Sample records for load power dbm

  1. A 60GHz, 13dBm Fully Integrated 65nm RF-CMOS Power Amplifier

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    simulation. A. Transistor Layout Caracterisation The size of the transistor depends on the maximum powerA 60GHz, 13dBm Fully Integrated 65nm RF-CMOS Power Amplifier Sofiane Aloui, Eric Kerhervé IMS-CNRS University of Toulouse Toulouse, France plana@laas.fr Abstract--A 65nm CMOS, 60GHz fully integrated power

  2. 684 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 12, DECEMBER 2006 A 20 dBm Linear RF Power Amplifier Using

    E-Print Network [OSTI]

    Asbeck, Peter M.

    that the impedance transformation ratio from 50 becomes too high for output powers beyond 100 mW. The resulting power/high voltage PAs were presented using directly stacked FETs without transformers in [6684 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 16, NO. 12, DECEMBER 2006 A 20 dBm Linear

  3. The DBM Library of UPPAAL DBM Subtractions

    E-Print Network [OSTI]

    David, Alexandre

    structure for representing clock constraints, i.e., zones. DBMs represent convex zones. Note: canonical form. Subtraction may result in non-convex zones, i.e., DBMs must be split. Federations: unions of DBMs. #12;Example of a DBM x2-x2

  4. Power System load management

    SciTech Connect (OSTI)

    Rudenko, Yu.N.; Semenov, V.A.; Sovalov, S.A.; Syutkin, B.D.

    1984-01-01T23:59:59.000Z

    The variation in demand nonuniformity is analyzed for the Unified Electric Power System of the USSR and certain interconnected power systems; the conditions for handling such nonuniformity with utilization of generating equipment having differing flexibility capabilities are also considered. On this basis approaches and techniques for acting on user loads, load management, in order to assure a balance between generated and consumed power are considered.

  5. A Wideband 77GHz, 17.5dBm Power Amplifier in Silicon Abbas Komijani and Ali Hajimiri

    E-Print Network [OSTI]

    Hajimiri, Ali

    such as short-range communication (e.g., 60GHz band) and automotive radar (e.g., 77GHz band) [1 integrated 77GHz power amplifier in silicon. II. FREQUENCY BAND In a collision-avoidance automotive radar copper layers and a thick 4µm aluminum layer as top metal for low-loss interconnects. The breakdown

  6. High-Power Rf Load

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

    1998-09-01T23:59:59.000Z

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  7. Reducing Power Load Fluctuations on Ships Using Power Redistribution Control

    E-Print Network [OSTI]

    Johansen, Tor Arne

    controller is demonstrated through simulation studies on a supply vessel power plant, using the SIMULINK plant with electric propulsion, the power generation will con- sist of multiple engines, whereReducing Power Load Fluctuations on Ships Using Power Redistribution Control Damir Radan,1 Asgeir J

  8. Load Management and Houston Lighting and Power Co.

    E-Print Network [OSTI]

    Drawe, R. G.; Ramsay, I. M.

    1984-01-01T23:59:59.000Z

    Defining Load Management as influencing of customer loads in order to shift the time use of electric power and energy, encompasses a broad spectrum of activities at Houston Lighting & Power Company. This paper describes those activities by directing...

  9. 1634 IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 12, 2013 A Compact Dual-Band Rectenna Using Slot-Loaded

    E-Print Network [OSTI]

    Tentzeris, Manos

    , dual-band rectenna, dual-band rectifier, energy harvesting, wireless power transmission. I bands, RF energy harvesters capable of operating in multiple bands are of great importance. Nowadays by a microwave signal of available power of 9 dBm for a load resistor of 2.2 k . Index Terms--Dipole antenna

  10. Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Effect of Large Dynamic Loads on Interconnected Power Systems with Power Oscillation Damping.hossain and H.Pota)@adfa.edu.au Abstract--Power systems are composed of dynamic loads. In this paper presents an analysis to investigate the effects of large dynamic loads on interconnected power systems

  11. Load Response Fundamentally Matches Power System Reliability Requirements

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL] [ORNL

    2007-01-01T23:59:59.000Z

    Responsive load is the most underutilized reliability resource available to the power system. Loads are frequently barred from providing the highest value and most critical reliability services; regulation and spinning reserve. Advances in communications and control technology now make it possible for some loads to provide both of these services. The limited storage incorporated in some loads better matches their response capabilities to the fast reliability-service markets than to the hourly energy markets. Responsive loads are frequently significantly faster and more accurate than generators, increasing power system reliability. Incorporating fast load response into microgrids further extends the reliability response capabilities that can be offered to the interconnected power system. The paper discusses the desired reliability responses, why this matches some loads' capabilities, what the advantages are for the power system, implications for communications and monitoring requirements, and how this resource can be exploited.

  12. Temperature Aware Microprocessor Floorplanning Considering Application Dependent Power Load

    E-Print Network [OSTI]

    He, Lei

    heat diffusion model taking into account the ap- plication dependent power load for thermal analysis is calculated to evaluate each new floorplan, which is time-consuming. [7] proposed a simple deterministic heatTemperature Aware Microprocessor Floorplanning Considering Application Dependent Power Load Chun

  13. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOE Patents [OSTI]

    Perez, Richard

    2005-05-03T23:59:59.000Z

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  14. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, G.R.

    1983-11-29T23:59:59.000Z

    A dc switching regulated power supply for driving an inductive load is provided. The regulator basic circuit is a bridge arrangement of diodes and transistors. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. A dc power supply is connected to the input of the bridge and the output is connected to the load. A servo controller is provided to control the switching rate of the transistors to maintain a desired current to the load. The regulator may be operated in three stages or modes: (1) for current runup in the load, both first and second transistor switch arrays are turned on and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned off, and load current flywheels through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays off, allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load.

  15. DC switching regulated power supply for driving an inductive load

    DOE Patents [OSTI]

    Dyer, George R. (Norris, TN)

    1986-01-01T23:59:59.000Z

    A power supply for driving an inductive load current from a dc power supply hrough a regulator circuit including a bridge arrangement of diodes and switching transistors controlled by a servo controller which regulates switching in response to the load current to maintain a selected load current. First and second opposite legs of the bridge are formed by first and second parallel-connected transistor arrays, respectively, while the third and fourth legs of the bridge are formed by appropriately connected first and second parallel connected diode arrays, respectively. The regulator may be operated in three "stages" or modes: (1) For current runup in the load, both first and second transistor switch arrays are turned "on" and current is supplied to the load through both transistor arrays. (2) When load current reaches the desired level, the first switch is turned "off", and load current "flywheels" through the second switch array and the fourth leg diode array connecting the second switch array in series with the load. Current is maintained by alternating between modes 1 and 2 at a suitable duty cycle and switching rate set by the controller. (3) Rapid current rundown is accomplished by turning both switch arrays "off", allowing load current to be dumped back into the source through the third and fourth diode arrays connecting the source in series opposition with the load to recover energy from the inductive load. The three operating states are controlled automatically by the controller.

  16. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  17. Single-mode optical fiber for high-power, low-loss UV transmission

    E-Print Network [OSTI]

    Yves Colombe; Daniel H. Slichter; Andrew C. Wilson; Dietrich Leibfried; David J. Wineland

    2014-08-08T23:59:59.000Z

    We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power). Fiber attenuation ranges from 0.9 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for radii above 50 mm.

  18. Maximizing Efficiency of Solar-Powered Systems by Load Matching

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    energy. However, solar powered sys- tems must also consider the output level of the solar panel for power be counterproductive. Another problem that is of particular importance to solar pan- els is load matching. Solar panels is around 0.7­1.2, solar panels have a much larger Ri value as a function of the solar output and current

  19. Prognostic Control and Load Survivability in Shipboard Power Systems

    E-Print Network [OSTI]

    Thomas, Laurence J.

    2011-02-22T23:59:59.000Z

    , 650VDC, and AC loads from 800VDC power converters. The four zones on the IPS are energized from PCM4?s through two DC buses. The two DC buses are labeled as the port and starboard buses. The power flow is radial and it flows from the bus directly.../Starboard Split Bus Mode provides power by opening breakers to split the ring in half. The Port/Starboard Split Bus Mode divides the ship into an upper region and lower region which generators 1MTG and 1ATG work together to energize loads connected to the star...

  20. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOE Patents [OSTI]

    Perez, Richard (Delmar, NY)

    2003-04-01T23:59:59.000Z

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  1. Nonlinear harmonic modeling of phemt devices for increased power amplifier efficiencies 

    E-Print Network [OSTI]

    Strassner, Bernd Herbert

    1997-01-01T23:59:59.000Z

    effiency vs. load state contours with the large black dot representing optimum second harmonic termination (I n(2f)), and the small black dot representing I c(f) = 0. 57Z52. 8' used for power measurements: f = 2. 2 GHz, P, ?= -4. 0 dBm, SS = 67, I s...

  2. Load frequency control of interconnected power systems with system constraints

    E-Print Network [OSTI]

    Choudhury, Md Ershadul H

    1993-01-01T23:59:59.000Z

    -Line Power Pu? 3. Governor- Turbine System 4. Overall Single-Area System Model 5. Two-Area System B. IEEE Models of Turbines snd Boilers 1. Reheat Turbine Model . 2. Governor Representation with Deadband 3. Boiler System C. Factors in Generating Unit... fluctuations and major generation or load disturbances. The processes involved are the dynamics of boilers, governors, turbines and their interactions with the power system. Governors and boilers as primary control units are responsible for maintaining...

  3. Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via

    E-Print Network [OSTI]

    Li, Xiaodong

    power industry. A major objective for the coal-fired power generation loading optimization results of the power generation loading optimization based on a coal-fired power plant demonstratesPower Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via PSO

  4. Effects of pulsed-power loads upon an electric power grid

    SciTech Connect (OSTI)

    Smolleck, H.A.; Ranade, S.J.; Prasad, N.R. (New Mexico State Univ., Las Cruces, NM (USA). Dept. of Electrical and Computer Engineering); Velasco, R.O. (Los Alamos National Lab., NM (USA))

    1990-01-01T23:59:59.000Z

    Certain proposed particle-accelerator and laser experiments, and other devices related to fusion research, require multi-megawatt, repetitive power pulses, often at low (subsynchronous) frequency. While some power-delivery technologies call for a certain degree of buffering of the utility demand using capacitive, inductive, or inertial energy storage, considerations have also been made for serving such loads directly from the line. In either case, such pulsed loads represent non-traditional applications from the utility's perspective which, in certain cases, can have significant design and operational implications. This paper outlines an approach to the analysis of the effects of such loads upon the electric power grid using existing analysis techniques. The impacts studied include busvoltage flicker, transient and dynamic stability, and torsional excitation. The impact of a particular pulsed load is examined and illustrated for the power network serving the Los Alamos National Laboratory. 19 refs., 13 figs.

  5. Remote Area Power Supply (RAPS) load and resource profiles.

    SciTech Connect (OSTI)

    Giles, Lauren (Energetics, Inc., Washington, DC); Skolnik, Edward G. (Energetics, Inc., Washington, DC); Marchionini, Brian (Energetics, Inc., Washington, DC); Fall, Ndeye K. (Energetics, Inc., Washington, DC)

    2007-07-01T23:59:59.000Z

    In 1997, an international team interested in the development of Remote Area Power Supply (RAPS) systems for rural electrification projects around the world was organized by the International Lead Zinc Research Organization (ILZRO) with the support of Sandia National Laboratories (SNL). The team focused on defining load and resource profiles for RAPS systems. They identified single family homes, small communities, and villages as candidates for RAPS applications, and defined several different size/power requirements for each. Based on renewable energy and resource data, the team devised a ''strawman'' series of load profiles. A RAPS system typically consists of a renewable and/or conventional generator, power conversion equipment, and a battery. The purpose of this report is to present data and information on insolation levels and load requirements for ''typical'' homes, small communities, and larger villages around the world in order to facilitate the development of robust design practices for RAPS systems, and especially for the storage battery component. These systems could have significant impact on areas of the world that would otherwise not be served by conventional electrical grids.

  6. Real power regulation for the utility power grid via responsive loads

    DOE Patents [OSTI]

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19T23:59:59.000Z

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  7. On the Parameter Estimation of Linear Models of Aggregate Power System Loads

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    1 On the Parameter Estimation of Linear Models of Aggregate Power System Loads Valery Knyazkin-- This paper addressed some theoretical and practical issues relevant to the problem of power system load, and the corresponding results are used to validate a commonly used linear model of aggre- gate power system load

  8. Load Balancing and Unbalancing for Power and Performance in ClusterBased Systems #

    E-Print Network [OSTI]

    Bianchini, Ricardo

    systems conserve both power and energy in comparison to traditional systems. 1 Introduction PowerLoad Balancing and Unbalancing for Power and Performance in Cluster­Based Systems # Eduardo on -- to be able to handle the load imposed on the system efficiently -- and off -- to save power under lighter

  9. Design and Stability of Load-Side Primary Frequency Control in Power Systems

    E-Print Network [OSTI]

    Low, Steven H.

    1 Design and Stability of Load-Side Primary Frequency Control in Power Systems Changhong Zhao for primary frequency regulation in power networks, by formulating an optimal load control (OLC) problem where--We present a systematic method to design ubiqui- tous continuous fast-acting distributed load control

  10. The power gain is the ratio of the power delivered to the load to the power delivered to the input of the amplifier [2].

    E-Print Network [OSTI]

    Groppi, Christopher

    1 The power gain is the ratio of the power delivered to the load to the power delivered to the input of the amplifier [2]. 2 The transducer gain is the ratio of the power delivered to the load to the available power of the source [2] and is a function of the source impedance. If the source impedance has

  11. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOE Patents [OSTI]

    Perez, Richard (Delmar, NY)

    2000-01-01T23:59:59.000Z

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  12. Utilizing Load Response for Wind and Solar Integration and Power System Reliability

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2010-07-01T23:59:59.000Z

    Responsive load is still the most underutilized reliability resource in North America. This paper examines the characteristics of concern to the power system, the renewables, and to the loads.

  13. Speed And Power Control Of An Engine By Modulation Of The Load Torque

    DOE Patents [OSTI]

    Ziph, Benjamin (Ann Arbor, MI); Strodtman, Scott (Ypsilanti, MI); Rose, Thomas K (Chelsea, MI)

    1999-01-26T23:59:59.000Z

    A system and method of speed and power control for an engine in which speed and power of the engine is controlled by modulation of the load torque. The load torque is manipulated in order to cause engine speed, and hence power to be changed. To accomplish such control, the load torque undergoes a temporary excursion in the opposite direction of the desired speed and power change. The engine and the driven equipment will accelerate or decelerate accordingly as the load torque is decreased or increased, relative to the essentially fixed or constant engine torque. As the engine accelerates or decelerates, its power increases or decreases in proportion.

  14. Systems and methods for providing power to a load based upon a control strategy

    DOE Patents [OSTI]

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24T23:59:59.000Z

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  15. Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing

    E-Print Network [OSTI]

    Huang, Jianwei

    Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing Hao Wang infrastructure often known as the smart grid [10]. Smart grid is differences. However, the impact of load redistribu- tions on the power grid is not well understood yet

  16. IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 20, NO. 2, APRIL 2005 1009 Autonomous Load Sharing of

    E-Print Network [OSTI]

    Lehn, Peter W.

    power control can be tuned without interfering with steady-state reactive power sharing. Simulation technique shares a common active load, its reactive power control scheme is plant parameter dependent to synthesize a novel reactive power sharing scheme. Time domain circuit simulation results are presented

  17. Power Utility Maximization for Multiple-Supply Systems by a Load-Matching Switch

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    Power Utility Maximization for Multiple-Supply Systems by a Load-Matching Switch Chulsung Park {chulsung,phchou}@uci.edu ABSTRACT For embedded systems that rely on multiple power sources (MPS), power systems General Terms Design, experimentation Keywords Solar energy, photovoltaics, power model, solar

  18. Investigation of Critical Parameters for Power Systems Stability with Dynamic Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Investigation of Critical Parameters for Power Systems Stability with Dynamic Loads M. A. Mahmud, M. J. Hossain, and H. R. Pota Abstract--Most of the power system networks have significant dynamic problems in power systems. This paper presents an analysis to investigate the critical parameters of power

  19. Frequency-Based Load Control in Power Systems Changhong Zhao Ufuk Topcu Steven H. Low

    E-Print Network [OSTI]

    Low, Steven H.

    Frequency-Based Load Control in Power Systems Changhong Zhao Ufuk Topcu Steven H. Low Abstract-- Maintaining demand-supply balance and regulat- ing frequency are key issues in power system control. Conven the overall end-use disutility. By studying the power system model that characterizes the frequency response

  20. Nonlinear Excitation Control of Power Systems with Dynamic Loads via Feedback Linearization

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Nonlinear Excitation Control of Power Systems with Dynamic Loads via Feedback Linearization M. A.Pota)@adfa.edu.au Abstract--This paper presents a nonlinear control design method for interconnected power systems points. I. INTRODUCTION Control of modern electric power systems becomes more and more challenging

  1. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOE Patents [OSTI]

    de Rooij, Michael Andrew (Clifton Park, NY); Steigerwald, Robert Louis (Burnt Hills, NY); Delgado, Eladio Clemente (Burnt Hills, NY)

    2008-12-16T23:59:59.000Z

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  2. Oktober 26. 2009 Prediction of Load and Power Fluctuations from Wind Turbine

    E-Print Network [OSTI]

    for the fluctuating loads on the blade tip: The lift force on a section of a wind turbine's blade is given by the lift from a spinner-based wind lidar : The combined fluctuating lift force term, however, 0 0 2u U v , canOktober 26. 2009 Vers 003 Prediction of Load and Power Fluctuations from Wind Turbine Spinner

  3. Distributed Internet-based Load Altering Attacks against Smart Power Grids

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    technology in advanced demand side management and given the growth in power consumption in the computation by compromising direct load control command signals, demand side management price signals, or cloud computation distribution system. Keywords: Smart grid security, Internet-based load altering attacks, demand side

  4. An All Metal High Power Circularly Polarized 100 MW RF Load

    SciTech Connect (OSTI)

    Fowkes, W.R.; Jongewaard, E.N.; Loewen, R.J.; Tantawi, S.G.; Vlieks, A.E.; /SLAC

    2011-08-30T23:59:59.000Z

    A compact RF load has been designed using a cascaded array of lossy radial RF chokes to dissipate 100 MW peak and 8 kW average power uniformly along the length of the load. Operation in the circularly polarized Te{_}11 mode assures uniform dissipation azimuthally as well.

  5. OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,

    E-Print Network [OSTI]

    Frank, Jason

    of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, small wind turbine or central-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat

  6. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, mainly because of the development of novel components for decentral power generation (solar panels, small (DPG) refers to an electric power source such as solar, wind or combined heat power (CHP) connected

  7. An Equivalent Network for Load-Flow Analysis of Power Systems

    E-Print Network [OSTI]

    Johnson, Merion Luke

    1960-01-01T23:59:59.000Z

    AN EQUIVALENT NETWORK FOR LOAD-FLOW ANALYSIS OF POWER SYSTEMS A Thesis by Meri on L. Johnson Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partihl fulfillment of the requirements for the degree...

  8. Gain-scheduled controller design for load-following in static space nuclear power systems 

    E-Print Network [OSTI]

    Onbasioglu, Fetiye Ozlem

    1993-01-01T23:59:59.000Z

    The use of shunt regulators for load-following of proposed static space nuclear power systems (SNPSS) raises a number of concerns, such as the possibility of a failure in the shunt regulators requiring reactor shutdown, or the possible need...

  9. Appropriate Loads for Peak-Power During Resisted Sprinting on a Non-Motorized Treadmill

    E-Print Network [OSTI]

    Andre, Matthew J.; Fry, Andrew C.; Lane, Michael T.

    2013-10-08T23:59:59.000Z

    The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty ...

  10. Transistor-based filter for inhibiting load noise from entering a power supply

    DOE Patents [OSTI]

    Taubman, Matthew S

    2013-07-02T23:59:59.000Z

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  11. Analysis of interrelationships between photovoltaic power and battery storage for electric utility load management

    SciTech Connect (OSTI)

    Chowdhury, B.H.; Rahman, S.

    1988-08-01T23:59:59.000Z

    The impact of photovoltaic power generation on the electric utility's load shape under supply-side peak load management conditions is explored. Results show that some utilities employing battery storage for peak load shaving might benefit from use of photovoltaic (PV) power, the extent of its usefulness being dependent on the specific load shapes as well as the photovoltaic array orientations. Typical utility load shapes both in the eastern and in the western parts of the U.S. are examined for this purpose. While photovoltaic power generation seems to present a bigger impact on the load of the western utility, both utilities will experience considerable savings on the size of the battery system required to shave the peak loads and also in the night-time base capacity required to charge the battery. Results show that when the cost of 2-axis tracking PV systems drop to $2/Wp, the southwestern utility will experience net cost savings when the PV-battery hybrid system is employed for load management. On the other hand, because of lesser availability of solar energy, the southeastern utility shows adverse economics for such a system.

  12. Plug and Process Loads Capacity and Power Requirements Analysis

    SciTech Connect (OSTI)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01T23:59:59.000Z

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus of this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.

  13. A resonant load circuit to develop electrical power transfer of thermionic converters

    SciTech Connect (OSTI)

    Perez, G.; Estrada, C.A.; Jimenez, A.E.

    1998-07-01T23:59:59.000Z

    Low internal impedance of thermionic converters requires a low impedance load in the DC mode to obtain optimal power transfer. An internal resistance near 0.1 W for thermionic converters is common. According to the maximum power theorem [Desoer,1969], a similar magnitude for the resistance load must be fixed. Due to temperature changes, the internal plasma resistance and the resistance of the leads is modified [Houston,1959], for this reason, it is difficult to maintain maximum power transfer to the load. This paper presents a resonant load circuit for thermionic converters in the AC mode, to develop impedance coupling. The circuit employs an electrical transformer and positive feedback; by this way, oscillations are themselves maintained. It is used an electrical circuit model [Perez et al, 1997], to simulate the electrical behavior of the thermionic converter.

  14. Load-shedding probabilities with hybrid renewable power generation and energy storage

    E-Print Network [OSTI]

    Xu , Huan

    Load-shedding probabilities with hybrid renewable power generation and energy storage Huan Xu, Ufuk to the intermittency in the power output. These difficulties can be alleviated by effectively utilizing energy storage turbines, supplemented with energy storage. We use a simple storage model alongside a combination

  15. Effective Capacitance of RLC Loads for Estimating Short-Circuit Power

    E-Print Network [OSTI]

    Friedman, Eby G.

    behavior of the short-circuit current. In [1], Veendrick developed a closed form expression for shortEffective Capacitance of RLC Loads for Estimating Short-Circuit Power Guoqing Chen and Eby G for estimating short-circuit power is presented in this paper. Both resistive and inductive shielding effects

  16. Power System Stability Using Decentralized Under Frequency and Voltage Load Shedding

    E-Print Network [OSTI]

    Silva, Filipe Faria Da

    not be adaptive to disturbance scale. Besides, due to equality of the frequency throughout the entire power system of Frequency (ROCOF). In order to localize the LS scheme close to the disturbance place, this scheme utilizesPower System Stability Using Decentralized Under Frequency and Voltage Load Shedding Bakhtyar

  17. Bulk power system voltage phenomena -III: Voltage stability, security & control, Davos, Switzerland, August 1994 THE IRRELEVANCE OF LOAD DYNAMICS FOR THE LOADING MARGIN

    E-Print Network [OSTI]

    Dobson, Ian

    instability [11]. Therefore it is useful to compute the location of fold bifurcations of power system models and their sensitivities depend only on the static parts of dynamic power system models. For example, a dynamic power dynamic power system models to be properly understood, the computation of loading mar- gin and its

  18. Experimental characterization of hybrid power systems under pulse current loads

    E-Print Network [OSTI]

    Weidner, John W.

