.; Kilgo, John C.; Blake, John I.

    2013-06-10

    A 14-year study of snag characteristics was established in 41- to 44-year old loblolly pine (Pinus taeda L.) stands in southeastern USA. During the initial 5.5 years, no stand manipulation or unusually high-mortality events occurred. Afterwards, three treatments were applied consisting of trees thinned and removed, trees felled and not removed, and artificial creation of snags produced by girdling and herbicide injection. The thinned treatments were designed to maintain the same live canopy density as the snag-created treatment, disregarding snags that remained standing.We monitored snag height, diameter, density, volume, and bark percentage; the number of cavities was monitored in natural snags only. During the first 5.5 years, recruitment and loss rates were stable, resulting in a stable snag population. Large snags (?25 cm diameter) were common, but subcanopy small snags (10 to <25 cm diameter) dominated numerically. Large natural snags survived (90% quantile) significantly longer (6.09.4 years) than smaller snags (4.46.9 years). Large artificial snags persisted the longest (11.8 years). Cavities in natural snags developed within 3 years following tree death. The mean number of cavities per snag was five times greater in large versus small snags and large snags were more likely to have multiple cavities, emphasizing the importance of mature pine stands for cavity-dependent wildlife species.

  8. Regeneration of kaolin mined lands to maximize loblolly pine growth and wildlife habitat

    SciTech Connect (OSTI)

    McEvoy, K.E.; Morris, L.A.; Hendrick, R.L.; Ogden, E.A.

    1999-07-01

    Compliance with the Surface Mining Control and Reclamation Act of 1977 and Georgia Surface Mining Act of 1968 requires that land equal in area to each year's disturbance by reclaimed and a vegetative cover established. Approximately 60% of kaolin mined areas are reclaimed to pine forest. Current methods of reclamation after grading involve fertilization, seeding with a cover crop of grass and legumes, followed by planting of tree seedlings. Restrictive soil physical conditions, a lack of organic matter and nutrients, and competition by cover crop species can reduce survival and growth of loblolly pine seedlings. Also, current cover crop species have only marginal value for wildlife. In this research, the authors evaluated alternative methods of reforestation that (1) control erosion while providing greater benefits for wildlife and reduced competition with loblolly pine seedlings, (2) ameliorate adverse soil physical conditions through deeper tillage (subsoiling vs. disk harrowing), and (3) improve spoil fertility and structure by application of a composted paper mill by-product. Results from field trials indicate control of erosion by wildlife grasses is comparable to seed mixtures currently used in the industry. Subsoiling and disking both had ameliorative effects on soil physical properties with seedling survival at 92% and 88% respectively, compared to 45% of the surrounding area. Composted paper mill by-product served as an additional source of organic matter, nutrients, and protective mulch, thereby enhancing seedling growth as well as ameliorating pine seedlings mulched with the paper mill compost was greater than twice the size of seedlings grown under current reclamation practices.

  9. Kudzu (Pueraria montana) community responses to herbicides, burning, and high-density loblolly pine

    SciTech Connect (OSTI)

    T.B. Harrington; L.T. Rader-Dixon; J.W. Taylor, Jr.

    2003-11-01

    Kudzu is an aggressive, nonnative vine that currently dominates an estimated 810,000 ha of mesic forest communities in the eastern United States. To test an integrated method of weed control, abundances of kudzu and other plant species were compared during 4 yr after six herbicide treatments (clopyralid, triclopyr, metsulfuron, picloram 1 2,4-D, tebuthiuron, and a nonsprayed check), in which loblolly pines were planted at three densities (0, 1, and 4 seedlings m22) to induce competition and potentially delay kudzu recovery. This split-plot design was replicated on each of the four kudzu-dominated sites near Aiken, SC. Relative light intensity (RLI) and soil water content (SWC) were measured periodically to identify mechanisms of interference among plant species. Two years after treatment (1999), crown coverage of kudzu averaged , 2% in herbicide plots compared with 93% in the nonsprayed check, and these differences were maintained through 2001, except in clopyralid plots where kudzu cover increased to 15%. In 2001, pine interference was associated with 33, 56, and 67% reductions in biomass of kudzu, blackberry, and herbaceous vegetation, respectively. RLI in kudzu-dominated plots (4 to 15% of full sun) generally was less than half that of herbicide-treated plots. SWC was greatest in tebuthiuron plots, where total vegetation cover averaged 26% compared with 77 to 111% in other plots. None of the treatments eradicated kudzu, but combinations of herbicides and induced pine competition delayed its recovery.

  10. Relationship of coarse woody debris to arthropod Availability for Red-Cockaded Woodpeckers and other bark-foraging birds on loblolly pine boles.

    SciTech Connect (OSTI)

    Horn, Scott; Hanula, James, L.

    2008-04-01

    Abstract This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda L.) in 1997 and again in 1998. We sampled arthropods in coarse woody debris removal and control stands using crawl traps that captured arthropods crawling up tree boles, burlap bands wrapped around trees, and cardboard panels placed on the ground. We captured 27 orders and 172 families of arthropods in crawl traps whereas 20 arthropod orders were observed under burlap bands and cardboard panels. The most abundant insects collected from crawl traps were aphids (Homoptera: Aphididae) and ants (Hymenoptera: Forrnicidae). The greatest biomass was in the wood cockroaches (Blattaria: Blattellidae), caterpillars (Lepidoptera) in the Family Noctuidae, and adult weevils (Coleoptera: Curculionidae). The most common group observed underneath cardboard panels was lsoptera (termites), and the most common taxon under burlap bands was wood cockroaches. Overall, arthropod abundance and biomass captured in crawl traps was similar in control and removal plots. In contrast, we observed more arthropods under burlap bands (mean & SE; 3,021.5 k 348.6, P= 0.03) and cardboard panels (3,537.25 k 432.4, P= 0.04) in plots with coarse woody debris compared with burlap bands (2325 + 171.3) and cardboard panels (2439.75 + 288.9) in plots where coarse woody debris was removed. Regression analyses showed that abundance beneath cardboard panels was positively correlated with abundance beneath burlap bands demonstrating the link between abundance on the ground with that on trees. Our results demonstrate that short-term removal of coarse woody debris from pine forests reduced overall arthropod availability to bark-foraging birds.

  11. Quantifying And Predicting Wood Quality Of Loblolly And Slash Pine Under Intensive Forest Management Final Technical Report

    SciTech Connect (OSTI)

    Richard F. Daniels; Alexander Clark III

    2006-05-04

    The forest industry will increasingly rely on fast-growing intensively managed southern pine plantations to furnish wood and fiber. Intensive silvicultural practices, including competition control, stand density control, fertilization, and genetic improvement are yielding tremendous gains in the quantity of wood production from commercial forest land. How these technologies affect wood properties was heretofore unknown, although there is concern about the suitability of fast-grown wood for traditional forest products. A four year study was undertaken to examine the effects of these intensive practices on the properties of loblolly and slash pine wood by applying a common sampling method over 10 existing field experiments. Early weed control gets young pines off to a rapid start, often with dramatically increased growth rates. This response is all in juvenile wood however, which is low in density and strength. Similar results are found with early Nitrogen fertilization at the time of planting. These treatments increase the proportion of juvenile wood in the tree. Later, mid-rotation fertilization with Nitrogen and Phosphorus can have long term (4-8 year) growth gains. Slight reductions in wood density are short-lived (1-2 years) and occur while the tree is producing dense, stiff mature wood. Impacts of mid-rotation fertilization on wood properties for manufacturing are estimated to be minimal. Genetic differences are evident in wood density and other properties. Single family plantings showed somewhat more uniform properties than bulk improved or unimproved seedlots. Selection of genetic sources with optimal wood properties may counter some of the negative impacts of intensive weed control and fertilization. This work will allow forest managers to better predict the effects of their practices on the quality of their final product.

  12. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina.

    SciTech Connect (OSTI)

    Horn, S.; Hanula, J., L.

    2004-03-10

    Horn, Scott, and James L. Hanula. 2004. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina. 39(3): 464-469. Abstract: In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees. Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may negatively impact these vital organisims. Most reported studies show that human impacts on pollinators are overwhelmingly negative. Reductions in pollinator populations may profoundly impact plant population dynamics and ecosystem function. Little baseline data exists on the diversity and relative abundance of bees and wasps in southern forests. The objective of this study was to develop a simple, effective method of surveying cavity-nesting bees and wasps and to determine species diversity in mature forests of loblolly pine, the most widely planted tree species in the southern United States.

  13. CHRONIC IRRADIATION OF SCOTS PINE TREES (PINUS SYLVESTRIS) IN THE CHERNOBYL EXCLUSION ZONE: DOSIMETRY AND RADIOBIOLOGICAL EFFECTS

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.

  14. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottiivar.densa) Forests in the Florida Keys, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmoretree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.less

  15. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine ( Pinus elliottii var. densa ) Forests in the Florida Keys, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less

  16. Performance and value of CAD-deficient pine- Final Report

    SciTech Connect (OSTI)

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype x treatment interactions was found for any of the traits studied, in the fertilized plots, the effect of the cad-n1 allele on wood density was reduced. The study indicates that the cad-n1 allele could be a valuable gene to the pulp and paper industry for the purpose of enhancing pulp yields through increasing wood density. Stem growth and wood density associated with a mutant null (cad-n1) allele were examined in three 15-year-old loblolly pine diallel tests, established on two sites in the southern United States. In each diallel test, one or two cad-n1 heterozygous parents were crossed with five unrelated wild-type parents, to produce five or ten full-sib families. In all, 839 trees from 20 full-sib families in four genetic backgrounds (a cad-n1 heterozygote x 5 unrelated trees) were sampled, genotyped at the cad locus, and assessed for growth and wood density traits. In a combined analysis of all four genetic backgrounds, we found evidence for effects of increased wood density associated with the cad-n1 allele at age 15 (p=0.03) years and height growth at ages 6 (p=0.03) and 15 (p=0.005). There were large differences in the cad-n1 effects for the various growth and wood traits among the diallel tests. This variation may be due to either different genetic backgrounds among the parents of the different diallel tests, or for different growing environments at the field sites. Even though the cad-n1 effect on growth and wood density was significant across genetic backgrounds, the effect was variable among full-sib families within backgrounds. We speculate that certain wild-type alleles from second parents specifically interact with cad-n1 producing large positive effects. In addition, pleiotropic effects on growth and wood density appear to be associated with the cad-n1 allele. While substantial gains are possible through deployment of trees carrying cad-n1, these gains may be family-specific and should be verified for each cross through field testing.

  17. Eastern Pine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    + Reflect Natural Elements * Light Penetration + Diffusion * IntegratedBuilt-in Furniture * Open Concept Design * Healthy + Durable Materials Eastern Pine 25 MATERIAL CRITERIA ...

  18. AmeriFlux US-Vcp Valles Caldera Ponderosa Pine

    SciTech Connect (OSTI)

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Vcp Valles Caldera Ponderosa Pine. Site Description - The Valles Caldera Ponderosa Pine site is located in the 1200km2 Jemez River basin of the Jemez Mountains in north-central New Mexico at the southern margin of the Rocky Mountain ecoregion. The Ponderosa Pine forest is the warmest and lowest (below 2700m) zone of the forests in the Valles Caldera National Preserve. Its vegetation is composed of a Ponderosa Pine (Pinus Ponderosa) overstory and a Gambel Oak (Quercus gambelii) understory.

  19. INDIGO PINE

    Broader source: Energy.gov [DOE]

    It’s not easy to get 50 people to work together, meet deadlines, and exchange ideas on a long-term project. Sometimes, it feels like assembling a jigsaw puzzle. The Clemson University team seems to have taken that analogy to heart with their 2015 Solar Decathlon entry, dubbed “Indigo Pine."

  20. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  1. Overstory and understory relationships in longleaf pine plantations 14 years after thinning and woody control.

    SciTech Connect (OSTI)

    Harrington, Timothy, B.

    2011-09-09

    To develop silvicultural strategies for restoring longleaf pine (Pinus palustris Mill.) savannas, mortality and growth of overstory pines and midstory hardwoods and abundance and species richness of herbs were studied for 14 years after pine thinning and nonpine woody control. Pine cover in thinned stands was about half of that in nonthinned stands through year 5, but it lagged by only 8% and 3% in years 9 and 14, respectively, because of vigorous crown responses. Despite a cumulative mortality of 64% of hardwood stems from prescribed fires in years 0, 4, and 9, hardwood basal area in thinned stands (2.1 m2/ha) was three times that in nonthinned stands (0.7 m2/ha) in year 14. Thinning was associated with 13%-22% more cover and six to eight more species of herbs in years 3-8 but only 6% more cover and two more species in year 14 because of accelerated growth of pine cover and hardwood basal area. However, similar increases in cover and richness of herb species in the woody control treatment were retained through year 14 because it had sustained reductions in hardwood and shrub abundance. Silvicultural strategies that substantially delay encroachment by pines, hardwoods, and shrubs will be those most effective at retaining herb species in longleaf pine savannas, including planting pines at wide spacing, periodic thinning and woody control, and frequent burning.

  2. Air-pollution injury on Pinus strobus in Indiana Dunes National Lakeshore - 1985 survey results. Final report

    SciTech Connect (OSTI)

    Sanchini, P.J.

    1986-10-01

    Visible symptoms of ozone injury were observed on 100% of the Eastern white pine trees (Pinus strobus) sampled in 1985 from permanent pine plots at Indiana Dunes National Lakeshore. Average injury was low and affected about 5% of the needle surface. Only 6% of the trees sampled had more than 10% injury. Fleck injury was the most common ozone symptom encountered, followed by tipburn and chlorotic mottle. Significant variation among plots existed in total ozone injury, chlorotic mottle, tipburn, and needle length. Symptoms of other injury types were observed on 9% of the needle surfaces of sampled trees.

  3. Determination of terpenoid content in pine by organic solvent extraction and fast-GC analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; Davis, Mark

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts frommore » the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. In conclusion, diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.« less

  4. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  5. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  6. Restoring a disappearing ecosystem: the Longleaf Pine Savanna.

    SciTech Connect (OSTI)

    Harrington, Timothy B.; Miller, Karl V.; Park, Noreen

    2013-05-01

    Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, tree thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.

  7. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the wood—terpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  8. Southern Pine Based on Biorefinery Center

    SciTech Connect (OSTI)

    Ragauskas, Arthur J; Singh, Preet

    2014-01-10

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  9. Pine Tree Fitchburg Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Pine Tree Fitchburg Biomass Facility Facility Pine Tree Fitchburg Sector Biomass Owner Suez Renewable Energy NA Location Westminster, Massachusetts Coordinates...

  10. Pine Tree Bethlehem Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    search Name Pine Tree Bethlehem Biomass Facility Facility Pine Tree Bethlehem Sector Biomass Owner Suez Renewable Energy NA Location Bethlehem, New Hampshire Coordinates...

  11. Photosynthesis, Nitrogen, Their Adjustment and its Effects on Ecosystem Carbon Gain at Elevated CO{sub 2}l. A Comparison of Loblolly and Ponderosa Pines

    SciTech Connect (OSTI)

    Ball, J. Timothy; Eichelmann, Hillar Y.; Tissue, David T.; Lewis, James D.; Picone, Johnn B.; Ross, Peter D.

    1996-12-01

    A functional understanding of terrestrial ecosystem carbon processes is essential for two reasons. First, carbon flow is a most fundamental aspects of ecosystem function as it mediates most of the energy flow in these systems. Second, carbon flow also mediates the majority of energy flow in the global economy and will do for the foreseeable future. The increased atmospheric carbon dioxide and its inevitable flow through global ecosystems will influence ecosystem processes. There is, of course, great interest in the potential of ecosystems to sequester some of the carbon being loaded into the atmosphere by economic activity.

  12. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge April 11, 2014 - 11:20am Addthis Black Pine Engineering's pilot compressor in California. The team won the Clean Energy Trust Clean Energy Challenge, securing its spot as a regional finalist in the National Clean Energy Business Plan Competition. | Photo courtesy of Black Pine Engineering Black Pine Engineering's pilot compressor in

  13. User`s guide for SeedCalc: A decision-support system for integrated pest management in slash pine seed orchards. Forest Service general technical report

    SciTech Connect (OSTI)

    Fatzinger, C.W.; Dixon, W.N.

    1996-03-01

    SeedCalc, a decision-support system designed for use on personal computers, evaluates the consequences of different pest management strategies in slash pine (Pinus elliotti Engelm. var. elliottii) seed orchards. This interactive program allows managers to enter orchard survey data and manipulate pesticides applied, application equipment costs, insect damage rates, strobilus development rates and beginning population, and pesticide efficacy rates to develop a pest management program that best fits their needs. This guide provides user instructions for SeedCalc, presents screen and printer examples, and describes the structure, assumptions, default values and flow charts of the system.

  14. Running Title: C and N Allocation in Pine

    SciTech Connect (OSTI)

    Ball, J. Timothy

    1996-12-01

    A long standing challenge has been understanding how plants and ecosystems respond to shifts in the balance of resource availabilities. The continuing rise in atmospheric CO{sub 2} will induce changes in the availability and use of several terrestrial ecosystem resources. We report on the acquisition and allocation of carbon and nitrogen in Pinus ponderosa Laws. seedlings grown at three levels of atmospheric carbon dioxide (370, 525, and 700 {micro}mol mol{sup -1}) and three levels of soil nitrogen supply in a controlled environment experiment. Nitrogen was applied (0, 100, and 200 {micro}g N g soil{sup -1}) at planting and again at week 26 of a 58-week, 4-harvest experiment. At the final harvest, plants grown with variety low available soil nitrogen showed no significant response to atmospheric CO{sub 2}. Plants at higher N levels responded positively to CO{sub 2} with the highest biomass at the middle CO{sub 2} level. Plants growing at the lowest N levels immediately allocated a relatively large portion of their nitrogen and biomass to roots. Plants growing at near present ambient CO{sub 2} levels allocated relatively little material to roots when N was abundant but moved both carbon and nitrogen below-ground when N was withheld. Plants growing at higher CO{sub 2} levels, allocated more C and N to roots even when N was abundant, and made only small shifts in allocation patterns when N was no longer supplied. In general, allocation of C and N to roots tended to increase when N supply was restricted and also with increasing atmospheric CO{sub 2} level. These allocation responses were consistent with patterns suggesting a functional balance in the acquisition of above-ground versus below-ground resources. In particular, variation in whole tree average nitrogen concentration can explain 68% of the variation ratio of root biomass to shoot biomass across the harvests. The capability to respond to temporal variation in nutrient conditions, the dynamics of nutrient uptake, and the dynamics of nutrient use were all seen to be influenced by the interplay between previous N supply, previous C supply, and the concentration of CO{sub 2} in the atmosphere. The data suggest that in an elevated CO{sub 2} atmosphere ponderosa pine seedlings will have higher root biomass and be likely to capture more N compared to seedlings today. Further, the combined growth and allocation responses of Ponderosa pine at elevated CO{sub 2} resulted in higher growth per unit N (nitrogen productivity) and lower N per gram of tissue (all tissues not just leaves) when nitrogen was not in abundant supply.

  15. AmeriFlux US-Me2 Metolius-intermediate aged ponderosa pine

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me2 Metolius-intermediate aged ponderosa pine. Site Description - The mean stand age is 64 years old and the stand age of the oldest trees is about 100 years old. This site is one of the Metolius cluster sites with different age and disturbance classes and part of the AmeriFlux network (http://ameriflux.ornl.gov/fullsiteinfo.php?sid=88). The overstory is almost exclusively composed of ponderosa pine trees (Pinus ponderosa Doug. Ex P. Laws) with a few scattered incense cedars (Calocedrus decurrens (Torr.) Florin) and has a peak leaf area index (LAI) of 2.8 m2 m-2. Tree height is relatively homogeneous at about 16 m, and the mean tree density is approximately 325 trees ha-1 (Irvine et al., 2008). The understory is sparse with an LAI of 0.2 m2 m-2 and primarily composed of bitterbrush (Purshia tridentate (Push) DC.) and Manzanita (Arctostaphylos patula Greene). Soils at the site are sandy (69%/24%/7% sand/silt/clay at 0–0.2 m depth and 66%/27%/7% at 0.2–0.5 m depth, and 54%/ 35%/11% at 0.5–1.0 m depth), freely draining with a soil depth of approximately 1.5 m (Irvine et al., 2008; Law et al., 2001b; Schwarz et al., 2004).

  16. Effects of Precommercial Thinning and Midstory Control on Avian and Small Mammal Communities during Longleaf Pine Savanna Restoration.

    SciTech Connect (OSTI)

    Lane, Vanessa R; Kilgo, John C

    2015-01-01

    Abstract - Restoring longleaf pine (Pinus palustris Mill.) savanna is a goal of many southern land managers, and longleaf plantations may provide a mechanism for savanna restoration. However, the effects of silvicultural treatments used in the management of longleaf pine plantations on wildlife communities are relatively unknown. Beginning in 1994, we examined effects of longleaf pine restoration with plantation silviculture on avian and small mammal communities using four treatments in four 8- to 11- year-old plantations within the Savannah River Site in South Carolina. Treatments included prescribed burning every 3 to 5 years, plus: (1) no additional treatment (burn-only control); (2) precommercial thinning; (3) non-pine woody control with herbicides; and (4) combined thinning and woody control. We surveyed birds (1996-2003) using 50-m point counts and small mammals with removal trapping. Thinning and woody control alone had short-lived effects on avian communities, and the combination treatment increased avian parameters over the burn-only control in all years. Small mammal abundance showed similar trends as avian abundance for all three treatments when compared with the burn-only control, but only for 2 years post-treatment. Both avian and small mammal communities were temporarily enhanced by controlling woody vegetation with chemicals in addition to prescribed fire and thinning. Therefore, precommercial thinning in longleaf plantations, particularly when combined with woody control and prescribed fire, may benefit early-successional avian and small mammal communities by developing stand conditions more typical of natural longleaf stands maintained by periodic fire.

  17. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    SciTech Connect (OSTI)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.

    2014-01-10

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  18. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect (OSTI)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  19. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    After winning the CET Clean Energy Challenge, Black Pine Engineering will now compete at ... lowers both energy costs and the risk of food spoiling during power outages. | ...

  20. Pine Hill, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pine Hill, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.3075694, -75.6521271 Show Map Loading map... "minzoom":false,"mappingse...

  1. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  2. Pine County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 7 Climate Zone Subtype A. Places in Pine County, Minnesota Askov, Minnesota Brook Park, Minnesota Bruno, Minnesota Denham, Minnesota Finlayson, Minnesota Henriette,...

  3. Southern Pine Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Pine Electric Power Association offers the Comfort Advantage Home Program which provides rebates on heat pumps to new homes which meet certain Comfort Advantage weatherization standards....

  4. Pine Mountain Club, California: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Pine Mountain Club, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8469211, -119.1567751 Show Map Loading map......

  5. Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia

    Broader source: Energy.gov [DOE]

    Case study of Pine Mountain Builders who worked with Building America research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight 1.0-1.8 ACH50 construction, spray-foamed walls and attics, and high-efficiency heat pumps with fresh-air intake.

  6. Southern Pine Elec Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Southern Pine Elec Coop, Inc Place: Alabama Phone Number: Atmore Office: 251.368.4842; Brewton Office: 251.867.5415; Evergreen Office: 251.578.3460; Frisco...

  7. Pine Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Pine Mountain is a town in Harris County and Meriwether County, Georgia. It falls under Georgia's 3rd congressional...

  8. White Pine County, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White Pine County is a county in Nevada. Its FIPS County Code is 033. It is classified as...

  9. Southern Pines, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Southern Pines is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  10. Whispering Pines, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Whispering Pines is a village in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  11. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  12. EIS-0443: Southwest Intertie Project-South (SWIP-S), White Pine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White Pine, Nye, Lincoln, and Clark counties, NV EIS-0443: Southwest Intertie Project-South (SWIP-S), White Pine, Nye, Lincoln, and Clark counties, NV Documents Available for ...

  13. AmeriFlux US-Wi4 Mature red pine (MRP) (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Wi4 Mature red pine (MRP) Citation Details In-Document Search Title: AmeriFlux US-Wi4 Mature red pine (MRP) This is the AmeriFlux version of the carbon flux data for the site ...

  14. Paleoclimatic implications of glacial and postglacial refugia for Pinus pumila in western Beringia

    SciTech Connect (OSTI)

    Anderson, P M; Lozhkin, A V; Solomatkina, T B; Brown, T A

    2010-02-05

    Palynological results from Julietta Lake currently provide the most direct evidence to support the existence of a glacial refugium for Pinus pumila in mountains of southwestern Beringia. Both percentages and accumulation rates indicate the evergreen shrub survived until at least {approx}19,000 14C yr B.P. in the Upper Kolyma region. Percentage data suggest numbers dwindled into the late glaciation, whereas pollen accumulation rates point towards a more rapid demise shortly after {approx}19,000 14C yr B.P. Pinus pumila did not re-establish in any great numbers until {approx}8100 14C yr B.P., despite the local presence {approx}9800 14C yr B.P. of Larix dahurica, which shares similar summer temperature requirements. The postglacial thermal maximum (in Beringia {approx}11,000-9000 14C yr B.P.) provided Pinus pumila shrubs with equally harsh albeit different conditions for survival than those present during the LGM. Regional records indicate that in this time of maximum warmth Pinus pumila likely sheltered in a second, lower-elevation refugium. Paleoclimatic models and modern ecology suggest that shifts in the nature of seasonal transitions and not only seasonal extremes have played important roles in the history of Pinus pumila over the last {approx}21,000 14C yr B.P.

  15. Savannah River Site Vegetation Map | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Set-Aside Program SREL HOME Savannah River Site Vegetation Map swatch 1. Industrial swatch 2. Open water swatch 3. Bare soil / bare surface swatch 4. Sparse herbaceous vegetation swatch 5. Grasses and forbs swatch 6. Shrubs, grasses, and forbs swatch 7. Disturbed and revegetated in 1997 swatch 8. Marsh / aquatic macrophytes swatch 9. Young, open-canopy loblolly pine swatch 10. Open-canopy loblolly pine swatch 11. Young, dense-canopy loblolly pine swatch 12. Dense-canopy loblolly pine swatch 13.

  16. New Whole-House Solutions Case Study: Pine Mountain Builders

    SciTech Connect (OSTI)

    none,

    2013-02-01

    Pine Mountain Builders achieved HERS scores as low as 59 and electric bills as low as $50/month with extensive air sealing (blower door tests = 1.0 to 1.8 ACH 50), R-3 XPS sheathing instead of OSB, and higher efficiency heat pumps.

  17. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  18. Hydrologic calibration of paired watersheds using a MOSUM approach

    SciTech Connect (OSTI)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  19. EIS-0215: Pinon Pine Power Project, Tracy Station, NV

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

  20. High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations

    Broader source: Energy.gov [DOE]

    This abstract outlinse a project that is designing and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations.

  1. Building America Whole-House Solutions for New Homes: Pine Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight ... PDF icon Pine Mountain Builders - Georgia More Documents & Publications Building ...

  2. Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    iLoblolly P ine , Mixed PineHardwood Upland Hardwood Bottomland Hardwood . Bottomland HardwoodPine Other-disturbed area N ATTA Range o Monoring Wells Streams SRS Bays Pipes o...

  3. Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Loblolly Pine IiiiiI Slash Pine D Bottomland Hardwood D Wetland Depression Water Other - Disturbed Area N A 560 Meters o Monoring Wells 11 Streams N Utility ROW -0...

  4. White Pine Co. Public School System Biomass Conversion Heating Project

    SciTech Connect (OSTI)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  5. Disposal of chemical agents and munitions stored at Pine Bluff Arsenal, Pine Bluff, Arkansas. Final phase 1, Environmental report

    SciTech Connect (OSTI)

    Ensminger, J.T.; Hillsman, E.L.; Johnson, R.D.; Morrisey, J.A.; Staub, W.P.; Boston, C.R.; Hunsaker, D.B.; Leibsch, E.; Rickert, L.W.; Tolbert, V.R.; Zimmerman, G.P.

    1991-09-01

    The Pine Bluff Arsenal (PBA) near Pine Bluff, Arkansas, is one of eight continental United States (CONUS) Army installations where lethal unitary chemical agents and munitions are stored and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at PBA consists of approximately 12%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts). The purpose of this report is to examine the proposed implementation of on-site disposal at PBA in light of more recent and more detailed data than those on which the FPEIS is based. New population data were used to compute fatalities using the same computation methods and values for all other parameters as in the FPEIS. Results indicate that all alternatives are indistinguishable when the potential health impacts to the PBA community are considered. However, risks from on-site disposal are in all cases equal to or less than risks from other alternatives. Furthermore, no unique resources with the potential to prevent or delay implementation of on-site disposal at PBA have been identified.

  6. Particle size and shape distributions of hammer milled pine

    SciTech Connect (OSTI)

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  7. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Controls by light, temperature and stomatal conductance

    SciTech Connect (OSTI)

    Harley, P.; Eller, Allyson; Guenther, Alex B.; Monson, Russell K.

    2014-07-14

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in ?-3-carene.

  8. EIS-0443: Southwest Intertie Project-South (SWIP-S), White Pine, Nye,

    Energy Savers [EERE]

    Lincoln, and Clark counties, NV | Department of Energy 3: Southwest Intertie Project-South (SWIP-S), White Pine, Nye, Lincoln, and Clark counties, NV EIS-0443: Southwest Intertie Project-South (SWIP-S), White Pine, Nye, Lincoln, and Clark counties, NV Documents Available for Download October 26, 2010 EIS-0443: Record of Decision Project Financing for Southwest Intertie Project - South February 19, 2010 EIS-0443: Final Environmental Impact Statement Project Financing for Southwest Intertie

  9. AmeriFlux US-Me5 Metolius-first young aged pine

    SciTech Connect (OSTI)

    Law, Bev

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me5 Metolius-first young aged pine. Site Description - Previously old-growth ponderosa pine, clearcut in 1978 and allowed to regenerate naturally. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  10. Alexander Pines, 1988 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexander Pines, 1988 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1980's Alexander Pines, 1988 Print Text Size: A A A FeedbackShare Page Chemistry: For his brilliant

  11. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The 22-acre (8.9 ha) Loblolly Pine Stand Set-Aside is one of the original ten SREL habitat reserve areas which were selected to complement the old-field habitatplant succession ...

  12. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect (OSTI)

    Samuelson, Lisa [Auburn University] [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  13. AmeriFlux US-KS1 Kennedy Space Center (slash pine)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Drake, Bert [Smithsonian Environmental Research Center; Hinkle, Ross [University of Central Florida

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-KS1 Kennedy Space Center (slash pine). Site Description - The Kennedy Space Center Slash Pine Flatwoods site is located in the Merritt Island National Wildlife Refuge at the Kennedy Space Center (KSC) on the east coast of central Florida. Occupying 310 ha of local forest, the slash pine flatwoods ecosystem is managed as an uneven-aged stand with a sparsely populated overstory and a dense oak-dominated understory. Disturbances tend to occur on a 7 to 10 year cycle, mostly related to fire or hurricane activity. Prescribed fires have been conducted since 1969 to control understory fuel. The most recent burn was conducted in February of 1995. Following the burn, the stand was allowed to naturally regenerate into a open canopy of slash pines, less than 15% of canopy coverage ( on the order of 15-30 trees per ha), with a understory mostly composed of saw palmetto and scrub oak. There was a seasonally wet swale to the southeast that was on the margin of the flux tower footprint. A severe drought gripped most of Florida beginning in 1998 until the later half of 2001 resulting in four years of relatively low annual precipitation totals. Exceptionally high annual rainfall amounts in 2004 were the result of a pair of hurricanes that hit the area in August and September of 2004. Wind directions for the site are as follows: W and NW in the winter, afternoon E sea breeze in the summer.

  14. The initial phase of a Longleaf Pine-Wiregrass Savanna restoration: species establishment and community responses.

    SciTech Connect (OSTI)

    Aschenbach, Todd, A; Foster, Bryan, L.; Imm, Donald, W.

    2010-09-01

    AbstractAbstract The significant loss of the longleaf pine-wiregrass ecosystem in the southeastern United States has serious implications for biodiversity and ecosystem functioning. In response to this loss, we have initiated a long-term and landscape-scale restoration experiment at the 80,125 ha (310 mi2) Department of Energy Savannah River Site (SRS) located near Aiken, South Carolina. Aristida beyrichiana (wiregrass), an important and dominant grass (i.e., a matrix species) of the longleaf pine savanna understory, and 31 other herbaceous non-matrix species were planted at six locations throughout SRS in 2002 and 2003. Of the 36,056 transplanted seedlings, 75% were still alive in June 2004, while mean 12 year survival across all planted species was 48%. Lespedeza hirta (hairy lespedeza) exhibited the greatest overall survival per 3 3 m cell at 95%, whereas Schizachyrium spp. (little bluestem) exhibited the greatest mean cover among individual species at 5.9%. Wiregrass survival and cover were significantly reduced when planted with non-matrix species. Aggregate cover of all planted species in restored cells averaged 25.9% in 2006. High rates of survival and growth of the planted species resulted in greater species richness (SR), diversity, and vegetative cover in restored cells. Results suggest that the loss of the longleaf pine-wiregrass ecosystem may be ameliorated through restoration efforts and illustrate the positive impact of restoration plantings on biodiversity and vegetative cover.

  15. The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pereira, J.; Agblevor, F. A.; Beis, S. H.

    2012-01-01

    Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amountsmore » of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.« less

  16. AmeriFlux US-Me4 Metolius-old aged ponderosa pine

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Law, Bev [Oregon State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Me4 Metolius-old aged ponderosa pine. Site Description - The site is located on land designated as a Research Natural Area (RNA). The site is very open, with even-aged stands of old-growth trees, young trees and mixed aged stands. The eddy-flux tower footprint was classified as ~ 48% mixed aged, ~27% pure old growth and ~25% young aged stands. The data in this workbook describes the mixed aged component. A separate workbook describes the pure old growth component. Law et al (2001) Global Change Biology 7, 755-777; Law et al (2001) Agricultural and Forest Meteorology 110, 27-43; Anthoni et al (2002) Agricultural and Forest Meteorology 111, 203-222; Irvine & Law (2002) Global Change biology 8,1183-1194, Irivne et al (2004) Tree Physiology 24,753-763.

  17. Genotypic variability in ponderosa pine responses to combined ozone and drought stresses

    SciTech Connect (OSTI)

    Temple, P.J.

    1995-06-01

    Five-year-old ponderosa (Pinus ponderosa Laws.) seedlings from 18 half-sib and one full-sib families obtained from the California Tree Improvement Program were harvested after 1, 2, and 3 growing seasons of exposure to three levels of ozone (O{sub 3}) and two levels of available soil water (ASW) in open-top chambers in the California Sierras. Seedlings were evaluated for O{sub 3} injury symptoms, biomass, and radial growth in response to these stresses. Ozone injury responses were highly variable across families, but family rankings for O{sub 3} injury were consistent across years. Family rankings for O{sub 3} injury were highly correlated with those for reductions in biomass and radial growth for trees in the high ASW treatment, but drought-stressed trees showed no consistent relation between foliar 03 injury and reductions in growth. After three seasons of exposure to 88 ppb O{sub 3}, foliar biomass of the three most susceptible families averaged 60% less than trees in the low-O{sub 3} control, while O{sub 3} had no effect on growth of the three most resistant families. Variability across families of growth responses to drought was significantly less than the variability in seedling responses to O{sub 3}.

  18. Geologic map and coal sections of the Pine Ridge quadrangle, Moffat County, Colorado

    SciTech Connect (OSTI)

    Prost, G.L.; Brownfield, M.E.

    1983-01-01

    The Pine Ridge quadrangle was mapped as part of the US Geological Survey's program of classifying and evaluating mineral lands in the public domain. Coal is the primary resource of econmic interest within the quadrangle and occurs in the Lance and Fort Union Formations. Several unsuccessful oil-and-gas wells have been drilled within the quadrangle. Possible uranium deposits may be found in the Browns Park Formation. Sand and gravel are also present in the quadrangle. The main coal zone in the Lance Formation is found near the middle and contains coal beds ranging in thickness from 0.17 to 0.94 m. These coal beds are discontinuous, grading laterally and vertically into carbonaceous shales. The middle coal zone in the Lance Formation appears to be continuous from east to west across the quadrangle. Coal beds approximately 0.1 m thick occur locally just above the base of the Lance. There are no coal mines or prospects within the formation. Coal beds in the Fort Union Formation, although generally thicker than the Lance coals, are extremely lenticular and irregular in distribution. The Fort Union coal zone is 22 to 51 m thick and the lowermost coal bed is 36 to 177 m above the basal Fort Union contact. Coal beds pinch and swell, are split by shale and sandstone partings, are cut out by river-channel sandstones, and grade laterally and vertically into carbonaceous shales. Inferred coal resources were calculated for the Fort Union Formation coals. An estimated 3278 ha are underlain by approximately 195 million metric tons. Resources were not calculated for coal beds in the Lance Formation.

  19. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    SciTech Connect (OSTI)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of quantifying degraded states and provides a series of hypotheses for future experimental restoration work. More broadly, our work provides a framework for developing and evaluating reference models that incorporate multiple, interactive anthropogenic drivers of ecosystem degradation.

  20. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis

    SciTech Connect (OSTI)

    Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

    2008-12-01

    With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

  1. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; et al

    2015-11-04

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. MoremoreSOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.41.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation than could be explained by the VOCs measured in ambient air. Several recently-developed instruments quantified ambient semi- and intermediate-volatility organic compounds (S/IVOCs) that were not detected by a PTR-TOF-MS. An SOA yield of 2480 % from those compounds can explain the observed SOA, suggesting that these typically unmeasured S/IVOCs play a substantial role in ambient SOA formation. Our results allow ruling out condensation sticking coefficients much lower than 1. Our measurements help clarify the magnitude of SOA formation in forested environments, and demonstrate methods for interpretation of ambient OFR measurements.less

  2. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    SciTech Connect (OSTI)

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers. Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.

  3. Effect of coarse woody debris manipulation on soricid and herpetofaunal communities in upland pine stands of the southeastern coastal plain.

    SciTech Connect (OSTI)

    Davis, Justin, Charles

    2009-04-01

    Abstract -The majority of studies investigating the importance of coarse woody debris (CWD) to forest- floor vertebrates have taken place in the Pacific Northwest and southern Appalachian Mountains, while comparative studies in the southeastern Coastal Plain are lacking. My study was a continuation of a long-term project investigating the importance of CWD as a habitat component for shrew and herpetofaunal communities within managed pine stands in the southeastern Coastal Plain. Results suggest that addition of CWD can increase abundance of southeastern and southern short-tailed shrews. However, downed wood does not appear to be a critical habitat component for amphibians and reptiles. Rising petroleum costs and advances in wood utilization technology have resulted in an emerging biofuels market with potential to decrease CWD volumes left in forests following timber harvests. Therefore, forest managers must understand the value of CWD as an ecosystem component to maintain economically productive forests while conserving biological diversity.

