Powered by Deep Web Technologies
Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Estimating the Effect of Domestic Load and Renewable Supply Variability on Battery Capacity Requirements for Decentralized Microgrids  

Science Journals Connector (OSTI)

Abstract Large battery banks are a commonly considered alternative for local storage of volatile energy supply in decentralized grid management. In this paper the hypothetical case of an isolated community of 15 houses with direct access to a nearby set of wind turbines and a backup grid connection (e.g. ex-urban hamlet) is being considered. The question arises as to what size of battery, relative to household average daily consumption, should be installed in order to avoid excessively fast aging of said battery bank, i.e. to avoid the need to replace it faster than standard expected battery lifetime. The basic technology of the batteries addressed in this study is lithium ion phosphate. A dynamic modeling process of aging is implemented, along with realistic wind power data and a stochastic model of domestic load, with variable morning/evening peaks, weekend and seasonal effects. It was found that simulations using domestic load profiles and variability predict a significant reduction in expected battery state of health, for comparable average loads, than standard load cycles used for industrial testing, and that increased variability in average domestic load has a minor effect on the speed of state of health reduction. Furthermore a region of high sensitivity to overall battery bank size can be observed, which subsides over approx. 200 hours of average household consumption.

Malte Thomann; Florin Popescu

2014-01-01T23:59:59.000Z

2

Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report  

SciTech Connect

The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

Eidler, Phillip

1999-07-01T23:59:59.000Z

3

for Better Homes The effects of loads from wind, snow and rain on houses and other  

E-Print Network (OSTI)

for Better Homes The effects of loads from wind, snow and rain on houses and other light have not been known. Now, however, The Insurance Research Lab for Better Homes, a groundbreaking $7 these questions. What is The Insurance Research Lab for Better Homes? · First-of-its-kind facility that allows

Denham, Graham

4

Housing  

Science Journals Connector (OSTI)

A large part of the world’s energy consumption is used in the housing and transport sectors. Any reduction in their energy consumption, for the same quality of product or service, is highly worthwhile. Housing...

Christian Ngô; Marcel H. Van de Voorde

2014-01-01T23:59:59.000Z

5

Silicon nanoparticle and carbon nanotube loaded carbon nanofibers for use in lithium-ion battery anodes  

Science Journals Connector (OSTI)

Abstract In this report, we introduce electrospun silicon nanoparticle and carbon nanotube loaded carbon nanofibers (SCNFs) as anode materials in lithium-ion batteries (LIBs). The one-dimensional structure of electrospun nanofibers provides porosity for the anode material. Carbon nanotubes (CNTs) in the electrospun fibers reduce the volume expansion of silicon nanoparticles (SiNPs) and improve mechanical stability of the electrode. Both \\{CNTs\\} and carbon nanofibers enhance electronic conduction by connecting SiNPs in \\{SCNFs\\} for electrode reactions. These contribute to improved electrochemical performance of SCNF anode-based \\{LIBs\\} resulting in the enhancement of capacity and cycling ability.

Nguyen Trung Hieu; Jungdon Suk; Dong Wook Kim; Ok Hee Chung; Jun Seo Park; Yongku Kang

2014-01-01T23:59:59.000Z

6

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries  

Science Journals Connector (OSTI)

Abstract Lithium-sulfur (Li-S) batteries have attracted great attention as next-generation high specific energy density storage devices. However, the low sulfur loading in the cathode for Li-S battery greatly offsets its advantage in high energy density and limits the practical applications of such battery concepts. Flexible energy storage devices are also becoming increasingly important for future applications but are limited by the lack of suitable lightweight electrode materials with robust electrochemical performance under cyclic mechanical strain. Here, we proposed an effective strategy to obtain flexible Li-S battery electrodes with high energy density, high power density, and long cyclic life by adopting graphene foam-based electrodes. Graphene foam can provide a highly electrically conductive network, robust mechanical support and sufficient space for a high sulfur loading. The sulfur loading in graphene foam-based electrodes can be tuned from 3.3 to 10.1 mg cm?2. The electrode with 10.1 mg cm?2 sulfur loading could deliver an extremely high areal capacity of 13.4 mAh cm?2, much higher than the commonly reported Li-S electrodes and commercially used lithium cobalt oxide cathode with a value of ~3–4 mAh cm?2. Meanwhile, the high sulfur-loaded electrodes retain a high rate performance with reversible capacities higher than 450 mAh g?1 under a large current density of 6 A g?1 and preserve stable cycling performance with ~0.07% capacity decay per cycle over 1000 cycles. These impressive results indicate that such electrodes could enable high performance, fast-charging, and flexible Li-S batteries that show stable performance over extended charge/discharge cycling.

Guangmin Zhou; Lu Li; Chaoqun Ma; Shaogang Wang; Ying Shi; Nikhil Koratkar; Wencai Ren; Feng Li; Hui-Ming Cheng

2015-01-01T23:59:59.000Z

7

Energy and CO2 efficient scheduling of smart appliances in active houses equipped with batteries  

E-Print Network (OSTI)

is commonly defined as changes in electricity use by consumers in response to changes in the electricity price in household load profile, e.g., see [6]. The main conclusions are that employing hourly electricity prices hard for consumers to reschedule their appliances based on time-varying electricity prices and CO2

Johansson, Karl Henrik

8

Lithium–sulfur batteries: Influence of C-rate, amount of electrolyte and sulfur loading on cycle performance  

Science Journals Connector (OSTI)

Abstract In the past four years major improvement of the lithium sulfur battery technology has been reported. Novel carbon cathode materials offer high sulfur loading, sulfur utilization and cycle stability. An often neglected aspect is that sulfur loading and amount of electrolyte strongly impact the performance. In this paper, we demonstrate how the amount of electrolyte, sulfur loading, lithium excess and cycling rate influences the cycle stability and sulfur utilization. We chose vertically aligned carbon nanotubes (VA-CNT) as model system with a constant areal loading of carbon. For a high reproducibility, decreased weight of current collector and good mechanical adhesion of the VA-CNTs we present a layer transfer technique that enables a light-weight sulfur cathode. The sulfur loading of the cathode was adjusted from 20 to 80 wt.-%. Keeping the total amount of electrolyte constant and varying the C-rate, we are able to demonstrate that the capacity degradation is reduced for high rates, high amount of electrolyte and low sulfur loading. In addition idle periods in the cycling regiment and lower rates result in an increased degradation. We attribute this to the redox-reaction between reactive lithium and polysulfides that correlates with the cycling time, rather than cycle number.

Jan Brückner; Sören Thieme; Hannah Tamara Grossmann; Susanne Dörfler; Holger Althues; Stefan Kaskel

2014-01-01T23:59:59.000Z

9

A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine  

Science Journals Connector (OSTI)

Abstract This paper presents the use of a Support Vector Machine load predictive energy management system to control the energy flow between a solar energy source, a supercapacitor-battery hybrid energy storage combination and the load. The supercapacitor-battery hybrid energy storage system is deployed in a solar energy system to improve the reliability of delivered power. The combination of batteries and supercapacitors makes use of complementary characteristic that allow the overlapping of a battery’s high energy density with a supercapacitors’ high power density. This hybrid system produces a straightforward benefit over either individual system, by taking advantage of each characteristic. When the supercapacitor caters for the instantaneous peak power which prolongs the battery lifespan, it also minimizes the system cost and ensures a greener system by reducing the number of batteries. The resulting performance is highly dependent on the energy controls implemented in the system to exploit the strengths of the energy storage devices and minimize its weaknesses. It is crucial to use energy from the supercapacitor and therefore minimize jeopardizing the power system reliability especially when there is a sudden peak power demand. This study has been divided into two stages. The first stage is to obtain the optimum SVM load prediction model, and the second stage carries out the performance comparison of the proposed SVM-load predictive energy management system with conventional sequential programming control (if-else condition). An optimized load prediction classification model is investigated and implemented. This C-Support Vector Classification yields classification accuracy of 100% using 17 support vectors in 0.004866 s of training time. The Polynomial kernel is the optimum kernel in our experiments where the C and g values are 2 and 0.25 respectively. However, for the load profile regression model which was implemented in the K-step ahead of load prediction, the radial basis function (RBF) kernel was chosen due to the highest squared correlation coefficient and the lowest mean squared error. Results obtained shows that the proposed SVM load predictive energy management system accurately identifies and predicts the load demand. This has been justified by the supercapacitor charging and leading the peak current demand by 200 ms for different load profiles with different optimized regression models. This methodology optimizes the cost of the system by reducing the amount of power electronics within the hybrid energy storage system, and also prolongs the batteries’ lifespan as previously mentioned.

Yen Yee Chia; Lam Hong Lee; Niusha Shafiabady; Dino Isa

2015-01-01T23:59:59.000Z

10

Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials  

Science Journals Connector (OSTI)

Abstract Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC–MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC–MS. Acid–base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

Patricia Handel; Gisela Fauler; Katja Kapper; Martin Schmuck; Christoph Stangl; Roland Fischer; Frank Uhlig; Stefan Koller

2014-01-01T23:59:59.000Z

11

Battery energy storage system for frequency support in microgrids and with enhanced control features for uninterruptible supply of local loads  

Science Journals Connector (OSTI)

Abstract This paper proposes a battery energy storage system (BESS) to support the frequency control process within microgrids (MG) with high penetration of renewable energy sources (RES). The solution includes features that enhance the system’s stability and security of supply. The BESS can operate connected to MG or islanded and the transition between the two states is seamlessly coordinated by an original method. The BESS active power response is governed by an improved frequency controller on two layers, namely primary and secondary. It responds to frequency deviations by combining a conventional droop control method with a virtual inertia function to improve the system’s stability. The proposed BESS may also compensate the power of the local loads, so that the MG frequency transients can be reduced and, depending on the remaining inverter capacity, voltage support in the point of common coupling with the MG may be provided. If the MG power quality degrades in terms of the voltage and frequency, the BESS and the local load are disconnected from the MG and continue operating islanded. The BESS is reconnected to the MG after a smoothly resynchronization of the local voltage with the MG, without disturbing the local loads supply. Simulation and experimental results assesses the proposed control solutions.

I. Serban; C. Marinescu

2014-01-01T23:59:59.000Z

12

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

13

Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li–S battery. The sulfur nanospheres with diameter of 400–500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g?1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li–S batteries.

Ya Liu; Jinxin Guo; Jun Zhang; Qingmei Su; Gaohui Du

2015-01-01T23:59:59.000Z

14

Simplified Space Conditioning in Low-Load Homes: Results from Pittsburgh, Pennsylvania, New Construction Unoccupied Test House  

SciTech Connect

Field testing was performed in a new construction unoccupied test house in Pittsburgh, Pennsylvania. Four air-based heating, ventilation, and air conditioning distribution systems--a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms--were evaluated during heating, cooling, and midseason conditions. The relative ability of each system was assessed with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

Poerschke, A.; Stecher, D.

2014-06-01T23:59:59.000Z

15

Simplified Space Conditioning in Low-Load Homes: Results from the Fresno, California, Retrofit Unoccupied Test House  

SciTech Connect

Field testing was performed in a retrofit unoccupied test house in Fresno, California. Three air-based heating, ventilation, and air conditioning (HVAC) distribution systems -- a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, and a system with no ductwork to the bedrooms -- were evaluated during heating, cooling, and midseason conditions. The relative ability of each of the three systems was assessed with respect to relevant Air Conditioning Contractors of America (ACCA) and ASHRAE standards for house temperature uniformity and stability, respectively. Computational fluid dynamics (CFD) modeling also was performed and refined based on comparison to field test results to determine the air flow rate into the bedrooms of over-door and bottom-of-door air transfer grilles.

Stecher, D.; Poerschke, A.