    ; accepted 10 January 2002 Abstract Lithium-ion batteries, ultracapacitors, and parallel combinations Lithium-ion batteries provide 2±3 times higher speci®c energy per unit weight ($100 Wh/kg) than a series of Ragone plots (i.e. speci®c power versus speci®c energy) for a lithium-ion battery connected

  19. A more efficient formulation for computation of the maximum loading points in electric power systems

    SciTech Connect (OSTI)

    Chiang, H.D. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Jean-Jumeau, R. [Electricite d`Haita, Port-au-Prince (Haiti)

    1995-05-01T23:59:59.000Z

    This paper presents a more efficient formulation for computation of the maximum loading points. A distinguishing feature of the new formulation is that it is of dimension (n + 1), instead of the existing formulation of dimension (2n + 1), for n-dimensional load flow equations. This feature makes computation of the maximum loading points very inexpensive in comparison with those required in the existing formulation. A theoretical basis for the new formulation is provided. The new problem formulation is derived by using a simple reparameterization scheme and exploiting the special properties of the power flow model. Moreover, the proposed test function is shown to be monotonic in the vicinity of a maximum loading point. Therefore, it allows one to monitor the approach to maximum loading points during the solution search process. Simulation results on a 234-bus system are presented.

  20. Analysis of Wind Power and Load Data at Multiple Time Scales

    SciTech Connect (OSTI)

    Coughlin, Katie; Eto, J.H.

    2010-12-20T23:59:59.000Z

    In this study we develop and apply new methods of data analysis for high resolution wind power and system load time series, to improve our understanding of how to characterize highly variable wind power output and the correlations between wind power and load. These methods are applied to wind and load data from the ERCOT region, and wind power output from the PJM and NYISO areas. We use a wavelet transform to apply mathematically well-defined operations of smoothing and differencing to the time series data. This approach produces a set of time series of the changes in wind power and load (or ?deltas?), over a range of times scales from a few seconds to approximately one hour. A number of statistical measures of these time series are calculated. We present sample distributions, and devise a method for fitting the empirical distribution shape in the tails. We also evaluate the degree of serial correlation, and linear correlation between wind and load. Our examination of the data shows clearly that the deltas do not follow a Gaussian shape; the distribution is exponential near the center and appears to follow a power law for larger fluctuations. Gaussian distributions are frequently used in modeling studies. These are likely to over-estimate the probability of small to moderate deviations. This in turn may lead to an over-estimation of the additional reserve requirement (hence the cost) for high penetration of wind. The Gaussian assumption provides no meaningful information about the real likelihood of large fluctuations. The possibility of a power law distribution is interesting because it suggests that the distribution shape for of wind power fluctuations may become independent of system size for large enough systems.

  1. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads

    SciTech Connect (OSTI)

    Sudip K. Mazumder

    2005-12-31T23:59:59.000Z

    Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

  2. Designing criteria for building power systems supplying distributed non-linear loads

    SciTech Connect (OSTI)

    Grasselli, U.; Parise, G. [Univ. of Rome La Sapienza (Italy). Electrical Engineering Dept.

    1995-12-31T23:59:59.000Z

    In commercial and institutional buildings, the wider use of power electronics equipment, such as computer switch-mode power supplies and compact fluorescent lights with electronic ballasts, can create many problems. These loads are generally single-phase with a 3rd harmonic current that can be equal or more than 60%. The aim of this paper is that of analyzing several specific aspects of power system design, such as: sizing of circuits; and the selection of circuits, by correlating them with this specific problem of distributed nonlinear load supply. The proposed criteria can be utilized both in a short-term action for resolution of specific problems, and in medium-term action for development of new optimization procedures of power system design.

  3. 2007 Wholesale Power Rate Case Initial Proposal : Load Resource Study and Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01T23:59:59.000Z

    The Load Resource Study (Study) represents the compilation of the loads, sales, contracts, and resource data necessary for developing BPA wholesale power rates. The results of this Study are used to: (1) provide base data to determine resource costs for the Revenue Requirement Study, WP-07-E-BPA-02; (2) provide regional hydro data for use in the secondary revenue forecast for the Market Power Study, WP-07-E-BPA-03; (3) provide base data to derive billing determinants for the revenue forecast in the Wholesale Power Rate Development Study (WPRDS), WP-07-E-BPA-05; and (4) provide load and resource data for use in calculating risk in the Risk Analysis Study, WP-07-E-BPA-04. This Study provides a synopsis of BPA's load resource analyses. This Study illustrates how each component is completed, how components relate to each other, and how each component fits into the rate development process. Details and results supporting this Study are contained in the Load Resource Documentation, WP-07-E-BPA-01A.

  4. CMOS RF power amplifier design approaches for wireless communications

    E-Print Network [OSTI]

    Pornpromlikit, Sataporn

    2010-01-01T23:59:59.000Z

    high-efficiency monolithic InGaP/GaAs HBT power amplifiersdBc @ 26 dBm AB HBT Jager 02 InGaP/GaAs -37 dBc @ 27 dBm N/A23.9 dBm AB HBT Zhang 09 InGaP/GaAs 44.5% N/A -38 dBc @ 28

  5. Optimal Power Allocation and Load Distribution for Multiple Heterogeneous Multicore Server

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    clouds and data centers, the aggregated performance of the cloud of clouds can be optimized by load processor, power allocation, queuing model, response time Ç 1 INTRODUCTION 1.1 Motivation CLOUD computing, software, databases, information, and all re- sources are provided to users on-demand. In a data center

  6. Capacity Optimizing Power Loading Scheme for Spatially Constrained Antenna Arrays: Channels

    E-Print Network [OSTI]

    Abhayapala, Thushara D.

    Capacity Optimizing Power Loading Scheme for Spatially Constrained Antenna Arrays: Channels and Computer Science The Australian National University Canberra ACT 0200, Australia {tharaka.lamahewa,thushara.abhayapala}@anu.edu.au Tony S. Pollock National ICT Australia Locked Bag 8001, Canberra ACT 2601, Australia tony

  7. A Bio-Inspired Multi-Agent System Framework for Real-Time Load Management in All-Electric Ship Power Systems

    E-Print Network [OSTI]

    Feng, Xianyong

    2012-07-16T23:59:59.000Z

    All-electric ship power systems have limited generation capacity and finite rotating inertia compared with large power systems. Moreover, all-electric ship power systems include large portions of nonlinear loads and dynamic loads relative...

  8. 2007 Wholesale Power Rate Case Final Proposal : Load Resource Study and Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01T23:59:59.000Z

    The Load Resource Study (Study) represents the compilation of the load and contract obligations, contact purchases, and resource data necessary for developing BPA's wholesale power rates. The results of this Study are used to: (1) provide data to determine resource costs for the Revenue Requirement Study, WP-07-FS-BPA-02; (2) provide data to derive billing determinants for the revenue forecast in the Wholesale Power Rate Development Study (WPRDS), WP-07-FS-BPA-05; (3) provide load and resource data for use in the Risk Analysis Study, WP-07-FS-BPA-04; and (4) provide regional hydro data for use in the secondary revenue forecast for the Market Price Forecast Study, WP-07-FS-BPA-03. This Study provides a synopsis of BPA's load resource analyses. This Study illustrates how each component is completed, how components relate to each other, and how each component fits into the rate development process. Details and results supporting this Study are contained in the Load Resource Study Documentation, WP-07-FS-BPA-01A.

  9. Comparative Environmental Performance of Two-Diesel-Fuel Oxygenates: Dibutyl Maleate (DBM) and Triproplyene Glycol Monomethyl Ether (TGME)

    SciTech Connect (OSTI)

    Layton, D.W.; Marchetti, A.A.

    2001-10-01T23:59:59.000Z

    Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject of extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.

  10. Analysis of Plug Load Capacities and Power Requirements in Commercial Buildings: Preprint

    SciTech Connect (OSTI)

    Sheppy, M.; Torcellini, P.; Gentile-Polese, L.

    2014-08-01T23:59:59.000Z

    Plug and process load power requirements are frequently overestimated because designers often use estimates based on 'nameplate' data, or design assumptions are high because information is not available. This generally results in oversized heating, ventilation, and air-conditioning systems; increased initial construction costs; and increased energy use caused by inefficiencies at low, part-load operation. Rightsizing of chillers in two buildings reduced whole-building energy use by 3%-4%. If an integrated design approach could enable 3% whole-building energy savings in all U.S. office buildings stock, it could save 34 TBtu of site energy per year.

  11. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect (OSTI)

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01T23:59:59.000Z

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  12. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS

    SciTech Connect (OSTI)

    Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

    2003-11-03T23:59:59.000Z

    Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of the SOFC stack subsystem (SOFCSS), the power-electronics subsystem (PES), and the BOPS. Such an approach leads to robust and comprehensive electrical, electrochemical, thermodynamic, kinetic, chemical, and geometric models of the SOFSS, PES and application loads, and BOPS. A comprehensive methodology to resolve interactions among SOFCSS, PES and application loads and to investigate the impacts of the fast- and slow-scale dynamics of the power-conditioning system (PCS) on the SOFCSS has been developed by this team. Parametric studies on SOFCSS have been performed and the effects of current ripple and load transients on SOFC material properties are investigated. These results are used to gain insights into the long-term performance and reliability of the SOFCSS. Based on this analysis, a novel, efficient, and reliable PES for SOFC has been developed. Impacts of SOFC PCS control techniques on the transient responses, flow parameters, and current densities have also been studied and a novel nonlinear hybrid controller for single/parallel DC-DC converter has been developed.

  13. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    SciTech Connect (OSTI)

    Robert S. Cherry; Richard D. Boardman; Steven Aumeier

    2012-02-01T23:59:59.000Z

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  14. Heat Loading in ARIES Power Plants: Steady State, Transient and Off-Normal

    E-Print Network [OSTI]

    California at San Diego, University of

    = 45 MW PSOL = 290 MW Wth = 690 MJ Wmag int = 140 MJ Ip = 15.0 MA R = 6.20 m a = 2.0 m V = 837 m3 Asurf localized modes (ELMs) The timescale for ELMs to deliver power to the divertor or the first wall is a few x-U #12;Transient Heat Loading, ELMs The amount of energy released by an ELM has been scaled to the energy

  15. The equal load-sharing model of cascade failures in power grids

    E-Print Network [OSTI]

    Scala, Antonio

    2015-01-01T23:59:59.000Z

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids".

  16. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOE Patents [OSTI]

    Chen, G.; Beale, W.T.

    1990-04-03T23:59:59.000Z

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand. 6 figs.

  17. Variable gas spring for matching power output from FPSE to load of refrigerant compressor

    DOE Patents [OSTI]

    Chen, Gong (Athens, OH); Beale, William T. (Athens, OH)

    1990-01-01T23:59:59.000Z

    The power output of a free piston Stirling engine is matched to a gas compressor which it drives and its stroke amplitude is made relatively constant as a function of power by connecting a gas spring to the drive linkage from the engine to the compressor. The gas spring is connected to the compressor through a passageway in which a valve is interposed. The valve is linked to the drive linkage so it is opened when the stroke amplitude exceeds a selected limit. This allows compressed gas to enter the spring, increase its spring constant, thus opposing stroke increase and reducing the phase lead of the displacer ahead of the piston to reduce power output and match it to a reduced load power demand.

  18. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01T23:59:59.000Z

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  19. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR.

    SciTech Connect (OSTI)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-03-01T23:59:59.000Z

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays.

  20. Load sharing operation of a 14kW photovoltaic/wind hybrid power system

    SciTech Connect (OSTI)

    Kim, S.; Kim, C. [Kongju National Univ., Chungnam (Korea, Republic of). Dept. of Electrical Engineering; Song, J.; Yu, G.; Jung, Y. [Korea Inst. of Energy Research, Taejon (Korea, Republic of). Photovoltaic Research Team

    1997-12-31T23:59:59.000Z

    In this paper, a design procedure for photovoltaic/wind hybrid power generation system is presented. The hybrid system is composed of a DC/DC converter for a photovoltaic energy conversion, a DC/DC converter for a wind energy conversion, a four switch IGBT inverter converting the combined DC power to the AC power and a backup power battery. Here, it is very important to select the desired battery size to meet the stable output and economic cost aspect since this system utilizes fluctuating and finite energy resource. The purpose of this paper is to develop a sizing method for the PV/Wind energy hybrid system with load sharing operation. The method demonstrates a simple tool to determine the desired battery size that satisfies the energy demand from the user with the photovoltaic and wind natural source. The proposed method is verified on a 14kW hybrid power system including a 10kW PV generator and a 4kW wind generator established in Cheju island, Korea.

  1. Demonstrating Structural Adequacy of Nuclear Power Plant Containment Structures for Beyond Design-Basis Pressure Loadings

    SciTech Connect (OSTI)

    Braverman, J.I.; Morante, R.

    2010-07-18T23:59:59.000Z

    ABSTRACT Demonstrating the structural integrity of U.S. nuclear power plant (NPP) containment structures, for beyond design-basis internal pressure loadings, is necessary to satisfy Nuclear Regulatory Commission (NRC) requirements and performance goals. This paper discusses methods for demonstrating the structural adequacy of the containment for beyond design-basis pressure loadings. Three distinct evaluations are addressed: (1) estimating the ultimate pressure capacity of the containment structure (10 CFR 50 and US NRC Standard Review Plan, Section 3.8) ; (2) demonstrating the structural adequacy of the containment subjected to pressure loadings associated with combustible gas generation (10 CFR 52 and 10 CFR 50); and (3) demonstrating the containment structural integrity for severe accidents (10 CFR 52 as well as SECY 90-016, SECY 93-087, and related NRC staff requirements memoranda (SRMs)). The paper describes the technical basis for specific aspects of the methods presented. It also presents examples of past issues identified in licensing activities related to these evaluations.

  2. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    SciTech Connect (OSTI)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11T23:59:59.000Z

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  3. THE EVALUATION OF THE HEAT LOADING FROM STEADY, TRANSIENT AND OFF-NORMAL CONDITIONS IN ARIES POWER PLANTS*

    E-Print Network [OSTI]

    California at San Diego, University of

    PLANTS* C. E. Kessel1, M. S. Tillack2, J. P. Blanchard3 1Princeton Plasma Physics Laboratory, P.O. Box limitation for design and operation of the first wall, divertor, and other special components. Power plants. The characterization of heat loads developed for ITER1 can be applied to power plants to better develop the operating

  4. A knowledge-based system for control of xenon-induced spatial power oscillations during load-follow operations

    SciTech Connect (OSTI)

    Chung, Sun-Kyo; Danofsky, R.A.; Spinrad, B.I.

    1988-01-01T23:59:59.000Z

    As is well known, large pressurized water reactors (PWRs) are subject to xenon-induced axial power oscillations at some time during a given cycle. Attention to this behavior is required during load-follow operations. A knowledge-based system for controlling xenon-induced spatial power oscillations is described. Experience with a limited set of load-follow patterns has demonstrated that the system is capable of providing advice on appropriate control actions. A simulation model, coupled with a rule-learning process, has been found to be a useful way for determining appropriate weights for the rules that relate power patterns and control actions.

  5. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  6. Control system design for maintaining CO{sub 2} capture in IGCC power plants while loading-following

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Load-following requirements for future integrated gasification combined cycle (IGCC) power plants with precombustion CO{sub 2} capture are expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. In this work, loadfollowing studies are performed using a comprehensive dynamic model of an IGCC plant with pre-combustion CO{sub 2} capture developed in Aspen Engineering Suite (AES). Considering multiple single-loop controllers for power demand load following, the preferred IGCC control strategy from the perspective of a power producer is gas turbine (GT) lead with gasifier follow. In this strategy, the GT controls the load by manipulating its firing rate while the slurry feed flow to the gasifier is manipulated to control the syngas pressure at the GT inlet. The syngas pressure control is an integrating process with significant time delay mainly because of the large piping and equipment volumes between the gasifier and the GT inlet. A modified proportional–integral–derivative (PID) control is considered for IGCC syngas pressure control. The desired CO{sub 2} capture rate must be maintained while the IGCC plant follows the load. For maintaining the desired CO{sub 2} capture rate, the control performance of PID control is compared with linear model predictive control (LMPC). The results show that the LMPC outperforms PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

  7. Method for operating a nuclear reactor to accommodate load follow while maintaining a substantially constant axial power distribution

    SciTech Connect (OSTI)

    Mueller, N.P.; Rossi, C.E.; Scherpereel, L.R.

    1980-09-16T23:59:59.000Z

    This invention provides a method of operating a nuclear reactor having a negative reactivity moderator temperature coefficient with the object of maintaining a uniform and symmetric xenon distribution above and below substantially the center of the core over a substantial axial length of the core during normal reactor operation including load follow. In one embodiment variations in the xenon distribution are controlled by maintaining a substantially symmetric axial power distribution. The axial offset, which is employed as an indication of the axial power distribution, is maintained substantially equal to a target value , which is modified periodically to account for core burnup. A neutron absorbing element within the core coolant, or moderator, is employed to assist control of reactivity changes associated with changes in power, with the full-length control rods mainly employed to adjust variations in the axial power distribution while the part-length rodsremain completely withdrawn from the fuel region of the core. Rapid changes in reactivity are implemented, to accommodate corresponding changes in load, by a controlled reduction of the core coolant temperature. Thus, active core coolant temperature control is employed to control the reactivity of the core during load follow operation and effectively increase the spinning reserve capability of a power plant without altering the axial power distribution.

  8. 3818 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 4, NOVEMBER 2013 Short-Term Load Forecasting: The Similar Shape

    E-Print Network [OSTI]

    Sapatinas, Theofanis

    to electricity authorities worldwide to use as far as possible the low functionality cost machines for covering is performed by means of a weighted average of past daily load segments, the shape of which is similar is an integrable process in the design of power systems faced by electricity authorities world- wide. It involves

  9. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

  10. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analyses ofthe output of wind power plants. In a typical studyfluctuations across wind power plants located in the same

  11. Summary of Papers 1. P. Sauer and M. Pai, "Power System SteadyState Stability and the Load Flow Jacobian," IEEE

    E-Print Network [OSTI]

    McCalley, James D.

    Summary of Papers 1. P. Sauer and M. Pai, "Power System SteadyState Stability and the Load Flow, "The Continuation Power Flow: A Tool for SteadyState Voltage Stability Analysis," IEEE Transactions of the system to maintain adequate and controllable voltage levels at all system load buses. The main concern

  12. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  13. Design Concepts for Power Distribution Equipment Serving Non-Linear Loads

    E-Print Network [OSTI]

    Massey, G. W.

    -neutral conductor. Thus, no neutral current flows. One of the most dangerous and most curious characteristics of non-linear loads is that harmonic currents flow in the neutral conductor regardless of load balance. Until recently, little understanding... conductors toward the source. These currents are attenuated by the impedance of the distribution circuit. Zero sequence currents have no single-phase path and cannot flow. Assuming a balanced, three-phase, wye connected, grounded-neutral load...

  14. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    components such as power sources, loads,  transformers and components such as power sources, loads,  transformers and 

  15. Systems and methods for providing power to a load based upon a control strategy

    DOE Patents [OSTI]

    Perisic, Milun; Lawrence, Christopher P; Ransom, Ray M; Kajouke, Lateef A

    2014-11-04T23:59:59.000Z

    Systems and methods are provided for an electrical system. The electrical system, for example, includes a first load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage through the interface and to provide a voltage and current to the first load. The controller may be further configured to, receive information on a second load electrically connected to the voltage source, determine an amount of reactive current to return to the voltage source such that a current drawn by the electrical system and the second load from the voltage source is substantially real, and provide the determined reactive current to the voltage source.

  16. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    2008. Analysis of Wind Generation Impact on ERCOT Ancillarythe integration of wind generation. Analysis of Wind Powerwind is far more similar to load than to conventional generation

  17. Theoretical study of the electrical power behavior of a cesium thermionic converter for switching resistive and reactive loads

    SciTech Connect (OSTI)

    Perez, J.G. [ICUAP-BUAP, Puebla (Mexico). Semiconductor Devices Research Center; Estrada, C.A.; Jimenez, A.E.; Cervantes, J.G. [UNAM, Temixco (Mexico). Energy Research Center

    1997-12-31T23:59:59.000Z

    Pulsed ionized diodes have shown to be an attractive mode to develop thermionic converters. Usually the investigations have been focused to work with additive gases and constant loads at steady state. The experimental transient graphs reported suggest a dynamic behavior of the thermionic converter. Periods of the order of 300 {micro}s have been reported for the decay time of voltage and current, a condition that is similar to a capacitive discharge. A circuit model for a thermionic converter to define this condition is proposed. Using this model, an electrical analysis of the thermionic converter power with different switching loads is made. Both, resistive and reactive loads are connected. Special emphasis is dedicated to determine the resonance frequencies.

  18. Load follow-up control of a pressurized water reactor power plant by using an approximate noninteractive control

    SciTech Connect (OSTI)

    Tsuji, M.; Ogawa, Y.

    1986-08-01T23:59:59.000Z

    The present paper describes an attempt to apply an approximate noninteractive control to the load-following operation of the nuclear steam supply (NSS) system of a pressurized water reactor power plant. A control strategy is proposed for maximizing the unique merit of the noninteractive control in advancing the operational performance of the NSS system. An noninteractive load follow-up control system is designed based on the idea of approximate model-following. The authors make the design method more flexible and widely applicable to more general control problems by introducing some modifications. Digital simulations and graphical studies based on the Bode-diagram demonstrate the effectiveness of the noninteractive load follow-up control as well as the applicability of the proposed design method.

  19. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  20. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    The spectrum of power from wind turbines. Journal of PowerAWEA 2010. American Wind Energy Association ProjectsErik and Jason Kemper. 2009. Wind Plant Ramping Behavior.

  1. Power System Dynamics as Primal-Dual Algorithm for Optimal Load Control

    E-Print Network [OSTI]

    Low, Steven H.

    in the Proceedings of the 3rd IEEE International Conference on Smart Grid Communica- tions, Tainan City, Taiwan- based load control does not require communication to a centralized grid operator, and is thus suitable for

  2. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  3. Reducing Office Plug Loads through Simple and Inexpensive Advanced Power Strips: Preprint

    SciTech Connect (OSTI)

    Metzger, I.; Sheppy, M.; Cutler, D.

    2013-07-01T23:59:59.000Z

    This paper documents the process (and results) of applying Advanced Power Strips with various control approaches.

  4. Power Capture (PowCap) Board for Non Intrusive Load Monitoring and Power Line Communication Exploration and Development

    E-Print Network [OSTI]

    Balakrishnan, Vikram

    2013-01-01T23:59:59.000Z

    PowCap with PLC: Lookingti] “Power Line Communication (PLC) Solutions. ” http://overview.page? DCMP=plc&HQS=plc. [Tsu99] K. Tsuda. “Subspace

  5. A 20 dBm 5-14 GHz power amplifier with integrated planar transformers in SiGe

    E-Print Network [OSTI]

    Mui, Andrew K

    2008-01-01T23:59:59.000Z

    The integration of radar systems has taken a long journey into the modern world. Advances in signal processing technology and integrated circuit technology have lead the way for smaller, more integrated radar systems. ...

