National Library of Energy BETA

Sample records for loaded accelerating structure

  1. The Development of a Small Engine Based Accelerated Ash Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Ash Loading Protocol The Development of a Small Engine Based Accelerated Ash Loading Protocol Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

  2. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  3. Fig. 1: Structure of drive consisting of motor, gear and load Abstract--In this paper the product of torque and acceleration

    E-Print Network [OSTI]

    Noé, Reinhold

    MOTOR LOAD MMG, M MGL, LMM ML GEAR Fig. 1: Structure of drive consisting of motor, gear and load because both products are transmitted unchanged by an ideal gear. By use of M-product design procedure because mechanical power is transmitted unchanged by an ideal gear. Consequently each motor is suitable

  4. Structural assessment of accident loads

    SciTech Connect (OSTI)

    Wagenblast, G.R., Westinghouse Hanford

    1996-05-28

    Structural assessments were made for specific accident loads for specific catch, receiver, and storage tanks. The evaluation herein represents level-of-effort order-of-magnitude estimates of limiting loads that would lead to collapse or rupture of the tank and unmitigated loss of confinement for the waste. Structural capacities were established using failure criteria. Compliance with codes such as ACI, ASCE, ASME, RCRA, UBC, WAC, and DOE Orders was `NOT` maintained. Normal code practice is to prevent failure with margins consistent with expected variations in loads and strengths and confidence in analysis techniques. The evaluation herein represent estimates of code limits without code load factors or code strength reduction factors, and loading beyond such a limit is considered as an onset of some failure mode. The exact nature of the failure mode and its relation to a safe condition is a judgment of the analyst. Consequently, these `RESULTS SHALL NOT BE USED TO ESTABLISH OPERATING OR SAFETY LOAD LIMITS FOR THESE TANKS`.

  5. Estimation of structural reliability under combined loads. [PWR; BWR

    SciTech Connect (OSTI)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads.

  6. EM Structure Based and Vacuum Acceleration

    SciTech Connect (OSTI)

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  7. Variable energy constant current accelerator structure

    DOE Patents [OSTI]

    Anderson, O.A.

    1988-07-13

    A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.

  8. Load Schedule Coordination for a Large Linear Accelerator: An Operation Powerplay Concept 

    E-Print Network [OSTI]

    Johnson, W. H.

    1984-01-01

    -power from Federal power projects, and the Los Alamos National Laboratory (LANL) at Los Alamos, New Mexico. With this variation, only the portion of LANL's total load requirement for the Linear Accelerator at the Meson Physics Facility is targeted...

  9. Optimal Design of Motor and Gear for Drives with High Acceleration and Load Torque

    E-Print Network [OSTI]

    Noé, Reinhold

    Optimal Design of Motor and Gear for Drives with High Acceleration and Load Torque H. Grotstollen-acceleration product are transmitted unchanged by an ideal gear. At a first step those motors can be selected which offer sufficient rated power and power rate. When designing gears for each of these motors two ranges

  10. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Energy Savers [EERE]

    Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading...

  11. Dielectric-Lined High-Gradient Accelerator Structure

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M{Omega}/m for DLA, as compared to 99 M{Omega}/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.

  12. Emission Control Technology, Performance/Durability -POSTER Effect of Accelerated Ash Loading on Performance of Diesel

    E-Print Network [OSTI]

    Pennycook, Steve

    on Performance of Diesel Particulate Filters and Morphology of Ash Layers Bruce G. Bunting and Todd J. Toops using a single-cylinder diesel engine has been developed for accelerated ash loading in catalyzed and non- catalyzed diesel particular filters (DPF) made of cordierite, SiC and mullite substrate

  13. Wind induced torsional loads on structures

    E-Print Network [OSTI]

    Kareem, Ahsan

    -level crosswind loading on a square cross-section building. Reinhold et al.4 instrumented a building model

  14. Micromechanical structures and microelectronics for acceleration sensing

    SciTech Connect (OSTI)

    Davies, B.R.; Montague, S.; Smith, J.H.; Lemkin, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-08-01

    MEMS is an enabling technology that may provide low-cost devices capable of sensing motion in a reliable and accurate manner. This paper describes work in MEMS accelerometer development at Sandia National Laboratories. This work leverages a process for integrating both the micromechanical structures and microelectronis circuitry of a MEMS accelerometer on the same chip. The design and test results of an integrated MEMS high-g accelerometer will be detailed. Additionally a design for a high-g fuse component (low-G or {approx} 25 G accelerometer) will be discussed in the paper (where 1 G {approx} 9.81 m/s). In particular, a design team at Sandia was assembled to develop a new micromachined silicon accelerometer which would be capable of surviving and measuring high-g shocks. Such a sensor is designed to be cheaper and more reliable than currently available sensors. A promising design for a suspended plate mass sensor was developed and the details of that design along with test data will be documented in the paper. Future development in this area at Sandia will focus on implementing accelerometers capable of measuring 200 kilo-g accelerations. Accelerometer development at Sandia will also focus on multi-axis acceleration measurement with integrated microelectronics.

  15. Reliability assessment of Indian Point Unit 3 containment structure under combined loads

    SciTech Connect (OSTI)

    Hwang, H.; Shinozuka, M.; Kawakami, J.; Reich, M.

    1984-01-01

    In the current design criteria, the load combinations specified for design of concrete containment structures are in the deterministic format. However, by applying the probability-based reliability analysis method developed by BNL to the concrete containment structures designed according to the criteria, it is possible to evaluate the reliability levels implied in the current design criteria. For this purpose, the reliability analysis is applied to the Indian Point Unit No. 3 containment. The details of the containment structure such as the geometries and the rebar arrangements, etc., are taken from the working drawings and the Final Safety Analysis Report. Three kinds of loads are considered in the reliability analysis. They are, dead load, accidental pressure due to a large LOCA, and earthquake ground acceleration. This paper presents the reliability analysis results of the Indian Point Unit 3 containment subjected to all combinations of loads.

  16. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect (OSTI)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  17. Structural load inventory database for the Kansas City federal complex

    SciTech Connect (OSTI)

    Hashimoto, P.S.; Johnson, M.W.; Nakaki, D.K. [EQE International, Inc., Irvine, CA (United States); Lynch, D.T.; Drury, M.A. [AlliedSignal Inc., Kansas City, MO (United States). Kansas City Division

    1995-12-01

    A structural load inventory database (LID) has been developed to support configuration management at the DOE Kansas City Plant (KCP). The objective of the LID is to record loads supported by the plant structures and to provide rapid assessments of the impact of future facility modifications on structural adequacy. Development of the LID was initiated for the KCP`s Main Manufacturing Building. Field walkdowns were performed to determine all significant loads supported by the structure, including the weight of piping, service equipment, etc. These loads were compiled in the LID. Structural analyses for natural phenomena hazards were performed in accordance with UCRL-15910. Software to calculate demands on the structural members due to gravity loads, total demands including both gravity and seismic loads, and structural member demand-to-capacity ratios were also developed and integrated into the LID. Operation of the LID is menu-driven. The LID user has options to review and print existing loads and corresponding demand-to-capacity ratios, and to update the supported loads and demand-to-capacity ratios for any future facility modifications.

  18. Topological design solutions for structures under transmissible loads

    E-Print Network [OSTI]

    Fuchs, Moshe

    . It will be noted that in many solutions one can discern a marked difference between the underlying load­bearing) elements whose basic task is to transfer the applied forces to the load­bearing part of the assembly. The main purpose of the present work is to induce the algorithm to produce the 'structural' part

  19. Structural evaluation of the 2736Z Building for seismic loads

    SciTech Connect (OSTI)

    Giller, R.A.

    1994-09-23

    The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements.

  20. Surface runoff from full-scale coal combustion product pavements during accelerated loading

    SciTech Connect (OSTI)

    Cheng, C.M.; Taerakul, P.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H.

    2008-08-15

    In this study, the release of metals and metalloids from full-scale portland cement concrete pavements containing coal combustion products (CCPs) was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under well-controlled conditions. An equivalent of 20 years of highway traffic loading was simulated at the OSU/OU Accelerated Pavement Load Facility (APLF). Three types of portland cement concrete driving surface layers were tested, including a control section (i.e., ordinary portland cement (PC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50). In general, the concentrations of minor and trace elements were higher in the toxicity characteristic leaching procedure (TCLP) leachates than in the leachates obtained from synthetic precipitation leaching procedure and ASTM leaching procedures. Importantly, none of the leachate concentrations exceeded the TCLP limits or primary drinking water standards. Surface runoff monitoring results showed the highest release rates of inorganic elements from the FA50 concrete pavement, whereas there were little differences in release rates between PC and FA30 concretes. The release of elements generally decreased with increasing pavement loading. Except for Cr, elements were released as particulates (>0.45 {mu} m) rather than dissolved constituents. The incorporation of fly ash in the PC cement concrete pavements examined in this study resulted in little or no deleterious environmental impact from the leaching of inorganic elements over the lifetime of the pavement system.

  1. Design-Load Basis for LANL Structures, Systems, and Components

    SciTech Connect (OSTI)

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  2. Two-beam detuned-cavity electron accelerator structure

    SciTech Connect (OSTI)

    Jiang, Y.; Hirshfield, J. L. [Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States); Beam Physics Laboratory, Yale University, New Haven, CT 06511 (United States) and Omega-P, Inc., New Haven, CT 06510 (United States)

    2012-12-21

    Progress has been made in the theory, development, cavity design and optimization, beam dynamics study, beam transport design, and hardware construction for studies of a detuned two-beam electron accelerator structure.

  3. Designing Integrated Accelerator for Stream Ciphers with Structural Similarities

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Designing Integrated Accelerator for Stream Ciphers with Structural Similarities Sourav Sen Gupta1PAcc-LTE, a high performance integrated design that combines the two ciphers in hardware, based on their structural core supporting multiple designs having similar algorithmic structures. Keywords: Stream Ciphers

  4. Lighten Your Load...productwatch Using Geofoams to Reduce Structural Design Loads from the Ground

    E-Print Network [OSTI]

    Horvath, John S.

    - and roof- 8 insulation material. You can now add to these myriad consumer and structural uses the fact gravity and seismic loads. Perhaps most importantly, EPS geofoam has proven to be cost effective for both thermal insulation plus one or more others) can be obtained from one geofoam product which enhances

  5. Accelerator Research Building - Setting up of Building Site, Excavation Work, Drainage, Reinforced Concrete Structure, Scaffolding

    E-Print Network [OSTI]

    1960-01-01

    Accelerator Research Building - Setting up of Building Site, Excavation Work, Drainage, Reinforced Concrete Structure, Scaffolding

  6. M.P. BELT DETERIORATION. ACCELERATOR STRUCTURE. BELT CAPABILITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1375 M.P. BELT DETERIORATION. ACCELERATOR STRUCTURE. BELT CAPABILITY M. LETOURNEL Centre de.P. belt deterioration is proposed. It takes into account the strain of discharge to which the belt is submitted following the combination, first of a too high belt charge density in addition to the machine

  7. Improved input and output couplers for SC acceleration structure

    SciTech Connect (OSTI)

    Solyak, N.; Gonin, I.; Latina, A.; Lunin, A.; Poloubotko, V.; Yakovlev, V.; /Fermilab

    2009-04-01

    Different couplers are described that allow the reduction of both transverse wake potential and RF kick in the SC acceleration structure of ILC. A simple rotation of the couplers reducing the RF kick and transverse wake kick is discussed for both the main linac and bunch compressors, along with possible limitations of this method. Designs of a coupler unit are presented which preserve axial symmetry of the structure, and provide reduced both the RF kick and transverse wake field.

  8. PROBABILISTIC STRUCTURAL RESPONSE OF STRUCTURE UNDER COLLAPSE LOADING

    SciTech Connect (OSTI)

    J. PEPIN; E. RODRIGUEZ; ET AL

    2001-01-05

    Engineers at Los Alamos National Laboratory (LANL) are currently developing the capability to provide a reliability-based structural evaluation technique for performing weapon reliability assessments. To enhance the analyst's confidence with these new methods, an integrated experiment and analysis project has been developed. The uncertainty associated with the collapse response of commercially available spherical marine float is evaluated with the aid of the non-linear explicit dynamics code DYNA3D (Whirley and Engelmann 1988) coupled with the probabilistic code NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) (Thacker et al. 1998). Variations in geometric shape parameters and uncertainties in material parameters are characterized and included in the probabilistic model.

  9. Theory of factors limiting high gradient operation of warm accelerating structures

    SciTech Connect (OSTI)

    Nusinovich, Gregory S.; Antonsen, Thomas M.; Kishek, Rami

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  10. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect (OSTI)

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  11. Inhomogeneous structure formation may alleviate need for accelerating universe

    E-Print Network [OSTI]

    Johan Hansson; Jesper Lindkvist

    2009-06-18

    When taking the real, inhomogeneous and anisotropic matter distribution in the semi-local universe into account, there may be no need to postulate an accelerating expansion of the universe despite recent type Ia supernova data. Local curvatures must be integrated (over all space) to obtain the global curvature of the universe, which seems to be very close to zero from cosmic microwave background data. As gravitational structure formation creates bound regions of positive curvature, the regions in between become negatively curved in order to comply with a vanishing global curvature. The actual dynamics of the universe is altered due to the self-induced inhomogeneities, again more prominently so as structure formation progresses. Furthermore, this negative curvature will increase as a function of time as structure formation proceeds, which mimics the effect of "dark energy" with negative pressure. Hence, the "acceleration" may be merely a mirage. We make a qualitative and semi-quantitative analysis, using newtonian gravity corrected for special relativistic effects, which works surprisingly well, to corroborate and illustrate/visualize these statements. This article may be seen as a plea to start taking seriously the observed inhomogeneous distribution and the nonlinearities of nonperturbative general relativity, and their impact on the dynamics and behavior of the cosmos.

  12. Modern structural steels with improved properties through accelerated cooling

    SciTech Connect (OSTI)

    Tschersich, H.J.; Schriever, U.; Bobbert, J.; Kuntze, C. [Thyssen Stahl AG, Duisburg (Germany)

    1995-12-31

    The last decade has seen an enormous increase in the stringency of the demands placed on steels. The main characteristics involved are higher strength and toughness, better suitability for welding and, in certain cases, corrosion resistance. The reason for these heightened demands resides in the higher strains to which the material is exposed in structural applications and in a greater need for safety. In many areas, the steel industry has succeeded in offering appropriate solutions through improved metallurgical and rolling techniques. Accelerated cooled steel grades are one example.

  13. QUASI-STATIC DRIFT-TUBE ACCELERATING STRUCTURES FOR LOW-SPEED HEAVY IONS

    E-Print Network [OSTI]

    Faltens, A.

    2011-01-01

    Quasi-Static Drift-Tube Accelerating Structures for Low-in Fig. 4a. PULSED QUASI STATIC DRIFT TUBE INJECTOR (SOMEThe accelerator is quasi-static in the sense that for

  14. Using NASA-Task Load Index to Assess Drivers' Workload on Freeway Guide Sign Structures

    E-Print Network [OSTI]

    Using NASA-Task Load Index to Assess Drivers' Workload on Freeway Guide Sign Structures Fengxiang are carefully analyzed using the NASA-Task Load Index. With the statistical analyses of questionnaires

  15. TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING. KEYWORDS : Structural Health Monitoring, Acoustic Emission, Environmental and Operational Conditions2014 Author manuscript, published in "EWSHM - 7th European Workshop on Structural Health Monitoring

  16. Demonstrating Structural Adequacy of Nuclear Power Plant Containment Structures for Beyond Design-Basis Pressure Loadings

    SciTech Connect (OSTI)

    Braverman, J.I.; Morante, R.

    2010-07-18

    ABSTRACT Demonstrating the structural integrity of U.S. nuclear power plant (NPP) containment structures, for beyond design-basis internal pressure loadings, is necessary to satisfy Nuclear Regulatory Commission (NRC) requirements and performance goals. This paper discusses methods for demonstrating the structural adequacy of the containment for beyond design-basis pressure loadings. Three distinct evaluations are addressed: (1) estimating the ultimate pressure capacity of the containment structure (10 CFR 50 and US NRC Standard Review Plan, Section 3.8) ; (2) demonstrating the structural adequacy of the containment subjected to pressure loadings associated with combustible gas generation (10 CFR 52 and 10 CFR 50); and (3) demonstrating the containment structural integrity for severe accidents (10 CFR 52 as well as SECY 90-016, SECY 93-087, and related NRC staff requirements memoranda (SRMs)). The paper describes the technical basis for specific aspects of the methods presented. It also presents examples of past issues identified in licensing activities related to these evaluations.

  17. Two Channel Dielectric-Lined Rectangular High Transformer Ratio Accelerator Structure Experiment

    SciTech Connect (OSTI)

    Shchelkunov, S. V.; LaPointe, M. A. [Beam Physics Laboratory, Yale University, 272 Whitney Avenue, New Haven, CT 06511 (United States); Hirshfield, J. L. [Beam Physics Laboratory, Yale University, 272 Whitney Avenue, New Haven, CT 06511 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Marshall, T. C. [Columbia University, New York, NY 10027 (United States); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Sotnikov, G. [NSC Kharkov Institute of Physics and Technology, Kharkov (Ukraine); Omega-P, Inc., 258 Bradley St., New Haven, CT 06510 (United States); Gai, Wei; Conde, M.; Power, J.; Mihalcea, D. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-04

    Current status of a two-channel cm-scale rectangular dielectric lined wakefield accelerator structure is described. This structure is installed at the Argonne Wakefield Accelerator facility (AWA), and is presently being evaluated. The device has a transformer ratio of {approx}12.5:1. When driven by a {approx}50 nC single drive bunch it is expected to obtain {approx}6 MV/m acceleration gradient. Related issues are discussed.

  18. Road Map for Studies to Produce Consistent and High Performance SRF Accelerator Structures

    SciTech Connect (OSTI)

    Ganapati Rao Myneni; John F. O’Hanlon

    2007-06-20

    Superconducting Radio Frequency (SRF) accelerator structures made from high purity niobium are becoming the technological choice for a large number of future accelerators and energy recovery LINAC’s (ERL). Most of the presently planned accelerators and ERL requirements will be met with some effort by the current SRF technology where accelerating gradients of about 20 MV/m can be produced on a routine basis with an acceptable yield. However, the XFEL at DESY and the planned ILC require acceleration gradients more than 28 MV/m and 35 MV/m respectively. At the recent ILC meeting at Snowmass (2005) concern was expressed regarding the wide spread in the achieved accelerator gradients and the relatively low yields. For obtaining accelerating gradients of 35 MV/m in SRF accelerator structures consistently, a deeper understanding of the causes for the spread has to be gained and advances have to be made in many scientific and high technology fields, including materials, surface and vacuum sciences, application of reliable processes and procedures, which provide contamination –free surfaces and avoid recontamination and cryogenics related technologies. In this contribution a road map for studies needed to produce consistent and high performance SRF accelerator structures from the needed materials development to clean and non-recontaminating processes and procedures will be presented.

  19. Numerically optimized structures for dielectric asymmetric dual-grating laser accelerators

    SciTech Connect (OSTI)

    Aimidula, A. [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China) [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); Physics Department, University of Liverpool, Liverpool (United Kingdom); Bake, M. A.; Wan, F.; Xie, B. S., E-mail: bsxie@bnu.edu.cn [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Welsch, C. P. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom) [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); Physics Department, University of Liverpool, Liverpool (United Kingdom); Xia, G.; Mete, O. [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom) [Cockcroft Institute, Daresbury Sci-Tech, Warrington WA44AD (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Uesaka, M.; Matsumura, Y. [Department of Nuclear Engineering and Management, The University of Tokyo, Tokai 319-1188 (Japan)] [Department of Nuclear Engineering and Management, The University of Tokyo, Tokai 319-1188 (Japan); Yoshida, M.; Koyama, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)] [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2014-02-15

    Optical scale dielectric structures are promising candidates to realize future compact, low cost particle accelerators, since they can sustain high acceleration gradients in the range of GeV/m. Here, we present numerical simulation results for a dielectric asymmetric dual-grating accelerator. It was found that the asymmetric dual-grating structures can efficiently modify the laser field to synchronize it with relativistic electrons, therefore increasing the average acceleration gradient by ?10% in comparison to symmetric structures. The optimum pillar height which was determined by simulation agrees well with that estimated analytically. The effect of the initial kinetic energy of injected electrons on the acceleration gradient is also discussed. Finally, the required laser parameters were calculated analytically and a suitable laser is proposed as energy source.