2014-02-01T23:59:59.000Z

16

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

17

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

18

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network (OSTI)

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

19

Microsoft Word - CX Memo Raver Control House.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joe Beebe Joe Beebe Project Manager - TESF-CSB-2 Proposed Action: Raver Substation-Control House Expansion & Seismic Retrofit Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.11 Electric power substations and interconnection facilities Location: King County, Washington; Township 21 North, Range 7 East, Section 4&5 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: Bonneville Power Administration (BPA) proposes to expand the control house at BPA fee-owned Raver Substation and seismically retrofit the existing structure. The control house expansion is proposed in order to install additional equipment racks and batteries needed to accommodate load growth in the south Puget Sound area. Because the expansion would

20

Microsoft Word - CX Memo Snohomish Control House_draft.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joe Beebe Joe Beebe Project Manager - TESF-CSB-2 Proposed Action: Snohomish Substation Control House Expansion & Seismic Retrofit Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.11 Electric power substations and interconnection facilities Location: King County, Washington; Township 21 North, Range 7 East, Sections 4 & 5 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA proposes to expand the control house at the Snohomish Substation in Snohomish County, Washington within BPA's existing fee-owned parcel. The control house expansion is proposed in order to install additional equipment racks and batteries needed to accommodate load growth in the south Puget Sound area.

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A User Programmable Battery Charging System  

E-Print Network (OSTI)

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

22

Location Student Fac/Staff Disabled Special OLLI Reserved Electric Carpool Park and Pay 30 Minute Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House 1 1 17 D L P 19  

E-Print Network (OSTI)

Loading Maint/Service State Vehicle Motorcycle Control* S / L** P / T / LD*** Location Total Alumni House = Surface Lot *** P = Permanent, T = Temporary, LD = Leased Structure 5,631 Motorcycle space count is not included in "Total Spaces" count and is an es mate of how many motorcycles can park in each area Surface

de Lijser, Peter

23

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

24

Perovskite Sr0.95Ce0.05CoO3d loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries  

E-Print Network (OSTI)

could be used in a metal/air battery or a PEM fuel cell as an efficient and stable bifunctional catalyst for lithium-air batteries Wei Yang,ab Jason Salim,c Shuai Li,ab Chunwen Sun,*ab Liquan Chen,ab John B. 1. Introduction A requirement for the proton-exchange-membrane (PEM) H2/air fuel cell

25

Practical and commercial issues in the design and manufacture of vanadium flow batteries  

Science Journals Connector (OSTI)

The vanadium flow battery has emerged as one of the most favourable types of flow batteries for a number of reasons, including the lack of cross-contamination that troubled many earlier systems such as the Fe/Cr flow battery. Because the vanadium flow battery employs the same metal ion in both electrolytes, albeit in different oxidation states, there is no cumulative loss in performance, just an effective reversible self-discharge current. The self discharge that occurs in the vanadium flow batteries is limited to the electrolyte volume in the cells. However it can become substantial under low load conditions. The pumps also use power from the battery and may be considered as another source of self discharge. Taking these and maintenance considerations into account the layout of a 10 kW, 100 kWh, 48 V vanadium flow battery was designed as a “Multi-Stage-Operation” system to provide maximum performance at all levels of load, ease of use and optimum maintenance conditions. Experimental A complete energy storage system with 10 kW in power and 100 kWh in energy was designed. It consists of a vanadium flow battery with smart controller and configurable power electronics housed in a weatherproof housing. The battery can be charged and discharged at up to 10 kW and provides up to 100 kWh of energy. The smart controller ensures that the battery operates at maximum efficiency at all times and allows remote observation of various battery parameters, including a reliable state of charge (SOC) measurement. The option of different arrangements of power electronics gives almost complete freedom in specification of electrical output (dc, single or three-phase ac). The battery can also be connected to photovoltaic, wind turbine, diesel/petrol/gas/biogas generators, fuel cells and water turbines to form discrete autonomous power supplies or to be part of a micro-, mini- or smart-grid. The FB10/100 battery for “Multi-Stage-Operation” is comprised of 5 strings of 36–40 cells each in 3 separate fluid circuits. The first fluid circuit, containing a single string, is always actively pumped with electrolyte and electrically connected to the charger and load. The second and third fluid circuits contain 2 strings each and are only actively pumped and electrically connected when the voltage reaches preset limits. When the circuits are in “standby”, i.e. not actively pumped and electrically connected, the self discharge is limited to the small volume of electrolyte in the cells. There is also a significant saving of pumping energy, because 3 pairs of small pumps are used in place of 1 pair of more powerful pumps. Results In “Multi-Stage-Operation” mode, the overall battery performance is improved significantly. This is very important in off-grid installations, where loads are typically small compared to the power levels necessary for charging; i.e. a solar powered telemetric station may use 500 W continuous power but requires fast charging due to the narrow time window when solar energy is available. In example, at a 1 kW load the battery provides 25% more energy when operated in “Multi-Stage-Operation” mode compared to all stacks in operation. Since 2008, several power station have been equipped with FB10/100 storage units and put into operation. Within the presentation a report on the latest results including technical performance and cost issues will be given.

Martha Schreiber; Martin Harrer; Adam Whitehead; Herbert Bucsich; Matthias Dragschitz; Ernst Seifert; Peter Tymciw

2012-01-01T23:59:59.000Z

26

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network (OSTI)

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

27

Boosting batteries | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

28

Energy House  

Energy.gov (U.S. Department of Energy (DOE))

Students learn about energy conservation and efficiency by using various materials to insulate a cardboard house.

29

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network (OSTI)

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

30

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

31

EMSL - batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

32

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

33

KAir Battery  

Energy.gov (U.S. Department of Energy (DOE))

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

34

Postdoc Housing  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Housing Postdoc Housing Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. Contact Email Housing in Los Alamos, nearby communities If you are interested in posting a housing opportunity, email the pertinent information to postdocprogram@lanl.gov. Housing listings will be posted for one month. If you wish for the listing to remain on the website longer, please contact the Postdoc Program Office by email. 12/18/2013 Available - Los Alamos, NM Rare top floor Iris Street Condo. Wake up & walk across the street to grab your morning bagel & latte. Stroll a bit further to enjoy the NM sunshine at the Ashley Pond! Spend your day in the heart of downtown, sweat it out

35

Student Housing  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Housing Student Housing Point your career towards LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. If you are interested in posting a housing opportunity, email the pertinent information to Student Housing. Housing listings will be posted for two months. If you wish for the listing to remain on the website longer, please contact the Student Program Office by email. 01/09/2014 Available 1/10/2014 - Los Alamos, NM 35th Street Duplex - 3 Bedroom/1 bath; Very clean and very nice; All storm windows, furnace and water boiler were replaced in FY 2012; Kitchen and bathroom equipment was all replaced in FY2012 as well; Large fenced back yard with a storage shed; Within walking distance of Aspen Elementary

36

Meadowlark House  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster describes the energy efficiency features and sustainable materials used in the Greensburg GreenTown Chain of Eco-Homes Meadowlark House in Greensburg, Kansas.

37

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

38

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

39

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

40

Metal-Air Batteries  

SciTech Connect

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

42

House Snakes  

NLE Websites -- All DOE Office Websites (Extended Search)

House Snakes House Snakes Name: LOIS Location: N/A Country: N/A Date: N/A Question: How do you get rid of snakes in a house? Do mothballs work? Replies: The snake is the most misunderstood and most abused of all animals. If you cannot overcome your abhorrence or fear of them, leave them alone. Do not kill them. They are valuable destroyers of mice, rats, gophers and many insects. Perhaps the following links could be of some assistance in keeping people from indiscriminately killing snakes? Snake-A-Way is the same product used by the pest control industry and currently the only registered snake repellent. Snake-A-Way links: http://www.animalrepellents.com/snakeinfo.html http://www.animalrepellents.com/ustudies/saw.html http://www.animalrepellents.com/editorials/naturel.html

43

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Developing Alaskan Sustainable Housing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Association of Alaska Housing Authorities is holding a 3-day training event for housing development professionals titled Developing Alaskan Sustainable Housing (DASH). This is a unique...

45

Sod Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

Houses Houses Nature Bulletin No. 620 December 3, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist SOD HOUSES In the 1860's and 70's, when pioneer settlers came to homestead free land on the vast lonely prairies of Kansas and Nebraska, they found a country that, except for fringes of cottonwoods and willows along the streams, was treeless. There was no rock and mighty little timber for building houses and barns. Lumber was very expensive and scarce. So was money. However, the prairies were thickly covered with short, drought- enduring buffalo and blue grama grasses. Some of the Indian tribes which not only hunted buffalo but also grew corn -- notably the Pawnee, Osage and Hidatsa -- had large earthlodges. They used sod in the walls and the conical or dome-like roofs had pole rafters covered with willow brush, slough hay, sod, and finally clay. So the homesteaders were inspired to build their homes with slabs of the remarkably thick and tough prairie sod: "Nebraska marble".

46

Battery Safety Testing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

47

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

48

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

49

White House | OpenEI Community  

Open Energy Info (EERE)

White House White House Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 16 August, 2013 - 12:21 New report from White House outlines largest problems facing United States energy grid energy grid OpenEI President Smart Grid United States White House Graham7781's picture Submitted by Graham7781(1992) Super contributor 30 August, 2012 - 15:16 Historic Fuel Standards auto fuel efficiency obama standards vehicle White House On Tuesday, Ray Lahood, Secretary of the U.S. Department of Transportation, and Lisa P. Jackson, Environmental Protection Agency Administrator, unveiled the joint effort, along with the Obama Administration, to create record fuel standards for vehicles built between 2017 and 2025. Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load)

50

1997 Housing Characteristics Tables Housing Unit Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Million U.S. Households; 45 pages, 128 kb) Million U.S. Households; 45 pages, 128 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 1997 4 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 1997 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 1997 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 1997 3 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 1997 3 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 1997 3 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 1997 4

51

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

52

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

53

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

54

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

House Spiders  

NLE Websites -- All DOE Office Websites (Extended Search)

Spiders Spiders Nature Bulletin No. 206-A November 13, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation HOUSE SPIDERS Nothing humiliates a housewife more than to spy a dusty streamer of cobwebs dangling from the ceiling when she has "company". With a cloth on the end of her broom, or a vacuum cleaner, she wages continual war on spiders. The spider itself frequently escapes by darting into a hide-away or dropping by a thread of silk to the floor where it may play "possum" until things have quieted down. But in basements, in unused rooms, in attics, between windows and screens, beneath porches, and in garages or other out buildings, many small spiders live their interesting lives.

58

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

60

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

62

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

63

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

64

Definition: Lead-acid battery | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lead-acid battery Jump to: navigation, search Dictionary.png Lead-acid battery A type of battery that uses plates made of pure lead or lead oxide for the electrodes and sulfuric acid for the electrolyte.[1] View on Wikipedia Wikipedia Definition Related Terms Battery, electrolyte References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Lead-acid_battery&oldid=487934" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

65

ZAP Advanced Battery Technologies JV | Open Energy Information  

Open Energy Info (EERE)

ZAP Advanced Battery Technologies JV ZAP Advanced Battery Technologies JV Jump to: navigation, search Name ZAP & Advanced Battery Technologies JV Place Beijing, China Product JV between ZAP & Chinese battery manufacturer Advanced Battery Technologies focusing on manufacturing and marketing of advanced batteries for electric cars using the latest in nanotechnology. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects  

Science Journals Connector (OSTI)

This paper deals with the feasibility of a Renewable Energy Sources (RES)-based stand-alone system for electricity supply based on a Flywheel Energy Storage System (FESS) located on the Greek Island of Naxos. The innovative use of flywheels in parallel connection with electrochemical batteries, as an integrated storage device in the same power plant, was selected to be simulated as it is a necessary buffer covering the load of a typical house. The optimal configuration for the electromechanical connection between the electrochemical batteries and flywheels is also considered in this study. Operational characteristics of the new storage systems were estimated and used in the simulations, while the financial aspects of the projects finalized using hand-made calculations and the HOMER software was used only for the energy calculations. It was found that an off-grid project using advanced and totally “green” technologies is possible and comparable to more conventional RES-based systems, in terms of energy and economical feasibility. Finally, it can be concluded that systems with low price flywheels are equivalent to those with electrochemical batteries.

