Powered by Deep Web Technologies
Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Load Scheduling with Profile Information  

E-Print Network (OSTI)

. Within the past five years, many manufactures have added hardware performance counters to their microprocessors to generate profile data cheaply. We show how to use Compaq's DCPI tool to determine load latencies which are at a fine, instruction granularity and use them as fodder for improving instruction scheduling. We validate our heuristic for using DCPI latency data to classify loads as hits and misses against simulation numbers. We map our classification into the Multiflow compiler's intermediate representation, and use a locality sensitive Balanced scheduling algorithm. Our experiments illustrate that our algorithm improves run times by 1% on average, but up to 10% on a Compaq Alpha. 1 Introduction This paper explores how to use hardware performance counters to produce fine grain latency information to improve compiler scheduling. We use this information to hide latencies with any available instruction level parallelism (ILP). (ILP for an instruction is the number of o...

Götz Lindenmaier; Kathryn S. McKinley; Olivier Temam

2000-01-01T23:59:59.000Z

2

load profile | OpenEI Community  

Open Energy Info (EERE)

load profile Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 13:03 Commercial and Residential Hourly Load Data Now Available on OpenEI building load building...

3

Load Scheduling with Profile Information  

E-Print Network (OSTI)

Abstract Within the past five years, many manufactureshave added hardware performance counters to their microprocessors to generate profile data cheaply.Translating aggregate data such as basic block execution frequencies from the executable to the com-piler intermediate representation is fairly straightforward. In this paper, we show how to use Com-paq's DCPI tool to determine load latencies which are at a fine, instruction granularity and then usethem to provide fodder for improving instruction scheduling. We validate our heuristic for usingDCPI latency data to classify loads as hits and misses against simulation numbers, demonstratingthat we can gather correct latencies cheaply at runtime. We map our classification into the Multiflowcompiler's intermediate representation, and use a locality sensitive Balanced scheduling algorithm. Ourexperiments illustrate that our algorithm has the potential to improve run times by up to 10 % on a Com-paq Alpha when compared to Balanced scheduling, but that a variety of pitfalls make consistent im-provements difficult to attain. 1 Introduction In this paper, we explore how to use hardware per-formance counters to produce fine grain latency information to improve compiler scheduling. We usethis information to hide latencies with any avail\\Lambda The authors

unknown authors

1999-01-01T23:59:59.000Z

4

Load Scheduling with Profile Information  

E-Print Network (OSTI)

Within the past five years, many manufactures have added hardware performance counters to their microprocessors to generate profile data cheaply.

Gotz Lindenmaier Kathryn; Kathryn S. M C Kinley; Olivier Temam

2000-01-01T23:59:59.000Z

5

Analysis Methodology for Industrial Load Profiles  

E-Print Network (OSTI)

A methodology is provided for evaluating the impact of various demand-side management (DSM) options on industrial customers. The basic approach uses customer metered load profile data as a basis for the customer load shape. DSM technologies are represented as load shapes and are used as a basis for altering the customers existing measured load shape. The impact of load shape changes on the customer is evaluated in terms of a change in the electric bill by using a software analytical tool called LOADEXPERT™. The software calculates the customer's bill for a particular rate structure and a given load shape. The output data from LOADEXPERT™ are used to calculate the rate of return on the DSM technology investment. Other uses of load profile data are provided.

Reddoch, T. W.

1991-06-01T23:59:59.000Z

6

Profile Guided Load Marking for Memory Renaming  

E-Print Network (OSTI)

Memory operations remain a significant bottleneck in dynamically scheduled pipelined processors, due in part to the inability to statically determine the existence of memory address dependencies. Hardware memory renaming techniques have been proposed which predict which stores a load might be dependent upon. These prediction techniques can be used to speculatively forward a value from a predicted store dependency to a load through a value prediction table; however, these techniques require large and time-consuming hardware tables. In this paper we propose a software-guided approach for identifying dependencies between store and load instructions and the Load Marking (LM) architecture to communicate these dependencies to the hardware. Compiler analysis and profiles are used to find important store/load relationships, and these relationships are identified during execution via hints or an n-bit tag. For those loads that are not marked for renaming, we then use additional profiling inform...

Glenn Reinman; Brad Calder; Dean Tullsen; Gary Tyson; Todd Austin

1998-01-01T23:59:59.000Z

7

Building Energy Software Tools Directory: Prophet Load Profiler  

NLE Websites -- All DOE Office Websites (Extended Search)

Shots Keywords energy analysis, load profiling, cost comparison, energy budgeting, rate analysis, data collection, real-time monitoring, load shedding ValidationTesting NA...

8

Load Profiling and Settlement for Retail Markets Methods Assessment Study  

Science Conference Proceedings (OSTI)

Retail electric competition requires estimation of hourly loads for each retail supplier. Load profiling is the means by which loads for customers who do not have hourly metering are accounted for. This report presents an assessment of alternative load profiling and settlement methods for retail electric markets and provides a framework for evaluating costs and benefits of potential improvements to profiling and settlement systems. This report is available only to funders of Program 101A or 101.001. Fund...

1999-06-01T23:59:59.000Z

9

Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles  

E-Print Network (OSTI)

on Cluster Analysis of Load Profiles Nobuyuki Yamaguchi,on Cluster Analysis of Load Profiles Nobuyuki Yamaguchi,regressions, using actual load profile data of Pacific Gas

Kiliccote, Sila

2010-01-01T23:59:59.000Z

11

Load Profiling Based Routing for Guaranteed Bandwidth Flows  

E-Print Network (OSTI)

. To support the stringent Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC), established on one of several candidate routes, have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In this paper, we propose the use of load profiling as an attractive alternative to load balancing for routing guaranteed bandwidth VCs (flows). Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic r...

Ibrahim Matta; Azer Bestavros; Marwan Krunz

1999-01-01T23:59:59.000Z

12

OpenEI Community - load profile  

Open Energy Info (EERE)

/0 en Commercial and /0 en Commercial and Residential Hourly Load Data Now Available on OpenEI! http://en.openei.org/community/blog/commercial-and-residential-hourly-load-data-now-available-openei <span class=Load data" src="http://en.openei.org/community/files/load_data_figure_small.jpg" style="width:527px; height:285px" title="" />Image source: NREL 

Files: 
application/zip icon

13

Water Energy Load Profiling (WELP) Tool | Open Energy Information  

Open Energy Info (EERE)

Water Energy Load Profiling (WELP) Tool Water Energy Load Profiling (WELP) Tool Jump to: navigation, search Tool Summary Name: Water Energy Load Profiling (WELP) Tool Agency/Company /Organization: California Public Utilities Commission (CPUC) Sector: Energy, Water Focus Area: Energy Efficiency, - Embodied Energy, Water Conservation Phase: Determine Baseline, "Evaluate Effectiveness and Revise" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. Topics: GHG inventory, Policies/deployment programs, Resource assessment, Background analysis

14

Building Energy Software Tools Directory: Prophet Load Profiler  

NLE Websites -- All DOE Office Websites (Extended Search)

Prophet Load Profiler Prophet Load Profiler Prophet Load Profiler logo. Internet-enabled software that empowers business energy customers to manage energy and reduce costs. Valuable to facility managers, energy managers and energy service companies, the Prophet web-based service delivers real-time and near-real-time energy information on energy consumption and demand for any size facility. A number of facilities can be managed using consumption data gathered in 15 minute, 30 minute, 60 minute, daily, weekly and monthly intervals. Users can immediately view and analyze data with an eye toward load shedding, cost avoidance strategies, energy budget management, utility cost validation and energy forecasting. All tools are contained within the Prophet Web application and enabled via the internet using a standard web

15

Using measured equipment load profiles to "right-size" HVAC systems and reduce energy use in laboratory buildings (Pt. 2)  

E-Print Network (OSTI)

Using measured equipment load profiles to “right-size” HVAClighting and occupancy load profiles in all the spaces wereintensity” equipment load profile, while the remaining zones

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2008-01-01T23:59:59.000Z

16

Load Data Analysis and PowerShape Training: Strategic Load Research and Advanced Topics in Load Profiling for Settlements  

Science Conference Proceedings (OSTI)

Load shapes, representing usage patterns in the electric and gas industry, are a key factor in energy company operations and management. In the emerging restructured energy market, retail energy suppliers market energy to final customers and must arrange for electricity generation or gas delivery to meet their customers' needs. EPRI and Primen sponsored a workshop in September 2000 that addressed a range of issues associated with load shapes, including modeling, profiling for retail market settlement, re...

2000-12-20T23:59:59.000Z

17

Report of the US Nuclear Regulatory Commission Piping Review Committee. Volume 4. Evaluation of other loads and load combinations  

SciTech Connect

Six topical areas were covered by the Task Group on Other Dynamic Loads and Load Combinations as described below: Event Combinations - dealing with the potential simultaneous occurrence of earthquakes, pipe ruptures, and water hammer events in the piping design basis; Response Combinations - dealing with multiply supported piping with independent inputs, the sequence of combinations between spacial and modal components of response, and the treatment of high frequency modes in combination with low frequency modal responses; Stress Limits/Dynamic Allowables - dealing with inelastic allowables for piping and strain rate effects; Water Hammer Loadings - dealing with code and design specifications for these loadings and procedures for identifying potential water hammer that could affect safety; Relief Valve Opening and Closing Loads - dealing with the adequacy of analytical tools for predicting the effects of these events and, in addition, with estimating effective cycles for fatigue evaluations; and Piping Vibration Loads - dealing with evaluation procedures for estimating other than seismic vibratory loads, the need to consider reciprocating and rotary equipment vibratory loads, and high frequency vibratory loads. NRC staff recommendations or regulatory changes and additional study appear in this report.

Not Available

1984-12-01T23:59:59.000Z

18

Remote Area Power Supply (RAPS) load and resource profiles.  

SciTech Connect

In 1997, an international team interested in the development of Remote Area Power Supply (RAPS) systems for rural electrification projects around the world was organized by the International Lead Zinc Research Organization (ILZRO) with the support of Sandia National Laboratories (SNL). The team focused on defining load and resource profiles for RAPS systems. They identified single family homes, small communities, and villages as candidates for RAPS applications, and defined several different size/power requirements for each. Based on renewable energy and resource data, the team devised a ''strawman'' series of load profiles. A RAPS system typically consists of a renewable and/or conventional generator, power conversion equipment, and a battery. The purpose of this report is to present data and information on insolation levels and load requirements for ''typical'' homes, small communities, and larger villages around the world in order to facilitate the development of robust design practices for RAPS systems, and especially for the storage battery component. These systems could have significant impact on areas of the world that would otherwise not be served by conventional electrical grids.

Giles, Lauren (Energetics, Inc., Washington, DC); Skolnik, Edward G. (Energetics, Inc., Washington, DC); Marchionini, Brian (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2007-07-01T23:59:59.000Z

19

Remote Area Power Supply (RAPS) load and resource profiles.  

SciTech Connect

In 1997, an international team interested in the development of Remote Area Power Supply (RAPS) systems for rural electrification projects around the world was organized by the International Lead Zinc Research Organization (ILZRO) with the support of Sandia National Laboratories (SNL). The team focused on defining load and resource profiles for RAPS systems. They identified single family homes, small communities, and villages as candidates for RAPS applications, and defined several different size/power requirements for each. Based on renewable energy and resource data, the team devised a ''strawman'' series of load profiles. A RAPS system typically consists of a renewable and/or conventional generator, power conversion equipment, and a battery. The purpose of this report is to present data and information on insolation levels and load requirements for ''typical'' homes, small communities, and larger villages around the world in order to facilitate the development of robust design practices for RAPS systems, and especially for the storage battery component. These systems could have significant impact on areas of the world that would otherwise not be served by conventional electrical grids.

Giles, Lauren (Energetics, Inc., Washington, DC); Skolnik, Edward G. (Energetics, Inc., Washington, DC); Marchionini, Brian (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

2007-07-01T23:59:59.000Z

20

Classification of total load demand profiles for war-ships based on pattern recognition methods  

Science Conference Proceedings (OSTI)

The classification of total load demand profiles for every type of war-ships is crucial information, because it is the necessary base for a series of studies and operations, such as load estimation, load shedding and power management systems. In this ... Keywords: adequacy measures, clustering algorithms, load profiles, pattern recognition, warship

G. J. Tsekouras; I. S. Karanasiou; F. D. Kanellos

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A new classification pattern recognition methodology for power system typical load profiles  

Science Conference Proceedings (OSTI)

In this paper a new pattern recognition methodology is described for the classification of the daily chronological load curves of power systems, in order to estimate their respective representative daily load profiles, which can be mainly used for load ... Keywords: adaptive vector quantization, adequacy measures, clustering algorithms, fuzzy k-means, hierarchical clustering, k-means, load profiles, pattern recognition, self-organized maps

G. J. Tsekouras; F. D. Kanellos; V. T. Kontargyri; I. S. Karanasiou; A. D. Salis; N. E. Mastorakis

2008-12-01T23:59:59.000Z

22

Analytical and demonstration experience with changing load profile. Final report  

SciTech Connect

A bibliography of load management and supply management projects, sponsored by EPRI, was developed. Summaries of project scope and results were made for a selection of these projects already completed. Finally, summaries of six utility load management demonstration projects were made, including project descriptions and presentation of selected results.

Isaksen, L.; Khan, S.; Ma, F.S.

1979-12-01T23:59:59.000Z

23

Commercial and Residential Hourly Load Profiles for all TMY3 Locations in  

Open Energy Info (EERE)

and Residential Hourly Load Profiles for all TMY3 Locations in and Residential Hourly Load Profiles for all TMY3 Locations in the United States Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Hourly load profiles are available for over all TMY3 locations in the United States here. Browse files in this dataset, accessible as individual files and as commercial and residential downloadable ZIP files. This dataset is approximately 4.8GiB compressed or 19GiB uncompressed. July 2nd, 2013 update: Residential High and Low load files have been updated from 366 days in a year for leap years to the more general 365 days in a normal year.

24

ZigBee Smart Energy Application Profile for Demand Response/Load...  

NLE Websites -- All DOE Office Websites (Extended Search)

ZigBee Smart Energy Application Profile for Demand ResponseLoad Control and its implementation on a JAVA-based platform Speaker(s): John Lin Date: April 23, 2009 - 12:00pm...

25

Low profile, high load vertical rolling positioning stage  

DOE Patents (OSTI)

A stage or support platform assembly for use in a synchrotron accurately positions equipment to be used in the beam line of the synchrotron. The support platform assembly includes an outer housing in which is disposed a lifting mechanism having a lifting platform or stage at its upper extremity on which the equipment is mounted. A worm gear assembly is located in the housing and is adapted to raise and lower a lifting shaft that is fixed to the lifting platform by an anti-binding connection. The lifting platform is moved vertically as the lifting shaft is moved vertically. The anti-binding connection prevents the shaft from rotating with respect to the platform, but does permit slight canting of the shaft with respect to the lifting platform so as to eliminate binding and wear due to possible tolerance mismatches. In order to ensure that the lifting mechanism does not move in a horizontal direction as it is moved vertically, at least three linear roller bearing assemblies are arranged around the outer-periphery of the lifting mechanism. One of the linear roller bearing assemblies can be adjusted so that the roller bearings apply a loading force against the lifting mechanism. Alternatively, a cam mechanism can be used to provide such a loading force.

Shu, Deming (Darien, IL); Barraza, Juan (Aurora, IL)

1996-01-01T23:59:59.000Z

26

Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles  

Science Conference Proceedings (OSTI)

This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.

Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila

2009-06-28T23:59:59.000Z

27

Effects of electric utility residential conservation programs on hourly load profiles  

SciTech Connect

This paper discusses the potential of using hourly energy simulation models to determine load shape changes resulting from energy conservation activities. It is determined that shifts in the time and the day of the monthly peak demand may occur as the level of conservation increases. The shifting of the peak was from weather-sensitive periods to less-weather-sensitive periods. Seasonal load profile changes resulting from energy conservation were demonstrated. A statistically significant quadratic relationship was identified between the annual percent reduction and annual percent energy conserved for the different distribution systems examined. The relationships are examined between different levels of residential energy conservation from weatherization and heat pumps on the hourly load profiles of different power distribution systems within the TVA power service area.

Harper, J.P.; Sieber, R.E.

1983-01-01T23:59:59.000Z

28

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network (OSTI)

composition: The total load profile obtained from  load individual load types if  load profiles of individual load composition validation: Load profiles generated by the load 

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

29

Using measured equipment load profiles to "right-size" HVAC systems and reduce energy use in laboratory buildings (Pt. 2)  

E-Print Network (OSTI)

load profiles to “right-size” HVAC systems and reduce energyGeorgia. ASHRAE [1999]. HVAC Applications Handbook 1999.Inefficiency of a Common Lab HVAC System,” presented at the

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2008-01-01T23:59:59.000Z

30

Microsoft Word - Load Availability Profiles and Constraints for the Western Interconnect_102513_clean.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

7E 7E Grid Integration of Aggregated Demand Response, Part I: Load Availability Profiles and Constraints for the Western Interconnection Daniel J. Olsen, Nance Matson, Michael D. Sohn, Cody Rose, Junqiao Dudley, Sasank Goli, and Sila Kiliccote Lawrence Berkeley National Laboratory Marissa Hummon, David Palchak, Paul Denholm, and Jennie Jorgenson National Renewable Energy Laboratory Ookie Ma U.S. Department of Energy September 2013 Disclaimer Acknowledgements Abstract Foreword Table of Contents List of Figures List of Tables Executive Summary Introduction ≤ ≤ ≤

31

Plug-In Electric Vehicle Charging Load Profile Forecasts for the Salt River Project Service Area  

Science Conference Proceedings (OSTI)

As plug-in electric vehicles (PEVs) enter the marketplace, it is important to understand the impacts of the potentially significant new load caused by PEV charging. Time-of-use (TOU) electricity pricing will help shift PEV charging loads to off-peak hours, mitigating the potential problem of raising the system peak load. However, there is a potential for a secondary peak to develop if the TOU plan causes a large PEV load to appear on the grid at a specific time in the evening. So-called smart chargingbid...

2011-06-30T23:59:59.000Z

32

Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles  

E-Print Network (OSTI)

Methods for Customer and Demand Response Policies SelectionC. McParland,“Open Automated Demand Response Communicationset al, “Estimating Demand Response Load Impacts: Evaluation

Kiliccote, Sila

2010-01-01T23:59:59.000Z

33

The Load Leveling Approach to Removing Appliance Features from Home Electricity Usage Profiles.  

E-Print Network (OSTI)

??For the past twenty years, researchers have developed a class of algorithms that are capable of disaggregating a residential electric load into its set of… (more)

McLaughlin, Stephen

2011-01-01T23:59:59.000Z

34

Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles  

E-Print Network (OSTI)

ESCRIPTIVE S TATISTICS Maximum Demand (kW) Num. of Obs. Meanrate and customer’s maximum demand. C’ i, t : a constant, Arate and customer’s maximum demand. The load sensitivity to

Kiliccote, Sila

2010-01-01T23:59:59.000Z

35

The influence of a variable volume water heater on the domestic load profile  

SciTech Connect

In this paper a variable volume water heater and a load impact model is presented. The variable volume water heater is a unique system that can be implemented as a residential demand-side management tool. The variable volume water heater can shift the electrical energy consumption, used to heat water, to off-peak time periods. The electrical energy is shifted without influencing the hot water usage of the customer. The load impact model simulates the effect of controlling the volume of stored hot water on a domestic load. The model mathematics as well as the model verification are discussed. The paper ends with a comparative case study on two residential areas. The case study indicates that the variable volume water heater can reduce the system peak as well as increase the off-peak energy consumption.

Lemmer, E.F.; Delport, G.J.