  6. Electric load information system based on non-intrusive power monitoring

    E-Print Network [OSTI]

    Lee, Kwangduk Douglas, 1970-

    2003-01-01T23:59:59.000Z

    Obtaining high quality information economically and reliably is always a difficult objective to achieve. The electric power industry and consumers recently face many challenges, such as deregulation, autonomous power systems ...

  7. Integration and operation of post-combustion capture system on coal-fired power generation: load following and peak power

    E-Print Network [OSTI]

    Brasington, Robert David, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Coal-fired power plants with post combustion capture and sequestration (CCS) systems have a variety of challenges to integrate the steam generation, air quality control, cooling water systems and steam turbine with the ...

  8. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.

  9. Voltage Oscillations in Power Distribution Networks in the Presence of DFIGs and Induction Motor Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Voltage Oscillations in Power Distribution Networks in the Presence of DFIGs and Induction Motor of oscillation between the electromechanical and subsynchronous oscillations of power systems. Time for the types of oscillations that occur in distribution systems. Finally, significant parameters of the system

  10. Alternative wind power modeling methods using chronological and load duration curve production cost models

    SciTech Connect (OSTI)

    Milligan, M R

    1996-04-01T23:59:59.000Z

    As an intermittent resource, capturing the temporal variation in windpower is an important issue in the context of utility production cost modeling. Many of the production cost models use a method that creates a cumulative probability distribution that is outside the time domain. The purpose of this report is to examine two production cost models that represent the two major model types: chronological and load duration cure models. This report is part of the ongoing research undertaken by the Wind Technology Division of the National Renewable Energy Laboratory in utility modeling and wind system integration.

  11. Load Management for Industry

    E-Print Network [OSTI]

    Konsevick, W. J., Jr.

    1982-01-01T23:59:59.000Z

    customer management programs exist. EPRI Report (EM-1606) loads to beneficially alter a'utility's load curve. (Page 1-2) list them as: Load management alternatives are covered. 1. Direct or voluntary control of customer Load management methods can... and Electric Power Research Institute (EPRI) Report energy management programs. (EM-1606) states that "the objective of load manage ment is to alter the real or apparent pattern of Our load management program was designed electricity use in order to...

  12. GTO2015DBm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Known Geothermal Resource Areas" in Southern Idaho and Eastern Oregon Patrick Dobson, LBNL & Rob Podgorney, INL Improved Geothermometry Through Multivariate Reaction Path...

  13. GTO2015DBm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J. Trainor-Guitton, LLNL Low Temp: Co-Production Demonstration Low-Temperature Stirling Engine for Geothermal Electricity Generation Samuel Weaver, Cool Energy, Inc. SURGE:...

  14. GTO2015DBm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologiesNATIONAL003 Intellectual Property ProvisionsGTO

  15. Thermal Efficiency Optimization for Industrial Power Plants Under Load Fluctuations Using Fuzzy Logic

    E-Print Network [OSTI]

    Steffenhagan, W.; de Sam Lazaro, A.

    The automation of the control to a power plant is indeed a challenge mainly because of the occurrences of random and unpredictable variations in output demands as well as because of highly non-linear behavior of the system itself. It is sometimes...

  16. Integrated modeling and control of a load-connected SOFC-GT autonomous power system

    E-Print Network [OSTI]

    Foss, Bjarne A.

    . With today's increasing concern about global warming and climate change, there is an incentive to investigate production processes with CO2 capture capabilities. It is widely accepted that fuel cells are power sources]. The SOFC converts the chemical energy of a fuel directly to electrical energy. Since SOFCs operate at high

  17. Oscillation annealing and driver/tire load torque estimation in Electric Power Steering Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the improved LuGre-tire friction model. Index Terms-- Electric Power Steering systems (EPSs), LQ control, Lu a control framework that includes a realistic model of a steering column accounting for all other torque. The contributions of this paper are: a) Optimal output control feedback: Based on the steer- ing column model

  18. Buildings Stock Load Control

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

    2006-01-01T23:59:59.000Z

    and distribution electricity infrastructures The second part presents the approach used to rise the objectives : ? To aggregat the individual loads and to analyze the impact of different strategies from load shedding to reduce peak power demand by: ? Developing...

  19. A Study of Environmental Load Reduction Technique for University Facilities Part9 The effort towards the countermeasures against imbalance of electric power

    E-Print Network [OSTI]

    Miyashita, Yasushi

    The University of Tokyo While electricity usage restriction is exercised by the government in response 9 A Study of Environmental Load Reduction Technique for University Facilities Part9 The effort towards the countermeasures against imbalance of electric power supply and demand of last summer

  20. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27T23:59:59.000Z

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  1. Load sensing system

    DOE Patents [OSTI]

    Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  2. A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/PDC ratio

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/PDC ratio-Miller compensation demon- strating 19.2dB mid-band S21 gain, PDC = 1020mW. At 2GHz operation the amplifier shows 54.1dBm OIP3 and a record high OIP3/PDC ratio = 252. Through the use of a 350GHz f , fmax 0.5um InP HBT

  3. An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andrew

    2014-01-01T23:59:59.000Z

    fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

  4. 280 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 2, MAY 2001 Discovering Price-Load Relationships in California's

    E-Print Network [OSTI]

    Vucetic, Slobodan

    system performance. Index Terms--Deregulation, electricity market, power industry, power system economics a disadvantage of trying to understand events from highly simplified models of the market, or of the power system280 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 2, MAY 2001 Discovering Price

  5. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative cooling stage, in which the incoming air is in thermal contact with a moistened surface that evaporates the water into a separate air stream. As the evaporation cools the moistened surface, it draws heat from the incoming air without adding humidity to it. A number of cooling cycles have been developed that employ indirect evaporative cooling, but DEVAP achieves a superior efficiency relative to its technological siblings.

  6. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    Air Conditioner Testing in WECC,” IEEE Power  Engineering Air Conditioner Modeling, WECC Load Modeling Task  Force in power system studies: WECC progress update,? Power and 

  7. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Load Profiles Nobuyuki Yamaguchi, Central Research Institute of Electric PowerElectric Power Industry. A Meanwhile, load profiles of each

  8. Decentralized customerlevel under frequency load shedding in...

    Open Energy Info (EERE)

    enables the management of large groups of distributed loads under a single innovative control schemes to use the flexibility of electrical loads for power system purposes....

  9. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  10. Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load

    E-Print Network [OSTI]

    Black, Jason W. (Jason Wayne)

    2005-01-01T23:59:59.000Z

    The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

  11. Journal of Energy and Power Engineering 5 (2011) 554-561 Load Torque Compensator for Model Predictive Direct

    E-Print Network [OSTI]

    Schaltz, Erik

    Predictive Direct Current Control in High Power PMSM Drive Systems M. Preindl1, 2 and E. Schaltz2 1. Power Magnet Synchronous Machine (PMSM), it contains an inner current i.e. torque control loop and an outer for Model Predictive Direct Current Control in High Power PMSM Drive Systems 555 Fig. 1 Block diagram

  12. Abstract--We consider the management of electric vehicle (EV) loads within a market-based Electric Power System

    E-Print Network [OSTI]

    Caramanis, Michael

    , we develop a decision support method for an EV Load Aggregator or Energy Service Company (ESCo. In order to streamline our presentation, we assume that (i) an ESCo is selected by EV owners to manage EV EV owner input about the desired departure time; and (iii) the ESCo recovers information at will from

  13. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  14. The Effect of Loading on Reactive Market Power Antonio C. Zambroni de Souza Fernando Alvarado Mevludin Glavic

    E-Print Network [OSTI]

    obtained from a market concentration indicator such as HHI) increases as system stress increases competitive power system. There are two alternative ways of estimating market power (or market concentration is not used in this paper. Reactive market concentration indices: In this case the focus is to determine how

  15. Sandia National Laboratories: hydrodynamic loading

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    loading High-Fidelity Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine On March 19, 2014, in Computational Modeling & Simulation, Energy, News,...

  16. Load sensing system

    DOE Patents [OSTI]

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04T23:59:59.000Z

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  17. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    SciTech Connect (OSTI)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-11-21T23:59:59.000Z

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15?±?0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  18. Dynamic simulation and load-following control of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture

    SciTech Connect (OSTI)

    Bhattacharyya, D,; Turton, R.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Load-following control of future integrated gasification combined cycle (IGCC) plants with pre-combustion CO{sub 2} capture is expected to be far more challenging as electricity produced by renewable energy is connected to the grid and strict environmental limits become mandatory requirements. To study control performance during load following, a plant-wide dynamic simulation of a coal-fed IGCC plant with CO{sub 2} capture has been developed. The slurry-fed gasifier is a single-stage, downward-fired, oxygen-blown, entrained-flow type with a radiant syngas cooler (RSC). The syngas from the outlet of the RSC goes to a scrubber followed by a two-stage sour shift process with inter-stage cooling. The acid gas removal (AGR) process is a dual-stage physical solvent-based process for selective removal of H{sub 2}S in the first stage and CO{sub 2} in the second stage. Sulfur is recovered using a Claus unit with tail gas recycle to the AGR. The recovered CO{sub 2} is compressed by a split-shaft multistage compressor and sent for sequestration after being treated in an absorber with triethylene glycol for dehydration. The clean syngas is sent to two advanced “F”-class gas turbines (GTs) partially integrated with an elevated-pressure air separation unit. A subcritical steam cycle is used for heat recovery steam generation. A treatment unit for the sour water strips off the acid gases for utilization in the Claus unit. The steady-state model developed in Aspen Plus® is converted to an Aspen Plus Dynamics® simulation and integrated with MATLAB® for control studies. The results from the plant-wide dynamic model are compared qualitatively with the data from a commercial plant having different configuration, operating condition, and feed quality than what has been considered in this work. For load-following control, the GT-lead with gasifier-follow control strategy is considered. A modified proportional–integral–derivative (PID) control is considered for the syngas pressure control. For maintaining the desired CO{sub 2} capture rate while load-following, a linear model predictive controller (LMPC) is implemented in MATLAB®. A combined process and disturbance model is identified by considering a number of model forms and choosing the final model based on an information-theoretic criterion. The performance of the LMPC is found to be superior to the conventional PID control for maintaining CO{sub 2} capture rates in an IGCC power plant while load following.

  19. Proceedings of the North American Power Symposium NAPS, MIT, November 1996, pp.559-565. Bifurcation Analysis of Induction Motor Loads

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    Analysis of Induction Motor Loads for Voltage Collapse Studies Claudio A. Ca~nizares William Rosehart, aggregated loads, induction motor models, voltage collapse. I. Introduction Voltage stability problems- lapse of combined induction motor and impedance loads by means of lab measurements and computer

  20. Composite Load Model Evaluation

    SciTech Connect (OSTI)

    Lu, Ning; Qiao, Hong (Amy)

    2007-09-30T23:59:59.000Z

    The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: • the model initializes properly, • all the parameter settings are functioning, and • the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

  1. Advanced nonintrusive load monitoring system

    E-Print Network [OSTI]

    Wichakool, Warit, 1977-

    2011-01-01T23:59:59.000Z

    There is a need for flexible, inexpensive metering technologies that can be deployed in many different monitoring scenarios. Individual loads may be expected to compute information about their power consumption. Utility ...

  2. Adaptive architectures for peak power management

    E-Print Network [OSTI]

    Kontorinis, Vasileios

    2013-01-01T23:59:59.000Z

    load – in fact, we almost completely flatten the power profilepower profiles, we investigate a number of policies for peak power shaving which react to the observed load

  3. Beam heat load in superconducting wigglers

    E-Print Network [OSTI]

    Casalbuoni, S

    2013-01-01T23:59:59.000Z

    The beam heat load is a fundamental input parameter for the design of superconducting wigglers since it is needed to specify the cooling power. In this presentation I will review the possible beam heat load sources and the measurements of beam heat load performed and planned onto the cold vacuum chambers installed at different synchrotron light sources.

  4. ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere. Historical

  5. ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere. Historical7,

  6. A Novel Approach to Determining Motor Load

    E-Print Network [OSTI]

    Brown, M.

    A NOVEL APPROACH TO DETERMINING MOTOR LOAD by Michael Brown Georgia Tech Research Institute Atlanta, Georgia ABSTRACf Properly sized electric motors are essential if industrial plant efficiency is to be optimized and energy costs... minimized. Because of the difficully in making power measurements on three phase motors, loading is rarely, if ever, checked. A simple indication of motor load can be achieved by measuring operating speed because speed and load are almost linearly...

  7. Power management system

    DOE Patents [OSTI]

    Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

    2007-10-02T23:59:59.000Z

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  8. Multi-band high efficiency power amplifier

    E-Print Network [OSTI]

    Besprozvanny, Randy-Alexander Randolph

    2011-01-01T23:59:59.000Z

    $FPRJ p3: Freq = 0.75 GHz Pwr = 28 dBm p1: Freq = 1.25 GHzTime_Output p2 p1 p3 p1: Freq = 2 GHz Pwr = 30 dBm Time (ns)p2: Freq = 2 GHz Pwr = 30 dBm Current Waveform (mA) Voltage

  9. Plug Load

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum38 (1996)representative of thePlug-Load Sign In

  10. 1360 IEEE Transactions on Power Systems, Vol. 12, No. 3, August 1997 Application of Fuzzy Logic Technology for Spatial Load Forecasting

    E-Print Network [OSTI]

    Chow, Mo-Yuen

    -effective and reliable distribution system. In the design stages, utilities need to plan ahead for anticipated future a reliable power system with just enough capacity (with proper reliability margins) to support their customers. Distribution systems are the retail part of utilities that supply power to their customers

  11. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  12. The key word is "supplying." In a load center or panel board, the main circuit breaker supplies power to the internal

    E-Print Network [OSTI]

    Johnson, Eric E.

    power to the internal bus bars, as do any backfed circuit breakers supplying power from the PV inverters these numbers translate to a 3,840-watt (AC inverter output) PV system on a 100-amp panel and a 7,680-watt PV on the circuit breakers. Many common PV inverters are rated at 2,500 watts and 240 volts. The rated output

  13. Improving Dynamic Load and Generator Response Performance Tools

    E-Print Network [OSTI]

    Lesieutre, Bernard C.

    2005-01-01T23:59:59.000Z

    in dynamic simulations of power systems. Using the PCMDynamic Simulations: The Probabilistic Collocation Method,” IEEE Transactions on Power Systems,Dynamic Simulations with Improved Representation of Loads and their Connection to a Power System,”

  14. High Efficiency S-band Class AB Push-Pull Power Amplifier with Wide Band Harmonic Suppression

    E-Print Network [OSTI]

    Itoh, Tatsuo

    of the battery cell, and reduce the size and weight of the heat sink. In addition, Class AB operation is often. The microstrip line width is 40mil, and its length is 720 mil. Fig. 2 (b) shows the measured input impedance design. The measured PAE is 63.8% at an output power of 28.2dBm. In addition, the measured IP3 is 45 d

  15. Operator Performance in Long Duration Control Operations: Switching from Low to High Task Load

    E-Print Network [OSTI]

    Thornburg, K. M.

    Long duration, low task load environments are typical for nuclear power plant control rooms, where operators, after hours of operating under a low task load situation, may have to shift to a high task load situation. The ...

  16. Modeling and control of thermostatically controlled loads

    SciTech Connect (OSTI)

    Backhaus, Scott N [Los Alamos National Laboratory; Sinitsyn, Nikolai [Los Alamos National Laboratory; Kundu, S. [UNIV OF MICHIGAN; Hiskens, I. [UNIV OF MICHIGAN

    2011-01-04T23:59:59.000Z

    As the penetration of intermittent energy sources grows substantially, loads will be required to play an increasingly important role in compensating the fast time-scale fluctuations in generated power. Recent numerical modeling of thermostatically controlled loads (TCLs) has demonstrated that such load following is feasible, but analytical models that satisfactorily quantify the aggregate power consumption of a group of TCLs are desired to enable controller design. We develop such a model for the aggregate power response of a homogeneous population of TCLs to uniform variation of all TCL setpoints. A linearized model of the response is derived, and a linear quadratic regulator (LQR) has been designed. Using the TCL setpoint as the control input, the LQR enables aggregate power to track reference signals that exhibit step, ramp and sinusoidal variations. Although much of the work assumes a homogeneous population of TCLs with deterministic dynamics, we also propose a method for probing the dynamics of systems where load characteristics are not well known.

  17. Impact of load type on microgrid stability

    E-Print Network [OSTI]

    Monnin, Jared P

    2012-01-01T23:59:59.000Z

    Microgrids show great promise as a means of integrating distributed generation sources into the public grid distribution system. In order to provide uninterrupted,high quality power to local loads, microgrids must have the ...

  18. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01T23:59:59.000Z

    modes of secondary control Power and Frequency Control as itof load frequency control Power and Frequency Control as itfirst necessity in controlling the power system is to

  19. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis; Anderson, Todd Alan

    2006-11-07T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  20. Power control system and method

    DOE Patents [OSTI]

    Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

    2008-02-19T23:59:59.000Z

    A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

  1. Impact of Advanced Technologies on Fusion Power Plant Characteristics

    E-Print Network [OSTI]

    California at San Diego, University of

    Reliable Power Source: · Closed tritium fuel cycle on site; · Ability to operate at partial load conditions

  2. Simultaneous confidence bands in curve prediction applied to load curves

    E-Print Network [OSTI]

    Boyer, Edmond

    Simultaneous confidence bands in curve prediction applied to load curves J.M. Aza¨is1, S. Bercu2, J, load curve. 1 Introduction In curve prediction, one is generally interested in deriving simultaneous this technique in the numerical context of load curve pre- diction: power producers like EDF, the electrical

  3. Exploratory Divertor Heat Load Studies for Compact Stellarator Reactors

    E-Print Network [OSTI]

    Raffray, A. René

    of the divertor system is described in Sec. III, together with the plate heat load profile, and the conditions is power reaching the plate, AD is the total plate area, Wpk is the design peak heat load limitExploratory Divertor Heat Load Studies for Compact Stellarator Reactors T.K. Maua , H. Mc

  4. Shipboard applications of non-intrusive load monitoring

    E-Print Network [OSTI]

    Ramsey, Jack S

    2004-01-01T23:59:59.000Z

    The Non-Intrusive Load Monitor (NILM) provides a method of measuring component performance and source power quality through a single point of entry in the power distribution system. A study was performed utilizing the NILM ...

  5. A LOADING-DEPENDENT MODEL OF PROBABILISTIC

    E-Print Network [OSTI]

    Dobson, Ian

    of the salient features of large blackouts of electric power trans- mission systems+ This leads to a new loadings+ 1. INTRODUCTION Cascading failure is the usual mechanism for large blackouts of electric power and containing 50 million people @33#+ The vital importance of the electrical infrastructure to society motivates

  6. Fig. 1. Example System phase loads

    E-Print Network [OSTI]

    power system (SPS) consists of various components such as generators, cables, switchboards, load centers Transformer 9 25 12 Alternate path Generator switchboard Bus-tie breaker Generator 1 Generator 3 Generator 2 4 26 G 29 7 8 ABT 3 single phase cables Visualization for Shipboard Power Systems Karen L. Butler

  7. Guidelines for Power Factor Improvement Projects

    E-Print Network [OSTI]

    Massey, G. W.

    Power factor is an indication of electrical system efficiency. Low power factor, or low system efficiency, may be due to one or more causes, including lightly loaded transformers, oversized electric motors, and harmonic-generating non-linear loads...

  8. Monitoring of Power System Topology in Real-Time Mladen Kezunovic

    E-Print Network [OSTI]

    components such as generators, power transformers, transmission lines, loads, etc. The knowledge about components such as generators, power transformers, busbars, transmission lines and loads. The interconnected

  9. Statistical Review of UK Residential Sector Electrical Loads

    E-Print Network [OSTI]

    Tsagarakis, G; Kiprakis, A E

    2013-01-01T23:59:59.000Z

    This paper presents a comprehensive statistical review of data obtained from a wide range of literature on the most widely used electrical appliances in the UK residential load sector. It focuses on individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, and also provides information on the reactive power characteristics of the load, which is often neglected from standard consumption statistics. This data is particularly important for power system analysis. In addition to this, device ownership statistics and probability distribution functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information which provides a useful database for the wider research community.

  10. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

    1999-01-01T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  11. Multimode power processor

    DOE Patents [OSTI]

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27T23:59:59.000Z

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  12. Dynamic Transfer Capability Analysis with Wind Farms and Dynamic Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . An investigation on the effect of dynamics loads, wind farms and flexible AC transmission system (FACTS) devices capability unnecessarily limits the power transfers and is a costly and inefficient use of a network with increasing loads, the need to transfer power over long transmission lines increases. Deregulation

  13. Spinning Reserve From Responsive Loads

    SciTech Connect (OSTI)

    Kirby, B.J.

    2003-04-08T23:59:59.000Z

    Responsive load is the most underutilized reliability resource available to the power system today. It is currently not used at all to provide spinning reserve. Historically there were good reasons for this, but recent technological advances in communications and controls have provided new capabilities and eliminated many of the old obstacles. North American Electric Reliability Council (NERC), Federal Energy Regulatory Commission (FERC), Northeast Power Coordinating Council (NPCC), New York State Reliability Council (NYSRC), and New York Independent System Operator (NYISO) rules are beginning to recognize these changes and are starting to encourage responsive load provision of reliability services. The Carrier ComfortChoice responsive thermostats provide an example of these technological advances. This is a technology aimed at reducing summer peak demand through central control of residential and small commercial air-conditioning loads. It is being utilized by Long Island Power Authority (LIPA), Consolidated Edison (ConEd), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E). The technology is capable of delivering even greater response in the faster spinning reserve time frame (while still providing peak reduction). Analysis of demand reduction testing results from LIPA during the summer of 2002 provides evidence to back up this claim. It also demonstrates that loads are different from generators and that the conventional wisdom, which advocates for starting with large loads as better ancillary service providers, is flawed. The tempting approach of incrementally adapting ancillary service requirements, which were established when generators were the only available resources, will not work. While it is easier for most generators to provide replacement power and non-spinning reserve (the slower response services) than it is to supply spinning reserve (the fastest service), the opposite is true for many loads. Also, there is more financial reward for supplying spinning reserve than for supplying the other reserve services as a result of the higher spinning reserve prices. The LIPAedge program (LIPA's demand reduction program using Carrier ComfortChoice thermostats) provides an opportunity to test the use of responsive load for spinning reserve. With potentially 75 MW of spinning reserve capability already installed, this test program can also make an important contribution to the capacity needs of Long Island during the summer of 2003. Testing could also be done at ConEd ({approx}30 MW), SCE ({approx}15 MW), and/or SDG&E ({approx}15 MW). This paper is divided into six chapters. Chapter 2 discusses the contingency reserve ancillary services, their functions in supporting power system reliability, and their technical requirements. It also discusses the policy and tariff requirements and attempts to distinguish between ones that are genuinely necessary and ones that are artifacts of the technologies that were historically used to provide the services. Chapter 3 discusses how responsive load could provide contingency reserves (especially spinning reserve) for the power system. Chapter 4 specifically discusses the Carrier ComfortChoice responsive thermostat technology, the LIPAedge experience with that technology, and how the technology could be used to supply spinning reserve. Chapter 5 discusses a number of unresolved issues and suggests areas for further research. Chapter 6 offers conclusions and recommendations.