George N. Prodromidis; Frank A. Coutelieris

2012-01-01T23:59:59.000Z

67

DOE Solar Decathlon: Solar Decathlon House Tours  

NLE Websites -- All DOE Office Websites (Extended Search)

House Tours House Tours Attending the U.S. Department of Energy Solar Decathlon isn't the only way to get a tour of a Solar Decathlon house. Many past competition houses are open to the public and offer tours year-round. To learn more about the Solar Decathlon houses from previous competitions that offer tours, select from the markers on the map below or choose from the links in the following tables. Screen reader users: click here for plain HTML Go to Google Maps Home Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Report a problem - Maps Labs - Help Google Maps ‎ ‎ - ©2014 Google ‎ - Terms of Use - Privacy

68

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Ventilation Effectiveness Research at UT-Typer Lab Houses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Effectiveness Research Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic, House 1: Vented attic lower loads + PV Ventilation Effectiveness Research 30 April 2013 2 * 1475 ft 2 , 3-bedroom houses * House 2 was mirrored plan * 45 cfm 62.2 ventilation rate * Garage connected to house on only one wall * Access to attic via pull-down stairs in garage * Further access to House 2 unvented attic through gasket sealed door Ventilation Effectiveness Research 30 April 2013 3 Testing Approach  Building enclosure and building mechanical systems characterization by measurement of building enclosure air leakage, central air distribution system airflows, and ventilation system airflows.

70

1997 Housing Characteristics Tables Housing Unit Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of U.S. Households; 45 pages, 121 kb) Percent of U.S. Households; 45 pages, 121 kb) Contents Pages HC1-1b. Housing Unit Characteristics by Climate Zone, Percent of U.S. Households, 1997 4 HC1-2b. Housing Unit Characteristics by Year of Construction, Percent of U.S. Households, 1997 4 HC1-3b. Housing Unit Characteristics by Household Income, Percent of U.S. Households, 1997 4 HC1-4b. Housing Unit Characteristics by Type of Housing Unit, Percent of U.S. Households, 1997 3 HC1-5b. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Percent of U.S. Households, 1997 3 HC1-6b. Housing Unit Characteristics by Type of Rented Housing Unit, Percent of U.S. Households, 1997 3 HC1-7b. Housing Unit Characteristics by Four Most Populated States, Percent of U.S. Households, 1997 4

71

load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

72

House Retirement Timeline  

NLE Websites -- All DOE Office Websites (Extended Search)

House Retirement House Retirement Timeline House is retiring December 20,2013 Fix your pipelines, move data and get help now! /house is POWERED OFF. 12/20/2013 Questions? Contact Kjiersten & Doug; consult@nersc.gov Office hours: MWThF 10:00-12:00 400-413 The link to /house will be permanently changed; all pipelines that have not removed /house dependencies will break. 11/15/2013 Your actions: Find anything that is still broken and let the developers know. Check houseHunter Continue data migration. We DO NOT GUARANTEE that you will be able to get data off /house after this date. 12/1/2013 Your action: Contact your group lead if you still need data /jgi/tools will no longer be in the default path 10/1/2013 Timeline & Important Dates The link to /house will be temporarily

73

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

74

HVAC Loads in High-Performance Homes (Presentation)  

SciTech Connect

This presentation was delivered at the ASHRAE 2010 Annual Summer Conference on June 27, 2010, and addresses humidity and AC loads in energy efficient houses.

Christensen, D.; Fang, X.; Winkler, J.

2010-06-27T23:59:59.000Z

75

Radon in Syrian houses  

Science Journals Connector (OSTI)

A nationwide investigation of radon levels in Syrian houses was carried out during the period 1991 - 1993. Passive radon diffusion dosemeters using polycarbonate detectors were distributed in houses all over Syria. Detectors were subjected to electrochemical etching to reveal latent tracks of alpha particles. The mean radon concentration in Syrian houses was found to be with some values several times higher. This investigation indicated that there were a few houses in Syria that require remedial action. Most houses that have high levels of radon were found in the southern area, especially in the Damascus governorate. The study also indicated that radon concentrations were higher in old houses built from mud with no tiling.

I Othman; M Hushari; G Raja; A Alsawaf

1996-01-01T23:59:59.000Z

76

Batteries Breakout Session  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

77

Vehicle Technologies Office: Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

78

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

79

EMSL - battery materials  

NLE Websites -- All DOE Office Websites (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

80

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

82

Pacific Housing | Open Energy Information  

Open Energy Info (EERE)

Housing Jump to: navigation, search Name: Pacific Housing Place: Sacramento, CA Website: http:www.pacifichousing.com References: Pacific Housing1 Information About Partnership...

83

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

84

100% petroleum house  

E-Print Network (OSTI)

I am designing a Case Study House to be sponsored by Royal Dutch Shell which utilizes the by-product of oil extraction, petroleum gas, to produce a zero waste, 100% petroleum based house. The motivation of the Case Study ...

Costanza, David (David Nicholas)

2013-01-01T23:59:59.000Z

85

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

86

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Household Demographics of U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

87

Houses undergoing psychoanalysis :  

E-Print Network (OSTI)

The objective of this thesis is to explore the relationship between the self and the house. In approaching the subject, my assumptions were that the basic condition of the house-self relationship is of tension and animosity ...

Palmon, Ruth, 1970-

2002-01-01T23:59:59.000Z

88

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

Duncan, David B. (Auburn, CA)

1992-01-01T23:59:59.000Z

89

Insulator for laser housing  

DOE Patents (OSTI)

The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member. 3 figs.

Duncan, D.B.

1992-12-29T23:59:59.000Z

90

Advanced House Framing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced House Framing Advanced House Framing Advanced House Framing April 13, 2012 - 7:57pm Addthis Two-story home using advanced framing techniques. Two-story home using advanced framing techniques. Advanced house framing means materials, labor, and heating and cooling cost savings because the approach: Uses less lumber and generates less waste than typical framing methods. Increases energy efficiency by replacing lumber with insulation material, resulting in a higher whole-wall R-value through reduced thermal bridging and increased insulation. How does it work? Advanced framing works structurally by aligning framing members directly over each other to transfer the load from roof trusses or rafters to second floor wall studs, to floor joists, to first floor studs to the foundation,

91

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

92

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

93

EcoHouse Program Overview  

Energy.gov (U.S. Department of Energy (DOE))

Provides an overview of the Indianapolis Better Buildings program, the EcoHouse program, and Indianapolis Neighborhood Housing partnership (INHP).

94

NREL: Housing Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Information Housing Information Suggestions for where to start looking for short-term housing or apartments in the Golden, Colorado area are provided below. Short-term Housing Biz-Stay: Lakewood, Golden, Evergreen Housing Features: Short term furnished apartments to extended stay hotels Locations throughout the Lakewood-Golden-Evergreen area. Candlewood Suites 895 Tabor Street Golden, CO 80401 303-232-7171, ask for NREL rates or email Lisa.kennedy@ihg.com Housing Features: Pet friendly Free on-site laundry facilities All suites have kitchens Free high speed internet connections in all suites. University Housing Campus Village Apartments at the Auraria Campus University of Colorado Denver, Metro State College campus (May, June, July only) 318 Walnut St. Denver, CO 80204 303-573-5272

95

Batteries - Materials Engineering Facility: Scale-Up R&D Bridges Gap  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Initial discovery amounts of battery materials are small compared to the kilo-scale amounts needed for validation of new battery technologies. Argonne researcher Sabine Gallagher Argonne researcher Sabine Gallagher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Materials Engineering Research Facility (MERF) Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for

96

Energy Management and Cost Analysis in Residential Houses using Batteries  

E-Print Network (OSTI)

consumption constitutes 38% of the total energy consumption in the US, with millions of individual customers}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal patterns that can be leveraged by energy, like smart metering, allow residential energy consumption to be monitored and managed more effectively

Simunic, Tajana

97

The house of the future  

ScienceCinema (OSTI)

Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.

None

2010-09-01T23:59:59.000Z

98

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

99

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

100

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

102

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

103

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

104

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

105

Recommendations for Maximizing Battery Life in Photovoltaic Systems: A Review of Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE))

Notes, observations and recommendations about the use of batteries in small stand-alone photovoltaic system drawn from over a decade of research at FSEC. The most critical findings were battery life and the importance of an adequate PV array-to-load ratio.

106

Temperature maintained battery system  

SciTech Connect

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

107

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Space Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

108

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Household Demographics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

109

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Fuels Used and End Uses in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

110

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Household Demographics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

111

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

HC.1.11 Fuels Used and End Uses in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census...

112

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Space Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

113

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Space Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

114

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Household Demographics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

115

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Space Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" " ",,,"East North Central Census...

116

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Fuels Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

117

HOUSE PASSES ENERGY BILLS  

Science Journals Connector (OSTI)

Among the dissimilarities, the House bill would require that, by 2020, utilities generate 15% of their electricity from renewable sources—wind, solar, and hydropower. ...

JEFF JOHNSON

2007-08-13T23:59:59.000Z

118

High Performance Cathodes for Li-Air Batteries  

SciTech Connect

The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

Xing, Yangchuan

2013-08-22T23:59:59.000Z

119

EaglePicher Horizon Batteries LLC | Open Energy Information  

Open Energy Info (EERE)

EaglePicher Horizon Batteries LLC EaglePicher Horizon Batteries LLC Jump to: navigation, search Name EaglePicher Horizon Batteries, LLC Place Dearborn, Michigan Zip MI 48126 Product Joint Venture developing, manufacturing and distributing a breakthrough, high performance sealed lead-acid battery. Coordinates 39.520064°, -94.770486° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.520064,"lon":-94.770486,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Blue Spark Technologies formerly Thin Battery Technologies Inc | Open  

Open Energy Info (EERE)

Spark Technologies formerly Thin Battery Technologies Inc Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place Westlake, Ohio Zip 44130 Sector Carbon Product Developer and licensor of carbon-zinc battery technology. Coordinates 32.980007°, -97.168831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.980007,"lon":-97.168831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Axeon Power Limited formerly Advanced Batteries Ltd ABL | Open Energy  

Open Energy Info (EERE)

formerly Advanced Batteries Ltd ABL formerly Advanced Batteries Ltd ABL Jump to: navigation, search Name Axeon Power Limited (formerly Advanced Batteries Ltd (ABL)) Place Dundee, United Kingdom Zip DD2 4UH Product Lithium ion battery pack developer. Coordinates 45.27939°, -123.009669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.27939,"lon":-123.009669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Advanced Battery Technologies Inc ABAT | Open Energy Information  

Open Energy Info (EERE)

Battery Technologies Inc ABAT Battery Technologies Inc ABAT Jump to: navigation, search Name Advanced Battery Technologies Inc (ABAT) Place Shuangcheng, Heilongjiang Province, China Zip 150100 Product China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates 45.363708°, 126.314621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.363708,"lon":126.314621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Union Suppo Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Suppo Battery Co Ltd Suppo Battery Co Ltd Jump to: navigation, search Name Union Suppo Battery Co Ltd Place Shenyang, China Zip 110015 Product Liaoning-based manufacturer of rechargeable NiMH batteries. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Nickel coated aluminum battery cell tabs  

DOE Patents (OSTI)

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

125

Thermal Insulation of Houses  

Science Journals Connector (OSTI)

... THE Thermal Insulation (Dwellings) Bill which Mr. G. Nabarro introduced into the House of Commons on ... , sponsored by members of both major political parties, extends the principle of the Thermal Insulation (Industrial Buildings) Act of July 1957 to all new dwelling houses built in the ...