1999-12-01T23:59:59.000Z

36

Voltage Pulse Profile Characteristics with Space Charge of a Loaded Pulsed Ionization Chamber  

Science Conference Proceedings (OSTI)

An analytical model describing the voltage pulse profile of a pulsed ionization chamber and its relationship to the electron density in a field drift dominated plasma is formulated. The differential equation derived from the equations of motion and conservation of electron density combined with Poisson's equation for the electric space?charge field in the system is solved analytically for the cylindrical?electrode geometry with an external RC circuit. The numerical analysis for the given initial and boundary conditions yields the anode voltage?signal pulse profiles for the period of electron collection as a function of the initial electron density

S.H. Kim; W.H. Ellis

1972-01-01T23:59:59.000Z

37

Recommending energy tariffs and load shifting based on smart household usage profiling  

Science Conference Proceedings (OSTI)

We present a system and study of personalized energy-related recommendation. AgentSwitch utilizes electricity usage data collected from users' households over a period of time to realize a range of smart energy-related recommendations on energy tariffs, ... Keywords: demand response, energy tariffs, load shifting, personalization, recommender systems, smart grid

Joel E. Fischer; Sarvapali D. Ramchurn; Michael Osborne; Oliver Parson; Trung Dong Huynh; Muddasser Alam; Nadia Pantidi; Stuart Moran; Khaled Bachour; Steve Reece; Enrico Costanza; Tom Rodden; Nicholas R. Jennings

2013-03-01T23:59:59.000Z

38

Beam loading voltage profile of an accelerating section with a linearly varying group velocity  

E-Print Network (OSTI)

The CLIC Tapered Damped accelerating Structure (TDS) has a 5.4% detuning of the lowest dipole mode. The geometrical variations that produce this detuning range also fix the fundamental mode's group velocity variation - very nearly linear with 0.108c (c is the speed of light) at the structure input to 0.054c at the output. In addition R'/Q also varies approximately linearly, from 22.3 kW/m at the input to 30 kW/m at the output. These variations result in a structure that is neither constant impedance nor constant gradient so the widely used relationships between structure length, input and average accelerating gradient are not applicable. In order to simplify the process of optimizing accelerator parameters an analytic expression for the voltage profile in a structure with a linearly varying group velocity has been derived. A more accurate numerical solution that includes the variation in R'/Q is also presented.

Wuensch, Walter

1999-01-01T23:59:59.000Z

39

Methods for Analyzing Electric Load Shape and its Variability  

E-Print Network (OSTI)

15 Figure 12: Load profile by day of week, averaged over thebetween the average load profile and the profile of a givenfrom the average load profile. Figure 12: Load profile by

Price, Philip

2010-01-01T23:59:59.000Z

40

building load data | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

electric load data | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

42

commercial load | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

43

residential load | OpenEI Community  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL...

44

Comparison of Zone Cooling Load for Radiant and All-Air Conditioning Systems  

E-Print Network (OSTI)

change the cooling load profile for the mechanical systems.and the resulting cooling load profile has been reported inimplications for cooling load profile and peak cooling load

Feng, Jingjuan; Schiavon, Stefano; Bauman, Fred

2012-01-01T23:59:59.000Z

45

OpenEI Community - load data  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

46

OpenEI Community - electric load data  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

47

OpenEI Community - building load  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

48

OpenEI Community - residential load  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

49

OpenEI Community - commercial load  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

50

OpenEI Community - building load data  

Open Energy Info (EERE)

building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Utility Rate OpenEI Community...

51

Watershed Mercury Loading Framework  

Science Conference Proceedings (OSTI)

This report explains and illustrates a simplified stochastic framework, the Watershed Mercury Loading Framework, for organizing and framing site-specific knowledge and information on mercury loading to waterbodies. The framework permits explicit treatment of data uncertainties. This report will be useful to EPRI members, state and federal regulatory agencies, and watershed stakeholders concerned with mercury-related human and ecological health risk.

2003-05-23T23:59:59.000Z

52

Analysis of industrial load management  

SciTech Connect

Industrial Load Management, ILM, has increased the possibilities of changing load profiles and raising load factors. This paper reports on load profile measurements and feasible load management applications that could be implemented in industry e.g. bivalent systems for heating of premises and processes, load priority systems, energy storage and rescheduling processes or parts of processes due to differential electricity rates. Industrial load variations on hourly, daily and seasonal basis are treated as well as the impact by load management on load curves e g peak clipping, valley filling and increased off-peak electricity usage.

Bjork, C.O.; Karlsson, B.G.

1986-04-01T23:59:59.000Z

53

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network (OSTI)

actions to influence load profiles of their customers atISO needs to influence the load profile of a Facility arebe a specific target load profile to be achieved while in

Piette, Mary Ann

2010-01-01T23:59:59.000Z

54

Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California  

E-Print Network (OSTI)

This  baseline  load  profile  (BLP)  is  key  to to  as  the  baseline  load  profile  or  BLP  and  is  key actual  and  estimated  load  profiles  look,  Figure  1 

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

2008-01-01T23:59:59.000Z

55

2001 Exhibition: Event Profile - TMS  

Science Conference Proceedings (OSTI)

2001 Exhibition: Event Profile ... Event Profile ... in transportation and other growing markets require the material to be designed for load bearing applications.

56

Regulatory Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Tools Regulatory Tools Home CRA - 2004 Final Recertification Decision CRA Comments & Responses CCA - 1996 CRA CARDs & TSDs CCA CARDs & TSDs Regulatory Tools Title 40 CFR Part 191 Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes. Title 40 CFR Part 194 Criteria for the Certification and Re-Certification of the Waste Isolation Pilot Plant's Compliance With the 40 CFR Part 191 Disposal Regulations. Part I Title 40 CFR Part 194 Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's Compliance With the Disposal Regulations; Alternative Provisions; Proposed Rule. Friday August 9, 2002. Part II Title 40 CFR Part 194 Criteria for the Certification and Recertification of the Waste Isolation Pilot Plant's Compliance With the Disposal Regulations: Certification Decision; Final Rule. May 18, 1998. Part III

57

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: flora and fauna Type Term Title Author Replies Last Post sort icon Blog entry flora and fauna Texas Legal Review Alevine 29 Jul 2013 - 14:46 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

58

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EA Type Term Title Author Replies Last Post sort icon Blog entry EA Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

59

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FY12 Type Term Title Author Replies Last Post sort icon Blog entry FY12 Thank You! Kyoung 21 Mar 2013 - 08:40 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253755

60

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: CX Type Term Title Author Replies Last Post sort icon Blog entry CX Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: feedback Type Term Title Author Replies Last Post sort icon Blog entry feedback Geothermal Stakeholder Feedback on the GRR Kyoung 21 Mar 2013 - 10:01 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

62

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Fish and Wildlife Type Term Title Author Replies Last Post sort icon Blog entry Fish and Wildlife Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

63

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EIS Type Term Title Author Replies Last Post sort icon Blog entry EIS Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

64

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry Database Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

65

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FWS Type Term Title Author Replies Last Post sort icon Blog entry FWS Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253965

66

Regulatory overview  

Science Conference Proceedings (OSTI)

The end of 2012 and beginning of 2013 was a busy time for US regulators and standard-setters as two regulations and one consensus standard made the news. All have implications for oilseed processing and edible oil refining. Regulatory overview Public

67

Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)  

SciTech Connect

There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use.

Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

2005-06-29T23:59:59.000Z

68

load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

69

Statistical Analysis of Baseline Load Models for Non-Residential Buildings  

E-Print Network (OSTI)

estimation of the baseline load profile. In this paper, weDemand response, Baseline load profile, Impacts estimationto as the baseline load profile (or baseline) and is key to

Coughlin, Katie

2012-01-01T23:59:59.000Z

70

Influence of raised floor on zone design cooling load in commercial buildings.  

E-Print Network (OSTI)

design day zone cooling load profile is evaluated for anThe zone cooling load profiles and the thermal performanceaffects the zone cooling load profile and the peak cooling

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

71

Development of a simplified cooling load design tool for underfloor air distribution (UFAD) systems.  

E-Print Network (OSTI)

in design day cooling load profiles for OH and UFAD systems;in design day cooling load profiles for OH and UFAD systems;showed that the cooling load profiles for UFAD and OH are

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

72

Simplified calculation method for design cooling loads in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

design day cooling load profiles, (2) impact of a thermallyday peak zone cooling load profile for UFAD and a well-mixedaffects the cooling load profiles, therefore it is possible

Schiavon, Stefano; Lee, Kwang Ho; Bauman, Fred; Webster, Tom

2010-01-01T23:59:59.000Z

73

Building Energy Software Tools Directory: Energy Profiler  

NLE Websites -- All DOE Office Websites (Extended Search)

in several widely used formats. Energy Profiler helps users to better understand their energy usage and associated costs. Keywords load profiles, rate comparisons, data...

74

Load cell  

DOE Patents (OSTI)

A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

Spletzer, B.L.

1998-12-15T23:59:59.000Z

75

Load cell  

DOE Patents (OSTI)

A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

Spletzer, Barry L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

76

Load cell  

DOE Patents (OSTI)

A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

Spletzer, Barry L. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

77

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

78

Load-management decision  

Science Conference Proceedings (OSTI)

Utilities require baseload, intermediate, and peaking plants to meet fluctuating customer demand. These can be supplemented with off-peak generation and storage and load management, which can take the form of direct utility control over interruptible and deferrable customers or customer incentives that require off-peak demand. Utilities should make a careful analysis of their load profile, their generation mix, their ability to shift loads, and customer attitudes before deciding on a load-management program that fits their individual needs. They should also be aware that load management is only a limited resource with a number of uncertainties. Research programs into customer relations, system reliability, communications devices, and special control switches and meters will help to relieve some of the uncertainties. (DCK)

Lihach, N.; Gupta, P.

1982-05-01T23:59:59.000Z

79

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Colorado Type Term Title Author Replies Last Post sort icon Blog entry Colorado Colorado Meeting Kyoung 21 Mar 2013 - 10:24 Blog entry Colorado Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

80

On-line load relief control  

SciTech Connect

This paper describes the results of an investigation concerning the on-line prediction and enhancement of load relief. The effects of voltage fluctuation, system voltage profile control and generator voltage adjustment on load relief and load shedding operations during under-frequency transients are studied. The technique promoted in the paper may be used to reduce system spinning reserve or prospective load shedding.

Jovanovic, S.; Fox, B.; Thompson, J.G. (Queen' s Univ. of Belfast (United Kingdom))

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Energy Software Tools Directory: Load Express  

NLE Websites -- All DOE Office Websites (Extended Search)

Create project files with Load Express in just 4 easy steps. Select a weather profile, enter simulation parameters, define the zonesrooms in the building and create air handler...

82

load data | OpenEI Community  

Open Energy Info (EERE)

51 51 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142234851 Varnish cache server load data Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:03 Commercial and Residential Hourly Load Data Now Available on OpenEI! building load building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL Files: application/zip icon System Advisor Model Tool for Downloading Load Data

83

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

84

Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-  

E-Print Network (OSTI)

, and the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the ULBNL-63728 Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non .............................................................................................................. 9 4. Baseline Profile (BLP) Models

85

Protecting consumer privacy from electric load monitoring  

Science Conference Proceedings (OSTI)

The smart grid introduces concerns for the loss of consumer privacy; recently deployed smart meters retain and distribute highly accurate profiles of home energy use. These profiles can be mined by Non Intrusive Load Monitors (NILMs) to expose much of ... Keywords: load monitor, privacy, smart meter

Stephen McLaughlin; Patrick McDaniel; William Aiello

2011-10-01T23:59:59.000Z

86

Topic: Regulatory & Policy Recommendations  

Science Conference Proceedings (OSTI)

... Regulatory & Policy Recommendations. The impact of regulations and policies on the manufacturing industry in areas such as tax, energy, trade ...

2013-11-19T23:59:59.000Z

87

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

88

Regulatory Commission of Alaska | Open Energy Information  

Open Energy Info (EERE)

Regulatory Commission of Alaska Regulatory Commission of Alaska Jump to: navigation, search Logo: Regulatory Commission of Alaska Name Regulatory Commission of Alaska Address 701 West Eight Ave., Suite 300 Place Anchorage, Alaska Zip 99501-3469 Phone number 907-276-6222 Website http://rca.alaska.gov/RCAWeb/h Coordinates 61.2143463°, -149.8931523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2143463,"lon":-149.8931523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Federal Energy Regulatory Commission | Open Energy Information  

Open Energy Info (EERE)

Energy Regulatory Commission Energy Regulatory Commission Jump to: navigation, search Logo: Federal Energy Regulatory Commission Name Federal Energy Regulatory Commission Address 888 First Street, N.E. Place Washington, District of Columbia Zip 20426 Phone number 1-866-208-3676 Website http://www.ferc.gov/contact-us Coordinates 38.90145°, -77.006248° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.90145,"lon":-77.006248,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Groups > Groups > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

91

Intermediate Species Profiles in Low-Pressure Methane ...  

Science Conference Proceedings (OSTI)

... inhibited by CHF3 at an equal loading of ffuo ... 10 using the experimental temperature profile as input ... HFC mechanism may be down- loaded from http ...

2012-09-09T23:59:59.000Z

92

Load Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visualization and Controls Peer Review Visualization and Controls Peer Review Load Control for System Reliability and Measurement-Based Stability Assessment Dan Trudnowski, PhD, PE Montana Tech Butte, MT 59701 dtrudnowski@mtech.edu 406-496-4681 October 2006 2 Presentation Outline * Introduction - Goals, Enabling technologies, Overview * Load Control - Activities, Status * Stability Assessment - Activities, Status * Wrap up - Related activities, Staff 3 Goals * Research and develop technologies to improve T&D reliability * Technologies - Real-time load control methodologies - Measurement-based stability-assessment 4 Enabling Technologies * Load control enabled by GridWise technology (e.g. PNNL's GridFriendly appliance) * Real-time stability assessment enabled by Phasor Measurement (PMU) technology 5 Project Overview * Time line: April 18, 2006 thru April 17, 2008

93

LOADING DEVICE  

DOE Patents (OSTI)

A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

Ohlinger, L.A.

1958-10-01T23:59:59.000Z

94

Nuclear Safety Regulatory Framework  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Nuclear Safety Regulatory Framework DOE's Nuclear Safety Enabling Legislation Regulatory Enforcement & Oversight Regulatory Governance Atomic Energy Act 1946 Atomic Energy Act 1954 Energy Reorganization Act 1974 DOE Act 1977 Authority and responsibility to regulate nuclear safety at DOE facilities 10 CFR 830 10 CFR 835 10 CFR 820 Regulatory Implementation Nuclear Safety Radiological Safety Procedural Rules ISMS-QA; Operating Experience; Metrics and Analysis Cross Cutting DOE Directives & Manuals DOE Standards Central Technical Authorities (CTA) Office of Health, Safety, and Security (HSS) Line Management SSO/ FAC Reps 48 CFR 970 48 CFR 952 Federal Acquisition Regulations External Oversight *Defense Nuclear Facility

95

DSW REGULATORY AND RESTRUCTURING  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee on Appropriations House Committee on Appropriations Photo of lineman repairing transmission lines in desert Western's Regulatory & Restructuring Project Managers Ron...

96

Other Regulatory Efforts  

Energy.gov (U.S. Department of Energy (DOE))

In addition to regulating international electricity trade, the Office of Electricity Delivery and Energy Reliability participates in other regulatory activities. These include:

97

Restrospective Regulatory Review  

Energy.gov (U.S. Department of Energy (DOE))

On January 18, 2011, President Obama issued Executive Order 13563, Improving Regulation and Regulatory Review, which directs federal agencies, among other things, to review existing regulations and...

98

FPCC Regulatory Barriers Submittal  

Energy.gov (U.S. Department of Energy (DOE))

The Federal Performance Contracting Coalition (FPCC) appreciates the opportunity to comment on reducing regulatory burdens on the Federal government, specifically as they pertain to federal energy...

99

Load-shape development aids planning  

SciTech Connect

The concept that provides capable, load-shape development, is being adopted by several utilities and power pools. Public Service Electric and Gas Company has developed a computer simulation model that can predict a utility's load shape for up to a 30-year period. The objective of the PSE and G model, known as EICS (Electric Load-Curve Synthesis) is to provide a demand profile, to examine the impact of load mangement and other activities upon a system's load shape, and to apply appropriate forecast non-load-management and load-management impacts before finally examining the resulting revised load-shape. Other models dealing with load-shape are discussed. Specifically, the Systems Control Inc. model for EPRI (SCI/EPRI), useful in performing accurate simulations of various load-control strategies involving customer appliance control is mentioned.

Gellings, C.W.

1979-12-15T23:59:59.000Z

100

The effect of load parameters on system thermal performance  

SciTech Connect

The effects of load size, load profile and hot water set temperature on system thermal performance are investigated in order to determine the relative importance of these design parameters in sizing a solar water heating system. The WATSUN IV computer program was used to introduce various load sizes, load profiles and set temperatures to a base model. The results indicate that variations in load size have a significant effect on the thermal performance of the system. However, variations in load profile and hot water set temperature seem to have no significant effect on system performance.

Vakili, M.

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Developing a Regulatory Framework for Extended Storage and Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developing a Regulatory Framework Developing a Regulatory Framework for Extended Storage and Transportation National Transportation Stakeholders Forum May 10-12, 2011 Denver, Colorado Earl Easton Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Outline * Current Regulatory Framework * Future Regulatory Needs * Technical Basis (with some examples) * Path Forward 2 Current NRC Regulatory Framework for Storage * Renewable Term Licenses * Aging Management Plan - Time-limited aging analyses - Design for prevention - Monitoring - how, how often, in-situ - Maintenance - what type - Corrective Actions - when 3 Dry Cask Storage * 63 licensed ISFSIs (8 more than 2010) * Expect 10 sites pursuing General License * Over 1400 loaded storage casks 0 10 20 30 40 50 60 70 80 Number of ISFSIs Year Specific Licensees

102

Building Energy Software Tools Directory: Energy Profiler  

NLE Websites -- All DOE Office Websites (Extended Search)

can view and edit load shapes graphically, manage a database of energy rates, perform rate comparisons and generate estimated bills under a variety of scenarios. Energy Profiler...

103

Scaling properties of transcription profiles in gene networks  

Science Conference Proceedings (OSTI)

Here we show that the transcriptional noise is an emergent property with scale invariance from genome level to the level of small Transcriptional Regulatory Genetic Networks (TRGN). We show that a small set of 9-12 genes reproduces the geometric ... Keywords: TRGN, behavioural variability, bioinformatics, gene networks, genome size, housekeeping functions, regulatory networks, scale invariance, transcription profiles, transcriptional noise, transcriptional regulatory genetic networks

Renata C. Ferreira; Francisco Bosco; Marcelo R. S. Briones

2009-03-01T23:59:59.000Z

104

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Processes to Regulatory Processes to someone by E-mail Share Building Technologies Office: Regulatory Processes on Facebook Tweet about Building Technologies Office: Regulatory Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building Technologies Office: Regulatory Processes on Digg Find More places to share Building Technologies Office: Regulatory Processes on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes Plans & Schedules Reports & Publications Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories

105

Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads  

SciTech Connect

This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

Denholm, P.; Ong, S.; Booten, C.

2012-05-01T23:59:59.000Z

106

LOADED WAVEGUIDES  

DOE Patents (OSTI)

>Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

Mullett, L.B.; Loach, B.G.; Adams, G.L.

1958-06-24T23:59:59.000Z

107

Phenylpropanoid related regulatory protein-regulatory region associations  

SciTech Connect

Materials and methods for identifying lignin regulatory region-regulatory protein associations are disclosed. Materials and methods for modulating lignin accumulation are also disclosed.