  14. Final Project Report Load Modeling Transmission Research

    SciTech Connect (OSTI)

    Lesieutre, Bernard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bravo, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yinger, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chassin, Dave [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Huang, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hiskens, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Venkataramanan, Giri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-31T23:59:59.000Z

    The research presented in this report primarily focuses on improving power system load models to better represent their impact on system behavior. The previous standard load model fails to capture the delayed voltage recovery events that are observed in the Southwest and elsewhere. These events are attributed to stalled air conditioner units after a fault. To gain a better understanding of their role in these events and to guide modeling efforts, typical air conditioner units were testing in laboratories. Using data obtained from these extensive tests, new load models were developed to match air conditioner behavior. An air conditioner model is incorporated in the new WECC composite load model. These models are used in dynamic studies of the West and can impact power transfer limits for California. Unit-level and systemlevel solutions are proposed as potential solutions to the delayed voltage recovery problem.

  15. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    cooling and power system provides electricity and cooling to a data centercooling and power system provides electricity and cooling to a data centersystem with a high cooling load and no heating load (such as a data center)

  16. Fuel-cell based power generating system having power conditioning apparatus

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Pradhan, Sanjaya K. (Des Plaines, IL)

    2010-10-05T23:59:59.000Z

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  17. 1999 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1999-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to its regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book will not be used in calculations for the 2002 regional power sales contract subscription process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands--firm loads--are subtracted from the projected capability of existing and ''contracted for'' resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA's Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem. The 1999 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix (available electronically only) detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1998 Pacific Northwest Loads and Resources Study. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 2000-01 through 2009-10. The study shows the Federal system's and the region's monthly estimated maximum electricity demand, monthly energy demand, monthly energy generation, and monthly maximum generating capability--capacity--for OY 2000-01, 2004-05, and 2009-10. The Federal system and regional monthly capacity surplus/deficit projections are summarized for 10 operating years. This document analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for wh

  18. 1997 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1997-12-01T23:59:59.000Z

    The 1997 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. Data detailing Pacific Northwest non-utility generating (NUG) resources is also available upon request. This analysis updates the 1996 pacific Northwest Loads and Resources Study, published in December 1996. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. This document analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system which includes loads and resources in addition to the Federal system. This study presents the Federal system and regional analyses for the medium load forecast. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1998--99 through 2007--08.

  19. Telemetering system supports load curtailment and billing

    SciTech Connect (OSTI)

    Mabry, R. (Potomac Electric Power Co., Washington, DC (United States)); Biagini, D. (Landis and Gyr Systems, Inc., San Jose, CA (United States))

    1993-04-01T23:59:59.000Z

    One of the greatest challenges facing electric utilities today is satisfying increasing peak demand without adding new generating capacity. Supporting utilities in this quest are state-of-the-art computer systems designed to accommodate complex load management as well as billing and load survey programs. The Potomac Electric Power Company (PEPCO) is utilizing such computer technology along with an innovative organizational approach to implement a comprehensive energy plan for its customers. The plan is enabling the utility to meet the growing demand placed on its power system by intensive expansion in the greater Washington DC area.

  20. Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus

    E-Print Network [OSTI]

    dynamic stability, power system reliability, power system scheduling, power system security, power transmission control, power transmission reliability I . INTRODUCTION Power system stability problems cause many stability problems. Between the power system generation pattern and the load pattern

  1. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2010-01-01T23:59:59.000Z

    load leveling (60sec) and power assist control The profileload leveling due to battery power limitations. The profiles

  2. Distributed Power Delivery for Energy Efficient and Low Power Systems

    E-Print Network [OSTI]

    Friedman, Eby G.

    Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department throughout a power distribution system. Due to the parasitic impedances of the power distribution networks current to the load circuits [3]. The complexity of the high performance power delivery systems has

  3. 1 Shen 2/14/00 A5: High Heat Load Design 2/22/00

    E-Print Network [OSTI]

    Shen, Qun

    ........................................4 6 Incident power load calculations ................................... 6 SR power absorption-Cohen, "Thermal management of high-power microelectronic com- ponents: state-of-the-art and future challenges in materials ................................ 9 Calculation examples

  4. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

    1998-01-01T23:59:59.000Z

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  5. Load regulating expansion fixture

    DOE Patents [OSTI]

    Wagner, L.M.; Strum, M.J.

    1998-12-15T23:59:59.000Z

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  6. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  7. Automotive Power Generation and Control

    E-Print Network [OSTI]

    Caliskan, Vahe

    This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

  8. Pilot plant used to develop load and pressure controller

    SciTech Connect (OSTI)

    Nagata, Kazue; Yamada, Toshihiro; Hiza, Tomoyuki

    1997-02-01T23:59:59.000Z

    Viewed from the perspective of the power-generation mixture in Japan, nuclear power plants will continue to be operated to meet the base load. Meanwhile, integrated coal gasification combined cycle (IGCC) power plants will be required to serve as thermal power plants to cover the middle load, as is the case with conventional thermal power plants. In terms of operational performance, therefore, IGCC power plants will need to have a capability of following a wide range of load demand at high speed. For this purpose, a load and pressure controller was developed and tested during the operational research on a 200 tons/day entrained flow IGCC pilot plant at the Nakoso Power Station by the Engineering Research Association for IGCC Power Systems (IGC Association). This article reports on the development of the load and pressure controller and the results of the control test carried out to check the load follow capability of the pilot plant, while touching upon the simulation study also being conducted.

  9. 16 Load Data Cleansing and Bus Load

    E-Print Network [OSTI]

    Wang, Ke

    -to-day operations, system analysis in smart grids, system visualization, system performance reliability, energy..............................................................................................................397 #12;376 Smart Grids The load forecast generally provides annual peak values for the whole system saving, and accuracy in system planning [1­4]. * This work is partly supported by a collaborative

  10. An analog and digital data acquisition system for Non-Intrusive Load Monitoring

    E-Print Network [OSTI]

    Clifford, Zachary Alan

    2009-01-01T23:59:59.000Z

    Non-Intrusive Load Monitoring (NILM) is a method for characterizing and monitoring discrete loads connected to a power distribution system. This can include a ship, a car, or a utility distribution system. The entire concept ...

  11. Training & Research in the Indian Power Sector

    E-Print Network [OSTI]

    Banerjee, Rangan

    -Development - Motivation #12;Utility Decisions Operational Planning Load Despatch Purchase/ Inter-Utility Tie-up Load Management (DLC/ILC) Load Shedding Maintenance Scheduling Strategic Planning - Capacity Expansion, DSM, LM & academics in power engineering education Educational profile of future power engineers Educational

  12. Leveraging Load Migration and Basestaion Consolidation for Green Communications in

    E-Print Network [OSTI]

    Tang, Jian "Neil"

    as a useful technology for improving resource utilization and power efficiency. For example, in a virtualized power-efficient BSs in its neighborhood such that idle BSs can be turned off or put into sleep to save power. In this paper, we propose to leverage load migration and BS consolidation for green

  13. 2006 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-03-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of both the Federal system and the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This surplus energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These energy deficits will be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. This study incorporates information on Pacific Northwest (PNW) regional retail loads, contract obligations, and contract resources. This loads and resources analysis simulates the operation of the power system in the PNW. The simulated hydro operation incorporates plant characteristics, streamflows, and non-power requirements from the current Pacific Northwest Coordination Agreement (PNCA). Additional resource capability estimates were provided by BPA, PNW Federal agency, public agency, cooperative, U.S. Bureau of Reclamation (USBR), and investor-owned utility (IOU) customers furnished through annual PNUCC data submittals for 2005 and/or direct submittals to BPA. The 2006 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2006 White Book analysis updates the 2004 White Book. This analysis shows projections of the Federal system and region's yearly average annual energy consumption and resource availability for the study period, OY 2007-2016. The study also presents projections of Federal system and region expected 1-hour monthly peak demand, monthly energy demand, monthly 1-hour peak generating capability, and monthly energy generation for OY 2007, 2011, and 2016. BPA is investigating a new approach in capacity planning depicting the monthly Federal system 120-hour peak generating capability and 120-hour peak surplus/deficit for OY 2007, 2011, and 2016. This document analyzes the PNW's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency;

  14. Low reflectance radio frequency load

    DOE Patents [OSTI]

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01T23:59:59.000Z

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  15. 1990 Pacific Northwest Loads and Resources Study, Technical Appendix.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-12-01T23:59:59.000Z

    The 1990 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration's (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility, (2) a summary of Federal system and Pacific Northwest region loads and resources, and (3) a technical appendix detailing forecasted Pacific Northwest economic trends and loads. This technical appendix provides utility-specific information that BPA uses in its long-range planning. It incorporates the following for each utility: electrical demand--firm loads--under the medium 1990 Draft Joint Load Forecast; generating resources; and contracts both inside and outside the region.

  16. UPDATE: EFFECTIVE LOAD CARRYING CAPABILITY OF PHOTOVOLTAICS IN THE UNITED STATES

    E-Print Network [OSTI]

    Perez, Richard R.

    to a utility or a regional power grid without increasing the utility's loss of load risk (Garver, 1966 Electric Indianapolis Power & Light City of Chattanooga Florida Power and Light First Energy Consolidated Carrying Capability (ELLC) by analyzing recent load data from 39 US utilities and time-coincident output

  17. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  18. Adaptive load control of microgrids with non-dispatchable generation

    E-Print Network [OSTI]

    Brokish, Kevin Martin

    2009-01-01T23:59:59.000Z

    Intelligent appliances have a great potential to provide energy storage and load shedding for power grids. Microgrids are simulated with high levels of wind energy penetration. Frequency-adaptive intelligent appliances are ...

  19. Improving shipboard applications of non-intrusive load monitoring

    E-Print Network [OSTI]

    Jones, Richard A. (Richard Alan), Nav. E. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The Non-Intrusive Load Monitor (NILM) measures equipment performance by measuring and analyzing the source power to the equipment at a single point in the electrical system. Previous studies have proven the usefulness of ...

  20. Scalability of Non-intrusive Load Monitoring for Shipboard Applications

    E-Print Network [OSTI]

    Paris, James

    2009-01-01T23:59:59.000Z

    The non-intrusive load monitor has been demonstrated as an effective tool for evaluating and monitoring shipboard electro-mechanical systems through analysis of electrical power data. A key advantage of the non-intrusive ...

  1. Load Monitoring CEC/LMTF Load Research Program

    SciTech Connect (OSTI)

    Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

    2007-11-30T23:59:59.000Z

    This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

  2. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    NREL engineers evaluate the functionalities of advanced power strips and help consumers choose the right one for their plug loads.

  3. Soldier power. Battery charging.

    E-Print Network [OSTI]

    Hong, Deog Ki

    hours runtime at full load 50 W #12; (%) (kW) 300 1-5 Siemens-Power 30 (hr) 10,000 Siemens 300 Acumentrics 80 (mW/cm2) 600 400 Siemens-Power 85 (hr) 70,000 3,000 Siemens-Power 15 () 500 25 Siemens-Power 60 >2013 - , Bloom, MHI, Rolls Royce 6 #12; SOFCSOFC * (LSCF ) ( Ag

  4. 1990 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional profile, which includes loads and resources in addition to the federal system. The loads and resources analysis in this study emulates the operation of the power system under the Pacific Northwest Coordination Agreement as completed by the Pacific Northwest Coordinating Group. This study presents the federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years 1991--92 through 2010--11. The study shows the federal system's and the region's monthly estimated maximum electrical demand and monthly maximum generating capability -- capacity -- for OY 1991--92, 1996--97, 2001--02 and 2010--11. The federal system and regional monthly capacity surpluses/deficits are summarized for 20 operating years. 17 figs., 11 tabs.

  5. A power line impedance spectrum analyzer using real-time digital signal processing

    E-Print Network [OSTI]

    Margolis, Michael G

    1993-01-01T23:59:59.000Z

    Power distribution system impedance as seen by power converters and other non-linear loads is important for the determination of harmonic current injection and propagation caused by these loads. This thesis presents a real-time power line impedance...

  6. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2010-01-01T23:59:59.000Z

    Compared to load leveling control, power assist control canPing Liu, Optimal fuzzy power control and management of fueland Comparison of Power Control Strategies for Fuel Cell

  7. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  8. 1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 2, Capacity.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    Monthly totals of utility loads and capacities extrapolated as far as 2009 with a probability estimate of enough water resources for hydro power.

  9. Load Component Database of Household Appliances and Small Office Equipment

    SciTech Connect (OSTI)

    Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

    2008-07-24T23:59:59.000Z

    This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

  10. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    E-Print Network [OSTI]

    Parma, V

    2010-01-01T23:59:59.000Z

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  11. Load Pocket Forecasting Software E. A. Feinberg, D. Genethliou, J.T. Hajagos, B.G. Irrgang, and R. J. Rossin

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    pockets and to modify the existing ones. Index Terms--Load forecasting, power system planning I by electric utilities to estimate and forecast the load growth in different service areas. The software builds statistical load models for various service areas (load pockets), estimates weather-normalized loads

  12. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S. (Albuquerque, NM); Lobitz, Donald W. (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  13. Load attenuating passively adaptive wind turbine blade

    DOE Patents [OSTI]

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07T23:59:59.000Z

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  14. Recovery Act: Advanced Load Identification and Management for Buildings

    SciTech Connect (OSTI)

    Yang, Yi; Casey, Patrick; Du, Liang; He, Dawei

    2014-02-12T23:59:59.000Z

    In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the building sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects. 1) An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing. 2) A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution. 3) Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

  15. An Appliance-driven Approach to Detection of Corrupted Load Curve Data

    E-Print Network [OSTI]

    Pei, Jian

    An Appliance-driven Approach to Detection of Corrupted Load Curve Data Guoming Tang1,3 , Kui Wu1@sfu.ca, jiuyang_tang@nudt.edu.cn, jshlei@shiep.edu.cn ABSTRACT Load curve data in power systems refers to users discov- ered in the data. Load curve data, however, usually suffers from corruptions caused by various

  16. Load research manual. Volume 1. Load research procedures

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  17. 2004 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2004-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book), which is published annually by the Bonneville Power Administration (BPA), establishes one of the planning bases for supplying electricity to customers. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues, although the database that generates the data for the White Book analysis contributes to the development of BPA's inventory and ratemaking processes. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions that include expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The load resource balance of BPA and/or the region is determined by comparing resource availability to an expected level of total retail electricity consumption. Resources include projected energy capability plus contract purchases. Loads include a forecast of retail obligations plus contract obligations. Surplus energy is available when resources are greater than loads. This energy could be marketed to increase revenues. Energy deficits occur when resources are less than loads. These deficits could be met by any combination of the following: better-than-critical water conditions, demand-side management and conservation programs, permanent loss of loads due to economic conditions or closures, additional contract purchases, and/or the addition of new generating resources. The loads and resources analysis in this study simulates the operation of the power system under the current Pacific Northwest Coordination Agreement (PNCA). The PNCA defines the planning and operation of seventeen U.S. Pacific Northwest utilities and other parties with generating facilities within the region's hydroelectric (hydro) system. The hydroregulation study used for the 2004 White Book incorporates measures from the National Oceanographic and Atmospheric Administration Fisheries (NOAA Fisheries) Biological Opinion dated December 2000, and the U.S. Fish and Wildlife Service's 2000 Biological Opinion (2000 FCRPS BiOps) for the Snake River and Columbia River projects. These measures include: (1) Increased flow augmentation for juvenile fish migrations in the Snake and Columbia rivers in the spring and summer; (2) Mandatory spill requirements at the Lower Snake and Columbia dams to provide for non-turbine passage routes for juvenile fish migrants; and (3) Additional flows for Kootenai River white sturgeon in the spring; The hydroregulation criteria for this analysis includes the following: (1) Detailed Operation Plan operation for Treaty reservoirs for Operating Year (OY) 2004; (2) PNCA planning criteria for OY 2004; and (3) Juvenile fish bypass spill levels for 2000 FCRPS BiOps implementation. The 2004 White Book is presented in two documents: (1) this summary document of Federal system and PNW region loads and resources, and (2) a technical appendix which presents regional loads, grouped by major PNW utility categories, and detailed contract and resource information. The technical appendix is available only in electronic form. Individual customer information for marketer contracts is not detailed due to confidentiality agreements. The 2004 White Book analysis updates the 2003 White Book. This analysis projects the yearly average energy consumption and resource availability for the study period, OY 2006 through 2015. The study shows the Federal s

  18. contingency Nominal loading margin

    E-Print Network [OSTI]

    Member Member Fellow Electrical and Computer Engineering Department University of Wisconsin, Madison WI 53706 USA Abstract: The change in the loading margin to voltage collapse when line outages occur the line outages of the IEEE 118 bus system. The results show the effective ranking of contingencies

  19. Cooling load estimation methods

    SciTech Connect (OSTI)

    McFarland, R.D.

    1984-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  20. TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on Maximum System Loading and Active and Reactive Power Markets Behnam Tamimi, Student Member, IEEE, Claudio A. Ca- active power in electric power systems. Although there are other important reactive power sources

  1. 1991 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-03-01T23:59:59.000Z

    This publication provides detailed documentation of the load forecast scenarios and assumptions used in preparing BPA's 1991 Pacific Northwest Loads and Resources Study (the Study). This is one of two technical appendices to the Study; the other appendix details the utility-specific loads and resources used in the Study. The load forecasts and assumption were developed jointly by Bonneville Power Administration (BPA) and Northwest Power Planning Council (Council) staff. This forecast is also used in the Council's 1991 Northwest Conservation and Electric Power Plan (1991 Plan).

  2. Sixth Power Plan northwest Power and Conservation Council

    E-Print Network [OSTI]

    's loads · Bonneville sells wholesale power to over 120 publicly-owned utilities · Variability in hydro generation led to development of the nation's first major spot market for wholesale power · Bonneville built and wholesale power are low · Retirement of coal-fired plants have been announced; will require development

  3. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  4. Global Optimization of Optimal Power Flow

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    /03/2013 4 Power balance Power flows Physical limits Nonconvex constraints #12;8/26/2013 2 SDP Relaxation renewables into the grid e.g., Wind: Hard to forecast. ­ Base load power plants cannot change their output problems. Multi-Period OPF Formulation 12/03/2013 9 Power balance Power flows Physical limits Storage

  5. Abstract --The simulation of Proton Exchange Membrane Fuel Cells (PEMFC) may work as a powerful tool in the

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    load profile; and, evaluation of the needs for hydrogen and additional storage systems. Also, in power a computer-controlled, ac-to-dc power converter to supply power to electrical loads, in a way similar

  6. Small-Signal Stability Assessment of Active Distribution Networks with Dynamic Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    the flow of power and the voltage profiles of the system and these profiles are different for different types of loads [3]. In addition to the power flow at and around N. K. Roy, H. R. Pota, and T. F. OrchiSmall-Signal Stability Assessment of Active Distribution Networks with Dynamic Loads N. K. Roy

  7. Power Factor Reactive Power

    E-Print Network [OSTI]

    motor power: 117.7 V x 5.1 A = 600 W? = 0.6 kW? NOT the power measured by meter #12;Page 9 PSERC: displacement power factor: angle between voltage and current = 0 degrees pf = cos(0 degrees) = 1.0 true powerPage 1 PSERC Power Factor and Reactive Power Ward Jewell Wichita State University Power Systems

  8. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  9. Final Report: Assessment of Combined Heat and Power Premium Power Applications in California

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    Load Profile for a Typical Day in Each Month Electricity-only (week) Electricity-only (weekend) Heating (week) Heating (weekend) Power (Load Profile for a Typical Day in Each Month Electricity-only (week) Electricity-only (weekend) Cooling (week) Cooling (weekend) Power (Load Profile for a Typical Day in Each Month Electricity-only (week) Electricity-only (weekend) Heating (week) Heating (weekend) Power (

  10. Investigation of a high impedance magnetically insulated transmission line oscillator with hollow load

    SciTech Connect (OSTI)

    Zhou Heng; Shu Ting; Li Zhiqiang [College of Opto-electric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2012-09-15T23:59:59.000Z

    A novel high-impedance magnetically insulated transmission line oscillator (MILO) with greatly restrained power deposition on the anode has been investigated. Methods to increase the MILO impedance and decrease the anode current are discussed. A MILO with impedance of 30 {Omega} and power conversion efficiency of 25% is presented by particle-in-cell simulations. Compared with the previous MILO in our lab, the anode current of the proposed MILO is reduced about 50%, the power conversion efficiency doubles, and the power deposition on anode is reduced nearly one half. Furthermore, considerations for reducing the power deposition on load have also been carried out in MILO design, and the load current is reduced to 4.6 kA, only 17% of the total anode current. Finally, a hollow load was introduced to reduce the power deposition density on the load, without decreasing the power conversion efficiency.

  11. Methods and apparatus for rotor load control in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2006-08-22T23:59:59.000Z

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  12. Analysis and design of power conditioning systems 

    E-Print Network [OSTI]

    Harfman Todorovic, Maja

    2009-05-15T23:59:59.000Z

    power conditioner consisting of DC-DC and DC-AC converters is required for load interface. The design of power conditioners is driven by the application. This dissertation presents several different solutions for applications ranging from low...

  13. Load responsive hydrodynamic bearing

    DOE Patents [OSTI]

    Kalsi, Manmohan S. (Houston, TX); Somogyi, Dezso (Sugar Land, TX); Dietle, Lannie L. (Stafford, TX)

    2002-01-01T23:59:59.000Z

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  14. The International Mass Loading Service

    E-Print Network [OSTI]

    Petrov, Leonid

    2015-01-01T23:59:59.000Z

    The International Mass Loading Service computes four loadings: a) atmospheric pressure loading; b) land water storage loading; c) oceanic tidal loading; and d) non-tidal oceanic loading. The service provides to users the mass loading time series in three forms: 1) pre-computed time series for a list of 849 space geodesy stations; 2) pre-computed time series on the global 1deg x 1deg grid; and 3) on-demand Internet service for a list of stations and a time range specified by the user. The loading displacements are provided for the time period from 1979.01.01 through present, updated on an hourly basis, and have latencies 8-20 hours.

  15. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.J • J METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOAD

  16. Incorporating HVDC's into monitoring and power system analysis

    E-Print Network [OSTI]

    Krishnaswamy, Vikram

    2002-01-01T23:59:59.000Z

    This thesis attempts to study the effect of incorporating HVDC's into monitoring and power system analysis. Power system analysis, including load flow and stability studies, and monitoring defines a complete cycle of the impact of HVDC in a power...

  17. Buildings Stock Load Control 

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

    2006-01-01T23:59:59.000Z

    the extreme climate period. The first part of this paper presents the objectives of the study: ? to restrict the startup polluting manufacturing units (power station), ? to limit the environmental impacts (greenhouse emission), ? to reduce the transport...

  18. Qualification for PowerInsight accuracy of power measurements.

    SciTech Connect (OSTI)

    DeBonis, David; Laros, James H.,; Pedretti, Kevin Thomas Tauke

    2013-11-01T23:59:59.000Z

    Accuracy of component based power measuring devices forms a necessary basis for research in the area of power-e cient and power-aware computing. The accuracy of these devices must be quanti ed within a reasonable tolerance. This study focuses on PowerInsight, an out- of-band embedded measuring device which takes readings of power rails on compute nodes within a HPC system in realtime. We quantify how well the device performs in comparison to a digital oscilloscope as well as PowerMon2. We show that the accuracy is within a 6% deviation on measurements under reasonable load.

  19. Multidimensional spectral load balancing

    SciTech Connect (OSTI)

    Hendrickson, B.; Leland, R.

    1993-01-01T23:59:59.000Z

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  20. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01T23:59:59.000Z

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  1. LS-69 DEVELOPING PULSE WIDTH MODULATED POWER SUPPLY FOR THE GeV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connected Load 2.3 Resonant Power Converter With Parallel Connected Load TWO-QUADRANT POWER CONTROLLERS 3.1 Transistorized Two-Quadrant Chopper Control 3.2 3.3 Resonant...