1958-02-22T23:59:59.000Z

126

Multiple pump housing  

DOE Patents (OSTI)

A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

Donoho, II, Michael R. (Edelstein, IL); Elliott, Christopher M. (Metamora, IL)

2010-03-23T23:59:59.000Z

127

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ," Housing Units (millions) ","Single-Family...

128

Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System  

SciTech Connect

We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

1998-11-24T23:59:59.000Z

129

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

130

House Care Co Ltd | Open Energy Information  

Open Energy Info (EERE)

House Care Co Ltd House Care Co Ltd Jump to: navigation, search Name House Care Co Ltd Place Tokyo, Tokyo, Japan Zip 163-1431 Sector Solar Product Japanese insulation and roofing installer which also distributes and installs solar roofing systems. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Axion Battery Products Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Axion Battery Products Inc Place Woodbridge, Ontario, Canada Zip L4L 5Y9 Product Subsidiary of Axion Power International, which is to run three lead acid battery fabrication lines. Coordinates 38.660595°, -77.247875° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.660595,"lon":-77.247875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

133

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

134

Developing Alaskan Sustainable Housing Training  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by the Association of Alaska Housing Authorities (AAHA), this three-day training event covers strategies and technical issues related to sustainable housing development.

135

Pet House Sparrow  

NLE Websites -- All DOE Office Websites (Extended Search)

Pet House Sparrow Pet House Sparrow Name: mary Location: N/A Country: N/A Date: N/A Question: I found a Baby House Sparrow and raised it. This Sparrow is a female and is about 5 months old and very tame. We are keeping this bird as a pet. We are interested in possibly breeding this bird and was wondering if you can mix breed the House Sparrow with a Finch or type of Sparrow that you could purchase at a pet store? What is the life expectancy of the House Sparrow? Replies: In the wild most small birds only live a year or two; well cared for in captivity they might be able to make it twice that long, but don't count on it. There are some records of exceptional life lengths for some species of small birds, 8 or 10 years, but I haven't heard of any for house sparrows. I don't think you would be able to cross breed house sparrows with any of the others, but I couldn't say for sure. Hybridization normally occurs only between very closely related species; I don't know enough about genetics.

136

ORNL Guest House  

NLE Websites -- All DOE Office Websites (Extended Search)

The ORNL Guest House is located in the Oak Ridge National Laboratory campus, within 5 minutes by car to any part of the campus, High Flux Isotope Reactor (HFIR), Conference Center and short walk to the Spallation Neutron Source (SNS). The Guest House is a three story, 47 room, 71 bed facility (23 rooms with king beds and 24 rooms with 2 ex-long double beds). All rooms have a flat screen satellite TV, mini fridge, microwave, coffeemaker, iron & ironing board, and hair dryer. The entire Guest House has high speed wireless internet access with printing capabilities. The ORNL Guest House is located in the Oak Ridge National Laboratory campus, within 5 minutes by car to any part of the campus, High Flux Isotope Reactor (HFIR), Conference Center and short walk to the Spallation Neutron Source (SNS). The Guest House is a three story, 47 room, 71 bed facility (23 rooms with king beds and 24 rooms with 2 ex-long double beds). All rooms have a flat screen satellite TV, mini fridge, microwave, coffeemaker, iron & ironing board, and hair dryer. The entire Guest House has high speed wireless internet access with printing capabilities. ORNL Guest House Oak Ridge National Laboratory Address - 8640 Nano Center Drive Oak Ridge, Tn 37830 Phone: 865-576-8101 Fax: 865-576-8102 Operated by Paragon Hotel Company This Convenient and Modern Facility Offers:

137

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

138

building load | OpenEI  

Open Energy Info (EERE)

load load Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

139

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

140

Principles of Passive House  

NLE Websites -- All DOE Office Websites (Extended Search)

Principles of Passive House Principles of Passive House Speaker(s): Wolfgang Feist Date: November 1, 2010 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Alan Meier The Passive House ("Passivhaus") concept is a rigorous, voluntary energy performance standard for buildings that reduces heating requirements by up to 90% and overall energy use by up to 80% over standard construction. Developed in Germany in the early 1990s and drawing on Super-insulated and Passive Solar ideas from North America and "Low Energy" European building standards, the concept of a building that could be practically constructed to maintain a comfortable interior climate without conventional heating or cooling systems was devised, tested and proven. The Passive House remains comfortable without large "active"

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cost Effective Sustainable Housing.  

E-Print Network (OSTI)

??Cost Effective Sustainable Housing The topic of research which was discussed throughout this study was an analysis of sustainable development between single-family and multi-family structures.… (more)

Morton, Joshua

2009-01-01T23:59:59.000Z

142

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Demographics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

143

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Space Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

144

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Fuels Used and End Uses in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2"...

145

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Space Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Space...

146

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

147

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

148

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Space Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

149

Houses for Dorchester  

E-Print Network (OSTI)

The intent of this thesis is to develop a design for thirty units of housing responding to the development objectives of the Nuestra Comunidad Development Corporation (NCDC) in the Upham Corner district of Dorchester. It ...

Chalmers, Thomas C. (Thomas Clark)

1987-01-01T23:59:59.000Z

150

Indian Housing Training Conference  

Energy.gov (U.S. Department of Energy (DOE))

This four-day conference will provide housing professionals with the tools to maintain good homes, build affordable homes, improve public safety, and provide essential building blocks to a healthy...

151

Current balancing for battery strings  

DOE Patents (OSTI)

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

152

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

153

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

154

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

155

Plug Load  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commercial Commercial Industrial Lighting Energy Smart Grocer Program HVAC Program Shell Measures Commercial Kitchen & Food Service Equipment Plug Load New...

156

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

157

Batteries, mobile phones & small electrical devices  

E-Print Network (OSTI)

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

158

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

159

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

160

Argonne Open House 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Open Argonne Open House 2009 Welcome Organization Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Argonne Open House 2009 Bookmark and Share THANK YOU! The Nuclear Engineering Division thanks all participants which contributed to make a success of the Open House event. Argonne opened its gates to the community on Saturday, August 29, from 9am to 4:30pm. NE actively participated in this event with activities inside and outside Building 208, the home of the Nuclear Engineering Division. Inside building 208 KEYWORDS: Nuclear Engineering; National Security; Environment, Safety and Health

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vent construction for batteries  

SciTech Connect

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

162

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

163

United States Advanced Battery Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

164

House, home, and community : good models for graduate student housing  

E-Print Network (OSTI)

This thesis explores the planning and design of on-campus housing for graduate students in urban context. This study reviews the prevailing models of on-campus housing nationally and discusses the new concepts of future ...

Han, Jienan, 1978-

2004-01-01T23:59:59.000Z

165

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

166

Advanced battery modeling using neural networks  

E-Print Network (OSTI)

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

167

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

168

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

169

THE WHITE HOUSE | Department of Energy  

Energy Savers (EERE)

THE WHITE HOUSE THE WHITE HOUSE THE WHITE HOUSE More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation...

170

THE WHITE HOUSE | Department of Energy  

Office of Environmental Management (EM)

THE WHITE HOUSE THE WHITE HOUSE THE WHITE HOUSE More Documents & Publications Audit Report: IG-0473 Lapse Documents Inspection Report: IG-0397...

171

Battery and charge controller evaluations in small stand-alone PV systems  

SciTech Connect

We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

172

Performance analysis results of a battery fuel gauge algorithm at multiple temperatures  

Science Journals Connector (OSTI)

Abstract Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from ?20 °C to 40 °C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.

B. Balasingam; G.V. Avvari; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

173

Sod House Furnishings  

NLE Websites -- All DOE Office Websites (Extended Search)

House Furnishings House Furnishings Nature Bulletin No. 666 February 10, 1962 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation SOD HOUSE FURNISHINGS Last year, after we issued Bulletin No. 620-A about the sod houses built by early settlers on the Great Plains, there were numerous requests for this one about the furnishings in those unique dwellings. If they seem meager and inadequate, bear in mind that, with rare exceptions, the pioneers were so poor that some had nothing but iron determination and courage. After the Civil War, ex-soldiers from both armies "pulled up stakes and lit out" for Nebraska, Kansas, or Texas. Under the Homestead Act of 1862, anyone who had not been a Rebel could "file" on and obtain, free, a quarter-section (160 acres) of "government land" -- public domain -- and, by paying $200, claim and pre-empt another. There were no restrictions on purchases from land companies, nor from the railroads that had been granted millions of acres.

174

Controlling House Sparrows  

E-Print Network (OSTI)

T he English or house sparrow is a very common resident in urban and suburban areas. Introduced from Europe, the sparrow has spread over the entire United States and is found almost everywhere in Texas. It is an aggressive, adaptable bird that nests...

Texas Wildlife Services

2008-04-15T23:59:59.000Z

175

Housing services Zinfandel Hall  

E-Print Network (OSTI)

resources, the library, and the Internet. The Community has its own dining hall, swimming pools, study roomsHousing services Zinfandel Hall (707) 664-2541 Fax: (707) 664-4158 e-mail: ssu hall suites and campus apartments, all located just seconds from the main campus classroom buildings

Ravikumar, B.

176

Load Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visualization and Controls Peer Review Visualization and Controls Peer Review Load Control for System Reliability and Measurement-Based Stability Assessment Dan Trudnowski, PhD, PE Montana Tech Butte, MT 59701 dtrudnowski@mtech.edu 406-496-4681 October 2006 2 Presentation Outline * Introduction - Goals, Enabling technologies, Overview * Load Control - Activities, Status * Stability Assessment - Activities, Status * Wrap up - Related activities, Staff 3 Goals * Research and develop technologies to improve T&D reliability * Technologies - Real-time load control methodologies - Measurement-based stability-assessment 4 Enabling Technologies * Load control enabled by GridWise technology (e.g. PNNL's GridFriendly appliance) * Real-time stability assessment enabled by Phasor Measurement (PMU) technology 5 Project Overview * Time line: April 18, 2006 thru April 17, 2008

177

Sandia National Laboratories: Evaluating Powerful Batteries for...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

178

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

179

Batteries lose in game of thorns | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

180

Disordered Materials Hold Promise for Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hierarchically Structured Materials for Lithium Batteries. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

182

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

183

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

184

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

185

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

186

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

187

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

188

PHEV Battery Cost Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

189

Coordination Chemistry in magnesium battery electrolytes: how...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

190

Upgrading the Vanadium Redox Battery | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

191

White House honors Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

White House honors Los Alamos physicist's early career work July 10, 2009 Los Alamos, New Mexico, July 10, 2009-The White House today announced that Los Alamos National Laboratory...

192

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

193

Advanced Lead Acid Battery Consortium | Open Energy Information  

Open Energy Info (EERE)

Lead Acid Battery Consortium Lead Acid Battery Consortium Jump to: navigation, search Name Advanced Lead-Acid Battery Consortium Place Durham, North Carolina Zip 27713 Sector Vehicles Product The ALABC is a research consortium of more than 50 battery-related companies that was originally formed in 1992 to advance the capabilities of the valve-regulated lead acid battery to help electric vehicles become a reality. Coordinates 45.396265°, -122.755099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.396265,"lon":-122.755099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Contour Energy Systems formerly CFX Battery | Open Energy Information  

Open Energy Info (EERE)

Contour Energy Systems formerly CFX Battery Contour Energy Systems formerly CFX Battery Jump to: navigation, search Name Contour Energy Systems (formerly CFX Battery) Place Azusa, California Zip 91702 Product California-based battery maker which claims to have developed novel fluorine-based battery chemistries, nano-materials science and manufacturing processes. Coordinates 34.13361°, -117.905879° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.13361,"lon":-117.905879,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Queens College Louis Armstrong House  

E-Print Network (OSTI)

Queens College Louis Armstrong House Louis Armstrong House Museum "From a humble, two-room shack Armstrong. Armstrong lived for nearly three decades in the modest, brick-fronted Corona, Queens home that today is the Louis Armstrong House Museum, which is partnered with Queens College, and open

Rosen, Jay

196

Bryant Sugar House Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Bryant Sugar House Biomass Facility Bryant Sugar House Biomass Facility Jump to: navigation, search Name Bryant Sugar House Biomass Facility Facility Bryant Sugar House Sector Biomass Location Palm Beach County, Florida Coordinates 26.6514503°, -80.2767327° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.6514503,"lon":-80.2767327,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Daiwa House Industry Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Daiwa House Industry Co Ltd Daiwa House Industry Co Ltd Jump to: navigation, search Name Daiwa House Industry Co Ltd Place Osaka, Japan Zip 530-8241 Sector Wind energy Product Japanese construction company; builds wind farms, manufacturers micro wind systems, and constructs housings with PV systems. Coordinates 34.677471°, 135.503235° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.677471,"lon":135.503235,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Vale Slaughter House Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Vale Slaughter House Space Heating Low Temperature Geothermal Facility Vale Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility Vale Slaughter House Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055°, -117.2382311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

199

Which Reduces Vehicle Travel More: Jobs-Housing Balauce or Retail-Housing Mixing?  