Apuya, Nestor (Culver City, CA); Bobzin, Steven Craig (Malibu, CA); Park, Joon-Hyun (Oak Park, CA); Doukhanina, Elena (Newbury Park, CA)

2012-01-03T23:59:59.000Z

108

Regulatory guidance document  

SciTech Connect

The Office of Civilian Radioactive Waste Management (OCRWM) Program Management System Manual requires preparation of the OCRWM Regulatory Guidance Document (RGD) that addresses licensing, environmental compliance, and safety and health compliance. The document provides: regulatory compliance policy; guidance to OCRWM organizational elements to ensure a consistent approach when complying with regulatory requirements; strategies to achieve policy objectives; organizational responsibilities for regulatory compliance; guidance with regard to Program compliance oversight; and guidance on the contents of a project-level Regulatory Compliance Plan. The scope of the RGD includes site suitability evaluation, licensing, environmental compliance, and safety and health compliance, in accordance with the direction provided by Section 4.6.3 of the PMS Manual. Site suitability evaluation and regulatory compliance during site characterization are significant activities, particularly with regard to the YW MSA. OCRWM`s evaluation of whether the Yucca Mountain site is suitable for repository development must precede its submittal of a license application to the Nuclear Regulatory Commission (NRC). Accordingly, site suitability evaluation is discussed in Chapter 4, and the general statements of policy regarding site suitability evaluation are discussed in Section 2.1. Although much of the data and analyses may initially be similar, the licensing process is discussed separately in Chapter 5. Environmental compliance is discussed in Chapter 6. Safety and Health compliance is discussed in Chapter 7.

NONE

1994-05-01T23:59:59.000Z

109

NUCLEAR REGULATORY COMMISSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 21, 1999 (Volume 64, Number 244)] December 21, 1999 (Volume 64, Number 244)] [Proposed Rules] [Page 71331-71333] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr21de99-21] ======================================================================= ----------------------------------------------------------------------- NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Advance notice of proposed rulemaking. ----------------------------------------------------------------------- SUMMARY: The Nuclear Regulatory Commission (NRC) is considering an amendment to its regulations that would require NRC licensees to notify

110

OpenEI Community - regulatory  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap featured on NREL Now http:en.openei.orgcommunitybloggeothermal-regulatory-roadmap-featured-nrel-now

111

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building...

112

Classification and forecasting of load curves Nolwen Huet  

E-Print Network (OSTI)

on up to stabilisation of the clusters. Finally, the load profiles are predicted by covariance analysis of electricity customer uses. This load curve is only available for customers with automated meter readingClassification and forecasting of load curves Nolwen Huet Abstract The load curve, which gives

Cuesta, Juan Antonio

113

Static identification of delinquent loads  

E-Print Network (OSTI)

The effective use of processor caches is crucial to the performance of applications. It has been shown that cache misses are not evenly distributed throughout a program. In applications running on RISC-style processors, a small number of delinquent load instructions are responsible for most of the cache misses. Identification of delinquent loads is the key to the success of many cache optimization and prefetching techniques. In this paper, we propose a method for identifying delinquent loads that can be implemented at compile time. Our experiments over eighteen benchmarks from the SPEC suite shows that our proposed scheme is stable across benchmarks, inputs, and cache structures, identifying an average of 10 % of the total number of loads in the benchmarks we tested that account for over 90 % of all data cache misses. As far as we know, this is the first time a technique for static delinquent load identification with such a level of precision and coverage has been reported. While comparable techniques can also identify load instructions that cover 90 % of all data cache misses, they do so by selecting over 50 % of all load instructions in the code, resulting in a high number of false positives. If basic block profiling is used in conjunction with our heuristic, then our results show that it is possible to pin down just 1.3 % of the load instructions that account for 82 % of all data cache misses. 1.

Vlad-mihai Panait; Amit Sasturkar Ý

2004-01-01T23:59:59.000Z

114

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Coordinating Permit Office Coordinating Permit Office Type Term Title Author Replies Last Post sort icon Blog entry Coordinating Permit Office GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Coordinating Permit Office GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

115

Matching equipment size to the cooling load  

SciTech Connect

This article presents a heat extraction rate analysis method, using ASHRAE algorithms that enables HVAC system designers to optimally size cooling equipment. The final stage of the cooling load calculation process determines the heat extraction rate required to achieve design conditions. Put another way, this stage determines the equipment capacity required to match the cooling load profile, and it does so in a manner that predicts the resulting space temperature profile, and it does so in a manner that predicts the resulting space temperature profile. It is a stage in the design process that, in practice, may not be given the attention it deserves.

Bloom, B. (Harvey Toub Engineering, Atlanta, GA (United States))

1993-10-01T23:59:59.000Z

116

Abstract--This paper analyzes a distribution system load time series through autocorrelation coefficient, power spectral density,  

E-Print Network (OSTI)

models [7], [8]. The load model developed in [7] provides different 24-hour load profiles for different seasons. The 24-hour load profile is obtained by a weighted sum of peak loads from different types1 Abstract--This paper analyzes a distribution system load time series through autocorrelation

Bak-Jensen, Birgitte

117

EPAct Transportation Regulatory Activities: Contacts for EPAct  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts for EPAct Transportation Regulatory Activities to someone by E-mail Share EPAct Transportation Regulatory Activities: Contacts for EPAct Transportation Regulatory Activities on Facebook Tweet about EPAct Transportation Regulatory Activities: Contacts for EPAct Transportation Regulatory Activities on Twitter Bookmark EPAct Transportation Regulatory Activities: Contacts for EPAct Transportation Regulatory Activities on Google Bookmark EPAct Transportation Regulatory Activities: Contacts for EPAct Transportation Regulatory Activities on Delicious Rank EPAct Transportation Regulatory Activities: Contacts for EPAct Transportation Regulatory Activities on Digg Find More places to share EPAct Transportation Regulatory Activities: Contacts for EPAct Transportation Regulatory Activities on

118

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

geothermal geothermal Type Term Title Author Replies Last Post sort icon Blog entry geothermal Geothermal Regulatory Roadmap featured on NREL Now Graham7781 5 Aug 2013 - 13:18 Blog entry geothermal GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry geothermal GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

119

Nuclear Regulatory Commission Regulatory and Licensing Matters | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Commission Regulatory and Licensing Matters Regulatory Commission Regulatory and Licensing Matters Nuclear Regulatory Commission Regulatory and Licensing Matters GC-52 provides legal advice to DOE regarding Nuclear Regulatory Commission (NRC) regulatory and licensing matters of interest to DOE, either as an NRC license applicant or in connection with related authorities and responsibilities of DOE and NRC on nuclear material, nuclear waste, and nuclear nonproliferation matters. GC-52 attorneys provide advice and support on a variety of NRC matters including regulation and licensing of DOE independent spent fuel storage facilities (ISFSIs) and a mixed-oxide fuel fabrication facility, consultation with NRC on certain DOE waste determinations, and imports and exports of nuclear materials and radioactive sealed sources.

120

Realizing load reduction functions by aperiodic switching of load groups  

SciTech Connect

This paper investigates the problem of scheduling ON/OFF switching of residential appliances under the control of a Load Management System (LMS). The scheduling process is intended to reduce the controlled appliances` power demand in accordance with a predefined load reduction profile. To solve this problem, a solution approach, based on the methodology of Pulse Width Modulation (PWM), is introduced. This approach provides a flexible mathematical basis for studying different aspects of the scheduling problem. The conventional practices in this area are shown to be special cases of the PWM technique. By applying the PWM-based technique to the scheduling problem, important classes of scheduling errors are identified and analytical expressions describing them are derived. These expressions are shown to provide sufficient information to compensate for the errors. Detailed simulations of load groups` response to switching actions are use to support conclusions of this study.

Navid-Azarbaijani, N. [McGill Univ., Montreal, Quebec (Canada). Dept. of Electrical Engineering; Banakar, M.H. [CAE Electronics Ltd., St. Laurent, Quebec (Canada)

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

G&T adds versatile load management system  

SciTech Connect

Wolverine`s load management system was designed in response to the need to reduce peak demand. The Energy Management System (EMS) prepares short term (seven day) load forecasts, based on a daily peak demand forecst, augmented by a similar day profile based on weather conditions. The software combines the similar day profile with the daily peak demand forecast to yield an hourly load forecast for an entire week. The software uses the accepted load forecast case in many application functions, including interchange scheduling, unit commitment, and transaction evaluation. In real time, the computer updates the accepted forecast hourly, based in actual changes in the weather and load. The load management program executes hourly. The program uses impact curves to calculate a load management strategy that reduces the load forecast below a desired load threshold.

Nickel, J.R.; Baker, E.D.; Holt, J.W.; Chan, M.L.

1995-04-01T23:59:59.000Z

122

regulatory | OpenEI Community  

Open Energy Info (EERE)

regulatory Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 5 August, 2013 - 14:18 Geothermal Regulatory Roadmap featured on NREL Now geothermal NREL...

123

NREL: Regulatory Support - Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

The Regulatory Support team assists the U.S. Department of Energy by providing regulatory information related to the Energy Policy Act of 1992 and other legislation to help build...

124

Low cutter load raise head  

SciTech Connect

A raise head having a multiplicity of cutters for enlarging a pilot hole into a larger diameter hole by disintegrating the earth formations that surround the pilot hole is provided that will require lower cutter loads to penetrate the formations being bored by directing the rock fracture planes toward the pilot hole forcing the rock to yield with less input energy. The cutters are positioned on the raise head to provide an earth formation contact profile with a major portion of said earth formation contact profile extending outward and upward from said pilot hole. The included angle between the major portion of the earth formation contact profile and the axis of the pilot hole is less than 90/sup 0/.

Saxman, W.C.

1981-03-31T23:59:59.000Z

125

Load management strategies for electric utilities: a production cost simulation  

SciTech Connect

This paper deals with the development and application of a simulation model for analyzing strategies for managing the residential loads of electric utilities. The basic components of the model are (1) a production-cost model, which simulates daily operation of an electric power system; (2) a load model, which disaggregates system loads into appliance loads and other loads; and (3) a comparison model, which compares the production costs and energy consumption needed to meet a particular load profile to the corresponding costs and energy consumption required for another load profile. The profiles in each pair define alternative ways of meeting the same demand. A method for disaggregating load profiles into appliance components is discussed and several alternative strategies for residential load management for a typical northeastern electric utility are formulated. The method is based on an analysis of the composition of electric loads for a number of classes of residential customers in the model utility system. The effect of alternative load management strategies on the entire residential loadcurve is determined by predicting the effects of these strategies on the specific appliance components of the loadcurve. The results of using the model to analyze alternative strategies for residential load management suggest that load management strategies in the residential sector, if adopted by utilities whose operating and load characteristics are similar to those of the system modeled here, must take into account a wide variety of appliances to achieve significant changes in the total load profile. Moreover, the results also suggest that it is not easy to reduce costs significantly through new strategies for managing residential loads only and that, to be worthwhile, cost-reducing strategies will have to encompass many kinds of appliances.

Blair, P.D.

1979-03-01T23:59:59.000Z

126

USNRC REGULATORY GUIDES  

E-Print Network (OSTI)

Regulatory Guides are issued to describe and make available to the public methods acceptable to the NRC staff of implementing specific parts of the Commission's regulations, to delineate tech niques used by the staff in evaluating specific problems or postu lated accidents or to provide guidance to applicants. Regulatory Guides are not substitutes for regulations, and compliance with them is not required. Methods and solutions different from those set out in the guides will be acceptable If they provide a basis for the findings requisite to the Issuance or continuance of a permit or license by the Commission. This guide was issued after consideration of comments received from the public. Comments and suggestions for improvements in these guides are encouraged at all times, and guides will be revised, as appropriate, to accommodate comments and to reflect new Informa tion or experience. Comments should be sent to the Secretary of the Commission,

unknown authors

1982-01-01T23:59:59.000Z

127

2012 CERTS LAAR Program Peer Review - Integration and Extension of Direct Load Management of Smart Loads - Anna Scaglioni, UC Davis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration and Extension of Direct Integration and Extension of Direct Load Management of Smart Loads Anna Scaglione, UC Davis GRA: Mahnoosh Alizadeh Project objective  Invent methods to "store" load demand for * Real-time "generation following" * Integration of load reserves as dispatchable assets in the Energy Market  Architecture for virtual "reserves" (queues) of electrical load demand * Watts to Job mapping (analysis)  Captures digitally the service requirements - Equal service type = Equal queue * Job to Watts mapping (synthesis)  Allows to optimally schedule the load profile Major technical accomplishments  Centralized model: Digital Direct Load Scheduling (DDLS) - Year 1-Year 2

128

Periodic load balancing  

Science Conference Proceedings (OSTI)

Multiprocessor load balancing aims to improve performance by moving jobs from highly loaded processors to more lightly loaded processors. Some schemes allow only migration of new jobs upon arrival, while other schemes allow migration of ... Keywords: heavy traffic diffusion approximations, load balancing, periodic load balancing, reflected Brownian motion, resource sharing, transient behavior

Gísli Hjálmtýsson; Ward Whitt

1998-06-01T23:59:59.000Z

129

Building Energy Software Tools Directory: Energy Profiler Online  

NLE Websites -- All DOE Office Websites (Extended Search)

Online service that provides commercial and industrial energy customers with access to energy usage information and analysis tools. Customers can view load profiles, usage...

130

An Evaluation of the HVAC Load Potential for Providing Load Balancing Service  

Science Conference Proceedings (OSTI)

This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

Lu, Ning

2012-09-30T23:59:59.000Z

131

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Processes Beginning with the Energy Policy and Conservation Act of 1975, Congress has enacted a series of laws establishing federal appliance and equipment standards and...

132

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

133

Automatic Electric Load Identification in  

E-Print Network (OSTI)

Abstract — A microgrid is the power system of choice for the electrification of rural areas in developing countries. It should be able to adapt to changing load situations without the need for specialists to change the configuration of the microgrid controller. This paper proposes a self-configuring microgrid management system that is able to adjust both generation and demand of the system, so that also in case of growing electricity demand the grid can still be operable by disconnecting unessential loads. A crucial task for the microgrid controller is to automatically identify the connected loads on the basis of their consumption behaviors. For this, a template-matching algorithm is proposed that is based on Dynamic Time Warping, which is primarily used in speech recognition. It has been found that for load profile analysis, simple signal features such as the number of rising edges or the aggregated energy consumption in a given time window is sufficient to describe the signal. In contrast to speech recognition, frequency domain analysis is not necessary.

Self-configuring Microgrids; Friederich Kupzog; Tehseen Zia; Adeel Abbas Zaidi

2009-01-01T23:59:59.000Z

134

Commercial and Residential Hourly Load Data Now Available on OpenEI! |  

Open Energy Info (EERE)

Commercial and Residential Hourly Load Data Now Available on OpenEI! Commercial and Residential Hourly Load Data Now Available on OpenEI! Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:03 building load building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL I am pleased to announce that simulated hourly residential and commercial building load datasets are now available on OpenEI. These datasets are available for all TMY3 locations in the United States. They contain hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). In addition to various

135

1991 Pacific Northwest Loads and Resources Study.  

SciTech Connect

This study establishes the Bonneville Power Administration's (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this summary of federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates our 1990 study. BPS's long-range planning incorporates resource availability with a range of forecasted electrical consumption. The forecasted future electrical demands-firm loads--are subtracted from the projected capability of existing resources to determine whether BPA and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, then additional conservation, contract purchases, or generating resources will be needed to meet load growth. This study analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional profile, which includes loads and resources in addition to the federal system. This study presents the federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for 1992- 2012.

United States. Bonneville Power Administration.

1991-12-01T23:59:59.000Z

136

Developing a Regulatory Framework for Extended Storage and Transportat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage and Transportation Developing a Regulatory Framework for Extended Storage and Transportation Outline: Current Regulatory Framework Future Regulatory Needs Technical...

137

Failure Loads and Deformation in 6061-T6 Aluminum Alloy Spot ...  

Science Conference Proceedings (OSTI)

Presentation Title, Failure Loads and Deformation in 6061-T6 Aluminum Alloy ... Application of Neutron Diffraction in Analysis of Residual Stress Profile in the ...

138

EPRI/GRI Load Shape Workshop: Load Data Analysis for Gas and Electric Markets  

Science Conference Proceedings (OSTI)

Load shapes, representing usage patterns in the electric and gas industry, are a key factor in energy company operations and management. In the emerging restructured energy market, retail energy suppliers market energy to final customers and must arrange for electricity generation or gas delivery to meet their customers' needs. EPRI and GRI sponsored a two-day workshop in June, 1999 that addressed a range of issues associated with load shapes, including modeling, profiling for retail market settlement, r...

1999-11-10T23:59:59.000Z

139

Load sensing system  

DOE Patents (OSTI)

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

1999-01-01T23:59:59.000Z

140

Discharge circuits and loads  

SciTech Connect

This will be an overview in which some of the general properties of loads are examined: their interface with the energy storage and switching devices; general problems encountered with different types of loads; how load behavior and fault modes can impact on the design of a power conditioning system (PCS).

Sarjeant, W.J.

1980-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Regulatory Drivers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Drivers Regulatory Drivers Regulatory Drivers Statutes and Regulations Relating to Legacy Management Code of Federal Regulations (CFR) Title 10: Energy "Licensing Requirements for Land Disposal of Radioactive Waste," 10 CFR 61 "Occupational Radiation Protection," 10 CFR 835 Title 40: Protection of Environment "National Primary Drinking Water Regulations," 40 CFR 141 "Standards for Owners and Operators of Hazardous Waste Treatment, Storage and Disposal Facilities," 40 CFR 264 "National Oil and Hazardous Substances Pollution Contingency Plan," 40 CFR 300 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)/Resource Conservation and Recovery Act (RCRA) "Comprehensive Environmental Response, Compensation, and Liability

142

THE FEDERAL ENERGY REGULATORY COMMISSION'S UNCLASSIFIED CYBER...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE FEDERAL ENERGY REGULATORY COMMISSION'S UNCLASSIFIED CYBER SECURITY PROGRAM 2002, IG-0569 THE FEDERAL ENERGY REGULATORY COMMISSION'S UNCLASSIFIED CYBER SECURITY PROGRAM 2002,...

143

Mentee Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

144

Mentor Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

145

Regulatory Compliance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Compliance Regulatory Compliance Regulatory Compliance This photo shows the inside the K West Basin facility, where workers are retrieving highly radioactive sludge material under 17 feet of water. This photo shows the inside the K West Basin facility, where workers are retrieving highly radioactive sludge material under 17 feet of water. The Department of Energy is not a regulatory agency; however it does self-regulate its own radioactive waste. DOE is also affected by a variety of statutes, legislation, regulations, directives and guidance. Many of the current compliance-related actions revolve around waste and material disposition. These include National Environmental Policy Act (NEPA) Environmental Impact Statements and Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Records of Decision. Links, below,

146

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities...

147

AHAM Comments Regulatory Burden RFI  

Energy.gov (U.S. Department of Energy (DOE))

The Association of Home Appliance Manufacturers (AHAM) respectfully submits the following comments to the Department of Energy (DOE) on its Regulatory Burden RFI, 77 Fed. Reg. 47328 (Aug. 8, 2012).