  2. Dynamic Power Management with Power Network-on-Chip Inna Vaisband and Eby G. Friedman

    E-Print Network [OSTI]

    Friedman, Eby G.

    Dynamic Power Management with Power Network-on-Chip Inna Vaisband and Eby G. Friedman Department dynamically controlled power to support power efficient and portable systems. Effi- ciently providing multiple point-of-load on-chip voltages requires fundamental changes to the power delivery and management process

  3. Direct current uninterruptible power supply method and system

    DOE Patents [OSTI]

    Sinha, Gautam

    2003-12-02T23:59:59.000Z

    A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.

  4. Deterministic Josephson Vortex Ratchet with a load

    E-Print Network [OSTI]

    M. Knufinke; K. Ilin; M. Siegel; D. Koelle; R. Kleiner; E. Goldobin

    2011-09-29T23:59:59.000Z

    We investigate experimentally a deterministic underdamped Josephson vortex ratchet -- a fluxon-particle moving along a Josephson junction in an asymmetric periodic potential. By applying a sinusoidal driving current one can compel the vortex to move in a certain direction, producing average dc voltage across the junction. Being in such a rectification regime we also load the ratchet, i.e., apply an additional dc bias current I_dc (counterforce) which tilts the potential so that the fluxon climbs uphill due to the ratchet effect. The value of the bias current at which the fluxon stops climbing up defines the strength of the ratchet effect and is determined experimentally. This allows us to estimate the loading capability of the ratchet, the output power and efficiency. For the quasi-static regime we present a simple model which delivers simple analytic expressions for the above mentioned figures of merit.

  5. Application Power Signature Analysis

    SciTech Connect (OSTI)

    Hsu, Chung-Hsing [ORNL] [ORNL; Combs, Jacob [Sonoma State University] [Sonoma State University; Nazor, Jolie [Sonoma State University] [Sonoma State University; Santiago, Fabian [Sonoma State University] [Sonoma State University; Thysell, Rachelle [Sonoma State University] [Sonoma State University; Rivoire, Suzanne [Sonoma State University] [Sonoma State University; Poole, Stephen W [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The high-performance computing (HPC) community has been greatly concerned about energy efficiency. To address this concern, it is essential to understand and characterize the electrical loads of HPC applications. In this work, we study whether HPC applications can be distinguished by their power-consumption patterns using quantitative measures in an automatic manner. Using a collection of 88 power traces from 4 different systems, we find that basic statistical measures do a surprisingly good job of summarizing applications' distinctive power behavior. Moreover, this study opens up a new area of research in power-aware HPC that has a multitude of potential applications.

  6. Assessment of the Economic Potential of Microgrids for Reactive Power Supply

    E-Print Network [OSTI]

    Appen, Jan von

    2012-01-01T23:59:59.000Z

    Load ( kW) June (Summer) December (Winter) Hours (h) Fig. 2: Representative weekday real power profiles

  7. A study of power electronic building block (PEBB)-based integrated shipboard power systems during reconfiguration

    E-Print Network [OSTI]

    Adediran, Adeoti Taiwo

    2004-09-30T23:59:59.000Z

    concept with electric propulsion, direct current (DC) distribution, and modular technology. In the all electric ship concept, ship propulsion and ship service loads are powered by alternating current (AC) generation. For the IPS, power electronics...

  8. Spinning Reserve From Hotel Load Response: Initial Progress

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL

    2008-11-01T23:59:59.000Z

    This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby and Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.

  9. WRTSILWRTSIL Northwest Power and Conservation Council

    E-Print Network [OSTI]

    plants 0 5 10 15 20 25 30 35 40 45 50 mins 80 70 60 50 40 30 20 10 0 90 100 Load % 55 Coal Fired power PLANTS SHIP POWER Wärtsilä in short Business Areas · Founded in 1834 · Headquarters in Helsinki Finland · Net Sales 4.7 billion (2012) · Presence in 170 locations in 70 countries Ship Power 28% Power Plants

  10. Power inverter with optical isolation

    DOE Patents [OSTI]

    Duncan, Paul G.; Schroeder, John Alan

    2005-12-06T23:59:59.000Z

    An optically isolated power electronic power conversion circuit that includes an input electrical power source, a heat pipe, a power electronic switch or plurality of interconnected power electronic switches, a mechanism for connecting the switch to the input power source, a mechanism for connecting comprising an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or input bus bars, an optically isolated drive circuit connected to the switch, a heat sink assembly upon which the power electronic switch or switches is mounted, an output load, a mechanism for connecting the switch to the output load, the mechanism for connecting including an interconnecting cable and/or bus bar or plurality of interconnecting cables and/or output bus bars, at least one a fiber optic temperature sensor mounted on the heat sink assembly, at least one fiber optic current sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic voltage sensor mounted on the load interconnection cable and/or output bus bar, at least one fiber optic current sensor mounted on the input power interconnection cable and/or input bus bar, and at least one fiber optic voltage sensor mounted on the input power interconnection cable and/or input bus bar.

  11. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  12. Dynamic load balancing of applications

    DOE Patents [OSTI]

    Wheat, S.R.

    1997-05-13T23:59:59.000Z

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

  13. IAC-09.C3.2.8 A REDUNDANT POWER BUS FOR

    E-Print Network [OSTI]

    . The idea behind the proposed Power Bus is to have power conversion (from solar panels) and power storage") which contain, each: a solar panel; energy storage batteries with the corresponding power converters in a distributed way. For instance: i) accumulating the power from all solar panels towards the load(s); ii

  14. Reactive Power Compensating System.

    DOE Patents [OSTI]

    Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

    1985-01-04T23:59:59.000Z

    The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

  15. Dynamic Knobs for Responsive Power-Aware Computing Henry Hoffmann

    E-Print Network [OSTI]

    Rinard, Martin

    . But phenomena such as load fluctuations or variations in avail- able power can change the optimal operating in the face of load and power fluctuations. PowerDial transforms static configuration parameters into dynamic that they require to produce that result. Because an application's optimal operating point can vary depending

  16. Control of Wind Turbines for Power Regulation and

    E-Print Network [OSTI]

    Control of Wind Turbines for Power Regulation and Load Reduction Juan Jose Garcia Quirante Kongens regulation and load reduction and their ensemble in a variable-speed wind turbine. The power regulation aspects of mathematical modelling of wind turbines, and especially the control methods suited for power

  17. Load flow analysis: Base cases, data, diagrams, and results

    SciTech Connect (OSTI)

    Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P.

    1997-10-01T23:59:59.000Z

    This report describes how an electric utility system is modeled by using load flow techniques to establish a validated power flow case suitable for simulating and evaluating alternative system scenarios. Details of the load flow model are supported by additional technical and descriptive information intended to correlate modeled electrical system parameters with the corresponding physical equipment that makes up the system. Pictures and technical specifications of system equipment from the utility, public, or vendor are provided to support this association for many system components. The report summarizes the load flow model construction, simulation, and validation and describes the general capabilities of an information query system designed to access load flow parameters and other electrical system information.

  18. Optimizing Process Loads in Industrial Cogeneration Energy Systems

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    processes. AUTOMATION REQUIREMENTS The Operations energy Management System (OEMS) can require on-line operation using current measurements (e.g. flow, powers, temperatures, etc.), and calculating optimum energy purchase and equipment dispatch within...kW., A.. kW >- kW OPTIMIZING PROCESS LOADS IN INDUSTRIAL COGENERAnON ENERGY SYSTEMS DJ. Ahner Manager, Generation Technology Power Tecbnologies, Inc. Schenectady, New York ABSTRACT Optimum dispatcb of energy supply systems can...

  19. Power Plant Power Plant

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

  20. Performance Analysis of Photovoltaic Cell with Dynamic PHEV Loads

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    in Hybrid Electric Vehicles (PHEVs) load. It is expected that PHEVs are going to be charged during the day--PHEVs, Solar PV, MPPT. I. INTRODUCTION PHEV should be a logical choice for the car user due to advances in battery and hybrid-electric power technologies, coupled with the financial, energy security requirement

  1. Automatic load follow control system for PWR plants

    SciTech Connect (OSTI)

    Nakakura, H.; Ishiguro, A.

    1987-01-01T23:59:59.000Z

    In Japan, load follow operation (daily load follow, automatic frequency control (AFC) operation, and governor free (GF) operation) of nuclear plants will be required in the near future to control grid frequency, as the ratio of nuclear plant electrical production to total grid production will increase. The AFC operation regulated power by demand from the central load dispatcher to control mainly the fringe component of the grid frequency fluctuation, and GF operation regulates power by turbine revolution or grid frequency to control mainly the cyclic component of grid frequency fluctuation. This paper deals with the automatic power distribution control system, which is important to load follow operation and possibly will be applied to pressurized water reactor (PWR) nuclear plants. The reactor control systems noted below are conventional design with some improvements for AFC/GF operation, so that the reactor operates the turbine as before: (1) rod control system (reactor power control); (2) pressurizer pressure control system; (3) pressurizer level control system; and (4) steam generator level control system.

  2. Frequency Regulation from Flexible Loads: Potential, Economics, and Implementation

    E-Print Network [OSTI]

    Sanandaji, Borhan M.

    regulation procurement by as much as 40% [4]. This issue has been recognized in the power and energy system energy capacity into the day-ahead regulation market, and CAISO will dispatch these resources soFrequency Regulation from Flexible Loads: Potential, Economics, and Implementation He Hao1,, Borhan

  3. A METHOD FOR RAPID VULNERABILITY ASSESSMENT OF STRUCTURES LOADED BY OUTSIDE BLASTS

    E-Print Network [OSTI]

    Cizelj, Leon

    military threats to a nuclear power plant in the year 1991 (Stritar et al, 1991). More recent examples cases not been assumed as design basis loads of nuclear power plant buildings and structures. Recent efforts have been recently devoted to the increased security of nuclear power plants (NPP) (see

  4. Copyright 2010 IEEE. Reprinted from: Propagation of load shed in cascading line outages simulated by OPA

    E-Print Network [OSTI]

    may be better quantified and mitigated. The electric power infrastructure is vital in maintaining our of an electric power system. The average propagation of the simulated load shed data is estimated so- ciety, and maintaining high reliability is especially impor- tant as the electric power

  5. A Dynamic Voltage Scaling Controller for Maximum Energy Saving Across Full Range of Load Conditions

    E-Print Network [OSTI]

    Ng, Wai Tung

    to an explosive increase in both power density and total power consumption in modem VLSI circuits. In order or low power mode, energy saving from dynamic voltage scaling (DVS) is limited due to very poor efficiency of the PWM DC/DC converter operating at light load conditions, resulting in shorter than expected

  6. Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)

    SciTech Connect (OSTI)

    Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

    1990-07-01T23:59:59.000Z

    The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

  7. Short-term load forecasting using generalized regression and probabilistic neural networks in the electricity market

    SciTech Connect (OSTI)

    Tripathi, M.M.; Upadhyay, K.G.; Singh, S.N.

    2008-11-15T23:59:59.000Z

    For the economic and secure operation of power systems, a precise short-term load forecasting technique is essential. Modern load forecasting techniques - especially artificial neural network methods - are particularly attractive, as they have the ability to handle the non-linear relationships between load, weather temperature, and the factors affecting them directly. A test of two different ANN models on data from Australia's Victoria market is promising. (author)

  8. Optimization Online - Reactive Power Management using Firefly and ...

    E-Print Network [OSTI]

    Ripunjoy Phukan

    2013-10-04T23:59:59.000Z

    Oct 4, 2013 ... Reactive Power Management using Firefly and Spiral Optimization under Static and Dynamic Loading Conditions. Ripunjoy Phukan (ripun000 ...

  9. Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Control and Optimization Meet the Smart Power Grid: Scheduling of Power Demands for Optimal Energy technologies to enforce sensible use of energy through effective demand load management. We envision a scenario con- sumer power demand requests with different power require- ments, durations, and deadlines

  10. 1998 Pacific Northwest Loads and Resources Study: The White Book.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1998-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for inventory planning to determine BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The 1998 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1997 Pacific Northwest Loads and Resources Study.

  11. Special Issue Load Profiling Based Routing for

    E-Print Network [OSTI]

    Special Issue Load Profiling Based Routing for Guaranteed Bandwidth Flows \\Lambda IBRAHIM MATTA y the load across the set of candidate routes. In this paper, we propose the use of load profiling as an attractive alternative to load balancing for routing guaranteed bandwidth VCs (flows). Load profiling

  12. Pressure Drop and Voltage Response of PEMFC Operation under Transient Temperature and Loading Conditions

    E-Print Network [OSTI]

    Kandlikar, Satish

    to be a good diagnostic tool in characterizing the PEM fuel cells. Wang and Wang (8) numerically in to be versatile in power generation to meet the varying vehicular dynamic loads. The PEM fuel cell stacks within if the fuel cell powertrain is able to generate the load faithfully in corresponding to the varying demand

  13. Length: 238' Width: 55' Draft: 15' Full-load displacement: 3,024 LT

    E-Print Network [OSTI]

    Russell, Lynn

    AGOR 28 Length: 238' Width: 55' Draft: 15' Full-load displacement: 3,024 LT Berthing: 20 Crew, 24 profiling system, deep-, mid- and shallow-water acoustic doppler current profilers, acoustic navigation safety and load control · Condition-based power monitoring system for improved efficiency and control

  14. VITREOUS GEO2 RESPONSE UNDER IMPACT LOADING , T. J. Ahrens1

    E-Print Network [OSTI]

    Stewart, Sarah T.

    . Abstract. Stress wave profiles in vitreous GeO2 under planar shock loading were measured using stress wave profiles under planar impact. Two two- channel power supplies (CK-2, Dynasen, Inc.) were usedVITREOUS GEO2 RESPONSE UNDER IMPACT LOADING C. Liu1 , T. J. Ahrens1 and N. S. Brar2 1 Seismological

  15. Clean Power for the Internet

    E-Print Network [OSTI]

    Brown, E.; Elliott, R. N.; Shipley, A.

    is operated in combined heat and power (CHP) mode. It is easy in most states to install standby generators as they are generally used for emergency power for hospitals and other facilities that require constant power. Most state and local air quality... the same load. For this reason, the best option may be to bring the overall building energy use down simultaneously with these technological advances, thereby increasing productivity and decreasing total energy use. CHP Potential at Data Centers...

  16. PEM fuel cellstack development based on membrane-electrode assemblies of ultra-low platinum loadings

    SciTech Connect (OSTI)

    Zawodzinski, C.; Wilson, M.S.; Gottesfeld, S.

    1995-09-01T23:59:59.000Z

    Attempt is made to scale-up single cell technology, based on ultra-low platinum loadings, to develop a polymer electrolyte membrane fuel cell stack for stationary power generation.

  17. Environmental Assessment for power marketing policy for Southwestern Power Administration

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described.

  18. 1998 White Book, Pacific Northwest Loads and Resources Study (summary)

    SciTech Connect (OSTI)

    none,

    1998-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts.1 Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for inventory planning to determine BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. The 1998 White Book is presented in two documents: 1) this summary of Federal system and Pacific Northwest region loads and resources; and 2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1997 Pacific Northwest Loads and Resources Study. The load forecast is derived by using economic planning models to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA’s Firm Resource Exhibit (FRE Exhibit 1) submittals, and through analysis of the Federal hydroelectric power system. The 1998 study uses the same economic forecast used for the 1997 study. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands—firm loads—are subtracted from the projected capability of existing and “contracted for” resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads.

  19. Load-follow operation with the MSHIM control system

    SciTech Connect (OSTI)

    Morita, T.; Carlsen, B.W.; Kutz, J.P.

    1988-01-01T23:59:59.000Z

    As part of Westinghouse Electric Corporation's ongoing efforts to improve plant daily load-follow capability, a system has been developed that promises a significant enhancement of current load-maneuvering capabilities, while simultaneously reducing the burden on operators and plant systems. This concept, the mechanical shim (MSHIM), control system utilizes two independently operable groups of control banks for essentially simultaneous control of reactivity and axial power distribution. This system has been developed with the goal of supporting either of two operational modes. One mode is designed to maximize spinning reserve (MAXSR) capacity (return to full-power capability). The other mode minimizes boric (MINB) acid changes, hence effluent production, during the power maneuver. The features of the two control modes are summarized.

  20. Sequential power-up circuit

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-06-02T23:59:59.000Z

    A sequential power-up circuit for starting several electrical load elements in series to avoid excessive current surge, comprising a voltage ramp generator and a set of voltage comparators, each comparator having a different reference voltage and interfacing with a switch that is capable of turning on one of the load elements. As the voltage rises, it passes the reference voltages one at a time and causes the switch corresponding to that voltage to turn on its load element. The ramp is turned on and off by a single switch or by a logic-level electrical signal. The ramp rate for turning on the load element is relatively slow and the rate for turning the elements off is relatively fast. Optionally, the duration of each interval of time between the turning on of the load elements is programmable. 2 figs.

  1. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18T23:59:59.000Z

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  2. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30T23:59:59.000Z

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  3. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for ...

  4. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: “Decades of Wind Turbine Loads Simulations”, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  5. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  6. Electrical and Production Load Factors

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  7. Building load control and optimization

    E-Print Network [OSTI]

    Xing, Hai-Yun Helen, 1976-

    2004-01-01T23:59:59.000Z

    Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

  8. Loading and conjugating cavity biostructures

    DOE Patents [OSTI]

    Hainfeld, J.F.

    1997-11-25T23:59:59.000Z

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  9. Loading and conjugating cavity biostructures

    DOE Patents [OSTI]

    Hainfeld, J.F.

    1995-08-22T23:59:59.000Z

    Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.

  10. 1999 White Book, Pacific Northwest Loads and Resources Study

    SciTech Connect (OSTI)

    none,

    1999-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to its regional power sales contracts.1 Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book will not be used in calculations for the 2002 regional power sales contract subscription process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands—firm loads—are subtracted from the projected capability of existing and “contracted for” resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA’s Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem.

  11. Progress Report on Power Division Work Plan

    E-Print Network [OSTI]

    RPS & impacts on PNW · Analysis of negative wholesale power prices · Wind Integration Forum · Maintain balancing" DR pilot programs · Tracking Smart Grid Demo Project ­ ­ Will include "conventional" and "load/windProgress Report on Power Division Work Plan Power Committee Meeting October 2010 1 #12;The Division

  12. A Hierarchical Control Algorithm for Managing Electrical Energy Storage Systems in Homes Equipped with PV Power Generation

    E-Print Network [OSTI]

    Pedram, Massoud

    use their PV-based generation and controllable storage devices for peak shaving on their power demand controller should possess the ability of forecasting future PV-based power generation and load power consumption profiles for better performance. In this paper we present novel PV power generation and load power

  13. Incorporating HVDC's into monitoring and power system analysis 

    E-Print Network [OSTI]

    Krishnaswamy, Vikram

    2002-01-01T23:59:59.000Z

    system network. Load flow calculates the bus voltage magnitude, phase angle, active and reactive power flows based on loads and generations that are already specified. In this regard, our work presents a better way of solving AC - DC load flow equations...

  14. Economics of cool storage for electric load leveling

    SciTech Connect (OSTI)

    Asbury, J.G. (Argonne National Lab., IL); Dougherty, D.

    1981-01-01T23:59:59.000Z

    Equipment and methods for cold storage in commercial buildings to effect reduced summer peak load demands for electric utilities are described and the economics of this load leveling means is examined using the Potomac Electric Power Co. (PEPCO) studies and data. This examination reveals that investments in this technology can offer attractive paybacks (3 to 5 y) in new building applications. Partial storage, because of chiller-capacity savings, offers faster payback than full-storage systems. Estimates of its market potential indicate that cool storage will play an important role in PEPCO's Energy Use Management Plan. (LCL)

  15. Cooling load design tool for UFAD systems.

    E-Print Network [OSTI]

    Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

    2010-01-01T23:59:59.000Z

    De- velopment of a Simplified Cooling Load Design Tool forand C. Benedek. 2007. “Cooling airflow design calculationscalculation method for design cooling loads in underfloor

  16. Laser Driven Dynamic Loading of Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Driven Dynamic Loading of Condensed Matter Laser Driven Dynamic Loading of Condensed Matter Advanced diagnostics of experiments covering many orders of magnitude in strain...

  17. Microsoft Word - Draft Amendment to CFAC block power sales agreement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the payments to be made to it by BPA under the Agreement, CFAC acquired power in the wholesale power market to serve its industrial load during the full term of the Agreement. The...

  18. Optimal Shipboard Power System Management via Mixed Integer Dynamic Programming

    E-Print Network [OSTI]

    Kwatny, Harry G.

    feedback controls is described. Examples are given. I. INTRODUCTION Maintaining power flow to vital loads following component failure(s) is a central goal of power system management including electric shipboard

  19. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  20. An effective loading method of americium targets in fast reactors

    SciTech Connect (OSTI)

    Ohki, Shigeo; Sato, Isamu; Mizuno, Tomoyasu; Hayashi, Hideyuki; Tanaka, Kenya [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

    2007-07-01T23:59:59.000Z

    Recently, the development of target fuel with high americium (Am) content has been launched for the reduction of the overall fuel fabrication cost of the minor actinide (MA) recycling. In the framework of the development, this study proposes an effective loading method of Am targets in fast reactors. As a result of parametric survey calculations, we have found the ring-shaped target loading pattern between inner and outer core regions. This loading method is satisfactory both in core characteristics and in MA transmutation property. It should be noted that the Am targets can contribute to the suppression of the core power distribution change due to burnup. The major drawback of Am target is the production of helium gas. A target design modification by increasing the cladding thickness is found to be the most feasible measure to cope with the helium production. (authors)

  1. Model for Aggregated Water Heater Load Using Dynamic Bayesian Networks

    SciTech Connect (OSTI)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai; Kalsi, Karanjit

    2012-07-19T23:59:59.000Z

    The transition to the new generation power grid, or “smart grid”, requires novel ways of using and analyzing data collected from the grid infrastructure. Fundamental functionalities like demand response (DR), that the smart grid needs, rely heavily on the ability of the energy providers and distributors to forecast the load behavior of appliances under different DR strategies. This paper presents a new model of aggregated water heater load, based on dynamic Bayesian networks (DBNs). The model has been validated against simulated data from an open source distribution simulation software (GridLAB-D). The results presented in this paper demonstrate that the DBN model accurately tracks the load profile curves of aggregated water heaters under different testing scenarios.

  2. Integration of MHD load models with circuit representations the Z generator.

    SciTech Connect (OSTI)

    Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

    2013-03-01T23:59:59.000Z

    MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

  3. MODELING AND CONTROL OF THERMOSTATICALLY CONTROLLED LOADS

    E-Print Network [OSTI]

    Hiskens, Ian A.

    controlled loads (TCLs) has demonstrated that such load following is feasible, but analyt- ical models) is well matched to the role of load following. Re- search into the behavior of TCLs began with the work was then employed in a minimum variance control law to demonstrate the load following capability of a population

  4. Flow Duration Curve Load Duration Curve

    E-Print Network [OSTI]

    #12;Flow Duration Curve Load Duration Curve #12;1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve #12;What are they? How do you make one? #12;Describes

  5. Flow Duration Curve Load Duration Curve

    E-Print Network [OSTI]

    Flow Duration Curve Load Duration Curve 1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve What are they? How do you make one? Describes the percent of time a flow rate

  6. Prognostic Control and Load Survivability in Shipboard Power Systems 

    E-Print Network [OSTI]

    Thomas, Laurence J.