  4. Compartment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 N A 500 Meters Vegetation 250 o 250 Community _ Loblolly Pine D Mixed Pine/Hardwood D Upland Hardwood _ Carolina Bay Wetland _ Water N Site Boundary N Roads I'..... vl SRS Bays li~;J Hydric Soils Soils Soil Series and Phase DFuA .09 Figure 19-1. Plant cOllllllunities and soils associated with the Ginger's Bay Set-Aside Area. 19-7 Set-Aside 19: Ginger's

  5. Vegetation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vegetation 250 o 250 N A Community _ Loblolly Pine D Bottomland Hardwood I!!!I Carolina Bay Wetland _ Bottomland HardwodlPine W Streams ~ Roads A/; Rails [2] SRS Bays Will Hydric Soils 500 Meters Soils Soil Series and Phase D DoA D DoB DRm rn Uo Figure 24-1. Plant COll/llll/lzities and soils associated with the Cypress Bay Set-Aside Area. sc 24-5 Set-Aside 24: Cypress Bay

  6. Data Report: Meteorological and Evapotranspiration Data from Sagebrush and Pinyon Pine/Juniper Communities at Pahute Mesa, Nevada National Security Site, 2011-2012

    SciTech Connect (OSTI)

    Jasoni, Richard L; Larsen, Jessica D; Lyles, Brad F.; Healey, John M; Cooper, Clay A; Hershey, Ronald L; Lefebre, Karen J

    2013-04-01

    Pahute Mesa is a groundwater recharge area at the Nevada National Security Site. Because underground nuclear testing was conducted at Pahute Mesa, groundwater recharge may transport radionuclides from underground test sites downward to the water table; the amount of groundwater recharge is also an important component of contaminant transport models. To estimate the amount of groundwater recharge at Pahute Mesa, an INFIL3.0 recharge-runoff model is being developed. Two eddy covariance (EC) stations were installed on Pahute Mesa to estimate evapotranspiration (ET) to support the groundwater recharge modeling project. This data report describes the methods that were used to estimate ET and collect meteorological data. Evapotranspiration was estimated for two predominant plant communities on Pahute Mesa; one site was located in a sagebrush plant community, the other site in a pinyon pine/juniper community. Annual ET was estimated to be 31013.9 mm for the sagebrush site and 34715.9 mm for the pinyon pine/juniper site (March 26, 2011 to March 26, 2012). Annual precipitation measured with unheated tipping bucket rain gauges was 179 mm at the sagebrush site and 159 mm at the pinyon pine/juniper site. Annual precipitation measured with bulk precipitation gauges was 222 mm at the sagebrush site and 227 mm at the pinyon pine/juniper site (March 21, 2011 to March 28, 2012). A comparison of tipping bucket versus bulk precipitation data showed that total precipitation measured by the tipping bucket rain gauges was 17 to 20 percent lower than the bulk precipitation gauges. These differences were most likely the result of the unheated tipping bucket precipitation gauges not measuring frozen precipitation as accurately as the bulk precipitation gauges. In this one-year study, ET exceeded precipitation at both study sites because estimates of ET included precipitation that fell during the winter of 2010-2011 prior to EC instrumentation and the precipitation gauges started collecting data in March 2011.

  7. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  8. Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moyes, Andrew B.; Kueppers, Lara M.; Pett-Ridge, Jennifer; Carper, Dana L.; Vandehey, Nick; O'Neil, James; Frank, A. Carolin

    2016-02-01

    Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N.

  9. N A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    :1- N A 760 Meters o 380 Soils ~BaB DoB FuB OrA Rm VaB VeC o o Vegetation Compartment 72 380 o o Community * Loblolly Pine _ Slash Pine D Mixed PinelHardwood D Upland Hardwood m;:] Bottomland Hardwood * Wetland DepressionlStream Head * Water I!!!!!!!I Bottomland HardwoodlPine * Wastesites * Areas N.. Streams NUtility ROW 1':': Roads o Openwells [§ill Hydric Soils Figure 27-2. Plant COI1l11ll111ities and soils of the Road 6 Bay Set-Aside Area. 27-5 Set-Aside 27: Road 6 Bay

  10. Does elevated CO2 alter silica uptake in trees?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; Finzi, Adrien C.

    2015-01-13

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, longterm free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwoodmore » species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.« less

  11. Does elevated CO2 alter silica uptake in trees?

    SciTech Connect (OSTI)

    Fulweiler, Robinson W.; Maguire, Timothy J.; Carey, Joanna C.; Finzi, Adrien C.

    2015-01-13

    Human activities have greatly altered global carbon (C) and Nitrogen (N) cycling. In fact, atmospheric concentrations of carbon dioxide (CO2) have increased 40% over the last century and the amount of N cycling in the biosphere has more than doubled. In an effort to understand how plants will respond to continued global CO2 fertilization, longterm free-air CO2 enrichment experiments have been conducted at sites around the globe. Here we examine how atmospheric CO2 enrichment and N fertilization affects the uptake of silicon (Si) in the Duke Forest, North Carolina, a stand dominated by Pinus taeda (loblolly pine), and five hardwood species. Specifically, we measured foliar biogenic silica concentrations in five deciduous and one coniferous species across three treatments: CO2 enrichment, N enrichment, and N and CO2 enrichment. We found no consistent trends in foliar Si concentration under elevated CO2, N fertilization, or combined elevated CO2 and N fertilization. However, two-thirds of the tree species studied here have Si foliar concentrations greater than well-known Si accumulators, such as grasses. Based on net primary production values and aboveground Si concentrations in these trees, we calculated forest Si uptake rates under control and elevated CO2 concentrations. Due largely to increased primary production, elevated CO2 enhanced the magnitude of Si uptake between 20 and 26%, likely intensifying the terrestrial silica pump. This uptake of Si by forests has important implications for Si export from terrestrial systems, with the potential to impact C sequestration and higher trophic levels in downstream ecosystems.

  12. PINE00005709.pdf

    Office of Legacy Management (LM)

  13. Hydrothermal Liquefaction Oil and Hydrotreated Product from Pine Feedstock Characterized by Heteronuclear Two-Dimensional NMR Spectroscopy and FT-ICR Mass Spectrometry

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard T.; Olarte, Mariefel V.; Schmidt, Andrew J.; Schaub, Tanner

    2014-12-01

    Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bond correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.

  14. Vegetation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o 250 o 250 G-2.6 500 Meters Community _ Loblolly Pine D Mixed Pine/Hardwood D Upland Hardwood. IiiiI Carolina Bay Wetland m SRS Bays *. TES Plants (1) f\Vj Roads o Openwells N Site Boundary N A Soils &Ji I Seri es <rd Alire o BaS D FuA D FuB D LuB 1iiiiii0J Figure 22-1. Plant com11lunities and soils associated with the Little Cypress Bay Set-Aside Area. 22-5 Set-Aside 22: Little Cypress Bay

  15. Scientists say climate change could cause a 'massive' tree die-off in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the U.S. Southwest Climate change could cause a 'massive' tree die-off in the U.S. Southwest Scientists say climate change could cause a 'massive' tree die-off in the U.S. Southwest In a troubling new study says a warming climate could trigger a "massive" dieoff of coniferous trees in the U.S. southwest sometime this century. December 24, 2015 Dying conifers, particularly ponderosa pine (Pinus ponderosa) and sugar pine (Pinus lambertiana) in California's Sequoia National Park,

  16. INDIGO PINE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Buffalo, The State University of New York (SUNY) team may change that. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  17. INDIGO PINE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    designed to serve a family "from a full nest to an empty nest." Learn More CASA DEL SOL With the 2015 Solar Decathlon taking place in Irvine, California, Team Orange County --...

  18. INDIGO PINE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    blend in its Efficient, Affordable, Solar, Innovation--or EASI--House. Learn More AGGIE SOL The University of California, Davis, has strong pedigrees in both sustainable projects...

  19. INDIGO PINE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    storms in a state that averages 27 tornadoes yearly. Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  20. INDIGO PINE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Random | Alphabetical | Rating (High to Low) | Rating (Low to High) STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  1. Exploratory Research - Using Volatile Organic Compounds to Separate Heterotrophic and Autotrophic Forest Soil Respiration

    SciTech Connect (OSTI)

    Roberts, Scott D; Hatten, Jeffrey A

    2015-02-09

    The initial focus of this project was to develop a method to partition soil respiration into its components (autotrophic, heterotrophic etc.) using the fingerprint of volatile organic compounds (VOCs) from soils. We were able to identify 63 different VOCs in our study; however, due to technical difficulties we were unable to take reliable measurements in order to test our hypotheses and develop this method. In the end, we changed the objectives of the project. Our new objectives were to characterize the effects of species and soil moisture regime on the composition of soil organic matter. We utilized the soils from the greenhouse experiment we had established for the soil VOC study and determined the lignin biomarker profiles of each of the treatments. We found that moisture had a significant effect on the carbon content of the soils with the low moisture treatments having higher carbon content than the high moisture treatments. We found that the relative yield of syringyl phenols (SP), ligin (Lig), and substituted fatty acids (SFA) were elevated in deciduous planted pots and reduced in conifer planted pots relative to plant-free treatments. Our results suggest nuttall oak preserved lignin and SFA, while loblolly pine lost lignin and SFA similarly to the plant free treatments. Since we did not find that the carbon concentrations of the soils were different between the species, nuttall oak probably replaced more native soil carbon than loblolly pine. This suggests that relative to loblolly pine, nuttall oak is a priming species. Since priming may impact soil carbon pools more than temperature or moisture, determining which species are priming species may facilitate an understanding of the interaction that land use and climate change may have on soil carbon pools.

  2. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    King, David A.

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from site operations, specifically as associated with lead in surface soil at the abandoned water tank and nickel in surface soils over the northern portion of the parcel from former Bldg. K-1037 smelting operations. Low level detections of organics are also reported in some surface soils including Polycyclic aromatic hydrocarbons (PAHs) near Blair Road and common laboratory contaminants at randomly distributed locations. However, human health risk from site-related contaminants of potential concern (COPCs) are acceptable?though maximum concentrations of lead and nickel and the screening-level ecological risk assessment (SLERA) demonstrate no further ecological evaluation is warranted. The weight of evidence leads to the conclusion Parcel 21d does not require any actions per the FFA.

  3. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance of the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only NFI reports. Groundwater sampling was also conducted to support a Parcel 21d decision.

  4. Final Progress Report on Model-Based Diagnosis of Soil Limitations to Forest Productivity

    SciTech Connect (OSTI)

    Luxmoore, R.J.

    2004-08-30

    This project was undertaken in support of the forest industry to link modeling of nutrients and productivity with field research to identify methods for enhancing soil quality and forest productivity and for alleviating soil limitations to sustainable forest productivity. The project consisted of a series of related tasks, including (1) simulation of changes in biomass and soil carbon with nitrogen fertilization, (2) development of spreadsheet modeling tools for soil nutrient availability and tree nutrient requirements, (3) additional modeling studies, and (4) evaluation of factors involved in the establishment and productivity of southern pine plantations in seasonally wet soils. This report also describes the two Web sites that were developed from the research to assist forest managers with nutrient management of Douglas-fir and loblolly pine plantations.

  5. Pine Mountain Builders | Open Energy Information

    Open Energy Info (EERE)

    About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems...

  6. Pine Tree Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Type Commercial Scale Wind Facility Status In Service Owner Los Angeles Department of Water and Power Developer Los Angeles Department of Water and Power Energy Purchaser Los...

  7. Pinyon Pines I | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Terra-Gen Power Energy Purchaser Southern California Edison Co Location Tehachapi Pass CA...

  8. Pinyon Pines II | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Owner MidAmerican Energy Developer Terra-Gen Power Energy Purchaser Southern California Edison Co Location Tehachapi Pass CA...

  9. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site This relatively undisturbed 66.2 acre (26.8 ha) Set-Aside is one of the original ten SREL habitat reserves which presently is a forest dominated by turkey oak (Quercus laevis) and longleaf pine (Pinus palustris). This mixed species sandhills habitat is situated on infertile, poor-to-marginally productive soils, a habitat type that once was common to the Aiken Plateau as well as the SRS. However, forest type conversion to longleaf pine plantations has reduced this community type to isolated

  10. Biological pretreatment for thermomechanical (TMP) and chemithermomechanical (CTMP) pulping processes

    SciTech Connect (OSTI)

    Myers, G.C.; Akhtar, M.; Lentz, M.

    1996-10-01

    Treatment of wood chips with lignin-degrading fungi prior to preparing a refiner mechanical pulp (RMP) has substantially reduced energy consumption and increased paper strength properties. This study reports on thermomechanical (TMP) and chemithermo-mechanical pulping (CTMP) of fungus treated wood chips. Loblolly pine chips were innoculated with Ceriporiopsis subvermispora, strain L14807 SS-3, and incubated two weeks in a chip silo. A pressurized 305 mm diameter disk refiner was used to prepare TMP and CTMP`s from fungal treated and non-treated wood chips. Two procedures were used to prepare the CTMP`s, injecting a sodium hydroxide and hydrogen peroxide solution into the pressurized refiner, and impregnating the wood chips with a sodium sulfite solution. Energy consumption during pulp preparation and handsheet strength and optical properties will be presented and discussed.

  11. RESEARCH & DEVELOPMENT TO PREPARE AND CHARACTERIZE ROBUST COAL/BIOMASS MIXTURES FOR DIRECT CO-FEEDING INTO GASIFICATION SYSTEMS

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific/Technical Report discusses and documents the project work required to meet each of these objectives.

  12. Removal of introduced inorganic content from chipped forest residues via air classification

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and inmore » a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.« less

  13. Removal of introduced inorganic content from chipped forest residues via air classification

    SciTech Connect (OSTI)

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and in a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.

  14. Pembroke Pines, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Florida. It falls under Florida's 17th congressional district and Florida's 20th congressional district and Florida's 21st congressional district and Florida's 23rd...

  15. Community D Mixed/Pine Hardwood D Bottomland Hardwood Mixed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Bottomland Hardwood Mixed Swamp Forest Soils 540 Soils Soil Series and Phase DCh .OrC .Sh .Ta o 540 1080 Meters N A sc Figure 7-2. Plant communities and soils associated...

  16. New Whole-House Solutions Case Study: Pine Mountain Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... heat out of attics, and preservation of mature trees to provide shade. * The heat pump ... "We think that our greatest success is our overall customer satisfaction. Our consumers ...

  17. Pine Tree Extension Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Type Commercial Scale Wind Facility Status In Service Owner Los Angeles Department of Water and Power Developer Los Angeles Department of Water and Power Energy Purchaser Los...

  18. High Tonnage Forest Biomass Production Systems from Southern Pine Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plantations | Department of Energy abstract

  19. Southern Pine Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    87,734 60,157 3,222 30,360 4,536 5,087 63,820 24 18,195 181,914 64,717 2008-05 6,897 62,132 60,058 2,887 27,862 4,522 4,430 56,228 24 14,214 146,222 64,604 2008-04 6,581 59,423...

  20. Chemical Characterization and Water Content Determination of Bio-Oils Obtained from Various Biomass Species using 31P NMR Spectroscopy

    SciTech Connect (OSTI)

    David, K.; Ben, H.; Muzzy, J.; Feik, C.; Iisa, K.; Ragauskas, A.

    2012-03-01

    Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by {sup 31}P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results: {sup 31}P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that {sup 31}P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by {sup 31}P NMR analysis.

  1. Quantitative and qualitative measures of decomposition: Is there a link?

    SciTech Connect (OSTI)

    Eaton, Robert, J.; Sanchez, Felipe, G.

    2009-03-01

    Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to determine linkages. Changes in wood density did not correlate to any decay classification, whereas mass loss had a weak correlation with decay class. However, the large degree of variation limits the utility of decay classification systems in estimating mass loss.

  2. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; et al

    2014-12-04

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on freshcut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genesmore » involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea’s extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.« less

  3. Long-term successional forest dynamics: species and community responses to climatic variability

    SciTech Connect (OSTI)

    Kardol, Paul; Todd Jr, Donald E; Hanson, Paul J; Mulholland, Patrick J

    2010-01-01

    Question: Are tree dynamics sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Hence, is vulnerability of forest communities to climatic variability depending on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East-Tennessee, USA. Methods: Using a long-term data set (1967-2006), we analyzed temporal forest dynamics at the tree and species level, and we analyzed community dynamics for forest stands that different in their initial species composition (i.e., Chestnut Oak, Oak-Hickory, Pine, and Yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the 4-decade studied period, forest communities underwent successional change and substantially increased their biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand-level responses to climatic variability were shown to be related to responses of specific component species; however, not for Pine stands. Pinus echinata, the dominant species in stands initially identified as Pine stands, decreased over time due to periodical outbreaks of the pine bark beetle (Dendroctonus frontalis). The outbreaks on Walker Branch could not be directly related to climatic conditions. Conclusions: Our results imply that vulnerability of developing forests to predicted climate conditions is stand-type dependent, and hence, is a function of species composition. Autogenic successional processes (or insect outbreaks) were found to prevail over climatic variability in determining long-term forest dynamics for stands dominated by sensitive species, emphasizing the importance of studying interactions between forest succession and climate change.

  4. Carbon Cycling Dynamics in Response to Pine Beetle Infection and Climate Variation

    SciTech Connect (OSTI)

    Monson, Russell K.

    2015-01-26

    We originally proposed to study and discover the changes that have occurred in soil carbon pools, as a result of tree mortality due to beetle infection, and the ease by which those pools release CO2 to the atmosphere in mountain forests in the Western US. We studied forest plots at two sites the Niwot Ridge AmeriFlux site and the Fraser Experimental Forest site, both in Colorado.

  5. Selecting indicators of soil, microbial, and plant conditions to understand ecological changes in Georgia pine forests

    SciTech Connect (OSTI)

    Dale, Virginia H; Garten Jr, Charles T; Wolfe, Amy K; Sobek, Edward A

    2008-11-01

    Characterizing how resource use and management activities affect ecological conditions is necessary to document and understand anthropogenic changes in ecological systems. Resource managers on military installations have the delicate task of balancing the training needs of soldiers effectively with the need to maintain a high quality of ecological conditions. This study considers ways that ecological indicators can provide information on impacts that training has on environmental characteristics that occur at different scales and in different sectors of the environment. The characteristics examined include soil chemistry, soil microbes, and vegetation. A discriminant function analysis was conducted to determine whether ecological indicators could differentiate among different levels of military use. A combination of 10 indicators explained 90% of the variation among plots from five different military use levels. Results indicated that an appropriate suite of ecological indicators for military resource managers includes soil, microbial, and vegetation characteristics. Since many of these indicators are related, managers at this location potentially have freedom to choose indicators that are relatively easy to measure, without sacrificing information.

  6. Leaching and persistence of herbicides for kudzu (Pueraria montana) control on pine regeneration sites

    SciTech Connect (OSTI)

    Berisford, Yvette, C.; Bush, Parshall, B.; Taylor, John, W.

    2006-03-01

    Kudzu is an exotic vine that threatens forests in the southeastern United States. It can climb, overtop, and subsequently kill new seedlings or mature trees. Herbicides are commonly used to control kudzu; however, eradication might require retreatment for 3 to 10 yr in young stands and 7 to 10 yr for mature stands. Clopyralid, picloram, triclopyr, metsulfuron, and tebuthiuron exert various degrees of control, depending on soil type, meteorological conditions, herbicide formulation, seasonal application, characteristics of the kudzu stand, and frequency and number of herbicide. Field residue data for soil or leachate are lacking for all of these herbicides when they are used in actual forest regeneration programs in the Coastal Plain. These data are needed to assess the relative potential for the herbicides to leach into groundwater or to move off-site into sensitive ecological areas of the Coastal Plain in which sandy soils predominate and the groundwater tends to be shallow. As part of an integrated pest management program to control kudzu on forest regeneration areas at the Savannah River Site near New Ellenton, SC, five herbicides were evaluated from the standpoints of herbicide leaching, kudzu control, and plant community development. Three herbicide chemical families were represented. This included pyridinecarboxylic acid herbicides (clopyralid, picloram 1 2,4-D, and triclopyr), a sulfonylurea herbicide (metsulfuron), and a substituted urea herbicide (tebuthiuron).

  7. Forestry herbicide influences on biodiversity and wildlife habitats in Southern forests.

    SciTech Connect (OSTI)

    Miller, Karl V.

    2004-01-01

    Abstract In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicide used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.

  8. Forestry herbicide influences on biodiversity and wildlife habitat in Southern forests.

    SciTech Connect (OSTI)

    Miller, Karl V.; Miller, James, H.

    2004-07-01

    Abstract In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicide used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.

  9. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    SciTech Connect (OSTI)

    Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

    2007-03-01

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.

  10. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens, and shrub wetland). The hardwood and red pine sites also...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also...

  12. Influence of vegetation and seasonal forcing on carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    a range of vegetation types typical of the region (northern hardwood, mixed forest, red pine, jack pine, pine barrens and shrub wetland). The hardwood and red pine sites also...

  13. Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221

    SciTech Connect (OSTI)

    Lowell, A.

    2012-04-01

    The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a maximum volume of 500 mL.

  14. Centre County, Pennsylvania: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Pine Glen, Pennsylvania Pine Grove Mills, Pennsylvania Pleasant Gap, Pennsylvania Port Matilda, Pennsylvania Ramblewood, Pennsylvania Rebersburg, Pennsylvania Sandy Ridge,...

  15. EIS-0443: Project Financing for Southwest Intertie Project- South, Clark, Lincoln, Nye, and White Pine Counties, Nevada

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), Western Area Power Administration, is considering whether to provide partial financing of the southern portion of the Southwest lntertie Project (SWIP-South) which consists of approximately 235 miles of 500- kilovolt (kV) transmission line.

  16. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    SciTech Connect (OSTI)

    Garabedian, James E.

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  17. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; Yepez, Enrico A.; Hudson, Patrick J.; Boutz, Amanda L.; Gehres, Nathan; Pockman, William T.; McDowell, Nate G.

    2015-03-23

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductionsmore » in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.« less

  18. Linking ecosystem scale vegetation change to shifts in carbon and water cycling: the consequences of widespread piñon mortality in the Southwest

    SciTech Connect (OSTI)

    Litvak, Marcy Ellen

    2012-10-01

    The southwestern United States experienced an extended drought from 1999-2002 which led to widespread coniferous tree mortality. Piñon-juniper (PJ) woodlands, which occupy 24 million ha throughout the Southwest, were extremely vulnerable to this drought. An abrupt die-off of 40 to 95% of piñon pine (Pinus edulis) and 2-25% of juniper (Juniperus monosperma) across 1.5 million ha triggered rapid and extensive changes in the structure of PJ woodlands with potentially large, yet unknown, consequences for ecosystem services and feedbacks between the carbon cycle and climate system. Given the spatial extent of PJ woodlands (3rd largest biome in the US) and climatic predictions of increased frequency and intensity of drought in the region, it is crucial to understand the consequences of these disturbances on regional carbon and energy dynamics, biogeochemical processes and atmospheric CO2. The overall objective of our research was to quantify what impact widespread mortality of piñon trees has for carbon and water cycling in PJ woodlands. Our specific objectives for this proposal were: 1) Quantify the carbon, water and energy exchange trajectory after mortality in PJ woodlands; 2) Determine the mechanisms controlling the response and recovery of ecosystem production and respiration processes following large-scale piñon mortality; 3) Use the relationships we measure between ecosystem structure and function PJ woodlands recover from mortality to scale the results of our study up to the regional scale.

  19. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2014-09-18

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatographmore » coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  20. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-28

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gasmore » chromatograph coupled to a mass spectrometer and flame ionization detector (GC–MS–FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.« less

  1. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect (OSTI)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  2. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pine Energy Plantations High Tonnage Forest Biomass Production Systems from Southern Pine Energy Plantations This abstract outlinse a project that is designing and demonstrating a...

  3. Orange County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Orlovista, Florida Paradise Heights, Florida Pine Castle, Florida Pine Hills, Florida Sky Lake, Florida South Apopka, Florida Southchase, Florida Taft, Florida Tangelo Park,...

  4. KAir Battery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make ...

  5. Wilcox County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Wilcox County, Alabama Camden, Alabama Oak Hill, Alabama Pine Apple, Alabama Pine Hill, Alabama Yellow Bluff, Alabama Retrieved from "http:...

  6. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; Campuzano-Jost, P.; Zhao, Y.; Day, D. A.; Kaser, L.; Karl, T.; Hansel, A.; Teng, A. P.; et al

    2016-02-02

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range are complexmore » in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C15H24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C15H22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m–3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  7. AmeriFlux US-Bar Bartlett Experimental Forest

    SciTech Connect (OSTI)

    Richardson, Andrew

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Bar Bartlett Experimental Forest. Site Description - The Bartlett Experimental Forest (448170 N, 71830 W) is located within the White Mountains National Forest in north-central New Hampshire, USA. The 1050 ha forest extends across an elevational range from 200 to 900 m a.s.l. It was established in 1931 and is managed by the USDA Forest Service Northeastern Research Station in Durham, NH. The climate is humid continental with short, cool summers (mean July temperature, 19.8C) and long, cold winters (mean January temperature, 9.8C). Annual precipitation averages 130 cm and is distributed evenly throughout the year. Soils are developed from glacial till and are predominantly shallow, well-drained spodosols. At lowto mid-elevation, vegetation is dominated by northern hardwoods (American beech, Fagus grandifolia; sugar maple, Acer saccharum; yellow birch, Betula alleghaniensis; with some red maple, Acer rubrum and paper birch, Betula papyrifera). Conifers (eastern hemlock, Tsuga canadensis; eastern white pine, Pinus strobus; red spruce, Picea rubens) are occasionally found intermixed with the more abundant deciduous species but are generally confined to the highest (red spruce) and lowest (hemlock and pine) elevations. In 2003, the site was adopted as a NASA North American Carbon Program (NACP) Tier-2 field research and validation site. A 26.5 m high tower was installed in a low-elevation northern hardwood stand in November, 2003, for the purpose of making eddy covariance measurements of the forest–atmosphere exchange of CO2, H2O and radiant energy. Continuous flux and meteorological measurements began in January, 2004, and are ongoing. Average canopy height in the vicinity of the tower is approximately 20–22 m. In the tower footprint, the forest is predominantly classified into red maple, sugar maple, and American beech forest types. Leaf area index in the vicinity of the tower is 3.6 as measured by seasonal litterfall collection, and 4.5 as measured by the optically based Li-Cor LAI-2000 instrument. Further site information: http://www.fs.fed.us/ne/durham/4155/bartlett.htm

  8. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    SciTech Connect (OSTI)

    Pangle, Robert E.; Limousin, Jean -Marc; Plaut, Jennifer A.; Yepez, Enrico A.; Hudson, Patrick J.; Boutz, Amanda L.; Gehres, Nathan; Pockman, William T.; McDowell, Nate G.

    2015-03-23

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent regional drought in the southwestern United States.

  9. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; Kaschube, Danielle R.

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity andmore » Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.« less

  10. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    SciTech Connect (OSTI)

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; Kaschube, Danielle R.

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity and Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.

  11. Breeding pond selection and movement patterns by eastern spadefoot toads (Scaphiopus holbrookii) in relation to weather and edaphic conditions.

    SciTech Connect (OSTI)

    Greenberg, Cathyrn, H.; Tanner, George, W.

    2004-08-31

    Cathryn H. Greenberg and George W. Tanner. 2004. Breeding pond selection and movement patterns by eastern spadefoot toads (Scaphiopus holbrookii) in relation to weather and edaphic conditions. J. Herp. 38(4):569-577. Abstract: Eastern Spadefoot Toads (Scaphiopus holbrookii) require fish-free, isolated, ephemeral ponds for breeding but otherwise inhabit the surrounding uplands, commonly xeric longleaf pine (Pinus palustris) ?wiregrass (Aristida beyrichiana). Hence both pond and upland conditions can potentially affect their breeding biology, and population persistence. Hardwood invasion due to fire suppression in sandhills could alter upland and pond suitability by higher hardwood density and increased transpiration. In this paper we explore breeding and neonatal emigration movements in relation to weather, hydrological conditions of ponds, and surrounding upland matrices. We use 9 years of data from continuous monitoring with drift fences and pitfall traps at 8 ephemeral ponds in 2 upland matrices: regularly-burned, savanna-like sandhills (n = 4), and hardwood-invaded sandhills (n = 4). Neither adult nor neonate captures differed between ponds within the 2 upland matrices, suggesting that they are tolerant of upland heterogeneity created by fire frequency. Explosive breeding occurred during 9 periods and in all seasons; adults were captured rarely otherwise. At a landscape-level rainfall, maximum change in barometric pressure, and an interaction between those 2 variables were significant predictors of explosive breeding. At a pond-level, rainfall, change in pond depth during the month prior to breeding, and days since a pond was last dry were significant predictors of adult captures. Transformation date, rather than weather, was associated with neonatal emigrations, which usually were complete within a week. Movement by first-captured adults and neonates was directional, but adult emigrations were apparently not always toward their origin. Our results suggest that Spadefoot Toads are highly adapted to breeding conditions and upland habitat heterogeneity created by weather patterns and fire frequency in Florida sandhills.

  12. Land-use history alters contemporary insect herbivore community composition and decouples plant-herbivore relationships.

    SciTech Connect (OSTI)

    Hahn, Philip G.; Orrock, John L.

    2015-04-01

    1. Past land use can create altered soil conditions and plant communities that persist for decades, although the effects of these altered conditions on consumers are rarely investigated. 2. Using a large-scale field study at 36 sites in longleaf pine (Pinus palustris) woodlands, we examined whether historic agricultural land use leads to differences in the abundance and community composition of insect herbivores (grasshoppers, families Acrididae and Tettigoniidae). 3. We measured the cover of six plant functional groups and several environmental variables to determine whether historic agricultural land use affects the relationships between plant cover or environmental conditions and grasshopper assemblages. 4. Land-use history had taxa-specific effects and interacted with herbaceous plant cover to alter grasshopper abundances, leading to significant changes in community composition. Abundance of most grasshopper taxa increased with herbaceous cover in woodlands with no history of agriculture, but there was no relationship in post-agricultural woodlands. We also found that grasshopper abundance was negatively correlated with leaf litter cover. Soil hardness was greater in post-agricultural sites (i.e. more compacted) and was associated with grasshopper community composition. Both herbaceous cover and leaf litter cover are influenced by fire frequency, suggesting a potential indirect role of fire on grasshopper assemblages. 5. Our results demonstrate that historic land use may create persistent differences in the composition of grasshopper assemblages, while contemporary disturbances (e.g. prescribed fire) may be important for determining the abundance of grasshoppers, largely through the effect of fire on plants and leaf litter. Therefore, our results suggest that changes in the contemporary management regimes (e.g. increasing prescribed fire) may not be sufficient to shift the structure of grasshopper communities in post-agricultural sites towards communities in nonagricultural habitats. Rather, repairing degraded soil conditions and restoring plant communities are likely necessary for restoring grasshopper assemblages in post-agricultural woodlands.

  13. Compartment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pine DMixed PineHardwood CCarolina Bay Wetland Water hWIHydric Soils f I TES Plants (1) 1M. Roads YI. Streams '11 Site Boundary 280 Soil Series and Phase D BaB...

  14. CX-002322: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California-Tribe-Paiute-Shoshone Indians of the Lone Pine CommunityCX(s) Applied: A9, A11Date: 05/13/2010Location(s): Lone Pine, CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  15. CX-006309: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Florida-City-Pembroke PinesCX(s) Applied: B2.5, B5.1Date: 06/23/2011Location(s): Pembroke Pines, FloridaOffice(s): Energy Efficiency and Renewable Energy

  16. Kuhn Village Barn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turn right at the first stop sign. The barn is the second building on the right. Take Kirk Rd. to Pine St. in Batavia. Turn east onto Pine St. Go past the guardhouse (stopping...

  17. Carter County, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carter County, Tennessee Central, Tennessee Elizabethton, Tennessee Hunter, Tennessee Johnson City, Tennessee Pine Crest, Tennessee Roan Mountain, Tennessee Watauga, Tennessee...

  18. Schuylkill County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Pennsylvania Orwigsburg, Pennsylvania Palo Alto, Pennsylvania Pine Grove, Pennsylvania Port Carbon, Pennsylvania Port Clinton, Pennsylvania Pottsville, Pennsylvania Ravine,...

  19. Lincoln County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Birch, Wisconsin Bradley, Wisconsin Corning, Wisconsin Harding, Wisconsin King, Wisconsin Merrill, Wisconsin Pine River, Wisconsin Rock Falls, Wisconsin Schley,...

  20. AmeriFlux US-SP1 Slashpine-Austin Cary- 65yrs nat regen

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Martin, Tim [University of Florida

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SP1 Slashpine-Austin Cary- 65yrs nat regen. Site Description - The ACMF site is a 67 hectare naturally regenerated Pinus palustris and Pinus elliottii mixed stand.

  1. Washington County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Minnesota Pine Springs, Minnesota Scandia, Minnesota St. Marys Point, Minnesota St. Paul Park, Minnesota Stillwater, Minnesota White Bear Lake, Minnesota Willernie, Minnesota...

  2. Advanced Materials Partners Inc | Open Energy Information

    Open Energy Info (EERE)

    Materials Partners Inc Jump to: navigation, search Logo: Advanced Materials Partners Inc Name: Advanced Materials Partners Inc Address: 45 Pine Street Place: New Canaan,...

  3. Method for generation of THz frequency radiation and sensing...

    Office of Scientific and Technical Information (OSTI)

    Inventors: Reed, Evan J. 1 ; Armstrong, Michael R. 2 + Show Author Affiliations (Pine Island, MN) (Albuquerque, NM) Issue Date: 2010-09-07 OSTI Identifier: 1014664 Assignee: ...

  4. Becker County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Becker County, Minnesota Audubon, Minnesota Callaway, Minnesota Detroit Lakes, Minnesota Frazee, Minnesota Lake Park, Minnesota Ogema, Minnesota Pine Point,...

  5. Life history and habitat associations of the broad wood cockroach, Parcoblatta lata (Blattaria: Blattellidae) and other native cockroaches in the Coastal Plain of South Carolina.

    SciTech Connect (OSTI)

    Horn, Scott; Hanula, James, L.

    2002-06-18

    Wood cockroaches are an important prey of the red-cockaded woodpecker, Picoides borealis, an endangered species inhabiting pine forests in the southern United States. These woodpeckers forage on the boles of live pine trees, but their prey consists of a high proportion of wood cockroaches, Parcoblatta spp., that are more commonly associated with dead plant material. Cockroach population density samples were conducted on live pine trees, dead snags and coarse woody debris on the ground. The studies showed that snags and logs are also important habitats of wood cockroaches in pine forests.

  6. Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Bottomland Hardwood Water a Bottomland HardwoodlPine o Monitoringwells ...' *** TES Plants (1) :l.-.I ... 0 TES Plants (2) :'.Y-r::.: Streams )" Rails . :1';:'...

  7. Modern Electric Water Company | Open Energy Information

    Open Energy Info (EERE)

    Modern Electric Water Company Jump to: navigation, search Name: Modern Electric Water Company Address: 904 North Pines Road Place: Spokane Valley, WA Zip: 99206 Phone Number: (509)...

  8. Orange County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Texas Mauriceville, Texas Orange, Texas Pine Forest, Texas Pinehurst, Texas Port Arthur, Texas Rose City, Texas Vidor, Texas West Orange, Texas Retrieved from "http:...

  9. Gila County, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Day, Arizona Central Heights-Midland City, Arizona Claypool, Arizona Gisela, Arizona Globe, Arizona Hayden, Arizona Miami, Arizona Payson, Arizona Peridot, Arizona Pine, Arizona...

  10. Prometheus Energy Services LLC | Open Energy Information

    Open Energy Info (EERE)

    Energy Services LLC Jump to: navigation, search Name: Prometheus Energy Services LLC Place: California Sector: Wind energy Product: Wind project developer, working on the Pine Tree...

  11. Leake County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carthage, Mississippi Lena, Mississippi Redwater, Mississippi Sebastopol, Mississippi Standing Pine, Mississippi Walnut Grove, Mississippi Retrieved from "http:en.openei.orgw...

  12. CX-012818: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    La Pine-Chiloquin Wood Pole Replacements CX(s) Applied: B1.3Date: 41887 Location(s): OregonOffices(s): Bonneville Power Administration

  13. CSPAD-140k - A Versatile Detector for LCLS Experiments (Conference...

    Office of Scientific and Technical Information (OSTI)

    Henrik ; Messerschmidt, Marc ; Pines, Jack ; Robert, Aymeric ; Sikorski, Marcin ; Williams, Garth ; SLAC ; , Publication Date: 2013-11-22 OSTI Identifier: 1107769 Report...

  14. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  15. Development of a Single-Pass Cut-and-Chip Harvest System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crops Harvesting System Based on a Case New Holland Forage Harvester and SRC Woody Crop Header High Tonnage Forest Biomass Production Systems from Southern Pine Energy ...

  16. Microsoft PowerPoint - SWL HPConf2010 (final).pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... WHITE RIVER NATIONAL0 WILDLIFE REFUGE Lock and Dam No 1 Little Rock District, Southwestern ... Pine Mountain Dam * Authorized in 1965 and reevaluated in 1980 * Authorized plan includes ...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... CLEARWATER RESERVOIR MISSOURI ARKANSAS Lock and Dam No 1 10 CACHE RIVER LEGEND EXISTING ... Little Rock District, Southwestern Division Pine Mountain Dam * Authorized in 1965 and ...

  18. High Tonnage Forest Biomass Production Systems from Southern...

    Broader source: Energy.gov (indexed) [DOE]

    and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations. auburnprojectabstract1.pdf More Documents &...

  19. Laramie County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Cheyenne Light Fuel & Power Co Places in Laramie County, Wyoming Albin, Wyoming Burns, Wyoming Cheyenne, Wyoming Fox Farm-College, Wyoming Pine Bluffs, Wyoming Ranchettes,...

  20. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    SciTech Connect (OSTI)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  1. Lexington County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Oak Grove, South Carolina Pelion, South Carolina Pine Ridge, South Carolina Red Bank, South Carolina Seven Oaks, South Carolina South Congaree, South Carolina...

  2. USDA Awards Nearly $2 Million for First Phase of Regenerative...

    Energy Savers [EERE]

    In April 2015, Pine Ridge Indian Reservation was one of eight newly designated Promise Zones by the Obama Administration. Promise Zones are high-poverty communities where the ...

  3. Dakota County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Pine Bend Biomass Facility Places in Dakota County, Minnesota Apple Valley, Minnesota Burnsville, Minnesota Coates, Minnesota Eagan, Minnesota Farmington,...

  4. Wetzel County, West Virginia: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    5 Climate Zone Subtype A. Places in Wetzel County, West Virginia Hundred, West Virginia New Martinsville, West Virginia Paden City, West Virginia Pine Grove, West Virginia...

  5. Home | Savannah River Ecology Laboratory Environmental Outreach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diverse ecological research conducted by scientists at the Savannah River Ecology Laboratory. ... and pine snakes wild hog skull edible plant samples View Touch an Animal Day 2015 ...

  6. High Tonnage Forest Biomass Production Systems from Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is designing and demonstrating a high productivity system to harvest, process, and transport woody biomass from southern pine plantations. The final product will be a system...