148

Regulatory facility guide for Ohio  

Science Conference Proceedings (OSTI)

The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

Anderson, S.S.; Bock, R.E.; Francis, M.W.; Gove, R.M.; Johnson, P.E.; Kovac, F.M.; Mynatt, J.O. [Oak Ridge National Lab., TN (United States); Rymer, A.C. [Transportation Consulting Services, Knoxville, TN (United States)

1994-02-28T23:59:59.000Z

149

IPM Profiling Tool at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

IPM IPM IPM Description and Overview IPM is a portable profiling infrastructure which provide a high level report on the execution of a parallel job. IPM reports hardware counters data, MPI function timings, and memory usage. It provides a low overhead means to generate scaling studies or performance data for ERCAP submissions. When you run a job using the IPM module you will get a performance summary (see below) to stdout as well as a web accessible summary of all your IPM jobs. The two main objectives of IPM are ease-of-use and scalability in performance analysis. Usage % module load ipm On HPC architectures that support shared libraries that's all you need to do. Once the module is loaded you can run as you normally and get a performance profile once the job has successfully completed. You do not

150

Load sensing system  

DOE Patents (OSTI)

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

1999-05-04T23:59:59.000Z

151

Vehicle Technologies Office: EPAct Transportation Regulatory Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Office: EPAct Transportation Vehicle Technologies Office: EPAct Transportation Regulatory Activities to someone by E-mail Share Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Facebook Tweet about Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Twitter Bookmark Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Google Bookmark Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Delicious Rank Vehicle Technologies Office: EPAct Transportation Regulatory Activities on Digg Find More places to share Vehicle Technologies Office: EPAct Transportation Regulatory Activities on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources The U.S. Department of Energy's (DOE) Vehicle Technologies Office manages

152

EPAct Transportation Regulatory Activities: Key Federal Statutes  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Key Federal Statutes to someone by E-mail Share EPAct Transportation Regulatory Activities: Key Federal Statutes on Facebook Tweet about EPAct Transportation Regulatory Activities: Key Federal Statutes on Twitter Bookmark EPAct Transportation Regulatory Activities: Key Federal Statutes on Google Bookmark EPAct Transportation Regulatory Activities: Key Federal Statutes on Delicious Rank EPAct Transportation Regulatory Activities: Key Federal Statutes on Digg Find More places to share EPAct Transportation Regulatory Activities: Key Federal Statutes on AddThis.com... Home About Contacts Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Key Federal Statutes These are excerpts from federal statutes that established key Energy Policy Act (EPAct) transportation regulatory activities.

153

Bolt profile configuration and load transfer capacity optimisation.  

E-Print Network (OSTI)

??Rapid advances in rock bolting technology over the past four decades have firmly established the usage of rock bolts as the primary rock reinforcement system… (more)

Cao, Chen

2012-01-01T23:59:59.000Z

154

Optimum matching of ohmic loads to the photovoltaic array  

SciTech Connect

Optimum matching of loads to the photovoltaic (PV) generator is most desirable for more accurate sizing, higher system performance and maximum utilization of the costly solar array generator. The quality of load matching depends on the PV array characteristics, the load characteristics, and the insolation profile. A matching factor is defined as the ratio of the load energy to the array maximum energy over a one day period. Optimum matching is achieved by determining the optimal array parameters with respect to the load parameters. Optimization is done using direct-search techniques. Results show that the theoretical optimum matching factor for an ohmic load is 94.34%. For an electrolytic load the matching factor could reach 99.83%. A maximum power tracker can be eliminated if optimum matching is achieved.

Khouzam, K.; Khouzam, L.; Groumpos, P. (Cleveland State Univ., OH (USA))

1991-01-01T23:59:59.000Z

155

Structural load combinations  

SciTech Connect

This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane eqrthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10/sup -6/ or 1.0 x 10/sup -5/ during a lifetime of 40 years. 23 refs., 9 tabs.

Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

1985-01-01T23:59:59.000Z

156

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Processes Regulatory Processes Beginning with the Energy Policy and Conservation Act of 1975, Congress has enacted a series of laws establishing federal appliance and equipment standards and the Department of Energy's (DOE) authority to develop, amend, and implement standards. To implement these laws, the Appliance and Equipment Standards program manages the regulatory processes described below. Standards Development and Revision Standards for a given product may be mandated by Congress or established by DOE pursuant to statutory authority. Standards established by DOE are developed through a multi-step rulemaking process that includes public participation. Test Procedure Development and Revision Most standards rulemakings are accompanied by a concurrent test procedure rulemaking. Test procedures detail how manufacturers must test their products to certify that they comply with the applicable energy conservation standards. (42 U.S.C. 6293; 6314) DOE also uses the test procedures to determine compliance with the applicable standards. (42 U.S.C. 6295(s))

157

Electrical and Production Load Factors  

E-Print Network (OSTI)

Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector. The operating hours of small and medium sized manufacturing facilities are analyzed to identify the most common operating hour or shift work patterns. About 75% of manufacturing facilities fall into expected operating hour patterns with operating hours near 40, 80, 120 and 168 hours/week. Two types of load factors, electrical and production are computed for each shift classification within major industry categories in the U.S. The load factor based on monthly billing hours (ELF) increases with operating hours from about 0.4 for a nominal one shift operation, to about 0.7 for around-the-clock operation. On the other hand, the load factor based on production hours (PLF) shows an inverse trend, varying from about 1.4 for one shift operation to 0.7 for around-the-clock operation. When used as a diagnostic tool, if the PLF exceeds unity, then unnecessary energy consumption may be taking place. For plants operating at 40 hours per week, the ELF value was found to greater than the theoretical maximum, while the PLF value was greater than one, suggesting that these facilities may have significant energy usage outside production hours. The data for the PLF however, is more scattered for plants operating less than 80 hours per week, indicating that grouping PLF data based on operating hours may not be a reasonable approach to benchmarking energy use in industries. This analysis uses annual electricity consumption and demand along with operating hour data of manufacturing plants available in the U.S. Department of Energy’s Industrial Assessment Center (IAC) database. The annual values are used because more desirable monthly data are not available. Monthly data are preferred as they capture the load profile of the facility more accurately. The data there come from Industrial Assessment Centers which employ university engineering students, faculty and staff to perform energy assessments for small to medium-sized manufacturing plants. The nation-wide IAC program is sponsored by the U.S. Department of Energy.

Sen, Tapajyoti

2009-12-01T23:59:59.000Z

158

Regulatory Uncertainty and Regulatory Scope Thomas P. Lyon  

E-Print Network (OSTI)

, is the shift from municipal to state regulation of natural gas and electricity that occurred in the first in the natural gas industry, and notes that "[S]tate regulatory commissions were less responsive to the demands of local voters and consumers. On average, state regulators tolerated higher gas rates than did local

Lyon, Thomas P.

159

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst  

E-Print Network (OSTI)

Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine Electric Use (kWh/year) 2,173,400 1,032,800 2,520,500 Average Load 300 kW 140 kW 280 kW Peak Load 600 k load profile. Villages usuall

Massachusetts at Amherst, University of

160

EPAct Transportation Regulatory Activities: Key Terms  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Terms Key Terms to someone by E-mail Share EPAct Transportation Regulatory Activities: Key Terms on Facebook Tweet about EPAct Transportation Regulatory Activities: Key Terms on Twitter Bookmark EPAct Transportation Regulatory Activities: Key Terms on Google Bookmark EPAct Transportation Regulatory Activities: Key Terms on Delicious Rank EPAct Transportation Regulatory Activities: Key Terms on Digg Find More places to share EPAct Transportation Regulatory Activities: Key Terms on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Guidance Documents Statutes & Regulations Program Annual Reports Fact Sheets Newsletter Case Studies Workshops Tools Key Terms FAQs Key Terms The Energy Policy Act (EPAct) includes specific terminology related to

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EPAct Transportation Regulatory Activities: Alternative Compliance for  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Compliance for State and Alternative Fuel Provider Fleets to someone by E-mail Share EPAct Transportation Regulatory Activities: Alternative Compliance for State and Alternative Fuel Provider Fleets on Facebook Tweet about EPAct Transportation Regulatory Activities: Alternative Compliance for State and Alternative Fuel Provider Fleets on Twitter Bookmark EPAct Transportation Regulatory Activities: Alternative Compliance for State and Alternative Fuel Provider Fleets on Google Bookmark EPAct Transportation Regulatory Activities: Alternative Compliance for State and Alternative Fuel Provider Fleets on Delicious Rank EPAct Transportation Regulatory Activities: Alternative Compliance for State and Alternative Fuel Provider Fleets on Digg Find More places to share EPAct Transportation Regulatory

162

EPAct Transportation Regulatory Activities: Alternative Fuel Petitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Petitions to someone by E-mail Share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Facebook Tweet about EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Twitter Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Google Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Delicious Rank EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Digg Find More places to share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Alternative Fuel Petitions Section 301(2) of the Energy Policy Act of 1992 (EPAct 1992) defines

163

Office of Enforcement - Regulatory Assistance Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Assistance Reviews Regulatory Assistance Reviews Office of Enforcement and Oversight (formerly Program Reviews) Enforcement Regulatory Assistance Reviews evaluate contractor programs for identifying, evaluating, reporting and correcting noncompliances. The objective of these reviews is to work collaboratively with sites to identify areas where program effectiveness can be improved and ensure that noncompliances are being proactively self-identified. 2013 Office of Security Enforcement Regulatory Assistance Review of Battelle at the Pacific Northwest National Laboratory, July 18, 2013 Office of Worker Safety and Health Enforcement Regulatory Assistance Review of L ATA Environmental Services of Kentucky, LLC at the Paducah Gaseous Diffusion Plant, February 11, 2013 Office of Security Enforcement Regulatory Assistance Review of

164

Improving Regulation and Regulatory Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alton Strategic Environmental Group Alton Strategic Environmental Group New Port Richey, FL charles.alton@earthlink.net April 4, 2011 Daniel Cohen, Assistant General Counsel Legislation, Regulation, and Energy Efficiency Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Mr. Cohen: I have reviewed the Request For Information regarding Reducing Regulatory Reform issued

165

Regulatory Review and International Comparison  

E-Print Network (OSTI)

in a liberalised electricity market by developing a costs/benefit analysis of different regulatory designs Méditerranéen de l'Energie (OME), France For further information: Martin J.J. Scheepers Energy research Centre by the European Commission, Directorate-General for Energy and Transport, under the Energy Intelligent Europe (EIE

166

HLW Glass Waste Loadings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

167

OpenEI - load  

Open Energy Info (EERE)

are given by a location defined by the Typical Meteorological Year (TMY) for which the weather data was collected. Commercial load data is sorted by the (TMY) site as a...

168

Composite Load Model Evaluation  

Science Conference Proceedings (OSTI)

The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

Lu, Ning; Qiao, Hong (Amy)

2007-09-30T23:59:59.000Z

169

Regulatory Burden RFI | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Burden RFI Regulatory Burden RFI These comments are submitted by the Air-Conditioning, Heating and Refrigeration Institute (AHRI) in response to the U.S. Department of...

170

Regulatory Resources for Process Contaminants (3-MCPD)  

Science Conference Proceedings (OSTI)

Regulatory information and references for 3-MCPD(3-Monochloropropane-1,2-diol )process contaminants. Regulatory Resources for Process Contaminants (3-MCPD) 3-MCPD 2-diol 3-MCPD 3-MCPD Esters 3-monochloropropane-1 acid analysis aocs april articles certifi

171

Distribution substation load impacts of residential air conditioner load control  

SciTech Connect

An ongoing experiment to monitor the substation level load impacts of end-use load control is described. An overview of the data acquisition system, experimental procedures and analysis techniques are provided. Results of the 1983 and 1984 experiments demonstrate the value of aggregate load impact monitoring as a means of verifying load research results, calculating the diversity of end-use loads, and predicting the impacts of load management on the transmission and distribution systems.

Heffner, G.C.; Kaufman, D.A.

1985-07-01T23:59:59.000Z

172

Statistical Review of UK Residential Sector Electrical Loads  

E-Print Network (OSTI)

This paper presents a comprehensive statistical review of data obtained from a wide range of literature on the most widely used electrical appliances in the UK residential load sector. It focuses on individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, and also provides information on the reactive power characteristics of the load, which is often neglected from standard consumption statistics. This data is particularly important for power system analysis. In addition to this, device ownership statistics and probability distribution functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information which provides a useful database for the wider research community.

Tsagarakis, G; Kiprakis, A E

2013-01-01T23:59:59.000Z

173

Regulatory Perspective on the Use of Cementitious ...  

United States Nuclear Regulatory Commission 1 ... - Development of accelerated laboratory-scale test methods. - Compilation of a database of ...

174

Load Monitoring CEC/LMTF Load Research Program  

SciTech Connect

This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

2007-11-30T23:59:59.000Z

175

Profile and frictional capacity of embedded anchor chains  

SciTech Connect

Previously published methods for solving the force distribution and geometric profile of an embedded anchor chain involve numerical solution by an incremental integration technique. By rationalizing the problem, closed-form expressions for both the load development and chain profile have been derived. These expressions greatly simplify the procedure for estimating the load and inclination of an embedded chain at some connection point in the soil. The analytical work is corroborated with extensive laboratory test results.

Neubecker, S.R.; Randolph, M.F. [Univ. of Western Australia, Nedlands (Australia). Dept. of Civil Engineering

1995-11-01T23:59:59.000Z

176

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

177

Mass-Loaded Flows  

E-Print Network (OSTI)

A key process within astronomy is the exchange of mass, momentum, and energy between diffuse plasmas in many types of astronomical sources (including planetary nebulae, wind-blown bubbles, supernova remnants, starburst superwinds, and the intracluster medium) and dense, embedded clouds or clumps. This transfer affects the large scale flows of the diffuse plasmas as well as the evolution of the clumps. I review our current understanding of mass-injection processes, and examine intermediate-scale structure and the global effect of mass-loading on a flow. I then discuss mass-loading in a variety of diffuse sources.

J. M. Pittard

2006-07-13T23:59:59.000Z

178

GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit |  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 6-HI-d - Oversize and/or Overweight Vehicles and Loads Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections or Overweight Vehicles and Loads Permit Flowchart Narrative Content Here Print PDF Retrieved from "http://en.openei.org/w/index.php?title=GRR/Section_6-HI-d_-_Oversize_and/or_Overweight_Vehicles_and_Loads_Permit&oldid=685849" Categories: Regulatory Roadmap Overview Sections Geothermal Regulatory Roadmap Sections What links here Related changes Special pages

179

Dynamic model of power system operation incorporating load control  

SciTech Connect

Load management has been proposed as a means whereby an electric utility can reduce its requirements for additional generation, transmission, and distribution investments, shift fuel dependency from limited to more abundant energy resources, and improve the efficiency of the electric energy system. There exist, however, serious technological and economic questions which must be answered to define the cost trade-offs between initiating a load management strategy or adding additional capacity to meet the load. One aspect of this complex problem is to determine how the load profile might be modified by the load management option being considered. Towards this end, a model has been developed to determine how a power system with an active load control system should be operated to make the best use of its available resources. The model is capable of handling all types of conventional generating sources including thermal, hydro, and pumped storage units, and most appliances being considered for direct control including those with inherent or designed storage characteristics. The model uses a dynamic programming technique to determine the optimal operating strategy for a given set of conditions. The use of the model is demonstrated. Case study results indicate that the production cost savings that can be achieved through the use of direct load control are highly dependent on utility characteristics, load characteristics, storage capacity, and penetration. The load characteristics that produce the greatest savings are: large storage capacity; high coincidence with the system peak; large connected load per point; and moderately high diversity fraction.

Kuliasha, M.A.

1980-10-01T23:59:59.000Z

180

Identification and Characterization of Prokaryotic Regulatory Networks: Final Report  

Science Conference Proceedings (OSTI)

We have completed our characterization of both the transcriptional regulatory network and post-transcriptional regulatory motifs in Shewanella.

Gary D Stormo

2012-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cooling load estimation methods  

DOE Green Energy (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

182

LOADING AND UNLOADING DEVICE  

DOE Patents (OSTI)

A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

Treshow, M.

1960-08-16T23:59:59.000Z

183

Multidimensional spectral load balancing  

DOE Patents (OSTI)

A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

Hendrickson, Bruce A. (Albuquerque, NM); Leland, Robert W. (Albuquerque, NM)

1996-12-24T23:59:59.000Z

184

Buildings Stock Load Control  

E-Print Network (OSTI)

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on electricity demand control by applying some strategies in existing building to reduce it during the extreme climate period. The first part of this paper presents the objectives of the study: ? to restrict the startup polluting manufacturing units (power station), ? to limit the environmental impacts (greenhouse emission), ? to reduce the transport and distribution electricity infrastructures The second part presents the approach used to rise the objectives : ? To aggregat the individual loads and to analyze the impact of different strategies from load shedding to reduce peak power demand by: ? Developing models of tertiary buildings stocks (Schools, offices, Shops, hotels); ? Making simulations for different load shedding strategies to calculate potential peak power saving. The third part is dedicated to the description of the developed models: An assembly of the various blocks of the library of simbad and simulink permit to model building. Finally the last part prensents the study results: Graphs and tables to see the load shedding strategies impacts.

Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

2006-01-01T23:59:59.000Z

185

Combined transmission distribution load flow model employing system reduction and voltage variable load representation  

SciTech Connect

In the few decades since its introduction the digital computer has found widespread application within the electric power industry. One of the more fruitful areas for its utilization has been in the determination of the steady-state voltage conditions throughout the system. A power system naturally breaks down into two very distinct parts: transmission and distribution, and traditionally, the voltage problem has been separated the same way. In the transmission system it is referred to as a load flow problem, and in the distribution part it is called a voltage profile. In addition, the loads are often treated differently. Transmission loads are usually considered to be constant power, and the equations that result are therefore nonlinear. In the distribution portion the loads, though specified in terms of power, are sometimes handled as constant impedances, with linear equations. This work produced a new model wherein a mesh transmission system is combined with a radial distribution system and they are solved simultaneously. A system reduction technique is used to eliminate part of the transmission system from consideration, and thereby keep the problem at a manageable size. The solution algorithm incorporates a voltage variable load model which approximates the behavior of real loads more nearly than the common representations.

Enouen, P.W.

1985-01-01T23:59:59.000Z

186

SYSPLAN. Load Leveling Battery System Costs  

SciTech Connect

SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer`s monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer`s peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer`s side of the meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer`s load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.

Hostick, C.J. [Pacific Northwest Lab., Richland, WA (United States)

1988-03-22T23:59:59.000Z

187

Calculations of slurry pump jet impingement loads  

SciTech Connect

This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented.

Wu, T.T.

1996-03-04T23:59:59.000Z

188

Investigation of wind induced load on guyline anchors  

SciTech Connect

Most producing oil wells in the United States include guyline anchors to provide structural support for wind loaded service derricks. Recent safety regulations have focused attention on the load transferred to these anchors during high wind, but no definitive data has been available to establish precise requirements for such loading. In order to provide accurate and broadly acceptable data, a full scale field study was conducted on an actual servicing unit subject to severe wind. Load measured on the guyline anchors during the test indicates that there is less load on the guylines than standard criteria would predict. This result seems to be a singular property of oil well servicing units and is probably associated with both the flowfield around the derrick and the vertical velocity profile of the wind.

Hoyt, P.M.

1976-01-01T23:59:59.000Z

189

Monitoring of Electrical End-Use Loads in Commercial Buildings  

E-Print Network (OSTI)

Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing energy management programs oriented toward end-use applications. The focus of the program is on five major types of commercial buildings: offices, grocery stores, restaurants, retail stores, and warehouses. End-use metering equipment is installed at about 50 buildings, distributed among these five types. The buildings selected have average demands of 100 to 300 kW. The metered end-uses vary among building types and include HVAC, lighting, refrigeration. plug loads, and cooking. Procedures have been custom-designed to facilitate collection and validation of the end-use load data. For example, the Load Profile Viewer is a PC-based software program for reviewing and validating the end-use load data.

Martinez, M.; Alereza, T.; Mort, D.