  20. Locality-Aware and Churn-Resilient Load-Balancing Algorithms in Structured

    E-Print Network [OSTI]

    Xu, Cheng-Zhong

    Locality-Aware and Churn-Resilient Load-Balancing Algorithms in Structured Peer-to-Peer Networks with churn. This paper presents a locality-aware randomized load-balancing algorithm to deal with both the proximity and network churn at the same time. We introduce a factor of randomness in the probing of lightly

  1. PROPERTIES OF THE ACCELERATION REGIONS IN SEVERAL LOOP-STRUCTURED SOLAR FLARES

    E-Print Network [OSTI]

    Piana, Michele

    PROPERTIES OF THE ACCELERATION REGIONS IN SEVERAL LOOP-STRUCTURED SOLAR FLARES Jingnan Guo1 , A-energy electrons accelerated in solar flares is the hard X-ray bremsstrahlung that they produce as they propagate et al. (2008) analyzed a set of extended coronal flare loops located near the solar limb, and were

  2. Commercial application of aluminum honeycomb and foam in load bearing tubular structures

    E-Print Network [OSTI]

    Bartolucci, Stefano, 1976-

    2004-01-01

    Small dimension engineering tubular structures subjected to a complex load system are designed like hollow circular shells. For minimum weight design, the ratio between the shell radius and the thickness has to be as large ...

  3. The Effect of Coherent Structures on Stochastic Acceleration in MHD Turbulence

    E-Print Network [OSTI]

    Arzner, K; Carati, D; Denewet, N; Vlahos, L; Arzner, Kaspar; Knaepen, Bernard; Carati, Daniele; Denewet, Nicolas; Vlahos, Loukas

    2006-01-01

    We investigate the influence of coherent structures on particle acceleration in the strongly turbulent solar corona. By randomizing the Fourier phases of a pseudo-spectral simulation of isotropic MHD turbulence (Re $\\sim 300$), and tracing collisionless test protons in both the exact-MHD and phase-randomized fields, it is found that the phase correlations enhance the acceleration efficiency during the first adiabatic stage of the acceleration process. The underlying physical mechanism is identified as the dynamical MHD alignment of the magnetic field with the electric current, which favours parallel (resistive) electric fields responsible for initial injection. Conversely, the alignment of the magnetic field with the bulk velocity weakens the acceleration by convective electric fields $- \\bfu \\times \\bfb$ at a non-adiabatic stage of the acceleration process. We point out that non-physical parallel electric fields in random-phase turbulence proxies lead to artificial acceleration, and that the dynamical MHD al...

  4. Experimental studies of novel accelerator structures at 11 GHz and 17 GHz

    E-Print Network [OSTI]

    Munroe, Brian J. (Brian James)

    2015-01-01

    Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup due to ...

  5. Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    E-Print Network [OSTI]

    Hu, Min

    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

  6. AIRCRAFT PARAMETRIC STRUCTURAL LOAD MONITORING USING GAUSSIAN PROCESS REGRESSION

    E-Print Network [OSTI]

    Boyer, Edmond

    cases. KEYWORDS : Structural Health and Usage Monitoring, Gaussian Process Regression, Fatigue, 1 in the remaining useful life. If the error is too 7th European Workshop on Structural Health Monitoring July 8 manuscript, published in "EWSHM - 7th European Workshop on Structural Health Monitoring (2014)" #12

  7. Free electron laser using Rf coupled accelerating and decelerating structures

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  8. Evaluation methodology for structures subjected to seismic loading 

    E-Print Network [OSTI]

    O'Boyle, Margaret

    1996-01-01

    A method to evaluate the performance of new and existing structures subjected to earthquakes is proposed. This method, derived from the Capacity Spectrum Method, can be used by practicing engineers in the design of new buildings...

  9. Laser acceleration and deflection of 963 keV electrons with a silicon dielectric structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leedle, Kenneth J.; Pease, R. Fabian; Byer, Robert L.; Harris, James S.

    2015-02-12

    Radio frequency particle accelerators are ubiquitous in ultrasmall and ultrafast science, but their size and cost have prompted exploration of compact and scalable alternatives such as the dielectric laser accelerator. We present the first demonstration, to the best of our knowledge, of high gradient laser acceleration and deflection of electrons with a silicon structure. Driven by a 5 nJ, 130 fs mode-locked Ti:sapphire laser at 907 nm wavelength, our devices achieve accelerating gradients in excess of 200 MeV/m and suboptical cycle streaking of 96.30 keV electrons. These results pave the way for high gradient silicon dielectric laser accelerators using commercialmore »lasers and subfemtosecond electron beam experiments.« less

  10. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  11. Acceleration of Relational Index Structures Based on Statistics Hans-Peter Kriegel*

    E-Print Network [OSTI]

    Kriegel, Hans-Peter

    as a sequence SeqQ,I of index range scans. I/0 cost. The number of logical reads LR(s) associated with one indexAcceleration of Relational Index Structures Based on Statistics Hans-Peter Kriegel* , Peter Kunath, pfeifle, renz}@dbs.informatik.uni-muenchen.de Abstract Relational index structures, as for instance

  12. The Effect of Coherent Structures on Stochastic Acceleration in MHD Turbulence

    E-Print Network [OSTI]

    Kaspar Arzner; Bernard Knaepen; Daniele Carati; Nicolas Denewet; Loukas Vlahos

    2005-09-23

    We investigate the influence of coherent structures on particle acceleration in the strongly turbulent solar corona. By randomizing the Fourier phases of a pseudo-spectral simulation of isotropic MHD turbulence (Re $\\sim 300$), and tracing collisionless test protons in both the exact-MHD and phase-randomized fields, it is found that the phase correlations enhance the acceleration efficiency during the first adiabatic stage of the acceleration process. The underlying physical mechanism is identified as the dynamical MHD alignment of the magnetic field with the electric current, which favours parallel (resistive) electric fields responsible for initial injection. Conversely, the alignment of the magnetic field with the bulk velocity weakens the acceleration by convective electric fields $- \\bfu \\times \\bfb$ at a non-adiabatic stage of the acceleration process. We point out that non-physical parallel electric fields in random-phase turbulence proxies lead to artificial acceleration, and that the dynamical MHD alignment can be taken into account on the level of the joint two-point function of the magnetic and electric fields, and is therefore amenable to Fokker-Planck descriptions of stochastic acceleration.

  13. Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators

    SciTech Connect (OSTI)

    Cheng Xinbing; Liu Jinliang; Qian Baoliang; Zhang Yu; Zhang Hongbo [College of Photoelectrical Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2009-11-15

    A high voltage pulse transformer (HVPT) is usually used as a charging device for the pulse forming line (PFL) of intense electron-beam accelerators (IEBAs). Insulation of the HVPT is one of the important factors that restrict the development of the HVPT. Until now, considerable effort has been focused on minimizing high field regions to avoid insulation breakdown between windings. Characteristics of the HVPT have been widely discussed to achieve these goals, but the effects of the PFL and load resistance on HVPT are usually neglected. In this paper, a HVPT is used as a charging device for the PFL of an IEBA and the effect of the change in the load resistance on the HVPT of the IEBA is presented. When the load resistance does not match the wave impedance of the PFL, a high-frequency bipolar oscillating voltage will occur, and the amplitude of the oscillating voltage will increase with the decrease in the load resistance. The load resistance approximates to zero and the amplitude of the oscillating voltage is much higher. This makes it easier for surface flashover along the insulation materials to form and decrease the lifetime of the HVPT.

  14. High Transformer ratios in collinear wakefield accelerators.

    SciTech Connect (OSTI)

    Power, J. G.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanreykin, A.; Schoessow, P.; High Energy Physics; Euclid Techlabs, LLC

    2008-01-01

    Based on our previous experiment that successfully demonstrated wakefield transformer ratio enhancement in a 13.625 GHz dielectric-loaded collinear wakefield accelerator using the ramped bunch train technique, we present here a redesigned experimental scheme for even higher enhancement of the efficiency of this accelerator. Design of a collinear wakefield device with a transformer ratio R2, is presented. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2. To match the wavelength of the fundamental mode of the wakefield with the bunch length (sigmaz=2 mm) of the new Argonne wakefield accelerator (AWA) drive gun (where the experiment will be performed), a 26.625 GHz dielectric based accelerating structure is required. This transformer ratio enhancement technique based on our dielectric-loaded waveguide design will result in a compact, high efficiency accelerating structures for future wakefield accelerators.

  15. Loading and Response of Offshore Wind Turbine Support Structures: Prediction with Comparison to Measured Data

    E-Print Network [OSTI]

    Sweetman, Bert

    Loading and Response of Offshore Wind Turbine Support Structures: Prediction with Comparison, offshore wind support platforms differ from oil platforms is several important ways: First, wind platforms turbines, combined with the relatively slender profit margins in the offshore wind business, makes cost

  16. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE STRUCTURES SUBJECTED TO TRANSIENT THERMAL LOADS

    E-Print Network [OSTI]

    Vecchio, Frank J.

    Abstract ii NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE STRUCTURES SUBJECTED nonlinear finite element transient thermal analysis is implemented into program VecTor2©, a nonlinear's response to thermal loads, this research develops and implements a 2D nonlinear finite element transient

  17. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    E-Print Network [OSTI]

    Umstadter, Donald

    Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams (Received 24 March 2010; published 14 October 2010) We investigate the use of energetic electron beams-wakefield accelera- tors have been shown to produce electron beams with source sizes comparable to the laser beam

  18. Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures

    E-Print Network [OSTI]

    Istituto Nazionale di Fisica Nucleare (INFN)

    Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA 2 High Energy Accelerator Research magnetic field, or alternatively on surface pulsed heating. This is in contrast to the classical view geometries. The structure circuit pa- rameters play a dual role. First, they control the local varia- tion

  19. Alignment tolerance of accelerating structures and corrections for future linear colliders

    SciTech Connect (OSTI)

    Kubo, K.; Adolphsen, C.; Bane, K.L.F.; Raubenheimer, T.O.; Thompson, K.A.

    1995-06-01

    The alignment tolerance of accelerating structures is estimated by tracking simulations. Both single-bunch and multi-bunch effects are taken into account. Correction schemes for controlling the single and multi-bunch emittance growth in the case of large misalignment are also tested by simulations.

  20. Proposed structure for a crossed-laser beam, GeV per meter gradient, vacuum electron linear accelerator

    E-Print Network [OSTI]

    Byer, Robert L.

    Proposed structure for a crossed-laser beam, GeV per meter gradient, vacuum electron linear We propose a dielectric-based, multistaged, laser-driven electron linear accelerator structure operating in a vacuum that is capable of accelerating electrons to 1 TeV in 1 km. Our study shows that a Ge

  1. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    SciTech Connect (OSTI)

    JULYK, L.J.

    1999-09-22

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant.

  2. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect (OSTI)

    Downer, Michael C.

    2014-12-19

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-d

  3. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    SciTech Connect (OSTI)

    Gold, Steven H.

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a successful experiment was carried out that demonstrated suppression of multipactor in the uniform-field region of a TW DLA structure. However, in accordance with theory, the multipactor was enhanced in regions of the structure with lower values of axial magnetic field. Under Task 2, there were two two-month experimental runs at NRL that were used to characterize the performance of high power two-channel dual-mode active microwave pulse compressor configurations that used electron-beam triggered switch cavities. The pulse compressors were designed and fabricated by Omega-P, Inc. and the Russian Institute of Applied Physics and tested in the Magnicon Laboratory at NRL. These pulse compressors made use of an electron beam discharge from a cylindrical knife-edged Mo cathode coated with a CVD diamond film that was driven by a ?100 kV, 100 ns high voltage pulse. The electron beam was used to change the resonant frequency of the switch cavities in order to create the output microwave pulse. The compressor channels included a TE01 input and output section and a TE02 energy storage cavity, followed by a switch assembly that controlled the coupling between the TE01 and TE02 modes. In the initial state, the switch cavity was in resonance, the reflection from the cavity was out of phase, and the mode conversion was only ~2-3%, allowing the energy storage cavity to fill. When the electron beam was discharged into the switch cavity, the cavity was shifted out of resonance, causing the phase of the reflection to change by ~?. As a result of the change in the reflection phase, the mode coupling in the conical taper was greatly increased, and could approach ~100%, permitting the energy storage cavity to empty in one cavity round trip time of the TE02 mode to produce a high power output pulse. The second experiment runs demonstrated a 190 MW, ~20 ns compressed pulse at 25.7 gain and ~50% efficiency, using a 7.4 MW, 1 ?s drive pulse from the magnicon. The success of this experiment suggests a path to future high gain active versions of the SLED 2 pulse compressor at SLAC.

  4. Beam Based HOM Analysis of Accelerating Structures at the TESLA Test Facility Linac

    SciTech Connect (OSTI)

    Wendt, M.; Schreiber, S.; Castro, P.; Gossel, A.; /DESY; Huning, M.; /Fermilab; Devanz, G.; Jablonka, M.; Magne, C.; Napoly, O.; /Saclay; Baboi, N.; /SLAC

    2005-08-09

    The beam emittance in future linear accelerators for high energy physics and SASE-FEL applications depends highly on the field performance in the accelerating structures, i.e. the damping of higher order modes (HOM). Besides theoretical and laboratory analysis, a beam based analysis technique was established [1] at the TESLA Test Facility (TTF) linac. It uses a charge modulated beam of variable modulation frequency to excite dipole modes. This causes a modulation of the transverse beam displacement, which is observed at a downstream BPM and associated with a direct analysis of the modes at the HOM-couplers. A brief introduction of eigenmodes of a resonator and the concept of the wake potential is given. Emphasis is put on beam instrumentation and signal analysis aspects, required for this beam based HOM measurement technique.

  5. Experimental Characterization of the Effect of Charring on the Residual Load Carrying Capacity of a Structural Fibre Reinforced Composite 

    E-Print Network [OSTI]

    Hill, David J; Torero, Jose L

    2004-01-01

    An experimental study conducted to investigate the residual load carrying capacity of a commonly used structural composite plastic, isophthalic polyester, reinforced with S-glass fibreglass when exposed to heat-fluxes ...

  6. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  7. Inverse Load Calculation of Wind Turbine Support Structures - A Numerical Verification Using the Comprehensive Simulation Code FAST: Preprint (Revised)

    SciTech Connect (OSTI)

    Pahn, T.; Jonkman, J.; Rolges, R.; Robertson, A.

    2012-11-01

    Physically measuring the dynamic responses of wind turbine support structures enables the calculation of the applied loads using an inverse procedure. In this process, inverse means deriving the inputs/forces from the outputs/responses. This paper presents results of a numerical verification of such an inverse load calculation. For this verification, the comprehensive simulation code FAST is used. FAST accounts for the coupled dynamics of wind inflow, aerodynamics, elasticity and turbine controls. Simulations are run using a 5-MW onshore wind turbine model with a tubular tower. Both the applied loads due to the instantaneous wind field and the resulting system responses are known from the simulations. Using the system responses as inputs to the inverse calculation, the applied loads are calculated, which in this case are the rotor thrust forces. These forces are compared to the rotor thrust forces known from the FAST simulations. The results of these comparisons are presented to assess the accuracy of the inverse calculation. To study the influences of turbine controls, load cases in normal operation between cut-in and rated wind speed, near rated wind speed and between rated and cut-out wind speed are chosen. The presented study shows that the inverse load calculation is capable of computing very good estimates of the rotor thrust. The accuracy of the inverse calculation does not depend on the control activity of the wind turbine.

  8. Published in Proceedings of the XL2003 (Response of Structures to Extreme Loading) Conference, Toronto, August 2003. EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS

    E-Print Network [OSTI]

    Manuel, Lance

    , Toronto, August 2003. EFFICIENT MODELS FOR WIND TURBINE EXTREME LOADS USING INVERSE RELIABILITY K, USA ABSTRACT The reliability of wind turbines against extreme loads is the focus of this study loads for a 600kW three-bladed horizontal-axis wind turbine. Only operating loads ­ here, flapwise (out

  9. Pricing Structure and Tools for Profitable Load-Shifting by Aggregator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    via incentive pricing. Also, a complementary visualization technique for assessing demand response plans and peak load shifts. Description As power grids struggle to keep up...

  10. 168 / JOURNAL OF STRUCTURAL ENGINEERING / FEBRUARY 2001 GUST LOADING FACTOR: NEW MODEL

    E-Print Network [OSTI]

    Kareem, Ahsan

    )]. It should be pointed out that the Australian Standard (1989) and the ACI standard (1988) use the GLF and standards around the world. In this scheme, the equivalent static wind loading used for design is equal and standards. Currently, the ESWL in building codes is estimated based on the ``gust load- ing factor'' (GLF

  11. Development of load and resistance factor design for FRP strengthening of reinforced concrete structures

    E-Print Network [OSTI]

    Atadero, Rebecca Anne

    2006-01-01

    Geotechnical and Structural Design; Transportation ResearchClarke, J.L. , Ed. Structural Design of Polymer Composites,Structural Design.

  12. Insights into MHC class I peptide loading from the structure of the Tapasin-ERp57 thiol oxidoreductase heterodimer

    SciTech Connect (OSTI)

    Dong, G.; Wearsch, P.A.; Peaper, D.R.; Cresswell, P.; Reinisch, K.M.; (Yale-MED)

    2009-03-02

    Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 {angstrom} resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.

  13. Analysis of Bolt and Rivet Structural Fasteners Subjected to Dynamic and Quasi-Static Shear Loadings 

    E-Print Network [OSTI]

    Rabalais, Christopher Paul

    2015-05-07

    Non-pretensioned bolted, pretensioned bolted, and riveted lap-spliced specimens were tested to observe how the fasteners’ shear strengths were affected by (1) loading type, (2) fastener type, (3) number of shear planes, ...

  14. Non-Foster Circuit Loaded Periodic Structures for Broadband Fast and Slow Wave Propagation

    E-Print Network [OSTI]

    Long, Jiang

    2015-01-01

    1.1 Periodic Structure, Fast and Slow Wave Propagation . 1.2for a periodic structure. . . . . . . Slow and fast waveA unit cell of a periodic structure . . . . .

  15. Power Converters for Accelerators

    E-Print Network [OSTI]

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  16. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Necking Dynamic fracture a b s t r a c t Martensitic and austenitic steel alloys were designed to optimize under various loading paths. The model was calibrated for two high performance martensitic steels (HSLA-100 and BA-160) and an austenitic steel (TRIP-120). The martensitic steel (BA-160) was designed

  17. Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint 

    E-Print Network [OSTI]

    Richardson, J. A.

    1984-01-01

    A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit...

  18. PERFORMANCE OF CAPILLARY DISCHARGE GUIDED LASER PLASMA WAKEFIELD ACCELERATOR

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    -injection causes increased beam loading leading to broadband lower energy electron beam generation. The trigger] because the characteristic scale length of the accelerating structure is the plasma wave- length, which of Tokyo, Japan EXPERIMENTAL SETUP The schematic of the CDG-LWFA and the diagnostic system is shown in Fig

  19. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Beam Loading by Distributed...

  20. Load test of the 283W Clearwell Roof Deck and Support Structure

    SciTech Connect (OSTI)

    McCoy, R.M.

    1994-09-12

    The 283W Clearwell roof area was load tested according to the approved load-test procedure, WHC-SD-GN-TP-30015, Revision 0, as modified below. The 283W Clearwell is located in the 200 West Area of the Hanford Site and has the following characteristics: Roof deck - concrete slab supported by columns and walls; Roof membrane - tar and gravel; Roof slope - flat (< 10 deg); and Roof elevation - approximately 6 in. above ground level. The 283W Clearwell was visited in April 1993 for a visual inspection, but could not be inspected because of the confined space requirements. It was revisited in February 1994 for the purpose of writing this test report. Because the roof could not be inspected, a test was determined to be the best way to qualify the roof for personnel access.