  7. Jefferson County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pine Bluff, Arkansas Redfield, Arkansas Sherrill, Arkansas Wabbaseka, Arkansas White Hall, Arkansas Retrieved from "http:en.openei.orgwindex.php?titleJeffersonCounty,Arka...

  8. Harris County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Harris County, Georgia Hamilton, Georgia Pine Mountain, Georgia Shiloh, Georgia Waverly Hall, Georgia West Point, Georgia Retrieved from "http:en.openei.orgw...

  9. Endangered Species

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Owl The Mexican spotted owl is the only subspecies of spotted owl recognized in New Mexico and generally inhabits mixed conifer and ponderosa pine forests in mountains and...

  10. Evangeline Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Basile, Louisiana Chataignier, Louisiana Mamou, Louisiana Pine Prairie, Louisiana Turkey Creek, Louisiana Ville Platte, Louisiana Retrieved from "http:en.openei.orgw...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... ; Pines, David ; Institute for Complex Adaptive Matter, University of California, and LANSCE Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 Recent ...

  12. Westminster, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts.1 Energy Generation Facilities in Westminster, Massachusetts Pine Tree Fitchburg Biomass Facility References US Census Bureau Incorporated place and minor...

  13. Grafton County, New Hampshire: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Facility Bridgewater Biomass Facility Bridgewater Power LP Biomass Facility Pine Tree Bethlehem Biomass Facility Pinetree Power Biomass Facility Utility Companies in Grafton...

  14. Macomb County, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    5 Climate Zone Subtype A. Energy Generation Facilities in Macomb County, Michigan Pine Tree Acres Biomass Facility Places in Macomb County, Michigan Armada, Michigan Center Line,...

  15. Bethlehem, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, New Hampshire.1 Energy Generation Facilities in Bethlehem, New Hampshire Pine Tree Bethlehem Biomass Facility References US Census Bureau Incorporated place and minor...

  16. Crystal Structures of the Human DNA Repair Protein AGT Bound...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N. Torrey Pines Rd., La Jolla, California 92037, USA. 2 Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania...

  17. Microsoft Word - AGT.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N. Torrey Pines Rd., La Jolla, California 92037, USA. 2 Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania...

  18. Opportunities for Field Research | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pine (P. palustris) forests; orangesreds upland hardwoods; pinkviolet forested wetlands; dark blue water. SRS vegetation map RESEARCH SITES Ninety percent (720km2) of the...

  19. CX-001793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spruce Pine Main Street, North Carolina Main Street Energy GrantCX(s) Applied: B5.1Date: 04/21/2010Location(s): Spruce Pine, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  20. baepgig-pinon | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Piñon Pine IGCC Power Project - Project Brief [PDF-313KB] Sierra Pacific Power Company, Reno, NV PROGRAM PUBLICATIONS Final Reports Piñon Pine IGCC Project, Final Technical Report [PDF-14.1MB] (Jan 2001) Annual/Quarterly Technical Reports Piñon Pine Power Project Annual Reports August 1992 - December 1993 [PDF-2.4MB] January - December 1994 [PDF-2.3MB] January - December 1995 [PDF-3.1MB] January - December 1996 [PDF-6.1MB] CCT Reports: Project Performance Summaries, Post-Project

  1. lms3046FER

    Office of Legacy Management (LM)

    June 6 and 12, 2013 Inspector SM Stoller, Ohio EPA, ODH Area Paddys Run East, SWU, SWRB, South Field Sub-Area Type of Finding Follow Up No. Location (Use Map Whenever Possible) GPS? Unauthorized Use Disturbance Vegetation Other Description Photo? (File No.) Corrected Maintenance Req'd Cont. Observation 1 South pines deer fence X Hole in fence X 2 South pines deer fence X Hole in fence X 3 South pines/PRE X Reed canary grass X 4 South field - west X Deer fence gate missing X 5 Well 22108 well pad

  2. Environmental Assessments (EA) / Environmental Impact Statements...

    Office of Science (SC) Website

    Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630)...

  3. Microsoft Word - orf2.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torrey Pines Road, La Jolla, California 92037, USA. 2 Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo ...

  4. Structural Basis for the Promiscuous Biosynthetic Prenylation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torrey Pines Road, La Jolla, California 92037, USA 2Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo ...

  5. Wanda Smith

    Broader source: Energy.gov [DOE]

    Wanda lives near Rockwood and is the owner of a convenience store in Pine Orchard. She is a graduate of Harriman High School and is a former member of Head Start, the Morgan County Industrial Board...

  6. BPA-2011-00661-FOIA Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relating to the Pennwalt Substation; GROFF MURPHY, 1It C. 300 EAST PINE STREET SLA V ITLF. WASHINGTON A8122 (206) 628-9500 www.groffmurphv.coni (206; 628-9506 FACSIMILE...

  7. The Owens Valley Fault Zone Eastern California and Surface Faulting...

    Open Energy Info (EERE)

    it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. The fault has an overall strike of 340 and dip of 8015 ENE. Surface...

  8. CX-012804: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Butte-La Pine #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41912 Location(s): OregonOffices(s): Bonneville Power Administration

  9. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D Upland Hardwood D Bonomland Hardwood iiiI Bonomland HardwoodlPine N Streams * TES Plants (1) D TES Plants (2) U Monitoring Wells o SRS Bays 6 Utili1y ROW . Openwells...

  10. An early history of pure shear in the upper plate of the raft...

    Open Energy Info (EERE)

    early history of pure shear in the upper plate of the raft river metamorphic core complex- black pine mountains, southern Idaho Jump to: navigation, search OpenEI Reference...

  11. A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal...

    Open Energy Info (EERE)

    on the fluid flow distribution in an HDR geothermal reservoir. Authors T. W. Hicks, R. J. Pine, J. Willis-Richards, S. Xu, A. J. Jupe and N. E. V. Rodrigues Published Journal...

  12. CX-010593: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Butte-La Pine #1 Wood Pole Replacements CX(s) Applied: B1.3 Date: 06/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  13. CX-008167: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    La Pine-Chiloquin Number 1 Wood Pole Replacement Project CX(s) Applied: B4.6 Date: 03/21/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  14. CX-011220: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Timber Salvage from Pine Ridge Storm Damage CX(s) Applied: B1.3 Date: 09/17/2013 Location(s): Tennessee Offices(s): Oak Ridge Office

  15. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Little Cypress Bay This 68.4-acre (27.7 ha) Set-Aside is comprised of Little Cypress Bay and a relatively undisturbed 200-m buffer zone of maturing pine and upland hardwood...

  16. Microsoft Word - FINAL 2012HydropowerCouncilAgenda

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGENDA 2012 Southwestern Federal Hydropower Council BLAKELY MOUNTAIN DAM PROJECT OFFICE Mountain Pine, Arkansas June 12 - 13, 2012 Tuesday, June 12 1:00 p.m. Welcome Vicksburg ...

  17. Press Pass - Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lanes to Kirk Road at the intersection with Pine Street. The county will also add pedestrian walkways across Kirk Road. Fermilab will post staff around the clock at the Wilson...

  18. In the News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Current ice melt rate in Pine Island Glacier may go on for decades February 4, 2014 Liquid sample AMS patent awarded to CAMS staff December 15, 2013 Change in Pacific...

  19. CX-001246: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency Retrofits and Traffic Signal Lighting UpgradesCX(s) Applied: B2.5, B5.1Date: 12/10/2009Location(s): Pine Bluff, ArkansasOffice(s): Energy Efficiency and Renewable Energy

  20. CX-008891: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Butte-La Pine No. 1 Wood Pole Replacement Project CX(s) Applied: B4.6 Date: 07/30/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-010434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    LaPine Substation Shunt Reactor Addition CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): Oregon, Oregon Offices(s): Bonneville Power Administration

  2. Dutchess County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pawling, New York Pine Plains, New York Pleasant Valley, New York Poughkeepsie, New York Red Hook, New York Red Oaks Mill, New York Rhinebeck, New York Spackenkill, New York...

  3. CX-003519: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southern Pine Based Biorefinery CenterCX(s) Applied: A9, B3.6Date: 08/26/2010Location(s): Atlanta, GeorgiaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  4. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Set-Aside is a 81.6-acre (33 ha) Area comprised of a semi-permanent, open-waterherbaceous pond surrounded by a partial buffer area of various pine and hardwood plant communities. ...

  5. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.The section of Field 3-409 contained within this Set-Aside has undergone plant community succession from an herbaceous old-field in 1951 to a present day pine forest habitat. ...

  6. Public Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arts, Lecture and Film Series On the evening of a performance, all visitors may enter through the Pine St. or the Batavia Rd. entrance. Inform the security guard that you are...

  7. ALSNews Vol. 348

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    students A group of seventh graders from Black Pine Circle School in Berkeley recently ... relating to their own research, or to alert us to issues facing our whole community. ...

  8. CASA DEL SOL | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    their 2015 Solar Decathlon entry, dubbed "Indigo Pine." Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  9. GROW HOME | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    their 2015 Solar Decathlon entry, dubbed "Indigo Pine." Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  10. Vote for Your Favorite Solar Decathlon House | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    their 2015 Solar Decathlon entry, dubbed "Indigo Pine." Learn More STILE The aroma of Italian cooking will waft from STILE, the West Virginia University and University of Roma Tor...

  11. CX-005422: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    La Pine Chiloquin and Brasada Harney Number 1 Transmission Line Right-of-WaysCX(s) Applied: B1.3Date: 03/15/2011Location(s): Klamath County, OregonOffice(s): Bonneville Power Administration

  12. OFermilab OFF-SITE SHORT-TERM HOUSING-2013--2014 Housing Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regarding availability and current prices. Fermi National Accelerator Laboratory I Kirk Road and Pine Street I P.O. Box 500 I Batavia. IL 60510 I 630.840.3000 I www.fnal.gov I...

  13. SREL Reprint #3006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Comparison of sandhills and mixed pine hardwood communities at Fort Benning, Georgia Beverly Collins, Rebecca Sharitz, Kathryn Madden, and John Dilustro Savannah River Ecology Laboratory, P O Drawer E, Aiken, SC 29802 Abstract: Fall Line sandhills vegetation occurs on dry, sandy ridgetops and supports a suite of rare or uncommon plant species (TES). We surveyed nine sandhills sites and 32 "matrix" mixed pine-hardwood stands at Fort Benning to characterize canopy and groundlayer

  14. SREL Reprint #3014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Land use history effects in mixed pine - hardwood forests at Fort Benning John Dilustro, Beverly Collins, and Lisa Duncan Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 Abstract: Over decades, and especially on public lands subject to multiple uses, land use activities can affect forest composition or structure. We asked if current ground layer vegetation composition or stand structure (canopy openness, tree density, plus depth of the soil A layer) in 32 mixed pine-hardwood

  15. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    SciTech Connect (OSTI)

    D Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  16. Anne Elizabeth Ware | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elizabeth Ware Anne Elizabeth Ware Scientist Anne.Ware@nrel.gov | 303-384-6131 Research Interests Lignin structure and composition Terpenoid content in pine Analytical method development Pyrolysis oil characterization Affiliated Research Programs Bioenergy Science Center ARPA-E Commercial Production of Terpene Biofuels in Pine Thermochemical Catalysis Research and Development Areas of Expertise Biomass composition analysis Analytical pyrolysis Thioacidolysis Extractives (i.e., lipids,

  17. AmeriFlux US-Dix Fort Dix

    SciTech Connect (OSTI)

    Clark, Ken

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Dix Fort Dix. Site Description - The Fort Dix site is located in the upland forests of the New Jersey Pine Barrens, the largest continuous forested landscape on the Northeastern coastal plain. Upland forests occupy 62% of the 1.1 million acre Pine Barrens and can be divided into three dominant stand types, Oak/Pine (19.1%), Pine/Oak (13.1%), and Pitch Pine/Scrub oak (14.3%). The majority of mature upland forests are the product of regeneration following late 19th century logging and charcoaling activities. Gypsy moths first appeared in the Pine Barrens of New Jersey in 1966. Since the time of arrival, the upland forest stands have undergone several episodes of defoliation, the most significant occurred in 1972, 1981, and 1990. In recent years, the overstory oaks and understory oaks and shrubs of the Fort Dix stand, underwent two periods of defoliation by Gypsy moth, in 2006 and 2007. During these two years, maximum leaf area reached only 70% of the 2005 summer maximum.

  18. SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SC o o Community _ Longleaf Pine D Mixed Pine/Hardwood D Sandhills Scrub Oak/Pine o Monitoring Wells Road Utility ROW * Wastesites 1221 Other Set-Asides r:;c::J Areas [§B Hydric Soils D Three Rivers Landfill N A o o 660 Meters * CompartQ1enLJJ o 330 o 0 o o "0 ro o a: ..c:: ~ ~O CO Soil Series and Phase DBaB DLaB _TrB 330 Soils Compartment! 10 r.9 Vegetation l{) C\J T- Figure 3-2. Plant c01llJllunities and soils associated with the Sandhill.\' Set-Aside Area. 3-7 Set-Aside 3: Sandhills

  19. Community

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Slash Pine D Mixed Pine/Hardwood D Upland Hardwood D Bottomland Hardwood * Water ElI] Bottomland Hardwood/Pine 1:\1 Streams ~Rails NUtility ROW o Openwells Ii NPDES outfall Roads c::J Other Set-Asides o SRS Bays EEJ Hydric Soils 450 L Soil Series and Phase DAnB DBaB I::J NoB .Pk c:J Rm DWaB .Wm o Soils 450 900 Meters N A sc Figure 8-1. Plant cO/ll/llunities and soils associated with the Steel Creek Bay Set-Aside Area. 8-7 Set-Aside 8: Steel Creek Bay

  20. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  1. AmeriFlux US-Ced Cedar Bridge

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Clark, Ken [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ced Cedar Bridge. Site Description - Wildfires and prescribed fires are a common occurrence in the NJ Pinelands. Prior to a 1995 nonstand replacing wildfire, the stand was last burned in the very large wildfire in 1963. Plow lines were installed for fire control in December of 2007, followed by a prescribed burns in 2008 and 2013, conducted by the New Jersey Forest Fire Service. Pine looper defoliated the stand in 1998, and Gypsy moth defoliated the understory and deciduos oaks in 2007. Pitch Pines are largely unaffected by defoliation by Gypsy moth.

  2. SREL Reprint #3007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Land use effects on groundlayer composition and regeneration of mixed pine hardwood forests in the Fall Line Sandhills, S.E. USA B. Collins1, P. R. Minchin2, J. Dilustro1, and L. Duncan1 1Savannah River Ecology Laboratory, P.O. Drawer E., Aiken, SC 29802, USA 2Biological Sciences, Southern Illinois University Edwardsville, P.O. Box 1651, Edwardsville, IL 62026, USA Abstract: We surveyed groundlayer vegetation from 2000 to 2004 and longleaf pine regeneration before and after a change in the

  3. Laurentian Bioenergy Project

    SciTech Connect (OSTI)

    Berguson, William Evan; Buchman, Daniel; Rack, Jim; Gallagher, Tom; McMahon, Bernard; Hedke, Dale

    2015-03-30

    Work performed under this contract involves development of forest management guidelines related to removal of forest harvest residues from forested sites and brushlands in Minnesota, assessments of biomass availability from forests and brushlands and logistics and equipment associated with handling woody biomass with emphasis on evaluation of a trailer-mounted bundling system. Also, work on hybrid poplar breeding, field testing and yield analysis is included. Evaluation of the production of aspen and red pine along with opportunities to procure woody biomass through thinning operations in red pine is described. Finally, an assessment of issues related to increasing biomass usage at the Laurentian Energy Authority generation facilities is discussed.

  4. AmeriFlux US-Mpj Mountainair Pinyon-Juniper Woodland

    SciTech Connect (OSTI)

    Litvak, Marcy

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Mpj Mountainair Pinyon-Juniper Woodland. Site Description - The Pinon Juniper site is located in Deer Canyon Preserve in central New Mexico. It is situated on an extensive mesa at an elevation of 2100m. The predominant tree species are Pinus edulis and Juniperus monosperma with an understory composed of the C4 perennial grass Bouteloua gracilis.

  5. Soils Soil Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Soils Soil Series and Phase D Fa D LaB TrB D TrC VeC .Wm '" Vegetation Compartment 28 Community D Mixed PineHardwood D Upland Hardwod D Bottomland Hardwood Water D Sandhill...

  6. Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions

    SciTech Connect (OSTI)

    Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.; Rainbolt, James E.; Kovarik, Libor; Shin, Yongsoon; Wang, Yong

    2015-09-29

    We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.

  7. CX-004762: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Target Main Street Spruce PinesCX(s) Applied: A1, B1.31, B5.1Date: 12/17/2010Location(s): North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  8. Land reclamation beautifies coal mines

    SciTech Connect (OSTI)

    Coblentz, B.

    2009-07-15

    The article explains how the Mississippi Agricultural and Forestry Experiments station, MAFES, has helped prepare land exploited by strip mining at North American Coal Corporation's Red Hills Mine. The 5,800 acre lignite mine is over 200 ft deep and uncovers six layers of coal. About 100 acres of land a year is mined and reclaimed, mostly as pine plantations. 5 photos.

  9. AmeriFlux CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce

    SciTech Connect (OSTI)

    Margolis, Hank A.

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site CA-Qfo Quebec - Eastern Boreal, Mature Black Spruce. Site Description - 49.69247° N / 74.34204° W, elevation of 387 mm, 90 - 100 yr old Black Spruce, Jack Pine, feather moss

  10. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOE Patents [OSTI]

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  11. Subarctic warming: Results from the global treeline project

    SciTech Connect (OSTI)

    Siren, G.; Shen, S.

    1996-12-31

    The authors reported last year at the 6th Global Warming Science and Policy Conference (GW6), April 3--6, 1995, San Francisco USA, the Global Treeline Project (BLECSCO) has definitively established the northward movement in the 20th century of the northernmost limit for pine trees in Finland. this movement is due to climate warming. The Finnish Forest Research Institute has been working on this problem between 1951 and 1996. The authors have observed over half a century the movements of the coniferous treeline. The subarctic pine tree line is used as a permanent bioindicator of climate change. The dynamic pine tree line in the subarctic of Finland serves as a reliable indicator of expected climate change in the future as well as of climatic fluctuations in the past. The FFRI has tracked comprehensively seed year frequencies, performed dendrochronological studies, fire studies, and ecological studies since the abundant seed year of 1948--50 to the present, and discovered that climate change has favored the northward movement of the pine limit. The authors report the detailed scientific methodology, data, and conclusions.

  12. CX-004383: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pine Hall Brick Company Energy Efficiency Improvements for Lighting, Kiln and Heating, Ventilation, and Air Conditioning SystemsCX(s) Applied: B5.1Date: 11/02/2010Location(s): North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. CX-004077: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of a Relay/Transfer Trip Rack at Redmond Substation and a Transfer Trip Panel at LaPine SubstationCX(s) Applied: B1.3Date: 09/27/2010Location(s): Redmond, OregonOffice(s): Bonneville Power Administration

  14. CX-005020: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Provision of Funds to the Idaho Department of Fish and Game For Purchase of the Tall Pines PropertyCX(s) Applied: B1.25Date: 01/05/2011Location(s): Kootenai County, IdahoOffice(s): Bonneville Power Administration

  15. ARPA-E: Engineering Innovative New Biofuels

    SciTech Connect (OSTI)

    Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux, Peggy

    2014-02-24

    ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.

  16. ARPA-E: Engineering Innovative New Biofuels

    ScienceCinema (OSTI)

    Burbaum, Jonathan; Peter, Gary; Kirby, Jim; Lemaux, Peggy

    2014-03-13

    ARPA-E's PETRO program was created to supply the transportation sector with plant-derived fuels that are cost-competitive with petroleum and don't affect U.S. food supply. This video highlights the role that ARPA-E has played in connecting traditionally distinct research areas to inform the research and development efforts of PETRO project teams. Specifically, it highlights how the University of Florida leveraged lessons learned from the Joint BioEnergy Institute's work with E. coli to directly influence their work in harvesting fuel molecules from pine trees, as well as how the same genes tested in pine are now being tested in tobacco at Lawrence Berkeley National Laboratory. This transfer of knowledge facilitates new discovery.

  17. National Environmental Policy Act (NEPA) Documents | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) National Environmental Policy Act (NEPA) Documents Fermi Site Office (FSO) FSO Home About Projects Contract Management NEPA Documents Categorical Exclusion Determinations Environmental Assessments and Environmental Impact Statements Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 National Environmental Policy Act (NEPA) Documents Print Text Size: A A A

  18. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quest for a new class of superconductors December 20, 2007 Possibilities abound 50 years after theory of superconductivity LOS ALAMOS, New Mexico, December 20, 2007-Fifty years after the Nobel-prize winning explanation of how superconductors work, a research team from Los Alamos National Laboratory, the University of Edinburgh and Cambridge University are suggesting another mechanism for the still-mysterious phenomenon. In a review published today in Nature, researchers David Pines, Philippe

  19. The NSSAB Welcomes New County Liaisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 9, 2013 The NSSAB Welcomes New County Liaisons In December 2012, the Nevada Site Specific Advisory Board (NSSAB) welcomed four new liaison representatives to the board. County commissioners from Lincoln, Elko, Esmeralda, and White Pine Counties join 11 current liaisons* representing various organizational and community stakeholders in Nevada. The volunteer advisory board is expanding to gain representation from all the counties involved in the Emergency Preparedness Working Group

  20. Thrusts in High Performance Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPC 1 Thrusts in High Performance Computing Science at Scale Petaflops to Exaflops Science through Volume Thousands to Millions of Simulations Science in Data Petabytes to Exabytes of Data 2 Science at Scale: Simulations Aid in Understanding Climate Impacts 3 Antarctic ice speed (left): AMR enables sub-1 km resolution (black, above) (Using NERSC's Hopper) BISICLES Pine Island Glacier simulation - mesh resolution crucial for grounding line behavior. Enhanced POP ocean model solution for

  1. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    SciTech Connect (OSTI)

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  2. PAR Pond N Roads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAR Pond N Roads 11N Streams 870 Meters N A Vegetation Community D Sandhill Scrub oak/Pine '/ 580 Compartment 56 290 o 290 Soils Soi I Sa-i es and Pha:;e o LaB sc Figure 26-1. Plant COl1ll1lllllities and soils associated with the Sandhills Fire Site Set-Aside Area. 26-5 Set-Aside 26: Sandhills Fire Site

  3. PRESENTATION TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 June 2011 BUILDING STRONG ® Topics  Interior Least Tern Operations and Habitat Creation  Tulsa Vision 2025  Dam Safety Issues ► Keystone ► Pine Creek ► Robert S. Kerr  Lake Eufaula Advisory Committee  Tenkiller Downstream Fishery Issues  Broken Bow Seasonal Pool Update - Cultural Resources Impacts  Arkansas River Navigation Improvement  Oklahoma Comprehensive Water Plan Update BUILDING STRONG ® Interior Least Tern Operations and Habitat Creation  2010

  4. PRESENTATION TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dan Brueggenjohann 12 June 2013 BUILDING STRONG ®  Interpretation/Application of CERM-F-2013-18  303(d) Listing of Broken Bow Tailwaters  Interior Least Tern Operations and Habitat Creation  Tulsa Vision 2025  Dam Safety Issues ► Keystone, Pine Creek, Robert S. Kerr, Denison  Lake Eufaula Advisory Committee  Tenkiller Downstream Fishery Issues  Broken Bow Seasonal Pool Update - Cultural Resources Impacts  Arkansas River Navigation Improvement  Oklahoma

  5. PRESENTATION TITLE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mike Abate 19 June 2014 BUILDING STRONG ®  Interior Least Tern Operations and Habitat Creation  Tulsa Vision 2025  Dam Safety Issues ► Keystone, Pine Creek, Robert S. Kerr, (Broken Bow Operations)  Lake Eufaula Advisory Committee  Broken Bow Seasonal Pool Update - Cultural Resources Impacts  Arkansas River Navigation Improvement  Oklahoma Comprehensive Water Plan Update BUILDING STRONG ® Interior Least Tern Operations and Habitat Creation  In April of 2013 the Corps

  6. Workplace Charging Challenge Partner: Samsung Electronics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Samsung Electronics Workplace Charging Challenge Partner: Samsung Electronics Workplace Charging Challenge Partner: Samsung Electronics Joined the Challenge: June 2013 Headquarters: Ridgefield Park, NJ Charging Locations: Rancho Dominguez, CA; Pine Brook, NJ; San Diego, CA; Mountain View, CA; San Jose, CA Domestic Employees: 6,800 Samsung Electronics demonstrated an early commitment to plug-in electric vehicle (PEV) charging when it installed 2 EVSEs at its Rancho Dominguez, CA office

  7. Sigma Mesa: Background elemental concentrations in soil and vegetation, 1979

    SciTech Connect (OSTI)

    Ferenbaugh, R.W.; Gladney, E.S.; Brooks, G.H. Jr.

    1990-10-01

    In 1979, soil and vegetation samples were collected on Sigma Mesa to provide background data before construction on the mesa. Elemental data are presented for soil, grass, juniper, pinon pine, and oak. None of the data looks out of the ordinary. The purpose of the sampling program was to acquire, before any disturbance, a set of data to be used as background for future impact analysis. 6 refs., 2 figs., 7 tabs.

  8. Directions to Wilson Hall, Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directions Both the Fermilab box office and Ramsey Auditorium are located in Wilson Hall, the central laboratory building of Fermi National Accelerator Laboratory, as shown on the map below. Ramsey Auditorium is located at the south end of Wilson Hall. Enter through the Auditorium lobby doors on the ground level at the south end of Wilson Hall. Wilson Hall is clearly visible from the Pine Street entrance. From I-88, exit north at Farnsworth, which becomes Kirk north of Butterfield road. We also

  9. Robert W. Sykes | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Sykes Robert W. Sykes Research Scientist Robert.Sykes@nrel.gov | 303-384-7728 Research Interests Fundamental understanding of biomass recalcitrance Quantification of terpene composition in pine biomass Genetic control of biomass composition related to recalcitrance High-throughput screening techniques Pyrolysis Affiliated Research Programs Advanced Research Projects Agency - Energy (ARPA-E) Unites States Department of Agriculture (USDA) Genomics Areas of Expertise High-throughput biomass

  10. Quantum critical scaling and superconductivity in heavy electron materials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Quantum critical scaling and superconductivity in heavy electron materials Citation Details In-Document Search This content will become publicly available on November 16, 2016 Title: Quantum critical scaling and superconductivity in heavy electron materials Authors: Yang, Yi-feng ; Pines, David ; Curro, N. J. Publication Date: 2015-11-17 OSTI Identifier: 1226180 Grant/Contract Number: de-na0001842-0 Type: Publisher's Accepted Manuscript Journal Name:

  11. Categorical Exclusion (CX) Determinations | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Categorical Exclusion (CX) Determinations Fermi Site Office (FSO) FSO Home About Projects Contract Management NEPA Documents Categorical Exclusion Determinations Environmental Assessments and Environmental Impact Statements Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 National Environmental Policy Act (NEPA) Documents Categorical Exclusion (CX) Determinations Print

  12. The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1990-02-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

  13. Microsoft PowerPoint - SW Fed Hydro Conference Jun 12 presentation Final [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Impacting Federal Projects Impacting Federal Power Tulsa District Tulsa District Beau Biffle Beau Biffle 13 June 2012 BUILDING STRONG ® Topics Topics  Interior Least Tern Operations and Habitat Creation  Tulsa Vision 2025  Dam Safety Issues ► Keystone ► Pine Creek ► Tenkiller  Lake Eufaula Advisory Committee  Lake Eufaula Advisory Committee  Tenkiller Downstream Fishery Issues  Broken Bow Seasonal Pool Update - Cultural Broken Bow Seasonal Pool Update

  14. Flash hydropyrolysis and methanolysis of biomass with hydrogen and methane

    SciTech Connect (OSTI)

    Steinberg, M.

    1985-04-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  15. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1985-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in a 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 30% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 8 refs., 18 figs., 1 tab.

  16. I I I I I I I I I I I I I I I I

    Office of Legacy Management (LM)

    -I I ,I ORNLIRASA-9215 HEALTH AND SAFETY RESEARCH DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Activity No. EX 20 20 01 0; ADS317AEX) Results of the Radiological Survey at the former ALCOA New Kensington Works, Pine and Ninth Streets, New Kensington, Pennsylvania (ANK002) R. D. Foley and K. S. Brown Date Issued - October 1992 Investigation Team R. E. Swaja - Measurement Applications and Development Manager W. D. Cottrell - Project Director R. D. Foley - Field

  17. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2015 spacer Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO spacer Top Links Labwide calendar Fermilab at Work Wilson Hall Cafe menu Chez Leon menu Weather at Fermilab Announcements Today's New Announcements Walk 2 Run on Thursdays Pine Street road closing - Aug. 23 English country dancing at Kuhn Barn - Aug. 23 Commercializing Innovation: office hours at IARC - Aug. 24 Call for proposals: URA Visiting Scholars Program - deadline is Aug. 31 Fermilab employee art

  18. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2015 spacer Subscribe | Contact Us | Archive | Classifieds | Guidelines | Help Search GO spacer Top Links Labwide calendar Fermilab at Work Wilson Hall Cafe menu Chez Leon menu Weather at Fermilab Announcements Today's New Announcements Pine Street closed for repairs - Sept. 26 Fermilab Arts Series: 10,000 Maniacs - Sept. 26 Wilson Hall southwest elevator offline through Sept. 26 English country dancing in Kuhn Barn - Sept. 27 Siemens Mobile Showcase Is coming to Fermilab - Sept. 29 NALWO

  19. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Flux Measurements Super Site at Savannah River National Laboratory The Savannah River National Laboratory (SRNL) Carbon Flux Super Site provides a unique resource for intensive study of the carbon exchange (flux) for forested ecosystems characteristic of the southeast United States. Researchers gather information from the Carbon Flux Super Site to investigate carbon flux on regional and local levels. Southeastern pine forests are very effective at sequestering anthropgenic emissions of CO

  20. Vegetation N A County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    N A County road 39 Community D Bottomland Hardwood _ Mixed Swamp Forest _ Bottomland Hardwood/Pine .** TES Plants (1) ~ Site Boundary ~ Roads m. Streams N County Line em Hydric Soils 410 o 410 820 Meters Soils Soil Series _ Pk D VeD Figure 18-2. Plant communities and soils of the Boiling Springs Natural Area. 18-7 Set-Aside 18: Boiling Springs Natural Area

  1. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W

  2. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W

  3. DOE/SC-ARM-14-033 ARM Climate Research Facility ANNUAL REPORT - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility ANNUAL REPORT - 2014 On the cover: BAECC Site Panorama The Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign is a collaboration with Finnish scientists to measure biogenic aerosols emitted from forests in order to determine their effects on clouds, precipitation, and climate. BAECC placed the second ARM Mobile Facility in a Scots pine forest in southern Finland from February through September 2014 to obtain surface-based measurements of

  4. Anthrax Lethal Factor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thiang Yian Wong, Robert Schwarzenbacher and Robert C. Liddington The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037. Anthrax Toxin is a major virulence factor in the infectious disease, Anthrax1. This toxin is produced by Bacillus anthracis, which is an encapsulated, spore-forming, rod-shaped bacterium. Inhalation anthrax, the most deadly form, is contracted through breathing spores. Once spores germinate within cells of the immune system called macrophages2, bacterial

  5. Flash pyrolysis of biomass with reactive and non-reactive gases

    SciTech Connect (OSTI)

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1984-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H/sub 2/ and CH/sub 4/ and with the non-reactive gases He and N/sub 2/ is being determined in an 1'' downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000/sup 0/C. With hydrogen, flash hydropyrolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000/sup 0/C and approximately 1 sec residence time, the ethylene yield based on pine wood carbon conversion is 27%, for benzene it is 25% and for CO the yield is 39%, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood. The yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, thus indicating a free radical reaction between CH/sub 4/ and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicate an economically competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 7 references, 13 figures, 1 table.

  6. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    SciTech Connect (OSTI)

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  7. Comparative plant uptake and microbial degradation of trichloroethylene in the rhizospheres of five plant species-- implications for bioremediation of contaminated surface soils

    SciTech Connect (OSTI)

    Anderson, T.A. ); Walton, B.T. )

    1992-01-01

    The objective of this study was to collect data that would provide a foundation for the concept of using vegetation to enhance in situ bioremediation of contaminated surface soils. Soil and vegetation (Lespedeza cuneata, Paspalum notatum, Pinus taeda, and Solidago sp.) samples from the Miscellaneous Chemicals Basin (MCB) at the Savannah River Site were used in tests to identify critical plant and microbiological variables affecting the fate of trichloroethylene (TCE) in the root zone. Microbiological assays including phospholipid acid analyses, and {sup 14}C-acetate incorporation were conducted to elucidate differences in rhizosphere and nonvegetated soil microbial communities from the MCB. The microbial activity, biomass, and degradation of TCE in rhizosphere soils were significantly greater than corresponding nonvegetated soils. Vegetation had a positive effect on microbial degradation of {sup 14}C-TCE in whole-plant experiments. Soils from the MCB containing Lespedeza cuneata, Pinus taeda, and Glycine max mineralized greater than 25% of the {sup 14}C- TCE added compared with less than 20% in nonvegetated soils. Collectively, these results provide evidence for the positive role of vegetation in enhancing biodegradation.

  8. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    class recreation, bold science April 3, 2012 All work and no play makes J. Robert Oppenheimer a dull boy Perhaps the importance of a good quality of life is why Oppie insisted that the future home of Los Alamos National Laboratory be located on the picturesque Pajarito Plateau in sunny Northern New Mexico. Located at 7,000 feet above sea level, among cool ponderosa pine forests situated on a mesmerizing maze of mesa tops, Los Alamos features world-class recreation activities to complement the

  10. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts disappearance of conifers due to climate change December 21, 2015 Predicts widespread loss in the Southwest U.S. in this century LOS ALAMOS, N.M., Dec. 21, 2015-A new study, led by Los Alamos National Laboratory, suggests that widespread loss of a major forest type, the pine-juniper woodlands of the Southwestern U.S., could be wiped out by the end of this century due to climate change, and that conifers throughout much of the Northern Hemisphere may be on a similar trajectory. New

  11. Microsoft Word - Cover Page - Exhibit 9

    Energy Savers [EERE]

    9 Northern Pass Project General Area Map of South Section o ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . ! . # * # * # * # * # * # * # * # * # * Laconia S/S Garvins S/S Webster S/S Oak Hill S/S Pine Hill S/S Merrimack S/S Deerfield S/S Greggs Falls S/S Proposed Converter Station § ¨ ¦ 93 § ¨ ¦ 89 § ¨ ¦ 293 § ¨ ¦ 393 £ ¤ 3 £ ¤ 4 £ ¤ 202 £ ¤ 4 £ ¤ 202 ! ( 11 ! ( 106 ! ( 132 ! ( 28 ! ( 13 ! ( 121 ! ( 107 ! ( 101 ! ( 3 ! ( 129 ! ( 202 ! ( 126 ! (

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Switch to Detail View for this search SciTech Connect Search Results Page 1 of 1 Search for: All records Creators/Authors contains: "Pines, David" × Sort by Relevance Sort by Date (newest first) Sort by Date (oldest first) Sort by Relevance « Prev Next » Everything3 Electronic Full Text1 Citations2 Multimedia0 Datasets0 Software0 Filter Results Filter by Subject cuprates (2) fluctuations (2) accuracy (1) antiferroelectric materials (1) antiferromagnetism (1) bcs theory (1) coherence

  13. X W X W X W X W X W X W X W X W X W X W X W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W X W X W X W X W X W X W X W X W X W X W # S X W X W X W X W X W X W X W X W X W X W # S X W # S Nevada Test and Training Range NEVADA TEST SITE Nye County Lincoln County Clark County Inyo County Esmeralda County White Pine County Millard County Beaver County Iron County Washington County Mohave County Mineral County Mono County Lander County Eureka County Churchill County Ely Rachel Boulder City Indian Springs Henderson Warm Springs Summit Medlin's Ranch Delta Amargosa Valley Pioche Milford

  14. Investigation of the March 5, 2011, Building 488, Brookhaven National Laboratory, Tree Felling Injury

    Broader source: Energy.gov [DOE]

    On Saturday, March 5, 2011 at approximately 10:20 a.m., a Brookhaven National Laboratory Building and Grounds Utility Worker was felling a pine tree while elevated in a 60-foot articulating and telescoping boom lift approximately 20-feet above the ground on the south side of Building 488. As the gas-powered, 20-inch chainsaw being used by the employee cut through the tree trunk, an approximately 8-foot long, 18-inch diameter, 520 pound section of tree trunk fell toward the aerial lift, striking the employee’s right forearm, and compressing it against the top railing of the aerial lift basket.

  15. Jobs | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jobs Fermi Site Office (FSO) FSO Home About Organization Chart .pdf file (66KB) Phone List FSO Brochure .pdf file (320KB) Jobs Projects Contract Management NEPA Documents Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 About Jobs Print Text Size: A A A Subscribe FeedbackShare Page Current Open Federal Positions The Fermi Site Office is located in Batavia, Illinois. All

  16. An economical and market analysis of Canadian wood pellets.

    SciTech Connect (OSTI)

    Peng, J. [University of British Columbia, Vancouver

    2010-08-01

    This study systematically examined the current and future wood pellet market, estimated the cost of Canadian torrefied pellets, and compared the torrefied pellets with the conventional pellets based on literature and industrial data. The results showed that the wood pellet industry has been gaining significant momentum due to the European bioenergy incentives and the rising oil and natural gas prices. With the new bioenergy incentives in USA, the future pellets market may shift to North America, and Canada can potentially become the largest pellet production centre, supported by the abundant wood residues and mountain pine beetle (MPB) infested trees.

  17. Fermilab Cultural Events in Chicago's Far West Side

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information Fermilab Arts & Lecture Series Kirk Road & Pine Street, P.O. Box 500, MS 111, Batavia, IL 60510 - 0500 Phone: Voice - 630.840.ARTS(2787), Fax - 630.840.5501 E-Mail: audweb@fnal.gov Tickets are sold on a first-come, first-served basis. Tickets may be charged on MasterCard, Visa, or Discover or paid for by check. Mail Order. Send a check (payable to Fermilab) or charge authorization with a self-addressed, stamped envelope to Fermilab Arts Series, P.O. Box 500, MS111,

  18. Projects | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Fermi Site Office (FSO) FSO Home About Projects Contract Management NEPA Documents Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 Projects Print Text Size: A A A FeedbackShare Page FSO provides oversight to proposed and ongoing science and infrastructure projects at Fermilab. The latest developments in accelerator and detector technology make possible promising

  19. Resources | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Fermi Site Office (FSO) FSO Home About Projects Contract Management NEPA Documents Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 Resources Print Text Size: A A A FeedbackShare Page Virtual Contract Management Team The Site Office operates as a virtual contract management team working to provide the necessary information to ensure that the Contracting Officers

  20. Bird Habitats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bird Habitats Bird Habitats The avian nest box monitoring network is located in northern New Mexico to monitor ecosystem health by investigating the health and condition of cavity-nesting birds on the Pajarito Plateau. February 2, 2015 Avian nest box on LANL land Boxes are placed in the open ponderosa pine forest of the canyons and piñon-juniper woodland on the Pajarito plateau mesas. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505)

  1. AmeriFlux US-Ha1 Harvard Forest EMS Tower (HFR1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Munger, J. William [Harvard University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ha1 Harvard Forest EMS Tower (HFR1). Site Description - The Harvard Forest tower is on land owned by Harvard University. The site is designated as an LTER site. Most of the surrounding area was cleared for agrigulture during European settlement in 1600-1700. The site has been regrowing since before 1900 (based on tree ring chronologies) and is now predominantly red oak and red maple, with patches of mature hemlock stand and individual white pine. Overstory trees were uprooted by hurricane in 1938. Climate measurements have been made at Harvard Forest since 1964.