1988-01-01T23:59:59.000Z

190

User_TalentProfile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

191

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

192

Managing Carbon Regulatory Risk in Utility Resource Planning: Current  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Carbon Regulatory Risk in Utility Resource Planning: Current Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States Title Managing Carbon Regulatory Risk in Utility Resource Planning: Current Practices in the Western United States Publication Type Report Year of Publication 2009 Authors Barbose, Galen L., Ryan H. Wiser, Amol Phadke, and Charles A. Goldman Pagination 28 Date Published 03/2009 Publisher LBNL City Berkeley Keywords carbon emissions, electric utilities, electricity markets and policy group, energy analysis and environmental impacts department, power system planning Abstract Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by fifteen electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demandside resource options for meeting customer load. Even without Federal climate regulation in the U.S., the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of U.S. electric utilities, this work holds implications for all electric utilities and energy policymakers

193

Load responsive hydrodynamic bearing  

Science Conference Proceedings (OSTI)

A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

2002-01-01T23:59:59.000Z

194

Reliability and the Federal Energy Regulatory Commission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the Federal Reliability and the Federal and the Federal Reliability and the Federal Energy Regulatory Energy Regulatory Commission Commission Michael Peters Michael Peters Energy Infrastructure & Cyber Security Advisor Energy Infrastructure & Cyber Security Advisor Federal Energy Regulatory Commission Federal Energy Regulatory Commission 202 202 - - 502 502 - - 8461 8461 Michael.Peters@FERC.GOV Michael.Peters@FERC.GOV The views expressed in this The views expressed in this presentation do not represent the presentation do not represent the views of the Federal Energy views of the Federal Energy Regulatory Commission or the United Regulatory Commission or the United States. States. These views are the personal opinion These views are the personal opinion of Mike Peters!!!! of Mike Peters!!!! ☺ ☺ ☺ ☺ ☺ ☺

195

Environmental regulatory update table, March 1989  

Science Conference Proceedings (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-04-01T23:59:59.000Z

196

Environmental Regulatory Update Table, December 1989  

Science Conference Proceedings (OSTI)

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlbert, L.M.; Langston, M.E. (Tennessee Univ., Knoxville, TN (USA)); Nikbakht, A.; Salk, M.S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

197

Environmental Regulatory Update Table, April 1989  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

1989-05-01T23:59:59.000Z

198

Environmental Regulatory Update Table, September 1991  

SciTech Connect

The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

1991-10-01T23:59:59.000Z

199

Vehicle Technologies Office: EPAct Transportation Regulatory Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

EPAct Transportation Regulatory Activities EPAct Transportation Regulatory Activities The U.S. Department of Energy's (DOE) Vehicle Technologies Office manages several Energy Policy Act (EPAct) transportation regulatory activities that aim to reduce U.S. petroleum consumption by building a core market for alternative fuel vehicles (AFVs). EPAct directed DOE to develop the Alternative Fuel Transportation Program to manage regulatory activities, including the State and Alternative Fuel Provider Fleet Program, which requires covered fleets to reduce petroleum consumption through one of two compliance methods. Features Discover how National Grid meets EPAct requirements Read the latest newsletter Learn about Alternative Compliance Quick Links Standard Compliance Reporting Standard Compliance Alternative Compliance

200

Coal Mining Regulatory and Reclamation Act (Massachusetts) |...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Coal Mining Regulatory and Reclamation Act (Massachusetts) This is the approved revision of...

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Other Regulatory Efforts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Section 1222 of the Energy Policy Act 2005 International Electricity Regulation Presidential Permits Export Authorizations Pending Applications NEPA Other Regulatory...

202

Regulatory Burden RFI: Revitalization of DOE's Role as a Regulatory Watchdog  

Energy.gov (U.S. Department of Energy (DOE))

This Memorandum serves as an Executive Summary of Center for Regulatory Effectiveness’ (CRE’s) attached comments highlighting four issues:

203

IEP - Carbon Dioxide: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Carbon Dioxide (CO2) Regulatory Drivers In July 7, 2009 testimony before the U.S. Senate Committee on Environment and Public Works, Secretary of Energy Steven Chu made the following statements:1 "...Overwhelming scientific evidence shows that carbon dioxide from human activity has increased the atmospheric level of CO2 by roughly 40 percent, a level one- third higher than any time in the last 800,000 years. There is also a consensus that CO2 and other greenhouse gas emissions have caused our planet to change. Already, we have seen the loss of about half of the summer arctic polar ice cap since the 1950s, a dramatically accelerating rise in sea level, and the loss of over two thousand cubic miles of glacial ice, not on geological time scales but over a mere hundred years.

204

UNITED STATES NUCLEAR REGULATORY COMMISSION  

Office of Legacy Management (LM)

WASHINGTON, 0. C. 20555 WASHINGTON, 0. C. 20555 AUG i 3 1979 ,,~---Y--*. FCAF:Wi3 )I 70-364 : i: SNM-414,jAmendment No. 3 --A Babcock and Wilcox Company Nuclear Materials Division ATTN: Mr. Michael A. Austin Manager, Technical Control 609 North Warren Avenue Apollo, Pennsylvania 15613 Gentiemen: (1 i' \ (. \ In accordance with your application dated June 18, 1979, and pursuant to Title 10, Code of Federal Regulations, Part 70, Materials License SNM-414 is hereby amended to: 1. Delete the function of the Regulatory Projects Coordinator, and 2. Alter the experience requirements for the function of Licensing and Nuclear Safety Specialist. Replacement pages for the license and condition section of the application are attached. Included are changes to License SNM-414 pages to reflect

205

United States Nuclear Regulatory Commission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

qU oSoLTJRC qU oSoLTJRC United States Nuclear Regulatory Commission Protecting People and the Environment NUREG-1872, Vol. 2 HudcD [jE©wftamfsýýpc Wafm(M oran EA Office of New Reactors AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at http:t/www.nrc..ov/reading-rm.html. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

206

Variable loading roller  

DOE Patents (OSTI)

An automatic loading roller for transmitting torque in traction drive devices in manipulator arm joints includes a two-part camming device having a first cam portion rotatable in place on a shaft by an input torque and a second cam portion coaxially rotatable and translatable having a rotating drive surface thereon for engaging the driven surface of an output roller with a resultant force proportional to the torque transmitted. Complementary helical grooves in the respective cam portions interconnected through ball bearings interacting with those grooves effect the rotation and translation of the second cam portion in response to rotation of the first. 14 figs.

Williams, D.M.

1988-01-21T23:59:59.000Z

207

Regulatory incentives and prudence reviews  

Science Conference Proceedings (OSTI)

During the past several years, numerous large prudence case disallowances have occurred throughout the United States. Many of these cases concerned the construction of large nuclear facilities. Disallowances occurred despite the presence of incentive mechanisms that were used by various state public utility commissions. The regulatory model used during that period assumed that incentives were useful. Incentives were often viewed, however, as an exploratory exercise that might provide benefits. Still, the real mechanism used to protect ratepayers was the classical prudence case. And, as we saw during the 1980s, such cases were frequently used to prohibit utilities from passing unreasonable costs on to ratepayers. To avoid the system breakdowns and the resulting prudence cases, utilities and regulators must develop incentives that affect utilities' behavior to provide an optimal level of safe and adequate service at the lowest reasonable cost. If the incentives are simply viewed as an exotic regulatory mechanism, without being properly understood and implemented from an operational perspective at the utilities, they may not produce the desired outcome. In some instances they may be irrelevant to the final result. Several relatively new incentive mechanisms are promising. These include incentives that provide utilities with increased profits for implementing good customer-service programs or for achieving good performance in demand-side management (DSM) programs. Those incentives usually link a monetary reward or penalty in the form of a change to the earned rate of return to specific actions, such as the customer complaint rate for the utility or its success in installing certain DSM devices. These are promising because they relate to discrete events that can be easily understood by utility management and measured by regulators.

Bronner, K.M.

1993-12-01T23:59:59.000Z

208

SAPHIRE 8 Volume 7 - Data Loading  

Science Conference Proceedings (OSTI)

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) is a software application developed for performing a complete probabilistic risk assessment (PRA) using a personal computer. SAPHIRE Version 8 is funded by the U.S. Nuclear Regulatory Commission and developed by the Idaho National Laboratory. This report is intended to assist the user to enter PRA data into the SAPHIRE program using the built-in MAR-D ASCII-text file data transfer process. Towards this end, a small sample database is constructed and utilized for demonstration. Where applicable, the discussion includes how the data processes for loading the sample database relate to the actual processes used to load a larger PRA models. The procedures described herein were developed for use with SAPHIRE Version 8. The guidance specified in this document will allow a user to have sufficient knowledge to both understand the data format used by SAPHIRE and to carry out the transfer of data between different PRA projects.

K. J. Kvarfordt; S. T. Wood; C. L. Smith; S. R. Prescott

2011-03-01T23:59:59.000Z

209

Beam profiles from multiple aperture sources  

SciTech Connect

Using a rapidly convergent approximation scheme, formulas are given for beam intensity profiles everywhere. In the first approximation, formulas are found for multiple aperture sources, such as a TFTR design, and integrated power for rectangular plates downstream for Gaussian beamlets. This analysis is duplicated for Lorentzian beamlets which should provide a probable upper bound for off-axis loading as Gaussian beamlets provide a probable lower bound. Formulas for beam intensity profiles are found everywhere. In first approximation, formulas are found for downstream intensity of multiple sources and integrated power for rectangular plates.

Whealton, J.H.

1979-02-01T23:59:59.000Z

210

Transportation Electrification Load Development For A Renewable Future Analysis: Preprint  

DOE Green Energy (OSTI)

The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

Markel, T.; Mai, T.; Kintner-Meyer, M.

2010-12-01T23:59:59.000Z

211

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer...

212

Transportation Electrification Load Development For a Renewable Future Analysis  

SciTech Connect

Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

213

Accelerator beam profile analyzer  

DOE Patents (OSTI)

A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

1976-01-01T23:59:59.000Z

214

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports ‹ See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

215

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Categorical Exclusions Type Term Title Author Replies Last Post sort icon Blog entry Categorical Exclusions Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Blog entry Categorical Exclusions GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Categorical Exclusions GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review

216

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Cost Recovery Type Term Title Author Replies Last Post sort icon Blog entry Cost Recovery GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Cost Recovery GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers

217

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: analysis Type Term Title Author Replies Last Post sort icon Blog entry analysis GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry analysis GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Blog entry analysis Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers:

218

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: BHFS Type Term Title Author Replies Last Post sort icon Blog entry BHFS Texas Legal Review Alevine 29 Jul 2013 - 14:46 Blog entry BHFS Happy New Year! Kyoung 21 Mar 2013 - 10:09 Blog entry BHFS Legal Reviews are Underway Kyoung 21 Mar 2013 - 09:17 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill

219

Load management and the La Vereda passive solar community  

SciTech Connect

Reviewed are preliminary data available from some of the passive solar homes now operational at the La Vereda subdivision in Santa Fe, New Mexico. The major emphasis is Load Management - an electric utility term pertaining to when and how much energy is used by the customer. A customer's home is considered to be Load Managed when its major demands for electricity occur at times during the day when the utility has surplus generation capacity. For most utilities this surplus occurs during the night and is referred to as the off-peak period. Compared to conventional electric homes, the La Vereda passive solar homes are Naturally Load Managed because most of their backup heating requirements occur during the utility's off-peak period. Naturally Load Managed homes like these allow the backup heating system to operate freely whenever the space needs heat. Load data from six La Vereda homes are compared to similar data from 1) a group of nonsolar super-insulated total electric homes, and 2) the utility's winter system peak day load profile. The comparison verifies the Natural Load Management characteristics of the well-designed passive solar home. The free operation of the backup heating system, especially during cloudy or severe weather, can reduce the Natural Load Management characteristics of the La Verda homes. Is it possible to Force Load Management on a home, regardless of weather conditions and still guarantee that all space heating requirements are satisfied with off-peak energy. One home at La Vereda is discussed that has an experimental Forced Load Management backup heating system designed to use energy only during the utility's off-peak period. Load data from this home is presented and compared to other homes at La Verda.

Pyde, S.E.

1981-01-01T23:59:59.000Z

220

Look-ahead voltage and load margin contingency selection functions for large-scale power systems  

SciTech Connect

Given the current operating condition (obtained from the real-time data), the near-term load demand at each bus (obtained from short-term load forecast), and the generation dispatch (say, based on economic dispatch), the authors present in this paper a load margin measure (MW and/or MVAR) to assess the system`s ability to withstand the forecasted load and generation variations. The authors also present a method to predict near-term system voltage profiles. The proposed look-ahead measure and the proposed voltage prediction are then applied to contingency selections for the near-term power system in terms of load margins to collapse and of the bus voltage magnitudes. They evaluate the proposed load-ahead measure and the voltage profile prediction on several power systems including a 1169-bus power system with 53 contingencies with promising results.

Chiang, H.D.; Wang, C.S.; Flueck, A.J. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Regression Models for Demand Reduction based on Cluster Analysis of Load  

NLE Websites -- All DOE Office Websites (Extended Search)

Regression Models for Demand Reduction based on Cluster Analysis of Load Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles Speaker(s): Nobuyuki Yamaguchi Date: March 26, 2009 - 12:00pm Location: 90-3122 This seminar provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. We examined the performance of the proposed models with respect to the validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial

222

Voltage control of emerging distribution systems with induction motor loads using robust LQG approach  

E-Print Network (OSTI)

mode" in emerging distribution systems. The small-signal stability analysis indicates that load voltageVoltage control of emerging distribution systems with induction motor loads using robust LQG has significant performance to improve the voltage profile of the distributed generation system

Pota, Himanshu Roy

223

MTS Table Top Load frame  

NLE Websites -- All DOE Office Websites (Extended Search)

MTS Table Top Load frame MTS Table Top Load frame The Non-destructive Evaluation group operates an MTS Table Top Load frame for ultimate strength and life cycle testing of various ceramic, ceramic-matrix (FGI), carbon, carbon fiber, cermet (CMC) and metal alloy engineering samples. The load frame is a servo-hydraulic type designed to function in a closed loop configuration under computer control. The system can perform non-cyclic, tension, compression and flexure testing and cyclic fatigue tests. The system is comprised of two parts: * The Load Frame and * The Control System. Load Frame The Load Frame (figure 1) is a cross-head assembly which includes a single moving grip, a stationary grip and LVDT position sensor. It can generate up to 25 kN (5.5 kip) of force in the sample under test and can

224

Industrial Load Shaping: A Utility Strategy to Deal with Competition  

E-Print Network (OSTI)

In recent years competition from various sources such as cogeneration and bypass has led many utilities to refocus attention on their large industrial customers. Industrial load shaping is a customized program involving cost-effective process modifications and operational changes which result in a restructuring of the electric load profile of individual manufacturing facilities. Both the customer and the utility should realize benefits from these changes. There are five generic load shaping categories: rescheduling operations, capacity additions, product storage, automation and flexible manufacturing and electrotechnologies. The customized nature of the program requires that the utility work with industry experts to help customers identify specific load shape opportunities. The remainder of this paper provides guidelines for utility planners interested in developing such a program. It begins with an overview of general objectives, technology alternatives, market evaluation and selection criteria, and program implementation and monitoring procedures. The paper concludes with two utility case studies.

Bules, D.

1987-09-01T23:59:59.000Z

225

Field Test Protocol: Standard Internal Load Generation in Unoccupied Test Homes  

Science Conference Proceedings (OSTI)

This document describes a simple and general way to generate House Simulation Protocol (HSP)-consistent internal sensible and latent loads in unoccupied homes. It is newly updated based on recent experience, and provides instructions on how to calculate and set up the operational profiles in unoccupied homes. The document is split into two sections: how to calculate the internal load magnitude and schedule, and then what tools and methods should be used to generate those internal loads to achieve research goals.

Fang, X.; Christensen, D.; Barker, G.; Hancock, E.

2011-06-01T23:59:59.000Z

226

Analysis of sweeping heat loads on divertor plate materials  

SciTech Connect

The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m{sup 2} with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs.

Hassanein, A.

1991-12-31T23:59:59.000Z

227

Analysis of sweeping heat loads on divertor plate materials  

SciTech Connect

The heat flux on the divertor plate of a fusion reactor is probably one of the most limiting constraints on its lifetime. The current heat flux profile on the outer divertor plate of a device like ITER is highly peaked with narrow profile. The peak heat flux can be as high as 30--40 MW/m{sup 2} with full width at half maximum (FWHM) is in the order of a few centimeters. Sweeping the separatrix along the divertor plate is one of the options proposed to reduce the thermomechanical effects of this highly peaked narrow profile distribution. The effectiveness of the sweeping process is investigated parametrically for various design values. The optimum sweeping parameters of a particular heat load will depend on the design of the divertor plate as well as on the profile of such a heat load. In general, moving a highly peaked heat load results in substantial reduction of the thermomechanical effects on the divertor plate. 3 refs., 8 figs.

Hassanein, A.

1991-01-01T23:59:59.000Z

228

Grid Integration of Aggregated Demand Response, Part 1: Load Availability  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid Integration of Aggregated Demand Response, Part 1: Load Availability Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Title Grid Integration of Aggregated Demand Response, Part 1: Load Availability Profiles and Constraints for the Western Interconnection Publication Type Report LBNL Report Number LBNL-6417E Year of Publication 2013 Authors Olsen, Daniel, Nance Matson, Michael D. Sohn, Cody Rose, Junqiao Han Dudley, Sasank Goli, Sila Kiliccote, Marissa Hummon, David Palchak, Paul Denholm, Jennie Jorgenson, and Ookie Ma Date Published 09/2013 Abstract Demand response (DR) has the potential to improve electric grid reliability and reduce system operation costs. However, including DR in grid modeling can be difficult due to its variable and non-traditional response characteristics, compared to traditional generation. Therefore, efforts to value the participation of DR in procurement of grid services have been limited. In this report, we present methods and tools for predicting demand response availability profiles, representing their capability to participate in capacity, energy, and ancillary services. With the addition of response characteristics mimicking those of generation, the resulting profiles will help in the valuation of the participation of demand response through production cost modeling, which informs infrastructure and investment planning.

229

Regulatory analysis technical evaluation handbook. Final report  

Science Conference Proceedings (OSTI)

The purpose of this Handbook is to provide guidance to the regulatory analyst to promote preparation of quality regulatory analysis documents and to implement the policies of the Regulatory Analysis Guidelines of the US Nuclear Regulatory Commission (NUREG/BR-0058 Rev. 2). This Handbook expands upon policy concepts included in the NRC Guidelines and translates the six steps in preparing regulatory analyses into implementable methodologies for the analyst. It provides standardized methods of preparation and presentation of regulatory analyses, with the inclusion of input that will satisfy all backfit requirements and requirements of NRC`s Committee to Review Generic Requirements. Information on the objectives of the safety goal evaluation process and potential data sources for preparing a safety goal evaluation is also included. Consistent application of the methods provided here will result in more directly comparable analyses, thus aiding decision-makers in evaluating and comparing various regulatory actions. The handbook is being issued in loose-leaf format to facilitate revisions. NRC intends to periodically revise the handbook as new and improved guidance, data, and methods become available.

NONE

1997-01-01T23:59:59.000Z

230

Department of Energy and Nuclear Regulatory Commission Increase...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Regulatory Commission Increase Cooperation to Advance Global Nuclear Energy Partnership Department of Energy and Nuclear Regulatory Commission Increase Cooperation to...

231

Energy Praises the Nuclear Regulatory Commission Approval of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

232

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798 (Dec. 5, 2011) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 76 Fed. Reg. 75798...

233

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison...

234

Business Case Slide 34: Regulatory Constraints Analysis (ANL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Constraints Analysis (ANL) - Program Focus Program focus ANL will be preparing a risk analysis and regulatory plan for a specific case: use of DU in catalysts Enhance...

235

Changes related to "Coal Mining Regulatory and Reclamation Act...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Mining Regulatory and Reclamation Act (Massachusetts)" Coal Mining Regulatory and...

236

Pages that link to "Coal Mining Regulatory and Reclamation Act...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Mining Regulatory and Reclamation Act (Massachusetts)" Coal Mining Regulatory and...

237

Maryland-National Capital Building Industry Association Regulatory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory...