    2011-02-22T23:59:59.000Z

    in order to do preventive maintenance, predictive maintenance has to be implemented first. RCM has two assessments that can be used for preventive maintenance; failure modes and effects analysis (FMEA) and consequence of failure analysis (COFA). 11... FMEA is not practical because it is essentially capturing all functions in system and subsystem levels. Therefore, there is no guarantee that all functions are captured. The three phases can then be simplified using the COFA assessment. Phase I...

  7. Load frequency control of interconnected power systems with system constraints 

    E-Print Network [OSTI]

    Choudhury, Md Ershadul H

    1993-01-01T23:59:59.000Z

    of conventional steam units, changes in generations are initiated by turbine control valves and the boiler controls respond with necessary immediate control action upon sensing changes in steam flow and deviations in pressure. In this boiler following mode...

  8. A three phase load flow algorithm for Shipboard Power Systems

    E-Print Network [OSTI]

    Medina-Calder?on, M?onica M

    2003-01-01T23:59:59.000Z

    and are primarily used for transmission systems. These techniques cannot be used on disnibution systems for a variety of reasons. One particular characteristic of distribution systems is that distribution lines have resistance (R) values similar to the reactance... (X) values, hence high R/X ratios that make the system ill conditioned [3, 4, 5, 6], They also have a sparse admittance matrix that cannot be inverted for use in the traditional methods [7]. Due to the high R/X ratios and unbalanced operaflon...

  9. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01T23:59:59.000Z

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  10. Simulation of a Wireless Power Transfer System for Electric Vehicles with Power Factor Correction

    SciTech Connect (OSTI)

    Pickelsimer, Michael C [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL; Miller, John M [ORNL

    2012-01-01T23:59:59.000Z

    Wireless power transfer has been a popular topic of recent research. Most research has been done to address the limitations of coil-to-coil efficiency. However, little has been done to address the problem associated with the low input power factor with which the systems operate. This paper details the steps taken to analyze a wireless power transfer system from the view of the power grid under a variety of loading conditions with and without power factor correction.

  11. 2013 White Book, Pacific Northwest Loads and Resources Study (summary)

    SciTech Connect (OSTI)

    None

    2013-10-01T23:59:59.000Z

    The 2013 Pacific Northwest Loads and Resources Study (2013 White Book) is BPA's latest projection of the Pacific Northwest regional retail loads, contract obligations, contract purchases, and resource capabilities. The 2013 White Book is a snapshot of conditions as of October 1, 2013, documenting the loads and resources for the Federal system and region for the 10-year study period OY 2014 through 2023. The White Book contains projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. The White Book also contains information obtained from formalized resource planning reports and data submittals including those from individual utilities, the Northwest Power and Conservation Council (Council), and the Pacific Northwest Utilities Conference Committee (PNUCC). Starting with the 2012 White Book, BPA changed the annual production schedule for future White Books. BPA is scheduled to publish a complete White Book, which includes a Federal System Needs Assessment analysis, every other year (even years). In the odd-numbered years, BPA will publish a biennial summary update (Supplement) that only contains major changes to the Federal System and Regional System analyses that have occurred since the last White Book. http://www.bpa.gov/power/pgp/whitebook/2013/index.shtml.

  12. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

    2013-11-01T23:59:59.000Z

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  13. Outage Detection in Power Distribution Networks with Optimally-Deployed Power Flow Sensors

    E-Print Network [OSTI]

    Zhao, Yue

    Outage Detection in Power Distribution Networks with Optimally-Deployed Power Flow Sensors Yue Zhao deployed real-time power flow sensors and that of load estimates via Advanced Metering Infrastructure (AMI of Naval Research, under Grant N00014-12-1-0767. where supervisory control and data acquisition (SCADA

  14. Reactive Power Compensator.

    DOE Patents [OSTI]

    El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

    1992-07-28T23:59:59.000Z

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

  15. Reactive power compensator

    DOE Patents [OSTI]

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01T23:59:59.000Z

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  16. AGN Jet Mass Loading and Truncation by Stellar Winds

    E-Print Network [OSTI]

    Alexander Hubbard; Eric G. Blackman

    2006-04-28T23:59:59.000Z

    Active Galactic Nuclei can produce extremely powerful jets. While tightly collimated, the scale of these jets and the stellar density at galactic centers implies that there will be many jet/star interactions, which can mass-load the jet through stellar winds. Previous work employed modest wind mass outflow rates, but this does not apply when mass loading is provided by a small number of high mass-loss stars. We construct a framework for jet mass-loading by stellar winds for a broader spectrum of wind mass-loss rates than has been previously considered. Given the observed stellar mass distributions in galactic centers, we find that even highly efficient (0.1 Eddington luminosity) jets from supermassive black holes of masses $M_{BH} \\la 10^4M_{\\odot}$ are rapidly mass loaded and quenched by stellar winds. For $10^4 M_{\\odot}jets is independent of the jet's mechanical luminosity. Stellar wind mass-loading is unable to quench efficient jets from more massive engines, but can account for the observed truncation of the inefficient M87 jet, and implies a baryon dominated composition on scales $\\ga 2$ kpc therein even if the jet is initially pair plasma dominated.

  17. Behavior of Capstone and Honeywell microturbine generators during load changes

    SciTech Connect (OSTI)

    Yinger, Robert J.

    2001-07-01T23:59:59.000Z

    This report describes test measurements of the behavior of two microturbine generators (MTGs) under transient conditions. The tests were conducted under three different operating conditions: grid-connect; stand-alone single MTG with load banks; and two MTGs running in parallel with load banks. Tests were conducted with both the Capstone 30-kW and Honeywell Parallon 75-kW MTGs. All tests were conducted at the Southern California Edison /University of California, Irvine (UCI) test facility. In the grid-connected mode, several test runs were conducted with different set-point changes both up and down and a start up and shutdown were recorded for each MTG. For the stand-alone mode, load changes were initiated by changing load-bank values (both watts and VARs). For the parallel mode, tests involved changes in the load-bank settings as well as changes in the power set point of the MTG running in grid-connect mode. Detailed graphs of the test results are presented. It should be noted that these tests were done using a specific hardware and software configuration. Use of different software and hardware could result in different performance characteristics for the same units.

  18. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    SciTech Connect (OSTI)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01T23:59:59.000Z

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  19. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2010-01-01T23:59:59.000Z

    May 13 - 16, Appendix I Fuel cell hybrid vehicles with load510 cm 2 ) Appendix II Fuel cell vehicles with power assistcm 2 ) Appendix III Fuel cell vehicles with load leveling

  20. Fault Isolation for Spacecraft Systems: An Application to a Power Distribution

    E-Print Network [OSTI]

    Koutsoukos, Xenofon D.

    ]. The EPS supplies power to spacecraft systems and pay- loads. The EPS schematic in Figure 1 shows a battery connected to a load bank through a set of switches, cir- cuit breakers and an inverter. Since the dynamics

  1. Active Power Controls from Wind Power: Bridging the Gaps

    SciTech Connect (OSTI)

    Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

    2014-01-01T23:59:59.000Z

    This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

  2. PRB rail loadings shatter record

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2008-09-15T23:59:59.000Z

    Rail transport of coal in the Powder River Basin has expanded, with a record 2,197 trains loaded in a month. Arch Coal's Thunder basin mining complex has expanded by literally bridging the joint line railway. The dry fork mine has also celebrated its safety achievements. 4 photos.

  3. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1995-05-23T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  4. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  5. Test experience with multiterminal HVDC load flow and stability programs

    SciTech Connect (OSTI)

    Chapman, D.G.; Davies, J.B. (Manitoba HVDC Research Centre, Winnipeg, Manitoba (CA)); McNichol, J.R. (Manitoba Hydro, Winnipeg, Manitoba (CA)); Gulachenski, E.M.; Doe, S. (New England Power Service Co., Westboro, MA (US)); Balu, N.J. (EPRI, Palo Alto, CA (US))

    1988-07-01T23:59:59.000Z

    A powerful new set of load flow and stability programs for the study of HVdc systems has recently been completed. During the development of the programs novel applications of multiterminal HVdc systems were investigated, firstly on a large test system and later on actual utility models. This paper describes the test systems used, the HVdc systems studied and some of the interesting system related aspects of the HVdc system performance.

  6. Dynamic Load Altering Attacks in Smart Grid Sajjad Amini, Hamed Mohsenian-Rad, and Fabio Pasqualetti

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    of the power infrastructure [1]. However, IT and communications systems may also create new vulnerabilities Pasqualetti Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA-loop in a way that the load is changed in response to changes in power grid frequency, then we can introduce

  7. Optimal Design of Motor and Gear for Drives with High Acceleration and Load Torque

    E-Print Network [OSTI]

    Paderborn, Universität

    Optimal Design of Motor and Gear for Drives with High Acceleration and Load Torque H. Grotstollen-acceleration product are transmitted unchanged by an ideal gear. At a first step those motors can be selected which offer sufficient rated power and power rate. When designing gears for each of these motors two ranges

  8. Load Allocation Through Detailed Simulation Calibrated with Monitored Data

    E-Print Network [OSTI]

    Abushakra, B.

    2005-01-01T23:59:59.000Z

    of internal loads during the academic year (September – May). A true EUI value can be calculated after collecting monitored data for the whole year. ESL-IC-10/05-43 6 0 10 20 30 40 50 60 70 80 90 100 17: 00 5: 00 17: 00 5: 00 17: 00 5: 00 17: 00 5... between the parenthesis is the penalty): ()( )10.5 0.85 Billed Measured kW kW PF=?? (1) For any power factor value less than 0.85, the customer would pay more for the demand. A solution to improve the power factor is to install ESL-IC-10...

  9. 308 Building electrical load list and panel schedules

    SciTech Connect (OSTI)

    Giamberardini, S.J.

    1994-09-13T23:59:59.000Z

    This report contains two lists. The first lists equipment, load location, source of power, and breaker identification. The second compiles the same information but in a different format, namely, for each power source, the breaker, equipment, and location is given. Building 308 is part of the Fuels and Materials Examination Facility which houses the Secure Automated Fabrication process line for fabrication of reactor fuels and the Breeder Processing Engineering Test for processing Fast Flux Test Facility fuel to demonstrate closure of the fuel cycle.

  10. Power Supply Rejection Improvement Techniques In Low Drop-Out Voltage Regulators 

    E-Print Network [OSTI]

    Ganta, Saikrishna

    2011-10-21T23:59:59.000Z

    Efficency Load q DD I V P I I V ? ? (1.4) Typically the quiescent current of LDO is designed to be less than hundred micro amperes, while the maximum load current can be few hundreds of milliamperes, thus... at maximum loading conditions power efficiency is given by out Efficency DD V P V ? (1.5) Thus for maximum loading conditions power efficiency...

  11. Improving the Performance and Power Efficiency of Shared Helpers in CMPs

    E-Print Network [OSTI]

    Sherwood, Tim

    coal or nuclear power plants typically supply the ma- jority of power needs, during periods of peak power demand, auxiliary power plants (often powered by natural gas) are used to meet temporary loadImproving the Performance and Power Efficiency of Shared Helpers in CMPs Anahita Shayesteh Comp

  12. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    E-Print Network [OSTI]

    Norwood, Zack

    2010-01-01T23:59:59.000Z

    Cooling Heat and Power (CCHP) systems are being installed atand heating loads. These CCHP systems can also act as backupgenerators. In all cases the CCHP systems are rated at a

  13. Independent review of estimated load reductions for PJM's small customer load response pilot project

    E-Print Network [OSTI]

    Heffner, G.; Moezzi, M.; Goldman, C.

    2004-01-01T23:59:59.000Z

    of Estimated Load Reductions for PJM’s Small Customer Loadof Estimated Load Reductions for PJM’s Small Customer LoadResponse Pilot Project Prepared for PJM Interconnection, LLC

  14. Demand Response For Power System Reliability: FAQ

    SciTech Connect (OSTI)

    Kirby, Brendan J [ORNL

    2006-12-01T23:59:59.000Z

    Demand response is the most underutilized power system reliability resource in North America. Technological advances now make it possible to tap this resource to both reduce costs and improve. Misconceptions concerning response capabilities tend to force loads to provide responses that they are less able to provide and often prohibit them from providing the most valuable reliability services. Fortunately this is beginning to change with some ISOs making more extensive use of load response. This report is structured as a series of short questions and answers that address load response capabilities and power system reliability needs. Its objective is to further the use of responsive load as a bulk power system reliability resource in providing the fastest and most valuable ancillary services.

  15. Development of a Detailed Simulation Model to Support Evaluation of Water Load Shifting Across a Range of Use Patterns

    E-Print Network [OSTI]

    Samuel, A.; Tuohy, P.

    2014-01-01T23:59:59.000Z

    ). DHWcalc: Program to generate domestic hot water profiles with statistical means for user defined conditions. Proc. ISES Solar World Congress 2005, Orlando, USA. Lorenzetti, D. M. 2002. Computational Aspects of Nodal Multizone Airflow Systems... Optimum demand matched Weather: Based on monitored conditions Renewables: Wind Solar thermal Bio-mass Loads available for shifting: Hot water tank Space heating Plug loads Refrigeration Laundry Load shifting (Orchestration) function: input power...

  16. Magnetic Resonant Wireless Power Delivery for Distributed Sensor and Wireless Systems

    E-Print Network [OSTI]

    Cervesato, Iliano

    Magnetic Resonant Wireless Power Delivery for Distributed Sensor and Wireless Systems Brian J. Lee, Pittsburgh, PA 15213 Abstract-- In this paper we report on a resonant wireless power delivery system using to loads distributed in the system. We experimentally map the power distribution for one and multiple loads

  17. ACEEE Int. J. on Electrical and Power Engineering, Vol. 02, No. 01, Feb 2011 2011 ACEEE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .IJEPE.02.01.25 Simulation Studies of Shunt Passive Harmonic Filters: Six Pulse Rectifier Load Power support, i.e., the reactive power support required to arrest the voltage drop on loss of a plant generator- speed drive(ASD) systems [2], which may form a considerable percentage of overall plant load. When power

  18. ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 1 On the Parameter Estimation and Modeling of

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    ACCEPTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 1 On the Parameter Estimation and Modeling of Aggregate Power System Loads Valery Knyazkin, Student Member, IEEE, Claudio Ca~nizares, Senior Member, IEEE relevant to the problem of power system load modeling and identification. Two identification techniques

  19. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09T23:59:59.000Z

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  20. Climate Change Impacts on Residential and Commercial Loads in the Western U.S. Grid

    SciTech Connect (OSTI)

    Lu, Ning; Taylor, Zachary T.; Jiang, Wei; Xie, YuLong; Leung, Lai R.; Correia, James; Wong, Pak C.; Mackey, Patrick S.; Paget, Maria L.

    2008-09-30T23:59:59.000Z

    This report presents a multi-disciplinary modeling approach to quickly quantify climate change impacts on energy consumption, peak load, and load composition of residential and commercial buildings. This research focuses on addressing the impact of temperature changes on the building cooling load in 10 major cities across the Western United States and Canada. Our results have shown that by the mid-century, building yearly energy consumption and peak load will increase in the Southwest. Moreover, the peak load months will spread out to not only the summer months but also spring and autumn months. The Pacific Northwest will experience more hot days in the summer months. The penetration of the air conditioning (a/c) system in this area is likely to increase significantly over the years. As a result, some locations in the Pacific Northwest may be shifted from winter peaking to summer peaking. Overall, the Western U.S. grid may see more simultaneous peaks across the North and South in summer months. Increased cooling load will result in a significant increase in the motor load, which consumes more reactive power and requires stronger voltage support from the grid. This study suggests an increasing need for the industry to implement new technology to increase the efficiency of temperature-sensitive loads and apply proper protection and control to prevent possible adverse impacts of a/c motor loads.

  1. Hybrid power source

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2012-06-05T23:59:59.000Z

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  2. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2011-12-06T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  3. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P. (Pasco, WA); Donnelly, Matthew K. (Kennewick, WA); Dagle, Jeffery E. (Richland, WA)

    2006-12-12T23:59:59.000Z

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  4. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03T23:59:59.000Z

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  5. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electrical Energy Conservation Opportunities for Plug Loads and Lighting in UBC

    E-Print Network [OSTI]

    Conservation Opportunities for Plug Loads and Lighting in UBC Office Buildings Natalie Yao University for plug loads and lighting in UBC Office Buildings Natalie Yao University of British Columbia Clean Energy), Robert Padwick (IT group), David Rogers and Alvin Wai (BC Hydro's Power Smart), and all UBC staff who

  6. Decentralized Control of Aggregated Loads for Demand Response Di Guo, Wei Zhang, Gangfeng Yan, Zhiyun Lin, and Minyue Fu

    E-Print Network [OSTI]

    Zhang, Wei

    Decentralized Control of Aggregated Loads for Demand Response Di Guo, Wei Zhang, Gangfeng Yan of residential responsive loads for vari- ous demand response applications. We propose a general hybrid system and effectively reduce the peak power consumption. I. INTRODUCTION Demand response has the potential to shift

  7. Abstract--This work develops a three-phase unbalanced load flow tool tailored for radial distribution networks based

    E-Print Network [OSTI]

    Teodorescu, Remus

    support by PV inverters can be also merged together with the load flow solution tool and thus, the impact, thermal limits of grid components and power losses in radial MV-LV networks with photovoltaic (PV and validated with IEEE 13-bus test feeder. Index Terms--Load flow, LV network, PV integration, voltage

  8. IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 2, SEPTEMBER 2010 213 Automated Load Curve Data Cleansing

    E-Print Network [OSTI]

    Wang, Ke

    planning [1]. Two key features in the global vision of smart grid [2] are self-healing from powerIEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 2, SEPTEMBER 2010 213 Automated Load Curve Data of valid load curve data is critical for supporting decision making in a smart grid system. For example

  9. Hybrid robust predictive optimization method of power system dispatch

    DOE Patents [OSTI]

    Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

    2011-08-02T23:59:59.000Z

    A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

  10. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    DOE Patents [OSTI]

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23T23:59:59.000Z

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  11. 1994 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-12-01T23:59:59.000Z

    The 1994 Pacific Northwest Loads and Resources Study presented herein establishes a picture of how the agency is positioned today in its loads and resources balance. It is a snapshot of expected resource operation, contractual obligations, and rights. This study does not attempt to present or analyze future conservation or generation resource scenarios. What it does provide are base case assumptions from which scenarios encompassing a wide range of uncertainties about BPA`s future may be evaluated. The Loads and Resources Study is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the 1993 Pacific Northwest Loads and Resources Study, published in December 1993. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The Federal system and regional analyses for medium load forecast are presented.

  12. Statistical analysis of cascading failures in power grids

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Pfitzner, Rene [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory

    2010-12-01T23:59:59.000Z

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  13. Managing the Night Off-Peak Power Demand in the Central Region UPS with Newly Commissioned NPP Capacities

    SciTech Connect (OSTI)

    Aminov, R. Z. [Saratov Research Center of the Russian Academy of Sciences (Russian Federation); Pron’, D. M. [Yu. A. Gagarin Saratov State Technical University (Russian Federation)

    2014-01-15T23:59:59.000Z

    The use of hydrogen technologies as a controlled-load consumer based on the newly commissioned base-load nuclear power plants to level out the daily load profile is justified for the Unified Power System (UPS) of the Central Region of Russia, as an example, for the period till 2020.

  14. Power Transformer Application for Wind Plant Substations

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01T23:59:59.000Z

    Wind power plants use power transformers to step plant output from the medium voltage of the collector system to the HV or EHV transmission system voltage. This paper discusses the application of these transformers with regard to the selection of winding configuration, MVA rating, impedance, loss evaluation, on-load tapchanger requirements, and redundancy.

  15. Fundamental Drivers of Pacific Northwest Power Markets

    E-Print Network [OSTI]

    , utilities, power marketers, investors, and others on wholesale electricity and natural gas markets. Experts Load Transmission Thermal Hydro Wind (2005) #12;Natural Gas Capacity 6 5,000 MW of Natural Gas;Natural Gas Power Plant Production is Significantly Down 2010 to 2012 13 #12;Mid C Peak Heat Rates 14

  16. Communication Load Reduction for Neural Network Implementations

    E-Print Network [OSTI]

    Behnke, Sven

    the total amount of communication load, followed by a placement of partitions onto proces- sors 3]. We

  17. Load Management DSM: Past, Present & Future

    E-Print Network [OSTI]

    Gardner, E.

    1994-01-01T23:59:59.000Z

    . Several current load control programs have discovered that the best FIGURE 6 I marketing method is a "direct mailing" that gets across the message "Load Management will help keep everyone's electrical rates ~ low." The offer of the rebate may catch... thermostat was satisfied or whether the LCR prevented the electrical demand. At the 1993 DA/DSM conference, Scientific-Atlanta introduced the industry's first Load Management Interface &MI) circuit board which fits in a standard load control receiver...

  18. Plug Load Behavioral Change Demonstration Project

    SciTech Connect (OSTI)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01T23:59:59.000Z

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  19. Investigation of sands subjected to dynamic loading

    E-Print Network [OSTI]

    Reeves, Gary Neil

    1967-01-01T23:59:59.000Z

    become apparent that dynamic, or sud- denly applied loads, present a different type of problem to the engineer. Wind loads on tall structures, pile driving, nuclear blasts, and many other familiar loading conditions cannot be de- scribed or handled... an earthquake or nuclear blast. Also under this category of loading is the pulse which would be purposely induced to fail the soil structure for the purpose of excavation or pile driving. As part of a broader research project concerned with pile dri- ving...

  20. 1994 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-12-01T23:59:59.000Z

    The 1994 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration`s (BPA) planning basis for supplying electricity t6 BPA customers. The Loads and Resources Study is presented in two documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility; and (2) a summary of Federal system and Pacific Northwest region loads and resources. This analysis updates the 1993 Pacific Northwest Loads and Resources Study Technical Appendix published in December 1993. This technical appendix provides utility specific information that BPA uses in its long-range planning. It incorporates the following for each utility: (1) electrical demand-firm loads; (2) generating resources; and (3) contracts both inside and outside the region. This document should be used in combination with the 1994 Pacific Northwest Loads and Resources Study, published in December 1994, because much of the information in that document is not duplicated here. This BPA planning document incorporates Pacific Northwest generating resources and the 1994 medium load forecast prepared by BPA. Each utility`s forecasted future firm loads are subtracted from its existing resources to determine whether it will be surplus or deficit. If a utility`s resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which the utility can sell to increase revenues. Conversely, if its firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet the utility`s load.

  1. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01T23:59:59.000Z

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  2. Properly Evaluating load-following products

    SciTech Connect (OSTI)

    Cavicchi, Joseph; Lemon, Andrew

    2009-01-15T23:59:59.000Z

    The authors briefly survey the jurisdictions where load-following products have been successfully used, examine the characteristics of the load-following products, and explain the shortcomings and inaccurate conclusions of previous analyses. A more thorough analysis reveals that the load-following products fulfill the public policy objectives for which they have been designed and do not adversely impact wholesale electricity markets.

  3. Detecting Load Imbalance on the Cray XT

    E-Print Network [OSTI]

    @cray.com) © Cray Inc. Slide 10 Profile with Load Distribution by Groups Table 1: Profile by Function GroupDetecting Load Imbalance on the Cray XT Luiz DeRose Programming Environment Director Cray Inc. ldr@cray.com #12;Slide 2 Motivation for Load Imbalance Analysis Increasing system software and architecture

  4. Plutonium Immobilization Can Loading Preliminary Specifications

    SciTech Connect (OSTI)

    Kriikku, E.