  2. High Resolution Snapshots for the Complete Reaction Cycle of a Cocaine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalytic Antibody High Resolution Snapshots for the Complete Reaction Cycle of a Cocaine Catalytic Antibody Xueyong Zhu1, Tobin J. Dickerson2,3, Claude J. Rogers2,3, Gunnar F. Kaufmann2,3, Jenny M. Mee2,3, Kathleen M. McKenzie2,3, Kim D. Janda2,3,4,* and Ian A. Wilson1,4,* Departments of Molecular Biology1 and Chemistry2 and Immunology3, and The Skaggs Institute for Chemical Biology4, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Cocaine is a

  3. About | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Fermi Site Office (FSO) FSO Home About Organization Chart .pdf file (66KB) Phone List FSO Brochure .pdf file (320KB) Jobs Projects Contract Management NEPA Documents Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 About Print Text Size: A A A FeedbackShare Page As part of The Fermi Site Office's (FSO) Mission, Vision, and Principles .pptx file (148KB), the FSO

  4. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Site The Sandhills Fire Site is a mixed-species sandhills habitat situated on infertile, poor-to- marginally productive soils. This habitat type once was common to this region of the United States as well as to the SRS; however, forest type conversion to longleaf pine plantations has reduced this community type to isolated patches within the SRS landscape. The Sandhills Fire Site was included in the Set-Aside Program because it represents a fire-maintained sandhills community and because of

  5. Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scrub Oak Natural Area This mixed-species sandhills habitat is situated on infertile, poor-to-marginally productive soils, a habitat type that once was common to the Aiken Plateau as well as the SRS. However, forest type conversion to longleaf pine plantations has reduced this community type to isolated patches within the SRS landscape. The Scrub Oak Natural Area was registered in 1968 with the Society of American Foresters (SAF) national system of Natural Areas. It is one of two SAF Natural

  6. Environmental characterization studies of a high-throughput wood gasifier

    SciTech Connect (OSTI)

    Chang, H.; Niemann, R.C.; Wilzbach, K.E.; Paisley, M.

    1983-01-01

    Potential environmental effects associated with thermochemical biomass gasification have been studied by Argonne National Laboratory in cooperation with Battelle Columbus Laboratories (BCL). A series of samples from the process research unit of an indirectly heated, high-throughput wood gasifier operated by BCL has been analyzed for potentially toxic organic compounds and trace elements. The results indicate that, under the test-run conditions, the gasification of both pine and hardwood is accompanied by the formation of some oil, the heavier fraction of which gives a positive response in the Ames assay for mutagenicity and contains numerous phenols and polycyclic aromatic hydrocarbons, including some carcinogens. The implications of these observations are discussed.

  7. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these sites, we developed a cost-effective method for partitioning total soil carbon to pedogenic carbon and geogenic carbon in mine soils. We are in the process of evaluating the accuracy and precision of the proposed carbon partitioning technique for which we are designing an experiment with carefully constructed mine soil samples. In a second effort, as part of a mined land reforestation project for carbon sequestration in southwestern Virginia we implemented the first phase of the carbon monitoring protocol that was recently delivered to DOE.

  8. U.S. Department of Energy Office of Legacy Management

    Office of Legacy Management (LM)

    1 02/09/2010 Fernald Preserve Field Walkdown Inspection Date September 4, 2013 Inspector SM Stoller, Ohio EPA Area Lodge Pond basin, east field, east perimeter, WM1 wetlands, north pines Sub-Area Type of Finding Follow Up No. Location (Use Map Whenever Possible) GPS? Unauthorized Use Disturbance Vegetation Other Description Photo? (File No.) Corrected Maintenance Req'd Cont. Observation 1 East perimeter across from Cell 7 NO X Poison ivy X 2 East of Restoration shed NO X Vines growing up deer

  9. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StreamsArkansas-Red Basin River Forecast Center Documentation ABRFC Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Arkansas-Red Basin River Forecast Center (ABRFC) Information updated on November 5, 2008, 8:19 pm GMT General Data Description The ABRFC area of responsibility includes the drainage area of the Arkansas River above Pine Bluff Arkansas and the drainage area of

  10. Contract Management | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contract Management Fermi Site Office (FSO) FSO Home About Projects Contract Management NEPA Documents Resources Contact Information Fermi Site Office U.S. Department of Energy MS 118 P.O. Box 2000 Kirk Road and Pine Street Batavia, IL 60510 P: (630) 840-3281 F: (630) 840-3285 Contract Management Print Text Size: A A A FeedbackShare Page The FSOBusiness and Contract Support .pdf file (258KB) Team implements the timely execution of all Fermi Research Alliance (FRA) External link management and

  11. Forest stand development patterns in the southern Appalachians

    SciTech Connect (OSTI)

    Copenheaver, C.A.; Matthews, J.M.; Showalter, J.M.; Auch, W.E.

    2006-07-01

    Composition of southern Appalachian forests are influenced by disturbance and topography. This study examined six stands in southwestern Virginia. Within each stand, a 0.3-ha plot was established, and all trees and saplings were measured and aged. Burned stands had lower densities of saplings and small trees, but appeared to have greater Quercus regeneration. Ice damage from the 1994 ice storm was most evident in Pinus strobus saplings. A stand on old coal-mine slag appeared to be experiencing a slower rate of succession than other sites. A variety of stand development patterns were observed, but one common pattern was that oak-hickory overstories had different species in their understory, which may indicate future changes in species composition.

  12. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  13. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  14. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    SciTech Connect (OSTI)

    Wang, C.J.K.; Worrall, J.J. . Coll. of Environmental Science and Forestry)

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  15. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles. Final report

    SciTech Connect (OSTI)

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  16. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect (OSTI)

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  17. Relationships between dead wood and arthropods in the Southeastern United States.

    SciTech Connect (OSTI)

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  18. AmeriFlux US-Blo Blodgett Forest

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Goldstein, Allen [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Blo Blodgett Forest. Site Description - The flux tower site at Blodgett Forest is on a 1200 ha parcel of land owned by Sierra Pacific Industries in the Sierra Nevada range near Georgetown, California. The field site was established in May 1997 with continuous operation since May 1999. The site is situated in a ponderosa pine plantation, mixed-evergreen coniferous forest, located adjacent to Blodgett Forest Research Station. The Mediterranean-type climate of California is characterized by a protracted summer drought, with precipitation occurring mainly from October through May. The infrastructure for the ecosystem scale flux measurements includes a walkup measurement tower, two temperature controlled instrument buildings, and an electrical generation system powered by a diesel generator. Typical wind patterns at the site include upslope flow during the day (from the west) and downslope flow at night (from the east). The plantation is relatively flat, and contains a homogenous mixture of evenly aged ponderosa pine with other trees and shrubs scattered throughout the ecosystem making up less than 30% of the biomass. The daytime fetch for the tower measurements extends approximately 200 m to the southwest of the tower (this region contributes ~90% of the daytime flux), thus remote sensing images to be used for modeling should probably be centered approximately 100 m from the tower at an angle of 225 deg.

  19. Demonstration Results From Greenhouse Heating with Liquified Wood

    SciTech Connect (OSTI)

    Steele, Philip; Parish, Don; Cooper, Jerome

    2011-07-01

    A boiler fuel known as Lignocellulosic Boiler Fuel (LBF) was developed at the Department of Forest Products, Mississippi State University for potential application for heating agricultural buildings. LBF was field tested to heat green houses in cooperation with Natchez Trace Greenhouses (NTG) located in Kosciusko, Mississippi. MSU modified an idled natural gas boiler located at NTG to combust the LBF. Thirty gallons of bio-oil were produced at the MSU Bio-oil Research Laboratory. The bio-oil was produced from the fast-pyrolysis of southern pine (15 gal) and white oak (15 gal) feedstocks and subsequently upgraded by a proprietary process. Preliminary field testing was conducted at (NTG). The LBF was produced from each wood species was tested separately and co-fed with diesel fuel to yield three fuel formulations: (1) 100% diesel; (2) 87.5% LBF from southern pine bio-oil co-fed with 12.5% diesel and (3) 87.5% LBF from white oak co-fed with 12.5% diesel fuel formulations. Each fuel formulation was combusted in a retrofit NTG boiler. Fuel consumption and water temperature were measured periodically. Flue gas from the boiler was analyzed by gas chromatograph. The 100% diesel fuel increased water temperature at a rate of 4 °F per min. for 35 min. to achieve the target 140 °F water temperature increase. The 87.5% pine LBF fuel cofed with 12.5%) diesel attained the 140 °F water temperature increase in 62 min. at a rate of 2.3 °F per min. The 87.5% white oak LBF fuel co-fed with 12.5% diesel reached the 140 °F water temperature increase in 85 min. at a rate of 1.6 °F per min. Fuel that contained 87.5% pine LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 5.3 and carbon dioxide and carbon monoxide at a ratio of 22.2. Fuel formulations that contained 87.5% white oak LBF co-fed with 12.5% diesel yielded nitrogen and oxygen at a ratio of 4.9 and carbon dioxide and carbon monoxide at a ratio of 16.4. Neither the pine LBF nor the white oak LBF fuel showed any measureable methane emissions from the NTG boiler flue gas. These results indicate a viable potential for mildly upgraded bio-oil to become an alternative fuel source for greenhouse operations.

  20. Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"

    SciTech Connect (OSTI)

    Beverly E. Law , Christoph K. Thomas

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

  1. KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

    SciTech Connect (OSTI)

    Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  2. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    SciTech Connect (OSTI)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  3. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    SciTech Connect (OSTI)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K.

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  4. Preliminary study on mercury uptake by Rosmarinus officinalis L. (Rosemary) in a mining area (Mt. Amiata, Italy)

    SciTech Connect (OSTI)

    Barghigiani, C.; Ristori, T.

    1995-04-01

    Among the different plants analyzed to assess environmental mercury contamination of mining areas, lichens are those most studied, followed by brooms together with pine, which was also used in other areas, and spruce. Other species, both naturally occurring and cultivated, have also been studied. This work reports on the results of mercury uptake and accumulation in rosemary in relation to metal concentrations in both air and soil. R. officinalis is a widespread endemic Mediterranean evergreen shrub, which in Italy grows naturally and is also cultivated as a culinary herb. This research was carried out in Tuscany (Italy), in the Mt. Amiata area, which is characterized by the presence of cinnabar (HgS) deposits and has been used for mercury extraction and smelting from Etruscan times until 1980, and in the country near the town of Pisa, 140 km away from Mt. Amiata. 16 refs., 3 figs., 1 tab.

  5. Vegetation survey of PEN Branch wetlands

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  6. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    SciTech Connect (OSTI)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure, i.e., low wind speed, weak turbulence, night, low deposition velocity, the effect of deposition and re-emission on MOI exposure was found to be very small. The exposure over the two hour period following arrival of the plume was found to be decreased by less than 0.05 %. Furthermore the sensitivity to deposition velocity was low. Increasing deposition velocity to 0.5 cm/s reduced exposure to 0.3 %. After a 24 hour period, an MOI would have been exposed to all of the released material. Based on the low sensitivity of MOI exposure to the value of deposition velocity when re-emission is considered, it is appropriately conservative to use a 0.0 cm/s effective deposition velocity for safety analysis in the MACCS2 code.

  7. Beetle Kill Wall at NREL

    ScienceCinema (OSTI)

    None

    2013-05-29

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  8. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or “clearing house” for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  9. Woody vegetation and succession on the Fonde surface mine demonstration area, Bell County, Kentucky

    SciTech Connect (OSTI)

    Wade, G.L.; Thompson, R.L.

    1999-07-01

    The long term impact of surface mining on vegetation and plant succession has always been of concern to environmentalists and residents of Appalachia. The Fonde Surface Mine Demonstration Area is a 7.3-ha, NE-NW-aspect contour coal mine at an elevation of 562 m. It was reclaimed in 1965 to show state-of-the-art surface mine reclamation techniques consistent with then-current law and regulations after coal mining in 1959 and 1963. The mine spoils were lightly graded to control erosion and crates a bench with water control and two sediment ponds. Soil pH ranged from 2.8 to 5.9. About 80 percent of the mine was planted with 18 tree and shrub species including plantations of mixed pine, mixed hardwoods, black locust, and shrubs for wildlife. In a complete floristic inventory conducted 25 years later, the authors found the woody flora consisted of 34 families, 53 genera, and 70 species including 7 exotics. This inventory of the Fonde mine shows that a diverse forest vegetation can be reestablished after extreme disturbances in Appalachia. Black locust, yellow poplar, and Virginia pine reproduction varied significantly among plantation types. Canopy tree species significantly affected ground layer cover, total species richness, number of tree seedling species, and total number of tree seedlings present. Mine soil type affected ground layer percent cover and total species richness. Pre-SMCRA (Surface Mining Control and Reclamation Act of 1977) reclaimed and inventoried mines can be used to evaluate biodiversity on post-SMCRA mines.

  10. Disposal of chemical agents and munitions stored at Anniston Army Depot, Anniston, Alabama

    SciTech Connect (OSTI)

    Hunsaker, D.B. Jr.; Zimmerman, G.P.; Hillsman, E.L.; Miller, R.L.; Schoepfle, G.M.; Johnson, R.O.; Tolbert, V.R.; Kroodsma, R.L.; Rickert, L.W.; Rogers, G.O.; Staub, W.P.

    1990-09-01

    The purpose of this Phase I report is to examined the proposed implementation of on-site disposal at Anniston Army Depot (ANAD) in light of more detailed and more recent data than those included in the Final Programmatic Environmental Impact Statement (EPEIS). Two principal issues are addressed: (1) whether or not the new data would result in identification of on-site disposal at ANAD as the environmentally preferred alternative (using the same selection method and data analysis tools as in the FPEIS), and (2) whether or not the new data indicate the presence of significant environmental resources that could be affected by on-site disposal at ANAD. In addition, a status report is presented on the maturity of the disposal technology (and now it could affect on-site disposal at ANAD). Inclusion of these more recent data into the FPEIS decision method resulted in confirmation of on-site disposal for ANAD. No unique resources with the potential to prevent or delay implementation of on-site disposal at ANAD have been identified. A review of the technology status identified four principal technology developments that have occurred since publication of the FPEIS and should be of value in the implementation of on-site disposal at ANAD: the disposal of nonlethal agent at Pine Bluff Arsenal, located near Pine Bluff, Arkansas; construction and testing of facilities for disposal of stored lethal agent at Johnston Atoll, located about 1300 km (800 miles) southwest of Hawaii in the Pacific Ocean; lethal agent disposal tests at the chemical agent pilot plant operations at Tooele Army Depot, located near Salt Lake City, Utah; and equipment advances. 18 references, 13 figs., 10 tabs.

  11. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    SciTech Connect (OSTI)

    Loehle, C.; Iltis, H.

    1998-12-31

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollen of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.

  12. Elevated CO2 increases tree-level intrinsic water use efficiency: insights from carbon and oxygen isotope analyses in tree rings across three forest FACE sites

    SciTech Connect (OSTI)

    Battipaglia, Giovanna [Second University of Naples; Saurer, Matthias [Paul Scherrer Institut, Villigen, Switzerland; Cherubini, Paulo [WSL Swiss Federal Institute for Forest, Snow and Landscape Research; Califapietra, Carlo [University of Tuscia; McCarthy, Heather R [Duke University; Norby, Richard J [ORNL; Cotrufo, M. Francesca [Colorado State University, Fort Collins

    2013-01-01

    Elevated CO2 increases intrinsic water use efficiency (WUEi) of forests, but the magnitude of this effect and its interaction with climate is still poorly understood. We combined tree ring analysis with isotope measurements at three Free Air CO2 Enrichment (FACE, POP-EUROFACE, in Italy; Duke FACE in North Carolina and ORNL in Tennessee, USA) sites, to cover the entire life of the trees. We used 13C to assess carbon isotope discrimination ( 13C ci/ca) and changes in WUEi, while direct CO2 effects on stomatal conductance were explored using 18O as a proxy. Across all the sites, elevated CO2 increased 13C-derived WUEi on average by 73% for Liquidambar styraciflua, 77% for Pinus taeda and 75% for Populus sp., but through different ecophysiological mechanisms. Our findings provide a robust means of predicting WUEi responses from a variety of tree species exposed to variable environmental conditions over time, and species-specific relationships that can help modeling elevated CO2 and climate impacts on forest productivity, carbon and water balances.

  13. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    SciTech Connect (OSTI)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-04-15

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.

  14. Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling

    SciTech Connect (OSTI)

    Fares, Silvano; Schnitzhofer, Ralf; Xiaoyan, Jiang; Guenther, Alex B.; Hansel, Armin; Loreto, Francesco

    2013-09-04

    Most vascular plants species, especially trees, emit biogenic volatile organic compounds (BVOC). Global estimates of BVOC emissions from plants range from 1 to 1.5 Pg C yr?1.1 Mediterranean forest trees have been described as high BVOC emitters, with emission depending primarily on light and temperature, and therefore being promoted by the warm Mediterranean climate. In the presence of sufficient sunlight and nitrogen oxides (NOx), the oxidation of BVOCs can lead to the formation of tropospheric ozone, a greenhouse gas with detrimental effects on plant health, crop yields, and human health. BVOCs are also precursors for aerosol formation, accounting for a significant fraction of secondary organic aerosol (SOA) produced in the atmosphere. The presidential Estate of Castelporziano covers an area of about 6000 ha located 25 km SW from the center of Rome, Italy (Figure 1) and hosts representative forest ecosystems typical of Mediterranean areas: holm oak forests, pine forests, dune vegetation, mixed oak and pine forests. Between 1995 and 2011, three intensive field campaigns were carried out on Mediterranean-type ecosystems inside the Estate. These campaigns were aimed at measuring BVOC emissions and environmental parameters, to improve formulation of basal emission factors (BEFs), that is, standardized emissions at 30 C and 1000 ?mol m?2s?1 of photosynthetic active radiation (PAR). BEFs are key input parameters of emission models. The first campaign in Castelporziano was a pioneering integrated study on biogenic emissions (1993? 19964). BVOC fluxes from different forest ecosystems were mainly investigated using plant- and leaf enclosures connected to adsorption tubes followed by GC?MS analysis in the laboratory. This allowed a first screening of Mediterranean species with respect to their BVOC emission potential, environmental control, and emission algorithms. In particular, deciduous oak species revealed high isoprene emissions (Quercus f rainetto, Quercus petrea, Quercus pubescens), while evergreen oaks emitted monoterpenes only, for example, Quercus ilex = holm oak. Differences in constitutive emission patterns discovered in Castelporziano supplied basic information to discriminate oak biodiversity in following studies.Ten years later, a second experimental campaign took place in spring and summer 2007 on a dune-shrubland experimental site. In this campaign, the use of a proton transfer reaction mass spectrometer (PTR-MS14) provided the fast BVOC observations necessary for quasi-real-time flux measurements using Disjunct Eddy Covariance. This allowed for the first time continuous measurements and BEFs calculation at canopy level. Finally, in September 2011 a third campaign was performed with the aim of further characterizing and improving estimates of BVOC fluxes from mixed Mediterranean forests dominated by a mixed holm oak and stone pine forest, using for the first time a proton transfer reaction?time-of-flight?mass spectrometer (PTR-TOF-MS). In contrast to the standard quadrupole PTR-MS, which can only measure one m/z ratio at a discrete time, thus being inadequate to quantify fluxes of more than a handful of compounds simultaneously, PTR-TOF-MS allowed simultaneous measurements (10 Hz) of fluxes of all BVOCs at the canopy level by Eddy Covariance.17?20, 50 In this work, we reviewed BEFs from previous campaigns in Castelporziano and calculated new BEFs from the campaign based on PTR-TOF-MS analysis. The new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.11).

  15. Predicting the impacts of climate change on animal distributions: the importance of local adaptation and species' traits

    SciTech Connect (OSTI)

    HELLMANN, J. J.; LOBO, N. F.

    2011-12-20

    The geographic range limits of many species are strongly affected by climate and are expected to change under global warming. For species that are able to track changing climate over broad geographic areas, we expect to see shifts in species distributions toward the poles and away from the equator. A number of ecological and evolutionary factors, however, could restrict this shifting or redistribution under climate change. These factors include restricted habitat availability, restricted capacity for or barriers to movement, or reduced abundance of colonists due the perturbation effect of climate change. This research project examined the last of these constraints - that climate change could perturb local conditions to which populations are adapted, reducing the likelihood that a species will shift its distribution by diminishing the number of potential colonists. In the most extreme cases, species ranges could collapse over a broad geographic area with no poleward migration and an increased risk of species extinction. Changes in individual species ranges are the processes that drive larger phenomena such as changes in land cover, ecosystem type, and even changes in carbon cycling. For example, consider the poleward range shift and population outbreaks of the mountain pine beetle that has decimated millions of acres of Douglas fir trees in the western US and Canada. Standing dead trees cause forest fires and release vast quantities of carbon to the atmosphere. The beetle likely shifted its range because it is not locally adapted across its range, and it appears to be limited by winter low temperatures that have steadily increased in the last decades. To understand range and abundance changes like the pine beetle, we must reveal the extent of adaptive variation across species ranges - and the physiological basis of that adaptation - to know if other species will change as readily as the pine beetle. Ecologists tend to assume that range shifts are the dominant response of species to climate change, but our experiments suggest that other processes may act in some species that reduce the likelihood of geographic range change. In the first part of our DOE grant (ending 2008) we argued that the process of local adaptation of populations within a species range, followed by climatic changes that occur too quickly for adaptive evolution, is an underappreciated mechanism by which climate change could affect biodiversity. When this process acts, species ranges may not shift readily toward the poles, slowing the rate of species and biome change. To test this claim, we performed an experiment comparing core and peripheral populations in a series of field observations, translocation experiments, and genetic analyses. The papers in Appendix A were generated from 2005-2008 funding. In the second part of the DOE grant (ending 2011) we studied which traits promote population differentiation and local adaptation by building genomic resources for our study species and using these resources to reveal differences in gene expression in peripheral and core populations. The papers in Appendix B were generated from 2008-2011 funding. This work was pursued with two butterfly species that have contrasting life history traits (body size and resource specialization) and occupy a common ecosystem and a latitudinal range. These species enabled us to test the following hypotheses using a single phylogenetic group.

  16. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.

    SciTech Connect (OSTI)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reasonably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody debriscomponents than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub biomass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths from 0.6 to 2.3 musing a 30 km h{sub 1} wind speed and fireline intensities of 100-1500 kW m{sub 1} that are typical within the range of experience on this landscape. The fuel models ranked 1 < 2 < 7 < 5 < 4 < 3 < 6 in terms of both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in order to create a landscape representative of measured fuel conditions and to create models that interface with geospatial fire models.

  17. Natural Resource Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    green, T.

    2011-08-15

    This comprehensive Natural Resource Management Plan (NRMP) for Brookhaven National Laboratory (BNL) was built on the successful foundation of the Wildlife Management Plan for BNL, which it replaces. This update to the 2003 plan continues to build on successes and efforts to better understand the ecosystems and natural resources found on the BNL site. The plan establishes the basis for managing the varied natural resources located on the 5,265 acre BNL site, setting goals and actions to achieve those goals. The planning of this document is based on the knowledge and expertise gained over the past 10 years by the Natural Resources management staff at BNL in concert with local natural resource agencies including the New York State Department of Environmental Conservation, Long Island Pine Barrens Joint Planning and Policy Commission, The Nature Conservancy, and others. The development of this plan is an attempt at sound ecological management that not only benefits BNL's ecosystems but also benefits the greater Pine Barrens habitats in which BNL is situated. This plan applies equally to the Upton Ecological and Research Reserve (Upton Reserve). Any difference in management between the larger BNL area and the Upton Reserve are noted in the text. The purpose of the Natural Resource Management Plan (NRMP) is to provide management guidance, promote stewardship of the natural resources found at BNL, and to sustainably integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, sustainability, adaptive ecosystem management, compliance, integration with other plans and requirements, and the incorporation of community involvement, where applicable. The NRMP is periodically reviewed and updated, typically every five years. This review and update was delayed to develop documents associated with a new third party facility, the Long Island Solar Farm. This two hundred acre facility will result in significant changes to this plan warranting the delay. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL in a sustainable manner. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B, respectively), and lists of actions in tabular format - including completed items as well as ongoing and new action items (Appendices C and D, respectively).

  18. Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment

    SciTech Connect (OSTI)

    Robert S Cherry; Rick A. Wood; Tyler L Westover

    2013-12-01

    Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (+ / - 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per ton if using dried chips from the biorefinery. Including a 12% return on invested capital raised all of the operating cost results by about $20/ton.

  19. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.

  20. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    SciTech Connect (OSTI)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

  1. Effect of acid deposition on potentially sensitive soil-plant systems at Vandenberg AFB, California. Final report, 1 September 1984-1 September 1987

    SciTech Connect (OSTI)

    Zedler, P.H.; Marion, G.

    1988-04-30

    The objectives of this study were to assess the impact of the acid deposition expected from rocket launches on natural coastal vegetation and soils. Interest was directed primarily toward the longer-term and more-subtle effects of acidity, and the degree of sensitivity of different soil-plant systems. A study area was established along a topographic chronosequence that ranged from stabilized dunes to residual soils over bedrock. Soils and plants were collected from this region and used in three main studies. A leaching study measured the changes in chemical properties of four soils subjected to repeated acid additions. A second study treated seeds of wide variety of native or spontaneous species with HC1 on the four soils to establish the sensitivity of the vegetation to deposition events during the fall to winter germination pulse characteristic of California coastal ecosystems. A third study examined the effect of acid treatments on the growth of and competition between two common woody plants -- Artemisia californica and Pinus muricata. A fourth study partially supported by this grant studied the invasion of an exotic species in a recently burned site on one of the four study soils. The studies collectively show that, although the soil-plant systems are well buffered against moderate and low inputs of acidity, the effect of acid additions differed among soil types and from species to species. Overall the hypothesis that acidic deposition could affect plant-plant and soil-plant interactions was supported, but some of these effects are subtle and not all appear to be deleterious.

  2. Interdependency of fire and global change: The southern U.S. as an example

    SciTech Connect (OSTI)

    Zerbe, J.I.

    1995-06-01

    In the US South, increasing population, air pollution, urbanization of forest lands, and possible changes in climate can influence broad changes in forests and the atmosphere. As a result emissions from biomass burning in forests assume greater significance. For 350 years, people in the US South have practices woods burning. This was once considered a bad practice, but it is now recognized that this can assist in site preparation, release of longleaf pine seedlings, and improving production of plantations. One of the concerns with burning, both controlled and wildfire, is the release of undesirable chemicals to the atmosphere. Encroachment of wildfires on inhabited areas can threaten human life and property. And important to global warming, wildfires and controlled burning release CO{sub 2} and add to increase in CO{sub 2} concentration. Climate warming as a result of global change can cause drier forests and an increase in severity and extent of wildfires. Climate-driven changes in the structure and composition of plant communities will alter the chemical and physical properties of fuels, thereby altering susceptibility to fires.

  3. Support services for ceramic fiber-ceramic matrix composites. Annual technical progress report

    SciTech Connect (OSTI)

    Hurley, J.P.; Kuehnel, V.

    1998-06-22

    The University of North Dakota Energy and Environmental Research Center (EERC) is providing technical assistance and test materials to the US Department of Energy (DOE) Advanced Research and Technology Development (AR and TD) Materials Program investigating ceramic and advanced alloy corrosion in fossil energy systems. The main activity, which is reported here, is to perform thermochemical equilibrium calculations to develop recommendations for test conditions under which to perform corrosion measurements of structural and particle filter materials. The modeling is primarily being performed to determine possible mechanisms of corrosion, especially by species that vaporize in the gasifier then condense on downstream surfaces. For this year, the focus was on the stability of nickel in structural and filter alloys. This work was done in an effort to explain the existence of nickel-containing condensates found downstream of particulate filters in an EERC pilot-scale coal gasifier which operates under conditions similar to the Pinon Pine system, and to determine possible operating conditions that could reduce the wastage of nickel from structural and filter alloys.

  4. Fracture Characteristics in a Disposal Pit on Mesita del Buey, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    David T. Vaniman; Steven L. Reneau

    1998-12-01

    The characteristics of fractures in unit 2 of the Tshirege Member of the Bandelier Tuff were documented in Pit 39, a newly excavated 13.7 m deep disposal pit at Material Disposal Area G on Mesita del Buey. The average spacing between fractures is about 1.0 to 1.3 m, the average fracture aperture is about 3 to 5 mm, and the average fracture dip is about 76o to 77o. Fracture spacing and dip in Pit 39 are generally consistent with that reported from other fracture studies on the Pajarito Plateau, although the fracture apertures in Pit 39 are less than reported elsewhere. Measured fracture orientations are strongly affected by biases imparted by the orientations of the pit walls, which, combined with a small data set, make identification of potential preferred orientations dlfflcult. The most prominent fracture orientations observed in Pit 39, about E-W and N20E, are often not well represented elsewhere on the Pajarito Plateau. Fracture fills contain smectite to about 3 m depth, and calcite and opal may occur at all depths, principally associated with roots or root fossils (rhizoliths). Roots of pifion pine extend in fractures to the bottom of the pit along the north side, perhaps indicating a zone of preferred infiltration of water. Finely powdered tuff with clay-sized particles occurs within a number of fractures and may record abrasive disaggregation associated with small amounts of displacement on minor local faults.

  5. SITE ENVIRONMENTAL REPORT 2000 (SEPTEMBER 2001).

    SciTech Connect (OSTI)

    BROOKHAVEN NATIONAL LABORTORY; PROJECT MANAGER BARBARA COX

    2001-09-27

    Brookhaven National Laboratory (BNL) strives for excellence in both its science research and its facility operations. BNL manages its world-class scientific research with particular sensitivity to environmental and community issues through its internationally recognized Environmental Management System (EMS) and award-winning community relations program. The Site Environmental Report 2000 (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the Laboratory site and fully integrating environmental stewardship into all facets of BNL's mission. BNL's motto, ''Exploring Earth's Mysteries... Protecting its Future,'' describes how the Laboratory approaches its work, with balance between science and the environment. One of the newest initiatives at the Laboratory, the Upton Ecological and Research Reserve, will permanently preserve 530 acres (212 hectares) of the Long Island Central Pine Barrens, a unique ecosystem of forests and wetlands. The Reserve sets aside 10% of BNL property for conservation and ecological research through a partnership between the U.S. Department of Energy (DOE) and the U.S. Fish and Wildlife Service. The Reserve provides habitat for approximately 27 endangered, threatened, or species of special concern, including the state-endangered eastern tiger salamander, state-threatened banded sunfish, and swamp darter, along with a number of other species found onsite, such as the wild turkey and red-tailed hawk.

  6. THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.

    SciTech Connect (OSTI)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    AbstractDead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  7. 1999 SITE ENVIRONMENTAL REPORT

    SciTech Connect (OSTI)

    ENGEL-COX,J.; ZIMMERMAN,E.; LEE,R.; WILLIAMS,J.; GREEN,T.; PAQUETTE,D.; HOODA,B.; SCARPITTA,S.; GENZER,P.; ET AL

    2000-09-01

    Throughout the scientific community, Brookhaven National Laboratory (BNL) is renowned for its leading-edge research in physics, medicine, chemistry, biology, materials, and the environment. BNL is committed to supporting its world-class scientific research with an internationally recognized environmental protection program. The 1999 Site Environmental Report (SER) summarizes the status of the Laboratory's environmental programs and performance, including the steady progress towards cleaning up the site and fully integrating environmental stewardship into all facets of the Laboratory's mission. BNL is located on 5,265 acres of pine barrens in Suffolk County in the center of Long Island, New York. The Laboratory is situated above a sole source aquifer at the headwaters of the Peconic River; therefore, protecting ground and surface water quality is a special concern. Approximately 3,600 acres of the site are undeveloped and serve as habitat for a wide variety of animals and plants, including one New York State endangered species, the tiger salamander, and two New York State threatened species, the banded sunfish and the stiff goldenrod. Monitoring, preserving, and restoring these ecological resources is a high priority for the Laboratory.

  8. Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis

    SciTech Connect (OSTI)

    Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

    2007-05-16

    A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

  9. Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass

    SciTech Connect (OSTI)

    Boardman, Richard D.; Cafferty, Kara G.; Nichol, Corrie; Searcy, Erin M.; Westover, Tyler; Wood, Richard; Bearden, Mark D.; Cabe, James E.; Drennan, Corinne; Jones, Susanne B.; Male, Jonathan L.; Muntean, George G.; Snowden-Swan, Lesley J.; Widder, Sarah H.

    2014-07-22

    This report presents the results of an evaluation of utility-scale biomass cofiring in large pulverized coal power plants. The purpose of this evaluation is to assess the cost and greenhouse gas reduction benefits of substituting relatively high volumes of biomass in coal. Two scenarios for cofiring up to 20% biomass with coal (on a lower heating value basis) are presented; (1) woody biomass in central Alabama where Southern Pine is currently produced for the wood products and paper industries, and (2) purpose-grown switchgrass in the Ohio River Valley. These examples are representative of regions where renewable biomass growth rates are high in correspondence with major U.S. heartland power production. While these scenarios may provide a realistic reference for comparing the relative benefits of using a high volume of biomass for power production, this evaluation is not intended to be an analysis of policies concerning renewable portfolio standards or the optimal use of biomass for energy production in the U.S.

  10. Old-field plant succession on the Pajarito Plateau

    SciTech Connect (OSTI)

    Foxx, T.; Mullen, M.; Salisbury, M.; Tierney, G.

    1997-10-01

    Eight fallow historic fields of the ponderosa pine and pinon-juniper cover types were surveyed to determine species composition and distribution. The purpose of the study was to understand plant succession on old fields as related to mechanically manipulated sites such as material disposal areas (MDAs). Additionally, the authors wanted a listing of species on disturbed lands of the Pajarito Plateau to aide in the reclamation planning of MDAs using native species. They also wanted to determine if any species could be used as an indicator of disturbance. The eight historic fields were all within Los Alamos County, New Mexico, and had been abandoned in 1943. Two sites were within the boundaries of Los Alamos National Laboratory and were studied both in 1982 and 1993. The study provides a description of each of the field sites, historic information about the homesteads from patent applications, a photographic record of some of the sites, and a listing of species found within each field. The study showed that there were 78 different plant species found on disturbed sites. Of these 78 species, 23 were found to be dominant on one or more of the MDAs or old fields. Although, the disturbance history of each site is imperfectly known, the study does provide an indication of successional processes within disturbed sites of the Pajarito Plateau. Additionally, it provides a listing of species that will invade disturbed sites, species that may be used in site reclamation.

  11. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  12. Production and degradation of oxalic acid by brown rot fungi

    SciTech Connect (OSTI)

    Espejo, E.; Agosin, E. )

    1991-07-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted {sup 14}C-labeled oxalic acid to CO{sub 2} during cellulose depolymerization. The other brown rot fungi also oxidized {sup 14}C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize {sup 14}C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.

  13. Commercialization of IGCC technology looks promising

    SciTech Connect (OSTI)

    Smith, D.J.

    1992-02-01

    This paper reports that a major focus of the latest round of the U.S. Department of Energy's Clean Coal Technology Program was three large-scale, high-efficiency electricity generating projects which will rely on coal gasification rather than burning the coal directly. The three projects are: Toms Creek integrated gasification combined-cycle (IGCC) demonstration project. The aim of the project is to demonstrate improved coal-to-power efficiencies in an integrated gasification combined-cycle process. According to the DOE, the Toms Creek project will show that significant reductions in SO{sub 2} and NO{sub x} emissions can be accomplished through the use of IGCC technology. On completion of the project, 107 MW of electric capacity will be added to the grid. Pinon Pine IGCC power project. The project's aim is to demonstrate that IGCC plants can be constructed at significantly lower capital costs, and with higher thermal efficiencies, than conventional power generation technologies. It will also demonstrate the effectiveness of hot gas cleanup for low-sulfur western coals. Wasbash River coal gasification repowering project.

  14. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect (OSTI)

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  15. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    SciTech Connect (OSTI)

    Steltenpohl, M.G. (Auburn Univ., AL (United States)); Goldberg, S.A. (Univ. of North Carolina, Chapel Hill (United States)); Hanley, T.B. (Columbus College, GA (United States)); Kunk, M.J. (Geological Survey, Reston, VA (United States))

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 [plus minus] 15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomgenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian [sup 40]Ar/[sup 39]Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghenian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  16. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect (OSTI)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  17. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

    SciTech Connect (OSTI)

    Olson, Ake; Aerts, Andrea; Asiegbu, Fred; Belbahri, Lassaad; Bouzid, Ourdia; Broberg, Anders; Canback, Bjorn; Coutinho, Pedro M.; Cullen, Dan; Dalman, Kerstin; Deflorio, Giuliana; van Diepen, Linda T. A.; Dunand, Christophe; Duplessis, Sebastien; Durling, Mikael; Gonthier, Paolo; Grimwood, Jane; Fossdal, Carl Gunnar; Hansson, David; Henrissat, Bernard; Hietala, Ari; Himmelstrand, Kajsa; Hoffmeister, Dirk; Hogberg, Nils; James, Timothy Y.; Karlsson, Magnus; Kohler, Annegret; Lucas, Susan; Lunden, Karl; Morin, Emmanuelle; Murat, Claude; Park, Jongsun; Raffaello, Tommaso; Rouze, Pierre; Salamov, Asaf; Schmutz, Jeremy; Solheim, Halvor; Stahlberg, Jerry; Velez, Heriberto; de Vries, Ronald P.; Wiebenga, Ad; Woodward, Steve; Yakovlev, Igor; Garbelotto, Matteo; Martin, Francis; Grigoriev, Igor V.; Stenlid, Jan

    2012-01-01

    Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.

  18. Solar Feasibility Study May 2013 - San Carlos Apache Tribe

    SciTech Connect (OSTI)

    Rapp, Jim; Duncan, Ken; Albert, Steve

    2013-05-01

    The San Carlos Apache Tribe (Tribe) in the interests of strengthening tribal sovereignty, becoming more energy self-sufficient, and providing improved services and economic opportunities to tribal members and San Carlos Apache Reservation (Reservation) residents and businesses, has explored a variety of options for renewable energy development. The development of renewable energy technologies and generation is consistent with the Tribe’s 2011 Strategic Plan. This Study assessed the possibilities for both commercial-scale and community-scale solar development within the southwestern portions of the Reservation around the communities of San Carlos, Peridot, and Cutter, and in the southeastern Reservation around the community of Bylas. Based on the lack of any commercial-scale electric power transmission between the Reservation and the regional transmission grid, Phase 2 of this Study greatly expanded consideration of community-scale options. Three smaller sites (Point of Pines, Dudleyville/Winkleman, and Seneca Lake) were also evaluated for community-scale solar potential. Three building complexes were identified within the Reservation where the development of site-specific facility-scale solar power would be the most beneficial and cost-effective: Apache Gold Casino/Resort, Tribal College/Skill Center, and the Dudleyville (Winkleman) Casino.