238

CRE_Response-DOE_Regulatory_Review_Request_for_Comments.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center for Regulatory Effectiveness Center for Regulatory Effectiveness 1601 Connecticut Avenue, N.W. Washington, DC, 20009 Tel: (202) 265-2383 Fax: (202) 939-6969 secretary1@mbsdc.com www.TheCRE.com 1 REGULATORY REVIEW MEMORANDUM To: Department of Energy From: Jim Tozzi Subject: Regulatory Burden Request for Information Date: September 4, 2012 CC: Boris Bershteyn/Office of Information and Regulatory Affairs This Memorandum serves as an Executive Summary of Center for Regulatory Effectiveness' (CRE's) attached comments highlighting four issues: 1. DOE's Regulatory Coordination & Harmonization Responsibilities; 2. The Cumulative Costs of Regulations; 3. Retrospective Review of Regulations; and 4. Stakeholder Participation. DOE REGULATORY COORDINATION & HARMONIZATION RESPONSIBILITIES

239

Commercial Building Profiles | OpenEI  

Open Energy Info (EERE)

Building Profiles Building Profiles Dataset Summary Description This dataset includes simulation results from a national-scale study of the commercial buildings sector. Electric load profiles contain the hour-by-hour demand for electricity for each building. Summary tables describe individual buildings and their overall annual energy performance. The study developed detailed EnergyPlus models for 4,820 different samples in 2003 CBECS. Simulation output is available for all and organized by CBECS's identification number in public use datasets. Three modeling scenarios are available: existing stock (with 2003 historical weather), stock as if rebuilt new (with typical weather), and the stock if rebuilt using maximum efficiency technology (with typical weather). The following reports describe how the dataset was developed:

240

Load Management: Opportunity or Calamity?  

E-Print Network (OSTI)

After the change in the economics of generating electricity which took place in 1973, many utilities are examining options to hold down their costs. One fact which is clear is that the difference between peak and off peak generating costs is much larger now than prior to 1973. Utilities are examining two options which can be termed load management. One option is to control discretionary loads during peak periods. Cycling of residential water heaters or shutting off industrial electric furnaces during peak periods are both examples of load control which lower the costs borne by the utility. The other option is the use of seasonal surcharges or time-of-day rates to induce customers to alter their usage patterns. Both these load management options focus on reducing utility costs overall without regard to the cost to the consumers affected by the load management options. The issue, then, is whether industrial customers can find opportunities to lower their costs under load management.

Males, R.; Hassig, N.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamic load balancing of applications  

DOE Patents (OSTI)

An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

Wheat, Stephen R. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

242

Dynamic load balancing of applications  

DOE Patents (OSTI)

An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

Wheat, S.R.

1997-05-13T23:59:59.000Z

243

Influence Of Lateral Load Distributions On Pushover Analysis Effectiveness  

SciTech Connect

The effectiveness of two simple load distributions for pushover analysis recently proposed by the authors is investigated through a comparative study, involving static and dynamic analyses of seismic response of eccentrically braced frames. It is shown that in the upper floors only multimodal pushover procedures provide results close to the dynamic profile, while the proposed load patterns are always conservative in the lower floors. They over-estimate the seismic response less than the uniform distribution, representing a reliable alternative to the uniform or more sophisticated adaptive procedures proposed by seismic codes.

Colajanni, P.; Potenzone, B. [Dipartimento di Ingegneria Civile, Universita di Messina, Contrada Di Dio, S. Agata, 98166 Messina (Italy)

2008-07-08T23:59:59.000Z

244

Alaska Village Electric Load Calculator  

DOE Green Energy (OSTI)

As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

Devine, M.; Baring-Gould, E. I.

2004-10-01T23:59:59.000Z

245

High-Power Rf Load  

DOE Patents (OSTI)

A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

1998-09-01T23:59:59.000Z

246

Legal and Regulatory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legal and Regulatory Legal and Regulatory Legal and Regulatory Below are resources for Tribes on legal and regulatory issues. A Guide to Community Solar: Utility, Private, and Non-Profit Project Development A resource for community solar project development aimed at community organizers, solar advocates, government officials, and utility managers. Provides information on various community solar project models (utility-sponsored, special purpose entities, non-profits), state policies that support community solar projects (group billing, virtual net metering, joint ownership), and tax policies and incentives. Source: U.S. Department of Energy. An Introduction to Geothermal Permitting This guide tracks the geothermal permitting process through multiple levels, addressing such issues as the importance of where the geothermal

247

DEPARTMENT OF ENERGY Reducing Regulatory Burden  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billing Code 6450 01-P Billing Code 6450 01-P DEPARTMENT OF ENERGY Reducing Regulatory Burden AGENCY: Office of the General Counsel, Department of Energy. ACTION: Request for information. SUMMARY: As part of its implementation of Executive Order 13563, "Improving Regulation and Regulatory Review," issued by the President on January 18, 2011, the Department of Energy (DOE) is seeking comments and information from interested parties to assist DOE in reviewing its existing regulations to determine whether any such regulations should be modified, streamlined, expanded, or repealed. The purpose of DOE's review is to make the agency's regulatory program more effective and less burdensome in achieving its regulatory objectives. DATES: Written comments and information are requested on or before 45 days after

248

Regulatory Considerations for Developing Distributed Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar...

249

Fourth RFI Comment on Regulatory Review  

Energy.gov (U.S. Department of Energy (DOE))

As part of its implementation of Executive Order 13563, ‘‘Improving Regulation and Regulatory Review,’’ issued by the President on January 18, 2011, the Department of Energy (Department or DOE) is...

250

Evolution and statistics of biological regulatory networks  

E-Print Network (OSTI)

In this thesis, I study the process of evolution of the gene regulatory network in Escherichia coli. First, I characterize the portion of the network that has been documented, and then I simulate growth of the network. In ...

Chandalia, Juhi Kiran, 1979-

2005-01-01T23:59:59.000Z

251

NEMA Comments on Reducing Regulatory Burden  

Energy.gov (U.S. Department of Energy (DOE))

The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy’s efforts to make its regulatory program more effective and...

252

Reducing Regulatory Burden EO 13563 Third RFI  

Energy.gov (U.S. Department of Energy (DOE))

As part of its implementation of Executive Order 13563, ‘‘Improving Regulation and Regulatory Review,’’ issued by the President on January 18, 2011, the Department of Energy (Department or DOE) is...

253

Analysis of Regulatory Guidance for Health Monitoring  

Science Conference Proceedings (OSTI)

The purpose of this study was to assess the connection between current FAA regulations and the incorporation of Health Management (HM) systems into commercial aircraft. To address the overall objectives ARINC (1) investigated FAA regulatory guidance, ...

Munns Thomas E.; Beard Richard E.; Culp Aubrey M.; Murphy Dennis A.; Kent Renee M.

2000-12-01T23:59:59.000Z

254

Regulatory Considerations for Developing Distributed Generation Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Considerations for Developing Distributed Generation Regulatory Considerations for Developing Distributed Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar is to educate NRECA and APPA members, Tribes, and federal energy managers about a few of the regulatory issues that should be considered in developing business plans for distributed generation projects. This webinar is sponsored by the DOE Office of Indian Energy Policy and Programs, DOE Energy Efficiency and Renewable Energy Tribal Energy Program, Western Area Power Administration, DOE Federal Energy Management Program, DOE Office of Electricity Delivery and Energy Reliability, National Rural Electric Cooperative Association, and the American Public Power

255

EIA - Natural Gas Pipeline Network - Regulatory Authorities  

U.S. Energy Information Administration (EIA) Indexed Site

Regulatory Authorities Regulatory Authorities About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates U.S. Natural Gas Regulatory Authorities Beginning | Regulations Today | Coordinating Agencies | Regulation of Mergers and Acquisitions Beginning of Industry Restructuring In April 1992, the Federal Energy Regulatory Commission (FERC) issued its Order 636 and transformed the interstate natural gas transportation segment of the industry forever. Under it, interstate natural gas pipeline companies were required to restructure their operations by November 1993 and split-off any non-regulated merchant (sales) functions from their regulated transportation functions. This new requirement meant that interstate natural gas pipeline companies were allowed to only transport natural gas for their customers. The restructuring process and subsequent operations have been supervised closely by FERC and have led to extensive changes throughout the interstate natural gas transportation segment which have impacted other segments of the industry as well.

256

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term Content Group Activity By term Q & A Feeds 1031 regulations (1) Alaska (1) analysis (3) appropriations (1) BHFS (3) Categorical Exclusions (3) citation (1) citing (1) Colorado (2) Coordinating Permit Office (2) Cost Mechanisms (2) Cost Recovery (2) CX (1) D.C. (1) data (1) Database (1) developer (2) EA (1) EIS (1) endangered species (1) Fauna (1) feedback (1) Fish and Wildlife (1) Flora (1) flora and fauna (1) 1 2 3 next › last » Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12)

257

Regulatory Burden RFI Executive Order 13563  

Energy.gov (U.S. Department of Energy (DOE))

The situation we described last year (see below) has not improved.  We are waiting for additional rules from DOE but don’t believe they’ll provide the needed relief from regulatory burden.  This...

258

Regulatory Process for Decommissioning Nuclear Power Reactors  

Science Conference Proceedings (OSTI)

The NRC revised decommissioning rule 10 CFR 50.82 in 1996 to make significant changes in the regulatory process for nuclear power plant licensees. This report provides a summary of ongoing federal agency and industry activities. It also describes the regulatory requirements applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning plan, and provides industry...

1998-03-26T23:59:59.000Z

259

PWR AXIAL BURNUP PROFILE ANALYSIS  

Science Conference Proceedings (OSTI)

The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

J.M. Acaglione

2003-09-17T23:59:59.000Z

260

Texas Crop Profile: Onions  

E-Print Network (OSTI)

This profile of onion production in Texas gives an overview of basic commodity information; discusses insect, disease and weed pests; and covers cultural and chemical control methods.

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

KWOC (Key-Word-Out-of-Context) Index of US Nuclear Regulatory Commission Regulatory Guide Series  

SciTech Connect

To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series.

Jennings, S.D.

1990-04-01T23:59:59.000Z

262

Matching collector's azimuthal orientation and energy demand profile for thermosyphonic systems  

SciTech Connect

When a load profile is given, a thermosyphonic solar water heater's collector's azimuthal orientation should be considered as a parameter for maximizing the system's performance. This is demonstrated by simulating such a system with various azimuthal collectors orientation subjected to a single fixed or a daily routine load during the day. The results indicate that the system performance, which is measured here by the average (or mixed-cup) temperature of the withdrawn load, could be improved appreciably by a proper match between the collector's azimuthal orientation and the specifics of the load profiles.

Sokolov, M.; Vaxman, M. (Tel Aviv Univ. (Israel). School of Engineering)

1989-08-01T23:59:59.000Z

263

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit |  

Open Energy Info (EERE)

GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit GRR/Section 6-MT-a - Montana Overdimensional or Overweight Load Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-MT-a - Montana Overdimensional or Overweight Load Permit 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Transportation Regulations & Policies Montana Code Annotated 61-10-101 et seq. Administrative Rules of Monatana 18.8 Triggers None specified Click "Edit With Form" above to add content 06MTAMontanaOverdimensionalOrOverweightLoadPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

264

GRR/Section 6-HI-a - Oversize and Overweight Vehicles and Loads Permit |  

Open Energy Info (EERE)

a - Oversize and Overweight Vehicles and Loads Permit a - Oversize and Overweight Vehicles and Loads Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 6-HI-a - Oversize and Overweight Vehicles and Loads Permit 06HIAOversizeAndOrOverweightVehiclesAndLoadsPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Transportation Highways Division Regulations & Policies Hawaii Administrative Rules Title 19, Chapter 104 Triggers None specified Click "Edit With Form" above to add content 06HIAOversizeAndOrOverweightVehiclesAndLoadsPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

265

LOAD FORECASTING Eugene A. Feinberg  

E-Print Network (OSTI)

's electricity price forecasting model, produces forecast of gas demand consistent with electric load. #12Gas demand Council's Market Price of Electricity Forecast Natural GasDemand Electric Load Aggregating Natural between the natural gas and electricity and new uses of natural gas emerge. T natural gas forecasts

Feinberg, Eugene A.

266

Wind load reduction for heliostats  

DOE Green Energy (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

267

A Moored Profiling Instrument*  

Science Conference Proceedings (OSTI)

The specifications and performance of a moored vertical profiling instrument, designed to acquire near-full-ocean-depth profile time series data at high vertical resolution, are described. The 0.8-m-diameter by 0.4-m-wide device utilizes a ...

K. W. Doherty; D. E. Frye; S. P. Liberatore; J. M. Toole

1999-11-01T23:59:59.000Z

268

Training Program EHS 0611 ~ Universal Waste Regulatory Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Health, & Safety Training Program EHS 0611 Universal Waste Regulatory Training Course Syllabus Subject...

269

ON THE LOAD CAPACITY OF THE HYDRO-MAGNETICALLY LUBRICATED SLIDER BEARING  

SciTech Connect

The load capacity of liquid metal lubricated slider bearings subject to an applied magnetic field transverse to the film is investigated. The optimum profile is determined and found to be the Rayleigh step form with the riser location and step height ratio dependent on the strength of the magnetic field. Load capacity is favored by large magnetic fields, small film thicknesses, and electrically insulating bearing surfaces. Only modest load increases can be obtained from conventional magnets of reasonable size. Substantial load increases could be accomplished by the recently developed superconducting electromagnets. (auth)

Osterle, J.F.; Young, F.J.

1962-05-01T23:59:59.000Z

270

A model of the domestic hot water load  

SciTech Connect

The electrical load required to supply domestic hot water is an important load for two reasons: (1) It represents a large portion (30 to 50%) of the domestic load; (2) It is a load which can easily be controlled by the consumer or the supplier, because the use of the hot water need not coincide with the heating of hot water. A model representing the electrical system load due to hot water consumption from storage water heaters is provided. Variable parameters include the average amount of water used, the mean and deviation of distributions of usage times, thermostat settings, inlet water temperature and electrical heating element ratings. These parameters are used to estimate the after diversity electricity demand profile, and were verified for accuracy by comparison with measurements. The model enables this prediction of the effects of load control, examples of which are given in this paper. The model is also useful for evaluation of the response which could be expected from demand-side management options. These include changing the size of heating elements, reduction in water consumption and reduction in thermostat settings.

Lane, I.E. [Energy Efficiency Enterprises, Lynnwood Manor (South Africa); Beute, N. [Cape Technikon, Cape Town (South Africa)

1996-11-01T23:59:59.000Z

271

Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks  

Science Conference Proceedings (OSTI)

The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

2012-07-19T23:59:59.000Z

272

Spinning Reserve from Responsive Load  

SciTech Connect

As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host a spinning reserve test. The Tennessee Valley Authority (TVA) supplied real-time metering and monitoring expertise to record total hotel load during both normal operations and testing. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. The load drop was very rapid, essentially as fast as the 2 second metering could detect.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Laughner, T [Tennessee Valley Authority (TVA); Morris, K [Tennessee Valley Authority (TVA)

2009-01-01T23:59:59.000Z

273

NETL: IEP - Air Quality Research: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers DOE/NETL’s Air Quality Research Program is in direct response to the need to ensure that fossil-fuel-fired power systems continue to meet current and future environmental requirements. Specific environmental regulatory requirements driving this research are briefly summarized below: I. Clean Air Act (Including 1990 Amendments) Title I - Air Pollution Prevention and Control Part A - Air Quality and Emission Limitations Sect. 109 - National Ambient Air Quality Standards In July 1997 EPA promulgated new standards for particulate matter finer than 2.5 micrometers (PM2.5) and revised the ambient ozone standards. Sect. 111 - Standards of Performance for New Stationary Sources Part C - Prevention of Significant Deterioration of Air Quality

274

IEP - Advanced NOx Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Advanced NOx Emissions Control Regulatory Drivers Regulatory Drivers for Existing Coal-Fired Power Plants Regulatory and legislative requirements have predominantly driven the need to develop NOx control technologies for existing coal-fired power plants. The first driver was the Title IV acid rain program, established through the 1990 Clean Air Act Amendments (CAAA). This program included a two-phase strategy to reduce NOx emissions from coal-fired power plants – Phase I started January 1, 1996 and Phase II started January 1, 2000. The Title IV NOx program was implemented through unit-specific NOx emission rate limits ranging from 0.40 to 0.86 lb/MMBtu depending on the type of boiler/burner configuration and based on application of LNB technology.

275

Nuclear Regulatory Commission Information Digest, 1991 edition  

Science Conference Proceedings (OSTI)

The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs.

Olive, K L

1991-03-01T23:59:59.000Z

276

Investigation of residential central air conditioning load shapes in NEMS  

SciTech Connect

This memo explains what Berkeley Lab has learned about how the residential central air-conditioning (CAC) end use is represented in the National Energy Modeling System (NEMS). NEMS is an energy model maintained by the Energy Information Administration (EIA) that is routinely used in analysis of energy efficiency standards for residential appliances. As part of analyzing utility and environmental impacts related to the federal rulemaking for residential CAC, lower-than-expected peak utility results prompted Berkeley Lab to investigate the input load shapes that characterize the peaky CAC end use and the submodule that treats load demand response. Investigations enabled a through understanding of the methodology by which hourly load profiles are input to the model and how the model is structured to respond to peak demand. Notably, it was discovered that NEMS was using an October-peaking load shape to represent residential space cooling, which suppressed peak effects to levels lower than expected. An apparent scaling down of the annual load within the load-demand submodule was found, another significant suppressor of the peak impacts. EIA promptly responded to Berkeley Lab's discoveries by updating numerous load shapes for the AEO2002 version of NEMS; EIA is still studying the scaling issue. As a result of this work, it was concluded that Berkeley Lab's customary end-use decrement approach was the most defensible way for Berkeley Lab to perform the recent CAC utility impact analysis. This approach was applied in conjunction with the updated AEO2002 load shapes to perform last year's published rulemaking analysis. Berkeley Lab experimented with several alternative approaches, including modifying the CAC efficiency level, but determined that these did not sufficiently improve the robustness of the method or results to warrant their implementation. Work in this area will continue in preparation for upcoming rulemakings for the other peak coincident end uses, commercial air conditioning and distribution transformers.

Hamachi LaCommare, Kristina; Marnay, Chris; Gumerman, Etan; Chan, Peter; Rosenquist, Greg; Osborn, Julie

2002-05-01T23:59:59.000Z

277

Advanced nonintrusive load monitoring system  

E-Print Network (OSTI)

There is a need for flexible, inexpensive metering technologies that can be deployed in many different monitoring scenarios. Individual loads may be expected to compute information about their power consumption. Utility ...

Wichakool, Warit, 1977-

2011-01-01T23:59:59.000Z

278

OpenEI - building load  

Open Energy Info (EERE)

are given by a location defined by the Typical Meteorological Year (TMY) for which the weather data was collected. Commercial load data is sorted by the (TMY) site as a...

279

Permanent Load Shift Control Strategies  

NLE Websites -- All DOE Office Websites (Extended Search)

of Permanent Load Shifting for HVAC and other storage assets as it relates to summer on-peak demand, how it can be dynamically and autonomously controlled, and its relationship...

280

Building load control and optimization  

E-Print Network (OSTI)

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

Xing, Hai-Yun Helen, 1976-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

282

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

283

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

284

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

285

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

286

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

287

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

288

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

289

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

290

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

291

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

292

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

293

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

294

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

295

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

296

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

297

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

298

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

299

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

300

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

302

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

303

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

304

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

305

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

306

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

307

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

308

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

309

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

310

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

311

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

312

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

313

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

314

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

315

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

316

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

317

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

318

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

319

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

320

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

322

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

323

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

324

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

325

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

326

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

327

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

328

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

329

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

330

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

331

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

332

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

333

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

334

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

335

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

336

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

337

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

338

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

339

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

340

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

342

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

343

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

344

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

345

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

346

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

347

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

348

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

349

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

350

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

351

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

352

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

353

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

354

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

355

Adaptive web usage profiling  

Science Conference Proceedings (OSTI)

Web usage models and profiles capture significant interests and trends from past accesses. They are used to improve user experience, say through recommendation of pages, pre-fetching of pages, etc. While browsing behavior changes dynamically over time, ...