E-Print Network (OSTI)

More: Jobs-Housing Balance or Retail-Housing Mixing? 2. TheMore: Jobs-Housing Balauce or Retail-Housing Mixing? Robertto housing or bringing retail and consumer services closer

Cervero, Robert; Duncan, Michael

2008-01-01T23:59:59.000Z

200

Redox Flow Batteries, a Review  

SciTech Connect

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lithium batteries for pulse power  

SciTech Connect

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

202

Battery system with temperature sensors  

DOE Patents (OSTI)

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

203

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

204

Fermilab Family Open House  

NLE Websites -- All DOE Office Websites (Extended Search)

Sunday, February 9, 2014 Sunday, February 9, 2014 1:00–5:00 PM Directions to Fermilab This is a party for children who bring an adult with them to learn about the world of physics. (There's plenty for the grown-ups, too.) Events include: Watch Mr. Freeze's fabulous cryogenics show Explore physics concepts with hands-on activities Ask a scientist your physics questions. Take a tour! And more! The Open House is most appropriate for children in grades 3 and up. The event is free. Register only if you wish to go on a tour (minimum age 10). Otherwise, you do not have to register. You should pick up the tickets for the tours in the atrium on the day of the event. Tickets not picked up at least 10 minutes before a tour starts will be released. The Open House is co-supported by Fermilab Friends for Science Education and the Education Office.

205

Housing characteristics 1993  

SciTech Connect

This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.

NONE

1995-06-01T23:59:59.000Z

206

Flying Squirrels and Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

Flying Squirrels and Houses Flying Squirrels and Houses Name: Kathy Location: N/A Country: N/A Date: N/A Question: How do you get rid of flying squirrels in the attic of a Cape style home that has limited access to the attic? There is blown in insulation so we cannot see to the end of the house where we hear them, nor can a person crawl in to see anything. We have used d-con bars, mouse traps and have-a-heart traps in the crawl spaces we can reach, but have caught nothing. Replies: Place a statue of an owl near the entrance the squirrels are using. Owls are their motal enemies and this technique works for birds as well. Steve Sample You will not be able to solve this problem until you find the way they go in and out. Usually the easiest way is to look for light coming in from outside while in the dark attic, but if you can't see it that way do a thorough search of the outside. A flying squirrel does not need a very big hole, maybe 2" or less diameter. They go out at night so once you find the hole close it up at night while they are out. Good luck.

207

Building America Whole-House Solutions for New Homes: Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California  

Energy.gov (U.S. Department of Energy (DOE))

Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and maybe more appropriate for climates with higher heating loads.

208

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

209

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

210

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

211

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

212

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

213

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

214

THE WHITE HOUSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Vehicles Initiative Electric Vehicles Initiative Today, President Barack Obama and President Hu Jintao announced the launch of a U.S.-China Electric Vehicles Initiative. The two leaders emphasized their countries' strong shared interest in accelerating the deployment of electric vehicles in order to reduce oil dependence, cut greenhouse gas emissions and promote economic growth. Activities under the initiative will include: * Joint standards development. The two countries will explore development of joint product and testing standards for electric vehicles. This will include common design standards for plugs to be used in electric vehicles, as well as common test protocols for batteries and other devices. Each country currently has extensive literature and data on its own standards. Making this

215

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

216

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

217

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

218

Developing Next-Gen Batteries With Help From NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

219

Making Li-air batteries rechargeable: material challenges. |...  

NLE Websites -- All DOE Office Websites (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

220

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

NLE Websites -- All DOE Office Websites (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

222

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

223

EV Everywhere Battery Workshop Introduction | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

224

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

225

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

226

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

227

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

228

Batteries using molten salt electrolyte  

DOE Patents (OSTI)

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

229

The 2005 Solar D House  

E-Print Network (OSTI)

. UT Solar D House This isn’t the only technology that makes life easier in this house. Besides a bevy of energy efficient appliances and lighting, which reduce energy costs, there’s so much more. Even the appliances contribute, with features...-profit, where the house will be used as a learning center for low-income families as transitional housing. As part of their mission statement, the UT SolarD Team hopes to inspire the Austin public about the benefits of solar-powered, energy...

Garrison, M.

2006-01-01T23:59:59.000Z

230

Thermal Batteries for Electric Vehicles  

SciTech Connect

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

231

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Energy.gov (U.S. Department of Energy (DOE))

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

232

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Energy.gov (U.S. Department of Energy (DOE))

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

233

Load Management for Industry  

E-Print Network (OSTI)

In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

Konsevick, W. J., Jr.

1982-01-01T23:59:59.000Z

234

The Paper Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Company Inc Paper Battery Company Inc Jump to: navigation, search Logo: The Paper Battery Company Inc Name The Paper Battery Company Inc Address 45 ferry St Place Troy, New York Zip 12180 Sector Buildings Product Scalable energy storage sheet Year founded 2008 Number of employees 1-10 Phone number 5182669027 Website http://www.paperbatteryco.com/ Coordinates 42.7278621°, -73.6927106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7278621,"lon":-73.6927106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

236

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

237

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

238

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

239

Differential thermal voltammetry for tracking of degradation in lithium-ion batteries  

Science Journals Connector (OSTI)

Abstract Monitoring of lithium-ion batteries is of critical importance in electric vehicle applications in order to manage the operational condition of the cells. Measurements on a vehicle often involve current, voltage and temperature which enable in-situ diagnostic techniques. This paper presents a novel diagnostic technique, termed differential thermal voltammetry, which is capable of monitoring the state of the battery using voltage and temperature measurements in galvanostatic operating modes. This tracks battery degradation through phase transitions, and the resulting entropic heat, occurring in the electrodes. Experiments to monitor battery degradation using the new technique are compared with a pseudo-2D cell model. Results show that the differential thermal voltammetry technique provides information comparable to that of slow rate cyclic voltammetry at shorter timescale and with load conditions easier to replicate in a vehicle.

Billy Wu; Vladimir Yufit; Yu Merla; Ricardo F. Martinez-Botas; Nigel P. Brandon; Gregory J. Offer

2015-01-01T23:59:59.000Z

240

Chapter 3 - Potential of Sodium-Sulfur Battery Energy Storage to Enable Further Integration of Wind  

Science Journals Connector (OSTI)

Abstract Wind generation is the leading alternative for environmentally responsible power generation and for energy independence in the future. However, wind power output cannot be controlled same as conventional generation, and wind is not necessarily available to serve peak load. In this chapter, the use of a Sodium Sulfur battery directly coupled with a wind farm to provide generation shifting for serving peak demand and for limiting the wind farm power output ramp-rate is discussed. Results from field operation of a 1 MW, 7.2 \\{MWh\\} Sodium Sulfur battery coupled with an 11.55 MW wind farm were provided to validate the battery’s ability to successfully carry out both the tasks. It is shown that the two tasks could be combined to achieve maximum benefit. Value addition from shifting wind generation to on-peak is calculated and the optimal ratio storage to wind ratio is discussed.

Saurabh Tewari

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

THE WHITE HOUSE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASHINGTON August 29, 1994 MEMORANDUM FOR CABINET MEMBER AND FULL-TIME EXECUTIVE BRANCH PRESIDENTIAL APPOINTEES FROM: LLOYD N. CUTLER SPECIAL COUNSEL TO THE PRESIDENT SUBJECT: Use of Company Aircraft and Accommodations As Presidential appointees, the actions we take reflect directly upon this Administration and on the President. We must therefore adhere strictly to the Standards of Ethical Conduct for Employees of the Executive Branch (Standards), 5. C.F.R. Part 2635. In addition, we must meet the even higher standard of avoiding conduct, however lawful, that public opinion regards as inappropriate for a Presidential appointee. In this spirit, the White House Chief of Staff has directed me to issue the following policy on the use, by Cabinet members and other full-time Executive Branch Presidential

242

Information House Committee on Transportation  

E-Print Network (OSTI)

. The energy efficiency and environmental advantage of rail over trucks are well established in terms Information For the House Committee on Transportation House Committee with the Port of Houston ranking as the largest port in the US in terms of import tonnage. The Gulf

243

Viable Algae in House Dust  

Science Journals Connector (OSTI)

... two culture media: Bristol8 and modified Chu No. 10 (ref. 9). Viable algae were cultured from all the dust samples taken from forty -one homes. In these ... 1). Samples from three commercial producers of house dust allergenic extract also revealed viable algae (Table 2). In general, the algal organisms found in house dust used in ...

I. LEONARD BERNSTEIN; ROBERT S. SAFFERMAN

1970-08-22T23:59:59.000Z

244

Software and House Requirements Engineering  

E-Print Network (OSTI)

a requirements engineer who puts her knowledge of software construction together with her creativity to come upSoftware and House Requirements Engineering: Lessons Learned in Combatting Requirements Creep creativity to try to come up with a plan for a house that will meet the customer's requirements. The customer

Berry, Daniel M.

245

The European Passive House Concept  

NLE Websites -- All DOE Office Websites (Extended Search)

The European Passive House Concept The European Passive House Concept Speaker(s): Nabih Tahan Date: January 13, 2009 - 12:00pm Location: 90-3122 Nabih will describe the European Passive House concept and modern, home manufacturing methods in Austria. The Passive House is a European standard for a specific way to build a house that consumes very little energy, is comfortable and has a high indoor air quality. It is a cost effective method of building, where conventional heating systems are eliminated, and their cost is reinvested in super insulation, super air-tightness and heat recovery. Free heat generated from electrical and gas appliances and lighting is recycled through the heat recovery ventilator. This results in buildings that consume 80% to 90% less heating energy while constantly

246

Comparison of the effects of floor and cage housing on the performance of five strains and crosses of egg production stocks  

E-Print Network (OSTI)

strains, found average hen housed product, on of 176 eggs for birds housed on the floor compared with 154 eggs foz compaxable b'rds in layaway batteries. The xesponse differences among stxains were incons'stent. Rowevex, Millex (19/6) reported moxe... of suz'vivors while the caged pullets showed signif icantly lower mox tality and heavier eggs, Consistent significant differences could not be demonstrated for the traits studied, namely the production index and sexual maturity. Francis {19...

Bailey, Bernice Boyce

2012-06-07T23:59:59.000Z

247

A procedure for derating a substation transformer in the presence of widespread electric vehicle battery charging  

SciTech Connect

This paper studies the effect of electric vehicle (EV) battery charging on a substation transformer that supplies commercial, residential, industrial, and EV load on a peak summer day. The analysis begins on modeling non-EV load with typical utility load shapes. EV load is modeled using the results from an analytical solution technique that predicts the net power and harmonic currents generated by a group of EV battery chargers. The authors evaluate the amount of transformer derating by maintaining constant daily transformer loss-of-life, with and without EV charging. This analysis shows that the time of day and the length of time during which the EVs begin charging are critical in determining the amount of transformer derating required. The results show that with proper control, EV charging may have very little effect on power system components at the substation level.