    1998-11-25T23:59:59.000Z

    This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

  5. Beamstrahlung Photon Load on the TESLA Extraction Septum Blade(LCC-0104)

    SciTech Connect (OSTI)

    Seryi, A

    2003-10-02T23:59:59.000Z

    This note describes work performed in the framework of the International Linear Collider Technical Review Committee [1] to estimate the power load on the TESLA extraction septum blade due to beamstrahlung photons. It is shown, that under realistic conditions the photon load can be several orders of magnitude higher than what was estimated in the TESLA TDR [2] for the ideal Gaussian beams, potentially representing a serious limitation of the current design.

  6. Commercial and Industrial Conservation and Load Management Programs at New England Electric

    E-Print Network [OSTI]

    Gibson, P. H.

    COMMERCIAL AND INDUSTRIAL CONSERVAT~ON AND LOAD MANAGEMENT PROGRAMS AT NEW ENGLAND ELECTRIC PETER H. GIBSON Manager, Load Management and Conservation Services New England Power Service Company Westborough, Massachusetts ABSTRACT New... is directed mainly toward the commercial and industrial classes, which mske up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a...

  7. Topic 1: Basics of Power Systems A.H. MohsenianRad (U of T) 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    ) Transmission Lines Several Hundred Miles Switching Stations Transformers Circuit Breakers #12;Power Systems Grid 7 · Power Distribution: Medium Voltage (MV) Transmission Lines ( in Smart Grid 11 Nodes: Buses Links: Transmission Lines Generator Load #12;Power Grid Graph Representation

  8. U.S. Department of Energy Wind and Water Power Program Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield Improvement, Load Mitigation and Stabilization 4,594,933 FY11: U.S. Offshore Wind: Technology Development FOA Virginia Project Description Alstom Power is developing an...

  9. Home Energy Score API User: United Illuminating Company and Connecticut Light and Power

    Broader source: Energy.gov [DOE]

    The United Illuminating Company and Connecticut Light and Power, administering conservation, and load management programs funded by the Connecticut Energy Efficiency Fund, are Home Energy Score...

  10. Modeling Uncertainties in Aggregated Thermostatically Controlled Loads Using a State Queueing Model

    E-Print Network [OSTI]

    Ning Lu; David P. Chassin; Steve E. Widergren

    2004-09-19T23:59:59.000Z

    To study the impacts of price responsive demand on the electric power system requires better load models. This paper discusses the modeling of uncertainties in aggregated thermostatically controlled loads using a state queueing (SQ) model. The cycling times of thermostatically controlled appliances (TCAs) vary with the TCA types and sizes, as well as the ambient temperatures. The random consumption of consumers, which shortens or prolongs a specific TCA cycling period, introduces another degree of uncertainty. By modifying the state transition matrix, these random factors can be taken into account in a discrete SQ model. The impacts of considering load diversity in the SQ model while simulating TCA setpoint response are also studied.

  11. AdaptLoad: e ective balancing in clustered web servers under transient load conditions

    E-Print Network [OSTI]

    Riska, Alma

    manner [4, 17]. In this paper we concentrate on e#11;ective load sharing for a clustered web server makes e#11;ective request scheduling a diÆcult task that traditional load balancing methods failAdaptLoad: e#11;ective balancing in clustered web servers under transient load conditions #3; Alma

  12. Balancing load under large and fast load changes in distributed computing systems A case study

    E-Print Network [OSTI]

    Berthomieu, Bernard

    have been written about load sharing or load balancing (see e.g. [2] for references), but our sharing'' [7] technique. Load transfer can be implemented by moving processes at the time they are created (placement), but this method would not handle load implosions. Instead, we will use preemptive migrations

  13. Dynamic Load Balancing of Virtualized Database Services Using Hints and Load

    E-Print Network [OSTI]

    Kemper, Alfons

    server during runtime. Figure 1 shows the load curve of a typical interactive service. In the morningDynamic Load Balancing of Virtualized Database Services Using Hints and Load Forecasting Daniel-organizing infrastructures to react proactively. For this pur- pose we present two techniques: Short-term load forecasting

  14. Efficient Transmitters for Wireless Communications in Nanoscale CMOS Technology

    E-Print Network [OSTI]

    Chowdhury, Debopriyo

    2010-01-01T23:59:59.000Z

    output power,” in IEEE European Solid-State Circuitsoutput power,” in IEEE International Solid State Circuits+22dbm linear power ampli?er,” IEEE Journal of Solid State

  15. Neurocontrol of Pressurized Water Reactors in Load-Follow Operations

    SciTech Connect (OSTI)

    Lin Chaung; Shen Chihming

    2000-12-15T23:59:59.000Z

    The neurocontrol technique was applied to control a pressurized water reactor (PWR) in load-follow operations. Generalized learning or direct inverse control architecture was adopted in which the neural network was trained off-line to learn the inverse model of the PWR. Two neural network controllers were designed: One provided control rod position, which controlled the axial power distribution, and the other provided the change in boron concentration, which adjusted core total power. An additional feedback controller was designed so that power tracking capability was improved. The time duration between control actions was 15 min; thus, the xenon effect is limited and can be neglected. Therefore, the xenon concentration was not considered as a controller input variable, which simplified controller design. Center target strategy and minimum boron strategy were used to operate the reactor, and the simulation results demonstrated the effectiveness and performance of the proposed controller.

  16. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01T23:59:59.000Z

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  17. High payload six-axis load sensor

    DOE Patents [OSTI]

    Jansen, John F. (Knoxville, TN); Lind, Randall F. (Knoxville, TN)

    2003-01-01T23:59:59.000Z

    A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.

  18. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1996-10-15T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 figs.

  19. E-beam high voltage switching power supply

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage put under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  20. Engine combustion control at low loads via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07T23:59:59.000Z

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  1. Engineering to Control Noise, Loading, and Optimal Operating Points

    SciTech Connect (OSTI)

    Mitchell R. Swartz

    2000-11-12T23:59:59.000Z

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems.

  2. 1993 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 2, Book 1, Energy.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    The 1993 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration`s (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this technical appendix detailing loads and resources for each major Pacific and Northwest generating utility, (2) a summary of Federal system and Pacific Northwest region loads and resources, and (3) a technical appendix detailing forecasted Pacific Northwest economic trends and loads. This analysis updates the 1992 Pacific Northwest Loads and Resources Study Technical Appendix published in December 1992. This technical appendix provides utility-specific information that BPA uses in its long-range planning. It incorporates the following for each utility (1) Electrical demand firm loads; (2) Generating resources; and (3) Contracts both inside and outside the region. This document should be used in combination with the 1993 Pacific Northwest Loads and Resources Study, published in December 1993, because much of the information in that document is not duplicated here.

  3. 2554 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 3, AUGUST 2013 Branch Flow Model: Relaxations

    E-Print Network [OSTI]

    Low, Steven H.

    2554 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 3, AUGUST 2013 Branch Flow Model: Relaxations--Convex relaxation, load flow control, optimal power flow, phase control, power system management. I. INTRODUCTION A and operation of power systems. One of the motivations for our work is the optimal power flow (OPF) problem. OPF

  4. Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder

    E-Print Network [OSTI]

    Caramanis, Michael

    Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder : Power system markets, Power system economics Key Words: Load management, Electric vehicle grid Transactions on Power Systems #12;WORKING PAPER 1 Optimal Power Market Participation of Plug-In Electric

  5. Using Batteries to Reduce the Power Costs of Internet-scale Distributed

    E-Print Network [OSTI]

    Berger, Emery

    margin) Power Savings: (Ppeak ­ Pbatt) Cost Savings: cp(Ppeak ­ Pbatt) ­ cbB/L cp= cost of power ($/KW Empirical Evaluation: Power Savings Empirical Evaluation: Cost Savings Outline Concluding Remarks #12;Power, Global Load Balancing, etc. #12;Provisioning Algorithms Empirical Evaluation: Power Savings Empirical

  6. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    the set temperature ? Power loss and initial electronicsprotection even at total power loss Table 5 provides thenot activate with total power loss or electronics shutdown ?

  7. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    Analysis for Power System Stability, Kluwer Academic Analysis for Power System Stability, Kluwer Academic20] P. Kundur, Power System Stability and Control, EPRI

  8. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    Edison and  Bonneville Power Administration.   SCE acquired Steve Yang of the Bonneville Power Administration for their conducted by Bonneville Power Administration.   These 

  9. Price-Responsive Load (PRL) Program - Framing Paper No.1

    SciTech Connect (OSTI)

    Goldman, Charles A.

    2002-03-01T23:59:59.000Z

    By definition, effective and efficient competitive markets need a supply side and a demand side. One criticism of electric restructuring efforts in many states is that most of the attention has been focused on the supply side, in a market focused on the short term. In general, the demand side of the market has been under-addressed. The objective of the New England Demand Response Initiative (NEDRI) is to develop a comprehensive, coordinated set of demand response programs for the New England regional power markets. NEDRI aims to maximize the capability of demand response to compete in the wholesale market and to improve the economic efficiency and environmental profile of the electric sector. To those ends, NEDRI is focusing its efforts in four interrelated areas: (1) ISO-level reliability programs, (2) Market-based price-responsive load programs, (3) Demand response at retail through pricing, rate design, and advanced metering, and (4) End-use energy efficiency resources as demand response. The fourth area, energy efficiency, is the subject of this framing paper. Energy efficiency reduces the energy used by specific end-use devices and systems, typically without affecting the level of service and without loss of amenity. Energy savings and peak load reductions are achieved by substituting technically more advanced equipment, processes, or operational strategies to produce the same or an improved level of end-use service with less electricity. In contrast, load management programs lower peak demand during specific, limited time periods by either (1) influencing the timing of energy use by shifting load to another time period, or (2) reducing the level of energy use by curtailing or interrupting the load, typically with some loss of service or amenity.

  10. Loads Providing Ancillary Services: Review of International Experience

    E-Print Network [OSTI]

    Heffner, Grayson

    2008-01-01T23:59:59.000Z

    for generators. A partial list of load attributes andpartial list includes: • Minimum run times • Minimum off times • Minimum load

  11. Load research manual. Volume 2. Fundamentals of implementing load research procedures

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussed in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.

  12. Power System Level Impacts of Plug-In Hybrid Vehicles

    E-Print Network [OSTI]

    (PSERC) is a multi-university Center conducting research on challenges facing the electric power industry to the electric power industry. The impact of PHEVs on the power grid is investigated. The methodology electric and gas, (b) simulation of the electric infrastructure (distribution systems) and the loading

  13. Memory Power Management via Dynamic Voltage/Frequency Scaling

    E-Print Network [OSTI]

    McGaughey, Alan

    years. In the data center environment, thermal management and power budgeting have become significant transitions [10, 23], or scal- ing active server power proportionally to load [2]. In this paper, we focusMemory Power Management via Dynamic Voltage/Frequency Scaling Howard David, Chris Fallin§, Eugene

  14. Memory Power Management via Dynamic Voltage/Frequency Scaling

    E-Print Network [OSTI]

    Mutlu, Onur

    years. In the data center environment, thermal management and power budgeting have become significant sleep transitions [10, 23], or scal- ing active server power proportionally to load [2]. In this paperMemory Power Management via Dynamic Voltage/Frequency Scaling Howard David, Chris Fallin§, Eugene

  15. IIIII 'I'. I'IU. ALSEP Array E Power Budget

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Experiment Power Profiles Prepa red by:-::----::-q,.;___~--J(__(JJJIJJVI_____ J. E. Kasser #12;TABLE I DATA. ~~*Includes 0. 075 watts for quiescent load of PDU active circuits. All powers are in watts. Page 2 #12;TABLEIIIII 'I'. I'IU. ATM 1076 ALSEP Array E Power Budget OF 10 DATI! 2-1-72 SUMMARY This issue

  16. 12 November 2009 Technology and Applications for

    E-Print Network [OSTI]

    Coldren, Larry A.

    ,896,325 (January 1990) 13dBm 16dBm 19dBm FIBER POWER 192 193 194 195 196 Channel Frequency (THz) 45 50 55SMSR (d / channel ­ Total capacity: 640 Gbps ­ Error-free operation · Photonic integration technologies designed Waveguide Substrate Air InP:Zn Cladding Waveguide QWs + Barriers Waveguide #12;12 November 2009 Rib

  17. Microturbine Power Conversion Technology Review

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-07-21T23:59:59.000Z

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

  18. Isolated and soft-switched power converter

    DOE Patents [OSTI]

    Peng, Fang Zheng (Knoxville, TN); Adams, Donald Joe (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  19. A Self-powered Power Management Circuit for Energy Harvested by a Piezoelectric Cantilever

    E-Print Network [OSTI]

    Ha, Dong S.

    is sufficient to charge up the load. A low power microcontroller unit is used for the maximum power point, Energy harvesting, Piezoelectric cantilever I. INTRODUCTION Replacement or recharge of batteries). To match the impedance of a piezoelectric cantilever, it requires a prohibitively large inductance. Several

  20. Advance Three Phase Power Factor Correction Schemes for Utility Interface of Power Electronic Systems

    E-Print Network [OSTI]

    Albader, Mesaad

    2014-07-30T23:59:59.000Z

    of each rectifier employs harmonic injection technique to reduce the low order harmonics. And, the DC output voltage is varied with the load power such that the operation is at the boundary between CCM and DCM to achieve maximum power density tracking...

  1. Control of high power IGBT modules in the active region for fast pulsed power converters

    E-Print Network [OSTI]

    Cravero, JM; Garcia Retegui, R; Maestri, S; Uicich, G

    2014-01-01T23:59:59.000Z

    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  2. NOTICE OF RENEWABLE POWER STANDARDS (RPS) MEETING Renewable Portfolio Standard Plan Before Council

    E-Print Network [OSTI]

    establishes minimum quantities of renewable energy resources that load serving entities must procure annually of renewables energy resources that load serving entities must procure annually through 2020. Each load servingNOTICE OF RENEWABLE POWER STANDARDS (RPS) MEETING Renewable Portfolio Standard Plan Before Council

  3. Deep Well #4 Backup Power Systems Project Closeout Report

    SciTech Connect (OSTI)

    Jeremy Westwood

    2010-04-01T23:59:59.000Z

    The project scope was to install a diesel generated power source to deep well 4 in addition to the existing commercial power source. The diesel power source and its fuel supply system shall be seismically qualified to withstand a Performance Category 4 (PC-4) seismic event. This diesel power source will permit the deep well to operate during a loss of commercial power. System design will incorporate the ability to select and transfer power between the new diesel power source and commercial power sources for the the deep well motor and TRA-672 building loads.

  4. Bulk Modulus Capacitor Load Cells

    SciTech Connect (OSTI)

    Dickey, C.E.

    1990-04-01T23:59:59.000Z

    Measurement of forces present at various locations within the SSC Model Dipole collared coil assembly is of great practical interest to development engineers. Of particular interest are the forces between coils at the parting plane and forces that exist between coils and pole pieces. It is also desired to observe these forces under the various conditions that a magnet will experience such as: during the collaring process, post-collaring, under the influence of cryogens, and during field excitation. A twenty eight thousandths of an inch thick capacitor load cell which utilizes the hydrostatic condition of a stressed plastic dielectric has been designed. These cells are currently being installed on SSC Model Dipoles. The theory, development, and application of these cells will be discussed.

  5. Tar loads on Omani beaches

    SciTech Connect (OSTI)

    Badawy, M.I.; Al-Harthy, F.T. (National Research Center, Cairo (Egypt))

    1991-11-01T23:59:59.000Z

    Owing to Oman's geographic position and long coastal line, the coastal areas of Oman are particularly vulnerable to oil pollution from normal tanker operations, illegal discharges, and accidental spills as well as local sources of oil input. UNEP carried out a survey on the coasts of Oman to determine the major sources of oil pollution and concluded that the major shoreline pollution problems in Oman arose from operational discharges of oil from passing vessels traffic. The oil, because of the high sea and air temperatures in the area, was subjected to relatively high rates of evaporation and photo-oxidation and tended to arrive at the coast as heavy petroleum particulate residues (tar balls). The aim of the present study was to measure the loads of tar balls in Omani coastal areas and to identify the source of oil pollutants on beaches.

  6. North American Power Symposium NAPS, San Luis Obispo, California, October 1999. EMTP Studies of UPFC Power Oscillation Damping

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    transmission sys- tems, rather then on building new transmission lines and power stations, for economical and reactive power on transmission lines to allow for their secure loading, to full thermal capability in some . The SSSC, a substitute for the TCSC, can be used to control the power ow in a transmission line by changing

  7. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    model for electrical power  systems may be established.  model for electrical power  systems may be established.  power system,” International Journal of Electrical Power and Energy  Systems, 

  8. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    SciTech Connect (OSTI)

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17T23:59:59.000Z

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  9. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  10. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12T23:59:59.000Z

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  11. 2012 White Book, Pacific Northwest Loads and Resources Study

    SciTech Connect (OSTI)

    None

    2013-06-06T23:59:59.000Z

    The White Book is a planning analysis produced by BPA that informs BPA of its load and resource conditions for sales and purchases. The White Book provides a 10-year look at the expected obligations and resources in the Federal system and PNW region. The White Book is used as a planning tool for the Columbia River Treaty (Treaty) studies, as an information tool for customers and regional interests, and as a publication of information utilized by other planning entities for their analyses. The White Book is not used to guide day-to-day operations of the Federal Columbia River Power System (FCRPS) or determine BPA revenues or rates.

  12. Load flow studies in the presence of magnetohydrodynamic electromagnetic pulse

    SciTech Connect (OSTI)

    Kruse, V.J.; Rackliffe, G.B. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Advanced Systems Technology Div.); Barnes, P.R. (Oak Ridge National Lab., TN (USA))

    1990-04-01T23:59:59.000Z

    Seconds after a high-altitude nuclear event, the earth's surface experiences a very low-frequency, quasi-DC magnetohydrodynamic electromagnetic field (MHD-EMP). MHD-EMP fields impress quasi-DC currents on transmission and sub-transmission lines. These current magnitudes can exceed several times the transformer exciting current levels. Transformers and shunt reactors experience severe half-cycle saturation resulting in harmonics and increased VAR demand. This paper reviews the calculation of the quasi-dc currents, discusses the calculation of the increased var demand, and evaluates the effect of a simulated MHD-EMP event on a power system with stability and load flow analyses.

  13. Load-Based (LB) CRAC (rates/adjustments)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let usNuclear SecurityTechnologyLoad-Based (LB)

  14. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.

    2014-09-01T23:59:59.000Z

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  15. Building Technologies Office Load Control Strategies

    Broader source: Energy.gov [DOE]

    BTO researches and implements load control strategies, which support the Sustainable and Holistic IntegratioN of Energy storage and Solar PV (SHINES) FOA.

  16. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    of individual appliances. For off-grid applications, solarinappropriate load for an off-grid solar system. Increasedsolar systems in general, and off-grid solar systems in

  17. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    Lights HVAC Figure 15 Demand Response and Market AnalysisHVAC Load % of Total Hour of Day Figure 16 Demand Response and Market

  18. Optimal Power Flow Based Demand Response Offer Price Optimization

    E-Print Network [OSTI]

    Lavaei, Javad

    Optimal Power Flow Based Demand Response Offer Price Optimization Zhen Qiu 1 Introduction-time energy balance. Demand response programs are offered by the utility companies to reduce the load response cost in exchange for load reduction. A considerable amount of papers have discussed the demand

  19. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    methodology to compare supply and demand-side resources. The screening curve approach supplements with load curve approach supplements with load shape information the data contained in a supply curve of conservedLBL-27286 Conservation Screening Curves to Compare Efficiency Investments to Power Plants Jonathan

  20. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA)

    1983-01-01T23:59:59.000Z

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  1. POWER CHARACTERISTICS OF INDUSTRIAL AIR COMPRESSORS Chris Schmidt

    E-Print Network [OSTI]

    Kissock, Kelly

    and with different loads are discussed as case studies. The case studies illustrate how to identify the type, and compressed air leaks from the power signatures. Average operating efficiencies for the case studies

  2. PowerChoice Residential Customer Response to TOU Rates

    E-Print Network [OSTI]

    Peters, Jane S.

    2010-01-01T23:59:59.000Z

    January 15. Office of Tariffs and Markets. Laird, N.M. andseason load- data analysis Tariff Period Weekday Off-Peaka.m. Table 3-2. PowerChoice tariff seasons Months June July

  3. Statistical classification of cascading failures in power grids

    E-Print Network [OSTI]

    Pfitzner, Rene

    We introduce a new microscopic model of the outages in transmission power grids. This model accounts for the automatic response of the grid to load fluctuations that take place on the scale of minutes, when the optimum ...

  4. Miniaturized, low-voltage power converters with fast dynamic response

    E-Print Network [OSTI]

    Giuliano, David (David Michael)

    2013-01-01T23:59:59.000Z

    This thesis introduces a two-stage architecture that combines the strengths of switched capacitor (SC) techniques (small size, light-load performance) with the high efficiency and regulation capability of switch-mode power ...

  5. Generalized power method for sparse principal component analysis

    E-Print Network [OSTI]

    2008-11-28T23:59:59.000Z

    Keywords: sparse PCA, power method, gradient ascent, strongly convex sets, block algo- ... to find sparse loading vectors in the subspace identified by PCA. ...... Gene-expression profiles to predict distant metastasis of lymph-node-

  6. The Industrial Power Plant Management System - An Engineering Approach

    E-Print Network [OSTI]

    Aarnio, S. E.; Tarvainen, H. J.; Tinnis, V.

    1979-01-01T23:59:59.000Z

    Based on energy studies in over 70 plants in the forest products industry, experience has shown that, in addition to process improvements, the most important energy conservation measures in mill power departments are: - Load shedding and fuel...

  7. 17.March.2005 1 Connection to the CERN Power System

    E-Print Network [OSTI]

    McDonald, Kirk

    electricity costs #12;17.March.2005 3 Characteristics of the load - power pulses (1 pulse every 30 min) -3.0E harmonic distortion - in addition: harmonic filtering for Meyrin at JURA substation Conclusion: No Problem

  8. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16T23:59:59.000Z

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  9. Real Power Regulation for the Utility Power Grid via Responsive Loads -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds forAdvancedAdvancedReadingofEnergy

  10. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01T23:59:59.000Z

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  11. Abstract--A bi-objective optimization model of power and power changes generated by a wind turbine is discussed in this

    E-Print Network [OSTI]

    Kusiak, Andrew

    operating a variable-speed wind turbine with pitch control to maximize power while minimizing the loads prediction, power ramp rate, data mining, wind turbine operation strategy, generator torque, blade pitch1 Abstract--A bi-objective optimization model of power and power changes generated by a wind

  12. Submitted to IEEE Transactions on Power Systems, Nov. 2007 1 Abstract--A key need facing the electric power industry is the

    E-Print Network [OSTI]

    Submitted to IEEE Transactions on Power Systems, Nov. 2007 1 Abstract--A key need facing are included, along with external system connections to demonstrate how power is imported and exported Terms--educational technology, energy conservation, power engineering education, power systems, load

  13. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    SciTech Connect (OSTI)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01T23:59:59.000Z

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  14. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30T23:59:59.000Z

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  15. Effects of dynamic conditions and sheave efficiency on hook load, derrick load, and line tension

    E-Print Network [OSTI]

    Luke, Gregory Robert

    1991-01-01T23:59:59.000Z

    EFFECTS OF DYNAMIC CONDITIONS AND SHEAVE EFFICIENCY ON HOOK LOAD, DERRICK LOAD, AND LINE TENSION A Thesis by GREGORY ROBERT LUKE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1991 Major Subject: Petroleum Engineering EFFECTS OF DYNAMIC CONDITIONS AND SHEAVE EFFICIENCY ON HOOK LOAD, DERRICK LOAD, AND LINE TENSION A Thesis by GREGORY ROBERT LUKE Approved as to style and content by: Hans...