Bhushan Shankar Suryavanshi; Nematollaah Shiri; Sudhir P. Mudur

2005-08-01T23:59:59.000Z

356

Vertically Rising Microstructure Profiler  

Science Conference Proceedings (OSTI)

The vertically rising microstructure profiler was designed to measure temperature gradient and conductivity gradient microstructure in lakes, reservoirs and coastal seas. The instrument is totally independent of surface craft while collecting ...

G. D. Carter; J. Imberger

1986-09-01T23:59:59.000Z

357

Performance profiles style sheet  

U.S. Energy Information Administration (EIA)

investment throughout most of this period compared with the 1990s. Title: Performance profiles style sheet Author: Greg Filas Created Date: 12/23/2010 7:12:57 PM ...

358

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

359

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

360

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

362

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

363

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

364

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

365

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

366

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

367

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

368

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

369

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

370

SunShot Initiative: Policy and Regulatory Environment  

NLE Websites -- All DOE Office Websites (Extended Search)

Policy and Regulatory Environment Policy and Regulatory Environment to someone by E-mail Share SunShot Initiative: Policy and Regulatory Environment on Facebook Tweet about SunShot Initiative: Policy and Regulatory Environment on Twitter Bookmark SunShot Initiative: Policy and Regulatory Environment on Google Bookmark SunShot Initiative: Policy and Regulatory Environment on Delicious Rank SunShot Initiative: Policy and Regulatory Environment on Digg Find More places to share SunShot Initiative: Policy and Regulatory Environment on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Reducing Non-Hardware Costs Lowering Barriers Fostering Growth Policy and Regulatory Environment Photo of a man speaking while seated at a table with men and women surrounding him.

371

Fermilab | Women's History Month - Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiles The profiles on this page present a cross section of women from the Fermilab community. Fermilab hopes that profiles of these women will inspire young women everywhere to...

372

Estimating Demand Response Load Impacts: Evaluation of BaselineLoad Models for Non-Residential Buildings in California  

SciTech Connect

Both Federal and California state policymakers areincreasingly interested in developing more standardized and consistentapproaches to estimate and verify the load impacts of demand responseprograms and dynamic pricing tariffs. This study describes a statisticalanalysis of the performance of different models used to calculate thebaseline electric load for commercial buildings participating in ademand-response (DR) program, with emphasis onthe importance of weathereffects. During a DR event, a variety of adjustments may be made tobuilding operation, with the goal of reducing the building peak electricload. In order to determine the actual peak load reduction, an estimateof what the load would have been on the day of the event without any DRactions is needed. This baseline load profile (BLP) is key to accuratelyassessing the load impacts from event-based DR programs and may alsoimpact payment settlements for certain types of DR programs. We testedseven baseline models on a sample of 33 buildings located in California.These models can be loosely categorized into two groups: (1) averagingmethods, which use some linear combination of hourly load values fromprevious days to predict the load on the event, and (2) explicit weathermodels, which use a formula based on local hourly temperature to predictthe load. The models were tested both with and without morningadjustments, which use data from the day of the event to adjust theestimated BLP up or down.Key findings from this study are: - The accuracyof the BLP model currently used by California utilities to estimate loadreductions in several DR programs (i.e., hourly usage in highest 3 out of10 previous days) could be improved substantially if a morning adjustmentfactor were applied for weather-sensitive commercial and institutionalbuildings. - Applying a morning adjustment factor significantly reducesthe bias and improves the accuracy of all BLP models examined in oursample of buildings. - For buildings with low load variability, all BLPmodels perform reasonably well in accuracy. - For customer accounts withhighly variable loads, we found that no BLP model produced satisfactoryresults, although averaging methods perform best in accuracy (but notbias). These types of customers are difficult to characterize withstandard BLP models that rely on historic loads and weather data.Implications of these results for DR program administrators andpolicymakersare: - Most DR programs apply similar DR BLP methods tocommercial and industrial sector customers. The results of our study whencombined with other recent studies (Quantum 2004 and 2006, Buege et al.,2006) suggests that DR program administrators should have flexibility andmultiple options for suggesting the most appropriate BLP method forspecific types of customers.

Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote,Sila

2008-01-01T23:59:59.000Z

373

Profiling Signaling Polarity in Chemotactic Cells  

SciTech Connect

While directional movement requires morphological polarization characterized by formation of a leading pseudopodium at the front and a trailing rear at the back, little is known about how protein networks are spatially integrated to regulate this process. Here, we utilize a unique pseudopodial purification system and quantitative proteomics and phosphoproteomics to map the spatial relationship of 3509 proteins and 228 distinct sites of phosphorylation in polarized cells. Networks of signaling proteins, metabolic pathways, actin regulatory proteins, and kinase-substrate cascades were found to partition to different poles of the cell including components of the Ras/ERK pathway. Also, several novel proteins were found to be differentially phosphorylated at the front or rear of polarized cells and to localize to distinct subcellular structures. Our findings provide insight into the spatial organization of signaling networks that control cell movement and provide a comprehensive profile of proteins and their sites of phosphorylation that control cell polarization.

Wang, Yingchun; Ding, Shi-Jian; Wang, Wei; Jacobs, Jon M.; Qian, Weijun; Moore, Ronald J.; Yang, Feng; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

2007-05-15T23:59:59.000Z

374

Load transfer coupling regression curve fitting for distribution load forecasting  

SciTech Connect

The planning of distribution facilities requires forecasts of future substation and feeder loads. Extrapolation based on a curve fit to past annual peak loads is currently the most popular manner of accomplishing this forecast. Curve fitting suffers badly from data shifts caused by switching as loads are routinely moved from one substation to another during the course of utility operations. This switching contaminates the data, reducing forecast accuracy. A new regression application reduces error due to these transfers by over an order of magnitude. A key to the usefulness of this method is that the amount of the transfer, and its direction (whether it was to or from a substation), is not a required input. The new technique, aspects of computer implementation of it, and a series of tests showing its advantage over normal multiple regression methods are given.

Willis, H.L.; Powell, R.W.

1984-05-01T23:59:59.000Z

375

EPAct Transportation Regulatory Activities: Compliance Methods for State  

NLE Websites -- All DOE Office Websites (Extended Search)

Compliance Methods for State and Alternative Fuel Provider Fleets to someone by E-mail Share EPAct Transportation Regulatory Activities: Compliance Methods for State and Alternative Fuel Provider Fleets on Facebook Tweet about EPAct Transportation Regulatory Activities: Compliance Methods for State and Alternative Fuel Provider Fleets on Twitter Bookmark EPAct Transportation Regulatory Activities: Compliance Methods for State and Alternative Fuel Provider Fleets on Google Bookmark EPAct Transportation Regulatory Activities: Compliance Methods for State and Alternative Fuel Provider Fleets on Delicious Rank EPAct Transportation Regulatory Activities: Compliance Methods for State and Alternative Fuel Provider Fleets on Digg Find More places to share EPAct Transportation Regulatory

376

Adaptive Fluid Electrical Conductivity Logging to Determine the Salinity Profiles in Groundwater  

E-Print Network (OSTI)

Adaptive Fluid Electrical Conductivity Logging to Determine the Salinity Profiles in Groundwater(t) Analysis Method · Integrate C(z,t), or FEC profile, over z of logged interval to get salinity mass per unit salinity TMDL requires wetland management of salt loads to the San Joaquin River · Dearth of groundwater

Quinn, Nigel

377

Implications of the Public Utility Regulatory Act for Energy Efficiency in Texas  

E-Print Network (OSTI)

The Public Utility Regulatory Act (PURA) as amended in 1982 and the Substantive Rules of the Public Utility Commission of Texas (PUCT) establish a comprehensive regulatory system for electric, telephone, and water utilities. The rules which cover electric utilities contain provisions requiring certain electric utilities to prepare energy efficiency plans. In their plans, utilities must consider the potential for economically producing capacity through supply-side and demand-side alternatives to new power plant construction. These alternatives are identified in the definition of energy efficiency included in the Rules. Supply-side alternatives are: optimizing existing and planned generation, transmission, and distribution facilities; purchasing power from cogenerators and small power producers; utilizing direct conversion of renewable resources; and improving power plant productivity and efficiency. Demand-side options are conservation and load management programs that can be implemented to improve customer utilization of energy. The initial plan submissions were made in December 1984, so the energy efficiency plan, and its implications are emerging. This paper describes and discusses the energy efficiency plan as it pertains to conservation and load management programs and its likely effects on the allowable cost of service expenditures for conservation and load management programs, policies for new power plant construction and cogeneration.

Biedrzycki, C. J.

1985-05-01T23:59:59.000Z

378

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network (OSTI)

PSLF that incorporates motor  A?C, ZIP, and electronic load the fractions motors A?C, ZIP, and electronic loads.    Usethat incorporates motor  A?C, ZIP, and  electronic load 

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

379

Monthly Crustal Loading Corrections for Satellite Altimetry  

Science Conference Proceedings (OSTI)

Satellite altimeter measurements of sea surface height include a small contribution from vertical motion of the seafloor caused by crustal loading. Loading by ocean tides is routinely allowed for in altimeter data processing. Here, loading by ...

R. D. Ray; S. B. Luthcke; T. van Dam

2013-05-01T23:59:59.000Z

380

Peak load management: Potential options  

SciTech Connect

This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Guidelines for Reduced Seismic Loads to Assess Temporary Conditions in Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Utilities do not have uniform guidelines and criteria to treat plant temporary conditions (TCs) or planned changes to safety-related systems. Regulatory review and acceptance criteria and guidelines tend to be overly conservative, leading to costly measures. This report proposes a risk-informed procedure for evaluating TCs using reduced seismic loads and current licensing basis allowables that reduces plant operation and maintenance (O&M) costs, shortens plant outages, and reduces personnel radiation exp...

1998-09-10T23:59:59.000Z

382

Building Energy Software Tools Directory: Load Express  

NLE Websites -- All DOE Office Websites (Extended Search)

graphical interface makes Load Express a powerful engineering tool with a very short learning curve. The "rookie" or experienced user can quickly and accurately perform load...

383

Self-aligning biaxial load frame  

DOE Patents (OSTI)

An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

1994-01-18T23:59:59.000Z

384

Decentralized customerlevel under frequency load shedding in...  

Open Energy Info (EERE)

enables the management of large groups of distributed loads under a single innovative control schemes to use the flexibility of electrical loads for power system purposes....

385

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

386

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

387

Method for loading resin beds  

DOE Patents (OSTI)

An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

Notz, Karl J. (Oak Ridge, TN); Rainey, Robert H. (Knoxville, TN); Greene, Charles W. (Knoxville, TN); Shockley, William E. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

388

Regulatory issues associated with the international oils & fats trade  

Science Conference Proceedings (OSTI)

FOSFA’s John Hancock reviews three major areas of regulation of the global trading of oils and fats. Regulatory issues associated with the international oils & fats trade Inform Magazine Inform Archives Regulatory issues associated with the interna

389

The Regulatory Process of the Energy Conservation Law in Japan  

NLE Websites -- All DOE Office Websites (Extended Search)

The Regulatory Process of the Energy Conservation Law in Japan Speaker(s): Taishi Sugiyama Date: March 26, 2002 - 12:00pm Location: Bldg. 90 We examined the regulatory process of...

390

US Department of Energys Regulatory Negotiations Convening...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Negotiations Convening on Commercial Certification for Heating, Ventilating, Air-Conditioning, and Refrigeration Equipment Public Information for Convening Interviews...

391

Lawrence E. Jones, Ph.D. Vice President, Regulatory Affairs ...  

Science Conference Proceedings (OSTI)

... Vice President, Regulatory Affairs, Policy and Industry Relations, North America. ... Aid Wind Integration” published in North American Wind Power Vol ...

2012-03-13T23:59:59.000Z

392

EIA - Smart Grid Legislative and Regulatory Policies and Case Studies  

U.S. Energy Information Administration (EIA)

State Energy Data System ... Smart Grid Legislative and Regulatory ... Recent activity includes the deployment of smart meters, distribution automation and ...

393

Regulatory governance in African telecommunications: Testing the resource curse hypothesis  

Science Conference Proceedings (OSTI)

This paper examines regulatory governance in the context of African telecommunications. Though there is already a substantial literature devoted to the regulatory practices in developing countries, it generally conceptualizes the quality of regulation ... Keywords: Africa, Development, Paradox of plenty, Regulatory governance, Resource curse, Telecommunications regulation

Krishna Jayakar; Brandie Martin

2012-10-01T23:59:59.000Z

394

PRB rail loadings shatter record  

Science Conference Proceedings (OSTI)

Rail transport of coal in the Powder River Basin has expanded, with a record 2,197 trains loaded in a month. Arch Coal's Thunder basin mining complex has expanded by literally bridging the joint line railway. The dry fork mine has also celebrated its safety achievements. 4 photos.

Buchsbaum, L.

2008-09-15T23:59:59.000Z

395

On the Accuracy of Regulatory Cost Estimates  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Accuracy of Regulatory Cost Estimates On the Accuracy of Regulatory Cost Estimates Speaker(s): Richard Morgenstern Date: December 10, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Alan Sanstad Margaret Taylor Over the past several decades, the U.S. has seen a gradual reduction in economic regulation and a simultaneous increase in safety, health, environmental, and other social regulations. Especially with the prospect of regulation on greenhouse gases under the Clean Air Act, there is growing concern about the costs, effectiveness, and benefits of federal rules. While prospective or ex ante analyses of the benefits and costs of major federal regulations are now a standard part of government operations, retrospective or ex post analyses, focusing on measurements of actual

396

Depleted Uranium Uses: Regulatory Requirements and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Depleted Uranium Uses Depleted Uranium Uses Regulatory Requirements Regulatory Requirements and Issues and Issues Nancy L. Ranek Nancy L. Ranek Argonne National Laboratory Argonne National Laboratory August 5, 1998 August 5, 1998 Beneficial Reuse '98 Beneficial Reuse '98 Knoxville, TN Knoxville, TN NOTES Work Performed for: Office of Facilities (NE-40) Office of Nuclear Energy, Science and Technology U.S. Department of Energy Work Performed by: Environmental Assessment Division Argonne National Laboratory 955 L'Enfant Plaza North, S.W. Washington, D.C. 20024 Phone: 202/488-2417 E-mail: ranekn@smtplink.dis.anl.gov 2 2 2 Programmatic Environmental Programmatic Environmental Impact Statement (PEIS) Impact Statement (PEIS) Draft PEIS Published 12/97 * Preferred Alternative = 100% Use

397

Regulatory Burden RFI - Hussmann Corporation Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Burden RFI - Hussmann Corporation Response Regulatory Burden RFI - Hussmann Corporation Response January 3, 2012 Below are the list of questions with answers from the December 5 RFI: (1) How can the Department best promote meaningful periodic reviews of its existing rules and how can it best identify those rules that might be modified, streamlined, expanded, or repealed? DOE should maintain a list of all manufacturers impacted by legislation/rules and make sure these manufacturers are notified of all rule changes. A full review cycle should be done periodically and provide adequate time for ALL manufacturers to respond. (2) What factors should the agency consider in selecting and prioritizing rules and reporting requirements for review? Cost (initial and maintenance) should be considered as well as return on investment. Also,

398

NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555  

Office of Legacy Management (LM)

REGULATORY COMMISSION REGULATORY COMMISSION WASHINGTON, D. C. 20555 JAN 2 2 1982 -/ Departmznt'of Ene,rgy ATTN : Dr. William E. Mott, Director Environmental and Safety Engineering Division (EP-32) Washington, D.C. 20545 Dear Dr. Mott: Enclosed is the list of contaminated'or potentially contaminated sites that I promised to send you during our recent meeting. The sites have been broken down into the followi,ng four categories: 1. Sites with known contamination that have never been 1 icensed. 2. Formerly licensed sites with known contamination. 3. Currently licensed sites that are being decontaminated prior to decoronissioning. 4. A list of formerly licensed sites that need to be visited to determine if they have been properly decontaminated prior to decommissioning.

399

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Kyoung Geothermal NEPA Workshop at GRC Posted by: Kyoung 14 Oct 2013 - 20:19 On Tuesday, October 2, the Geothermal Technology Office and the National Renewable Energy Laboratory held a 1/2-day NEPA workshop. The workshop was held at the MGM Grand in Las Vegas, in conjunction... Tags: Categorical Exclusions, CX, Database, EA, EIS, FONSI, GEA, GRC, GRR, NEPA Jweers New Robust References! Posted by: Jweers 7 Aug 2013 - 18:23 Check out the new Reference Form. Adding... 1 comment(s) Tags: citation, citing, developer, formatting, reference, Semantic Mediawiki, wiki Graham7781

400

NUCLEAR REGULATORY,.COMMISSION REGION I  

Office of Legacy Management (LM)

REGULATORY,.COMMISSION REGULATORY,.COMMISSION REGION I lY,.COMMISSION 475 ALLENDALE ROAD KlNG OF PRUSSIA. PENNSYLVANIA 194061415 GION I NOALE ROAD ENNSYLVANlA 194061415 MAY I5 1996 MAY I5 1996 Docket No. 040-07964 License No. SlJ (Rs Heyman Properties Attention: Mr. John S. Russo Facility Manager 333 Post Road West Westport, CT 06881 SUBJECT: INSPECTION NO. 040-07964/96-001 Dear Mr. Russo: On April 15, 1996, Todd J. Jackson of this office conducted a routine inspection at 737 Canal Street, Stamford, Connecticut of activities o Oliver Incorporated, authorized by Atomic Energy Commission (AEC) Lit SUB-00967. The inspection consisted of observations by the inspect0 interviews with personnel, and a radiological survey by the inspector Jackson was accompanied on this inspection by representatives of the

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Natural Gas Regulatory Policy: Current Issues  

E-Print Network (OSTI)

"Many changes have occurred in recent months in both federal and state natural gas regulation. Those changes have increased the options of industrial energy consumers for purchasing and moving natural gas. This panel will discuss important developments in federal and state regulatory arenas and their impacts on purchasing options. Among the issues discussed will be: 1. Federal Regulation a. Self-implementing transportation b. Service obligation c. Pipeline capacity brokering d. Non-regulated and partially regulated sales e. FERC Order No. 500 f. Rate treatments impacts 2. State Regulation a. Prorationing impacts b. Federal preemption of state conservation authority 3. Regulatory and Contract Problems Facing the Natural Gas Marketer 4. The Contours of the Current Marketplace "

Watkins, G.

1988-09-01T23:59:59.000Z

402

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

403

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

404

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

405

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

406

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

407

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

408

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

409

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

410

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

411

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

412

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

413

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

414

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

415

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

416

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

417

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

418

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

419

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

420

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

422

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

423

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

424

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

425

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

426

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

427

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

428

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

429

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

430

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

431

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

432

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

433

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

434

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

435

Towards user psychological profile  

Science Conference Proceedings (OSTI)

Recents studies have demonstrated how useful and fundamental psychological aspects such as people Personality Traits and Emotions are during human decision-making process. Some research towards the identification and model of user's Emotions have been ... Keywords: personality traits, recommendation, reputation, user psychological profile

Maria Augusta S. N. Nunes; Stefano A. Cerri; Nathalie Blanc

2008-10-01T23:59:59.000Z

436

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

437

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

438

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

439

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

440

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

442

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

443

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

444

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

445

Simple beam profile monitor  

Science Conference Proceedings (OSTI)

An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

2012-12-19T23:59:59.000Z

446

Basis for Changing Chromium Regulatory Health Values  

Science Conference Proceedings (OSTI)

Hexavalent chromium, Cr(VI), acts as a chemical driver for many human health risk assessments under the Clean Air Act Amendments of 1990 and other regulatory programs across a range of industrial sectors, including the electric power sector. To characterize and manage the health and environmental risk related to toxics, agencies and the regulated sectors must rely on the development of scientific estimates of the exposure-to-response relationship to understand and quantify the potential hazard ...