  1. A New Cavity Design For Medium Beta Acceleration

    SciTech Connect (OSTI)

    He, Feisi [Peking University, Beijing (China); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Heavy duty or cw, superconducting proton and heavy ion accelerators are being proposed and constructed worldwide. The total length of the machine is one of the main drivers in terms of cost. Thus hwr and spoke cavities at medium beta are usually optimized to achieve low surface field and high gradient. A novel accelerating structure at beta=0.5 evolved from spoke cavity is proposed, with lower surface fields but slightly higher heat load. It would be an interesting option for pulsed and cw accelerators with beam energy of more than 200mev/u.

  2. Operational status of the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Malone, R.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; van Steenbergen, A.; Woodle, M.; Zhang, R.S. (Brookhaven National Lab., Upton, NY (USA)); Bigio, I.; Kurnit, N.; Shimada, T. (Los Alamos National Lab., NM (USA)); McDonald, K.T.; Russel, D.P. (Princeton Univ., NJ (USA)); Jiang,

    1990-01-01

    Initial design parameters and early operational results of a 50 MeV high brightness electron linear accelerator are described. The system utilizes a radio frequency electron gun operating at a frequency of 2.856 GHz and a nominal output energy of 4.5 MeV followed by two, 2{pi}/3 mode, disc loaded, traveling wave accelerating sections. The gun cathode is photo excited with short (6 psec) laser pulses giving design peak currents of a few hundred amperes. The system will be utilized to carry out infra-red FEL studies and investigation of new high gradient accelerating structures.

  3. REVIEW OF PRACTICE FOR DEEPLY EMBEDDED/BURIED NPP STRUCTURES SUBJECT TO SEISMIC LOADINGS.

    SciTech Connect (OSTI)

    XU,J.HOFMAYER,C.MILLER,C.GRAVES,H.

    2004-03-24

    Motivated by many design considerations, several conceptual designs for advanced reactors have proposed that the entire reactor building and a significant portion of the steam generator building will be either partially or completely embedded below grade. For the analysis of seismic events, the soil-structure interaction (SSI) effect and passive earth pressure for these types of deeply embedded structures will have a significant influence on the predicted seismic response. Sponsored by the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) is carrying out a research program to assess the significance of these proposed design features for advanced reactors, and to evaluate the existing analytical methods to determine their applicability and adequacy in capturing the seismic behavior of the proposed designs. This paper summarizes a literature review performed by BNL to determine the state of knowledge and practice for seismic analyses of deeply embedded and/or buried (DEB) nuclear containment type structures. Included in the paper is BNL's review of the open literature of existing standards, tests, and practices that have been used in the design and analysis of DEB structures. The paper also provides BNL's evaluation of available codes and guidelines with respect to seismic design practice of DEB structures. Based on BNL's review, a discussion is provided to highlight the applicability of the existing technologies for seismic analyses of DEB structures and to identify gaps that may exist in knowledge and potential issues that may require better understanding and further research.

  4. LHCb GPU Acceleration Project

    E-Print Network [OSTI]

    Badalov, Alexey; Neufeld, Niko; Vilasis Cardona, Xavier

    2015-01-01

    The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other accelerators. This paper describes the system and analyzes its performance.

  5. arXiv:physics/0106098v128Jun2001 Preferential Acceleration of Coherent Magnetic Structures and

    E-Print Network [OSTI]

    of California, Los Angeles, California Vassilis Angelopoulos Space Sciences Laboratory, University of California, Berkeley, California Short title: COHERENT MAGNETIC STRUCTURES AND BBF #12;2 Abstract. Observations therein] indicate that BBF are an important means of magnetotail transport. Removing the fast BBF

  6. Load cell

    DOE Patents [OSTI]

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  7. Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion

    SciTech Connect (OSTI)

    Lin, Lin; Chen, Mohan; Yang, Chao; He, Lixin

    2012-02-10

    We describe how to apply the recently developed pole expansion plus selected inversion (PEpSI) technique to Kohn-Sham density function theory (DFT) electronic structure calculations that are based on atomic orbital discretization. We give analytic expressions for evaluating charge density, total energy, Helmholtz free energy and atomic forces without using the eigenvalues and eigenvectors of the Kohn-Sham Hamiltonian. We also show how to update the chemical potential without using Kohn-Sham eigenvalues. The advantage of using PEpSI is that it has a much lower computational complexity than that associated with the matrix diagonalization procedure. We demonstrate the performance gain by comparing the timing of PEpSI with that of diagonalization on insulating and metallic nanotubes. For these quasi-1D systems, the complexity of PEpSI is linear with respect to the number of atoms. This linear scaling can be observed in our computational experiments when the number of atoms in a nanotube is larger than a few hundreds. Both the wall clock time and the memory requirement of PEpSI is modest. This makes it even possible to perform Kohn-Sham DFT calculations for 10,000-atom nanotubes on a single processor. We also show that the use of PEpSI does not lead to loss of accuracy required in a practical DFT calculation.

  8. Terahertz-driven linear electron acceleration

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  9. Static load cycle testing of a low-aspect-ratio four-inch wall, TRG-type structure, TRG-5-4 (1. 0, 0. 56)

    SciTech Connect (OSTI)

    Farrar, C.R.; Bennett, J.G.; Dunwoody, W.E. (Los Alamos National Lab., NM (USA)); Baker, W.E. (New Mexico Univ., Albuquerque, NM (USA))

    1990-11-01

    This report is the second in a series of test reports that details the quasi-static cyclic testing of low height-to-length aspect ratio reinforced concrete structures. The test structures were designed according to the recommendations of a technical review group for the US Nuclear Regulatory Commission sponsored Seismic Category I Structures Program. The structure tested and reported here had 4-in.-thick shear and end walls, and the elastic deformation was dominated by shear. The background of the program and previous results are given for completeness. Details of the geometry, material property tests, construction history, ultrasonic testing, and modal testing to find the undamaged dynamic characteristics of the structures are given. Next, the static test procedure and results in terms of stiffness and load deformation behavior are given. Finally, results are shown relative to other known results, and conclusions are presented. 33 refs., 140 figs., 13 tabs.

  10. Study of beam loading and its compensation in the Compact Ultrafast Terahertz Free-Electron Laser injector linac

    SciTech Connect (OSTI)

    Lal, Shankar Pant, K. K.

    2014-12-15

    The RF properties of an accelerating structure, and the pulse structure and charge per bunch in the electron beam propagating through it are important parameters that determine the impact of beam loading in the structure. The injector linac of the Compact Ultrafast Terahertz Free-Electron Laser (CUTE-FEL) has been operated with two different pulse structures during initial commissioning experiments and the effect of beam loading on the accelerated electron beam parameters has been studied analytically for these two pulse structures. This paper discusses the analytical study of beam loading in a Standing Wave, Plane Wave Transformer linac employed in the CUTE-FEL setup, and a possible technique for its compensation for the electron beam parameters of the CUTE-FEL. A parametric study has been performed to study beam loading for different beam currents and to optimize injection time of the electron beam to compensate beam loading. Results from the parametric study have also been used to explain previously observed results from acceleration experiments in the CUTE-FEL setup.

  11. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  12. Radiation load to the SNAP CCD

    SciTech Connect (OSTI)

    N. V. Mokhov, I. L. Rakhno and S. I. Striganov

    2003-08-14

    Results of an express Monte Carlo analysis with the MARS14 code of radiation load to the CCD optical detectors in the Supernova Acceleration Project (SNAP) mission presented for realistic radiation environment over the satellite orbit.

  13. Multi-gigaelectronvolt, low-energy spread acceleration of positrons...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multi-gigaelectronvolt, low-energy spread acceleration of positrons in a self-loaded plasma wakefield Citation Details In-Document Search Title:...

  14. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  15. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of Westinghouse WE 17×17 pressurized water reactor fuel assemblies with a discharge burnup range of 30-58 GWd/MTU (assembly average), loaded in a representative high-capacity (?32 fuel rod assemblies) transportation package. Evaluations will be performed for representative normal conditions of rail transport involving a rail conveyance capable of meeting the Association of American Railroads (AAR) S-2043 specification. UNF modeling is anticipated to be defined to the pellet-cladding level and take in to account influences associated with spacer grids, intermediate fluid mixers, and control components. The influence of common degradation issues such as ductile-to-brittle-transition will also be accounted for. All model development and analysis will be performed with commercially available software packages exclusively. Inputs and analyses will be completely documented, all supporting information will be traceable, and bases will be defendable so as to be most useful to the U.S. Department of Energy community and mission. The expected completion date is the end of fiscal year (FY) 2013.

  16. 1694 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 43, NO. 5, MAY 2015 Plume Structure and Ion Acceleration

    E-Print Network [OSTI]

    Walker, Mitchell

    in electric propulsion. The literature suggests that the ion acceleration mechanism is a current-free double a range of operating conditions: 343­600 W RF power at 13.56 MHz, 50­350 G, and 1.5-mg/s Ar at a pressure using RF waves transmitted from an antenna [1]­[7]. The proposed applications of helicon sources have

  17. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  18. Parametric study of cantilever walls subjected to seismic loading

    SciTech Connect (OSTI)

    Comina, Cesare; Foti, Sebastiano; Lancellotta, Renato; Leuzzi, Francesco; Pettiti, Alberto; Corigliano, Mirko; Lai, Carlo G.; Nicosia, Giovanni Li Destri; Psarropoulos, Prodromos N.; Paolucci, Roberto; Zanoli, Omar

    2008-07-08

    The design of flexible earth retaining structures under seismic loading is a challenging geotechnical problem, the dynamic soil-structure interaction being of paramount importance for this kind of structures. Pseudo-static approaches are often adopted but do not allow a realistic assessment of the performance of the structure subjected to the seismic motions. The present paper illustrates a numerical parametric study aimed at estimating the influence of the dynamic soil-structure interaction in the design. A series of flexible earth retaining walls have been preliminary designed according to the requirements of Eurocode 7 and Eurocode 8--Part 5; their dynamic behaviour has been then evaluated by means of dynamic numerical simulations in terms of bending moments, accelerations and stress state. The results obtained from dynamic analyses have then been compared with those determined using the pseudo-static approach.

  19. Reliability of Floating Structures: Extreme Response and Load Factor Steven R. Winterstein and Satyendra Kumar, Civil Eng. Dept., Stanford University

    E-Print Network [OSTI]

    Sweetman, Bert

    buoy. Design of the spar has been considered in two deep­water sites, one in the Gulf of Mexico structures are an attractive option to sup­ port oil and gas production in deep water. They promise effects are demonstrated by applying these methods to a specific floating structure: a deep­draft spar

  20. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  1. Structures have traditionally been designed to work below their critical load, because any instability was normally identified as connected to

    E-Print Network [OSTI]

    Bigoni, Davide

    School 'Extremely Deformable Structures' held at the Interna- tional Centre for Mechanical Sciences (CISM a valid introduction to the field of extreme mechanics. I wish to thank the Rectors of the CISM Professors

  2. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01

    became the APS Division of the Physics of Beams. If oneorganizes accelerator physics sessions at APS meetings, and,creating the APS topical group on beam physics, which later

  3. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  4. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  5. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  6. Operation Hardtack. Project 1. 9. Loading on buried simulated structures in high-overpressure regions. Report for April-October 1958

    SciTech Connect (OSTI)

    Bultmann, E.H.; McDonough, G.F.; Sinnamon, G.K.

    1984-10-31

    The objective of this project was to study some of the factors affecting the transmission of air-blast-induced pressure through soil and the loading produced on buried structures by such pressures in the high-pressure region (approximately 250 psi). Factors studied were: (1) the attenuation of pressure in a sand deposit when the water table is a few feet below the ground surface; (2) the effect of duration of positive phase of blast on the pressure transmitted through such a soil; (3) the effect of structure flexibility on the pressure acting on structures buried in such a soil; and (4) the relationship between horizontal and vertical pressures in such a soil. The project employed 43 devices, each a rigid cylinder having one rigid end and one deformable-diaphragm end. The devices were buried at depths ranging from 0 to 20 feet at each of two locations at the Eniwetok Proving Ground. The locations were chosen to give a predicted ground surface overpressure of about 250 psi from each of two shots, Cactus and Koa.

  7. Induction of electron injection and betatron oscillation in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure

    SciTech Connect (OSTI)

    Ho, Y.-C.; Hung, T.-S.; Chen, W.-H. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China) [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Jhou, J.-G. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Qayyum, H.; Chen, S.-Y. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China) [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Chu, H.-H. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China)] [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Lin, J.-Y. [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China)] [Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan (China); Wang, J. [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China) [Department of Physics, National Central University, Jhong-Li 320, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2013-08-15

    By adding a transverse heater pulse into the axicon ignitor-heater scheme for producing a plasma waveguide, a variable three-dimensionally structured plasma waveguide can be fabricated. With this technique, electron injection in a plasma-waveguide-based laser wakefield accelerator was achieved and resulted in production of a quasi-monoenergetic electron beam. The injection was correlated with a section of expanding cross-section in the plasma waveguide. Moreover, the intensity of the X-ray beam produced by the electron bunch in betatron oscillation was greatly enhanced with a transversely shifted section in the plasma waveguide. The technique opens a route to a compact hard-X-ray pulse source.

  8. Accelerator Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating theAccelerator

  9. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAbout NewAccelerator Systems Accelerator

  10. A three phase load flow algorithm for Shipboard Power Systems 

    E-Print Network [OSTI]

    Medina-Calder?on, M?onica M

    2003-01-01

    -Seidel and/or Newton Raphson techniques, were primarily developed for transmission system analysis. Distribution load flow analysis must incorporate its unique characteristics such as unbalanced loads, distributed loads, radial network structure, and one...

  11. Accelerated stress rupture lifetime assessment for fiber composites

    SciTech Connect (OSTI)

    Groves, S.E.; DeTeresa, S.J.; Sanchez, R.J.; Zocher, M.A.; Christensen, R.M.

    1997-02-01

    Objective was to develop a theoretical and experimental framework for predicting stress rupture lifetime for fiber polymer composites based on short-term accelerated testing. Originally a 3-year project, it was terminated after the first year, which included stress rupture experiments and viscoelastic material characterization. In principle, higher temperature, stress, and saturated environmental conditions are used to accelerate stress rupture. Two types of specimens were to be subjected to long-term and accelerated static tensile loading at various temperatures, loads in order to quantify both fiber and matrix dominated failures. Also, we were to apply state-of-the-art analytical and experimental characterization techniques developed under a previous DOE/DP CRADA for capturing and tracking incipient degradation mechanisms associated with mechanical performance. Focus was increase our confidence to design, analyze, and build long-term composite structures such as flywheels and hydrogen gas storage vessels; other applications include advanced conventional weapons, infrastructures, marine and offshore systems, and stockpile stewardship and surveillance. Capabilities developed under this project, though not completed or verified, are being applied to NIF, AVLIS, and SSMP programs.

  12. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  13. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  14. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  15. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  16. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  17. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more »90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  18. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  19. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating the transfer

  20. Three-dimensional Accelerating Electromagnetic Waves

    E-Print Network [OSTI]

    Miguel A. Bandres; Miguel A. Alonso; Ido Kaminer; Mordechai Segev

    2013-03-25

    We present a general theory of three-dimensional nonparaxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  1. Increasing the transformer ratio at the Argonne wakefield accelerator.

    SciTech Connect (OSTI)

    Power, J.G.; Conde, M.; Liu, W.; Yusof, Z.; Gai, W.; Jing, C.; Kanareykin, A. (High Energy Physics); (Euclid Techlabs, LLC)

    2011-01-01

    The transformer ratio is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss experienced by the drive bunch (or a bunch within a multidrive bunch train). This plays an important role in the collinear wakefield acceleration scheme. A high transformer ratio is desirable since it leads to a higher overall efficiency under similar conditions (e.g. the same beam loading, the same structure, etc.). One technique to enhance the transformer ratio beyond the ordinary limit of 2 is to use a ramped bunch train. The first experimental demonstration observed a transformer ratio only marginally above 2 due to the mismatch between the drive microbunch length and the frequency of the accelerating structure [C. Jing, A. Kanareykin, J. Power, M. Conde, Z. Yusof, P. Schoessow, and W. Gai, Phys. Rev. Lett. 98, 144801 (2007)]. Recently, we revisited this experiment with an optimized microbunch length using a UV laser stacking technique at the Argonne Wakefield Accelerator facility and measured a transformer ratio of 3.4. Measurements and data analysis from these experiments are presented in detail.

  2. Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

    SciTech Connect (OSTI)

    Massey, Jeffery A; Eaton, Scott J; Wagner, Robert M

    2009-01-01

    Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder. Measured in-cylinder pressure is utilized as a load input to the FE model to provide an initial comparison of the computed and measured surface accelerations. Additionally, the cylindrical cavity resonant modes of the engine geometry are computed and the in-cylinder pressure frequency content is examined to verify this resonant behavior. Experimental correlations between heat release and surface acceleration metrics are then used to identify specific acceleration frequency bands in which characteristics of the combustion heat release process is detected with minimal structural resonant influence. Investigation of a metric capable of indicting combustion phasing is presented. Impact of variations in the combustion energy release process on the surface accelerations is discussed.

  3. Heavy loads

    SciTech Connect (OSTI)

    Metz, D.

    1982-01-01

    The extreme pressures on the roof and walls of an earth-sheltered residential home are discussed and the need for careful planning is stressed. Pertinent terms are defined. Footings and wall structure (reinforced concrete walls and concrete block walls) are described. Roofing systems are discussed in detail and illustrated: (1) poured-in-place concrete roof slabs; (2) pre-cast concrete planks; and (3) heavy timber roofs. Insulation of earth-sheltered homes is reviewed in terms of using: (1) urethanes; (2) extruded polystyrene; and (3) expanded polystyrene. Advantages, disadvantages, R-factors, costs, and installation are discussed. (MJJ)

  4. Shot loading trainer analysis

    SciTech Connect (OSTI)

    Peterson, T.K.

    1995-02-15

    This document presents the results from the analysis of the shot loading trainer (SLT). This device will be used to test the procedure for installing shot into the annulus of the Project W-320 shipping container. To ensure that the shot is installed uniformly around the container, vibrators will be used to settle the shot. The SLT was analyzed to ensure that it would not jeopardize worker safety during operation. The results from the static analysis of the SLT under deadweight and vibrator operating loads show that the stresses in the SLT are below code allowables. The results from the modal analysis show that the natural frequencies of the SLT are far below the operating frequencies of the vibrators, provided the SLT is mounted on pneumatic tires. The SLT was also analyzed for wind, seismic, deadweight, and moving/transporting loads. Analysis of the SLT is in accordance with SDC-4.1 for safety class 3 structures (DOE-RL 1993) and the American Institute of Steel Construction (AISC) Manual of Steel Construction (AISC 1989).

  5. Retrofitting unreinforced concrete masonry to resist tornado loading

    E-Print Network [OSTI]

    Dorshorst, Evan G. (Evan Gregory)

    2013-01-01

    Advances in structural design and building materials have significantly increased the performance of many structures under the extreme loading conditions associated with natural disasters such as earthquakes. However, ...

  6. Beam loading compensation of traveling wave linacs through the time dependence of the rf drive

    SciTech Connect (OSTI)

    Towne N.; Rose J.

    2011-09-30

    Beam loading in traveling-wave linear accelerating structures leads to unacceptable spread of particle energies across an extended train of bunched particles due to beam-induced field and dispersion. Methods for modulating the rf power driving linacs are effective at reducing energy spread, but for general linacs do not have a clear analytic foundation. We report here methods for calculating how to modulate the rf drive in arbitrarily nonuniform traveling-wave linacs within the convective-transport (power-diffusion) model that results in no additional energy spread due to beam loading (but not dispersion). Varying group velocity, loss factor, and cell quality factor within a structure, and nonzero particle velocity, are handled.

  7. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  8. Loading and conjugating cavity biostructures

    DOE Patents [OSTI]

    Hainfeld, J.F.

    1997-11-25

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  9. PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN

    E-Print Network [OSTI]

    Sweetman, Bert

    1 PARAMETRIC MODELS FOR ESTIMATING WIND TURBINE FATIGUE LOADS FOR DESIGN Lance Manuel1 Paul S-4020 ABSTRACT International standards for wind turbine certification depend on finding long-term fatigue load loads. #12;2 INTRODUCTION Design constraints for wind turbine structures fall into either extreme load

  10. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested by one of us for devices that produce beams of chemically interesting species at relative kinetic

  11. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    E-Print Network [OSTI]

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  12. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  13. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  14. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  15. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  16. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  17. Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint 

    E-Print Network [OSTI]

    Jackson, C. E.