  19. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    SciTech Connect (OSTI)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant succession and environmental disturbance. Aeolian, or wind-driven, sediment transport drives soil erosion, affects biogeochemical cycles, and can lead to the transport of contaminants. Rates of aeolian sediment transport depend in large part on the type, amount, and spatial pattern of vegetation. In particular, the amount of cover from trees and shrubs, which act as roughness elements, alters rates of aeolian sediment transport. The degree to which the understory is disturbed and the associated spacing of bare soil gaps further influence sediment transport rates. Changes in vegetation structure and patterns over periods of years to centuries may have profound impacts on rates of wind-driven transport. For recently disturbed areas, succession is likely to occur through a series of vegetation communities. Area G currently exhibits a mosaic of vegetation cover, with patches of grass and forbs over closed disposal units, and bare ground in heavily used portions of the site. These areas are surrounded by less disturbed regions of shrubland and pinon-juniper woodland; some ponderosa pine forest is also visible in the canyon along the road. The successional trajectory for the disturbed portions of Area G is expected to proceed from grasses and forbs (which would be established during site closure), to shrubs such as chamisa, to a climax community of pinon-juniper woodland. Although unlikely under current conditions, a ponderosa pine forest could develop over the site if the future climate is wetter. In many ecosystems, substantial and often periodic disturbances such as fire or severe drought can rapidly alter vegetation patterns. Such disturbances are likely to increase in the southwestern US where projections call for a warmer and drier climate. With respect to Area G, the 3 most likely disturbance types are surface fire, crown fire, and drought-induced tree mortality. Each type of disturbance has a different frequency or likelihood of occurrence, but all 3 tend to reset the vegetation succession cycle to earlier stages. The Area G performance assessment and composite an

  20. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect (OSTI)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  1. The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    SciTech Connect (OSTI)

    de Wit, Pierre J. G. M.; van der Burgt, Ate; Okmen, Bilal; Stergiopoulos, Ioannis; Abd-Elsalam, Kamel A.; Aerts, Andrea L.; Bahkali, Ali H.; Beenen, Henriek G.; Chettri, Oranav; Cos, Murray P.; Datema, Erwin; de Vries, Ronald P.; DHillon, Braham; Ganley, Austen R.; Griffiths, Scott A.; Guo, Yanan; Gamelin, Richard C.; Henrissat, Bernard; Kabir, M. Shahjahan; Jashni, Mansoor Karimi; Kema, Gert; Klaubauf, Sylvia; Lapidus, Alla; Levasseur, Anthony; Lindquist, Erika; Mehrabi, Rahim; Ohm, Robin A.; Owen, Timothy J.; Salamov, Asaf; Schwelm, Arne; Schijlen, Elio; Sun, Hui; van den Burg, Harrold A.; van Burg, Roeland C. H. J.; Zhang, Shuguang; Goodwin, Stephen B.; Grigoriev, Igor V.; Collemare, Jerome; Bradshaw, Rosie E.

    2012-05-04

    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70percent of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2percent in Cfu versus 3.2percent in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.

  2. Hot-Gas Filter Testing with a Transport Reactor Development Unit

    SciTech Connect (OSTI)

    Swanson, M.L.; Ness, R.O., Jr.

    1996-12-31

    The objective of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot- gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100-200 hours). A filter vessel will be used in combination with the TRDU to evaluate the performance of selected hot- gas filter elements under gasification operating conditions. This work will directly support the Power Systems Development Facility utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and indirectly the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville and the Clean Coal IV Pinon Pine IGCC Power Project. This program has a phased approach involving modification and upgrades to the TRDU and the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at the outlet design conditions of the TRDU. Phase 1 upgraded the TRDU based upon past operating experiences. Additions included a nitrogen supply system upgrade, upgraded LASH auger and 1807 coal feed lines, the addition of a second pressurized coal feed hopper and a dipleg ash hopper, and modifications to spoil the performance of the primary cyclone. Phase 2 included the HGFV design, procurement, and installation. Phases 3 through 5 consist of 200-hour hot-gas filter tests under gasification conditions using the TRDU at temperatures of 540-650{degrees}C (1000-1200{degrees}F), 9.3 bar, and face velocities of 1.4, 2. and 3.8 cm/s, respectively. The increased face velocities are achieved by removing candles between each test.

  3. Influence of microstructural changes due to tempering at 923 K and 1,023 K on magnetic Barkhausen noise behavior in normalized 2.25Cr-1Mo ferritic steel

    SciTech Connect (OSTI)

    Raj, B.; Moorthy, V.; Vaidyanathan, S.

    1997-01-01

    Magnetic Barkhausen noise analysis has been used to characterize the microstructural changes in normalized and tempered 2.25 Cr-1Mo steel. It is observed that tempering at 923 K shows a single peak behavior up to 20 h and tempering at 1,023 K shows a two peak behavior. This has been explained on the basis of the two stage process of irreversible domain wall movement during magnetization, associated with two major obstacles to domain wall movement: namely lath/grain boundaries and secondary phase precipitates. At lower fields, existing reverse domain walls at lath/grain boundaries overcome the resistance offered by the grain boundaries and move to a distance before they are pined by the precipitates. Then, at higher field, they overcome these precipitates. These two processes occur over a range of critical field strengths with some mean values. If these two mean values are close to each other, then a single peak in the rms voltage of the magnetic Barkhausen noise, with the associated changes in its shape, is observed. On the other hand, if the mean values of the critical fields for these two barriers are widely separated, then a two peak behavior is the clear possibility. The effect of the microstructural changes due to tempering for different durations at 923 K and 1,023 K in 2.25 Cr-1Mo ferritic steel on magnetic Barkhausen noise is explained based on these two stage processes. The influence of high dislocation density in bainitic structure, dissociation of bainite, and precipitation of different carbides such as Fe{sub 3}C, Mo{sub 2}C, Cr{sub 7}Ce{sub 3}, M{sub 23}C{sub 6}, etc., on magnetic Barkhausen noise behavior has been analyzed in this study.

  4. DOE Research Set-Aside Areas of the Savannah River Site

    SciTech Connect (OSTI)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  5. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    SciTech Connect (OSTI)

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar ecosystems.

  6. Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013

    SciTech Connect (OSTI)

    Ortega, John; Turnipseed, A.; Guenther, Alex B.; Karl, Thomas G.; Day, D. A.; Gochis, David; Huffman, J. A.; Prenni, Anthony J.; Levin, E. J.; Kreidenweis, Sonia M.; DeMott, Paul J.; Tobo, Y.; Patton, E. G.; Hodzic, Alma; Cui, Y. Y.; Harley, P.; Hornbrook, R. S.; Apel, E. C.; Monson, Russell K.; Eller, A. S.; Greenberg, J. P.; Barth, Mary; Campuzano-Jost, Pedro; Palm, B. B.; Jiminez, J. L.; Aiken, A. C.; Dubey, Manvendra K.; Geron, Chris; Offenberg, J.; Ryan, M. G.; Fornwalt, Paula J.; Pryor, S. C.; Keutsch, Frank N.; DiGangi, J. P.; Chan, A. W.; Goldstein, Allen H.; Wolfe, G. M.; Kim, S.; Kaser, L.; Schnitzhofer, R.; Hansel, A.; Cantrell, Chris; Mauldin, R. L.; Smith, James N.

    2014-01-01

    The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was established in 2008 by the National Center for Atmospheric Research to address many of the BEACHON research objectives, and it now provides a fixed field site with significant infrastructure. MEFO is a mountainous, semi-arid ponderosa pine-dominated forest site that is normally dominated by clean continental air but is periodically influenced by anthropogenic sources from Colorado Front Range cities. This article summarizes the past and ongoing research activities at the site, and highlights some of the significant findings that have resulted from these measurements. These activities include soil property measurements; hydrological studies; measurements of high-frequency turbulence parameters; eddy covariance flux measurements of water, energy, aerosols and carbon dioxide through the canopy; determination of biogenic and anthropogenic volatile organic compound emissions and their influence on regional atmospheric chemistry; aerosol number and mass distributions; chemical speciation of aerosol particles; characterization of ice and cloud condensation nuclei; trace gas measurements; and model simulations using coupled chemistry and meteorology. In addition to various long-term continuous measurements, three focused measurement campaigns with state-of-the-art instrumentation have taken place since the site was established, and two of these studies are the subjects of this special issue: BEACHON-ROCS (Rocky Mountain Organic Carbon Study, 2010) and BEACHON-RoMBAS (Rocky Mountain Biogenic Aerosol Study, 2011).

  7. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    SciTech Connect (OSTI)

    Cai, Hao; Canter, Christina E.; Dunn, Jennifer B.; Tan, Eric; Biddy, Mary; Talmadge, Michael; Hartley, Damon S.; Snowden-Swan, Lesley

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  8. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    SciTech Connect (OSTI)

    Hodzic, Alma; Jimenez, Jose L.

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  9. Newberry Volcano EGS Demonstration - Phase I Results

    SciTech Connect (OSTI)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'™s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.

  10. Land-use legacies and present fire regimes interact to mediate herbivory by altering the neighboring plant community.

    SciTech Connect (OSTI)

    Hahn, Philip G.; Orrock, John L.

    2015-04-01

    Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo-exclosures) to four focal plant species in longleaf pine woodlands with diff erent land-use histories (post-agricultural sites or non-agricultural sites) and degrees of fi re frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post-agricultural and fi re suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post-agricultural sites and in infrequently burned non-agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia ), but did not aff ect two other less palatable species ( Schizachyrium scoparium and Tephrosia virginiana ). Herbivory on S. odora exhibited a hump-shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration eff orts by reducing the establishment or performance of palatable plant species.

  11. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-06-04

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration potential of forests growing on 14 mined sites in a seven-state region in the Midwestern and Eastern Coalfields. Carbon contents of these forests were compared to adjacent forests on non-mined land. The study was installed as a 3 x 3 factorial in a random complete block design with three replications at each location. The treatments include three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Analysis of soil samples was completed and these data are being used to prepare fertilizer prescriptions. Fertilizer prescripts will be developed for each site. Fertilizer will be applied during the second quarter 2004. Data are included as appendices in this report. As part of our economic analysis of mined land reforestation, we focused on the implications of a shift in reforestation burden from the landowner to the mine operator. Results suggest that the reforestation of mined lands as part of the mining operation creates a viable and profitable forest enterprise for landowners with greater potential for carbon sequestration.

  12. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    Jonathan Aggett

    2003-12-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

  13. Decision making technical support study for the US Army's Chemical Stockpile Disposal Program

    SciTech Connect (OSTI)

    Feldman, D.L.; Dobson, J.E.

    1990-08-01

    This report examines the adequacy of current command and control systems designed to make timely decisions that would enable sufficient warning and protective response to an accident at the Edgewood area of Aberdeen Proving Ground (APG), Maryland, and at Pine Bluff Arsenal (PBA), Arkansas. Institutional procedures designed to facilitate rapid accident assessment, characterization, warning, notification, and response after the onset of an emergency and computer-assisted decision-making aids designed to provide salient information to on- and-off-post emergency responders are examined. The character of emergency decision making at APG and PBA, as well as potential needs for improvements to decision-making practices, procedures, and automated decision-support systems (ADSSs), are described and recommendations are offered to guide equipment acquisition and improve on- and off-post command and control relationships. We recommend that (1) a continued effort be made to integrate on- and off-post command control, and decision-making procedures to permit rapid decision making; (2) the pathways for alert and notification among on- and off-post officials be improved and that responsibilities and chain of command among off-post agencies be clarified; (3) greater attention be given to organizational and social context factors that affect the adequacy of response and the likelihood that decision-making systems will work as intended; and (4) faster improvements be made to on-post ADSSs being developed at APG and PBA, which hold considerable promise for depicting vast amounts of information. Phased development and procurement of computer-assisted decision-making tools should be undertaken to balance immediate needs against available resources and to ensure flexibility, equity among sites, and compatibility among on- and off-post systems. 112 refs., 6 tabs.

  14. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  15. Modeling the response of plants and ecosystems to CO{sub 2} and climate change. Final technical report, September 1, 1992--August 31, 1996

    SciTech Connect (OSTI)

    Reynolds, J.F.

    1998-04-10

    Objectives can be divided into those for plant modeling and those for ecosystem modeling and experimental work in support of both. The author worked in a variety of ecosystem types, including pine, arctic, desert, and grasslands. Plant modeling objectives are: (1) to construct generic models of leaf, canopy, and whole-plant response to elevated CO{sub 2} and climate change; (2) to validate predictions of whole-plant response against various field studies of elevated CO{sub 2} and climate change; (3) to use these models to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on individual plants for conditions and time frames beyond those used to calibrate the model; and (4) to provide information to higher-level models, such as community models and ecosystem models. Ecosystem level modeling objectives are: (1) to incorporate models of plant responses to elevated CO{sub 2} into a generic ecosystem model in order to predict the direct and indirect effects of elevated CO{sub 2} and climate change on ecosystems; (2) to validate model predictions of total system-level response (including decomposition) against various ecosystem field studies of elevated CO{sub 2} and climate change; (3) to use the ecosystem model to test specific hypotheses and to make predictions about primary, secondary and tertiary effects of elevated CO{sub 2} and climate change on ecosystems for conditions and time frames beyond those used to calibrate the model; and (4) to use the ecosystem model to study effects of change in CO{sub 2} and climate at regional and global scales. Occasionally the author conducted some experimental work that was deemed important to the development of the models. This work was mainly physiological work that could be performed in the Duke University Phytotron, using existing facilities.

  16. Distribution of Clokey's Eggvetch

    SciTech Connect (OSTI)

    David C. Anderson

    1998-12-01

    The Environment, Safety and Health Division of the U.S. Department of Energy, Nevada Operations Office implements the Ecological Monitoring and Compliance Program on the Nevada Test Site (NTS). This program ensures compliance with applicable environmental laws and regulations, delineates and describes NTS ecosystems, and provides ecological information for predicting and evaluating potential impacts of proposed projects on those ecosystems. Over the last several decades, has taken an active role in providing information on the tatus of plant species proposed for protection under the Endangered Species Act(ESA). One such species is Clokey's eggvetch (Astragalus oophorus var. clokeyanus), which is a candidate species under the listing guidelines of the ESA. Surveys for this species were conducted on the NTS in 1996, 1997, and 1998. Field surveys focused on potential habitat for this species in the southern Belted range and expanded to other areas with similar habitat. Over 30 survey day s were completed; five survey days in 1996, 25 survey days in 1997, and three survey days in 1998. Clokey's eggvetch was located at several sites in the southern Belted Range. It was found through much of the northern section of Kawich Canyon, one site at the head of Gritty Gulch, and a rather extensive location in Lambs Canyon. It was also located further south at Captain Jack Springs in the Eleana Range, in much of Falcon Canyon and around Echo Peak on Pahute Mesa, and was also found in the Timber and Shoshone Mountains. Overall, the locations of Clokey's eggvetch on the NTS appears to form a distinct bridge between populations of the species located further north in the Belted and Kawich Ranges and the population located in the Spring Mountains. Clokey's eggvetch was commonly found along washes and small draws, and typically in sandy loam soils with a covering of light tuffaceous rock. It occurs primarily above 1830 meters (6000 feet) in association with single-leaf pinyon (Pinus monophylla), Utah juniper (Juniperus osteosperma), and big sagebrush (Artemisia tridentata ssp. tridentata). Overall, the populations of Clokey's eggvetch on the NTS appear to be vigorous and do not appear threatened. It is estimated that there are approximately 2300 plants on the NTS. It should be considered as a species of concern because of its localized distribution, but it does not appear to warrant protection under the ESA.

  17. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    SciTech Connect (OSTI)

    Yokelson, Robert J.; Burling, Ian R.; Gilman, Jessica; Warneke, Carsten; Stockwell, Chelsea E.; de Gouw, Joost A.; Akagi, Sheryl; Urbanski, Shawn; Veres, Patrick; Roberts, James M.; Kuster, W. C.; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Hosseini, SeyedEhsan; Miller, J. Wayne; Cocker, David R.; Jung, H.; Weise, David

    2013-01-07

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for smoldering compounds emitted by burning the semi-arid SW fuels should likely be increased by about a factor of 2.7 to better represent field fires. Based on the lab/field comparison, we present a table with emission factors for 365 pyrogenic species (including unidentified species) for 4 broad fuel types: pine understory, semi-arid shrublands, evergreen canopy, and duff. To our knowledge this is the most complete measurement of biomass burning emissions to date and it should enable improved representation of smoke in atmospheric models. The results provide important insights into the nature of smoke. For example, ~35% (range from 16-71%) of the mass of gas-phase NMOC species was attributed to the species that we could not identify. These unidentified species are likely not represented in most models, but some provision should be made for the fact that they will react in the atmosphere. In addition, the total mass of gas-phase NMOC divided by the mass of co-emitted PM2.5 averaged ~2.6 for the main fire types with a range from ~1.8-8.8. About 36-63% of the NMOC were likely semivolatile or of intermediate volatility. Thus, the gas-phase NMOC represent a large reservoir of potential precursors for secondary formation of organic aerosol. For the one fire in organic soil (Alaskan duff) about 28% of the emitted carbon was present as gas-phase NMOC in contrast to the other fuels for which NMOC accounted for only ~1-3% of emitted carbon. 71% of the mass of NMOC emitted by the smoldering duff was un-identified. The duff results highlight the need to learn more about the emissions from smoldering organic soils. The ?NMOC/NOx-as-NO ratio was consistently about ten for the main fire types when accounting for all NMOC, indicating strongly NOx-limited O3 production conditions. Finally, the fuel consumption per unit area was measured on 6 of the 14 prescribed fires and averaged 7.08 2.09 (1?) Mg ha-1.

  18. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earths atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values. Improved technology and/or knowledge of reforestation practices in these situations may provide opportunities to reduce the costs of converting many of these sites as research continues into these practices. It also appears that in many cases substantial payments, non-revenue values, or carbon values are required to reach profitability under the present circumstances. It is unclear when, or in what form, markets will develop to support any of these add-on values to supplement commercial forestry revenues. However, as these markets do develop, they will only enhance the viability of forestry on reclaimed mined lands, although as we demonstrate in our analysis of carbon payments, the form of the revenue source may itself influence management, potentially mitigating some of the benefits of reforestation. For a representative mined-land resource base, reforestation of mined lands with mixed pine-hardwood species would result in an average estimated C accumulation in forms that can be harvested for use as wood products or are likely to remain in the soil C pool at ~250 Mg C ha{sup -1} over a 60 year period following reforestation. The additionality of this potential C sequestration was estimated considering data in scientific literature that defines C accumulation in mined-land grasslands over the long term. Given assumptions detailed in the text, these lands have the potential to sequester ~180 Mg C ha{sup -1}, a total of 53.5 x 10{sup 6} Mg C, over 60 years, an average of ~900,000 Mg C / yr, an amount equivalent to about 0.04% of projected US C emissions at the midpoint of a 60-year period (circa 2040) following assumed reforestation. Although potential sequestration quantities are not great relative to potential national needs should an energy-related C emissions offset requirement be developed at some future date, these lands are available and unused for other economically valued purposes and many possess soil and site properties that are well-suited to reforestation. Should such reforestation occur, it would also produce ancillary benefits by providing env

  19. Effects of Warming on Tree Species’ Recruitment in Deciduous Forests of the Eastern United States

    SciTech Connect (OSTI)

    Melillo, Jerry M.; Clark, James S.; Mohan, Jacqueline

    2015-03-25

    Climate change is restructuring forests of the United States, although the details of this restructuring are currently uncertain. Rising temperatures of 2 to 8oC and associated changes in soil moisture will shift the competitive balance between species that compete for light and water, and so change their abilities to produce seed, germinate, grow, and survive. We have used large-scale experiments to determine the effects of warming on the most sensitive stage of species distributions, i.e., recruitment, in mixed deciduous forests in southern New England and in the Piedmont region of North Carolina. Two questions organized our research: (1) Might temperate tree species near the “warm” end of their range in the eastern United States decline in abundance during the coming century due to projected warming? and (2) Might trees near the “cool” end of their range in the eastern United States increase in abundance, or extend their range, during the coming 100 years because of projected warming? To explore these questions, we exposed seedlings to air and soil warming experiments in two eastern deciduous forest sites; one at the Harvard Forest (HF) in central Massachusetts, and the other at the Duke Forest (DF) in the Piedmont region of North Carolina. We focused on tree species common to both Harvard and Duke Forests (such as red, black, and white oaks), those near northern range limits (black oak, flowing dogwood, tulip poplar), and those near southern range limits (yellow birch, sugar maple, Virginia pine). At each site, we planted seeds and seedlings in common gardens established in temperature-controlled, open-top chambers. The experimental design was replicated and fully factorial and involved three temperature regimes (ambient, +3oC and +5oC) and two light regimes (closed forest canopy (low light) and gap conditions (high light)). Measured variables included Winter/Spring responses to temperature and mid-Summer responses to low soil moisture. This research will advance our understanding of how the abundances and geographic distributions of several important eastern tree species near the cool and warm ends of their ranges will change during the century because of projected warming. Warming-induced changes in eastern tree abundances and distributions have the potential to affect both the quality and quantity of goods and services provided by eastern forests, and will therefore be of importance to society.

  20. Forest Irrigation Of Tritiated Water: A Proven Tritiated Water Management Tool

    SciTech Connect (OSTI)

    Vangelas, Karen; Blount, Gerald; Kmetz, Thomas; Prater, Phil

    2012-11-08

    Tritium releases from the Old Radioactive Waste Burial Ground (ORWBG) at the SRS in South Carolina has impacted groundwater and surface water. Tritiated groundwater plumes discharge into Fourmile Branch which is a small tributary of the Savannah River, a regional water resource. Taking advantage of the groundwater flow paths and the local topography a water collection and irrigation system was constructed and has been used at the SRS for over a decade to reduce these tritiated water releases to Fourmile Branch. The tritiated water is transferred to the atmosphere by evaporation from the pond surface, and after irrigation, wetted surface evaporation and evapotranspiration through the forest vegetation. Over the last decade SRS has irrigated over 120,000,000 gallons of tritiated water, which diverted over 6000 curies away from Fourmile Branch and the Savannah River. The system has been effective in reducing the flux of tritiated groundwater by approximately 70%. Mass balance studies of tritium in the forest soils before operations and over the last decade indicate that approximately 90% of the tritiated water that is irrigated is transferred to the atmosphere. Dose studies indicate that exposure to site workers and offsite maximally exposed individual is very low, approximately 6 mrem/year and 0.004 mrem/year, respectively. To consistently meet the flux reduction goal of tritium into Fourmile Branch optimization activities are proposed. These efforts will increase irrigation capacity and area. An additional 17 acres are proposed for an expansion of the area to be irrigated and a planting of approximately 40 acres of pine forest plantations is underway to expand irrigation capacity. Co-mingled with the tritiated groundwater are low concentrations of chlorinated volatile organic compounds (cVOCs), and 1,4-dioxane. Research studies and SRS field data indicate the forest irrigation system may have an added benefit of reducing the mass of these co-contaminants via degradation. This semi-passive system makes use of natural processes of hydrology and evapotranspiration to manage tritium-contaminated water by reducing its entrance into site streams and the Savannah River, as well as treating low levels of co-mingled VOCs. SRS expects to operate the system until the tritium decays to levels that represent a minimal impact to Fourmile Branch and the Savannah River, and meets the stakeholder expectations.

  1. Effects of overstory composition and prescribed fire on fuel loading across a heterogeneous managed landscape in the southeastern USA.

    SciTech Connect (OSTI)

    Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

    2012-01-01

    In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by exploring the relationships between overstory forest vegetation attributes, recent fire history, and selected surface fuel components across an 80,000 ha contiguous landscape. Measurements of dead and live vegetation components of surface fuels were obtained from 624 permanent plots, or about 1 plot per 100 ha of forest cover. Within forest vegetation groups, we modeled the relationship between individual surface fuel components and overstory stand age, basal area, site quality and recent fire history, then stochastically predicted fuel loads across the landscape using the same linkage variables. The fraction of the plot variation, i.e., R2, explained by predictive models for individual fuel components ranged from 0.05 to 0.66 for dead fuels and 0.03 to 0.97 for live fuels in pine dominated vegetation groups. Stand age and basal area were generally more important than recent fire history for predicting fuel loads. Mapped fuel loads using these regressor variables showed a very heterogeneous landscape even at the scale of a few square kilometers. The mapped patterns corresponded to stand based forest management disturbances that are reflected in age, basal area, and fire history. Recent fire history was significant in explaining variation in litter and duff biomass. Stand basal area was positively and consistently related to dead fuel biomass in most groups and was present in many predictive equations. Patterns in live fuel biomass were related to recent fire history, but the patterns were not consistent among forest vegetation groups. Age and basal area were related to live fuels in a complex manner that is likely confounded with periodic disturbances that disrupt stand dynamics. This study complements earlier hazardous fuels research in the southeastern USA, and indicates that succession, disturbance, site quality and decomposition interact with forest management practices to create variable spatial and temporal conditions. The inclusion of additional land use, disturbance history, and soil-topographic variables coupled to improved sampling methods may increase precision and subsequent fuel mapping.

  2. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    SciTech Connect (OSTI)

    Akagi, Sheryl; Yokelson, Robert J.; Burling, Ian R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, Gavin; Sullivan, Amy; Lee, Taehyoung; Kredenweis, Sonia; Urbanski, Shawn; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Weise, David

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ?HCN/?CO emission ratio, however, is fairly consistent at 0.9 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was possible to measure the chemical evolution of the plume on four of the fires and significant ozone (O3) formation (?O3/?CO from 10-90%) occurred in all of these plumes. Slower O3 production was observed on a cloudy day with low co-emissions of NOx and the fastest O3 production was observed on a sunny day when the plume almost certainly incorporated significant additional NOx by passing over the Columbia, SC metropolitian area. Due to rapid plume dilution, it was only possible to acquire high quality downwind data for two other species (formaldehyde and methanol) on two of the fires. In all four cases significant increases were observed. This is likely the first direct observation of post-emission methanol production in biomass burning plumes and the precursors likely included terpenes.

  3. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    SciTech Connect (OSTI)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

  4. Trees Containing Built-In Pulping Catalysts - Final Report - 08/18/1997 - 08/18/2000

    SciTech Connect (OSTI)

    Pullman, G.; Dimmel, D.; Peter, G.

    2000-08-18

    Several hardwood and softwood trees were analyzed for the presence of anthraquinone-type molecules. Low levels of anthraquinone (AQ) and anthrone components were detected using gas chromatography-mass spectroscopy and sensitive selected-ion monitoring techniques. Ten out of seventeen hardwood samples examined contained AQ-type components; however, the levels were typically below {approximately}6 ppm. No AQs were observed in the few softwood samples that were examined. The AQs were more concentrated in the heartwood of teak than in the sapwood. The delignification of pine was enhanced by the addition of teak chips ({approximately}0.7% AQ-equivalence content) to the cook, suggesting that endogenous AQs can be released from wood during pulping and can catalyze delignification reactions. Eastern cottonwood contained AQ, methyl AQ, and dimethyl AQ, all useful for wood pulping. This is the first time unsubstituted AQ has been observed in wood extracts. Due to the presence of these pulping catalysts, rapid growth rates in plantation settings, and the ease of genetic transformation, eastern cottonwood is a suitable candidate for genetic engineering studies to enhance AQ content. To achieve effective catalytic pulping activity, poplar and cottonwood, respectively, require {approximately}100 and 1000 times more for pulping catalysts. A strategy to increase AQ concentration in natural wood was developed and is currently being tested. This strategy involves ''turning up'' isochorismate synthase (ICS) through genetic engineering. Isochorismate synthase is the first enzyme in the AQ pathway branching from the shikimic acid pathway. In general, the level of enzyme activity at the first branch point or committed step controls the flux through a biosynthetic pathway. To test if the level of ICS regulates AQ biosynthesis in plant tissues, we proposed to over-express this synthase in plant cells. A partial cDNA encoding a putative ICS was available from the random cDNA sequencing project carried out with Arabidopsis thaliana. We used this putative plant ICS gene fragment to isolate and sequence a full-length ICS cDNA from Arabidopsis thaliana. The putative full-length cDNA encodes for a 569 amino acid protein of {approximately}62kDa. This sequence represents the first full-length ICS cDNA isolated from a plant. When inserted into E. coli, our isolated cDNA over-expressed ICS protein in the insoluble inclusion bodies. A plant expression vector containing the ICS cDNA, NP II for selection on the antibiotic kanamycin, and duplicated 35S-cauliflower mosaic virus promoter were inserted into Agrobacterium tumefaciens strain GV3101. Transformation experiments for insertion of these foreign genes into Populus deltoides 'C175' resulted in eight lines able to regenerate shoots and grow roots in the presence of kanamycin. Plants from these eight lines have acclimated to growth in sterile soil and will be moved to a greenhouse environment in spring 2001. Non rooted shoots from each line are currently being multiplied by shoot culture. When enough shoot tissue and/or greenhouse plant stem tissue is available, AQ analysis will be done and compared with non transformed control tissue.

  5. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  6. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    SciTech Connect (OSTI)

    Blount, Gerald; Thibault, Jeffrey; Millings, Margaret; Prater, Phil

    2015-03-16

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent environmental remediation projects tend to be managed under tri-party agreement (DOE, Environmental Protection Agency, and SCDHEC) through the Federal Facilities Agreement. During 25 years of environmental remediation SRS has stabilized and capped seepage basins, and consolidated and capped waste units and burial grounds in the GSA. Groundwater activities include: pump and treat systems in the groundwater, installation of deep subsurface barrier systems to manage groundwater flow, in situ chemical treatments in the groundwater, and captured contaminated groundwater discharges at the surface for management in a forest irrigation system. Over the last 25 years concentrations of contaminants in the aquifers beneath the GSA and in surface water streams in the GSA have dropped significantly. Closure of 65 waste sites and 4 RCRA facilities has been successfully accomplished. Wastes have been successfully isolated in place beneath a variety of caps and cover systems. Environmental clean-up has progressed to the stage where most of the work involves monitoring, optimization, and maintenance of existing remedial systems. Many lessons have been learned in the process. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. SRS operated two very large pump and treat systems at the F and H Seepage Basins to attempt to limit the release of tritium to Fourmile Branch, a tributary of the Savannah River. The systems were designed to extract contaminated acidic groundwater, remove all contamination except tritium (not possible to remove the tritium from the water), and inject the tritiated groundwater up-gradient of the source area and the plume. The concept was to increase the travel time of the injected water for radioactive decay of the tritium. The two systems were found to be non-effective and potentially mobilizing more contamination. SRS invested approximately $50 million in construction and approximately $100 million in 6 years of operation. The H Seepage Basin pump and treat system was replaced by a series of subsurface barriers that alters the groundwater velocity; the F Seepage Basin pump and treat system was replaced by subsurface barriers forming a funnel and gate augmented by chemical treatment within the gates. These replacement systems are mostly passive and cost approximately $13 million to construct, and have reduced the tritium flux to Fourmile Branch, in these plumes, by over 70%. SRS manages non-acidic tritiated groundwater releases to Fourmile Branch from the southwest plume of the MWMF with a forest irrigation system. Tritiated water is captured with a sheetpile dam below the springs that caused releases to Fourmile Branch. Water from the irrigation pond is pumped to a filter plant prior to irrigation of approximately 26 hectares of mixed forest and developing pine plantation. SRS has almost achieved a 70% reduction in tritium flux to the Branch from this plume. The system cost approximately $5 million to construct with operation cost of approximately $500K per year. In conclusion, many lessons have been learned in 25 years of relatively aggressive remedial activities in the GSA. Geotextile covers outperform low permeability clay caps, especially with respect to the amount of repairs required to upkeep the drainage layers as the caps age. Passive, enhanced natural processes to address groundwater contamination are much more cost effective than pump and treat systems. In water management situations with non-accumulative contaminants (tritium, VOCs, etc.) irrigation in a forest setting can be very effective.