Staats, P.T.; Grady, W.M.; Arapostathis, A. [Univ. of Texas, Austin, TX (United States)] [Univ. of Texas, Austin, TX (United States); Thallam, R.S. [Salt River Project, Phoenix, AZ (United States)] [Salt River Project, Phoenix, AZ (United States)

1997-10-01T23:59:59.000Z

248

Load Data and Load Vector Assembly  

Science Journals Connector (OSTI)

Data for loading cases in solid mechanics problems is described. The following external loading factors can be specified: concentrated nodal forces, distributed surface forces, and thermal loading. JavaTM class F...

2010-01-01T23:59:59.000Z

249

Multi-Family Housing Loans and Grants  

Energy.gov (U.S. Department of Energy (DOE))

Multi-family housing programs offer rural rental housing loans to provide affordable multi-family rental housing for very low-, low-, and moderate-income families, the elderly, and persons with...

250

PPPL Open House | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2013, 9:00am to 4:00pm Open House at Princeton Plasma Physics Laboratory PPPL Open House Hot Plasma, Cool Science: Princeton Plasma Physics Lab Open House on June 1 Mark...

251

Open House | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Open House PPPL Open House Saturday, June 1 9 a.m. to 4 p.m. Princeton Plasma Physics Laboratory 100 Stellarator Road Princeton, NJ, 08540 OPEN HOUSE PROGRAM BOOKLET...

252

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

253

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

254

'Thirsty' Metals Key to Longer Battery Lifetimes  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

255

Vehicle Technologies Office: Exploratory Battery Materials Research  

Energy.gov (U.S. Department of Energy (DOE))

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

256

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

257

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

258

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

259

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

260

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

262

Advanced Controls for Residential Whole-House Ventilation Systems  

SciTech Connect

Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

Turner, William; Walker, Iain; Sherman, Max

2014-08-01T23:59:59.000Z

263

Building Technologies Office: House Simulation Protocols Report  

NLE Websites -- All DOE Office Websites (Extended Search)

House Simulation House Simulation Protocols Report to someone by E-mail Share Building Technologies Office: House Simulation Protocols Report on Facebook Tweet about Building Technologies Office: House Simulation Protocols Report on Twitter Bookmark Building Technologies Office: House Simulation Protocols Report on Google Bookmark Building Technologies Office: House Simulation Protocols Report on Delicious Rank Building Technologies Office: House Simulation Protocols Report on Digg Find More places to share Building Technologies Office: House Simulation Protocols Report on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

264

Building Technologies Office: Housing Innovation Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Housing Innovation Housing Innovation Awards to someone by E-mail Share Building Technologies Office: Housing Innovation Awards on Facebook Tweet about Building Technologies Office: Housing Innovation Awards on Twitter Bookmark Building Technologies Office: Housing Innovation Awards on Google Bookmark Building Technologies Office: Housing Innovation Awards on Delicious Rank Building Technologies Office: Housing Innovation Awards on Digg Find More places to share Building Technologies Office: Housing Innovation Awards on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator

265

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2...

266

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

267

Better Buildings Challenge Expands to Multifamily Housing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Departments of Energy and Housing and Urban Development expanded the Better Buildings Challenge to multifamily housing such as apartments and condominiums.

268

Million U.S. Housing Units Total...............................  

U.S. Energy Information Administration (EIA) Indexed Site

CDD or More and Less than 4,000 HDD Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

269

Before the House Subcommittee on Investigations & Oversight ...  

Energy Savers (EERE)

House Subcommittee on Investigations & Oversight - Committee on Science, Space, and Technology Before the House Subcommittee on Investigations & Oversight - Committee on Science,...

270

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

271

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

272

Public housing renovation : an opportunity for a better housing environment  

E-Print Network (OSTI)

The central hypothesis of this study is that the current renovation program of public housing projects is based on a predominantly physical perspective. Understanding the administrative and implementation aspects of the ...

Jordán F., Pablo (Jordán Fuchs)

1984-01-01T23:59:59.000Z

273

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

274

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

275

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

276

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

277

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

278

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

279

Solid-state lithium battery  

DOE Patents (OSTI)

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

280

Tackling the Photovoltaic Integration Challenge in the Distribution Network with Deferrable Load  

E-Print Network (OSTI)

.g., water heater) as well as ESS (e.g., battery systems) can be used to reduce the reverse energy flowTackling the Photovoltaic Integration Challenge in the Distribution Network with Deferrable Load systems (ESSs) in households. When the energy generated by PV units is greater than the aggregate load

Wong, Vincent

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

16 Load Data Cleansing and Bus Load  

E-Print Network (OSTI)

375 16 Load Data Cleansing and Bus Load Coincidence Factors* Wenyuan Li, Ke Wang, and Wijarn Wangdee 16.1 INTRODUCTION Load curve data refer to power consumptions recorded by meters at certain time intervals at buses of individual substations. Load curve data are one of the most important datasets

Wang, Ke

282

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

SciTech Connect

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

283

3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems  

SciTech Connect

Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

Bundschuh, Paul [Ideal Power

2013-03-23T23:59:59.000Z

284

Engineer in the White House  

Science Journals Connector (OSTI)

... of Staff at the White House is a powerful figure. The present incumbent, Mr John Sununu, has the distinction of having himself run for elected office and of being ...

John Maddox

1990-03-08T23:59:59.000Z

285

White House Tribal Nations Conference  

Energy.gov (U.S. Department of Energy (DOE))

On December 5, 2012, President Obama will host representatives invited from each of the 566 federally recognized American Indian tribes, and Alaska Native Villages, at the 2012 White House Tribal...

286

Models for Battery Reliability and Lifetime  

SciTech Connect

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

287

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

288

DOE Solar Decathlon: 2005 - Where Are the Solar Decathlon 2005 Houses Now?  

NLE Websites -- All DOE Office Websites (Extended Search)

Where Are the Solar Decathlon 2005 Houses Now? Where Are the Solar Decathlon 2005 Houses Now? After the U.S. Department of Energy Solar Decathlon 2005, the competition houses were put to a variety of uses. To learn more about where each house is today, select from the markers on the map below or choose from the links in the following table. Screen reader users: click here for plain HTML Go to Google Maps Home Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Report a problem - Maps Labs - Help Google Maps ‎ ‎ - ©2014 Google ‎ - Terms of Use - Privacy View U.S. Department of Energy Solar Decathlon 2005 Houses in a larger map The contents of this map are also presented in the table below. If you need

289

DOE Solar Decathlon: Where Are the Solar Decathlon 2007 Houses Now?  

NLE Websites -- All DOE Office Websites (Extended Search)

Where Are the Solar Decathlon 2007 Houses Now? Where Are the Solar Decathlon 2007 Houses Now? After the U.S. Department of Energy Solar Decathlon 2007, the competition houses were put to a variety of uses. To learn more about where each house is today, select from the markers on the map below or choose from the links in the following table. Screen reader users: click here for plain HTML Go to Google Maps Home Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Report a problem - Maps Labs - Help Google Maps ‎ ‎ - ©2014 Google ‎ - Terms of Use - Privacy View U.S. Department of Energy Solar Decathlon 2007 Houses in a larger map The contents of this map are also presented in the table below. If you need

290

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

291

The Science of Battery Degradation.  

SciTech Connect

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

292

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

293

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

294

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

295

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network (OSTI)

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

296

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

297

Self locking coupling mechanism for engaging and moving a load  

DOE Patents (OSTI)

A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

1980-09-12T23:59:59.000Z

298

Self locking coupling mechanism for engaging and moving a load  

DOE Patents (OSTI)

Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

Wood, Richard L. (Livermore, CA); Casamajor, Alan B. (Pleasanton, CA); Parsons, Richard E. (Orinda, CA)

1982-01-01T23:59:59.000Z

299

Electric Storage Partners / GeoBATTERY | Open Energy Information  

Open Energy Info (EERE)

Storage Partners / GeoBATTERY Storage Partners / GeoBATTERY Jump to: navigation, search Name Electric Storage Partners / GeoBATTERY Address P.O. Box 3321 Place Austin, Texas Zip 78764 Sector Efficiency Product Manufacturer and developer of utility-scale bulk grid storage systems for the electric utilities Website http://www.geobattery.com/ Coordinates 30.2667°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2667,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

302

Commercial and Residential Hourly Load Data Now Available on OpenEI! |  

Open Energy Info (EERE)

Commercial and Residential Hourly Load Data Now Available on OpenEI! Commercial and Residential Hourly Load Data Now Available on OpenEI! Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:03 building load building load data commercial load data dataset datasets electric load data load data load profile OpenEI residential load TMY3 United States Load data Image source: NREL I am pleased to announce that simulated hourly residential and commercial building load datasets are now available on OpenEI. These datasets are available for all TMY3 locations in the United States. They contain hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). In addition to various

303

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

304

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

305

Cascade redox flow battery systems  

DOE Patents (OSTI)

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

306

HVAC Improvements for Existing Houses  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Improvements for Existing Houses HVAC Improvements for Existing Houses Speaker(s): Chryséis Bovagnet Date: September 5, 2002 - 12:00pm Location: Bldg. 90 Many older houses in the US are either not well designed from a thermal point of view or have HVAC (Heating Ventilation and Air Conditioning) systems in need of repairs or improvements. The building envelopes tend to have poor insulation and lots of leakage, and the HVAC systems are inefficient. The cooling/heating equipment is often located outside of the conditioned space (e.g. in attics or crawlspaces) with ducts that leak and have poor insulation, which cause energy loss and bad occupant comfort on peak days or in extreme climates. We developed a series of retrofits that will allow us to reduce the energy consumption of residential HVAC

307

On-site Housing Rates | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates Rates Effective February 1, 2013 Rates for Occupancy < 30-Days Guest House* Single/Double: US $105.00/day Housekeeping service is provided on all working days. *Alternatives to the Guest House - When family-type accommodations are assigned to temporary or transient personnel, Guest House rates as set forth above will apply. The total will not exceed one months' rent for a unit occupied for 30 days or less. When such assignment is necessary due to lack of adequate Guest House accommodations, housekeeping service is provided on working days; for reservations staying seven days or less. Residence Houses Curie House: US $42.00/day Cavendish House: US $42.00/day Compton House: US $42.00/day Housekeeping service for all residence houses are provided three times per

308

Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting  

Science Journals Connector (OSTI)

Abstract A battery storage dispatch strategy that optimizes demand charge reduction in real-time was developed and the discharge of battery storage devices in a grid-connected, combined photovoltaic-battery storage system (PV+ system) was simulated for a summer month, July 2012, and a winter month, November 2012, in an operational environment. The problem is formulated as a linear programming (LP; or linear optimization) routine and daily minimization of peak non-coincident demand is sought to evaluate the robustness, reliability, and consistency of the battery dispatch algorithm. The LP routine leverages solar power and load forecasts to establish a load demand target (i.e., a minimum threshold to which demand can be reduced using a photovoltaic (PV) array and battery array) that is adjusted throughout the day in response to forecast error. The LP routine perfectly minimizes demand charge but forecasts errors necessitate adjustments to the perfect dispatch schedule. The PV+ system consistently reduced non-coincident demand on a metered load that has an elevated diurnal (i.e., daytime) peak. The average reduction in peak demand on weekdays (days that contain the elevated load peak) was 25.6% in July and 20.5% in November. By itself, the PV array (excluding the battery array) reduced the peak demand on average 19.6% in July and 11.4% in November. PV alone cannot perfectly mitigate load spikes due to inherent variability; the inclusion of a storage device reduced the peak demand a further 6.0% in July and 9.3% in November. Circumstances affecting algorithm robustness and peak reduction reliability are discussed.