    1984-01-01

    load management has been implemented already. Additional load management is possible; however, optimizing it will require close industry and electric utility company cooperation to develop new incentives and rate structures to make it economically...

  18. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  19. Accelerated expansion without dark energy

    E-Print Network [OSTI]

    Dominik J. Schwarz

    2002-10-03

    The fact that the LambdaCDM model fits the observations does not necessarily imply the physical existence of `dark energy'. Dropping the assumption that cold dark matter (CDM) is a perfect fluid opens the possibility to fit the data without dark energy. For imperfect CDM, negative bulk pressure is favoured by thermodynamical arguments and might drive the cosmic acceleration. The coincidence between the onset of accelerated expansion and the epoch of structure formation at large scales might suggest that the two phenomena are linked. A specific example is considered in which effective (anti-frictional) forces, which may be due to dissipative processes during the formation of inhomogeneities, give rise to accelerated expansion of a CDM universe.

  20. Load Management for Industry 

    E-Print Network [OSTI]

    Konsevick, W. J., Jr.

    1982-01-01

    categories: Thermal Energy Storage, Communication and Load Control, Interconnection and Operation of Power Systems, and Selective Load Promotions. The endeavors of the utility industry and Ohio Edison Company in three of the four categories are described...

  1. Load sensing system

    DOE Patents [OSTI]

    Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  2. Summary Report of Working Group 1: Laser-Plasma Acceleration

    SciTech Connect (OSTI)

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  3. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  4. A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading

    SciTech Connect (OSTI)

    Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

    2001-11-01

    A study has been made of high-cycle fatigue in 2um thick structural films of n+- type, polycrystalline silicon for MEMS applications.

  5. Accelerator Development @ Daresbury Laboratory

    E-Print Network [OSTI]

    -injectors ­ Superconducting RF acceleration ­ Cryogenic systems ­ Advanced diagnostics ­ Free Electron Lasers ­ Photon beam radioisotopes. 2 Treatment & Diagnostics #12;Basic Accelerator Configuration 3 Beam Source Low Energy Capture electron beam technology development. 4 Booster Compressor IR-FEL Photoinjector Laser Linac Acceleration

  6. Enhanced Magnetic Trap Loading for Atomic Strontium

    E-Print Network [OSTI]

    Barker, D S; Pisenti, N C; Campbell, G K

    2015-01-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser tuned to the 3P1 to 3S1 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  7. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications

    SciTech Connect (OSTI)

    Wilson, Joshua L

    2008-09-01

    A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more effcient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modifed finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance.

  8. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect (OSTI)

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  9. Accelerating Polarized Protons to High Energy

    SciTech Connect (OSTI)

    Bai, M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Butler, J.; Cameron, P.; Connolly, R.; Delong, J.; D'Ottavio, T.; Drees, A.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.

    2007-06-13

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  10. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    DOE Patents [OSTI]

    Ziph, Benjamin (Ann Arbor, MI); Strodtman, Scott (Ypsilanti, MI); Rose, Thomas K (Chelsea, MI)

    1999-01-26

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  11. Systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators

    DOE Patents [OSTI]

    Grisham, Larry R

    2013-12-17

    The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.

  12. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  13. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview Vitrification - general background Joule...

  14. Load sensing system

    DOE Patents [OSTI]

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  15. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  16. Strain rate and inertial effects on impact loaded single-edge notch bend specimens

    SciTech Connect (OSTI)

    Vargas, P.M.; Dodds, R.H. Jr.

    1995-12-31

    Many problems in fracture mechanics of ductile metals involve surface breaking defects located in structures subjected to impact or blast. When the severity of impact loads is sufficient to produce large inelastic deformations, the assessment of crack-tip conditions must include the effects of plasticity, strain rate and inertia. This work examines the interaction of impact loading, inelastic material deformation and rate sensitivity with the goal of improving the interpretation of ductile fracture toughness values measured under dynamic loading. The authors focus on shallow and deeply notched bend test specimens, SE(B)s, employed routinely to measure the static fracture toughness of a material. A thorough understanding of the test specimen`s dynamic behavior is a prerequisite to the application of measured fracture properties in structural applications. Three-dimensional, nonlinear dynamic analyses are performed for SE(B) fracture specimens subjected to impact loading. Loading rates obtained in conventional drop tower tests are applied in the analyses. An explicit time integration procedure coupled with an efficient (one-point) element integration scheme is employed to compute the dynamic response of the specimen. Strain-rate sensitivity is introduced via a new, efficient implementation of the Bodner-Partom viscoplastic constitutive model. Material properties for A533B steel are used in the analyses. Static analyses of the SE(B) specimens provide baseline responses for assessment of inertial effects. Similarly, dynamic analyses using a strain-rate insensitive material provide reference responses for the assessment of strain rate effects. Strains at key locations on the specimens and the support reactions are extracted from the analyses to assess the accuracy of static formulas commonly used to estimate applied J values. Inertial effects on the applied J are quantified by examining the acceleration component of J evaluated through a domain integral procedure.

  17. Diffusive Acceleration of Ions at Interplanetary Shocks

    E-Print Network [OSTI]

    Matthew G. Baring; Errol J. Summerlin

    2005-06-08

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-convection equation. In this theory/data comparison, it is demonstrated that diffusive acceleration theory can, to first order, successfully account for both the proton distribution data near the shock, and the observation of energetic protons farther upstream of this interplanetary shock than lower energy pick-up protons, using a single turbulence parameter. The principal conclusion is that diffusive acceleration of inflowing upstream ions can model this pick-up ion-rich event without the invoking any seed pre-acceleration mechanism, though this investigation does not rule out the action of such pre-acceleration.

  18. Synthesis of polyoxometalate-loaded epoxy composites

    DOE Patents [OSTI]

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  19. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  20. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Kushal Shah; Vassili Gelfreich; Vered Rom-Kedar; Dmitry Turaev

    2015-04-03

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  1. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  2. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  3. Accelerated quantification of critical parameters for predicting the service life and life cycle costs of chloride-laden reinforced concrete structures 

    E-Print Network [OSTI]

    Pillai Gopalakrishnan, Radhakrishna

    2003-01-01

    The use of corrosion resistant steels (instead of conventional carbon steels) and/or high performance concrete can increase the overall service life and can reduce the life cycle cost (LCC) of reinforced concrete (RC) structures exposed to chloride...

  4. From Autos to Accelerators

    Office of Energy Efficiency and Renewable Energy (EERE)

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  5. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Jan de Leeuw

    2011-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  6. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Leeuw, Jan de

    2008-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  7. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  8. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  9. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 3D virtualization company, enabling the use of 3D virtualization in art and cultural preservation markets. LAVA Chief Operations Officer Steve Smith said the "acceleration"...

  10. The Klynac: An integrated klystron and linear accelerator

    SciTech Connect (OSTI)

    Potter, James M. [JP Accelerator Works, Inc., 2245 47th Street, Los Alamos NM 87544 (United States); Schwellenbach, David; Meidinger, Alfred [National Security Technologies, LLC, Los Alamos Operations, P.O. Box 809, Los Alamos NM 87544 (United States)

    2013-04-19

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  11. The Klynac: An Integrated Klystron and Linear Accelerator

    SciTech Connect (OSTI)

    Potter, J. M. [JP Accelerator Works; Schwellenbach, D. [NSTec

    2013-04-01

    The Klynac concept integrates an electron gun, a radio frequency (RF) power source, and a coupled-cavity linear accelerator into a single resonant system. The klystron is essentially a conventional klystron structure with an input cavity, some number of intermediate cavities and an output cavity. The accelerator structure is, likewise, a conventional on-axis coupled structure. The uniqueness is the means of coupling the klystron output cavity to the accelerator. The coupler is a resonant coupler rather than an ordinary transmission line. The geometry of such a system need not be coaxial. However, if the klystron and accelerator are coaxial we can eliminate the need for a separate cathode for the accelerator by injecting some of the klystron beam into the accelerator. Such a device can be made cylindrical which is ideal for some applications.

  12. Performance Optimization Criteria for Pulsed Inductive Plasma Acceleration Kurt A. Polzin

    E-Print Network [OSTI]

    the discharge is inductively driven. In ad- dition, a wider variety of propellants (e.g. CO2, H2O) be- comes as a greater fraction of the propellant is loaded nearer to the inductive acceleration coil. I. INTRODUCTION

  13. Adhesion clusters under shared linear loading: a stochastic analysis

    E-Print Network [OSTI]

    T. Erdmann; U. S. Schwarz

    2004-03-22

    We study the cooperative rupture of multiple adhesion bonds under shared linear loading. Simulations of the appropriate Master equation are compared with numerical integration of a rate equation for the mean number of bonds and its scaling analysis. In general, force-accelerated rupture is rather abrupt. For small clusters and slow loading, large fluctuations occur regarding the timepoint of final rupture, but not the typical shape of the rupture trajectory. For vanishing rebinding, our numerical results confirm three scaling regimes predicted before for cluster lifetime as a function of loading rate. For finite rebinding, the intermediate loading regime becomes irrelevant, and a sequence of two new scaling laws can be identified in the slow loading regime.

  14. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  15. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  17. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  18. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  19. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  20. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  1. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  2. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  3. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  4. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  5. Note: Numerical simulation and experimental validation of accelerating voltage formation for a pulsed electron accelerator

    SciTech Connect (OSTI)

    Egorov, I.

    2014-06-15

    This paper describes the development of a computation model of a pulsed voltage generator for a repetitive electron accelerator. The model is based on a principle circuit of the generator, supplemented with the parasitics elements of the construction. Verification of the principle model was achieved by comparison of simulation with experimental results, where reasonable agreement was demonstrated for a wide range of generator load resistance.

  6. A loaded thermoacoustic engine

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1995-11-01

    Measurements and analysis of the performance of a thermoacoustic engine driving a dissipative load are presented. The effect of the load can be explained qualitatively using a simple low-amplitude approximation and quantitatively by invoking a more accurate low-amplitude numerical solution. The heater power {ital @};DQ and hot-end temperature {ital T}{sub {ital H}} are found to be simple functions of the load impedance and the unloaded values of {ital @};DQ and {ital T}{sub {ital H}}. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  7. Accelerated Quantum Dynamics

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01

    In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

  8. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  9. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  10. Testing a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  11. Load Monitoring CEC/LMTF Load Research Program

    SciTech Connect (OSTI)

    Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

    2007-11-30

    This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

  12. The design and performance of Static Var Compensators for particle accelerators

    E-Print Network [OSTI]

    Kahle, Karsten; Genton, Charles-Mathieu

    2015-01-01

    Particle accelerators, and in particular synchrotrons, represent large cycling non-linear loads connected to the electrical distribution network. This paper discusses the typical design and performance of Static Var Compensators (SVCs) to obtain the excellent power quality levels required for particle accelerator operation.

  13. The MESA accelerator

    SciTech Connect (OSTI)

    Aulenbacher, Kurt [Institut für Kernphysik, Johannnes-Gutenberg-Universität Mainz (Germany)

    2013-11-07

    The MESA accelerator will operate for particle and nuclear physics experiments in two different modes. A first option is conventional c.w. acceleration yielding 150-200MeV spin-polarized external beam. Second, MESA will be operated as a superconducting multi-turn energy recovery linac (ERL), opening the opportunity to perform experiments with a windowless target with beam current of up to 10 mA. The perspectives for innovative experiments with such a machine are discussed together with a sketch of the accelerator physics issues that have to be solved.

  14. Multifractal statistics of Lagrangian velocity and acceleration in turbulence

    E-Print Network [OSTI]

    L. Biferale; G. Boffetta; A. Celani; B. J. Devenish; A. Lanotte; F. Toschi

    2004-03-11

    The statistical properties of velocity and acceleration fields along the trajectories of fluid particles transported by a fully developed turbulent flow are investigated by means of high resolution direct numerical simulations. We present results for Lagrangian velocity structure functions, the acceleration probability density function and the acceleration variance conditioned on the instantaneous velocity. These are compared with predictions of the multifractal formalism and its merits and limitations are discussed.

  15. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    ) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 to achieve 10 GeV electron beams from meter-scale accelerator structures using a PW-class laser system, which

  16. A comparison of measured wind park load histories with the WISPER and WISPERX load spectra

    SciTech Connect (OSTI)

    Kelley, N.D.

    1995-01-01

    The blade-loading histories from two adjacent Micon 65/13 wind turbines are compared with the variable-amplitude test-loading histories known as the WISPER and WISPERX spectra. These standardized loading sequences were developed from blade flapwise load histories taken from nine different horizontal-axis wind turbines operating under a wide range of conditions in Europe. The subject turbines covered a broad spectrum of rotor diameters, materials, and operating environments. The final loading sequences were developed as a joint effort of thirteen different European organizations. The goal was to develop a meaningful loading standard for horizontal-axis wind turbine blades that represents common interaction effects seen in service. In 1990, NREL made extensive load measurements on two adjacent Micon 65/13 wind turbines in simultaneous operation in the very turbulent environment of a large wind park. Further, before and during the collection of the loads data, comprehensive measurements of the statistics of the turbulent environment were obtained at both the turbines under test and at two other locations within the park. The trend to larger but lighter wind turbine structures has made an understanding of the expected lifetime loading history of paramount importance. Experience in the US has shown that the turbulence-induced loads associated with multi-row wind parks in general are much more severe than for turbines operating individually or within widely spaced environments. Multi-row wind parks are much more common in the US than in Europe. In this paper we report on our results in applying the methodology utilized to develop the WISPER and WISPERX standardized loading sequences using the available data from the Micon turbines. While the intended purpose of the WISPER sequences were not to represent a specific operating environment, we believe the exercise is useful, especially when a turbine design is likely to be installed in a multi-row wind park.

  17. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  18. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser, though powered by a smaller SRF accelerator, holds power records in the production of infrared, ultraviolet and terahertz beams. The FEL has been used in a variety of...

  19. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  20. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  1. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  2. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect (OSTI)

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  3. Ultracompact Accelerator Technology for a Next-Generation Gamma-Ray Source

    SciTech Connect (OSTI)

    Marsh, R A; Albert, F; Anderson, S G; Gibson, D J; Wu, S S; Hartemann, F V; Barty, C J

    2012-05-14

    This presentation reported on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering gamma-ray Source under development at LLNL for homeland security applications. This paper summarizes the status of various facets of current accelerator activities at LLNL. The major components for the X-band test station have been designed, fabricated, and await installation. The XL-4 klystron has been delivered, and will shortly be dressed and installed in the ScandiNova modulator. High power testing of the klystron into RF loads will follow, including adjustment of the modulator for the klystron load as necessary. Assembly of RF transport, test station supports, and accelerator components will follow. Commissioning will focus on processing the RF gun to full operating power, which corresponds to 200 MV/m peak electric field on the cathode surface. Single bunch benchmarking of the Mark 1 design will provide confidence that this first structure operates as designed, and will serve as a solid starting point for subsequent changes, such as a removable photocathode, and the use of various cathode materials for enhanced quantum efficiency. Charge scaling experiments will follow, partly to confirm predictions, as well as to identify important causes of emittance growth, and their scaling with charge. Multi-bunch operation will conclude testing of the Mark 1 RF gun, and allow verification of code predictions, direct measurement of bunch-to-bunch effects, and initial implementation compensation mechanisms. Modeling will continue and focus on supporting the commissioning and experimental program, as well as seeking to improve all facets of linac produced Compton gamma-rays.

  4. DAMAGE LOCALIZATION USING LOAD VECTORS Dionisio Bernal

    E-Print Network [OSTI]

    Bernal, Dionisio

    DAMAGE LOCALIZATION USING LOAD VECTORS Dionisio Bernal Associate Professor Department of Civil: A technique to localize damage in structures that can be treated as linear in the pre and post-damage state is presented. Central to the approach is the computation of a set of vectors, designated as Damage Locating

  5. Spherical fields as nonparaxial accelerating waves

    E-Print Network [OSTI]

    Miguel A. Alonso; Miguel A. Bandres

    2012-11-07

    We introduce nonparaxial spatially accelerating waves whose two-dimensional transverse profiles propagate along semicircular trajectories while approximately preserving their shape. We derive these waves by considering imaginary displacements on spherical fields, leading to simple closed-form expressions. The structure of these waves also allows the closed-form description of pulses.

  6. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOE Patents [OSTI]

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  7. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOE Patents [OSTI]

    Maschke, Alfred W. (East Moriches, NY)

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  8. Vacuum polarization induced by a uniformly accelerated charge

    E-Print Network [OSTI]

    B. Linet

    1995-03-30

    We consider a point charge fixed in the Rindler coordinates which describe a uniformly accelerated frame. We determine an integral expression of the induced charge density due to the vacuum polarization at the first order in the fine structure constant. In the case where the acceleration is weak, we give explicitly the induced electrostatic potential.

  9. Load research manual. Volume 1. Load research procedures

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  10. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  11. Measuring alignment of loading fixture

    DOE Patents [OSTI]

    Scavone, Donald W. (Saratoga Springs, NY)

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  12. Load Management Made Simple 

    E-Print Network [OSTI]

    Schneider, K.

    1985-01-01

    Company have moved to a demand side or load management mode which seeks to influence customers to change electric usage patterns to more efficiently use available generating capacity. Since 1970, the TUEC system peak demand has more than doubled from about...

  13. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect (OSTI)

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres; Barriento, Carolina; Stephen, Barkaszi; Hubert, Seigneur

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals of reducing the total installed cost of solar energy systems by 75%. The largest percentage of the total installed cost of solar energy system is associated with balance of system cost, with up to 40% going to “soft” costs; which include customer acquisition, financing, contracting, permitting, interconnection, inspection, installation, performance, operations, and maintenance. The calculator that is being developed will provide wind loads in real-time for any solar system designs and suggest the proper installation configuration and hardware; and therefore, it is anticipated to reduce system design, installation and permitting costs.

  14. Stability of fluid-loaded structures

    E-Print Network [OSTI]

    Arzoumanian, Sevag Hrair

    2011-06-07

    and AcknowledgementsThis dissertation is the result of my own work and includes nothing which is the out-come of work done in collaboration or as part of another degree or diploma. Parts ofchapters 2 through 4 and chapter 9 have been published as an ASME paper (Arzou... sed to a "modal sup er pos ition"-- view of the flutte r ing plat e problem. First, we derive the energy balance relations for the extende d plate (i.e., plate with two sided flow, spring found ation and plate pretension) and define a gener alized...

  15. Investigation of resonators loaded periodic structures

    E-Print Network [OSTI]

    Diao, M'baye, S.M. Massachusetts Institute of Technology

    2006-01-01

    The study of metamaterials has brought about new changes in modern microwave communication systems. As predicted by Veselago some 37 years ago, substances which exhibit simultaneously, negative permittivity ([epsilon]) and ...

  16. Beam-driven acceleration in ultra-dense plasma media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more »from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  17. Overview of the SuperNova/Acceleration probe (SNAP)

    E-Print Network [OSTI]

    2002-01-01

    from 42 High-Redshift Supernovae,” Astrophys J. 517, pp.Observational Evidence from Supernovae for an AcceleratingEnergy with Type Ia Supernovae and Large-Scale Structure,”

  18. Accelerating the development of complex products in extended enterprises

    E-Print Network [OSTI]

    Dawson, Benjamin Alan

    2011-01-01

    This thesis examines strategies to accelerate product development in a large commercial aerospace program structured as an extended enterprise where first and second tier suppliers perform most of the detailed product ...

  19. Electrical Load Modeling and Simulation

    SciTech Connect (OSTI)

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  20. Response of Lithium Polymer Batteries to Mechanical Loading

    E-Print Network [OSTI]

    Petta, Jason

    Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 #12;Outline · Motivation · Battery Structure · Testing and Results · Conclusions #12;Motivation · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery

  1. Buildings Stock Load Control 

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

    2006-01-01

    , Shenzhen, China Building Commissioning for Energy Efficiency and Comfort, Vol.VI-9-4 Buildings Stock Load Control Ms H. Amrani Joutey Mr H. Vaezi-Nejad Mr B. Clemonçon Mr F.Rosenstein PHD student Research engineer Research... electricity consumption and curtail peak demand but in local form: building by building. Few developments are carried out for multi sites management. Multi sites management is essential in crisis and/or peak periods (large energy demand in particular during...