  16. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11T23:59:59.000Z

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  17. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect (OSTI)

    Ray, C.; Huang, Z.

    2007-01-01T23:59:59.000Z

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  18. Design of a Norm-Bounded LQG Controller for Power Distribution Networks with Distributed Generation

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    . Therefore, control of modern electric power systems becomes more and more challenging as the present trends control is essential. Moreover, induction motor loads account for a large portion of domestic loadsDesign of a Norm-Bounded LQG Controller for Power Distribution Networks with Distributed Generation

  19. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01T23:59:59.000Z

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  20. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service

    SciTech Connect (OSTI)

    Lu, Ning

    2012-09-30T23:59:59.000Z

    This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

  1. TEP Power Partners Project [Tucson Electric Power

    SciTech Connect (OSTI)

    None

    2013-11-19T23:59:59.000Z

    The Arizona Governor’s Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants’ goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents’ are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

  2. Thermionic converter in load-switching mode

    SciTech Connect (OSTI)

    Mendel'baum, M.A.; Es'kov, V.D.

    1983-01-01T23:59:59.000Z

    An electrical equivalent circuit is proposed for a thermionic electrogenerating element. It is suitable for calculation of transients in load-switching mode. Formulas are given for estimating circuit parameters. A sample numerical calculation is given for the transient between no-load and short-circuit regimes. The results may be employed to identify experimental data in the frequency domain.

  3. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  4. REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS

    E-Print Network [OSTI]

    Gross, George

    REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS EttoreBompard, Enrico of the nodal prices in competitive electricity markets based on the Pool paradigm. Such prices focus of the paper is on the explicit evaluation of the impactsof the reactive load onthenodal real

  5. Wind induced torsional loads on structures

    E-Print Network [OSTI]

    Kareem, Ahsan

    Wind induced torsional loads on structures A. Kareem Department of Civil Engineering, University degrees of freedom. If the resultant wind forces do not coincide with the centre of mass at each floor is also sensitive to the ratio of torsional to translational frequencies. There is no existing wind load

  6. Steam Load Reduction Guidance Emergency Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Steam Load Reduction Guidance Emergency Management Program v October 2014 Steam_Load_Reduction_Guidance_DSRDSR 1.0 PurposeandScope Utilities provides steam to the campus community for space heating, hot water in the steam distribution system or the Central Energy Plant, the preservation of building infrastructure

  7. Evaluation of a Local Air Conditioning Duty Cycling Device as a Load Management Tool

    E-Print Network [OSTI]

    Schneider, K.; Thedford, M.

    1986-01-01T23:59:59.000Z

    During the summer of 1984, a test was performed to evaluate a local air conditioning duty cycling device as a tool to reduce TUEC's system summer peak demand. In addition to the local duty cycling device, a direct load control device using a power...

  8. Recent Approaches to Non-intrusive Load Monitoring Techniques in Residential Settings

    E-Print Network [OSTI]

    Sekercioglu, Y. Ahmet

    settings to manage peak consumption periods [5]. This issue, called "Demand Response" (DR), is one to a home is required. Fluctuations in the aggregate power consumption signals are used to mathematically of electricity demand while giving incentives to consumers in the form of reduced pricing. However, load shedding

  9. LQG control of horizontal wind turbines for blades and tower loads alleviation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    LQG control of horizontal wind turbines for blades and tower loads alleviation A. Pintea*, N of power produced by two bladed horizontal variable speed wind turbines. The proposed controller ensures not only an optimal operation of turbines but also enables a compromise with the minimization of the blade

  10. NON-DESTRUCTIVE DETERMINATION OF SERVICEABILITY AND LOAD BEARING CAPACITY OF FLOOR SLABS USING DYNAMIC METHODS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , output-only modal analysis, Frequency Domain Decomposition, system identification, model updating in this case is the verification of the serviceability and the load bearing capacity towards the certification particularly powerful. The big advantage is that the exciting forces need not to be measured. As a consequence

  11. Low Mach number simulation of a loaded standing-wave thermoacoustic engine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Low Mach number simulation of a loaded standing-wave thermoacoustic engine L. Maa , C. I. Weismana standing-wave thermoacoustic engine are performed using a low Mach number model. This work uses- wave thermoacoustic engine, the acoustic power developed is calculated and the efficiency is estimated

  12. The Influence of Air-Conditioning Efficiency in the Peak Load Demand for Kuwait 

    E-Print Network [OSTI]

    Ali, A. A.; Maheshwari, G. P.

    2007-01-01T23:59:59.000Z

    ) The annual savings realized in peak load demand and cost of electric power generation and distribution network ( ) due to this revision are: nPRSAV PL ,, n,PR SAV nPRACACnPRAC PLPLPL ,,,, ?=? (4) 400*000,1* ,,, nPRACnPR PLSAV...

  13. Cascade Failure in a Phase Model of Power Grids

    E-Print Network [OSTI]

    Sakaguchi, Hidetsugu

    2012-01-01T23:59:59.000Z

    We propose a phase model to study cascade failure in power grids composed of generators and loads. If the power demand is below a critical value, the model system of power grids maintains the standard frequency by feedback control. On the other hand, if the power demand exceeds the critical value, an electric failure occurs via step out (loss of synchronization) or voltage collapse. The two failures are incorporated as two removal rules of generator nodes and load nodes. We perform direct numerical simulation of the phase model on a scale-free network and compare the results with a mean-field approximation.

  14. Equilibrium Configurations of Cantilever under Terminal Loads

    E-Print Network [OSTI]

    Milan Batista

    2013-03-27T23:59:59.000Z

    The paper provides an exact analytical solution for equilibrium configurations of cantilever rod subject to inclined force and torque acting on its free end. The solution is given in terms of Jacobi elliptical functions and illustrated by several numerical examples and several graphical presentations of shapes of deformed cantilever. Possible forms of cantilever underlying elastica are discussed in details and various simple formulas are given for calculation of characteristic dimensions of elastica. For the case when cantilever is subject only to applied force four load conditions are discussed: follower load problem, load determination problem, conservative load problem and rotational load problem. For all the cases the formulas or effective procedure for solution is given.

  15. preprint; to appear in IEEE Systems Journal special issue on Complex Systems Estimating propagation and distribution of load shed in simulations of cascading

    E-Print Network [OSTI]

    Dobson, Ian

    be better quantified and mitigated. The electric power infrastructure is vital in maintaining our society, and maintaining high reliability is especially important as the electric power infrastructure is being transformed of electric power systems. The average propagation of the simulated load shed data is estimated

  16. COMPENG 2010: Complexity in Engineering, Rome Italy, February 2010 c IEEE 2010 Propagation of load shed in cascading line outages simulated by OPA

    E-Print Network [OSTI]

    Dobson, Ian

    and mitigated. The electric power infrastructure is vital in maintaining our so- ciety, and maintaining high reliability is especially impor- tant as the electric power infrastructure is being transformed in response and the probability distribution of load shed in simulated blackouts of an electric power system. The average

  17. Power Modeling and Optimization for GPGPUs

    E-Print Network [OSTI]

    Li, Zhi

    2013-05-31T23:59:59.000Z

    Caused by the switching of transistors to charge and discharge the load capacitance, dynamic power can be calculated by the following equation: 2 d ddP aCV f? (1) Here, the activity factor, a , is a fraction between 0 and 1 indicating how often... in [17]. 3.2 Power Modeling Methodology The basic idea to calculate dynamic power of streaming multiprocessors in this model is similar to Wattch. I consider dynamic power of different structure blocks inside each SM, 10 and calculate...

  18. Optimization of auxiliary power systems design for large generating units

    SciTech Connect (OSTI)

    Fabri, E.I.; Kang, E.K.; Dusterdick, R.W.

    1980-01-01T23:59:59.000Z

    Modern fossil and nuclear generating units require the support of a fairly large and complex electric auxiliary power system. The selection of an optimized and cost-effective auxiliary power transformer rating may be a difficult process, since the loading profile and coincident operation of the loads often cannot be firmly defined at an early stage of design. The authors believe that this important design process could be greatly aided by systematic field tests and recording of the actual auxiliary loading profiles during various modes of plant operations.

  19. Microgrids and Heterogeneous Power Quality and Reliability

    SciTech Connect (OSTI)

    LaCommare, Kristina; Marnay, Chris

    2007-10-01T23:59:59.000Z

    This paper describes two stylized alternative visions of how the power system might evolve to meet future requirements for the high quality electricity service that modern digital economies demand, a supergrids paradigm and a dispersed paradigm. Some of the economics of the dispersed vision are explored, and perspectives are presented on both the choice of homogeneous universal power quality upstream in the electricity supply chain and on the extremely heterogeneous requirements of end-use loads. It is argued that meeting the demanding requirements of sensitive loads by local provision of high quality power may be more cost effective than increasing the quality of universal homogeneous supply upstream in the legacy grid. Finally, the potential role of microgrids in delivering heterogeneous power quality is demonstrated by reference to two ongoing microgrid tests in the U.S. and Japan.

  20. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    IEEE Transactions on Power Systems, vol.  16, no.  4, pp.  Hiskens, I.A.   2004.   “Power system modeling for inverse voltage Protection Schemes,” Power System Conference and 

  1. Abstract--In this paper, a hierarchical control scheme is pro-posed for enhancement of Sensitive Load Bus (SLB) voltage

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    ) are often connected to the utility grid or microgrid through a power-electronic interface converter. Microgrid is a local grid consisting of DGs, energy storage systems and dispersed loads which may operate Load Bus (SLB) voltage quality in microgrids. The control structure consists of primary and secondary

  2. IEEE TRANSACTIONS ON POWER SYSTEMS 1 Large-Scale Integration of Deferrable

    E-Print Network [OSTI]

    Oren, Shmuel S.

    . Index Terms--Load management, power generation scheduling, wind power generation. I. INTRODUCTION on power system operations it is necessary to represent the balancing oper- ations of the remaining gridIEEE TRANSACTIONS ON POWER SYSTEMS 1 Large-Scale Integration of Deferrable Demand and Renewable

  3. Project Sponsors:ADVANCED POWER & ENERGY www.apep.uci.edu

    E-Print Network [OSTI]

    Mease, Kenneth D.

    -load power is unable to adjust to renewable variability, introducing curtailment of wind and solar power due-induced exponential capacity effects for a 50/50 mix of wind and solar power HiGRID Tool Development of the Holistic on Grid CO2 Emissions This highlights the importance of increasing the flexibility of balancing power

  4. Wind Power Integration via Aggregator-Consumer Coordination: A Game Theoretic Approach

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    the balance between load and generation in the power grid at all times [2]. Moreover, wind generation is nonWind Power Integration via Aggregator-Consumer Coordination: A Game Theoretic Approach Chenye Wu@ie.cuhk.edu.hk Abstract--Due to the stochastic nature of wind power, its large-scale integration into the power grid

  5. Output Feedback Control Design for Interconnected Power Systems with OLTCs via Robust Decentralized Control

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Introduction The primary task of the power system control is to provide reliable and secure electric power goes to infinity. The random variations in load in a power system can be captured by modelling linearised power system models are employed. Normally the system is simplified as single ma- chine connected

  6. Synthesis of polyoxometalate-loaded epoxy composites

    DOE Patents [OSTI]

    Anderson, Benjamin J

    2014-10-07T23:59:59.000Z

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  7. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    When modeling the PV systems in the electric power systems, modeling the PV systems in the electric  power systems, 

  8. Combined Thermal and Power Energy Management Optimization

    E-Print Network [OSTI]

    Ahner, D. J.; Priestley, R. R.

    have heat recovery steam generators, one supplementary fired delivering power and process steam to the plant electrical and steam header distribution systems. The optimum dispatch of these gas turbine units under specified power and steam load... value. The dispatch of the units is determined by their relative incremental efficiency in delivering steam to the process header which results in the optimum dispatch condition of equal incremental heat recovery efficiencies. The equal incremental...

  9. SITE ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E.P. McCann

    1999-04-16T23:59:59.000Z

    The Site Electrical Power System receives and distributes utility power to all North Portal site users. The major North Portal users are the Protected Area including the subsurface facility and Balance of Plant areas. The system is remotely monitored and controlled from the Surface Operations Monitoring and Control System. The system monitors power quality and provides the capability to transfer between Off-Site Utility and standby power (including dedicated safeguards and security power). Standby power is only distributed to selected loads for personnel safety and essential operations. Security power is only distributed to essential security operations. The standby safeguards and security power is independent from all other site power. The system also provides surface lighting, grounding grid, and lightning protection for the North Portal. The system distributes power during construction, operation, caretaker, and closure phases of the repository. The system consists of substation equipment (disconnect switches, breakers, transformers and grounding equipment) and power distribution cabling from substation to the north portal switch gear building. Additionally, the system includes subsurface facility substation (located on surface), switch-gear, standby diesel generators, underground duct banks, power cables and conduits, switch-gear building and associated distribution equipment for power distribution. Each area substation distributes power to the electrical loads and includes the site grounding, site lighting and lightning protection equipment. The site electrical power system distributes power of sufficient quantity and quality to meet users demands. The Site Electrical Power System interfaces with the North Portal surface systems requiring electrical power. The system interfaces with the Subsurface Electrical Distribution System which will supply power to the underground facilities from the North Portal. Power required for the South Portal and development side activities of the subsurface facility will be provided at the South Portal by the Subsurface Electrical Distribution System. The Site Electrical Power System interfaces with the Off-Site Utility System for the receipt of power. The System interfaces with the Surface Operations Monitoring and Control System for monitoring and control. The System interfaces with MGR Site Layout System for the physical location of equipment and power distribution.

  10. Nuclear Power

    E-Print Network [OSTI]

    Vilhena and Bardo E.J. Bodmann Carbon-#1;? in Terrestrial and Aquatic Environment of Ignalina Nuclear Power Plant: Sources of Production, Releases and Dose Estimates #3;?? Jonas Mazeika Impact of radionuclide discharges from Temel?n Nuclear Power... (chapter 5), ? Instrumentation and control (chapter 6), ? Diagnostics (chapter 7), ? Safety evaluation methods (chapters 6, 8, 9 and 10), ? Environment and nuclear power plants (chapters 11 - 15), ? Human factors (chapter 16), ? Software development...

  11. 1995 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (WhiteBook), is published annually by BPA, and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts. Specifically, BPA uses the, information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. Aside from these purposes, the White Book is used for input to BPA`s resource planning process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC).

  12. Load apparatus and method for bolt-loaded compact tension test specimen

    DOE Patents [OSTI]

    Buescher, B.J. Jr.; Lloyd, W.R.; Ward, M.B.; Epstein, J.S.

    1997-02-04T23:59:59.000Z

    A bolt-loaded compact tension test specimen load apparatus includes: (a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; (b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; (c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and (d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen. 6 figs.

  13. Load apparatus and method for bolt-loaded compact tension test specimen

    DOE Patents [OSTI]

    Buescher, Jr., Brent J. (Idaho Falls, ID); Lloyd, W. Randolph (Idaho Falls, ID); Ward, Michael B. (Idaho Falls, ID); Epstein, Jonathan S. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A bolt-loaded compact tension test specimen load apparatus includes: a) a body having first and second opposing longitudinal ends, the first end comprising an externally threaded portion sized to be threadedly received within the test specimen threaded opening; b) a longitudinal loading rod having first and second opposing longitudinal ends, the loading rod being slidably received in a longitudinal direction within the body internally through the externally threaded portion and slidably extending longitudinally outward of the body first longitudinal end; c) a force sensitive transducer slidably received within the body and positioned to engage relative to the loading rod second longitudinal end; and d) a loading bolt threadedly received relative to the body, the loading bolt having a bearing end surface and being positioned to bear against the transducer to forcibly sandwich the transducer between the loading bolt and loading rod. Also disclosed is a method of in situ determining applied force during crack propagation in a bolt-loaded compact tension test specimen.

  14. Power LCAT

    ScienceCinema (OSTI)

    Drennen, Thomas

    2014-06-27T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  15. Power LCAT

    SciTech Connect (OSTI)

    Drennen, Thomas

    2012-08-15T23:59:59.000Z

    POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

  16. A Low Latency Optical Switch for High Performance Computing with Minimized Processor Energy Load

    E-Print Network [OSTI]

    Liu, Shiyun; Cheng, Qixiang; Madarbux, Muhammad Ridwan; Wonfor, Adrian; Penty, Richard V.; White, Ian H.; Watts, Philip M.

    2015-03-01T23:59:59.000Z

    ion, CMP power densi ty and thermal management issues are ser iously l imit ing processor per formance [2]. High per formance server chips require >1Tb/s of off-chip bandwidth including Ethernet , PCI , main memory and coherence l inks which... with the 120W total processor power envelope. By compar ison, the processor chip power dissipat ion of our archi tecture (at 30% load) is 0.5 mW/(Gb/s), consuming only 0.23W for the same coherence bandwidth. Such compar isons are di fficul...

  17. General solutions for thermopiezoelectrics with various holes under thermal loading

    E-Print Network [OSTI]

    Qin, Qinghua

    induced by thermal loads. The loads may be uniform remote heat ¯ow, point heat source and temperature elastic plate with an hole of various shapes subjected to remote uniform mechanical loading. For plane

  18. Psychosocial mediators of ethnic disparities in Allostatic Load /

    E-Print Network [OSTI]

    Tomfohr, Lianne Marie

    2013-01-01T23:59:59.000Z

    in Allostatic Load A dissertation submitted in partialPartial Associations between Posited Mediators with Ethnicity and Allostatic Load……………………………………………………………………………………Partial Associations between Posited Mediators with Ethnicity and Allostatic Load

  19. axial compressive load: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  20. axial loads: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  1. axial loaded mri: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  2. axial compressive loading: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down...

  3. Harmonic approaches to non-intrusive load diagnostics

    E-Print Network [OSTI]

    Fuller, Ashley E. (Ashley Eliot)

    2008-01-01T23:59:59.000Z

    The Non-Intrusive Load Monitor (NILM) is a system that monitors, records and processes voltage and current measurements to establish the operating characteristics of individual loads on a load center from a single aggregate ...

  4. Load-follow control simulation with optimization

    SciTech Connect (OSTI)

    Yim, Man-Sung; Christenson, J.M.

    1989-01-01T23:59:59.000Z

    For the simulation of load-follow control operation of pressurized water reactors (PWRs), the system model needs to describe both primary and secondary system behaviors, because the load-change signal in the secondary system delivers a change in the primary system through the thermal-hydraulic interactions in the steam generator. In this study, the characteristics of load-follow control for a PWR were investigated using a one-dimensional core model combined with a simplified nuclear steam supply system model using optimization. The overall system model includes one-dimensional core neutronics with all the space-dependent feedback effects, Xe-I dynamics, core thermal balances, primary loop thermal balances, and steam generator dynamic responses to turbine load changes. The final system equations were manipulated for the lumped parameter representations by using the model expansion technique for the core model.

  5. High density load bearing insulation peg

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29T23:59:59.000Z

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  6. FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH

    E-Print Network [OSTI]

    Lesieutre, Bernard

    2013-01-01T23:59:59.000Z

    to voltage and frequency  disturbances by offering a much to voltage and frequency  disturbances by offering a much disturbances is that modeling the voltage sensitivity of the load is far more important than the  frequency 

  7. Nuclear Power PROS -`No' greenhouse gas emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    /transporting U! Coal Power PROS -Cheep -Easy to attain (Russia and US) -Infrastructure and technology well known provides a clean base load electricity that produces waste just a size of a coke can as compared to a coal,000 tons of coal to produce same amount of electricity) -Natural abundance of U (48th among the most

  8. Power Parks System Simulation Sandia National Laboratories

    E-Print Network [OSTI]

    at a steady rate to produce hydrogen, feeding a fuel cell stack to supply electricity to a transient load of a renewable energy source. Generation by photovoltaic collectors or wind turbines can be combined with energy storage technologies. Power parks provide an excellent opportunity for using hydrogen technologies

  9. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, J.H.

    1993-08-10T23:59:59.000Z

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  10. Disruptions, loads, and dynamic response of ITER

    SciTech Connect (OSTI)

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D. [Oak Ridge National Lab., TN (United States); Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). International Thermonuclear Experimental Reactor (ITER) Team

    1995-12-31T23:59:59.000Z

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures.

  11. MCO loading and cask loadout technical manual

    SciTech Connect (OSTI)

    PRAGA, A.N.

    1998-10-01T23:59:59.000Z

    A compilation of the technical basis for loading a multi-canister overpack (MCO) with spent nuclear fuel and then placing the MCO into a cask for shipment to the Cold Vacuum Drying Facility. The technical basis includes a description of the process, process technology that forms the basis for loading alternatives, process control considerations, safety considerations, equipment description, and a brief facility structure description.

  12. Gearbox Reliability Collaborative (GRC) Description and Loading

    SciTech Connect (OSTI)

    Oyague, F.

    2011-11-01T23:59:59.000Z

    This document describes simulated turbine load cases in accordance to the IEC 61400-1 Ed.3 standard, which is representative of the typical wind turbine design process. The information presented herein is intended to provide a broad understanding of the gearbox reliability collaborative 750kW drivetrain and turbine configuration. In addition, fatigue and ultimate strength drivetrain loads resulting from simulations are presented. This information provides the bases for the analytical work of the gearbox reliability collaborative effort.

  13. Measurements of SCRF cavity dynamic heat load in horizontal test system

    SciTech Connect (OSTI)

    DeGraff, B.D.; Bossert, R.J.; Pei, L.; Soyars, W.M.; /Fermilab

    2009-11-01T23:59:59.000Z

    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.

  14. Measurements of SCRF cavity dynamic heat load in horizontal test system

    E-Print Network [OSTI]

    DeGraff, B D; Pei, L; Soyars, W M; 10.1063/1.3422409

    2012-01-01T23:59:59.000Z

    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.

  15. Experimental results of a load management system for large commercial customers

    SciTech Connect (OSTI)

    Johnson, W.A.; Devaney, T.M.; Maher, A.M.

    1985-09-01T23:59:59.000Z

    Encouraging experimental results have been obtained from a two-way load management system for large commercial as well as governmental customers on the Potomac Electric Power Company (PEPCo) system. This paper presents these results and describes the inovative twoway load management system that was developed and installed to achieve them. The Robinton Products, Inc. system operates from a central processor located in PEPCO's control center and it communicates with the customer locations through a telephone system called ''Select-A-Station''. Future plans for the expansion of the system are presented along with experimental results.

  16. A Tariff for Reactive Power

    SciTech Connect (OSTI)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01T23:59:59.000Z

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

  17. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  18. Local Soot Loading Distribution in Cordierite Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by Dynamic Neutron Radiography Local Soot Loading Distribution in Cordierite Diesel Particulate Filters by...

  19. amplitude dynamic loading: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University February 6, 2001 Abstract We present the load-calculus, used to model dynamic loading, and prove it sound. The calculus extends the polymorphic -calculus with a...

  20. Y-12 Finishes Initial HEUMF Loading Ahead of Schedule | National...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Finishes Initial HEUMF Loading Ahead of Schedule Y-12 Finishes Initial HEUMF Loading...