R. Hanna; J. Kleissl; A. Nottrott; M. Ferry

2014-01-01T23:59:59.000Z

309

Electrolytes for lithium ion batteries  

SciTech Connect

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

310

Battery system with temperature sensors  

SciTech Connect

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

311

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Energy.gov (U.S. Department of Energy (DOE))

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

312

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

313

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

314

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

315

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

316

Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

Yong Seok Choi; Dal Mo Kang

2014-01-01T23:59:59.000Z

317

Primer on lead-acid storage batteries  

SciTech Connect

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

318

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network (OSTI)

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

319

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

320

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

322

NREL: Energy Storage - Battery Materials Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

323

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

324

Ambient Operation of Li/Air Batteries  

SciTech Connect

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

325

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

326

Sandia National Laboratories: Batteries & Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

327

High Voltage Electrolyte for Lithium Batteries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

328

Celgard and Entek - Battery Separator Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

329

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

330

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

331

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

332

Batteries as they are meant to be seen | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries as they are meant to be seen Batteries as they are meant to be seen The search for long-lasting, inexpensive rechargeable batteries Researchers have developed a way to...

333

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

334

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

335

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

operation and thermal management of battery modules may alsoneed for careful thermal ment of battery modules. manage~ Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

336

Thermal behavior simulation of Ni/MH battery  

Science Journals Connector (OSTI)

Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery is installed in a special device in ... Quantity of heat and heat capacity of the battery charged at different state of ...

DaHe Li; Kai Yang; Shi Chen; Feng Wu

2009-05-01T23:59:59.000Z

337

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

338

Before the House Natural Resources Subcommittee on Water and...  

Energy Savers (EERE)

House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water...

339

Before the House Natural Resources Subcommittee on Water and...  

Energy Savers (EERE)

the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on Water and Power Before the House Natural Resources Subcommittee on...

340

2014 Housing Innovation Awards DOE Challenge Home Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 Housing Innovation Awards DOE Challenge Home Application 2014 Housing Innovation Awards DOE Challenge Home Application The U.S. Department of Energy's Housing Innovation...

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building America Whole-House Solutions for New Homes: Affordable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with...

342

Building America Whole-House Solutions for Existing Homes: Islip...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency...

343

Before House Committee on Science, Space, and Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

House Committee on Science, Space, and Technology Before House Committee on Science, Space, and Technology Before House Committee on Science, Space, and Technology By: Peter Lyons...

344

Before the House Science, Space, and Technology Committee | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the House Science, Space, and Technology Committee Before the House Science, Space, and Technology Committee Before the House Science, Space, and Technology Committee By: David...

345

Before the House Science and Technology Committee | Department...  

Energy Savers (EERE)

House Science and Technology Committee Before the House Science and Technology Committee Before the House Science and Technology Committee By: Arun Majumdar, Director Advanced...

346

Before House Committee on Science, Space and Technology | Department...  

Office of Environmental Management (EM)

House Committee on Science, Space and Technology Before House Committee on Science, Space and Technology Before House Committee on Science, Space and Technology By: Secretary...

347

Before the House Science and Technology Committee | Department...  

Office of Environmental Management (EM)

House Science and Technology Committee Before the House Science and Technology Committee Before the House Science and Technology Committee By: Warren F. Miller Jr., Assistant...

348

Before the House Science and Technology Subcommittee on Energy...  

Office of Environmental Management (EM)

House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and...

349

Just Suppose: Housing Subsidies for Low Income Renters  

E-Print Network (OSTI)

bonds Low-income housing tax credit Homeowner Multifamilybonds Low-income housing tax credit Fiscal year Fiscal yearthe Low Income Housing Tax Credit (LIHTC) program to provide

Quigley, John M.

2007-01-01T23:59:59.000Z

350

White House Initiative on Historically Black Colleges and Universities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Initiative on Historically Black Colleges and Universities White House Initiative on Historically Black Colleges and Universities How WHI-HBCU are ran White House...

351

Before House Subcommittee on Water and Power - Committee on Natural...  

Office of Environmental Management (EM)

House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on Water and Power - Committee on Natural Resources Before House Subcommittee on...

352

Kevin Smith Sutherland House 234  

E-Print Network (OSTI)

Kevin Smith Sutherland House 234 PMB 3342 Nashville, TN 37235 January 27, 2010 Mr. Scott at Kevin.m.smith@vanderbilt.edu or by phone at (543)3843909. Thank you for your consideration. Sincerely, Kevin Smith The cover letter needs to be in business letter format...this includes

Bordenstein, Seth

353

Hickam Housing, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hickam Housing, Hawaii: Energy Resources Hickam Housing, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.341267°, -157.961371° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.341267,"lon":-157.961371,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

White House Station, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

House Station, New Jersey: Energy Resources House Station, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.62093°, -74.76123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.62093,"lon":-74.76123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Barbers Point Housing, Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barbers Point Housing, Hawaii: Energy Resources Barbers Point Housing, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.32455°, -158.083156° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.32455,"lon":-158.083156,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Halfway House, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Halfway House, Pennsylvania: Energy Resources Halfway House, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2820407°, -75.6432409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2820407,"lon":-75.6432409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Spring House, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Spring House, Pennsylvania: Energy Resources Spring House, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.1853862°, -75.2276756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1853862,"lon":-75.2276756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Cape May Court House, New Jersey: Energy Resources | Open Energy  

Open Energy Info (EERE)

May Court House, New Jersey: Energy Resources May Court House, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.0826135°, -74.8237786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0826135,"lon":-74.8237786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

360

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Status of PC When Not in Use Left On..............................................................

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

... 13.2 10.2 0.6 0.3 1.1 1.1 Table HC2.10 Home Appliances Usage Indicators by Type of Housing Unit, 2005 Housing Units (millions) Single-Family Units...

362

The Malay house : rationale and change  

E-Print Network (OSTI)

The Malay house is defined and described in the Malaysian context . Underlying principles or rules that make up the· house are derived from the analysis of its physical, spatial and functional elements and the variations ...

Wan Abidin, Wan Burhanuddin B

1981-01-01T23:59:59.000Z

363

Building Technologies Office: Battery Chargers and External Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

364

Department of Energy Will Hold a Batteries and Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

365

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

366

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

367

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

368

Polymers For Advanced Lithium Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

369

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

370

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

371

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

372

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

373

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

374

NREL: Transportation Research - Innovative Way to Test Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

375

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

376

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

377

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

378

Overview of the Batteries for Advanced Transportation Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

379

Overview of the Batteries for Advanced Transportation Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

380

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

By losing their shape, material fails batteries | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

By losing their shape, material fails batteries By losing their shape, material fails batteries Too many electrons at the lithiation front in silicon are a problem Molecular...

382

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

383

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

384

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

385

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

386

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers (EERE)

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

387

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

388

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

389

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

390

Abuse Testing of High Power Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

391

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

392

Energy Management Strategies for Fast Battery Temperature Rise...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

393

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

394

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

395

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 -...

396

Essays on the household-level effects of house price growth  

E-Print Network (OSTI)

Constructing measures of house price variance . . . . 2.4.4Flip That House? House Price Dynamics and Housing InvestmentHouse Price Data . . . . . . . . . . . . . . . . . . . . .

Sitgraves, Claudia Ayanna

2009-01-01T23:59:59.000Z

397

A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery  

Science Journals Connector (OSTI)

Abstract Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e? and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 to 525 cycles in the LiTFSI/sulfolane electrolyte at a current density varying from 1.00 mA cm?2 to 0.05 mA cm?2, accompanied by a high energy efficiency of 78.32%. We postulate that the essence lies in that the as-prepared air cathode inventively create a suitable tri-phase boundary reaction zone, facilitating oxygen and Li+ diffusion in two independant pore channels, thus realizing a relative higher discharge rate capability, lower pore blockage and cathode passivation. Further, pore structure, carbon loading, rate capability, discharge depth and the air's effect are exploited and coordinated, targeting for a high power and reversible lithium-air battery. Such nano-porous carbon aerogel air cathode of novel dual pore structure and material design is expected to be an attractive alternative for lithium-air batteries and other lithium based batteries.

Fang Wang; Yang-Hai Xu; Zhong-Kuan Luo; Yan Pang; Qi-Xing Wu; Chun-Sheng Liang; Jing Chen; Dong Liu; Xiang-hua Zhang

2014-01-01T23:59:59.000Z

398

Lockout housing and sleeve for safety valve  

SciTech Connect

This patent describes apparatus for use in a subsurface valve. It comprises a lockout housing; and a lockout sleeve.

Dickson, R.L.; Davis, G.R.

1992-07-07T23:59:59.000Z

399

Inside the White House: Solar Panels  

Energy.gov (U.S. Department of Energy (DOE))

Go inside the White House and learn about the installation of solar panels on the roof of the residence.

400

Performance simulation and analysis of a fuel cell/battery hybrid forklift truck  

Science Journals Connector (OSTI)

The performance of a forklift truck powered by a hybrid system consisting of a PEM fuel cell and a lead acid battery is modeled and investigated by conducting a parametric study. Various combinations of fuel cell size and battery capacity are employed in conjunction with two distinct control strategies to study their effect on hydrogen consumption and battery state-of-charge for two drive cycles characterized by different operating speeds and forklift loads. The results show that for all case studies, the combination of a 110 cell stack with two strings of 55 Ah batteries is the most economical choice for the hybrid system based on system size and hydrogen consumption. In addition, it is observed that hydrogen consumption decreases by about 24% when the maximum speed of the drive cycle is decreased from 4.5 to 3 m/s. Similarly, by decreasing the forklift load from 2.5 to 1.5 ton, the hydrogen consumption decreases by over 20%.

Elham Hosseinzadeh; Masoud Rokni; Suresh G. Advani; Ajay K. Prasad

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Federal Housing Administration's Energy Efficient Mortgage Program  

Energy.gov (U.S. Department of Energy (DOE))

Describes the U.S. Department of Housing and Urban Development Energy Efficient Mortgage Program which helps homebuyers or homeowners save money on utility bills by enabling them to finance the cost of adding energy efficiency features to new or existing housing. Authors: U.S. Department of Housing and Urban Development

402

White House Forum on Minorites in Energy  

Energy.gov (U.S. Department of Energy (DOE))

On November 13, 2013, the Department of Energy and the White House Office of Science and Technology Policy, the Council for Environmental Quality, and the White House Office of Public Engagement co-hosted the White House Forum on Minorities in Energy. The event included the announcement of the Ambassadors for the Minorities in Energy Initiative.

403

DOE Solar Decathlon: 2002 - Where Are the Solar Decathlon 2002 Houses Now?  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Where Are the Solar Decathlon 2002 Houses Now? After the U.S. Department of Energy Solar Decathlon 2002, the competition houses were put to a variety of uses. To learn more about where each house is today, select from the markers on the map below or choose from the links in the following table. Screen reader users: click here for plain HTML Go to Google Maps Home Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Report a problem - Maps Labs - Help Google Maps ‎ ‎ - ©2014 Google ‎ - Terms of Use - Privacy View U.S. Department of Energy Solar Decathlon 2002 Houses in a larger map The contents of this map are also presented in the table below. If you need

404

Reverse power management in a wind diesel system with a battery energy storage  

Science Journals Connector (OSTI)

The subject of this paper is to present the modeling of a Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the consumer Load, a Ni–Cd Battery based Energy Storage System (BESS) and a Distributed Control System (DCS). All the models of the previously mentioned components are presented and the performance of the WDHS is tested through simulation. Simulation results with graphs for frequency and voltage of the isolated power system, active powers generated/absorbed by the different elements and the battery voltage/current/state of charge are presented for negative load and wind speed steps. The negative load step reduces the load consumed power to a level less than the WTG produced power, so that to balance active powers a negative DG power is needed (DG reverse power). As the DG speed governor cannot control system frequency in a DG reserve power situation, it is shown how the DCS orders the BESS to load artificially the system until the DG power falls in a positive power interval. The negative wind step decreases the WTG produced power, returning the power system to a situation where the needed DG power returns to positive, so that the BESS is not needed to load the system.