  7. COMPNAME","COMPID","YEAR","PLANTNAME","KIND","CONSTRUC","INSTALLED","MAXCAP","NE

    U.S. Energy Information Administration (EIA) Indexed Site

    EQUIP","TOTCOST","COSTCAP","GROSSEXP","OPERENG","FUEL","COOLANTS","STEXP","STOTH","STTRANS","ELECEXP","MISCST","RENTS","MAINSUP","MAINSTRUC","MAINBOIL","MAINELEC","MAINMISC","TOTPROD","EXPKWH","UNITCL","QUANTCL","AVGHEATCL","ACDELCL","ACBURNCL","ACBTUCL","ACNETGENCL","ABTUNETGCL","UNITGAS","QUANTGAS","AVGHEATGAS","ACDELGAS","ACBURNGAS","ACBTUGAS","ACNETGNGAS","ABTUNETGAS","UNITOIL","QUANTOIL","AVGHEATOIL","ACDELOIL","ACBURNOIL","ACBTUOIL","ACNETGNOIL","ABTUNETOIL" "Tennessee Valley Authority",18642,1999,"Sequoyah","Nuclear","01/01/81",,2441160,2303000,8760,1008,1.8570502e+10,3184031,533636867,2488511062,3025331960,1239,33187938,21080862,86166618,4316783,11925073,0,0,13329621,28360769,0,16330987,1528775,8295886,3650336,7012139,201997849,11,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",189924066,0,0,0,0.43,0.04,10230 "Tennessee Valley Authority",18642,1999,"Watts Bar","Nuclear","01/01/96","1/1/1996",1269000,1200000,8208,728,8230350000,1953589,2108999339,4827648621,6938601549,5468,30551823,12179502,38261150,3963151,7056493,0,0,10400580,24553068,0,14243155,2328791,9244870,870737,990214,124091711,15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",84467683,0,0,0,0.43,0.04,10260 "Tennessee Valley Authority",18642,1999,"Johnsonville","Gas Turbine","01/01/75","1/1/1975",1088000,1407000,8760,14,256798000,0,6064116,119609619,125673735,116,112893140,2747882,9870790,0,0,0,0,0,477926,0,2274,1326,0,475339,7436,13582973,53,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Gallons",24224936,139600,0,0.41,0.03,0,13170 "Tennessee Valley Authority",18642,1999,"Gallatin","Gas Turbine","01/01/75","1/1/1975",325200,431000,8760,8,176258000,0,3324533,63486109,66810642,205,80539157,665541,6810251,0,0,0,0,0,151587,0,1339166,1553,0,3922,4338,8976358,51,,0,0,0,0,0,0,0,"Mcf",2252179,1024,0,2.67,2.61,0,0,"Gallons",2063233,139100,0,0.37,0,0.03,14710 "Tennessee Valley Authority",18642,1999,"Browns Ferry","Nuclear","01/01/74","1/1/1977",3456000,2529000,8760,1085,1.771301e+10,890631,909522117,3830292072,4740704820,1372,47061477,58344025,102890781,3642332,11672365,0,0,16130309,26099224,0,5560106,0,25822517,1921329,0,252082988,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MillionBTU",186421503,0,0,0,0.53,0,10520 "Tennessee Valley Authority",18642,1999,"Cumberland","Steam","01/01/73","1/1/1973",2600000,2591000,8760,323,1.6530325e+10,1829568,103903145,1638681020,1744413733,671,63827428,5077791,197194700,0,86656,0,0,3945,13987241,0,1210473,1306476,16946838,4232440,841362,240887922,15,"Tons",6868849,10459,26.16,27.86,1.2,0.01,9746,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Gas Turbine","01/01/71","1/1/1972",820300,622000,8760,9,264695000,0,3063638,102977658,106041296,129,1709273,879771,11709062,0,0,0,0,0,72128,0,301000,0,0,150309,2816,13115086,50,,0,0,0,0,0,0,0,"Mcf",3589538,1024,0,3.06,3.03,0,0,"Gallons",1173222,139500,0,0.55,0,0.03,14460 "Tennessee Valley Authority",18642,1999,"Colbert","Gas Turbine","01/01/72","1/1/1972",476000,420000,8760,7,326221000,0,2826177,64911682,67737859,142,3078759,1248563,12167389,0,0,0,0,0,69117,0,27275,0,0,74,2699,13515117,41,,0,0,0,0,0,0,0,"Mcf",3866688,1024,0,2.8,2.71,0,0,"Gallons",3619161,138400,0,0.35,0,0.03,13670 "Tennessee Valley Authority",18642,1999,"Bull Run","Steam","01/01/67","1/1/1967",950000,912000,8760,87,4389788000,2220883,35786684,300943172,338950739,357,21987402,2324904,50419615,0,2286709,0,0,1742,6906593,0,754423,481980,8505768,2788903,314448,74785085,17,"Tons",1593346,11895,28.85,30.74,1.24,0.01,9257,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Thomas H. Allen","Steam","01/01/59","1/1/1959",990000,858000,8760,122,4102572000,142024,73025058,451231229,524398311,530,20254094,1206283,60294160,0,16,0,0,0,9854407,0,392524,824748,8011764,5402527,184253,86170682,21,"Tons",2039487,9680,25.5,29.45,1.39,0.01,10585,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Watts Bar","Steam","01/01/42","1/1/1945",240000,0,8760,0,-1381000,11997,4933530,18578656,23524183,98,-6629,177,0,0,0,0,0,0,109802,0,908,5,0,0,0,110892,-80,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Paradise","Steam","01/01/63","1/1/1970",2558200,2286000,8760,296,1.4181992e+10,8519495,115906466,1287447341,1411873302,552,57696636,6093708,168293657,0,752026,0,0,536,10779025,0,3529172,4127133,18094770,3094627,676700,215441354,15,"Tons",6332104,10413,21.43,26.2,1.14,0.01,10280,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Gallatin","Steam","01/01/56","1/1/1959",1255200,992000,8760,131,7002818000,690082,44703289,427469961,472863332,377,5073325,1612720,80238724,0,1258244,0,0,73323,7350012,0,1803476,714460,6039653,3054984,792751,102938347,15,"Tons",3266195,9540,22.99,24.49,1.19,0.01,9651,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"John Sevier","Steam","01/01/55","1/1/1957",800000,748000,8760,129,5522165000,1570328,37309270,253176616,292056214,365,2993416,946133,70531483,0,3286201,0,0,0,4864155,0,569877,953882,3537596,666934,559907,85916168,16,"Tons",2120222,11710,32.44,33.21,1.3,0.01,9802,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Kingston","Steam","01/01/54","1/1/1955",1700000,1583000,8760,275,1.0147089e+10,3475653,55125946,433125237,491726836,289,31839874,1201130,133624099,0,732904,0,0,671,15993919,0,2888077,697638,10886872,3114678,359796,169499784,17,"Tons",4038449,11134,31.75,32.96,1.34,0.01,9845,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Colbert","Steam","01/01/55","1/1/1965",1350000,1283000,8760,222,6557785000,279029,50717782,608908796,659905607,489,12808186,3684548,92134159,0,115314,0,0,3096,11894009,0,1552144,1216679,16776178,4392373,150021,131918521,20,"Tons",2890398,10787,27.4,31.47,1.38,0.01,10066,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Shawnee","Steam","01/01/53","1/1/1956",1750000,1368000,8760,264,8060005000,504507,64076435,534941906,599522848,343,20760203,5379072,113531307,0,6565666,0,0,278,7470171,0,2988378,2163530,11022440,5415043,396055,154931940,19,"Tons",3766896,10234,28.54,29.83,1.34,0.01,10474,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Johnsonville","Steam","01/01/51","1/1/1959",1485200,1213000,8760,269,6638234000,87967,76839994,522564850,599492811,404,5328716,12443723,83697340,0,-481100,0,0,6321,6501533,0,2973740,1891947,6444598,2867797,430252,116776151,18,"Tons",2922958,11389,26.49,28.52,1.16,0.01,10912,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tennessee Valley Authority",18642,1999,"Widows Creek","Steam","01/01/52","1/1/1965",1968760,1652000,8760,332,8498846000,855691,74795817,748521437,824172945,419,22653730,3695032,119092329,0,6555644,0,0,1697,9854746,0,1449646,2594983,13869309,4635675,4932791,166681852,20,"Tons",3858785,10808,28.8,30.16,1.27,0.01,10896,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"PALO VERDE 17.49%","n","01/01/86","01/01/88",666364,659000,8760,0,5317709000,1244457,281584974,735793972,1018623403,1529,6013000,4282694,25651422,2986065,4032493,0,0,2276671,26939892,0,5837013,1933729,6303817,3749209,2418208,86411213,16,,0,0,0,0,0,0,0,"BBTU",57406,0,0,440.13,0.44,0.01,10795,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"San Tan","Combined Cy","01/01/74","01/01/75",414000,292000,4112,43,714062000,149179,2773141,65463525,68385845,165,-5000,380221,14107193,0,1594474,0,0,0,845877,0,332730,170816,0,7389209,249749,25070269,35,,0,0,0,0,0,0,0,"MCF",6579686,1017,2.12,2.12,2.08,0.02,9372,"BBL",291,485968,0,24.61,4.22,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"SOLAR PV1 & PV2","So1ar","01/01/98","01/01/98",216,100,3000,0,119493,0,0,1676818,1676818,7763,1852000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Steam","01/01/52","01/01/54",108000,106000,736,12,50072000,313326,2433283,15283485,18030094,167,726000,180057,1483303,0,338591,0,0,169009,304652,0,157896,27729,608781,344347,214929,3829294,76,,0,0,0,0,0,0,0,"MCF",651225,1016,2.16,2.16,2.12,0.03,13215,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"KYRENE","Gas Turbine","01/01/71","01/01/73",226850,149000,290,0,18990000,0,0,16888448,16888448,74,0,114913,724438,0,85074,0,0,0,40298,0,64493,11249,0,291038,96634,1428137,75,,0,0,0,0,0,0,0,"MCF",281631,1017,2.09,2.09,2.06,0.04,15094,"BBL",60,488889,0,24.61,4.19,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"MOHAVE 10%","Steam","01/01/71","01/01/71",163620,158000,8715,0,996913000,42812,5046928,50920964,56010704,342,1221000,250561,13703464,0,389195,0,0,245787,1776796,-12611,497248,178489,1673455,685271,112185,19499840,20,"Tons",457815,10939,28.47,29.64,1.35,0.01,10093,"MCF",45107,1028,0,2.94,2.86,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CORONADO","Steam","01/01/79","01/01/80",821880,760000,8760,213,5039392000,8300198,158523884,696108809,862932891,1050,7523000,1228492,96325127,0,4607490,0,0,403466,4002498,10446,1754276,1703703,12035645,3902862,1238765,127212770,25,"Tons",2632698,9886,34.53,35.42,1.79,0.02,10357,,0,0,0,0,0,0,0,"BBL",24155,137315,24.21,26.79,4.65,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CRAIG 29%","Steam","01/01/79","01/01/81",259414,248000,8760,0,2050747000,83589,52424794,181936864,234445247,904,680000,368849,22362014,0,1036824,0,0,425951,1689040,12271,323682,251566,1760910,701820,370069,29302996,14,"Coal",1040589,10060,22.56,21.42,1.06,0.01,10223,"MCF",28100,1000,0,2.49,2.49,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"CROSS CUT","Steam","01/01/42","01/01/49",30000,3000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 21.7%","Steam","01/01/74","01/01/76",522857,488000,8760,539,3676183000,42866,27115117,246304509,273462492,523,5605000,1396220,45545213,0,1123640,0,0,257918,3750053,132023,667722,165042,7069421,2110905,434407,62652564,17,"Tons",1685726,10956,23.51,26.74,1.22,0.01,10061,,0,0,0,0,0,0,0,"BBL",8625,139078,22.75,28.63,4.9,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"NAVAJO 100%","Steam","01/01/74","01/01/76",2409480,2250000,8760,539,1.6020912e+10,197537,124954457,1135043822,1260195816,523,25829493,6236459,196347455,0,5554459,0,0,1293757,8406791,0,3306198,769371,29759456,10024854,2263428,263962228,16,"Tons",7339290,10979,23.5,26.63,1.21,0.01,10074,,0,0,0,0,0,0,0,"BBL",39756,139079,22.75,22.47,3.85,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"FOUR CORNERS 10%","Steam","01/01/69","01/01/70",163620,148000,8760,0,1176172000,11573,7334703,91939839,99286115,607,37000,105696,11684589,0,978340,0,0,90099,1040379,83795,135949,61864,1112429,291525,340786,15925451,14,"Tons",644302,8885,17.41,17.97,1.01,0.01,9757,"MCF",26430,1008,0,4.13,4.1,0,0,,0,0,0,0,0,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"HAYDEN 50%","Steam","01/01/76","01/01/76",137700,131000,6809,0,812423000,482702,13855905,64632670,78971277,574,16419000,157050,8427442,0,469402,0,0,101091,1360780,0,245277,92834,431566,123971,241674,11651087,14,"Tons",413486,10561,22.49,20.28,0.96,0.01,10759,,0,0,0,0,0,0,0,"BBL",1248,138870,26.63,32.67,5.6,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Steam","01/01/57","01/01/61",390472,407000,4062,62,888092000,139014,5833721,51714773,57687508,148,23000,345003,21091146,0,1032200,0,0,1186582,715713,0,741888,530777,2232219,897096,413430,29186054,33,,0,0,0,0,0,0,0,"MCF",9553025,1009,2.14,2.14,2.12,0.02,10859,"BBL",3,500000,0,24.61,4.1,0,0 "Salt River Proj Ag I & P Dist",16572,1999,"AGUA FRIA","Gas Turbine","01/01/74","01/01/75",222950,197000,451,0,42223000,0,299904,22692012,22991916,103,0,108584,1469697,0,233742,0,0,0,36481,0,284381,9332,0,296342,34359,2472918,59,,0,0,0,0,0,0,0,"MCF",617372,1007,2.12,0,2.1,0.03,14371,,0,0,0,0,0,0,0 "Alexandria City",298,1999,,"STEAM","01/01/56","01/01/74",171000,170000,5326,20,194429,0,0,0,0,0,0,708998,0,0,0,0,0,0,0,0,199997,14994,0,404462,0,1328451,6833,,0,0,0,0,0,0,0,"MCF",2346281,10,2.24,2.24,2.14,0.03,12.45,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"STEAM","01/01/50",,102500,103000,8760,45,381623000,0,0,0,0,0,0,4120850,6152121,0,0,0,0,0,0,0,0,0,0,0,0,10272971,27,,239196,8800,25.72,25.72,1.46,0.02,11031,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Ames City of",554,1999,,"GAS TURBINE","01/01/72","1/1/1972",22000,18000,95,0,1007000,0,0,0,0,0,0,9422,53460,0,0,0,0,0,0,0,0,0,0,0,0,62882,62,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,99000,137300,0.54,0.54,3.93,0.05,13498 "Anaheim City of",590,1999,,"GAS TRUBINE","01/01/90","01/01/91",49270,45998,638,6,27719000,0,9226000,27237000,36463000,740,0,280835,699954,0,0,0,0,0,0,0,187223,0,0,0,1146979,2314991,84,,0,0,0,0,0,0,0,"MCF",258683,1009,2.76,2.76,2.74,25.7,9394,,0,0,0,0,0,0,0 "Anchorage City of",599,1999,"#1","4 Gas 2 Int","01/01/62","01/01/72",85000,33000,1010,14,9983618,80839,3457655,22418738,25957232,305,380194,55796,353989,0,0,0,0,809120,0,3922,67280,67353,0,442853,0,1800313,180,,0,0,0,0,0,0,0,273580,0,1000,1.38,1.38,1.38,0.03,19744,778,0,133500,33.82,33.82,6.03,0,0 "Anchorage City of",599,1999,"#2","3 Gas 1 Ste","01/01/75","01/01/84",243200,151000,19516,30,759258360,11240,8928538,75136820,84076598,346,5364843,257796,10642281,0,678572,0,0,1623991,233929,0,330573,231135,303990,1190866,118352,15611485,21,,0,0,0,0,0,0,0,7701758,0,1000,1.38,1.38,1.38,0.01,10144,570,0,133500,34.71,34.71,6.19,0,0 "Austin City of",1009,1999,"Downtown","Gas Turbine","01/01/54","01/01/54",5500,5000,0,0,493000,0,0,1065016,1065016,194,0,142,36663,0,0,0,0,7532,0,0,143,0,0,142049,0,186529,378,,0,0,0,0,0,0,0,"MCF",1347,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Northeast","Steam","01/01/71","01/01/71",31500,31300,7566,24,120607160,70498,2376720,5711293,8158511,259,0,42490,2760067,0,395223,0,0,366434,798118,0,24135,51518,290200,20129,3652,4751966,39,"TON",58175,12000,39.8,39.48,1.64,0.02,12637,"MCF",125541,1020,2.75,2.75,2.7,0.03,12648,,0,0,0,0,0,0,0 "Austin City of",1009,1999,"Downtown","Steam","01/01/35","01/01/54",27500,22500,465,11,4508000,24099,1221355,5587700,6833154,248,0,31568,193351,0,41643,0,0,12652,492890,0,23781,136549,88433,55977,1897,1078741,239,,0,0,0,0,0,0,0,"MCF",70119,1020,2.75,2.75,2.7,0.04,15874,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER TURBINES","GAS TURBINE","01/01/88","01/01/88",200000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER SOLAR","SOLAR","01/01/86","01/01/86",300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"DECKER","STEAM","01/01/70","01/01/77",726000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"HOLLY","STEAM","01/01/60","01/01/74",558000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Austin City of",1015,1999,"SEAHOLM","STEAM","01/01/51","01/01/55",120000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Braintree Town of",2144,1999,"Potter II","Gas Turbine","01/01/77","01/01/77",97500,79500,1284,27,72929000,20271,3762859,18429374,22212504,228,132748,176565,2625145,0,1154442,0,0,0,0,0,158096,316309,488498,491410,262035,5672500,78,,0,0,0,0,0,0,0,"MCF",931167,1035,3.03,3.03,2.92,0.03,11631,"BBLS",14190,138809,15.72,15.72,2.7,0.03,10520 "Brownsville Public Utils Board",2409,1999,"SILAS RAY","STEAM GAS T","01/01/46","01/01/77",155000,197000,5256,29,206,528443,4499041,192117166,197144650,1272,0,205477,6239714,0,1311,0,0,155739,309455,0,74856,224382,203068,176038,1264465,8854505,42983034,,0,0,0,0,0,0,0,"MCF",2346974,1059,2.65,2.65,2.5,0.03,12048,,0,0,0,0,0,0,0 "Bryan City of",2439,1999,,"Gas Turbine","01/01/70","01/01/87",39,30,265,8,5177,0,0,0,0,0,0,0,311874,0,0,0,0,499578,0,0,0,0,0,216081,0,1027533,198480,,0,0,0,0,0,0,0,"Mcf",72688,1000,3.8,3.8,3.8,0.06,29839,"Bbl29839",639,128000,55.63,55.63,7.12,0.06,29839 "Bryan City of",2442,1999,"Bryan Municipal","STEAM, GAS","01/01/55","01/01/74",138000,115000,0,20,118273000,0,7590674,7546886,15137560,110,46427,76607,3529286,0,372623,0,0,606045,154868,9320,63805,20315,520977,159461,31344,5544651,47,,0,0,0,0,0,0,0,"MCF",1626575,1,2.25,2.25,2.21,0.03,14.05,,0,0,0,0,0,0,0 "Bryan City of",2442,1999,"Roland C. Dandy","STEAM","01/01/77","01/01/77",105000,106000,0,19,461142000,1183486,10201555,18752019,30137060,287,105283,76291,11510542,0,391030,0,0,512056,181517,12858,53081,31539,405327,91686,57727,13323654,29,,0,0,0,0,0,0,0,"MCF",5120070,1,2.24,2.24,2.21,0.02,11.36,,0,0,0,0,0,0,0 "Burlington City of",2548,1999,"Gas Turbine","Gas Turbine","01/01/71","01/01/71",25500,25000,106,1,2093500,13587,531143,3214616,3759346,147,17164,6073,130467,0,0,0,0,324,5442,16648,0,0,0,75762,0,234716,112,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",6016,137674,20.61,21.69,3.75,0.06,16616 "Burlington City of",2548,1999,"Joseph C McNeil GenrЬ ","Steam","01/01/84","01/01/84",50,53,4305,48,183109400,278455,18147811,50484579,68910845,1378217,571376,140467,6439721,0,788415,0,0,291816,360657,0,131396,35661,553086,1325161,20193,10086573,55,"Wood-Tons",263762,4750,23.46,23.52,2.47,0.03,13742,"MCF",66041,1012124,2.82,2.82,2.78,0.24,86785,"BBL",2260,136430,20.13,21.19,3.7,0,71.02 "Cedar Falls City of",3203,1999,"Streeter Station","Steam","01/01/63","01/01/73",51500,50000,1650,23,38111600,281328,3758281,14375110,18414719,358,699506,97410,1113417,0,230220,0,0,102634,142771,0,90418,180725,588058,55402,9122,2610177,68,"Tons",19527,12429,38.79,36.49,1.47,0.02,14033.99,"MCF",49410,1000,2.75,2.75,2.75,0.04,14033.99,,0,0,0,0,0,0,0 "Cedar Falls City of",3203,1999,"Combustion Turbine","Combustion","01/01/68","01/01/68",25000,20000,193,0,2814300,70777,134588,3497629,3702994,148,3062,4978,122537,0,0,0,0,5713,0,0,6674,9708,0,32837,0,182447,65,,0,0,0,0,0,0,0,"MCF",50599,1000,2.42,2.42,2.42,0.04,17979.25,,0,0,0,0,0,0,0 "California Dept-Wtr Resources",3255,1999,"Reid Garner #4","Steam-coal","01/01/83","01/01/83",275000,250000,0,96,1597086000,319709000,0,0,319709000,1163,0,0,22054817,0,0,0,0,0,21659183,0,0,0,0,0,0,43714000,27,"Tons",672949,11858,0,13.11,1.31,0.01,11079,,0,0,0,0,0,0,0,"Barrels",7515,133622,0,25,4.55,0.05,11570 "California Dept-Wtr Resources",3255,1999,"BottleRock & S Geysep","Steam-Geoth","01/01/85","01/01/85",55000,0,0,0,0,10000,0,0,10000,0,0,0,0,0,0,0,0,0,553000,0,0,0,0,0,0,553000,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Chanute City of",3355,1999,"Plant #3","Internal Co","01/01/85","01/01/91",31915,39975,595,8,10378156,50000,612000,15500000,16162000,506,0,369525,245371,0,0,0,0,0,0,0,166666,0,0,136912,0,918474,89,"N/A",0,0,0,0,0,0,0,"MCF",78668,1000,2.66,2.66,2.66,0.02,0.02,"Barrels",3969,138000,26.57,26.57,0.08,0.01,0.01 "PUD No 1 of Clark County",3660,1999,"River Road CCCT","Gas Turbine","01/01/97","01/01/97",248000,258504,7058,21,1711891704,1053160,141767983,13187783,156008926,629,2319343,4203148,23066109,0,0,0,0,0,0,0,0,91900,0,0,0,27361157,16,,0,0,0,0,0,0,0,"MCF",11463,1060,2042,2012,1.9,0.01,7114,,0,0,0,0,0,0,0 "Clarksdale City of",3702,1999,,"Combine Cyc","01/01/71","01/01/71",25550,24000,2149,6,43507,0,0,4581109,4581109,179,0,10000,1053091,0,0,0,0,130000,80000,0,10000,0,12009,328580,0,1623680,37320,,0,0,0,0,0,0,0,"MCF",374997,1000,2.8,2.8,2.8,0.02,8.62,"BBL",70,142.5,23.14,23.14,3.86,0.05,13.99 "Clarksdale City of",3702,1999,,"Gas Turbine","01/01/65","01/01/65",11500,11500,754,6,12158,0,0,1445133,1445133,126,0,10000,478409,0,0,0,0,100000,50000,0,20000,0,0,226974,0,885383,72823,,0,0,0,0,0,0,0,"MCF",169662,1000,2.8,2.8,2.8,0.03,13.99,"BBL",115,142.5,23.14,23.14,3.86,0.07,20.18 "Coffeyville City o",3892,1999,"COFFEYVILLE","STEAM","01/01/01","01/01/73",56985,55900,4013,23,68578900,0,0,0,0,0,0,57285,2419645,0,0,0,0,0,1146750,0,0,0,8610,0,0,3632290,53,,0,0,0,0,0,0,0,"MMBTU",938070,1000,2.25,2.58,2.58,0.03,1368,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Steam","01/01/00","01/01/64",11125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,68864,7301,41,105,51389,127700,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Coldwater Board of Public Util",3915,1999,,"Diesel","01/01/48","01/01/78",13250,45933,1719,6,7081208,0,0,0,0,0,0,40423,214682,0,0,0,0,37863,0,0,0,12739,0,71418,0,377125,53,,0,0,0,0,0,0,0,"Mcf",65604,9530000,2.84,0,0,0,0,"Barrels",1725,126000,17.7,0,0,0,0 "Colorado Springs City of",3989,1999,"Birdsall","Steam-Gas","01/01/53","01/01/57",62500,4500,1717,4,20716000,10761,2593301,11384249,13988311,224,0,67716,1180669,0,107787,0,0,227078,88988,0,31363,89311,290603,224308,38374,2346197,113,,0,0,0,0,0,0,0,"MCF",412714,806,2.83,2.83,3.52,0.06,16212,"GALLONS",22000,137420,0.11,0.11,0.81,0.01,16212 "Colorado Springs City of",3989,1999,"Drake","Steam-Gas","01/01/25","01/01/74",257300,256000,8760,106,1484262000,2725551,23014851,80547185,106287587,413,0,1059853,25816108,0,1094453,0,0,3228406,1184954,0,462905,237248,4111443,1735831,152472,39083673,26,"TONS",769313,10914,29.13,31.49,1.44,0.01,11585,"MCF",494125,808,2.73,2.73,3.38,0.03,11585,"BARRELS",0,0,0,0,0,0,0 "Colorado Springs City of",3989,1999,"Nixon","Steam-Gas","01/01/80","01/01/80",207000,214000,6081,81,1117841000,5059222,39785705,107090082,151935009,734,0,969721,11571054,0,779121,0,0,1343687,1057607,0,489855,218501,3309067,2974204,146609,22859426,20,"TONS",538337,10432,18.31,18.84,0.9,0,10120,,0,0,0,0,0,0,0,"BARRELS",13952,136738,24.87,24.87,4.33,0.04,10120 "Colorado Springs City of",3989,1999,"CTS","Gas","01/01/99","01/01/99",71660,73000,458,0,22292000,418573,123167,32084223,32625963,455,0,0,715385,0,0,0,0,0,0,0,0,0,0,26204,0,741589,33,,0,0,0,0,0,0,0,"MCF",291394,983,2.89,2.87,2.92,0.03,12852,,0,0,0,0,0,0,0 "Columbia City of",4045,1999,,"Steam/Gas T","01/01/10","01/01/70",86000,226000,8760,46,62152000,115894,3578025,15986526,19680445,229,5320808,43503,2133251,0,531664,0,0,967929,376491,0,170114,28005,512239,452108,0,5215304,84,"Tons",37319,13265,53.83,53.69,2.02,3.22,15930,"Mcf",34179,0,3.64,3.64,0,0,0,,0,0,0,0,0,0,0 "Columbus City of",4065,1999,"O'Shaughnessy",,,,5000,5000,0,1,5860000,0,0,0,0,0,0,0,0,0,0,0,0,49898,0,0,0,0,0,2864,0,52762,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Concord City of",4150,1999,,,,,0,0,0,0,545243,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Connecticut Mun Elec Engy Coop",4180,1999,"Millstone Unit 3","Nuclear (e)","01/01/86","01/01/86",1253100,1164700,7329,933,8277624400,0,20415627,29930688,50346315,40,0,324496,363329,24201,162455,0,0,48209,296706,13608,313554,74201,315415,228127,1354,2165655,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Wansley 1 & 2","Coal fired","01/01/76","01/01/78",22220,0,0,0,149590620,0,0,9113036,9113036,410,28304,29233,2186381,0,24950,0,0,15863,81536,0,42895,19710,138435,167350,13819,2720172,18,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Dalton City of",4744,1999,"Scherer 1 & 2","Coal fired","/ /","01/01/84",22680,0,0,0,144814966,0,0,13467749,13467749,594,50818,27106,2605498,0,25617,0,0,15303,77539,0,34949,22981,256897,16076,11927,3093893,21,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Denton City of",5063,1999,"SPENCER PLANT","STEAM","01/01/55","01/01/73",179000,259100,11980,36,305539695,0,0,0,0,0,0,233373,9138796,0,348227,0,0,468112,432003,0,71604,11794,211613,467529,210327,11593378,38,,0,0,0,0,0,0,0,"Mcf",3800668,1,2.24,2.24,2.24,2.99,12.43,"BBl",0,139.68,7.82,0,0,0,0 "Eugene City of",6022,1999,"Willamette","Steam","01/01/31","01/01/50",25000,0,0,0,0,0,0,1189332,1189332,48,0,0,260,0,1204,0,0,-975,0,0,0,0,0,5095,7459,13043,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Eugene City of",6022,1999,"Energy Center","Steam","01/01/76","01/01/76",51200,41000,0,0,192829000,1280,320371,7521672,7843323,153,0,13058,1366594,0,0,0,0,261785,0,0,0,94,0,127793,0,1769324,9,,0,0,0,0,0,0,0,,321587,0,2.51,0,0,0,2495.24,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"ANIMAS","STEAM-COMBI","01/01/55","01/01/94",32180,28000,7808,14,170805000,5968,1109574,25033191,26148733,813,0,70145,3611891,0,225548,0,0,460952,226694,0,122984,0,217797,1021413,38103,5995527,35,,0,0,0,0,0,0,0,"MCF",1668856,1013,2.13,2.13,2.1,0.02,9897,,0,0,0,0,0,0,0 "Farmington City of",6204,1999,"SAN JUAN","STEAM-COAL","/ /","/ /",4300042200,43000,7919,10,293222700,0,5471749,62874731,68346480,0,0,71242,5641682,0,114021,0,0,120758,93838,131,62021,34762,382623,77158,65298,6663534,23,"TONS",167448,9421,32.33,32.33,1.72,0.01,10774,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Fayetteville Public Works Comm",6235,1999,"Butler-Warner Gen PtP","Gas-Turbine","01/01/76","01/01/88",303400,276500,1134,33,0,749336,5123088,100277060,106149484,350,4108529,0,-6665,0,0,0,0,0,0,0,0,0,0,292639,-141172,144802,0,,0,0,0,0,0,0,0,"Mcf",1724674,1046,2.72,2.72,2.6,0.03,12249.5,"Barrels",4,138800,27.15,27.87,4.78,0.06,13375.25 "Fort Pierce Utilities Auth",6616,1999,"Steam","Steam","01/01/21","01/01/89",120011,0,0,0,0,0,0,0,0,0,0,564929,6990,0,231196,0,0,428922,138247,0,21508,56082,204594,1437831,87424,3177723,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Freeport Village of Inc",6775,1999,"Power Plant #1","Internal Co",,"01/01/64",13190,0,0,9,2066120,5022,1113459,3036221,4154702,315,51721,42612,209909,0,0,0,0,518539,0,0,0,79604,0,0,0,850664,412,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",293755,138788,0.81,0.68,0.18,0.97,14.88 "Freeport Village of Inc",6775,1999,"Power Plant #2","Internal Co","1/1/1968","01/01/73",37390,57000,1,9,1277200,1827,3178208,8088951,11268986,301,0,52596,205053,0,0,0,0,634322,0,28573,0,101784,0,0,0,1022328,800,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",319336,138788,0.86,0.64,0.13,0.16,9.2 "Fremont City of",6779,1999,"Wright","Steam","01/01/56","01/01/76",132700,83390,8760,47,336075,202231,5905920,42850719,48958870,369,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Gainesville Regional Utiliti",6909,1999,"DEERHAVEN","STEAM (330-","01/01/69","01/01/81",327500,290000,12226,0,1352589900,254025,31881608,176716069,208851702,638,0,357675,29040171,0,1948913,669408,0,709824,318849,0,0,234571,2947099,1471570,212996,37911076,28,"Tons",434183,13091,0,43.31,1.65,0.02,10917.81,"Mcf",3363772,1047,0,2.65,2.53,0.03,12133.79,"Barrels",37465,152355.8,0,17.6,2.75,0.03,11346.38 "Gainesville Regional Utiliti",6909,1999,"DEERHAVEN","GAS TURBINE","01/01/76","01/01/97",121000,106000,1766,0,84018600,0,1321304,28064043,29385347,243,0,39742,3231130,0,28286,26111,0,2792,9961,0,0,15073,36357,60563,3746,3453761,41,,0,0,0,0,0,0,0,"Mcf",1122969,1047,0,2.86,2.74,0.04,14030.74,"Barrels",692,139057.2,0,20.13,3.45,0.06,18331.59 "Gainesville Regional Utiliti",6909,1999,"CRYSTAL RIVER","NUCLEAR","01/01/77","01/01/77",12530,13000,8736,0,100282800,3267,4269194,7051636,11324097,904,0,649986,434350,0,10743,21,0,0,421140,180700,453410,74742,63458,47809,56124,2392483,24,,0,0,0,0,0,0,0,"mmbtu",1060237,1,0,0.41,0.41,0,10572.47,,0,0,0,0,0,0,0 "Gainesville Regional Utiliti",6909,1999,"KELLY","STEAM (310,","01/01/13","01/01/65",69000,70000,6288,38,122927200,29000,3448845,16424862,19902707,288,0,116270,4283336,0,725363,41979,0,353107,42098,0,37872,118991,299095,266800,56631,6341542,52,,0,0,0,0,0,0,0,"Mcf",1386371,1041,0,2.8,2.69,0.04,1359.07,"Barrels",27416,150944,0,14.6,2.3,0.03,11701.63 "Gainesville Regional Utiliti",6909,1999,"KELLY","GAS TURBINE","01/01/38","01/01/65",48900,23000,187,0,1323700,0,3911,6914299,6918210,141,0,2848,102069,0,3654,898,0,156,983,0,56884,2806,253,6844,9228,186623,141,,0,0,0,0,0,0,0,"Mcf",34317,1041,0,2.97,2.85,0.08,27441.76,"Barrels",125,137462.3,0,2.18,0.38,0.01,33607.61 "Garland City of",6958,1999,"C E Newman","Steam","01/01/57","01/01/64",90,0,0,15,52988540,0,0,0,0,0,0,393626,2065599,0,337730,0,0,304378,0,0,0,95143,576059,204996,14547,3992078,75,,0,0,0,0,0,0,0,"mcf",751031,1027,2.68,2.68,2.61,0.03,14558,,0,0,0,0,0,0,0 "Garland City of",6958,1999,"Ray Olinger","Steam","01/01/66","01/01/75",340,0,0,53,1124489300,352431,77747728,0,78100159,229706,0,925754,28773849,0,899894,0,0,340126,0,0,75135,141289,2796239,1696904,58564,35707754,32,,0,0,0,0,0,0,0,"mcf",12530666,1015,2.29,2.29,2.25,0.02,11307,,0,0,0,0,0,0,0 "Glendale City of",7294,1999,"Grayson Power Plant","C.C. 8 & St","01/01/77","01/01/77",98000,30000,6550,46,83627000,0,0,0,0,0,0,0,2304766,0,0,0,0,0,0,0,0,0,0,0,0,2304766,28,,0,0,0,0,0,0,0,,885159,1032,2.6,2.6,2.52,0.02,10922,,0,0,0,0,0,0,0 "Glendale City of",7294,1999,"Grayson Power Plant","Steam 3, 4,","01/01/53","01/01/64",117000,79000,8095,46,235016000,0,0,0,0,0,0,83118,12398533,0,2564287,0,0,0,199205,0,21789,81361,407902,1157488,0,16913683,72,,0,0,0,0,0,0,0,,6354878,665,1.96,1.96,2.94,0.04,13452,,0,0,0,0,0,0,0 "Glendale City of",7294,1999,"Grayson Power Plant","Gas Turbine","01/01/72","01/01/74",53000,1000,34332,46,295600,0,0,0,0,0,0,60626,127128,0,0,0,0,0,312,0,0,0,73,124,0,188263,637,,0,0,0,0,0,0,0,,49491,1032,2.57,2.57,2.49,0.04,17276,,0,0,0,0,0,0,0 "Grand Haven City of",7483,1999,"Sims 111","Steam","01/01/61","01/01/83",65000,65640,7248,34,325839300,194823,17546372,59386460,77127655,1187,608741,60314,5842025,0,518785,0,0,229677,414863,0,31843,59567,1244336,91370,29265,8522045,26,"tons",160760,11367,0,36.34,1.59,17.93,11338,,0,0,0,0,0,0,0,"mcf",13850,1000,0,4.34,0,0,0 "Grand Haven City of",7483,1999,"Diesel Plant","internal co","01/01/31","01/01/74",20430,9030,28,1,72500,27458,445645,4740308,5213411,255,22625,776,38089,0,0,0,0,0,30018,0,0,2297,0,0,74851,146031,2014,,0,0,0,0,0,0,0,"mcf",933,1000,0,4.34,11.87,525.39,44239,"brls",376,144000,0,0.05,0,0,0 "Grand River Dam Authority",7490,1999,"GRDA #1","STEAM","01/01/81","01/01/81",490000,519,8044,97,3074727000,1689890,98855201,234243925,334789016,683,0,134410,29404628,0,904037,0,0,798928,375518,0,169174,314792,2121091,430639,266073,34919290,11,"TONS",1895637,8384,14.42,14.42,0.86,0,10337.97,"MCF",107483,1006,2.44,2.44,2.39,0,35.72,,0,0,0,0,0,0,0 "Grand River Dam Authority",7490,1999,"GRDA #2","STEAM","01/01/86","01/01/86",520000,553,8023,120,2084345000,0,53986144,402596506,456582650,878,0,83334,20574802,0,2216945,0,0,525668,233196,0,104888,178859,2453678,344835,172902,26889107,13,"TONS",2049199,8701,14.76,15.18,0.87,0,10756.78,"MCF",67904,1006,2.52,2.52,2.46,0,20.98,,0,0,0,0,0,0,0 "PUD No 1 of Grays Harbor Cnty",7548,1999,,,,,0,0,0,0,0,82928,2208894,12774993,15066815,0,0,61617,6477957,0,27174,0,0,0,581817,934,212,0,14634,18437,28696,7211478,0,"Tons",249975,8218,25.98,25.74,1.56,0.02,10782,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Greenwood Utilities Comm",7651,1999,,,,,0,0,0,0,0,0,0,0,0,445,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Greenwood Utilities Comm",7651,1999,"Wright","Steam","1/1/1902","1/1/1955",17500,11721,1472,12,10291142,44232,477968,5142250,5664450,324,0,43208,293538,0,168488,0,0,154435,29059,1228,19461,29411,12072,62764,5858,819522,80,"Tons",140,13248,0,0,0,0,0,"MCF",93243,1019,0,0,0,0,0,,0,0,0,0,0,0,0 "Greenwood Utilities Comm",7651,1999,"Henderson","Steam","1/1/1960","1/1/1967",46179,40900,2903,23,50661210,117233,1499663,13202167,14819063,321,0,56586,2045916,0,255116,0,0,157434,117767,0,52669,867,272422,88793,111926,3159496,62,"Tons",545,13100,0,0,0,0,0,"MCF",687608,1019,0,0,0,0,0,"Barrels",120,138486,0,0,0,0,0 "Harrisonburg City of",8198,1999,"PLEASANT VALLEY","GAS-TURBINE","01/01/97","01/01/98",14000,13795,0,2,1546628,18753,975623,6407017,7401393,529,0,9077,75597,0,0,0,0,10595,4440,0,0,5214,15176,0,188,120287,78,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"GALLONS",186918,0,0.4,0.4,0,0,0 "Harrisonburg City of",8198,1999,"MT. CLINTON","GAS-TURBINE","01/01/98","01/01/99",14000,8846,0,2,525731,0,139162,2862528,3001690,214,0,1057,18332,0,0,0,0,6844,366,0,0,5001,1332,0,21,32953,63,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"GALLONS",66356,0,0.4,0.4,0,0,0 "Henderson City Utility Comm",8449,1999,"STATION ONE","STEAM","01/01/51","01/01/68",40591,20000,0,30,4898138,0,2293070,8187353,10480423,258,0,312060,1078245,0,309093,0,0,263344,276291,0,0,14500,164236,186376,9722,2613867,534,"TONS",34517,11434,28.82,28.66,1.31,20.31,11501,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Henderson City Utility Comm",8449,1999,"STATION TWO","STEAM","01/01/73","01/01/74",350000,312000,0,0,2104822040,0,0,115186365,115186365,329,0,469431,479283,0,1971482,0,0,894387,491084,0,272097,167212,3356917,539212,306867,8947972,4,"TONS",249039,11435,23.99,24.09,1.05,10.97,11458,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Holland City of",8723,1999,"48th Street","Oil/Gas