  2. Radiation Damage: Accelerator Surprises

    E-Print Network [OSTI]

    McDonald, Kirk

    of this process. · Helium gas production adds, becoming increasingly important at high energies. · Graphite as material properties including its temperature. These dependencies ­ amplified by increased helium gas production for high-energy beams - are responsible for "surprises/unknowns" learned recently at accelerators

  3. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  4. Load Management: Opportunity or Calamity? 

    E-Print Network [OSTI]

    Males, R.; Hassig, N.

    1981-01-01

    larger now than prior to 1973. Utilities are examining two options which can be termed load management. One option is to control discretionary loads during peak periods. Cycling of residential water heaters or shutting off industrial electric furnaces...

  5. Prudent behaviour accelerates disease transmission

    E-Print Network [OSTI]

    Scarpino, Samuel V; Hebert-Dufresne, Laurent

    2015-01-01

    Infectious diseases often spread faster near their peak than would be predicted given early data on transmission. Despite the commonality of this phenomena, there are no known general mechanisms able to cause an exponentially spreading dis- ease to begin spreading faster. Indeed most features of real world social networks, e.g. clustering1,2 and community structure3, and of human behaviour, e.g. social distancing4 and increased hygiene5, will slow disease spread. Here, we consider a model where individuals with essential societal roles-e.g. teachers, first responders, health-care workers, etc.- who fall ill are replaced with healthy individuals. We refer to this process as relational exchange. Relational exchange is also a behavioural process, but one whose effect on disease transmission is less obvious. By incorporating this behaviour into a dynamic network model, we demonstrate that replacing individuals can accelerate disease transmission. Furthermore, we find that the effects of this process are trivial w...

  6. Aerosol penetration through a seismically loaded shear wall

    SciTech Connect (OSTI)

    Farrar, C.R.; Girrens, S.P.

    1992-05-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

  7. Aerosol penetration through a seismically loaded shear wall

    SciTech Connect (OSTI)

    Farrar, C.R.; Girrens, S.P.

    1992-01-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

  8. Collective Acceleration in Solar Flares

    E-Print Network [OSTI]

    Barletta, W.

    2008-01-01

    Collective Acceleration in Solar Flares w. Barletta, S.S.COLLECTIVE ACCELERATION IN SOLAR FLARES* W. Barletta (1), S.Park, MD 20742 Abstract Solar flare data are examined with

  9. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  10. Theory Challenges of the Accelerating Universe

    E-Print Network [OSTI]

    Linder, Eric V.

    2009-01-01

    of the accelerating universe. Acknowledgments I thankof the Accelerating Universe Eric V. Linder Berkeley Lab,of the Accelerating Universe Eric V. Linder Berkeley Lab,

  11. Multidimensional spectral load balancing

    SciTech Connect (OSTI)

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  12. Variable loading roller

    DOE Patents [OSTI]

    Williams, Daniel M. (Oliver Springs, TN)

    1989-01-01

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves on the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first.

  13. Variable loading roller

    DOE Patents [OSTI]

    Williams, D.M.

    1988-01-21

    An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.

  14. Advanced medical accelerator design

    SciTech Connect (OSTI)

    Alonso, J.R.; Elioff, T.; Garren, A.

    1982-11-01

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described.

  15. Review of ion accelerators

    SciTech Connect (OSTI)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  16. An accelerated closed universe

    E-Print Network [OSTI]

    Sergio del Campo; Mauricio Cataldo; Francisco Pena

    2004-08-03

    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, $\\Omega_M$ and $\\Omega_{\\Lambda}$, and of the associated density parameter $\\Omega_Q$ related to the quintessence scalar field $Q$.

  17. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  18. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  19. Accelerating QDP++ using GPUs

    E-Print Network [OSTI]

    Frank Winter

    2011-05-11

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

  20. Integration of MHD load models with circuit representations the Z generator.

    SciTech Connect (OSTI)

    Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

    2013-03-01

    MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

  1. Dynamic Load Partitioning Strategies for Managing Data of Space and Time Heterogeneity in Parallel

    E-Print Network [OSTI]

    Li, Xiaolin "Andy"

    Dynamic Load Partitioning Strategies for Managing Data of Space and Time Heterogeneity in Parallel}@caip.rutgers.edu Abstract. This paper presents the design and experimental evaluation of two dynamic load partitioning and synchronization in this structure. This paper presents the design and experimental evaluation of dynamic load par

  2. A multi beam proton accelerator

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    The article considers a proton accelerator containing seven independent beams arranged on the accelerator radius. The current in each beam is one hundred milliamps. The initial part of the accelerator consists of shielded spiral waveguides assembled in the common screen. The frequency of the acceleration: three hundred megahertz, high-frequency power twenty-five megawatts, the length of the accelerator six meters. After reaching the proton energy of six megaelektronvolts the protons using lenses with the azimuthal magnetic field are collected in one beam. Further beam acceleration is performed in the array of superconducting cavities tuned to the frequency one and three tenths gigahertz. The acceleration rate is equal to twenty megavolt per meter, the high-frequency power consumption fifteen megawatts per meter.

  3. A facility for accelerator research and education at Fermilab

    SciTech Connect (OSTI)

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  4. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  5. Medical heavy ion accelerator proposals

    SciTech Connect (OSTI)

    Gough, R.A.

    1985-05-01

    For several decades, accelerators designed primarily for research in nuclear and high energy physics have been adapted for biomedical research including radiotherapeutic treatment of human diseases such as pituitary disorders, cancer, and more recently, arteriovascular malformations. The particles used in these treatments include pions, protons and heavier ions such as carbon, neon, silicon and argon. Maximum beam energies must be available to penetrate into an equivalent of about 30 cm of water, requiring treatment beams of 250 to 1000 MeV/nucleon. Certain special treatments of superficial melanoma, however, require that beam energies as low as 70 MeV/nucleon also be available. Intensities must be adequate to complete a 100 rad treatment fraction in about 1 minute. For most heavy ion treatments, this corresponds to 10/sup 7/-10/sup 9/ ions/second at the patient. Because this research is best conducted in a dedicated, hospital-based facility, and because of the clinical need for ultra-high reliability, the construction of new and dedicated facilities has been proposed. Heavy ion accelerators can provide a variety of ions and energies, permitting treatment plans that exploit the properties of the ion best suited to each individual treatment, and that employ radioactive beams (such as /sup 11/C and /sup 19/Ne) to precisely confirm the dose localization. The favored technical approach in these proposals utilizes a conventional, strong-focusing synchrotron capable of fast switching between ions and energies, and servicing multiple treatment rooms. Specialized techniques for shaping the dose to conform to irregularly-shaped target volumes, while simultaneously sparing surrounding, healthy tissue and critical structures, are employed in each treatment room, together with the sophisticated dosimetry necessary for verification, monitoring, and patient safety. 3 refs., 8 figs.

  6. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  7. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; Kardo-Sysoev, A.; Krasnykh, A.; /SLAC

    2008-12-16

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  8. Laser plasma accelerators

    SciTech Connect (OSTI)

    Malka, V. [Laboratoire d'Optique Appliquee, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2012-05-15

    This review article highlights the tremendous evolution of the research on laser plasma accelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

  9. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReferenceReframing Accelerator

  10. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  11. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, S.R.

    1997-05-13

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  12. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, Stephen R. (Albuquerque, NM)

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  13. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, T.; Heffington, W. M.

    2009-01-01

    factors and operating hours of small and medium-sized industrial plants are analyzed to classify shift-work patterns and develop energy conservation diagnostic tools. This paper discusses two types of electric load factors for each shift... The purpose of this paper is to analyze operating hours of small and medium-sized manufacturing plants in the United States and develop ranges of load factors for use as diagnostic tools for effective energy management. Load factor is defined...

  14. Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A.; Schoessow, P. [Euclid Techlabs LLC, Solon, Ohio 44139 (United States); Power, J. G.; Conde, M.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois-60439 (United States)

    2007-04-06

    One approach to future high energy particle accelerators is based on the wakefield principle: a leading high-charge drive bunch is used to excite fields in an accelerating structure or plasma that in turn accelerates a trailing low-charge witness bunch. The transformer ratio R is defined as the ratio of the maximum energy gain of the witness bunch to the maximum energy loss of the drive bunch. In general, R<2 for this configuration. A number of techniques have been proposed to overcome the transformer ratio limitation. We report here the first experimental study of the ramped bunch train (RBT) technique in a dielectric based accelerating structure. A single drive bunch was replaced by two bunches with charge ratio of 1 ratio 2.5 and a separation of 10.5 wavelengths of the fundamental mode. An average measured transformer ratio enhancement by a factor of 1.31 over the single drive bunch case was obtained.

  15. Development of compact linear accelerator in KBSI

    SciTech Connect (OSTI)

    Yoon, Jang-Hee; Lee, Byoung-Seob; Choi, Seyong; Park, Jin Yong; Ok, Jung-Woo; Won, Mi-Sook [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)

    2012-02-15

    The compact linear accelerator using a 28 GHz ECRIS is under construction in KBSI, South Korea. The main capability of this facility is the production of fast neurons for the neutron radiography. The designing of a superconducting magnet, microwave transmission system, beam extraction, and plasma chamber of ECRIS were finished. The nominal axial design fields of the magnets are 3.6 T at injection and 2.2 T at extraction; the nominal radial design field strength at the plasma chamber wall is 2.1 T. We already installed 10 kW, 28 GHz gyrotron, and tested a microwave power from gyrotron using a dummy load. The current status will be discussed in this paper.

  16. Asymmetric Bimodal Accelerator Cavity for Raising rf Breakdown Thresholds

    SciTech Connect (OSTI)

    Kuzikov, S. V.; Kazakov, S. Yu.; Jiang, Y.; Hirshfield, J. L.

    2010-05-28

    We consider an axisymmetric microwave cavity for an accelerator structure whose eigenfrequency for its second lowest TM-like axisymmetric mode is twice that of the lowest such mode, and for which the fields are asymmetric along its axis. In this cavity, the peak amplitude of the rf electric field that points into either longitudinal face can be smaller than the peak field which points out. Computations show that a structure using such cavities might support an accelerating gradient about 47% greater than that for a structure using similar single-mode cavities, without an increase in breakdown probability.

  17. K-25 Structural Separation and Demolition

    SciTech Connect (OSTI)

    Cater, Frank [Bechtel Jacobs Company, LLC, East Tennessee Technology Park, Post Office Box 4699, Oak Ridge, TN 37831 (United States)

    2008-01-15

    The K-25 building is a former gaseous diffusion plant, built in 1944-1945 as part of the United States Manhattan Project. The structure was the largest structure under one roof, surpassed only by the Pentagon. Together the three wings represent about 17.8 hectare (44 acres) under roof and are generally about 18.3 meters (60 ft.) high on the outside face and approximately 12.2 meters (40 ft.) high on the inside face. The entire structure was built in the shape of a 'U', with a lateral distance of approximately one mile. It was constructed in individual building units with each unit connected using expansion joint-type connection. A single unit is approximately 24.4 meters (80 ft.) across and 122 meters (400 ft.) deep. The northern structure is connected to the eastern and western structures at the upper level floors. The four-level, U-shaped building is a steel-frame structure with corrugated cement-asbestos siding. The cell level is an elevated concrete structure supported by reinforced concrete columns located in the basement, or vault area. The vault area can be accessed at grade level from the outside perimeter. Inside the courtyard, the grade level has been raised to provide entry to the second or cell floor level. An engineering evaluation of the structure was performed to determine the condition of the structure and possibility of unplanned collapse of any portion of the structure. The evaluation included physical inspections, calculations for wind, pre-demolition loads, and evaluation of failure modes. The results of the evaluation have provided guidance for the demolition plan and the development of criteria for protection of personnel performing pre-demolition activities. Challenges include degradation of the structure that necessitated repair, dealing with changes in the code revisions from both the American Concrete Institute (ACI) and the American Institute of Steel Construction (AISC), access to areas of the structure that were not necessarily designed for access, and acceleration of the building degradation due to the pre-demolition activities. When a full building is evaluated, 50 percent of wind and applied forces are dissipated in 3 units and 80 percent is dissipated in 12 units. The forces are basically linear for the first 6 units once the building is opened at the start of demolition. Some column buckling, based on current codes, was noted in the analysis that would have to be mitigated to ensure a controlled demolition. Loading for the removal of the equipment required structural engineering evaluation of the certainty of the load and the application of the load. Corbels are being evaluated through an inspection program and criteria for repair based on current loading and anticipated additional live loads. Access issues continue to be a challenge and have created the need for a significant fall protection program. Other areas of access require different approaches and engineering solutions, sometime considering ultimate strength design versus standard yield stress design. An evaluation of separating a wing into two sections to allow for worker re-entry to perform pre-demolition activities during the demolition off shift was conducted. The evaluation has shown that because of both design and history of the K-25 and K-27 Buildings, significant care and attention is needed to demolish these structures from a structural perspective. When the project schedule issues are overlaid, that may demand workers in other parts of the structure after demolition has begun, the structural issues become severe, demanding exacting analysis and significant controls to ensure the safety of the workers both in and outside the building performing the demolition work.

  18. The Sustainable Building-Accelerator 

    E-Print Network [OSTI]

    Maassen, W.H.

    2011-01-01

    , that it is necessary to accelerate innovations in the built environment, to achieve the high ambitions on sustainability in time. The ideas for the ??Sustainable Building - Accelerator?? originated from the assumptions that the required acceleration... of innovations within the built environment is not yet achieved due to: ? the small amount of innovative solutions which are generated by design teams, because (i) the design process is characterized by mono- disciplinary sequential steps and (ii) the design...

  19. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  20. Partnership with Industries- A Successful "Conservation and Load Management Program" 

    E-Print Network [OSTI]

    Johnston, W. E.

    1985-01-01

    WERE RECOMMENDED IN THREE ELEMENTS OF THE ORGANIZATION STRUCTURE, STAFFING LEVELS, AND MANAGEMENT SYSTEMS. A CONSERVATION AND LOAD MANAGEMENT (CLM) DEPARTMENT WAS FORMED AT THE CORPORATE LEVEL IN 1982. THE NEW DEPARTMENT WAS GIVEN..., WRITTEN COMMUNICATIONS, TOURS AND BRIEFINGS, VIDEO PROGRAMS, AND PERSONAL CONTACTS EACH AIMED AT SPECIFIC TARGET AUDIENCES. THE CONSERVATION AND LOAD MANAGEMENT DEPARTMENT WAS GIVEN THE MISSION TO PLAN, DEVELOP, EVALUATE, MARKET AND MONITOR...

  1. Neutrino oscillations in accelerated states

    E-Print Network [OSTI]

    Ahluwalia, Dharam Vir; Torrieri, Giorgio

    2015-01-01

    We discuss the inverse $\\beta$-decay of accelerated protons in the context of neutrino oscillations. The process $p\\rightarrow n \\ell^+ \

  2. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  3. Challenges in Accelerator Beam Instrumentation

    SciTech Connect (OSTI)

    Wendt, M.

    2009-12-01

    The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

  4. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  5. Accelerators for research and applications

    SciTech Connect (OSTI)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  6. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  7. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  8. Load Management - A Better Way 

    E-Print Network [OSTI]

    Easley, J. F.

    1982-01-01

    of load management techniques which has enabled the company to shift well over 100,000 kilowatts of customer load from the on-peak period to the off-peak period in the last four to five years. This is helping delay the need for new plants and allows...

  9. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  10. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  11. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  12. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  13. FINAL REPORT DE-FG02-04ER41317 Advanced Computation and Chaotic Dynamics for Beams and Accelerators

    SciTech Connect (OSTI)

    Cary, John R [U. Colorado

    2014-09-08

    During the year ending in August 2013, we continued to investigate the potential of photonic crystal (PhC) materials for acceleration purposes. We worked to characterize acceleration ability of simple PhC accelerator structures, as well as to characterize PhC materials to determine whether current fabrication techniques can meet the needs of future accelerating structures. We have also continued to design and optimize PhC accelerator structures, with the ultimate goal of finding a new kind of accelerator structure that could offer significant advantages over current RF acceleration technology. This design and optimization of these requires high performance computation, and we continue to work on methods to make such computation faster and more efficient.

  14. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  15. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  16. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  17. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  18. I Investigation of Pellet Acceleration

    E-Print Network [OSTI]

    I Investigation of Pellet Acceleration by an Arc heated Gas Gun An Interim Report INVESTIGATION OP PELLET ACCELERATION BY AN ARC HEATED GAS GUN* An Interim Report on the Investigations carried, and K.-V. Weisberg Abstract. Deep penetration of pellets into the JET plasma may prove to be a useful

  19. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J. (Albuquerque, NM); Witzke, Edward L. (Edgewood, NM)

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  20. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  1. Spinning Reserve from Responsive Load

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Laughner, T; Morris, K

    2009-01-01

    As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering could detect.

  2. Mechanical features of the ATS RFQ linear accelerator

    SciTech Connect (OSTI)

    Wilson, N.G.; Hayward, T.D.; Lind, G.W.

    1983-01-01

    A radio-frequency quadrupole (RFQ) linear accelerator has been constructed and placed in operation on the Los Alamos National Laboratory accelerator test stand (ATS). This accelerator uses an evacuated rf manifold to distribute rf excitation from the 425-MHz rf power supply to the slot-coupled, RFQ vane-cavity, resonator assembly. The RFQ vanes are supported on commercially available copper-plated, linear, resilient C-seals to provide a high-conductivity rf contact that permits aligning and positioning the vanes during tuning, and demounting the vanes for evaluation and modification as necessary. All rf structures are fabricated from stress-relieved, bright-acid copper-plated carbon steel. Measurements made on the accelerator as assembled have demonstrated >8000 vane-cavity Q at the quadrupole's approx. 423.400-MHz accelerating-mode frequency. Operating manifold vacuum of 3 to 6 x 10/sup -8/ torr has been observed after rf conditioning; conditioning required 150 h for stable high-power rf operation. Experience to date has indicated the desirability of modifying the vane rf-contact seat configuration to improve assembly and alignment procedures, improving vane-machining processes to increase vane straightness, installing periodic vane-shorting rings to minimize the effect of dipole modes in the quadrupole accelerating structure,and modifying the waveguide-coupling slot in the manifold to improve forward rf power flow.

  3. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect (OSTI)

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK?CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 ?=0.36 spoke-loaded cavities (352 MHz), 34 ?=0.47 elliptical cavities (704 MHz) and 60 ?=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  4. Testing in a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2004-10-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  5. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  6. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  7. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  8. Testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration

    E-Print Network [OSTI]

    Yaakov Friedman

    2010-06-10

    An experiment for testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration is proposed.

  9. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  10. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  11. Target Material Irradiation Studies for High-Intensity Accelerator Beams , H. Ludewig1

    E-Print Network [OSTI]

    McDonald, Kirk

    Target Material Irradiation Studies for High-Intensity Accelerator Beams N. Simos1* , H. Kirk1 , H on the behavior of special materials and composites under irradiation conditions and their potential use irradiated target material. The ever greater deposited energy and induced thermo-mechanical loads combined

  12. Seismic Loading for FAST: May 2011 - August 2011

    SciTech Connect (OSTI)

    Asareh, M. A.; Prowell, I.

    2012-08-01

    As more wind farms are constructed in seismically active regions, earthquake loading increases in prominence for design and analysis of wind turbines. Early investigation of seismic load tended to simplify the rotor and nacelle as a lumped mass on top of the turbine tower. This simplification allowed the use of techniques developed for conventional civil structures, such as buildings, to be easily applied to wind turbines. However, interest is shifting to more detailed models that consider loads for turbine components other than the tower. These improved models offer three key capabilities in consideration of base shaking for turbines: 1) The inclusion of aerodynamics and turbine control; 2) The ability to consider component loads other than just tower loads; and 3) An improved representation of turbine response in higher modes by reducing modeling simplifications. Both experimental and numerical investigations have shown that, especially for large modern turbines, it is important to consider interaction between earthquake input, aerodynamics, and operational loads. These investigations further show that consideration of higher mode activity may be necessary in the analysis of the seismic response of turbines. Since the FAST code is already capable of considering these factors, modifications were developed that allow simulation of base shaking. This approach allows consideration of this additional load source within a framework, the FAST code that is already familiar to many researchers and practitioners.