2012-12-31T23:59:59.000Z

447

A tool for automated resource consumption profiling of distributed transactions  

E-Print Network (OSTI)

Abstract. In this paper, we present a tool, called Autoprofiler, that automates the discovery of resource consumption by transactions on distributed systems. Such information is required as input to performance analysis tools, which may be used for capacity planning, for rearchitecting a distributed system, or to identify potential bottlenecks. Deriving this information using existing tools is a tedious and error prone process. In contrast, our tool requires minimal human intervention, and brings down the time required to profile complex distributed systems to a few minutes. It does this by co-ordinating the process of load generation and server resource profiling. Our tool also works with a Java profiler, called LiteJava Profiler, which we have built, to fully automate the process of resource consumption discovery for J2EE servers. 1

B. Nagaprabhanjan; Varsha Apte

2005-01-01T23:59:59.000Z

448

Load Forecasting for Modern Distribution Systems  

Science Conference Proceedings (OSTI)

Load forecasting is a fundamental activity for numerous organizations and activities within a utility, including planning, operations, and control. Transmission and Distribution (T&D) planning and design engineers use the load forecast to determine whether any changes and additions are needed to the electric system to satisfy the anticipated load. Other load forecast users include system operations, financial ...

2013-03-08T23:59:59.000Z

449

Load Forecast For use in Resource Adequacy  

E-Print Network (OSTI)

Load Forecast 2019 For use in Resource Adequacy Massoud Jourabchi #12;In today's presentation d l­ Load forecast methodology ­ Drivers of the forecast f i­ Treatment of conservation ­ Incorporating impact of weather ­ Forecast for 2019 #12;Regional Loads (MWA and MW)Regional Loads (MWA and MW

450

Evolving non-intrusive load monitoring  

Science Conference Proceedings (OSTI)

Non-intrusive load monitoring (NILM) identifies used appliances in a total power load according to their individual load characteristics. In this paper we propose an evolutionary optimization algorithm to identify appliances, which are modeled as on/off ... Keywords: NILM, evolution, evolutionary algorithm, knapsack problem, non-intrusive load monitoring

Dominik Egarter; Anita Sobe; Wilfried Elmenreich

2013-04-01T23:59:59.000Z

451

Issues in gas load research: An industry perspective. A white paper, December 1992-August 1993  

SciTech Connect

An overview of recently computed and ongoing gas load metering programs (residential, commercial, and industrial) by North American utilities is presented. The project objectives, the methods used, availability of data, and problems encountered have been documented. The report provides a list of contacts in utilities with extensive metering program experience. To obtain the industry profile of current gas load research, a telephone survey was conducted, with special attention to identifying new load research applications and metering approaches in response to new technologies and structural changes in the industry.

Violette, D.M.; Brakken, R.

1993-08-01T23:59:59.000Z

452

Characterizing Household Plug Loads through Self-Administered Load Research  

Science Conference Proceedings (OSTI)

Household miscellaneous loads, which include consumer electronics, are the fastest growing segment of household energy use in the United States. Although the relative energy intensity of applications such as heating and cooling is declining, the DOEAnnual Energy Outlook forecasts that the intensity of residential miscellaneous end uses will increase substantially by 2030. Studies by TIAX and Ecos Consulting reveal that miscellaneous devices8212smaller devices in terms of energy draw but growing in usage8...

2009-12-09T23:59:59.000Z

453

Baldrige Award Recipients' Contacts and Profiles  

Science Conference Proceedings (OSTI)

... Small Business. Granite Rock Company contacts, profile. 1991. Small Business. Manufacturing. Marlow Industries, Inc. contacts, profile. ...

2013-05-06T23:59:59.000Z

454

Baldrige Award Recipients' Contacts and Profiles  

Science Conference Proceedings (OSTI)

... Pewaukee School District contacts, profile, award application summary ... application summary, Montgomery County Public Schools contacts, profile ...

2013-11-13T23:59:59.000Z

455

EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct  

NLE Websites -- All DOE Office Websites (Extended Search)

National National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology to someone by E-mail Share EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Facebook Tweet about EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Twitter Bookmark EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Google Bookmark EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Delicious Rank EPAct Transportation Regulatory Activities: National Grid Exceeds EPAct Requirements Deploying Natural Gas Technology on Digg

456

Beam characteristics of the new DESY H{sup -} source and investigations of the plasma load  

SciTech Connect

The new DESY H{sup -} source with a completely insulated plasma has been thoroughly investigated with emittance and beam profile measurements. The beam profile was measured with a multi-Faraday cup, and for the emittance measurements a slit and grid device was used. More than 200 beam profile and emittance measurements for x as well as y were done. Their dependences on rf power, filter field strength, and gas pressure were measured. The plasma load was investigated with a substitution method. It was possible to determine the real and imaginary parts which is seen by the rf antenna.

Peters, J.; Sahling, H.-H.; Hansen, I. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany)

2008-02-15T23:59:59.000Z

457

Assessment of Industrial Load for Demand Response across Western Interconnect  

SciTech Connect

Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)] [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

2013-11-01T23:59:59.000Z

458

Cyclic Plasticity under Shock Loading in an HCP Metal  

SciTech Connect

Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.

Prime, Michael B. [Los Alamos National Laboratory; Hunter, Abigail [Los Alamos National Laboratory; Canfield, Thomas R. [Los Alamos National Laboratory; Adams, Chris D. [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

459

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

460

Chemical profiles of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

462

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

463

Profile-Based Adaption . . .  

E-Print Network (OSTI)

‘Cache decay ’ is a set of leakage-reduction mechanisms that put cache lines that have not been accessed for a specific duration into a low-leakage standby mode. This duration is called the decay interval, and its optimal value varies across applications. This paper provides an extended discussion of the results previously presented in our journal paper [13]. It describes an adaptation technique that analytically finds the optimal decay interval through profiling, and shows that the most important variables required for finding the optimal decay interval can be estimated with a reasonable degree of accuracy using profiling. This work explicitly trades off the leakage power saved in putting both the ‘live ’ and ‘dead ’ lines into standby mode, against its performance and energy costs. It achieves energy savings close to what can be obtained with an omniscient choice of per-benchmark optimal decay interval.

Karthik Sankaranarayanan; Kevin Skadron

2004-01-01T23:59:59.000Z

464

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

465

Temperature-profile detector  

DOE Patents (OSTI)

Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

Not Available

1981-01-29T23:59:59.000Z

466

Temperature profile detector  

DOE Patents (OSTI)

Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

Tokarz, Richard D. (West Richland, WA)

1983-01-01T23:59:59.000Z

467

World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS  

E-Print Network (OSTI)

-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V impacts than the nuclear fuel cycle. Although solar electric is peak power and nuclear is a base-load one

468

Surface profiling interferometer  

DOE Patents (OSTI)

The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

Takacs, Peter Z. (P.O. Box 385, Upton, NY 11973); Qian, Shi-Nan (Hefei Synchrotron Radiation Laboratory, University of Science and, Hefei, Anhui, CN)

1989-01-01T23:59:59.000Z

469

Stand-alone Renewable Energy-Policy and Regulatory Studies | Open Energy  

Open Energy Info (EERE)

Stand-alone Renewable Energy-Policy and Regulatory Studies Stand-alone Renewable Energy-Policy and Regulatory Studies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Stand-alone Renewable Energy-Policy and Regulatory Studies Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Implementation, Policies/deployment programs, Background analysis Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, Country: China Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Average waiting time profiles of uniform DQDB model  

SciTech Connect

The Distributed Queue Dual Bus (DQDB) system consists of a linear arrangement of N nodes that communicate with each other using two contra-flowing buses; the nodes use an extremely simple protocol to send messages on these buses. This simple, but elegant, system has been found to be very challenging to analyze. We consider a simple and uniform abstraction of this model to highlight the fairness issues in terms of average waiting time. We introduce a new approximation method to analyze the performance of DQDB system in terms of the average waiting time of a node expressed as a function of its position. Our approach abstracts the intimate relationship between the load of the system and its fairness characteristics, and explains all basic behavior profiles of DQDB observed in previous simulation. For the uniform DQDB with equal distance between adjacent nodes, we show that the system operates under three basic behavior profiles and a finite number of their combinations that depend on the load of the network. Consequently, the system is not fair at any load in terms of the average waiting times. In the vicinity of a critical load of 1 {minus} 4/N, the uniform network runs into a state akin to chaos, where its behavior fluctuates from one extreme to the other with a load variation of 2/N. Our analysis is supported by simulation results. We also show that the main theme of the analysis carries over to the general (non-uniform) DQDB; by suitably choosing the inter-node distances, the DQDB can be made fair around some loads, but such system will become unfair as the load changes.

Rao, N.S.V. [Oak Ridge National Lab., TN (United States); Maly, K.; Olariu, S.; Dharanikota, S.; Zhang, L.; Game, D. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Computer Science

1993-09-07T23:59:59.000Z

471

Optimally profiling and tracing programs  

Science Conference Proceedings (OSTI)

This paper describes algorithms for inserting monitoring code to profile and trace programs. These algorithms greatly reduce the cost of measuring programs with respect to the commonly used technique of placing code in each basic block. Program profiling ... Keywords: control-flow graph, instruction tracing, instrumentation, profiling

Thomas Ball; James R. Larus

1994-07-01T23:59:59.000Z

472

Independent review of estimated load reductions for PJM's small customer load response pilot project  

E-Print Network (OSTI)

of Estimated Load Reductions for PJM’s Small Customer Loadof Estimated Load Reductions for PJM’s Small Customer LoadResponse Pilot Project Prepared for PJM Interconnection, LLC

Heffner, G.; Moezzi, M.; Goldman, C.

2004-01-01T23:59:59.000Z

473

Automated fuel pin loading system  

DOE Patents (OSTI)

An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

1985-01-01T23:59:59.000Z

474

High loading uranium fuel plate  

DOE Patents (OSTI)

Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

1990-01-01T23:59:59.000Z

475

NETL: IEP - Mercury Emissions Control: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers The Clean Air Act Amendments of 1990 (CAAA) brought about new awareness regarding the overall health-effects of stationary source fossil combustion emissions. Title III of the CAAA identified 189 pollutants, including mercury, as hazardous or toxic and required the Environmental Protection Agency (EPA) to evaluate their emissions by source, health effects and environmental implications, including the need to control these emissions. These pollutants are collectively referred to as air toxics or hazardous air pollutants (HAPs). The provisions in Title III specific to electric generating units (EGU) were comprehensively addressed by DOE's National Energy Technology Laboratory (NETL) and the Electric Power Research Institute (EPRI) in collaborative air toxic characterization programs conducted between 1990 and 1997. This work provided most of the data supporting the conclusions found in EPA's congressionally mandated reports regarding air toxic emissions from coal-fired utility boilers; the Mercury Study Report to Congress (1997)1 and the "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units -- Final Report to Congress" (1998).2 The first report identified coal-fired power plants as the largest source of human-generated mercury emissions in the U.S. and the second concluded that mercury from coal-fired utilities was the HAP of "greatest potential concern" to the environment and human health that merited additional research and monitoring.

476

IEP - Water-Energy Interface: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Drivers Regulatory Drivers Several legislative acts are in place that could potentially impact water quality requirements and water use for fossil energy production as well as electricity generation. These acts regulate pollutant discharge and water intake directly and indirectly. Under regulations established by the United States Environmental Protection Agency (EPA), these Acts serve to maintain and improve the Nation's water resources for uses including but not limited to agricultural, industrial, nutritional, and recreational purposes. The Clean Water Act - The Federal Water Pollution Control Act, more commonly known as the Clean Water Act, provides for the regulation of discharges to the nation's surface waters. To address pollution, the act specifies that the discharge of any pollutant by any person is unlawful except when in compliance with applicable permitting requirements. Initial emphasis was placed on "point source" pollutant discharge, but 1987 amendments authorized measures to address "non-point source" discharges, including stormwater runoff from industrial facilities. Permits are issued under the National Pollutant Discharge Elimination System (NPDES), which designates the highest level of water pollution or lowest acceptable standards for water discharges. NPDES permits are typically administered by the individual states. With EPA approval, the states may implement standards more stringent than federal water quality standards, but may not be less stringent. Certain sections of the Act are particularly applicable to water issues related to power generation. These include:

477

Price-Responsive Load (PRL) Program - Framing Paper No.1  

SciTech Connect

By definition, effective and efficient competitive markets need a supply side and a demand side. One criticism of electric restructuring efforts in many states is that most of the attention has been focused on the supply side, in a market focused on the short term. In general, the demand side of the market has been under-addressed. The objective of the New England Demand Response Initiative (NEDRI) is to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI aims to maximize the capability of demand response to compete in the wholesale market and to improve the economic efficiency and environmental profile of the electric sector. To those ends, NEDRI is focusing its efforts in four interrelated areas: (1) ISO-level reliability programs, (2) Market-based price-responsive load programs, (3) Demand response at retail through pricing, rate design, and advanced metering, and (4) End-use energy efficiency resources as demand response. The fourth area, energy efficiency, is the subject of this framing paper. Energy efficiency reduces the energy used by specific end-use devices and systems, typically without affecting the level of service and without loss of amenity. Energy savings and peak load reductions are achieved by substituting technically more advanced equipment, processes, or operational strategies to produce the same or an improved level of end-use service with less electricity. In contrast, load management programs lower peak demand during specific, limited time periods by either (1) influencing the timing of energy use by shifting load to another time period, or (2) reducing the level of energy use by curtailing or interrupting the load, typically with some loss of service or amenity.

Goldman, Charles A.

2002-03-01T23:59:59.000Z

478

Interruptible load control for Taiwan Power Company  

SciTech Connect

Load management is the planning and implementation of those utility activities designed to influence customer use of electricity in ways that will produce desired changes in the utility's load shape. Interruptible load program is an option of load management which provides incentive rate to customers to interrupt or reduce the power demand during the system peak period or emergency condition. Therefore, how to design a proper incentive rate is the most important issue in implementing this program. This paper describes three alternatives designed for the interruptible load program, one of which was activated by Taiwan Power Company (Taipower) and some preliminary results were obtained. The effect of the interruptible load to the system peak demand reduction and the change of daily load curve for large industrial customers were analyzed. This paper estimates the avoided cost and design more appropriate incentive rate structure for interruptible load program.

Chen, C.S.; Leu, J.T. (Dept. of Electrical Engineering, National Sun Yat-Sen Univ., Kaohsiung (TW))

1990-05-01T23:59:59.000Z

479

Loads on drillpipe during jarring operations  

Science Conference Proceedings (OSTI)

Jarring implies heavy loads on the drillstring. The highest load on the drillpipe before jarring is at the rig floor. This paper discusses loads on drillpipe before, under, and after jarring. The authors show that for most situations, the shock wave from the jar impact does not imply additional load on the drillpipe compared with static load. The theoretical results are confirmed by measurements of a jarring operation with stuck point at [approx] 1,200 m measured depth. Loads on the drillpipe can be a limited factor in jarring operations because fear of possible additional loads from jarring dynamics may restrict the trip force (overpull) on the jar. The main conclusion is that dynamic jar forces do not give additional loads on drillpipe. This information can be used to set an optimal trip force on the jar.

Aarrestad, T.V.; Kyllingstad, A.

1994-12-01T23:59:59.000Z

480

1994 Pacific Northwest Loads and Resources Study.  

Science Conference Proceedings (OSTI)

The 1994 Pacific Northwest Loads and Resources Study presented herein establishes a picture of how the agency is positioned today in its loads and resources balance. It is a snapshot of expected resource operation, contractual obligations, and rights. This study does not attempt to present or analyze future conservation or generation resource scenarios. What it does provide are base case assumptions from which scenarios encompassing a wide range of uncertainties about BPA`s future may be evaluated. The Loads and Resources Study is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the 1993 Pacific Northwest Loads and Resources Study, published in December 1993. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The Federal system and regional analyses for medium load forecast are presented.

United States. Bonneville Power Administration.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "load profile regulatory" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) Edison Electric Institute (EEI) Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 (May 15, 2012) The Edison Electric Institute (EEI) is submitting these comments in response to the above-referenced request for information (RFI) issued by the Department of Energy (DOE). In the RFI, DOE is again asking for information on ways to streamline and to reduce the burden imposed by its regulations. Reg review - DOE RFI - EEI cmts 5-29-12.pdf More Documents & Publications Reducing Regulatory Burden RFI, 77 Fed. Reg. 28518 Edison Electric Institute (EEI) Regulatory Burden RFI, 77 Fed. Reg. 47328 EEI Comments in response to DOE regulatory review RFI, 76 Fed. Reg. 75798

482

Category:Geothermal Regulatory Roadmap Sections | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal Regulatory Roadmap Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. Add.png Add a Section Pages in this category are created or edited using the RRSection form. Subcategories This category has the following 2 subcategories, out of 2 total. R [×] Regulatory Roadmap Overview Sections‎ 22 pages [×] Regulatory Roadmap State Sections‎ 362 pages Pages in category "Geothermal Regulatory Roadmap Sections" The following 200 pages are in this category, out of 432 total. (previous

483

Category:Regulatory Roadmap State Sections | Open Energy Information  

Open Energy Info (EERE)

Regulatory Roadmap State Sections Regulatory Roadmap State Sections Jump to: navigation, search GRR-logo.png Looking for the Geothermal Regulatory Roadmap? Click here for a user-friendly list of Geothermal Regulatory Roadmap pages. This is the Regulatory Roadmap State Sections category. Add.png Add an Section Pages in category "Regulatory Roadmap State Sections" The following 200 pages are in this category, out of 339 total. (previous 200) (next 200) G GRR/Section 1-AK-a - Land Use Considerations GRR/Section 1-CA-a - State Land Use Planning GRR/Section 1-HI-a - Land Use Considerations GRR/Section 1-ID-a - Land Use Considerations GRR/Section 1-MT-a - Land Use Considerations GRR/Section 1-NV-a - State Land Use Planning GRR/Section 1-OR-a - Land Use Considerations GRR/Section 11-AK-a - State Cultural Considerations

484

Role of ponderomotive density modification in IBW loading  

SciTech Connect

We solve numerically a second-order nonlinear ordinary differential equation [1] that describes EPW-IBW mode transformation at the lower-hybrid layer, including self-consistent ponderomotive density profile modification, for the electrostatic potential in front of the IBW antenna. The model is solved for the particular case of heating just below the second harmonic of the deuterium cyclotron frequency. Background density and temperature profiles are chosen to be appropriate for the IBW experiments on TFTR. We calculate the complex antenna impedance, assuming vacuum within the antenna box, and a local reflectivity which reveal diminished antenna loading with increasing ponderomotive pressure, compared to the linear prediction. The ponderomotive force steepens the density gradient in the edge plasma, thus enhancing reflection and lowering the loading resistance. The model also describes the direct launch of IBWs in high edge density regimes, lacking a lower-hybrid layer, where the impedance is found to be much smaller than in the low density regime. {copyright} {ital 1997 American Institute of Physics.}

Russell, D.A.; Myra, J.R.; DIppolito, D.A. [Lodestar Research Corp., 2400 Central Ave. P-5, Boulder, Colorado 80301 (United States)

1997-04-01T23:59:59.000Z

485

Plug Load Behavioral Change Demonstration Project  

SciTech Connect

This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

Metzger, I.; Kandt, A.; VanGeet, O.

2011-08-01T23:59:59.000Z

486

Spinning reserve from hotel load response  

SciTech Connect

Even though preliminary tests were not conducted during times of highest system or hotel loading during the summer, they showed that hotel load can be curtailed by 22 to 37 percent depending on the outdoor temperature and time of day. Full response occurred in 12 to 60 seconds from when the system operator's command to shed load was issued and the load drop was very rapid. (author)

Kirby, Brendan; Kueck, John; Laughner, Theo; Morris, Keith

2008-12-15T23:59:59.000Z