Tur","01/01/94","01/01/94",75300,75651,1207,0,55601071,336770,5131914,24597253,30065937,399,33140,0,1847609,0,0,0,0,304910,0,0,0,0,0,70013,0,2222532,40,,0,0,0,0,0,0,0,"Mcf",717801,1020,2.6,2.6,2.55,0.03,13168,"Brls",2149,137000,29.4,29.4,5.11,0,222 "Holland City of",8723,1999,"James DeYoung","Steam","01/01/41","01/01/68",62250,55503,8760,45,321994740,803565,5456558,33980556,40240679,646,169931,203954,7360870,0,1786693,0,0,0,0,0,0,0,0,1639115,0,10990632,34,"Tons",168615,12700,41,41,1.57,0.02,13300,"Mcf",4050,1020,3,3,2.94,0,13,"Brs",250,137000,29.4,29.4,5.11,0,4.46 "Holland City of",8723,1999,"6th Street","Oi/Gas Turb","01/01/74","/ /",24000,13000,54,0,139040,20548,219739,2965966,3206253,134,0,0,27012,0,0,0,0,0,0,0,0,0,0,11677,0,38689,278,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Brs",1208,137000,29.4,29.4,5.11,0.25,49992 "Holyoke City of",8774,1999,"Steam","Conventiona","01/01/02","01/01/61",25500,18000,272,32,-1054,143821,1991971,11336832,13472624,528,0,1028334,2937101,0,124366,0,0,0,0,0,416066,0,0,0,0,307775,-292007,,0,0,0,0,0,0,0,"Mcf",57642,1020,2.74,2.74,2.68,0.05,23544,"Barrels",265,152297,16.24,22.59,3.53,0.05,23544 "Homestead City of",8795,1999,"G.W.","Int. Combus","01/01/26","01/01/81",59100,63000,8700,21,73393186,7431029,52158226,0,59589255,1008,3549232,0,2715528,0,0,0,0,211533,0,0,749417,13328,0,1665477,0,5355283,73,,0,0,0,0,0,0,0,"MCP",652925,1091,2.85,3.21,2.85,0,10060,"BARRELS",13090,140600,24,24,0,0,1038 "Terrebonne Parish Consol Govt",8884,1999,"Houm plnt","Stem","01/01/62","01/01/76",78950,67,8908,26,108812349,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"mcf",1412914,1,2.82,2.82,2.66,0.03,13778,,0,0,0,0,0,0,0 "Hudson Town of",8973,1999,"Cherry St Station","Internal Co","01/01/00","01/01/72",15200,15200,328,10,2018120,3500,332760,3278258,3614518,238,0,29030,151138,0,0,0,0,177436,0,0,27887,98252,0,122644,0,606387,300,,0,0,0,0,0,0,0,,33210,910,2.98,2.98,3.27,0,0,,2307,140000,24.47,22.62,3.85,0.04,0 "Hudson Town of",8973,1999,"HLP Peaking","Internal Co","01/01/62","01/01/62",4400,4400,283,0,1552200,0,1503,711956,713459,162,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lafayette City of",9096,1999,"Doc Bonin","Steam","01/01/65","01/01/77",331500,276000,14682,26,772281,302436,6849008,50156340,57307784,173,1732453,190840,21238385,0,398587,0,0,563223,268406,0,110983,25741,202633,459320,729180,24187298,31319,,0,0,0,0,0,0,0,"MCF",8285542,1055,2.47,2.47,2.34,0.02,11586,,0,0,0,0,0,0,0 "Lafayette City of",9096,1999,"Curtis A. Rodemacherи","Steam","01/01/51","01/01/60",33700,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Hutchinson Utilities Comm",9130,1999,"NO.2","GAS TURBINE","01/01/75","01/01/95",90500,52000,3484,8,143171,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",1199515,1000000,1.94,1.94,1.94,0.02,857,,0,0,0,0,0,0,0 "Hutchinson Utilities Comm",9130,1999,"NO.1","INTERNAL CO","01/01/41","01/01/63",19280,13000,481,17,1411,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",10876,1000000,2.5,2.5,2.5,0.02,11409,"BARRELS",898,138500,21.33,21.33,3.67,0.04,11409 "Hutchinson Utilities Comm",9130,1999,"NO.1","GAS TURBINE","01/01/71","01/01/71",16000,12600,1947,17,18870,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",210955,1000000,2.16,2.16,2.16,0.02,11179,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"YUMA AXIS (YUCCA)","STEAM/GAS T","01/01/59","01/01/59",97000,88000,8721,26,352808000,64181,2260883,23196343,25521407,263,0,379434,10637888,0,935878,0,0,640464,495843,0,99827,69611,406661,211055,674585,14551246,41,,0,0,0,0,0,0,0,"MCF",4064674,1009,2.34,2.34,2.32,0.03,11.62,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"BRAWLEY","GAS TURBINE","01/01/62","01/01/62",22500,0,0,0,0,5071,76410,2726341,2807822,125,0,0,0,0,0,0,0,1734,0,0,0,2153,82770,0,0,86657,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"ROCKWOOD","GAS TURBINE","01/01/77","01/01/80",49900,43000,449,3,8735400,3032,432127,10030106,10465265,210,0,48642,178668,0,0,0,0,31135,0,0,83679,478,0,196364,0,538966,62,,0,0,0,0,0,0,0,"MCF",120588,1009,2.77,2.77,2.75,0.03,13.81,"BBLS",309,139000,31.32,31.32,5.36,0.08,12.78 "Imperial Irrigation District",9216,1999,"EC STEAM PLANT","STEAM","01/01/49","01/01/93",236000,200000,14438,32,346976000,145322,8507545,92188450,100841317,427,0,435334,9038913,0,564914,0,0,928726,354013,0,378925,35949,1083557,364726,297164,13482221,39,,0,0,0,0,0,0,0,"MCF",3854124,1009,2.73,2.73,2.7,0.03,11.2,,0,0,0,0,0,0,0 "Imperial Irrigation District",9216,1999,"COACHELLA PLANT","GAS TURBINE","01/01/73","01/01/76",92600,79900,484,3,8735400,0,660201,8509765,9169966,99,0,0,384991,0,0,0,0,16129,0,0,0,0,0,221825,0,622945,71,,0,0,0,0,0,0,0,"MCF",133342,1009,2.68,2.68,2.65,0.07,15.4,"BBLS",161,139000,19.82,19.82,3.4,0.03,15.49 "Independence City of",9231,1999,"Station H","Combustion","01/01/72","01/01/72",43900,35000,768,0,9679000,0,264494,7881342,8145836,186,3650000,0,418654,0,0,0,0,259,6023,0,1558,1922,0,40063,6460,474939,49,,0,0,0,0,0,0,0,"Mcf",165620,1006,2.52,2.52,2.5,4.32,17250,"barrel",70,137380,0,22.9,3.97,0,0 "Independence City of",9231,1999,"Station I","Combustion","01/01/72","01/01/72",39200,20000,84,0,913000,0,302177,5529062,5831239,149,1900000,0,60551,0,0,0,0,165,6970,0,5781,13239,0,25841,31762,144309,158,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",2704,137380,19.9,22.39,3.88,6.63,17087 "Independence City of",9231,1999,"Station J","Combustion","01/01/69","01/01/69",36000,25000,236,0,2002000,0,0,7805061,7805061,217,0,0,125702,0,0,0,0,222,1531,0,871,4113,0,24419,8730,165588,83,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",6516,137380,19.17,19.29,3.34,6.28,18779 "Independence City of",9231,1999,"Missouri City","Steam","01/01/55","01/01/55",46000,39000,1671,4,15124000,35409,3991334,17761788,21788531,474,0,7082,502886,0,176489,0,0,179516,70526,0,12705,8751,225619,212687,60099,1456360,96,"tons",12047,11335,30.77,38.88,1.72,3.33,18669,,0,0,0,0,0,0,0,"barrel",1600,137380,20.32,22.13,3.83,0,0 "Independence City of",9231,1999,"Blue Valley Steam","Steam","01/01/58","01/01/65",115000,84320,13965,66,241792052,334550,7113970,51575531,59024051,513,0,419819,4808525,0,524873,0,0,530126,996421,0,397024,47705,1359676,212400,446582,9743151,40,"tons",141859,10419,27.47,28,1.34,1.99,13563,"Mcf",318933,1007,2.6,2.6,2.58,0,0,"barrel",381,137380,19.7,29.02,5.03,0,0 "Independence City of",9231,1999,"Blue Valley RCT","Gas Turbine","01/01/76","01/01/76",61000,0,0,0,-34900,0,79423,9483847,9563270,157,0,0,0,0,0,0,0,0,0,0,6781,13176,0,85297,2666,107920,-3092,,0,0,0,0,0,0,0,"Mcf",0,0,0,0,0,0,0,"barrel",0,0,19.7,0,0,0,0 "Indiana Municipal Power Agency",9234,1999,"Anderson","Combustion","01/01/92","01/01/92",77400,0,677,1,16207699,338303,2059957,27858215,30256475,391,24719,109921,852328,0,0,0,0,-99533,0,0,0,0,0,35406,0,898122,55,,0,0,0,0,0,0,0,"Mcf",221255,1008,3.76,3.76,0,0.03,13866,"Barrels",913,135000,0,21.44,0,0,0 "Indiana Municipal Power Agency",9234,1999,"Richmond","Combistion","01/01/92","01/01/92",77400,0,672,2,16681301,285908,1897137,27678416,29861461,386,24719,109412,777649,0,0,0,0,63041,0,0,0,0,0,113291,0,1063393,64,,0,0,0,0,0,0,0,"Mcf",205930,1008,3.25,3.25,0,0.03,13826,"Barrels",4618,135000,0,22.83,0,0,0 "Jacksonville Electric Auth",9617,1999,"St. Johns River Powr","Steam","01/01/87","01/01/88",1359200,1254800,16230,379,9769075000,8261567,216790382,1265014325,1490066274,1096,3558053,1278911,141047857,0,5601281,0,0,1074855,5428044,46697,1187268,2385486,20285812,4095589,1403840,183835640,19,"Ton",3747220,12457,34.89,34.89,1.42,0.02,9594,,0,0,0,0,0,0,0,"bbl",63214,139174,0,21.47,2.12,0,0 "Jacksonville Electric Auth",9617,1999,"Southside Station","Steam","01/01/50","01/01/64",231600,212500,10904,10,554635000,260352,9143119,32049310,41452781,179,1629842,271851,15520408,0,1599580,0,0,0,206567,0,326718,25186,630482,191705,280057,19052554,34,,0,0,0,0,0,0,0,"Mcf",2507368,1060,0,2.34,3.06,0.03,11179,"Bbl",557864,151168,0,15.84,3.06,0.03,11179 "Jacksonville Electric Auth",9617,1999,"Northside Station","Steam","01/01/66","01/01/77",1158700,770000,15844,253,3351845000,2786108,56942751,225240754,284969613,246,33142204,2784678,74049151,0,5992982,0,0,44719,4602152,0,1374517,505398,7585701,1471833,857253,99268384,30,,0,0,0,0,0,0,0,"Mcf",8655547,1061,0,2.25,2.88,0.02,10216,"Bbl",3945407,150694,0,13.69,2.88,0.02,10216 "Jacksonville Electric Auth",9617,1999,"Northside Station","Combustion","01/01/68","01/01/75",248400,133600,1573,0,37400000,0,13725,30470646,30484371,123,788220,0,2222304,0,0,0,0,0,0,0,0,0,0,0,0,2222304,59,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Bbl",106276,141886,0,20.19,4.14,0.05,16933 "Jacksonville Electric Auth",9617,1999,"Kennedy Station","Steam","01/01/55","01/01/69",149600,99000,5097,10,347132000,1512681,17018214,28634062,47164957,315,401104,268512,9068081,0,772026,0,0,0,215330,0,64213,51497,330526,641660,660280,12072125,35,,0,0,0,0,0,0,0,"Mcf",391837,1061,0,2.34,2.97,0.02,11107,"Bbl",540582,151503,0,14.74,2.97,0.02,11107 "Jacksonville Electric Auth",9617,1999,"Kennedy Station","Combustion","01/01/69","01/01/78",168600,154000,1125,0,42180000,0,1327436,21421124,22748560,135,25091556,0,2490159,0,0,0,0,0,0,0,0,0,0,0,0,2490159,59,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Bbl",112392,139127,0,20.19,4.14,0.05,15570 "Jamestown City of",9645,1999,"Samuel A. Carlson","Steam","01/01/00","01/01/68",57700,49026,8760,35,150393293,431201,4905918,44660838,49997957,867,0,307142,3248587,0,767918,0,0,67674,0,0,323990,45918,307513,223184,92412,5384338,36,"Tons",90599,12698,32.64,32.62,1.3,0.02,15.15,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kansas City City of",9996,1999,"NEARMAN","STEAM","01/01/81","01/01/81",235000,0,6232,0,1163529000,1149455,33440175,132136477,166726107,709,0,2403060,10767308,0,0,0,0,0,0,0,4927543,0,0,0,0,18097911,16,"Tons",816559,11608,0,13.63,0,0,0,,0,0,0,0,0,0,0,"Gallons",337856,0,0,0.53,0,0,0 "Kansas City City of",9996,1999,"QUINDARO","GAS TURBINE","01/01/61","01/01/77",121100,0,848,0,37328000,0,0,12878040,12878040,106,0,0,2472937,0,0,0,0,0,0,0,154961,0,0,0,0,2627898,70,,0,0,0,0,0,0,0,"MCF",82098,0,0,2.67,0,0,0,"Gallons",3996910,10968,0,0.56,0,0,0 "Kansas City City of",9996,1999,"Kaw","STEAM","01/01/55","01/01/62",144000,0,735,0,52780000,226366,10485751,61538861,72250978,502,0,1219250,2547603,0,0,0,0,0,0,0,120227,0,0,0,0,3887080,74,,0,0,0,0,0,0,0,"MCF",768569,14616,0,2.89,0,0,0,"Gallons",2470,0,0,0,0,0,0 "Kansas City City of",9996,1999,"Quindaro","STEAM","01/01/66","01/01/71",232000,0,7553,0,432609000,318548,21469578,113626934,135415060,584,0,4220013,12201830,0,0,0,0,0,0,0,6446514,0,0,0,0,22868357,53,"Tons",257094,10922,0,18.02,0,0,0,"MCF",136450,0,0,2.53,0,0,0,,0,0,0,0,0,0,0 "Kaukauna City of",10056,1999,"Gas-Turbine","Gas-Turbine","01/01/69","01/01/69",20000,20000,0,0,1633000,27532,147667,1773210,1948409,97,0,6258,0,0,0,0,0,5950,179,0,5243,0,0,25424,859,43913,27,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kaukauna City of",10056,1999,"Diesel","Internal Co","01/01/66","01/01/66",6000,6000,0,1,2547740,0,0,750737,750737,125,0,1797,0,0,0,0,0,17685,70,0,1675,0,0,119575,865,141667,56,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kennett City of",10152,1999,,,"01/01/42","01/01/75",31906,0,0,11,1634000,22309,787483,6445027,7254819,227,0,388548,59743,0,0,0,0,90225,0,0,0,0,0,71100,0,609616,373,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Key West City of",10226,1999,"STOCK ISLAND GENERAT","STOCK ISLAN","01/01/65","01/01/65",6000,1830,504,3,787200,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",1537,147619,25.24,23.84,3.85,0.04,12420 "Key West City of",10226,1999,"BIG PINE & CUDJOE KE","PEAKING DIE","01/01/66","01/01/66",7800,6000,1241,3,1626000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",3240,147619,25.24,22.91,3.69,0.04,12353 "Key West City of",10226,1999,"STOCK ISLAND GENERAT","COMBUSTION","01/01/98","01/01/98",19770,17800,170,3,6338385,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",19072,147619,25.24,23.84,3.85,0.07,18656 "Key West City of",10226,1999,"STOCK ISLAND GENERA","COMBUSTION","01/01/98","01/01/98",19770,17800,312,3,4201594,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",12081,147619,25.24,23.84,3.85,0.06,17828 "Key West City of",10226,1999,"STOCK ISLAND GENERA","MEDIUM SPEE","01/01/92","01/01/92",19200,17400,1348,4,7680400,725946,2129491,33095400,35950837,1872,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",15168,147619,25.24,23.84,3.85,0.04,12245 "Key West City of",10226,1999,"STOCK ISLAND GENERA","COMBUSION T","01/01/78","01/01/78",23450,20000,338,3,3341400,102063,3836252,41439758,45378073,1935,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBL",10618,147619,25.24,23.84,3.85,0.07,19703 "Kissimmee Utility Authority",10376,1999,"Cane Island Unit 1","Gas Turbine","01/01/94","01/01/95",40000,40500,959,0,14625850,2178026,8322640,16405426,26906092,673,0,155794,616975,0,21370,0,0,0,47552,0,0,82207,42233,3552,0,969683,66,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kissimmee Utility Authority",10376,1999,"Cane Island Unit 2","Combined Cy","01/01/95","01/01/95",120000,120900,8016,0,410918450,0,18118934,33576386,51695320,431,0,574702,9819459,0,1048989,0,0,0,317852,44,602,7445,273743,228456,0,12271292,30,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kissimmee Utility Authority",10376,1999,"Hansel 8-20","Internal Co","01/01/59","01/01/80",18350,17800,1896,7,2753500,83022,1284485,18177017,19544524,1065,0,0,60138,0,0,0,0,0,0,0,0,0,0,0,0,60138,22,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Kissimmee Utility Authority",10376,1999,"Hansel 21-23","Combined Cy","01/01/83","01/01/83",55000,52300,3391,23,48803800,188985,8733288,12117381,21039654,383,1360859,467366,1917038,0,669123,0,0,0,263562,0,0,9168,294075,290,407232,4027854,83,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lake Worth City of",10620,1999,"Tom G Smith","Gas Turbine","01/01/76","01/01/76",30000,0,0,0,9028400,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lake Worth City of",10620,1999,"Tom G Smith","Gas-Turbine","01/01/76","01/01/76",34000,0,10495,35,57950539,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lake Worth City of",10620,1999,"Tom G Smith","Internal Co","01/01/65","01/01/65",10000,0,1433,0,2538120,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lakeland City of",10623,1999,"McIntosh","Steam","01/01/71",,404000,382000,7228,201,1839190600,1885069,31460078,296239998,329585145,816,8226431,522705,41752998,0,2155417,0,0,1371320,950229,0,705662,501402,5163353,1063922,1302923,55489931,30,"Tons",500198,12850,43.47,43.81,0,0,0,"MCF",5551769,953000,2.45,2.45,0,0,0,"BBLS",0,0,0,0,0,0,0 "Lakeland City of",10623,1999,"McIntosh","Internal Co","01/01/70","1/1/1970",5500,5500,344,0,892340,0,0,1320630,1320630,240,0,0,34735,0,0,0,0,9947,0,0,0,0,0,0,0,44682,50,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BBLS",1518,138953,25.45,22.89,3.92,0,0 "Lakeland City of",10623,1999,"McIntosh","Gas Turbine","01/01/73","1/1/1973",20200,20000,284,0,22266010,0,0,4357281,4357281,216,21292755,0,764571,0,0,0,0,494377,0,0,0,0,0,0,0,1258948,57,,0,0,0,0,0,0,0,"MCF",67719,953000,2.51,2.51,2.39,0,0,"BBLS",927,138953,25.45,23.77,4.07,0,0 "Lakeland City of",10623,1999,"Larsen","Steam","01/01/59","1/1/1966",70000,87000,3471,7,109781131,18222,3205076,39859999,43083297,615,1568340,-458515,4264086,0,661973,0,0,352157,157768,0,224398,35362,686445,74964,71417,6070055,55,,0,0,0,0,0,0,0,"MCF",1067068,953000,2.52,2.52,2.4,0,0,"BBLS",62536,149341,15.9,15.4,2.46,0,0 "Lakeland City of",10623,1999,"Larsen","GasTurbine","01/01/62","1/1/1992",141000,144000,5825,39,519222486,10000,355941,47760931,48126872,341,1320675,0,14688881,0,0,0,0,57111,49377,0,75387,135332,474794,0,18035,15498917,30,,0,0,0,0,0,0,0,"MCF",4954465,953000,2.5,2.5,2.38,0,0,"BBLS",778,138657,18.94,23.73,4.07,0,0 "Lansing City of",10704,1999,"Erickson","Steam","01/01/73","01/01/73",154716,155993,7562,28,902816777,503834,8008408,37441310,45953552,297,9431143,598448,15649944,0,1139751,0,0,375627,144309,0,521787,398880,1081673,289370,373441,20573230,23,"Tons",359532,12604,40.78,41.97,1.66,0.02,10054,0,0,0,0,0,0,0,0,"BBL",2451,137028,18.35,17.87,3.1,0.03,10213 "Lansing City of",10704,1999,"Ottawa","Steam","01/01/38","01/01/54",2500,0,0,0,0,608570,3547880,114658,4271108,1708,1064667,0,0,0,43886,0,0,0,127,0,0,16474,0,0,716,61203,0,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lansing City of",10704,1999,"Eckert","Steam","01/01/00","01/01/00",375000,313553,8760,81,1359307426,17065,20619486,113409313,134045864,357,7390092,1095136,26848959,0,3418600,303612,0,443302,132055,0,712432,787553,4216929,2271054,978202,40742496,30,"tons",809048,10575,30.23,30.51,1.51,0.02,12067,0,0,0,0,0,0,0,0,"BBL",12900,138067,18.25,18.61,3.21,0.03,9035 "Lincoln Electric System",11018,1999,"Laramie River","Steam","01/01/80",,183000,0,0,0,1368728000,948685,27384698,112496736,140830119,770,162367,402737,7659439,0,0,0,0,2448015,0,0,0,0,3077883,0,0,13588074,10,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Lincoln Electric System",11018,1999,"Rokeby 2","Gas Turbine","01/01/97","1/1/1997",95400,85000,472,10,27550000,292531,1645078,27003893,28941502,303,4175680,124454,675616,0,0,0,0,179579,0,0,6681,10203,0,200778,21818,1219129,44,"N/A",0,0,0,0,0,0,0,"MCF",338164,996,2.05,2.05,2.05,0.03,12591,"BBLS",1980,137799,0,22.26,3.78,0.06,14724 "Lincoln Electric System",11018,1999,"8th & J","Gas Turbine","01/01/72","1/1/1972",27000,31000,81,10,1838000,77662,98128,4865007,5040797,187,164554,41168,79431,0,0,0,0,43462,0,0,1750,5169,0,55828,0,226808,123,"N/A",0,0,0,0,0,0,0,"MCF",29571,989,2.75,2.75,2.79,0.04,16104,"BBLS",67,128691,0,22.26,3.78,0.07,17830 "Lincoln Electric System",11018,1999,"Rokeby #1","Gas Turbine","01/01/75","1/1/1975",72400,71000,64,10,2311000,95118,1918857,8492052,10506027,145,175405,74672,114678,0,0,0,0,94085,0,0,40687,67514,0,1328510,21818,1741964,754,"N/A",0,0,0,0,0,0,0,"MCF",32475,994,2.33,2.33,2.34,0.03,14499,"BBLS",293,137799,19.45,22.23,3.77,0.08,20315 "Littleton Town of",11085,1999,"NEW HAVEN HARBOR",".225% JOINT",,,0,0,0,0,1732502,0,0,0,0,0,0,90,51512,0,948,0,0,0,0,0,2392,0,0,0,0,54942,32,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Logansport City of",11142,1999,"Logansport","Steam","01/01/58","01/01/64",38500,0,8760,22,162228320,109642,1405355,19237386,20752383,539,0,190031,3821848,0,128670,0,0,36753,919428,0,140403,20089,563819,408835,480785,6710661,41,90397,92870,11500,41.15,41.15,2.13,0.02,13.17,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Logansport City of",11142,1999,"Logansport","Oil/Gas","01/01/69","01/01/69",17500,0,0,0,577170,0,1025207,0,1025207,59,0,0,42618,0,0,0,0,0,0,0,0,0,0,0,0,42618,74,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"VALLEY","STEAM","01/01/54","01/01/56",545600,337000,0,7,27314000,926527,25439704,84246953,110613184,203,3500000,60235,13221495,0,55929,0,0,0,442925,0,11284,70392,77493,61823,114689,14116265,517,,0,0,0,0,0,0,0,"mcf",404724,1,3,3,2.96,37.96,12816,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"HARBOR","CONBINED ST","01/01/94","01/01/94",229000,558000,2259,41,524137000,1740059,87786094,289957234,379483387,1657,8879733,276214,3330349,0,62330,0,0,0,1084424,0,580563,202658,212797,374547,185390,6309272,12,,0,0,0,0,0,0,0,"mcf",4522291,1,3,3,2.96,25.77,8701,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"HARBOR","GAS TURBINE","01/01/72","01/01/72",38000,36000,48,0,850000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"HAYNES","STEAM","01/01/62","01/01/67",1608000,1489000,8015,123,2113574000,933038,37791521,306054386,344778945,214,1741576,1052843,50891914,0,3057224,0,0,1792056,5017847,0,939570,1424717,3202792,2787404,1583937,71750304,34,,0,0,0,0,0,0,0,"mcf",22709425,1,3,3,2.96,32.1,10839,,0,0,0,0,0,0,0 "Los Angeles City of",11208,1999,"SCATTERGOOD","STEAM","01/01/58","01/01/74",823200,835000,8758,91,1679449000,515557,47288037,164431480,212235074,258,46903,1404338,66439099,0,1408691,0,0,0,3756004,0,214277,727252,3701955,1608703,1273919,80534238,48,,0,0,0,0,0,0,0,"mcf",15638964,1,3,3,2.96,28.3,9556,,0,0,0,0,0,0,0 "Lower Colorado River Authority",11269,1999,"Ferguson",,"01/01/74","01/01/74",446000000,0,0,0,1378410000,931823,26158508,42319502,69409833,0,0,347319,29342167,0,137242,0,0,734629,899018,0,332791,702887,413738,469747,33658,33413196,24,"TONS",0,0,0,0,0,0,0,"MCF",14169320,1013,2.06,2.06,2.03,0.02,10552,"BBL",0,0,0,0,0,0,0 "Lower Colorado River Authority",11269,1999,"Fayette","Steam","01/01/79","01/01/88",1690000000,0,0,0,1.1015857e+10,13591047,103023934,837863878,954478859,1,0,2157811,109413990,0,3840257,0,0,2391848,4494846,0,2014006,1954362,4931568,1961033,403807,133563528,12,"TONS",6553001,8409,16.17,16.17,0.96,0,0,"MCF",0,0,0,0,0,0,0,"BBL",19258,141000,14.25,14.25,2.4,0,0 "Lower Colorado River Authority",11269,1999,"Sim Gideon","Steam","01/01/65","01/01/69",623000000,0,0,0,2101292000,458719,20455136,65676320,86590175,0,0,482445,43723684,0,794924,0,0,891660,1130940,0,200902,1092136,961820,567117,75540,49921168,24,"TONS",0,0,0,0,0,0,0,"MCF",20136681,1095,2.1,2.1,1.91,0.02,10495,"BBL",0,0,0,0,0,0,0 "Lubbock City of",11292,1999,,"STEAM","01/01/49","01/01/58",72000,51000,5256,6,20565500,6000,300000,13000000,13306000,185,0,105299,1101550,0,0,0,0,0,0,0,26625,6656,0,33282,0,1273412,62,,0,0,0,0,0,0,0,"MCF",382836,1025,2.88,2.88,2.81,0.05,19081,,0,0,0,0,0,0,0 "Lubbock City of",11292,1999,"BRANDON","GAS TURBINE","01/01/90","01/01/90",20000,21000,8760,8,139296480,0,1000000,15500000,16500000,825,0,233999,3337924,0,0,0,0,0,0,0,59168,14792,0,73959,0,3719842,27,,0,0,0,0,0,0,0,"MCF",1543387,1018,2.16,2.16,2.12,0.02,11279,,0,0,0,0,0,0,0 "Lubbock City of",11292,1999,"HOLLY","GAS TURBINE","01/01/64","01/01/74",52500,45000,4818,3,21967922,10000,300000,5300000,5610000,107,0,11700,962730,0,0,0,0,0,0,0,2958,740,0,3698,0,981826,45,,0,0,0,0,0,0,0,"MCF",384439,1040,2.5,2.5,2.41,0.04,18200,,0,0,0,0,0,0,0 "Lubbock City of",11292,1999,"HOLLY","STEAM","01/01/65","01/01/78",98000,102000,8760,32,323909370,62000,1000000,21000000,22062000,225,0,818996,9820907,0,0,0,0,0,0,0,207086,51772,0,258858,0,11157619,34,,0,0,0,0,0,0,0,"MCF",3921699,1040,2.5,2.5,2.41,0.03,12592,,0,0,0,0,0,0,0 "Manitowoc Public Utilities",11571,1999,"MPU","Gas-Turbine","01/01/99","01/01/99",25000,0,214,0,3613,290255,201403,6104428,6596086,264,0,0,264472,0,0,0,0,30590,0,0,0,0,0,41325,0,336387,93105,,0,0,0,0,0,0,0,"MCF",51,1000,0.41,0.41,4.17,0.07,0,"Barrels",2438,141200,20.88,20.88,3.52,0.07,0 "Manitowoc Public Utilities",11571,1999,"MPU","Steam","01/01/00","01/01/91",79000,107500,8760,39,249415,211671,5013787,36586533,41811991,529,0,138503,5701868,0,541602,0,0,470467,759564,704,62857,42576,1443126,445568,10944,9617779,38561,"Tons",163852,11080,40.02,40.02,1.81,0.02,0,"MCF",2,1000,0.71,0.71,7.13,0.02,0,,0,0,0,0,0,0,0 "Manitowoc Public Utilities",11571,1999,"MPU","Internal Co","01/01/85","01/01/85",10500,0,207,0,2140,0,352901,5986839,6339740,604,0,6091,84690,0,0,0,0,49736,0,0,0,0,0,58906,0,199423,93188,,0,0,0,0,0,0,0,"MCF",8,1000,0.62,0.62,0.62,0.03,0,"Barrels",1570,141200,22.77,22.77,3.84,0.03,0 "Marquette City of",11701,1999,"Shiras Steam Plant","Steam","01/01/64","01/01/83",77358,52900,24,40,263218000,951797,8431629,56045965,65429391,846,41203,67627,4986648,0,777004,0,0,293702,159196,0,54712,51526,724902,292519,10515,7418351,28,"Tons",181283,9554,21.46,22.7,1.19,0.02,13173,,0,0,0,0,0,0,0,"Barrels",582,138200,20.58,26.46,4.56,0.02,13173 "Marquette City of",11701,1999,"#4 Plant","Gas-Turbine","01/01/79","01/01/79",23000,24700,1,0,5060000,0,300285,4190798,4491083,195,0,4733,283345,0,0,0,0,17195,3952,0,4867,6844,0,27249,40,348225,69,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",13164,138200,21.37,23.67,3.68,0.06,15100 "Marshall City of",11732,1999,"Mrshll","Stem/Intern","01/01/36","01/01/94",57000,43,24,56,48751000,313299,4219564,22221117,26753980,469,395259,452378,1560029,0,0,0,0,0,349846,0,37339,40097,532898,65835,0,3038422,62,26848,11000,32,0,0,0,0,0,190844,140000,2,0,0,0,0,0,755,10000,24.17,0,0,0,0,0 "Massachusetts Mun Whls Elec Co",11806,1999,"Stonybrook Intermedil","Combined Cy","01/01/81","01/01/81",360000,352000,12276,33,780857100,1222270,29736068,116789790,147748128,410,161005,341244,19982046,0,0,0,0,1295017,0,0,217695,109254,0,4801314,0,26746570,34,,0,0,0,0,0,0,0,"mcf",5422522,1025,2.75,2.75,2.68,0,0,"barrel",265482,138500,21.33,19.11,3.28,0.01,9096 "Massachusetts Mun Whls Elec Co",11806,1999,"Stonybrook Peaking","Gas Turbine","/ /","/ /",170000,170000,620,33,40304600,457327,10488903,45433687,56379917,332,41438,85682,1683238,0,0,0,0,251375,0,0,16235,17343,0,119640,0,2173513,54,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",86543,138500,21.33,19.45,3.34,0.04,12490 "McPherson City of",12208,1999,"Power Plant 3","Gas Turbine","01/01/98","01/01/98",115600,92000,851,5,32881000,95000,0,25388890,25483890,220,483472,16336,1488284,0,0,0,0,2781,65038,0,8158,7240,0,77867,59525,1725229,52,,0,0,0,0,0,0,0,"mcf",454570,1012,3.19,3.19,3.16,4.5,14233,"bbl",1154,129200,0.39,0.39,3.06,3.42,11185 "McPherson City of",12208,1999,"Gas Turbine 2","Gas Turbine","01/01/76","01/01/76",56,51000,90,5,2234000,0,0,5867669,5867669,104780,0,16153,125470,0,0,0,0,120168,30978,0,8157,0,0,109601,61288,471815,211,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"bbl",5874,129200,0.51,0.51,3.95,5.64,14268 "McPherson City of",12208,1999,"Gas Turbine 3","Gas Turbine","01/01/79","01/01/79",57,50000,416,5,11756000,0,0,8189960,8189960,143684,0,16153,502404,0,0,0,0,120168,30977,0,8158,0,0,125268,61288,864416,74,,0,0,0,0,0,0,0,"mcf",167915,1012,3.33,3.33,3.3,4.78,14473,"bbl",63,129200,0.51,0.51,3.95,9,22782 "McPherson City of",12208,1999,"Plant 2","Steam","01/01/63","01/01/63",27200,25000,1054,5,13725000,103203,908048,4415135,5426386,199,42,16153,666001,0,3889,0,0,120168,30978,0,8158,22083,74263,39108,61287,1042088,76,,0,0,0,0,0,0,0,"mcf",173245,1012,3.33,3.33,3.3,4.21,12774,"bbl",0,0,0,0,0,0,0 "McPherson City of",12208,1999,"Gas Turbine 1","Gas Turbine","01/01/73","01/01/73",56400,52000,289,5,10349000,0,0,5796442,5796442,103,0,16153,444620,0,0,0,0,120169,30977,0,8158,0,0,41682,61288,723047,70,,0,0,0,0,0,0,0,"mcf",142295,1012,3.33,3.33,3.3,4.6,13948,"bbl",74,129200,0.51,0.51,3.95,6.37,16124 "Modesto Irrigation District",12745,1999,"Mc Clure","Gas Turbine","01/01/80","01/01/81",142400,114000,458,3,17013650,41196,671200,22702649,23415045,164,0,39428,921989,0,0,0,0,64862,0,0,93204,0,0,143571,0,1263054,74,,0,0,0,0,0,0,0,"MCF",184791,1,2.85,2.85,2.79,0.04,14761.28,"BBl",9827,139269,36.12,36.12,0,0.09,15255.06 "Modesto Irrigation District",12745,1999,"Woodland","Gas Turbine","01/01/93","01/01/93",56000,50400,3047,11,112459100,734117,28375,53064895,53827387,961,0,276493,3266313,0,0,0,0,513943,0,0,1528,0,0,410220,0,4468497,40,,0,0,0,0,0,0,0,"MCF",1012876,1,3.02,3.02,2.96,0.03,9186.75,,0,0,0,0,0,0,0 "Menasha City of",12298,1999,"Menasha","Steam","01/01/49","01/01/64",23400,19595,2037,14,13992,6795,1217617,5289233,6513645,278,20649,40246,27120,0,79885,0,0,60710,95780,0,0,31581,159677,52699,457,548155,39176,"TONS",6898,13928,56.5,56.5,2.02,0.03,15599,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Michigan South Central Pwr Agy",12807,1999,"ENDICOTT","STEAM",,,60000,60000,7000,52,254166000,1446080,18162501,58822650,78431231,1307,914746,337766,5265494,0,924558,0,35080,360832,450758,0,195457,66358,661707,192331,74782,8565123,34,"TONS",137701,12027,37.16,36.29,1.51,0.01,12748,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Moorhead City of",12894,1999,"Mhd Power Plant","gas turbine","01/01/61","01/01/61",10000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Morgan City City of",12927,1999,"Joe Cefalu Plant","Steam","01/01/62","01/01/73",70000,40000,0,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Muscatine City of",13143,1999,"MUSCATINE","STEAM","01/01/58","01/01/83",275500,149900,16238,134,1301983501,784560,72060043,213242536,286087139,1038,28455966,817203,14751640,0,1679994,0,0,663199,1356159,0,672523,554305,2370831,1148168,1101042,25115064,19,"TONS",877820,8297,12.88,13.05,0.79,0.01,11188,"MCF",283208,10200,3.26,3.26,3.18,0,0,"BARRELS",610,138500,30.04,21.9,3.77,0,0 "Nebraska Public Power District",13337,1999,"Hallam Peaking Unit","Gas Turbine","01/01/73","01/01/73",56700,60000,258,0,10894000,0,229583,4830489,5060072,89,0,0,440985,0,0,0,0,60635,0,0,0,89639,0,94772,13125,699156,64,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Canaday","Steam","01/01/58","01/01/58",108800,121200,2001,14,85089000,0,9403261,329722,9732983,89,328840,152096,2125397,0,407076,0,0,27245,201168,0,32073,131835,231925,109745,195984,3614544,42,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Gerald Gentleman Sta(","Steam","01/01/78","/ /",1362600,1254000,8657,192,8027362000,3015802,318185462,344602325,665803589,489,19495116,1045932,44726329,0,1955325,0,0,1668527,2934342,193314,448908,877355,10569506,3498868,1294889,69213295,9,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"McCook Peaking Unit","Gas Turbine","01/01/73","01/01/73",56700,56000,60,0,211000,0,194256,4595530,4789786,84,0,0,81476,0,0,0,0,25734,0,0,0,2300,0,73703,18199,201412,955,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Hebron Peaking Unit","Gas Turbine","01/01/73","01/01/73",56700,57000,75,0,854000,0,301381,5462494,5763875,102,0,0,181334,0,0,0,0,26759,0,0,0,1630,0,58749,11328,279800,328,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Cooper Nuclear Stat.