  13. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  14. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  15. Building load control and optimization

    E-Print Network [OSTI]

    Xing, Hai-Yun Helen, 1976-

    2004-01-01

    Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

  16. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  17. The Pulse Line Ion Accelerator Concept

    E-Print Network [OSTI]

    Briggs, Richard J.

    2006-01-01

    field model of the pulse- line accelerator; relationship to3, 2006 LBNL-59492 The pulse line ion accelerator conceptCalifornia, 94507 The Pulse Line Ion Accelerator concept was

  18. SNEAP 80: symposium of Northeastern Accelerator personnel

    SciTech Connect (OSTI)

    Billen, J.H. (ed.) ed.

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  19. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01

    Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs V. Residential Discussion... Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off-peak period or from high-price periods...

  20. Electromagnetic acceleration of permanent magnets

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  1. Cosmic Particle Acceleration: Basic Issues

    E-Print Network [OSTI]

    T. W. Jones

    2000-12-22

    Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

  2. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  3. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01

    De- velopment of a Simplified Cooling Load Design Tool forand C. Benedek. 2007. “Cooling airflow design calculationscalculation method for design cooling loads in underfloor

  4. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain...

  5. Load Participation in Ancillary Services Workshop Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    controls on the load-side is growing. Driven by improved and widely available communications systems, load participation is becoming easier and more reliable; and there...

  6. Self-aligning biaxial load frame

    DOE Patents [OSTI]

    Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

    1994-01-18

    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

  7. Accelerating DSMC data extraction.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  8. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  9. How Particle Accelerators Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cancer patients. The vast majority of these irradiations are now performed with microwave linear accelerators producing electron beams and x-rays. Accelerator technology,...

  10. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  11. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear...

  12. Accelerators for high energy physics research

    SciTech Connect (OSTI)

    Chao, A.

    1995-12-01

    A brief survey of particle accelerators as research tools for high energy physics is given. The survey includes existing accelerators, as well as those envisioned for the future.

  13. Design Considerations For Blast Loads In Pressure Vessels.

    SciTech Connect (OSTI)

    Rodriguez, E. A. (Edward A.); Nickell, Robert E.; Pepin, J. E. (Jason E.)

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  14. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http:HeatIsland.LBL.gov April 4, 2013...

  15. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  16. Accelerated Expansion: Theory and Observations

    E-Print Network [OSTI]

    David Polarski

    2001-09-20

    The present paradigm in cosmology is the usual Big-Bang Cosmology in which two stages of accelerated expansion are incorporated: the inflationary phase in the very early universe which produces the classical inhomogeneities observed in the universe, and a second stage of acceleration at the present time as the latest Supernovae observations seem to imply. Both stages could be produced by a scalar field and observations will strongly constrain the microscopic lagrangian of any proposed model.

  17. {Control of Residential Load Management Networks Using Real Time Pricing

    E-Print Network [OSTI]

    Burke, William Jerome

    2010-01-01

    modeling and control of load management. Further, withoutA profit-based load management using linear programming”.with applica- tions to load management assessment and load

  18. Staying FIT: Efficient Load Shedding Techniques for Distributed Stream Processing

    E-Print Network [OSTI]

    . Bottlenecks slow down processing and network transmission, and cause delayed outputs. Load management has been. Common load management techniques include adaptive load distribution, admis- sion control, and load

  19. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  20. A constitutive model for unsaturated cemented soils under cyclic loading

    E-Print Network [OSTI]

    Yang, C; Pereira, Jean-Michel; Huang, M S

    2008-01-01

    On the basis of plastic bounding surface model, the damage theory for structured soils and unsaturated soil mechanics, an elastoplastic model for unsaturated loessic soils under cyclic loading has been elaborated. Firstly, the description of bond degradation in a damage framework is given, linking the damage of soil's structure to the accumulated strain. The Barcelona Basic Model (BBM) was considered for the suction effects. The elastoplastic model is then integrated into a bounding surface plasticity framework in order to model strain accumulation along cyclic loading, even under small stress levels. The validation of the proposed model is conducted by comparing its predictions with the experimental results from multi-level cyclic triaxial tests performed on a natural loess sampled beside the Northern French railway for high speed train and about 140 km far from Paris. The comparisons show the capabilities of the model to describe the behaviour of unsaturated cemented soils under cyclic loading.

  1. Microwaves and particle accelerators: a fundamental link

    SciTech Connect (OSTI)

    Chattopadhyay, Swapan [Universities of Lancaster, Liverpool and Manchester and Cockcroft Institute, Cheshire (United Kingdom)

    2011-07-01

    John Cockcroft's splitting of the atom and Ernest Lawrence's invention of the cyclotron in the first half of the twentieth century ushered in the grand era of ever higher energy particle accelerators to probe deeper into matter. It also forged a link, bonding scientific discovery with technological innovation that continues today in the twenty first century. The development of radar and high power vacuum electronics, especially microwave power tubes like the magnetrons and the klystrons in the pre-second world war era, was instrumental in the rapid development of circular and linear charged particle accelerators in the second half of the twentieth century. We had harnessed the powerful microwave radio-frequency sources from few tens of MHz to up to 90 GHz spanning L-band to W-band frequencies. Simultaneously in the second half of the twentieth century, lasers began to offer very first opportunities of controlling charged particles at smaller resolutions on the scale of wavelengths of visible light. We also witnessed in this period the emergence of the photon and neutron sciences driven by accelerators built-by-design producing tailored and ultra-bright pulses of bright photons and neutrons to probe structure and function of matter from aggregate to individual molecular and atomic scales in unexplored territories in material and life sciences. As we enter the twenty first century, the race for ever higher energies, brightness and luminosity to probe atto-metric and atto-second domains of the ultra-small structures and ultra-fast processes continues. These developments depend crucially on yet further advancements in the production and control of high power and high frequency microwaves and light sources, often intricately coupled in their operation to the high energy beams themselves. We give a glimpse of the recent developments and innovations in the electromagnetic production and control of charged particle beams in the service of science and society. (author)

  2. Onset of electron acceleration in a flare loop

    SciTech Connect (OSTI)

    Sharykin, Ivan; Liu, Siming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Fletcher, Lyndsay, E-mail: liusm@pmo.ac.cn [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-09-20

    We carried out a detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 2002 August 12, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keV. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers the central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution, indicating that the electron accelerator is in a quasi-steady state, which is confirmed by radio observations. These results are consistent with the theory of stochastic electron acceleration from a thermal background. Advanced modeling with coupled electron acceleration and spatial transport processes is needed to explain these observations more quantitatively, which may reveal the dependence of the electron acceleration on the spatial structure of the acceleration region.

  3. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States); Accelerator Physics Center (APC), Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510 (United States)

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25?}m{sup ?3} and 1.6?×?10{sup 28?}m{sup ?3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ?20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?{sub p} to 0.6 ?{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  4. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Accelerator Physics Center

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  5. Inhomogeneous Cosmology, Inflation and Late-Time Accelerating Universe

    E-Print Network [OSTI]

    J. W. Moffat

    2007-05-30

    An exact inhomogeneous solution of Einstein's field equations is shown to be able to inflate in a non-uniform way in the early universe and explain anomalies in the WMAP power spectrum data. It is also possible for the model to explain the accelerated expansion of the universe by late-time inhomogeneous structure.

  6. Dynamic Loading of Polycrystalline Shape Memory Alloy Rods

    E-Print Network [OSTI]

    at different locations along the SMA rod are compared with numerical calculations using the adaptive FEM presented in this paper relates directly to the design of SMA components capable of absorbing dynamic loads. Examples include joints that connect the hull of an underwater vehicle with its internal structure, tank

  7. Noise Load Management at Amsterdam Airport Schiphol

    E-Print Network [OSTI]

    Boucherie, Richard J.

    Noise Load Management at Amsterdam Airport Schiphol T.R. Meerburg , R.J. Boucherie , M.J.A.L. van objective is to guarantee safety, efficiency, and protection of the environment, that includes noise load contributes to the noise load at these points. If the cumulative load in an aviation year at an enforce- ment

  8. Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered; accepted 18 February 1998 Plasma-based accelerators are discussed in which high-power short pulse lasers are the power source, suitably tailored plasma structures provide guiding of the laser beam and support large

  9. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  10. Dielectric-Loaded Microwave Cavity for High-Gradient Testing of Superconducting Materials 

    E-Print Network [OSTI]

    Pogue, Nathaniel Johnston

    2011-08-08

    A superconducting microwave cavity has been designed to test advanced materials for use in the accelerating structures contained within linear colliders. The electromagnetic design of this cavity produces surface magnetic fields on the sample wafer...

  11. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  12. Linear induction accelerator and pulse forming networks therefor

    DOE Patents [OSTI]

    Buttram, Malcolm T. (Sandia Park, NM); Ginn, Jerry W. (Albuquerque, NM)

    1989-01-01

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.

  13. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    SciTech Connect (OSTI)

    Spickermann, Thomas

    2012-08-01

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergency situations; and (3) Plan recovery and keep squirrels out.

  14. Microwave power coupler for a superconducting multiple-cell cavity for accelerator application and its testing procedures

    SciTech Connect (OSTI)

    Li, Jianjian; /IIT, Chicago

    2008-12-01

    Superconducting cavity resonators offer the advantage of high field intensity for a given input power, making them an attractive contender for particle accelerator applications. Power coupling into a superconducting cavity employed in a particle accelerator requires unique provisions to maintain high vacuum and cryogenic temperature on the cavity side, while operating with ambient conditions on the source side. Components introduced to fulfill mechanical requirements must show negligible obstruction of the propagation of the microwave with absence of critical locations that may give rise to electron multipaction, leading to a multiple section design, instead of an aperture, a probe, or a loop structure as found in conventional cavities. A coaxial power coupler for a superconducting multiple-cell cavity at 3.9 GHz has been developed. The cavity is intended to be employed as an accelerator to provide enhanced electron beam quality in a free-electron laser in Hamburg (FLASH) user facility. The design of the coupler called for two windows to sustain high vacuum in the cavity and two bellows to accommodate mechanical dimensional changes resulting from cryogenics. Suppression of multipacting was accomplished by the choice of conductor dimensions and materials with low second yield coefficients. Prior to integration with the cavity, the coupler was tested for intrinsic properties in a back-to-back configuration and conditioned for high-power operation with increasing power input. Maximum incident power was measured to be 61 kW. When integrated with the superconducting cavity, a loaded quality factor of 9 x 10{sup 5} was measured by transient method. Coupler return loss and insertion loss were estimated to be around -21 dB and -0.2 dB, respectively.

  15. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  16. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  17. Load Forecasting of Supermarket Refrigeration

    E-Print Network [OSTI]

    @compute.dtu.dk www.compute.dtu.dk M.Sc.-2013-87 #12;Summary (English) The Danish power production coming from energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present Thesis

  18. Scaling the Web Load Testing

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Load Testing of Web Sites D evelopers typically measure a Web appli- cation on a Web site's IT infrastructure are a function of the site's expect- ed traffic. Ideally, you want, you shouldn't upgrade your Web servers if customers experience most delays in the database server

  19. Hazard consistent structural demands and in-structure design response spectra

    SciTech Connect (OSTI)

    Houston, Thomas W [Los Alamos National Laboratory; Costantino, Michael C [Los Alamos National Laboratory; Costantino, Carl J [Los Alamos National Laboratory

    2009-01-01

    Current analysis methodology for the Soil Structure Interaction (SSI) analysis of nuclear facilities is specified in ASCE Standard 4. This methodology is based on the use of deterministic procedures with the intention that enough conservatism is included in the specified procedures to achieve an 80% probability of non-exceedance in the computed response of a Structure, System. or Component for given a mean seismic design input. Recently developed standards are aimed at achieving performance-based, risk consistent seismic designs that meet specified target performance goals. These design approaches rely upon accurately characterizing the probability (hazard) level of system demands due to seismic loads consistent with Probabilistic Seismic Hazard Analyses. This paper examines the adequacy of the deterministic SSI procedures described in ASCE 4-98 to achieve an 80th percentile of Non-Exceedance Probability (NEP) in structural demand, given a mean seismic input motion. The study demonstrates that the deterministic procedures provide computed in-structure response spectra that are near or greater than the target 80th percentile NEP for site profiles other than those resulting in high levels of radiation damping. The deterministic procedures do not appear to be as robust in predicting peak accelerations, which correlate to structural demands within the structure.

  20. Linear accelerator for radioisotope production

    SciTech Connect (OSTI)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  1. Heavy ion medical accelerator options

    SciTech Connect (OSTI)

    Gough, R.A.; Alonso, J.R.

    1985-01-01

    This paper briefly explores the accelerator technology available for heavy ion medical accelerators in the mass range of 1 to 40 (protons through argon). Machines that are designed to produce the required intensities of a particular design ion, such as silicon (mass 28), can satisfy the intensity requirements for all lighter ions, and can produce beams with higher mass, such as argon, at somewhat reduced, but still useful intensity levels. They can also provide beams of radioactive ions, such as carbon-11 and neon-19, which are useful in diagnostic imaging and for directly verifiable treatments. These accelerators are all based on proven technology, and can be built at predictable costs. It is the conclusion of several design studies that they can be operated reliably in a hospital-based environment. 8 refs., 22 figs.

  2. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  3. Thermal Loading of a Direct Drive Target in Rarefied Gas B. R. Christensen1

    E-Print Network [OSTI]

    Raffray, A. René

    ) power plant, each fusion micro-explosion (~10 Hz) causes thermal and structural loads on the IFE reactorThermal Loading of a Direct Drive Target in Rarefied Gas B. R. Christensen1 , A. R. Raffray1 and M is to fill the reaction chamber with a gas, such as Xe, at low density. The gas will absorb much

  4. Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST

    E-Print Network [OSTI]

    Chen, Zhe

    Mitigation of Fatigue Loads Using Individual Pitch Control of Wind Turbines Based on FAST Yunqian University, China jiz@seu.edu.cn Abstract-With the increase of wind turbine dimension and capacity, the wind turbine structures are subjected to prominent loads and fatigue which would reduce the lifetime of wind

  5. Particle Acceleration in three dimensional Reconnection Regions: A New Test Particle Approach

    E-Print Network [OSTI]

    Rudiger Schopper; Guido T. Birk; Harald Lesch

    2001-06-29

    Magnetic Reconnection is an efficient and fast acceleration mechanism by means of direct electric field acceleration parallel to the magnetic field. Thus, acceleration of particles in reconnection regions is a very important topic in plasma astrophysics. This paper shows that the conventional analytical models and numerical test particle investigations can be misleading concerning the energy distribution of the accelerated particles, since they oversimplify the electric field structure by the assumption that the field is homogeneous. These investigations of the acceleration of charged test particles are extended by considering three-dimensional field configurations characterized by localized field-aligned electric fields. Moreover, effects of radiative losses are discussed. The comparison between homogeneous and inhomogeneous electric field acceleration in reconnection regions shows dramatic differences concerning both, the maximum particle energy and the form of the energy distribution.

  6. Cost Bases for Incentive Rates Applicable to Industrial Loads 

    E-Print Network [OSTI]

    Stover, C. N.

    1987-01-01

    ; they involve a depressed economy base in all or certain segments of the service area, a decrease in load, excess generation capacity, and an increase in base rates. An increase in rates may also be related to the commercial operation of a base load unit, i... utility has completely abandoned a pricing structure that is in any way related to cost. Some of the incentive rates are very short lived and reflect transient economic conditions while others tend to reflect long-term economic relationships...

  7. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  8. Weak-Chaos Ratchet Accelerator

    E-Print Network [OSTI]

    Itzhack Dana; Vladislav B. Roitberg

    2012-05-28

    Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.

  9. Accelerator dynamics and beam aperture

    SciTech Connect (OSTI)

    Parsa, Z.

    1986-10-01

    We present an analytical method for analyzing accelerator dynamics, including higher order effects of multipoles on the beam. This formalism provides a faster alternative to particle tracking. Simplectic expressions for the emittance and phase describing the dynamical behavior of a particle in a circular accelerator are derived using second order perturbation theory (in the presence of nonlinear elements, e.g., sextupoles, octupoles). These expressions are successfully used to calculate the emittance growth, smear and linear aperture. Our findings compare well with results obtained from tracking programs. In addition perturbation to betatron tune; resonance strengths; stop bandwidth; fixed points; island width; and Chirikov criteria are calculated.

  10. Seismic response of linear accelerators

    E-Print Network [OSTI]

    Collette, C; Guinchard, M; Hauviller, C

    2010-01-01

    This paper is divided into two parts. The first part presents recent measurements of ground motion in the LHC tunnel at CERN. From these measurements, an update of the ground motion model currently used in accelerator simulations is presented. It contains new features like a model of the lateral motion and the technical noise. In the second part, it is shown how this model can be used to evaluate the seismic response of a linear accelerator in the frequency domain. Then, the approach is validated numerically on a regular lattice, taking the dynamic behavior of the machine alignment stage and the mechanical stabilization of the quadrupoles into account.

  11. Numerical Verification of the Power Transfer and Wakefield Coupling in the CLIC Two-Beam Accelerator

    E-Print Network [OSTI]

    Candel, Arno; NG, C; Rawat, V; Schussman, G; Ko, K; Syratchev, I; Grudiev, A; Wuensch, W

    2011-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC’s parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  12. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  13. Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications

    SciTech Connect (OSTI)

    Hutton, Andrew; Areti, Hari

    2015-08-01

    Funding is being requested pursuant to the proposals entitled Elliptical Twin Cavity for Accelerator Applications that was submitted and reviewed through the Portfolio Analysis and Management System (PAMS). The PAMS proposal identifier number is 0000219731. The proposed new type of superconducting cavity, the Elliptical Twin Cavity, is capable of accelerating or decelerating beams in two separate beam pipes. This configuration is particularly effective for high-current, low energy electron beams that will be used for bunched beam cooling of high-energy protons or ions. Having the accelerated beam physically separated from the decelerated beam, but interacting with the same RF mode, means that the low energy beam from the gun can be injected into to the superconducting cavity without bends enabling a small beam emittance to be maintained. A staff engineer who has been working with non-standard complicated cavity structures replaces the senior engineer (in the original budget) who is moving on to be a project leader. This is reflected in a slightly increased engineer time and in reduced costs. The Indirect costs for FY16 are lower than the previous projection. As a result, there is no scope reduction.

  14. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  15. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  16. Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems September 28 October 1, 2010, Philadelphia, Pennsylvania, USA

    E-Print Network [OSTI]

    Lynch, Jerome P.

    in operating structures is closely related with statistical loading characteristics, such as the number of load.e., inspection and maintenance) and potentially predict pending structural failure. In order for a fatigue

  17. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  18. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  19. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  20. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  1. Spinning Reserve From Responsive Loads

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-04-08

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

  2. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01

    computational accelerator physics initiative † J R Carycomputational accelerator physics initiative J R Cary 1,9 ,colliders for particle physics and nuclear science and light

  3. Fire Experiments of Thin-Walled CFRP Pretensioned High Strength Concrete Slabs Under Service Load 

    E-Print Network [OSTI]

    Terrasi, Giovanni; Maluk, Cristian; Bisby, Luke; Hugi, Erich; Kanik, Birol

    2012-06-14

    deteriorates at elevated temperature and that high strength concrete tends to an explosive spalling failure mode when subjected to a fire. The bond strength reductions in fire, their impacts on the load-bearing capacity of prestressed concrete structures...

  4. An evaluation of finite element models of stiffened plates subjected to impulsive loading

    E-Print Network [OSTI]

    Pedatzur, Omri

    2004-01-01

    Different finite element models are evaluated for two very common structures, a cantilever beam and a stiffened plate, subjected to impulsive loading. For the cantilever beam case, the finite element models are one, two ...

  5. Estimation of Seismic Load Demand for a Wind Turbine in the Time Domain: Preprint

    SciTech Connect (OSTI)

    Prowell, I.; Elgamal, A.; Uang, C.; Jonkman, J.

    2010-03-01

    Turbines installed in seismically active regions such as the Pacific Rim or the Mediterranean must consider loads induced by base shaking from an earthquake. To account for this earthquake risk, current International Electrotechnical Commission (IEC) certification requirements provide a simplified method for calculating seismic loads which is intended to be conservative. Through the addition of capabilities, it is now possible to simulate earthquake loading of a wind turbine in conjunction other load sources such as wind and control system behavior using the FAST code. This paper presents a comparison of three earthquake loading scenarios of the National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind turbine: idling; continued operation through an earthquake; and an emergency shutdown initiated by an earthquake. Using a set of 22 earthquake records, simulations are conducted for each load case. A summary of the resulting tower moment demand is presented to assess the influence of operational state on the resulting structural demand.

  6. Power Converter Topologies with Energy Recovery and Grid Power Limitation For Inductive Load Applications

    E-Print Network [OSTI]

    Rossini, Stefano; Papastergiou, Konstantinos; Le Godec, Gilles; Retegui, Rogelio Garcia; Maestri, Sebastian

    2015-01-01

    This work investigates a grid interface for power supplies used in particle accelerators for cycling loads such as large electromagnets. Two topologies are discussed integrating magnetic energy recovery. For each topology, the associated energy management strategies are examined with the objective to control the grid current profile. A model is established for each of the proposed solutions and the simulation results are presented. A critical review of the investigated energy management solutions is attempted.

  7. Load Forecast For use in Resource Adequacy

    E-Print Network [OSTI]

    forecast of 4) Calculate Hourly Load Allocation Factor s for each day for 2019 For use in RA analysis as a function ofthe load for electricity in the region as a function of cyclical, weather and economic variables

  8. Residential Load Management Program and Pilot 

    E-Print Network [OSTI]

    Haverlah, D.; Riordon, K.

    1994-01-01

    In 1986 LCRA embarked on residential load management to control peak summer loads. At that time, LCRA was considered a summer peaking utility, and residential air conditioning and water heating systems were selected for control. The program...

  9. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

  10. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    DOE Patents [OSTI]

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  11. Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  12. The Development of a Small Engine Based Accelerated Ash Loading Protocol

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  13. Plug Load Behavioral Change Demonstration Project

    SciTech Connect (OSTI)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  14. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  15. Symposium report on frontier applications of accelerators

    SciTech Connect (OSTI)

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  16. Creation mechanism of quantum accelerator modes

    E-Print Network [OSTI]

    Summy, G. S.

    We investigate the creation mechanism of quantum accelerator modes which are attributed to the existence of the stability islands in an underlying pseudoclassical phase space of the quantum delta-kicked accelerator. Quantum ...

  17. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  18. Elucidating mechanisms of accelerated neurological aging

    E-Print Network [OSTI]

    Greenhall, Jennifer Anne

    2008-01-01

    C. (2005). Mechanisms of aging in senescence- accelerated2.2 Strain-specific aging gene-expression profiles…………………..C. (2005). Mechanisms of aging in senescence-accelerated

  19. Modeling and Forecasting Electric Daily Peak Loads

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    for the same data. Two methods are described for forecasting daily peak loads up to one week ahead through, including generator unit commitment, hydro-thermal coordination, short-term maintenance, fuel allocation forecasting accuracies. STLF forecasting covers the daily peak load, total daily energy, and daily load curve

  20. Plutonium Immobilization Can Loading Preliminary Specifications

    SciTech Connect (OSTI)

    Kriikku, E.

    1998-11-25

    This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

  1. Instantaneous Offloading of Transient Web Server Load

    E-Print Network [OSTI]

    Instantaneous Offloading of Transient Web Server Load Vsevolod V. Panteleenko and Vincent W. Freeh A modern web-hosting site is designed to handle load that is sometimes an order of magnitude greater than and performance study of the web booster architecture, which reduces web server load during peak periods. A web

  2. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  3. Advanced Computing Tools and Models for Accelerator Physics

    E-Print Network [OSTI]

    Ryne, Robert D.

    2008-01-01

    MODELS FOR ACCELERATOR PHYSICS * Robert D. Ryne, Lawrencetools for accelerator physics. Following an introduction Icomputing in accelerator physics. INTRODUCTION To begin I

  4. The final technical report of the CRADA, Medical Accelerator Technology

    E-Print Network [OSTI]

    Chu, William T.; Rawls, John M.

    2000-01-01

    the marketplace. Final Technical Report: Medical AcceleratorPTCOG XXV, 1996. Final Technical Report: Medical AcceleratorFinal Technical Report: Medical Accelerator Technology (SC-

  5. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    2014-11-05

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  6. Comments on backreaction and cosmic acceleration

    SciTech Connect (OSTI)

    Kolb, Edward W.; Matarrese, Sabinio; Riotto, Antonion; /CERN

    2005-11-01

    In this brief WEB note we comment on recent papers related to our paper ''On Acceleration Without Dark Energy''.

  7. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    E-Print Network [OSTI]

    Hules, John A

    2009-01-01

    Chemistry Fusion Energy Materials Science Accelerating Scienti?c Discovery High Energy Physics Nuclear Physics Visualization & Analytics

  8. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  9. @ Ontario 2006 Building Code Structural Design

    E-Print Network [OSTI]

    Sheikh, Shamim A.

    @ Ontario 2006 Building Code Part 4 Structural Design Structural Losds and P r o ~ d u l r;2006 Building Code @Ontario Division B -Part 4 #12;@Ontario 2006 Building Code Part 4 Structural Design Section #12;2006 Building Code @Ontario 4.q.2. Spsclfled Loads and Effects 4 . . 2 Loads and Effects (See

  10. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  11. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M. (Santa Fe, NM)

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  12. 205:20130828.1126 Dust Accelerator Laboratory

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    205:20130828.1126 Dust Accelerator Laboratory Through the Dust Accelerator Laboratory, LASP, and laboratory experiments. Our goal is to address basic physical and applied exploration questions, including Laboratory is home to world-class facilities, including the largest dust accelerator in the world

  13. Naked singularities as particle accelerators

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi

    2010-11-25

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  14. Naked singularities as particle accelerators

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  15. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  16. The Radiological Research Accelerator Facility

    SciTech Connect (OSTI)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  17. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  18. Decoherence in an accelerated universe

    E-Print Network [OSTI]

    S. Robles-Perez; A. Alonso-Serrano; P. F. Gonzalez-Diaz

    2011-11-14

    In this paper we study the decoherence processes of the semiclassical branches of an accelerated universe due to their interaction with a scalar field with given mass. We use a third quantization formalism to analyze the decoherence between two branches of a parent universe caused by their interaction with the vaccum fluctuations of the space-time, and with other parent unverses in a multiverse scenario.

  19. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating

  20. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  1. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  2. Analytical tools in accelerator physics

    SciTech Connect (OSTI)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  3. INCREMENTAL COOLING LOAD DETERMINATION FOR PASSIVE DIRECT GAIN HEATING SYSTEMS

    E-Print Network [OSTI]

    Sullivan, Paul W.

    2013-01-01

    May 27-30, 1981 INCREMENTAL COOLING LOAD DETERMINATION FOR12048 May 1981 INCREMENTAL COOLING LOAD DETERMINATION FORfor increases in the building cooling load resulting from

  4. Investigation of residential central air conditioning load shapes in NEMS

    E-Print Network [OSTI]

    Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

    2002-01-01

    of Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMSof Residential Central Air Conditioning Load Shapes in NEMS

  5. Optimal Load Management System for Aircraft Electric Power Distribution

    E-Print Network [OSTI]

    Maasoumy, Mehdi; Nuzzo, Pierluigi; Iandola, Forrest; Kamgarpour, Maryam; Sangiovanni-Vincentelli, Alberto; Tomlin, Claire

    2014-01-01

    Optimal Load Management System for Aircraft Electric Poweris to develop an optimal load management system based on thescheme where a high-level load management system receives as

  6. ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM

    E-Print Network [OSTI]

    Krieg, B.

    2010-01-01

    Development Commission. Load Management in California. Staffon the Challenge of Load Management, Conservation Paper No.for Electric Utility Load Management. New York, New York:

  7. Efficient Heterogeneous Execution on Large Multicore and Accelerator Platforms: Case Study Using a Block Tridiagonal Solver

    SciTech Connect (OSTI)

    Park, Alfred J [ORNL] [ORNL; Perumalla, Kalyan S [ORNL] [ORNL

    2013-01-01

    The algorithmic and implementation principles are explored in gainfully exploiting GPU accelerators in conjunction with multicore processors on high-end systems with large numbers of compute nodes, and evaluated in an implementation of a scalable block tridiagonal solver. The accelerator of each compute node is exploited in combination with multicore processors of that node in performing block-level linear algebra operations in the overall, distributed solver algorithm. Optimizations incorporated include: (1) an efficient memory mapping and synchronization interface to minimize data movement, (2) multi-process sharing of the accelerator within a node to obtain balanced load with multicore processors, and (3) an automatic memory management system to efficiently utilize accelerator memory when sub-matrices spill over the limits of device memory. Results are reported from our novel implementation that uses MAGMA and CUBLAS accelerator software systems simultaneously with ACML for multithreaded execution on processors. Overall, using 940 nVidia Tesla X2090 accelerators and 15,040 cores, the best heterogeneous execution delivers a 10.9-fold reduction in run time relative to an already efficient parallel multicore-only baseline implementation that is highly optimized with intra-node and inter-node concurrency and computation-communication overlap. Detailed quantitative results are presented to explain all critical runtime components contributing to hybrid performance.

  8. The Particle Accelerator Simulation Code PyORBIT

    SciTech Connect (OSTI)

    Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Cousineau, Sarah M [ORNL; Shishlo, Andrei P [ORNL

    2015-01-01

    The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT is an open source code accessible to the public through the Google Open Source Projects Hosting service.

  9. A drift-tube linac incorporating a ramped accelerating field

    SciTech Connect (OSTI)

    Liska, D.J.; Dauelsberg, L.B.

    1987-01-01

    A short, high-power linac structure has been designed and is being built; it incorporates a ramped accelerating field for matching a radio-frequency quadrupole (RFQ) to a high-gradient drift-tube linac (DTL). The tank is made of aluminum and can operate at high duty factor. The drift tubes are copper and use new neodymium-iron-boron quadrupoles. The linac is tuned using conical-sweep post couplers and is driven by multiple rf loops. Rapid acceleration of the beam occurs from low to high gradients in a short, compact, and lightweight structure. Because this linac will also be used to test open drift tubes, test results are included on vacuum measurements of high-grade epoxies and plastics that might be used in a drift-tube body.

  10. Accelerated learning approaches for maintenance training

    SciTech Connect (OSTI)

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  11. High-energy cosmic-ray acceleration

    E-Print Network [OSTI]

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  12. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  13. Low reflectance radio frequency load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  14. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  15. Future HEP Accelerators: The US Perspective

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  16. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    E-Print Network [OSTI]

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  17. Fermilab | Illinois Accelerator Research Center | Accelerators and Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergy Technologies |FeatureFellowsAccelerators and

  18. Multi-functional composite structures

    DOE Patents [OSTI]

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2010-04-27

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  19. Multi-functional composite structures

    DOE Patents [OSTI]

    Mulligan, Anthony C.; Halloran, John; Popovich, Dragan; Rigali, Mark J.; Sutaria, Manish P.; Vaidyanathan, K. Ranji; Fulcher, Michael L.; Knittel, Kenneth L.

    2004-10-19

    Fibrous monolith processing techniques to fabricate multifunctional structures capable of performing more than one discrete function such as structures capable of bearing structural loads and mechanical stresses in service and also capable of performing at least one additional non-structural function.

  20. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  1. High-gradient two-beam electron accelerator

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  2. High Performance Computing in Accelerator Science: Past Successes. Future Challenges

    E-Print Network [OSTI]

    Ryne, R.

    2013-01-01

    High Performance Computing in Accelerator Science: PastAC02- 05CH11231. High Performance Computing in Accelerator

  3. Preliminary Evaluation of Load Management for Electricity End Users 

    E-Print Network [OSTI]

    Collier, S. E.

    1984-01-01

    The planning, design and implementation of load management is complex and expensive. The results of a load management program are subject to numerous uncertainties related to load characteristics, power cost savings, load management costs...

  4. BARYON LOADING OF ACTIVE GALACTIC NUCLEUS JETS MEDIATED BY NEUTRONS

    SciTech Connect (OSTI)

    Toma, K.; Takahara, F.

    2012-08-01

    Plasmas of geometrically thick, black hole (BH) accretion flows in active galactic nuclei (AGNs) are generally collisionless for protons, and involve magnetic field turbulence. Under such conditions a fraction of protons can be accelerated stochastically and create relativistic neutrons via nuclear collisions. These neutrons can freely escape from the accretion flow and decay into protons in the dilute polar region above the rotating BH to form relativistic jets. We calculate geometric efficiencies of the neutron energy and mass injections into the polar region, and show that this process can deposit luminosity as high as L{sub j}{approx}2 Multiplication-Sign 10{sup -3} M-dot c{sup 2} and mass loading M-dot{sub j}{approx}6 Multiplication-Sign 10{sup -4} M-dot for the case of the BH mass M {approx} 10{sup 8} M{sub Sun }, where M-dot is the mass accretion rate. The terminal Lorentz factors of the jets are {Gamma} {approx} 3, and they may explain the AGN jets having low luminosities. For higher luminosity jets, which can be produced by additional energy inputs such as Poynting flux, the neutron decay still can be a dominant mass loading process, leading to, e.g., {Gamma} {approx} 50 for L{sub j,tot}{approx}3 Multiplication-Sign 10{sup -2} M-dot c{sup 2}.

  5. Load research manual. Volume 2. Fundamentals of implementing load research procedures

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  6. High voltage load resistor array

    DOE Patents [OSTI]

    Lehmann, Monty Ray (Smithfield, VA)

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  7. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) | SciTechSubmitted MoreTraffic SafetyIllinois Accelerator

  8. ULTRA-COMPACT ACCELERATOR TECHNOLOGIES FOR APPLICATION IN NUCLEAR TECHNIQUES

    SciTech Connect (OSTI)

    Sampayan, S; Caporaso, G; Chen, Y; Carazo, V; Falabella, S; Guethlein, G; Guse, S; Harris, J R; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Paul, A C; Pearson, D; Poole, B; Schmidt, R; Sanders, D; Selenes, K; Sitaraman, S; Sullivan, J; Wang, L; Watson, J

    2009-06-11

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve {approx}10 MV/m gradients for 10s of nanoseconds pulses and to {approx}100 MV/m gradients for {approx}1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We detail the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  9. Relativistic Shocks: Particle Acceleration and Magnetic Field Generation, and Emission

    E-Print Network [OSTI]

    K. -I. Nishikawa; P. Hardee; G. Richardson; R. Preece; H. Sol; G. J. Fishman

    2004-10-07

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g.,Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma with and without initial magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock at the same simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale (mainly transverse) magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of ``jitter'' radiation from deflected electrons (positrons) as opposed to synchrotron radiation.

  10. Accelerator Technology Program. Status report, January-September 1983

    SciTech Connect (OSTI)

    Jameson, R.A. (comp.)

    1984-07-01

    This report presents highlights of major projects in the Accelerator Technology Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility's 2-MeV accelerator on which tests began in May, as scheduled. Then, activities are reported on beam dynamics, inertial fusion, structure development, the racetrack microtron, the CERN high-energy physics experiment NA-12, and LAMPF II. The Proton Storage Ring is discussed next, with emphasis on the computer control system, diagnostics interfacing, and theoretical support. Other sections summarize progress on a portable radiographic linac, developments on the klystron code, and on permanent magnets. Activities of the Theory and Simulation Group are outlined next, followed by discussion of the oscillator experiment and the energy-recovery experiment in the free electron laser project. The last section reports on the accelerator test stand. An unusual and very satisfying activity for the Division was the hosting of the 1983 Particle Accelerator Conference in Santa Fe, March 21-23, 1983. The conference had the largest attendance ever, with 895 registrants, 61 invited papers, and 521 contributed papers.

  11. Probing Efficient Cosmic-Ray Acceleration in Young Supernovae

    E-Print Network [OSTI]

    Dwarkadas, Vikram V; Marcowith, A; Tatischeff, V

    2015-01-01

    The formation of a core collapse supernovae (SNe) results in a fast (but non- or mildly-relativistic) shock wave expanding outwards into the surrounding medium. The medium itself is likely modified due to the stellar mass-loss from the massive star progenitor, which may be Wolf-Rayet stars (for Type Ib/c SNe), red supergiant stars (for type IIP and perhaps IIb and IIL SNe), or some other stellar type. The wind mass-loss parameters determine the density structure of the surrounding medium. Combined with the velocity of the SN shock wave, this regulates the shock acceleration process. In this article we discuss the essential parameters that control the particle acceleration and gamma-ray emission in SNe, with particular reference to the Type IIb SN 1993J. The shock wave expanding into the high density medium leads to fast particle acceleration, giving rise to rapidly-growing plasma instabilities driven by the acceleration process itself. The instabilities grow over intraday timescales. This growth, combined wit...

  12. The Stanford Mark III linear accelerator and speculations concerning the multi-Bev applications of electron linear accelerators

    E-Print Network [OSTI]

    Neal, R B

    1956-01-01

    The Stanford Mark III linear accelerator and speculations concerning the multi-Bev applications of electron linear accelerators

  13. Technical Assistance to ISO's and Grid Operators For Loads Providing...

    Office of Environmental Management (EM)

    & Publications Loads Providing Ancillary Services: Review of International Experience Demand Response and Energy Storage Integration Study - Past Workshops Load Participation...

  14. Pipelines and laterally loaded piles in elastoplastic medium

    SciTech Connect (OSTI)

    Rajani, B. . Inst. for Research in Construction)

    1993-09-01

    The uplift behavior of a shallow pipeline embedded in an elastoplastic medium is examined. An analytical solution for a beam on elastoplastic foundation is developed and a characteristic nondimensional load-displacement and stress-displacement relationship are presented. An approximate three-dimensional (3D) solution is proposed that accounts for embedment and breakaway condition behind the pipeline making use of the load-displacement curves developed for rigid anchors by Rowe and Davis in 1982. A comparison of these results with those obtained by 3D finite-element analysis indicates that the simplified solution of a beam on elastoplastic foundation is a practical alternative for analyzing the uplift behavior of shallow pipelines. The approximate solution is also used to compare the behavior of a laterally loaded pile for which no separation or separation between the surrounding soil and the back of the pile is permitted as the load is monotonically increased. The results are presented in the form of nondimensional charts that permit hand calculations and rapid verification of structural design of the pipeline and piles.

  15. Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide

    SciTech Connect (OSTI)

    Lin, M.-W.; Jovanovic, I.

    2012-11-15

    Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

  16. NEUTRON WALL LOADING OF TOKAMAK REACTORS

    E-Print Network [OSTI]

    California at Los Angeles, University of

    GA­A23223 NEUTRON WALL LOADING OF TOKAMAK REACTORS by C.P.C. WONG OCTOBER 1999 #12;DISCLAIMER Government or any agency thereof. #12;GA­A23223 NEUTRON WALL LOADING OF TOKAMAK REACTORS by C.P.C. WONG by General Atomics IR&D Funds GA PROJECT 4437 OCTOBER 1999 #12;C.P.C. WONG NEUTRON WALL LOADING OF TOKAMAK

  17. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  18. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  19. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  20. A Study on Transverse Vibrations in a Column and an Overview of Structural Control 

    E-Print Network [OSTI]

    Roldan Arcos, Alejandra 1990-

    2011-07-19

    During an earthquake a building experiences seismic loads that may lead to the failure of structural members. In order to mitigate the dynamic loads, many are leaning heavily on structural control methods, which involve controlling the movement...

  1. Testing general relativity on accelerators

    E-Print Network [OSTI]

    Tigran Kalaydzhyan

    2015-09-09

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable -- maximal energy of the scattered photons -- would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  2. Technologies for Advanced Induction Accelerators

    SciTech Connect (OSTI)

    Hernandez, M.A.; Kamin, G.; Hanks, R.; Sharp, W.; Duncan, G.; Sangster, C.; Ahle, L.; Friedman, A.; Grote, D.; Autrey, D.; Halaxa, E; Williams, C.

    2000-04-20

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerators as possible drivers. The objectives of the Laboratory Directed Research and Development (LDRD) project described in this report have been to develop some of the enabling technologies necessary for this type of heavy-ion fusion (HIF) driver. In particular, to apply adaptive control to the problem of tailored acceleration and steering of a pulsed ion beam.