(","Nuclear","01/01/74","01/01/74",835550,783000,8563,726,6510414600,1028504,187460511,519340650,707829665,847,2508133,8619618,38176410,69343,4859991,0,0,93589,58078357,0,1807073,518308,3317219,1964536,2016373,119520817,18,,20216418,0,0,5.67,53.53,0,10598,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Nebraska Public Power District",13337,1999,"Sheldon Station","Steam","01/01/61","01/01/65",228650,220000,8701,78,1347971000,1843119,10754821,79036432,91634372,401,5634223,590917,10462420,0,930249,0,0,633786,1478748,0,168336,7310,2160302,1295964,920587,18648619,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "New Ulm Public Utilities Comm",13488,1999,"No 3 & 4 & 6","Steam Gener","01/01/02","01/01/64",27000,44000,24,21,16916000,0,3055780,9310761,12366541,458,473090,425178,467864,0,0,0,0,0,0,0,0,31350,152102,138437,0,1214931,72,"tons",0,0,0,0,0,0,0,"mcf",16576,1000,2.82,2.82,2.82,0.03,10,,0,0,0,0,0,0,0 "New Ulm Public Utilities Comm",13488,1999,"No 5","Gas Turbine","01/01/75","01/01/75",24000,24000,24,21,2041000,0,0,2465211,2465211,103,0,22377,91296,0,0,0,0,0,0,0,0,1650,0,14351,0,129674,64,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"barrel",4657,140000,26.02,19.6,3.36,0.05,13500 "North Attleborough Town of",13679,1999,,,,,0,0,0,0,0,0,0,0,0,326,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,32,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "North Attleborough Town of",13679,1999,,,,,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "North Carolina Eastern M P A",13687,1999,"Roxboro 4","Steam","01/01/66","01/01/80",96000,0,8175,0,520837921,1000,1011000,44494000,45506000,474,72000,48000,9137000,0,80000,0,0,22000,837000,0,67000,17000,475000,136000,53000,10872000,21,"Tons",211870,12369,42.51,42.95,1.74,0.02,10083,,0,0,0,0,0,0,0,"Barrels",1763,140091,22.71,21.55,3.66,0,0 "North Carolina Eastern M P A",13687,1999,"Mayo 1","Steam","01/01/83","01/01/83",119000,761,7807,69,651982032,3301000,16199000,82569000,102069000,858,26000,92000,11843000,0,79000,0,0,54000,1174000,0,76000,30000,808000,111000,73000,14340000,22,"Tons",265246,12531,44.52,44.47,1.77,0.02,10243,,0,0,0,0,0,0,0,"Barrels",5203,140620,21.57,9.23,1.56,0,0 "North Carolina Eastern M P A",13687,1999,"Roxboro 4","Steam","01/01/66","01/01/80",96000,0,8175,0,520837921,1000,1011000,44494000,45506000,474,72000,48000,9137000,0,80000,0,0,22000,874000,0,67000,17000,475000,136000,53000,10909000,21,"Tons",211870,12369,42.51,42.95,1.74,0.02,10083,,0,0,0,0,0,0,0,"Barrels",1763,140091,22.7,21.55,3.66,0,0 "North Carolina Eastern M P A",13687,1999,"Mayo 1","Steam","01/01/00","01/01/00",119000,761,7807,69,651982032,3301000,16199000,82569000,102069000,858,26000,92000,11843000,0,79000,0,0,54000,1221000,0,76000,30000,808000,111000,73000,14387000,22,"Tons",265246,12531,44.52,44.47,1.77,0.02,10243,,0,0,0,0,0,0,0,"Barrels",5203,140620,21.57,9.23,1.56,0,0 "North Carolina Eastern M P A",13687,1999,"Brunswick","Nuclear","01/01/75","01/01/77",318000,1696,8584,784,2400008776,617000,94117000,339616000,434350000,1366,297000,666000,11776000,401000,2353000,0,0,533000,9457000,0,1849000,3278000,1064000,298000,1353000,33028000,14,"MW Days",308602,3413000,0,38.16,0.47,0,10533,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "North Carolina Eastern M P A",13687,1999,"Harris","Nuclear","01/01/87","01/01/87",154000,905,8485,491,1171376626,10260000,369018000,452494000,831772000,5401,118000,675000,5246000,252000,1018000,0,0,337000,4827000,0,1102000,634000,445000,182000,302000,15020000,13,"MW Days",156551,3413000,0,33.51,0.41,0,10947,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Oklahoma Municipal Power Auth",14077,1999,"PCRP","Combined cy","01/01/95","01/01/95",60000,60000,0,0,138484081,0,11344757,29655189,40999946,683,0,598783,2955212,0,0,0,0,253386,0,0,44427,0,0,105374,0,3957182,29,,0,0,0,0,0,0,0,"MCF",1392824,1040,2.17,0,2.14,0.02,10460,,0,0,0,0,0,0,0 "Omaha Public Power District",14127,1999,"FORT CALHOUN","NUCLEAR","01/01/73","01/01/73",502000,492000,7785,634,3580681000,1072930277,146516232,296914274,442618959,882,0,4971003,23034948,164893,24110476,0,0,-21786,44474249,3358,250883,11195901,6710538,736065,-37917,115592611,32,,0,0,0,0,0,0,0,"GRAMS",315984,120828860,0,72.9,60.33,6.42,10650.7,,0,0,0,0,0,0,0 "Omaha Public Power District",14127,1999,"SARPY COUNTY","GAS TURBINE","01/01/72","01/01/96",216405,248000,8271,0,55696000,23490,2151281,52951321,55126092,255,0,54073,2103596,0,0,0,0,0,404211,0,3965,2988,0,310603,72329,2951765,53,,0,0,0,0,0,0,0,"MCF",707344,823,2.46,2.46,2.49,0.04,12745,"BARRELS",3829,138176,17.91,17.91,1.41,0.01,8647 "Omaha Public Power District",14127,1999,"JONES STREET","GAS TURBINE","01/01/73","01/01/74",116000,129400,8332,0,4369000,0,240081,9753334,9993415,86,0,6331,293819,0,0,0,0,0,47413,0,6227,3925,0,20535,134815,513065,117,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BARRELS",13267,138176,13.48,13.48,2.32,0.04,9604 "Omaha Public Power District",14127,1999,"NEBRASKA CITY","STEAM","01/01/79","01/01/79",565000,631500,7500,0,4036035000,-2006108,95061544,382545074,475600510,842,0,779178,25569961,0,1719974,0,0,633248,6781672,0,412434,994984,3789696,1154076,1789468,43624691,11,"TONS",2500212,8357,9.58,9.58,0.57,0,9500,,0,0,0,0,0,0,0,"BARRELS",9924,138281,20.11,20.11,3.46,0,9493 "Omaha Public Power District",14127,1999,"NORTH OMAHA","STEAM","01/01/54","01/01/68",644700,664700,7628,0,3047689000,903939,34352799,194479388,229736126,356,0,473699,25644165,0,1556034,0,0,1205626,5794175,56855,619731,1383677,5536481,4204373,2068776,48543592,16,"TONS",1996018,8393,11.99,11.99,0.71,0,11245,"MCF",706934,988,3.06,3.06,5.95,0,11266,,0,0,0,0,0,0,0 "Orrville City of",14194,1999,,"Steam","01/01/16","01/01/71",84,57,8760,65,330508,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"ton",195800,11500,0,0,0,0,0,"mcf",6100,1000,0,0,0,0,0,,0,0,0,0,0,0,0 "Owatonna City of",14246,1999,,"Steam","01/01/24","01/01/69",26000,0,0,0,0,139199,957861,5646398,6743458,259,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Owatonna City of",14246,1999,,"Gas Turbine","/ /","/ /",19000,0,0,0,0,0,0,1935528,1935528,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Owensboro City of",14268,1999,"Plant 1","Steam","01/01/39","01/01/50",52500,0,0,0,0,0,2061142,4570567,6631709,126,0,0,0,0,0,0,0,0,0,9106,0,0,0,0,760,9866,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Owensboro City of",14268,1999,"Elmer Smith","Steam","01/01/64","01/01/74",415000,183200,8569,99,2600771,835345,8832392,209611123,219278860,528,801542,250280,29285825,0,1422865,0,0,496091,498805,0,465966,39935,4297784,658819,98181,37514551,14424,"Tons",1247843,10825,20.49,20.56,0.95,0.01,10197,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Painesville City of",14381,1999,"ELECTRIC PLANT","STEAM",,"01/01/88",53500,46000,8760,66,154647000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"TONS",92400,12517,0,33.22,1.33,0,0,"MCF",21300,1000,0,4.41,4.41,0,0,"BARRELS",47,138000,0,14.36,2.48,0,0 "Paragould Light & Water Comm",14446,1999,"Jones Road","Gas turbine","01/01/90",,16,14,415,1,400000,0,8093740,0,8093740,505859,0,0,166593,0,0,0,0,0,0,0,0,0,0,45047,0,211640,529,"mmbtu",91074,0,0,1.83,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Pasadena City of",14534,1999,"Broadway Steam Plantф",,"01/01/54","01/01/65",183000,183000,0,25,179950000,489703,3194316,50159075,53843094,294,0,387760,8839709,0,555006,0,0,988783,11216,228337,138986,37842,440585,136394,7625,11772243,65,,0,0,0,0,0,0,0,"MCF",2295070,1019,3.43,3.43,3.36,0.04,13290,,0,0,0,0,0,0,0 "Pasadena City of",14534,1999,"Glenarm Gas Turbine","Included in","01/01/06","01/01/76",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"MCF",59150,1,3.43,3.43,3.36,0.04,16342,,0,0,0,0,0,0,0 "Peabody City of",14605,1999,,"Gas Turbine","01/01/71","01/01/91",65900,65900,8760,5,11639468,177260,0,22101467,22278727,338,0,22746,409579,0,0,0,0,0,0,0,0,0,0,176643,0,608968,52,,0,0,0,0,0,0,0,"MCF",143226,1,3.05,2.96,2.89,0.03,13227,"BBLS",1239,134127,22.14,22.89,4.06,0.05,12185 "Peru City of",14839,1999,"Peru","Steam","01/01/03","01/01/59",34500,35563,1585,13,12600568,5739,1706469,9574492,11286700,327,325600,0,442012,0,172164,0,0,119874,37861,0,0,14278,126165,22675,0,935029,74,"Tons",7915,12797,47.4,47.33,1.85,0.03,16076,,0,0,0,0,0,0,0,"Barrels",221,140000,26.47,24.56,4.18,0,103.08 "Piqua City of",15095,1999,"City of Piqua","Steam & Gas","01/01/32","01/01/89",81113,0,159,39,2138000,21863555,0,0,21863555,270,4196219,76685,242280,0,19742,0,0,231157,56432,0,61697,67457,9593,91301,0,856344,401,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",10878,144000,25.3,25.3,4.3,0.09,23092 "Platte River Power Authority",15143,1999,"Craig Station","Steam","01/01/79","01/01/80",154000,0,0,0,1205402000,60113,33649805,110581113,144291031,937,947978,194976,12128811,0,1172233,0,0,260695,1245083,7283,237766,121071,814536,181154,912508,17276116,14,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Platte River Power Authority",15143,1999,"Rawhide","Steam","01/01/84","01/01/84",270000,270000,8668,86,2119444000,1977213,176729012,277169671,455875896,1688,1471951,1258343,14119301,0,2361900,0,0,4034357,686346,1872,639188,491650,2599323,371255,1094312,27657847,13,"Ton",1294255,8825,10.4,10.4,0.6,0.01,10.78,,0,0,0,0,0,0,0,"Gallons",54089,138,0.78,0.78,5.63,0,3.5 "Power Authority of State of NY",15296,1999,"C.M. POLETTI","Steam","01/01/77","01/01/77",883000000,831000000,6386000,122000,1826391000,730000,72140000,359400000,432270000,0,10329000,561000,60034000,0,0,0,0,668000,7300000,0,826000,377000,2299000,2700000,411000,75176000,41,,0,0,0,0,0,0,0,"MCFS",10932333,1031,2.95,3.39,3.29,31.61,10284,"BBLS",1348181,148399,15.78,17.33,2.78,0,0 "Power Authority of State of NY",15296,1999,"R.M. FLYNN","GT/Steam-Co","01/01/94","01/01/94",164000000,159000000,7280000,27000,9.96144e+11,0,7238000,129266000,136504000,1,1136000,88000,43602000,0,0,0,0,93000,1585000,0,0,137000,469000,3225000,39000,49238000,0,,0,0,0,0,0,0,0,"MCFS",7095707,1012,4.39,5.62,5.55,42.59,7774,"BBLS",120516,141470,19.98,32.3,4.68,0,0 "Power Authority of State of NY",15296,1999,,,"/ /","/ /",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Power Authority of State of NY",15296,1999,"JAF","Nuclear","01/01/75","01/01/75",883000000,848000000,8204000,757000,6.567395e+12,805000,166067000,568085000,734957000,1,13913000,23876000,38317000,0,487000,0,0,54000,32618000,0,5766000,184000,4261000,5843000,3143000,114549000,0,"GMU 235",0,82,0,0,0,5.17,0,"Equivalent",842735,0,0,40.32,0.49,0,10508,,0,235,0,0,0,0,0 "Power Authority of State of NY",15296,1999,"IP3","Nuclear","01/01/76","01/01/76",1013000000,1031000000,7662000,828000,7.26917e+12,747000,206897000,755257000,962901000,1,17924000,29680000,39545000,0,11264000,0,0,0,36622000,0,1577000,2648000,15765000,11868000,29759000,178728000,0,"GMU235",0,82,0,0,0,4.76,0,"Equivalent",937453,0,0,36.9,0.45,0,10560,,0,235,0,0,0,0,0 "Rantoul Village of",15686,1999,"Rantoul Light & Powep ","Internal Co","01/01/00","01/01/67",18132,38,100,3,16000,0,0,0,0,0,0,0,11984,0,0,0,0,211546,0,0,0,0,0,0,0,223530,13971,,0,0,0,0,0,0,0,"Gallons",19070,10500,0.62,0.62,0,0,0,,0,0,0,0,0,0,0 "Reedy Creek Improvement Dist",15776,1999,"CEP TURBINE","GAS TURBINE","01/01/88","01/01/88",35000,28000,6321,12,173569000,0,1455178,24161379,25616557,732,0,640027,4274368,0,0,0,0,392603,0,0,0,341,0,1449579,0,6756918,39,,0,0,0,0,0,0,0,"MCP",1545973,1040,2.76,2.76,2.76,0.02,8007,,0,0,0,0,0,0,0 "Reedy Creek Improvement Dist",15776,1999,"CEP HRSG","HRSG","01/01/88","01/01/88",8500,7000,2327,2,30042000,0,0,2731920,2731920,321,0,93944,742496,0,115993,0,0,17882,0,0,0,59,0,247253,0,1217627,41,,0,0,0,0,0,0,0,"MCF",268549,1049,2.76,2.76,2.76,0.02,8939,,0,0,0,0,0,0,0 "Redding City of",15783,1999,"Redding Power Plant","Steam","01/01/89","01/01/94",28000,28900,1977,16,18060300,602377,15385522,117247,16105146,575,0,1320,443065,0,117993,0,0,77221,568426,0,70690,2368,53194,57222,0,1391499,77,,0,0,0,0,0,0,0,"mcf",287348,1027,1.54,1.54,1.45,0.03,16610,,0,0,0,0,0,0,0 "Redding City of",15783,1999,"Redding Power Plant","Combustion","01/01/96","01/01/96",65680,27400,854,16,18037300,1807131,0,59683477,61490608,936,0,97874,621818,0,0,0,0,25071,0,0,24410,0,0,321071,0,1090244,60,,0,0,0,0,0,0,0,"mcf",216279,1027,2.53,2.53,2.18,0.02,15570,,0,0,0,0,0,0,0 "Richmond City of",15989,1999,"WWVS","Steam","01/01/55","01/01/72",97700,173080,0,40,627786010,80644,2830371,31698586,34609601,354,0,465409,11078167,0,452274,0,0,404016,348230,0,104865,43599,701670,259774,21756,13879760,22,"Tons",308831,11699,29.73,30.79,1.45,0.01,11517,,0,0,0,0,0,0,0,"Barrels",708,138000,0.46,0.46,0,0,0 "Rochelle Municipal Utilities",16179,1999,"Caron Rd Steam Plant(","Steam","01/01/63","01/01/63",11000,0,13,0,62,0,0,11112324,11112324,1010,0,0,15556,0,134143,0,0,0,0,0,0,0,0,193715,0,343414,5538935,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Rochelle Municipal Utilities",16179,1999,"2nd Ave Diesel Plant(","Internal Co","01/01/00","01/01/89",24000,7500,900,8,990,0,0,6076110,6076110,253,0,0,130511,0,520866,0,0,0,0,0,0,0,0,301469,0,952846,962471,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Rochester Public Utilities",16181,1999,"SILVER LAKE","STEAM","01/01/49","01/01/69",98400,99962,6002,48,206169300,467713,5967620,20459364,26894697,273,0,105471,4663327,0,733957,0,0,427195,653639,0,121158,91168,610473,166756,202286,7775430,38,"Tons",105624,11800,35.06,34.95,1.48,0,0,"Mcf",116790,1022,2.87,2.87,2.81,0.02,12548,,0,0,0,0,0,0,0 "Rochester Public Utilities",16181,1999,"CASCADE CREEK","GAS TURBINE","01/01/75","01/01/75",35000,31412,214,0,975100,0,0,2553775,2553775,73,0,5098,155418,0,0,0,0,0,2538,0,712,425,0,13749,25610,203550,209,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Bbl",6593,140546,25.25,22.87,3.87,0.16,31067 "Ruston City of",16463,1999,,,,,0,0,0,0,158085,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,1024,2014,0,0,0,12204,,0,0,0,0,0,0,0 "Sacramento Municipal Util Dist",16534,1999,"McClellanј","Ga","01/01/86","01/01/86",49999,0,0,3,7166000,0,2636791,21642932,24279723,486,280011,128813,308700,0,0,0,0,93215,0,0,46694,4591,0,454373,0,1036386,145,,0,0,0,0,0,0,0,"MC",90473,0,3.39,3.39,3.28,0.04,0,"Diesel/gal",1254,0,1.43,1.43,0,0,0 "San Antonio Public Service Bd",16604,1999,"Total All Plants",,,,4515000,0,0,345,1.74570025e+10,12977200,1115386160,2245397416,3373760776,747,46882000,12160268,206856386,1142440,9404554,374590,0,6237186,12301280,6685,9401271,2767009,20299658,10510426,3154574,294616327,17,"Tons",5220135,8563,16.23,16.23,0.95,9.82,10370,"MCF",37334239,1010,2.64,2.64,2.62,28.78,10988,"Barrels",12309,139887,18.78,18.78,3.2,32.97,10315 "San Antonio Public Service Bd",16604,1999,"J K Spruce","Steam","1/1/1992","1/1/1992",555000,546000,6546,82,3480720800,0,65252301,515684631,580936932,1047,23719,571470,31109011,0,1807766,51663,0,193515,960889,0,759790,205041,2649188,748621,211926,39268880,11,"Tons",1949398,8860,15.91,15.91,1.01,8.91,9857,"MCF",38851,1008,2.27,2.27,2.25,0,0,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"Mission Road","Steam","1/1/1909","1/1/1958",100000,96000,436,4,5787800,24329,2488463,10241714,12754506,128,128349,114144,487728,0,158813,0,0,102150,168983,0,21233,17234,339856,83899,40097,1534137,265,,0,0,0,0,0,0,0,"MCF",134106,1013,3.64,3.64,3.59,84.27,14024,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"Leon Creek","Steam","1/1/1949","1/1/1959",160000,171000,676,4,16974100,44831,2782361,17503846,20331038,127,157506,125267,942872,0,184569,0,0,128819,161398,0,28472,58566,543819,190400,43539,2407721,142,,0,0,0,0,0,0,0,"MCF",258204,1002,3.65,3.65,3.64,55.55,12533,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"O W Sommers","Steam","1/1/1972","1/1/1974",880000,846000,7232,55,2199508300,5854171,33295035,79674715,118823921,135,395537,545083,59562142,0,1025490,87705,0,302727,706288,0,702876,370388,615434,259192,190180,64367505,29,,0,0,0,0,0,0,0,"MCF",23626870,1009,2.54,2.54,2.51,27.24,10444,"Barrels",5652,140932,19.35,19.35,3.27,0,0 "San Antonio Public Service Bd",16604,1999,"J T Deely","Steam","1/1/1977","1/1/1978",830000,854000,8760,90,5149460300,0,30290474,285476722,315767196,380,12595000,638478,53085711,0,1562761,85357,0,320680,966629,0,838807,331106,3399637,799226,238550,62266942,12,"Tons",3270737,8389,16.42,16.42,0.98,10.43,10513,,0,0,0,0,0,0,0,"Barrels",5811,141351,18.29,18.29,3.08,0,0 "San Antonio Public Service Bd",16604,1999,"South Texas Project","Nuclear","1/1/1988","1/1/1989",700000,708000,0,0,5399983000,5170385,957819101,1216165845,2179155331,3113,29619638,9121123,23744212,1142440,2798248,0,0,4436896,8134977,6685,6295439,1408553,10346770,6695513,2005195,76136051,14,,0,0,0,0,0,0,0,"MMBTU",56623147,0,0.42,0.42,0.42,4.4,10485,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"W B Tuttle","Steam","1/1/1954","1/1/1963",425000,351000,2570,25,83806100,116166,6081714,40803880,47001760,111,3029638,407804,3903164,0,659061,0,0,371008,270977,0,137334,47220,945777,460460,131033,7333838,88,,0,0,0,0,0,0,0,"MCF",1126499,1007,3.47,3.47,3.44,46.57,11568,,0,0,0,0,0,0,0 "San Antonio Public Service Bd",16604,1999,"V H Brauning","Steam","1/1/1966","1/1/1970",865000,0,5631,85,1120762100,1767318,17376711,79846063,98990092,114,932613,636899,33301546,0,1207846,149865,0,381391,931139,0,617320,328901,1459177,1273115,294054,40581253,36,,0,0,0,0,0,0,0,"MCF",12149759,1011,2.74,2.74,2.71,29.7,10522,"Barrels",846,122847,18.29,18.29,3.55,0,0 "Seattle City of",16868,1999,"Centralia (8% share)","Steam","01/01/72","01/01/72",107200,32000,0,1,689802000,167213,4462081,22916331,27545625,257,0,186229,12042641,0,56382,0,0,0,1030435,2329,557,0,306392,38323,72862,13736150,20,"Tons",453199,7850,27.6,26.57,1.76,0.02,10315,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Shrewsbury Town of",17127,1999,"PEAKING","INTERNAL CO","01/01/69","01/01/78",13750,0,78,0,1082000,4737,38713,3032851,3076301,224,0,0,58499,0,0,0,0,45786,0,0,42833,0,0,0,0,147118,136,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"OIL",1983,138000,28.45,27.35,4.71,0.05,10622 "Sikeston City of",17177,1999,"SIKESTON POWER PLANT<","STEAM","01/01/81","01/01/81",235000,233000,8443,100,1773464000,2528654,38360820,167291312,208180786,886,3085679,204618,18720527,0,834479,0,0,232178,1031476,0,212026,97405,1771411,163729,1555715,24823564,14,"TONS",1085410,8260,16.81,16.81,1.02,0.01,10111,,0,0,0,0,0,0,0,"BARRELS",2150,141000,22.77,24.41,4.12,0,16.31 "PUD No 1 of Snohomish County",17470,1999,"Centralia Steam Plt","Steam",,,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "South Carolina Pub Serv Auth",17543,1999,"WINYAH(1-4)","STEAM","01/01/75","01/01/81",1120000,1204000,31151,198,7364804000,2141000,80365000,380646000,463152000,414,12899000,1811000,102679000,0,2905000,0,0,1172000,4230000,0,835000,1709000,6368000,2320000,450000,124479000,17,"Tons",2805462,12906,35.38,36.6,1.42,1.39,9833,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "South Carolina Pub Serv Auth",17543,1999,"CROSS(1-2)","STEAM","01/01/84","01/01/94",1147115,1190000,14859,156,7031840000,149000,105829000,824295000,930273000,811,8568000,612000,95992000,0,3621000,0,0,562000,3226000,0,331000,462000,7502000,2902000,585000,115795000,16,"Tons",2609876,12811,36.41,36.78,1.44,1.37,9510,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Springfield City of",17828,1999,"INTERSTATE","NAT GAS/OIL","01/01/97","01/01/97",118000,114000,864,0,89431266,0,0,11583325,11583325,98,2178709,40002,2621094,0,91,0,0,0,0,0,38739,0,0,77237,0,2777163,31,,0,0,0,0,0,0,0,"DKTHRMS",1205210,100000,2.08,2.08,2.08,28.74,13806,"BARRELS",5093,138000,17.96,22.11,3.81,52.67,13806 "Springfield City of",17828,1999,"FACTORY","OIL TURBINE","01/01/73","01/01/73",23000,17000,155,0,3128000,0,29188,2322399,2351587,102,0,0,166375,0,0,0,0,0,0,0,0,0,0,11905,0,178280,57,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BARRELS",7959,138000,18.43,20.9,3.61,53.19,14747 "Springfield City of",17828,1999,"REYNOLDS","OIL TURBINE","01/01/70","01/01/70",18000,14000,98,0,1502000,0,155353,2975996,3131349,174,0,0,89354,0,539,0,0,0,0,0,0,0,0,13975,0,103868,69,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"BARRELS",4241,138000,19.02,21.07,3.64,59.49,16366 "Springfield City of",17828,1999,"LAKESIDE","STEAM","01/01/60","01/01/64",76000,66000,4842,0,191454930,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,"TONS",119179,10437,24.15,22.89,1.1,13.33,12994,,0,0,0,0,0,0,0,"BARRELS",784,138000,20.26,20.76,3.58,0,0 "Springfield City of",17828,1999,"DALLMAN","STEAM","01/01/68","01/01/78",441000,324000,8756,209,1931782345,2315629,22827681,167456590,192599900,437,2590219,1382828,24106633,0,7228992,0,0,0,0,224260,1367568,1520197,3381012,3887022,2944868,46043380,24,"TONS",947286,10415,24.07,22.37,1.07,11.37,11338,,0,0,0,0,0,0,0,"BARRELS",8185,138000,18.13,20.92,3.61,0,0 "Springfield City of",17833,1999,"James River Gas Turb¬ ","Gas Turbine","01/01/89","01/01/92",150000,162000,1707,2,112871000,0,0,38867000,38867000,259,0,0,3686000,0,0,0,0,0,0,0,0,5000,0,185000,0,3876000,34,,0,0,0,0,0,0,0,"Mcf",1413185,1005,2.58,2.58,2.56,32.66,12708,"Barrels",1933,138200,17.18,20.23,3.49,0,0 "Springfield City of",17833,1999,"Southwest Gas Turbin","Gas Turbine","01/01/83","01/01/83",88000,114000,740,2,33605000,0,77000,13480000,13557000,154,0,0,1234000,0,0,0,0,4000,0,0,0,0,0,160000,0,1398000,42,,0,0,0,0,0,0,0,"Mcf",467515,1005,2.6,2.6,2.59,36.7,14123,"Barrels",814,138200,17.21,19.54,3.37,0,0 "Springfield City of",17833,1999,"Main Avenue","Gas Turbine","01/01/68","01/01/68",12000,13000,55,1,680000,0,0,1538000,1538000,128,0,0,46000,0,0,0,0,0,0,0,0,0,0,4000,0,50000,74,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",1981,138200,24.82,23.44,4.03,68.28,16910 "Springfield City of",17833,1999,"James River","Steam","01/01/57","01/01/70",255000,237000,33862,81,1450754000,1659000,14631000,79255000,95545000,375,2850000,583000,20746000,0,2519000,0,0,408000,262000,0,130000,65000,3963000,646000,610000,29722000,20,"Tons",853266,9210,7.79,21.61,1.17,13.89,11312,"Mcf",689975,1005,2.49,2.49,2.47,0,0,,0,0,0,0,0,0,0 "Springfield City of",17833,1999,"Southwest","Steam","01/01/76","01/01/76",195000,183000,7556,65,1185498000,1856000,15406000,80315000,97577000,500,2690000,558000,14080000,0,1555000,0,0,366000,205000,0,581000,137000,2335000,656000,1027000,21332000,18,"Tons",693360,8794,4.54,18.33,1.08,11.66,10684,"Mcf",467597,1007,2.39,2.39,2.36,0,0,,0,0,0,0,0,0,0 "St George City of",17874,1999,"SUGARLOAF","2-Internal","01/01/86","01/01/86",14000,14000,1,6,626000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "St George City of",17874,1999,"Bloomington","7-Internal","01/01/98","01/01/98",12250,10500,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tacoma City of",18429,1999,"Centralia Steam Plntд","Steam","01/01/72","01/01/72",0,0,0,0,0,166897,4289405,25226129,29682431,0,73131,68311,11716542,0,112000,0,0,80230,140403,0,120346,80230,1008476,240691,26146,13593375,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Tallahassee City of",18445,1999,"SAM O. PURDOM","STEAM","01/01/58","01/01/66",44000,48000,11136,38,209772978,15500,9202970,33194960,42413430,964,0,773581,8940370,0,537020,0,0,279940,1813670,2800,263170,105370,237360,129170,194990,13277441,63,,0,0,0,0,0,0,0,"Mcf",2462334,1148,3.22,3.22,3.07,0.04,13261,"bbl",31211,6300,20.25,20.25,3.21,0.08,20734 "Tallahassee City of",18445,1999,"SAM O. PURDOM","GAS TURBINE","01/01/63","01/01/64",25000,20000,415,0,6838100,0,516700,3207630,3724330,149,0,37110,0,0,0,0,0,0,0,0,27080,0,0,0,0,64190,9,,0,0,0,0,0,0,0,"Mcf",135368,1047,3.22,3.22,3.08,0.06,20734,"bbl",0,0,0,0,0,0,0 "Tallahassee City of",18445,1999,"A.D. HOPKINS","STEAM","01/01/71","01/01/72",334350,314000,8760,54,1431868500,243700,15462840,61918010,77624550,232,0,365600,47652750,0,808720,0,0,334300,1440890,0,286010,23770,76650,588440,570760,52259040,36,,0,0,0,0,0,0,0,"Mcf",14643073,1052,3.16,3.16,3,0.03,10001,"bbl",31324,6300,20.39,20.39,3.24,0.03,10228 "Tallahassee City of",18445,1999,"A.D. HOPKINS","GAS Turbine","01/01/00","01/01/72",43320,36000,870,0,21124800,0,0,4237440,4237440,98,0,109010,0,0,0,0,0,0,0,0,117890,0,0,0,0,226900,11,,0,0,0,0,0,0,0,"Mcf",398330,1148,3.2,3.2,3.06,0.06,19763,"bbl",0,0,0,0,0,0,0 "Taunton City of",18488,1999,"Cleary-Flood","Steam-Gas T","01/01/71","01/01/76",110000,110000,3132,54,156001000,576884,4698715,37144991,42420590,386,791678,791678,5245790,0,1114114,0,0,533566,1685023,0,0,0,0,0,0,9370171,60,,0,0,0,0,0,0,0,"MCF",972473,1018,4.2,4.2,4.12,0.13,30320,"Barrels",75356,117188,16.96,15.46,3.14,0.01,3007 "Taunton City of",18488,1999,"W. Water Street","Steam","01/01/02","01/01/58",13500,0,0,0,0,24173,3733601,5419707,9177481,680,0,0,0,0,0,0,0,0,0,0,1188,0,0,0,0,1188,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Taunton City of",18488,1999,"Cleary-Flood","Steam","01/01/66","01/01/66",28300,25000,354,54,9067000,148310,2028703,7526961,9703974,343,0,249139,355473,0,342596,0,0,168675,368569,0,0,0,0,0,0,1484452,164,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",20281,95484,15,17.52,4.37,0.04,8970 "Texas Municipal Power Agency",18715,1999,"Gibbons Creek SES","Steam","01/01/83","01/01/83",493900,462000,6908,122,2602361000,25930000,158171000,425745000,609846000,1235,3957000,2960000,34144000,0,482000,0,0,300000,111000,0,1160000,322000,2989000,844000,734000,44046000,17,"Tons",1643836,8470,20.78,20.66,1.23,0.01,10711,"MCF",146379,1015,2.35,2.35,2.35,0,0,,0,0,0,0,0,0,0 "Traverse City City of",19125,1999,"Bayside Station","Steam","01/01/12","01/01/68",29000,14000,290,15,3250000,83612,1866905,7544366,9494883,327,0,626829,148366,0,0,0,0,23461,10829,42858,365474,17778,92524,76059,12931,1417109,436,"Tons",2113,12500,43.5,43.5,1.74,0.02,16253.85,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Turlock Irrigation District",19281,1999,"Walnut Power Plant","Gas Turbine","01/01/86","01/01/86",49900,45486,222,2,4176400,0,14724791,181069,14905860,299,0,9273,193510,0,0,0,0,45773,0,0,0,0,0,252574,0,501130,120,,0,0,0,0,0,0,0,"Mcf",70330,1,2.75,2.75,2.7,46.33,17145,"Bbl",0,0,0,0,0,0,0 "Turlock Irrigation District",19281,1999,"Almond Power Plant","Gas Turbine","01/01/95","01/01/95",49900,49900,3162,12,126500000,149270,24481629,30353821,54984720,1102,0,95458,3736849,0,79785,0,0,1827172,0,0,0,523257,0,640938,0,6903459,55,,0,0,0,0,0,0,0,"Mcf",1175749,1,3.18,2.48,2.38,29.54,9446,,0,0,0,0,0,0,0 "Vermont Public Pwr Supply Auth",19780,1999,"J.C. McNeil Station","Steam","01/01/84","01/01/84",50000,53000,5366,35,41562673,79627,4515588,12712285,17307500,346,119308,43331,1497213,0,229588,0,0,81441,92419,0,37321,14987,144967,145773,7437,2294477,55,"tons(wood)",283916,4750,23.48,24.64,2.59,0.03,13455,"mcf",252167,1012000,3.28,3.28,3.25,0.04,12556,"bbl",2124,136321,15.88,21.41,3.74,0,0 "Vernon City of",19798,1999,"Vernon power Plant","Internal Co","01/01/33","01/01/33",30000,19000,0,1,241160,0,0,0,0,0,0,0,18568,0,0,0,0,0,0,0,0,0,0,0,0,18568,77,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"42 gal",624,130952,0,29.75,5.41,0.07,14231 "Vernon City of",19798,1999,"Vernon Power Plant","Gas Turbine","01/01/87","01/01/87",14000,11250,1171150,1,117150,0,0,0,0,0,0,0,62378,0,0,0,0,0,0,0,0,0,0,0,0,62378,532,,0,0,0,0,0,0,0,"MCF",1031,0,22683.2,2.75,2.66,0.05,19986,,0,0,0,0,0,0,0 "Vero Beach City of",19804,1999,"City of Vero Beach","Steam","01/01/59","01/01/92",158000,151000,8804,41,224236,3059208,26587907,49708983,79356098,502,5414436,1818902,11418,0,0,0,0,647002,0,0,808280,685525,0,1428535,0,5399662,24080,,0,0,0,0,0,0,0,,2318953,1051,3.87,3.87,3.69,0.04,11858,,45055,144840,18.97,18.97,3.12,0.04,14119 "Vineland City of",19856,1999,"Harry M. Downs","Steam","01/01/00","01/01/70",66250,57100,5104,41,50663680,102765,6943679,34504958,41551402,627,0,194475,1693950,0,506222,0,0,630731,1378637,0,137240,12568,459914,91094,2412,5107243,101,"Tons",16966,12734,49.33,49.07,1.9,0.03,13621,,0,0,0,0,0,0,0,"Gallons",2206466,152654,0.35,0.35,2.49,0.03,12734 "Energy Northwest",20160,1999,"Nuclear Plant # 2","Nuclear","01/01/72","01/01/84",1200000,1163000,6519,1018,6975110000,0,1096311831,2199928002,3296239833,2747,38664908,18739254,30590701,2894774,12309953,0,0,75427,21147467,0,3819721,545674,1021005,2269200,18016550,111429726,16,"Grms U-235",726798,4.55e+10,32.01,42.09,41.9,4.39,10460.08,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Western Minnesota Mun Pwr Agny",20421,1999,"Watrtown Power Plant? ","Gas Turbin","01/01/78","01/01/78",60000,42,0,2,2254000,0,0,16335022,16335022,272,39000,17392,54938,0,0,0,0,0,3375,0,0,42360,0,102001,663,220729,98,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,"Barrels",7508,0,28.37,24.9,0,0.83,0 "Willmar Municipal Utils Comm",20737,1999,"WILLMAR","STEAM","01/01/00","01/01/70",29350,17500,6239,17,26618660,110447,878898,6858792,7848137,267,13984,40591,1085227,0,259713,0,0,318116,132083,5000,40431,2416,288530,102454,0,2020002,76,"TONS",32320,8600,26.74,33.58,1.95,0.04,17555,"MCF",28158,1022,2.4,2.4,2.4,0,0,,0,0,0,0,0,0,0 "Winfield City of",20813,1999,"EAST","STEAM","01/01/69","01/01/69",26500,0,0,12,24657,134138,2513749,6029328,8677215,327,1429863,315408,850195,0,0,0,0,0,152329,0,0,0,0,0,0,1317932,53451,,0,0,0,0,0,0,0,"Mcf",356043,1,2.39,2.39,2.39,0.03,0.01,,0,0,0,0,0,0,0 "Winfield City of",20813,1999,"WEST","GAS TURBINE","01/01/61","01/01/61",11500,0,0,1,2972500,0,157556,2719909,2877465,250,97445,56898,232145,0,0,0,0,0,31724,0,0,0,0,0,0,320767,108,,0,0,0,0,0,0,0,"Mcf",58535,1,2.39,2.39,2.39,0.03,0.01,".",0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 6","01/01/67",,7500,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 7","01/01/86",,32500,34500,0,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Total Plant","01/01/15","1/1/1986",74000,70000,17360,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 4","01/01/49",,11500,11000,1320,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Wyandotte Municipal Serv Comm",21048,1999,"Wyandotte","Steam # 5","01/01/59",,22500,24500,8120,40,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Zeeland City of",21158,1999,"Zeeland Plant","Internal Co","01/01/36","01/01/80",22182,20100,6642,9,10671685,233107,958741,7490195,8682043,391,39130,160274,324998,0,0,0,0,0,0,0,130885,11183,123764,0,0,751104,70,,0,0,0,0,0,0,0,"Mcf",110179,1025,2.66,2.66,2.6,25.21,9704.09,"gals",63744,130,0.49,0.49,3.81,3.81,712.06 "Utah Associated Mun Power Sys",40575,1999,"Hunter - Unit II","Steam","01/01/80","01/01/80",62703,65000,8614,0,477394000,24130,12455094,36987524,49466748,789,196762,79885,5146144,0,247463,0,0,117117,474771,220,72026,45503,228073,39173,16505,6466880,14,"Tons",219787,11688,22.14,22.14,0.95,0.01,10767,,0,0,0,0,0,0,0,"Gallons",15134,139950,0,0,0,0,0 "Utah Associated Mun Power Sys",40575,1999,"San Juan - Unit IV","Steam","/ /","/ /",35000,36000,8087,0,277529800,0,6606911,34780439,41387350,1182,330940,146935,4915693,0,99850,0,0,107665,90002,0,45259,27595,322125,62872,54783,5872779,21,"Tons",156254,9223,31,31,1.68,0.02,10404,,0,0,0,0,0,0,0,"Gallons",37096,134772,0,0,0,0,0 "Intermountain Power Agency",40576,1999,,"Steam Inter","01/01/86","01/01/87",1640000,1600000,8760,472,13211071,95806000,859083000,1682967000,2637856000,1608,0,3439000,172897000,0,8441000,0,0,2062000,781000,0,3925000,2091000,9516000,3866000,3110000,210128000,15905,"Tons",5268671,11851,31.12,25.64,1.06,0.01,9457,,0,0,0,0,0,0,0,"Barrels",12309,137273,22.25,26.22,4.55,0,0 "American Mun Power-Ohio Inc",40577,1999,"Richard H. Gorsuch","STEAM","01/01/51","01/01/53",212000,194000,8760,106,1376874,822631,5383169,64333905,70539705,333,62261347,1032894,14712122,0,2153372,0,0,180146,1071556522,0,606713,341707,6319652,1253782,0,24415086,17732,"TON",869869,11581,23.16,23.16,0.88,0.01,13479,"MCF",72788,1040,3.65,3.65,3.5,0.04,13479,,0,0,0,0,0,0,0 "Northern Municipal Power Agny",40581,1999,"COYOTE","STEAM","01/01/81","01/01/81",414588000,0,8150,81,2913837000,0,0,420000000,420000000,1,0,863403,26074593,0,3373195,0,0,1267272,1238167,0,405837,334491,2651805,324789,643962,37177514,13,"TON",2425659,6947,10.64,10.64,0.77,0.89,11.57,"GAL.",236904,136552,0.56,0.56,0,0,0,,0,0,0,0,0,0,0 "Southern Minnesota Mun P Agny",40580,1999,"SHERCO #3","STEAM PLANT","01/01/87",,331954,357000,7219,0,2035404000,0,0,331434191,331434191,998,3571246,1376329,18703611,0,1905690,0,0,392953,4634715,9336,422268,415136,2261396,2483729,678192,33283355,16,"TONS",1161899,8701,16.34,15.53,0.89,0.01,9934,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Michigan Public Power Agency",40582,1999,"Belle River","Steam","01/01/84","01/01/85",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Michigan Public Power Agency",40582,1999,"Campbell #3","Steam","01/01/80","01/01/80",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Grand Island City of",40606,1999,"BURDICK","GAS TURBINE","01/01/68","01/01/68",14800,16,76,15,984760,0,0,1554976,1554976,105,0,2286,35784,0,5087,0,0,4586,3641,174,142,374,616,5648,0,58338,59,,0,0,0,0,0,0,0,"MCF",20055,1000,2.26,1.78,1.78,0.04,20365,,0,0,0,0,0,0,0 "Grand Island City of",40606,1999,"PGS","STEAM","/ /","/ /",100000,100000,8410,49,554461278,1708020,24075151,64351183,90134354,901,0,133740,4506550,0,718768,0,0,867378,199672,0,24187,229866,682366,387132,0,7749659,14,"TONS",358870,8391,10.89,12.56,0.75,0.01,10862,,0,0,0,0,0,0,0,,0,0,0,0,0,0,0 "Grand Island City of",40606,1999,"BURDICK","STEAM","01/01/57","01/01/72",92500,55000,2977,15,36138330,376970,3684704,31154613,35216287,381,0,102306,1368110,0,305181,0,0,256501,220102,7223,23106,51661,178024,228731,0,2740945,76,,0,0,0,0,0,0,0,"MCF",504548,1000,2.29,2.71,2.71,0.04,13962,,0,0,0,0,0,0,0 "Northern California Power Agny",40613,1999,"CT 1 (5 Units)","Combustion","01/01/86","01/01/86",124000,0,877,5,22025,981098,1465987,45464256,47911341,386,0,0,917842,0,0,0,0,208067,9810,0,95167,0,0,420321,0,1651207,74970,,0,0,0,0,0,0,0,"MCF",328153,0,2.7,2.7,2.44,0.04,15363,"gal",43800,0,0.43,0.43,0.43,0.04,15400 "Northern California Power Agny",40613,1999,"CT 2 (STIG)","Combustion","01/01/96","01/01/96",49900,0,1502,9,102136,0,0,62901868,62901868,1261,307564,0,2704183,0,0,0,0,120252,34596,0,411336,0,0,1176957,0,4447324,43543,,0,0,0,0,0,0,0,"MCF",914572,0,2.83,2.83,2.33,0.03,9135,,0,0,0,0,0,0,0 "Northern California Power Agny",40613,1999,"Geothermal One","Steam","01/01/83","01/01/83",110000,110540,8301,30,625621000,47873178,43427882,0,91301060,830,133458,764505,20092994,0,0,0,0,1317733,114299,0,286198,163870,39903,901827,786469,24467798,39,,0,0,0,0,0,0,0,"Steam",11071643,1210000,0.93,0.93,0.77,0.02,18504,,0,0,0,0,0,0,0 "Northern California Power Agny",40613,1999,"Geothermal Two","Steam","01/01/86","01/01/86",110000,110540,8207,30,627369000,58362769,52110952,0,110473721,1004,170987,681966,20079701,0,0,0,0,1433824,67816,0,36,101301,24056,451698,784863,23625261,38,,0,0,0,0,0,0,0,"Steam",10898373,1200000,0.93,0.93,0.78,0.02,19066,,0,0,0,0,0,0