  3. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Antonio Enea Romano

    2007-01-27

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  4. LTB universes as alternatives to dark energy: does positive averaged acceleration imply positive cosmic acceleration?

    E-Print Network [OSTI]

    Romano, A E

    2006-01-01

    We show that positive averaged acceleration obtained in LTB models through spatial averaging can require integration over a region beyond the event horizon of the central observer. We provide an example of a LTB model with positive averaged acceleration in which the luminosity distance does not contain information about the entire spatially averaged region, making the averaged acceleration unobservable. Since the cosmic acceleration is obtained from fitting the observed luminosity distance to a FRW model we conclude that in general a positive averaged acceleration in LTB models does not imply a positive FRW cosmic acceleration.

  5. History of Load Participation in ERCOT

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    Presentation on demand integration by ERCOT for a DOE Workshop. Covers history of load participation in ERCOT from 2002 to present.

  6. Decentralized customerlevel under frequency load shedding in...

    Open Energy Info (EERE)

    Decentralized customerlevel under frequency load shedding in Switzerland (Smart Grid Project) Jump to: navigation, search Project Name Decentralized customerlevel under frequency...

  7. Load Participation in Ancillary Services Workshop Report

    SciTech Connect (OSTI)

    Kirby, Brendan; O'Malley, Mark; Ma, Ookie; Cappers, Peter; Corbus, Dave; Kiliccote, Sila; Onar, Omer; Starke, Michael; Steinberg, Dan

    2011-10-25

    Developing load participation in ancillary services to the electric grid. Challenges: coordination among multiple entities, targeted R&D for market conditions and regulatory and policy environments.

  8. Building Technologies Office Load Control Strategies

    Broader source: Energy.gov [DOE]

    BTO researches and implements load control strategies, which support the Sustainable and Holistic IntegratioN of Energy storage and Solar PV (SHINES) FOA.

  9. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01

    of individual appliances. For off-grid applications, solarinappropriate load for an off-grid solar system. Increasedsolar systems in general, and off-grid solar systems in

  10. Accelerated, energy-conserving BornOppenheimer molecular dynamics via Fock matrix extrapolation

    E-Print Network [OSTI]

    Herbert, John

    in order to accelerate convergence of the electronic structure calculations, can suffer from systematic­Oppenheimer molecular dynamics calculations, especially those that exploit information retained from previous time steps, on a potential energy surface obtained by ``on-the-fly'' solution of the quantum-mechanical electronic structure

  11. Relativistic Shocks: Particle Acceleration and Magnetization

    E-Print Network [OSTI]

    Sironi, Lorenzo; Lemoine, Martin

    2015-01-01

    We review the physics of relativistic shocks, which are often invoked as the sources of non-thermal particles in pulsar wind nebulae (PWNe), gamma-ray bursts (GRBs), and active galactic nuclei (AGN) jets, and as possible sources of ultra-high energy cosmic-rays. We focus on particle acceleration and magnetic field generation, and describe the recent progress in the field driven by theory advances and by the rapid development of particle-in-cell (PIC) simulations. In weakly magnetized or quasi parallel-shocks (where the magnetic field is nearly aligned with the flow), particle acceleration is efficient. The accelerated particles stream ahead of the shock, where they generate strong magnetic waves which in turn scatter the particles back and forth across the shock, mediating their acceleration. In contrast, in strongly magnetized quasi-perpendicular shocks, the efficiencies of both particle acceleration and magnetic field generation are suppressed. Particle acceleration, when efficient, modifies the turbulence ...

  12. Solar system constraints on Rindler acceleration

    E-Print Network [OSTI]

    Sante Carloni; Daniel Grumiller; Florian Preis

    2011-05-09

    We discuss the classical tests of general relativity in the presence of Rindler acceleration. Among these tests the perihelion shifts give the tightest constraints and indicate that the Pioneer anomaly cannot be caused by a universal solar system Rindler acceleration. We address potential caveats for massive test-objects. Our tightest bound on Rindler acceleration that comes with no caveats is derived from radar echo delay and yields |a|<3nm/s^2.

  13. Accelerator Technology Division progress report, FY 1993

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  14. Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data

    SciTech Connect (OSTI)

    Patterson, Timothy; Motupally, Sathya

    2012-06-01

    UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

  15. Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration

    SciTech Connect (OSTI)

    Jing, C.; Kanareykin, A. [Euclid Techlabs, LLC, Solon, OH-44139 (United States); Power, J.; Conde, M.; Yusof, Z.; Gai, W. [High Energy Physics Division, Argonne National Laboratory, Argonne, IL-60439 (United States)

    2006-11-27

    The transformer ratio R is a parameter that characterizes the efficiency of the energy transferred from the drive beam to the trailing witness beam passing through a wakefield accelerating structure (all metal or dielectric based) or a plasma chamber. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2 for a single bunch in a collinear wakefield accelerator. The RBT is a train of electron bunches separated by half integer multiples wavelength of the wakefield. The charge of the leading bunch is lowest and subsequent bunch charges are increased in such a way as to maximize R. In this article, an experimental study of this scheme is presented in which an RBT of 2 bunches with charge ratio of 1:2.5 and bunch length {sigma}z = 2 mm were used to enhance the transformer ratio. Measurement results and data analysis show good agreement with theoretical predictions. The ETR technique demonstrated here can be used in any collinear wakefield accelerator configuration, either structure- or plasma-based.

  16. Observation of enhanced transformer ratio in collinear Wakefield acceleration.

    SciTech Connect (OSTI)

    Power, J.; Conde, M.; Yusof, Z.; Gai, W.; Jing, C.; Kanareykin, A.; High Energy Physics; Euclid Techlabs, LLC

    2006-01-01

    The transformer ratio R is a parameter that characterizes the efficiency of the energy transferred from the drive beam to the trailing witness beam passing through a wakefield accelerating structure (all metal or dielectric based) or a plasma chamber. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2 for a single bunch in a collinear wakefield accelerator. The RBT is a train of electron bunches separated by half integer multiples wavelength of the wakefield. The charge of the leading bunch is lowest and subsequent bunch charges are increased in such a way as to maximize R. In this article, an experimental study of this scheme is presented in which an RBT of 2 bunches with charge ratio of 1:2.5 and bunch length {sigma}{sub z} = 2 mm were used to enhance the transformer ratio. Measurement results and data analysis show good agreement with theoretical predictions. The ETR technique demonstrated here can be used in any collinear wakefield accelerator configuration, either structure- or plasma-based.

  17. Jefferson Lab accelerator upgrade completed: Initial operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    visiting scientists may continue commissioning the accelerator and dependent upon funding availability, some limited early physics running may be feasible as the capabilities of...

  18. The Illinois Accelerator Research Center, or IARC,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will work side-by-side with industrial partners to develop breakthroughs in accelerator technology and new applications in energy and environment, medicine, industry, national...

  19. Accelerator Modeling for Discovery | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    identified three scientific drivers that require accelerator-based experiments (using the Higgs boson as a new tool for discovery, pursuing the physics associated with neutrino...

  20. State Strategies for Accelerating Transmission Development for...

    Open Energy Info (EERE)

    State Strategies for Accelerating Transmission Development for Renewable Energy Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: State Strategies for...

  1. TAP Webinar: High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover the recently announced expansion of the Better Buildings platform —the High Performance Outdoor Lighting Accelerator (HPOLA).

  2. Accelerating Irregular Computations with Hardware Transactional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Speaker(s): Torsten Hoefler Speaker(s) Title: ETH Zrich Host: Marc Snir We propose Atomic Active Messages (AAM), a mechanism that accelerates irregular...

  3. DERIVATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS FOR...

    Office of Scientific and Technical Information (OSTI)

    DERIVATION OF STOCHASTIC ACCELERATION MODEL CHARACTERISTICS FOR SOLAR FLARES FROM RHESSI HARD X-RAY OBSERVATIONS Citation Details In-Document Search Title: DERIVATION OF STOCHASTIC...

  4. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Citation Details In-Document Search Title: COMBINED MODELING OF...

  5. Accelerated Climate Modeling for Energy | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

  6. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    interests represented in the national combined heat and power (CHP) dialogue. This paper includes recommendations for accelerating CHP deployment that are directed at all...

  7. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 3D virtualization company, enabling the use of 3D virtualization in art and cultural preservation markets. LAVA Chief Operations Officer Steve Smith said the "acceleration"...

  8. OPERATIONAL STATUS OF THE BROOKHAVENNATIONAL LABORATORY ACCELERATOR TEST FACILI'I'S-:c Ratcl~elor, I. Ben-Zvit, I. Bigllott, T.S. Chou. R.C. Fernow, J. Fischer,J. Cellardo, I1.G. Kirk, N. Ku]-ni! 11.

    E-Print Network [OSTI]

    McDonald, Kirk

    . The gun and accelerating systems are initially being driven by a single 30 MW klystron resulting accelerating structure capable of sustaining accelerating fields of several hundred MV/m. The system is shown, a momentum selection and pulse compression system, and two s-band travelling wave accelerators sections

  9. Sustainable Transportation: Accelerating Widespread Adoption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and thermal management of motor controllers, inverters, and traction motors. Hydrogen & Fuel Cells NREL researchers assess and validate hydrogen fueling infra- structure and fuel...

  10. Analysis of a typical Midwestern structure subjected to seismic loads 

    E-Print Network [OSTI]

    Hart, Jason Frazier

    2013-02-22

    The extent of damage and casualties in Midwest cities such as St. Louis during an earthquake caused by the New Madrid fault system will be due in part to the performance of buildings. Dynamic nonlinear analysis of a reinforced concrete building...

  11. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Broader source: Energy.gov (indexed) [DOE]

    (shock and vibration effects for variable materials configurations, bending stress). Results of a demonstration involving moving high burnup 1717 OFA fuel in a GBC-32...

  12. Used Nuclear Fuel Loading and Structural Performance Under Normal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search TheChlamydomonasMaterial fromRev.Conditions of

  13. Used Nuclear Fuel Loading and Structural Performance Under Normal

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutoryin theNuclear EnergyPotomacCool RoofDepartmentPlan

  14. Experimental and Analytical Modeling of Concrete-Filled FRP Tubes Subjected to Combined Bending and Axial Loads

    E-Print Network [OSTI]

    structures were considered. Axial load - bending moment interaction curves are presented. The paper presents1 Experimental and Analytical Modeling of Concrete-Filled FRP Tubes Subjected to Combined Bending and Axial Loads Amir Fam 1 , Bart Flisak 2 and Sami Rizkalla 3 Abstract This paper presents test results

  15. Designing and Testing Contols to Mitigate Dynamic Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Wright, A.D.; Stol, K.A.

    2008-01-01

    The National Renewable Energy Laboratory is designing, implementing, and testing advanced controls to maximize energy extraction and reduce structural dynamic loads of wind turbines. These control designs are based on a linear model of the turbine that is generated by specialized modeling software. In this paper, we show the design and simulation testing of a control algorithm to mitigate blade, tower, and drivetrain loads using advanced state-space control design methods.

  16. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    SciTech Connect (OSTI)

    Torcellini, Paul; Bonnema, Eric; Sheppy, Michael; Pless, Shanti

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  17. Wind pressure distribution on shell structures 

    E-Print Network [OSTI]

    Yancey, Kenneth Earl, Jr

    1963-01-01

    One of the most important loads that an architect or engineer is concerned with in the structural design of buildings is wind pressure, and it is one of the most difficult structural loads to estimate. The necessity of making a close estimate...

  18. Production expansion continues to accelerate

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production.

  19. Accelerating Universe Around A Blackhole

    E-Print Network [OSTI]

    A. M. Harunar Rashid; Arshad Momen; A. L. Choudhury

    2006-08-20

    We have assumed that in a physical universe a blackhole is created some where. We conjecture that this blackhole will then separate itself from the physical universe and will build up an extra dimensional entity associated with the physical universe. The extra dimensional entity we suppose to be orthogonal to the physical universe. We further conjecture that this blackhole is a Schwartzschild blackhole. We assume that this physical universe and the blackhole span a seven dimensional space with a common time coordinate. We then generate the Einstein equation. Using the time-blackhole and the time-time component of the equation we show that the Hubble parameter is positive and time dependent if we conjecture that both scale factor and the radius of the blackhole reduces exponetially. Under the same assumption we have also calculated the deacceleration parameter and shown that under certain constrain the universe accelerates.

  20. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect (OSTI)

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000?°C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  1. The role of accelerators in the nuclear fuel cycle

    SciTech Connect (OSTI)

    Takahashi, Hiroshi.

    1990-01-01

    The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the use of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.

  2. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect (OSTI)

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.; RIKEN, Wako, Saitama 351-0198

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  3. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, S.R.

    1990-03-20

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials. 2 figs.

  4. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  5. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, Steven R. (49 Williams Ave., West Valley, NY 14171)

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  6. Harmonic Load Pull of High-Power Microwave Devices using Fundamental-Only Load Pull Tuners

    E-Print Network [OSTI]

    Popovic, Zoya

    Harmonic Load Pull of High-Power Microwave Devices using Fundamental-Only Load Pull Tuners John-frequency load pull tuners. Harmonic impedance control at the virtual drain is accomplished through the use the dramatic impact of varying 2nd harmonic termination. A 3rd harmonic termination is added to satisfy

  7. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  8. Generator Response to Load Variation The below table summarizes the way that load variation is

    E-Print Network [OSTI]

    McCalley, James D.

    1 Generator Response to Load Variation The below table summarizes the way that load variation is allocated to generators in a power system. In these notes, we derive the proximity effect, the inertial, constant impedance loads, and the network reduced to generator internal nodes. This expression was: { }00

  9. Accelerating cleanup: Paths to closure

    SciTech Connect (OSTI)

    1998-06-01

    This report describes the status of Environmental Management`s (EM`s) cleanup program and a direction forward to complete achievement of the 2006 vision. Achieving the 2006 vision results in significant benefits related to accomplishing EM program objectives. As DOE sites accelerate cleanup activities, risks to public health, the environment, and worker safety and health are all reduced. Finding more efficient ways to conduct work can result in making compliance with applicable environmental requirements easier to achieve. Finally, as cleanup activities at sites are completed, the EM program can focus attention and resources on the small number of sites with more complex cleanup challenges. Chapter 1 describes the process by which this report has been developed and what it hopes to accomplish, its relationship to the EM decision-making process, and a general background of the EM mission and program. Chapter 2 describes how the site-by-site projections were constructed, and summarizes, for each of DOE`s 11 Operations/Field Offices, the projected costs and schedules for completing the cleanup mission. Chapter 3 presents summaries of the detailed cleanup projections from three of the 11 Operations/Field Offices: Rocky Flats (Colorado), Richland (Washington), and Savannah River (South Carolina). The remaining eight Operations/Field Office summaries are in Appendix E. Chapter 4 reviews the cost drivers, budgetary constraints, and performance enhancements underlying the detailed analysis of the 353 projects that comprise EM`s accelerated cleanup and closure effort. Chapter 5 describes a management system to support the EM program. Chapter 6 provides responses to the general comments received on the February draft of this document.

  10. Report on accelerated corrosion studies.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  11. Equilibrium Configurations of Cantilever under Terminal Loads

    E-Print Network [OSTI]

    Milan Batista

    2013-03-27

    The paper provides an exact analytical solution for equilibrium configurations of cantilever rod subject to inclined force and torque acting on its free end. The solution is given in terms of Jacobi elliptical functions and illustrated by several numerical examples and several graphical presentations of shapes of deformed cantilever. Possible forms of cantilever underlying elastica are discussed in details and various simple formulas are given for calculation of characteristic dimensions of elastica. For the case when cantilever is subject only to applied force four load conditions are discussed: follower load problem, load determination problem, conservative load problem and rotational load problem. For all the cases the formulas or effective procedure for solution is given.

  12. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Nitschke, J.M. [eds.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  13. Solving NonlinearSolving Nonlinear EigenproblemsEigenproblems inin Accelerator Cavity DesignAccelerator Cavity Design

    E-Print Network [OSTI]

    California at Davis, University of

    Light Source RF-gun Accelerating cavity for International Linear Collider Summary and Future work #12 Light Source RF-gun Accelerating cavity for International Linear Collider Summary and Future work #12;RF-gun Accelerating cavity for International Linear Collider Summary and Future work #12;Quadratric

  14. LAHET calculations for accelerator neutron production

    SciTech Connect (OSTI)

    Prael, R.E.

    1993-07-01

    LAHET is a Monte Carlo code for the transport and interaction of nucleons, pions, muons, fight ions, and antinucleons in complex geometry; it is the result of a major effort at Los Alamos National Laboratory to develop a code system based on the LANL version of the HETC Monte Carlo code for the transport of nucleons, pions, and muons, which was originally developed at Oak Ridge National Laboratory. The system of codes based on LAHET is designated as the LAHET Code System (LCS). LAHET, as all the variants of HETC, has been widely used over the years for design of neutron production targets, facility shielding, and experimental analysis. LAHET is now widely used for medical accelerator facility design and application. Particle tracking uses the general geometry model of the LANL MCNP code, and shares the geometry description and input of MCNP, except for lattices and/or repeated structures. HMCNP is a modification of MCNP which accepts an. external neutron/photon source created by LAHET. Neutron transport from 20 MeV to thermal and all photon/electron transport is done with HMCNP.

  15. Quantum optical device accelerating dynamic programming

    E-Print Network [OSTI]

    D. Grigoriev; A. Kazakov; S. Vakulenko

    2010-11-23

    In this paper we discuss analogue computers based on quantum optical systems accelerating dynamic programming for some computational problems. These computers, at least in principle, can be realized by actually existing devices. We estimate an acceleration in resolving of some NP-hard problems that can be obtained in such a way versus deterministic computers

  16. The Heating & Acceleration of the Solar Wind

    E-Print Network [OSTI]

    Wurtele, Jonathan

    The Heating & Acceleration of the Solar Wind Eliot Quataert (UC Berkeley) Collaborators: Steve & Slow Winds · The Puzzle of the High Frequency Cascade (or the lack thereof ....) · Possible Solutions #12;Background · Heating required to accelerate the solar wind · Early models invoked e- conduction

  17. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect (OSTI)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  18. Accelerator Production Options for 99MO

    SciTech Connect (OSTI)

    Bertsche, Kirk; /SLAC

    2010-08-25

    Shortages of {sup 99}Mo, the most commonly used diagnostic medical isotope, have caused great concern and have prompted numerous suggestions for alternate production methods. A wide variety of accelerator-based approaches have been suggested. In this paper we survey and compare the various accelerator-based approaches.

  19. Case Study - Minnesota Power - Accelerating Grid Modernization...

    Office of Environmental Management (EM)

    deployment of smart meters, automated feeder switches, load control devices, and a web portal to support enhanced feedback about usage, a residential time-based rate and...

  20. Wind/Wave Misalignment in the Loads Analysis of a Floating Offshore Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Barj, L.; Stewart, S.; Stewart, G.; Lackner, M.; Jonkman, J.; Robertson, A.

    2014-02-01

    Wind resources far from the shore and in deeper seas have encouraged the offshore wind industry to look into floating platforms. The International Electrotechnical Commission (IEC) is developing a new technical specification for the design of floating offshore wind turbines that extends existing design standards for land-based and fixed-bottom offshore wind turbines. The work summarized in this paper supports the development of best practices and simulation requirements in the loads analysis of floating offshore wind turbines by examining the impact of wind/wave misalignment on the system loads under normal operation. Simulations of the OC3-Hywind floating offshore wind turbine system under a wide range of wind speeds, significant wave heights, peak-spectral periods and wind/wave misalignments have been carried out with the aero-servo-hydro-elastic tool FAST [4]. The extreme and fatigue loads have been calculated for all the simulations. The extreme and fatigue loading as a function of wind/wave misalignment have been represented as load roses and a directional binning sensitivity study has been carried out. This study focused on identifying the number and type of wind/wave misalignment simulations needed to accurately capture the extreme and fatigue loads of the system in all possible metocean conditions considered, and for a down-selected set identified as the generic US East Coast site. For this axisymmetric platform, perpendicular wind and waves play an important role in the support structure and including these cases in the design loads analysis can improve the estimation of extreme and fatigue loads. However, most structural locations see their highest extreme and fatigue loads with aligned wind and waves. These results are specific to the spar type platform, but it is expected that the results presented here will be similar to other floating platforms.