R. Sebastián

2013-01-01T23:59:59.000Z

405

Thin film buried anode battery  

DOE Patents (OSTI)

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

406

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

407

Alloys of clathrate allotropes for rechargeable batteries  

SciTech Connect

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

408

Pioneering battery maker files for bankruptcy  

Science Journals Connector (OSTI)

... Ultimately, the fate of US battery makers will remain tied to that of the electric car itself. And for now, no battery technology can compete cost-wise with the internal ... cost-wise with the internal combustion engine. “The outlook in the near future for electric cars does not look that promising,” says Daniel Scherson, an electrochemist at Case Western ...

Devin Powell

2012-10-24T23:59:59.000Z

409

Battery Stack-on Process Improvement  

E-Print Network (OSTI)

Imagine yourself in a job in which you stack 10,000 batteries onto a conveyor for eight hours. Each battery weighs about 22 pounds. The work is completed in an acidic environment where temperatures can peak in the summer as high as 100 degrees...

Watkins, Robert E.

2011-12-16T23:59:59.000Z

410

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human (11), and solar cells (12­14). However, the battery, a key component in portable electronics, has

Cui, Yi

411

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

412

Towards Safer Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

413

The BATINTREC process for reclaiming used batteries  

SciTech Connect

The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

Xia Yueqing; Li Guojian

2004-07-01T23:59:59.000Z

414

Puerto Rico House Tours Report  

NLE Websites -- All DOE Office Websites (Extended Search)

team of Universidad de Puerto Rico is planning to present team of Universidad de Puerto Rico is planning to present the most interesting tour in Washington. The purpose and the message of the competition, the pride that the team has for their work, their house and their country are the elements that will be combined in order to give all the visitors an amazing and unique experience. The team will communicate through the tours the importance of renewable energy. The Delegation from Puerto Rico is going to show and explain their design in a accurate way, all the features and its benefits. The house tours will serve as a tool to persuade the people to believe in team's mission: To create societal consciousness about the sun as a technological, renewable, clean and feasible source of energy to satisfy present and

415

Remotely serviced filter and housing  

DOE Patents (OSTI)

A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

Ross, M.J.; Zaladonis, L.A.

1987-07-22T23:59:59.000Z

416

Remotely serviced filter and housing  

DOE Patents (OSTI)

A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

Ross, Maurice J. (Pocatello, ID); Zaladonis, Larry A. (Idaho Falls, ID)

1988-09-27T23:59:59.000Z

417

Evergreen Sustainable Development Standard for Affordable Housing |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evergreen Sustainable Development Standard for Affordable Housing Evergreen Sustainable Development Standard for Affordable Housing Evergreen Sustainable Development Standard for Affordable Housing < Back Eligibility Low-Income Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Construction Design & Remodeling Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Solar Buying & Making Electricity Program Info State District of Columbia Program Type Green Building Incentive Provider Housing Trust Fund The Washington State Department of Commerce created the Evergreen Sustainable Development Standard, a set of green building criteria that is required for any affordable housing project applying for state funds

418

New Developments in Hog Houses and Equipment.  

E-Print Network (OSTI)

for the central house are the half-monitor and the gable-roof. The half-monitor house should be set lengthwise east and west so that the windows face south, while the gable-roof house should be set lengthwise north and south so that the rays of the sun... will shine through the sky-light windows on the east side in the morning, and those on the west side in the afternoon. The central house is better adapted for one who is in the hog business on a larger scale than the average. This house permits a number...

Hale, Fred; Smith, H. P. (Harris Pearson)

1933-01-01T23:59:59.000Z

419

Multi-cell storage battery  

DOE Patents (OSTI)

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

420

Whole-House Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-House Ventilation Whole-House Ventilation Whole-House Ventilation May 30, 2012 - 2:37pm Addthis A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. A whole-house ventilation system with dedicated ducting in a new energy-efficient home. | Photo courtesy of ©iStockphoto/brebca. What does this mean for me? Whole-house ventilation is critical in an energy-efficient home to maintain adequate indoor air quality and comfort. The whole-house ventilation system you choose will depend upon your climate, budget, and the availability of experienced contractors in your area. Energy-efficient homes -- both new and existing -- require mechanical ventilation to maintain indoor air quality. There are four basic mechanical

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Our Hand in Greening the White House  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Hand in Greening the White House (See also the Greening of Our House) "For as long as I live in the White House, I want Americans to see it not only as a symbol of clean government, but also a clean environment. We're going to identify what it takes to make the White House a model for efficiency and waste reduction, and then we're going to get the job done. . . Before I can ask you to do the best you can in your house, I ought to make sure I'm doing the best I can in my house." -President Bill Clinton, Earth Day, 1994 In an effort to provide leadership by example, the Greening of the White House project is bringing new technology, enlightened operations and management practices, and revised procurement procedures to the First Residence. Modern information technologies (e.g., multimedia) will make

422

House Simulation Protocols Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » House Simulation Residential Buildings » Building America » House Simulation Protocols Report House Simulation Protocols Report This image shows a cover of a report titled Building America House Simulation Protocols. The Building America logo is shown in the lower left corner of the report cover. Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and existing homes. These protocols are preloaded into BEopt and use a consistent approach for defining a reference building, so that all projects can be compared to each other. The steps involved in conducting performance analysis include: Defining the appropriate reference building Various climate regions, house sizes, and house ages require slightly

423

Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches  

Science Journals Connector (OSTI)

Abstract In this paper, different optimal hybrid techniques have been proposed for management of a hybrid power generation system including photovoltaic (PV), fuel cell and battery. The main power of the hybrid system comes from the photovoltaic panels, while the fuel cell and batteries are used as back up units. In order to achieve maximum power point tracking for the photovoltaic system, both fuzzy logic controller and perturb and observation methods are examined and their performances have been investigated via simulations. Next, the performance of the hybrid system has been improved via employing a family of well-known optimization approaches for load sharing among the available resources. Imperialist Competitive Algorithm (ICA), Particle Swarm Optimization (PSO), Quantum behaved Particle Swarm Optimization (QPSO), Ant Colony Optimization (ACO), and Cuckoo Optimization Algorithm (COA) are used to manage the load sharing to achieve optimal performance while the system constraints are met. The optimal performance has been characterized via the control strategy performance measure being the ratio of the amount of hydrogen production with respect to the hydrogen consumption. In order to verify the system performance, simulation studies have been carried out using practical load demand data and real weather data (solar irradiance and air temperature). Different combination of maximum power point tracking methods with various optimization algorithms have been compared with each other. The results show that the combination of fuzzy logic controller with QPSO has the best performance among the considered combinations. In this situation, when the solar irradiation is noticeably high, the required load is supplied mainly by PV array, while the battery is charged, simultaneously. In the other times, the load is mainly fed by the battery and fuel cell while the performance constraints of battery is met and the daily performance measure is optimized.

Nooshin Bigdeli

2015-01-01T23:59:59.000Z

424

Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and measured potential thermal discomfort that occupants may experience when this strategy is used. Builders can use this information to discuss space conditioning options for low-load houses with their clients to determine acceptable comfort levels for occupants in these cost-optimized, energy-efficient houses.

425

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network (OSTI)

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

426

Understanding human-battery interaction on mobile phones  

Science Journals Connector (OSTI)

Mobile phone users have to deal with limited battery lifetime through a reciprocal process we call human-battery interaction (HBI). We conducted three user studies in order to understand HBI and discover the problems in existing mobile phone designs. ... Keywords: batteries, human-battery interaction, mobile phones, power management

Ahmad Rahmati; Angela Qian; Lin Zhong

2007-09-01T23:59:59.000Z

427

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network (OSTI)

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

428

Aqueous Cathode for Next-Generation Alkali-Ion Batteries  

Science Journals Connector (OSTI)

The aqueous cathode in the flow-through mode can be individually stored in a “fuel” tank, which reduces the volume of the battery and increases the design flexibility of the battery structure, as shown in Figure 1. ... Unlike previous lithium?water batteries, the aqueous cathode is not plagued by H2 evolution from the solution, and the battery is efficiently rechargeable. ...

Yuhao Lu; John B. Goodenough; Youngsik Kim

2011-03-28T23:59:59.000Z

429

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network (OSTI)

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

430

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

431

Flow Battery System Design for Manufacturability.  

SciTech Connect

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

432

The Absent House: The Ecological House of Puerto Rico  

Vega Alta, PR The Absent House takes advantage of the benevolent climate of the humid tropics of Puerto Rico to play with the ambiguity of interior and exterior spaces. Main spaces include: a kitchenette and master bathroom suite; a guest tower with a bedroom, bathroom, and small library; an open, public pavilion for cooking, dining, and porch activities; a bathroom for visitors; an infrastructure pavilion for electricity and water consumption management; and an organic garden. The Patio of the Sun and the Stars, the most important s

433

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

434

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

435

Load sensing system  

DOE Patents (OSTI)

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

1999-01-01T23:59:59.000Z

436

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

437

APPLICATIONS – PORTABLE | Military: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrical power supply is a critical issue for all parts of modern armies, including today's and future foot soldiers. Batteries are the fundamental source of energy supply. However, where today mainly primary batteries are used in battlefield operations, future scenarios will more likely use secondary batteries in combination with fuel cells for recharging. Thereby, two lines of development are currently being pursued: larger recharging units in the range of 250 W carried by entire squads and smaller fuel cells in the range of 25 W carried by individual soldiers most likely as part of a soldier energy network.

C. Cremers; J. Tübke; M. Krausa

2009-01-01T23:59:59.000Z

438

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodium–sulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

439

Loading margin Stable operating  

E-Print Network (OSTI)

Linear approximation at p1 Actual loading margin Loadingmargin Parameter p p1 p2 p3 IEEE Transactions collapse. Linear and quadratic estimates to the variation of the loading margin with respect to any sys power support, wheeling, load model param- eters, line susceptance, and generator dispatch. The accuracy

440

Before the Subcommittee on Energy -- House Science, Space, and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-- House Science, Space, and -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee More Documents & Publications Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy and Power -- House Energy and Commerce Committee Before the Subcommittees on Energy and Environment - House Committee on

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Grid Friendly Appliances – Load-side Solution for Congestion Management  

SciTech Connect

This paper discusses the effectiveness of deploying grid-friendly{trademark} appliances (GFAs) as a load-side solution for congestion management in a competitive electricity market, with the residential house ventilation and air conditioning (HVAC) load used as an example. A GFA is an appliance that can have a sensor and a controller installed to detect price, voltage, or frequency signals and turn on/off according to certain control logic. By using the congestion price as a signal to shift GFA power consumption from high-price periods to low-price periods to reduce load in load pocket areas, transmission line congestion can be successfully mitigated. The magnitude of GFA load reduction and the location of the GFA resources are critical to relieve congestion on targeted lines while not causing other lines to congest. Simulation results are presented and the impact of implementing price-responsive GFAs on the power grid is also studied.

Lu, Ning; Nguyen, Tony B.

2006-05-21T23:59:59.000Z

442

Role of Recycling in the Life Cycle of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

443

EV Everywhere Batteries Workshop- Next Generation Lithium Ion Batteries Breakout Session Report  

Energy.gov (U.S. Department of Energy (DOE))

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

444

Flexible Loads in Future Energy Networks Jay Taneja, Ken Lutz, and David Culler  

E-Print Network (OSTI)

of purchase. Also, unlike battery storage, thermal storage has high turn-around efficiency and nearly infinite electrical loads in the form of a domestic refrigerator augmented with a thermal storage system and a supply prototype thermal storage-enhanced refrig- erator. Using this, we investigate the behavior of a network

Culler, David E.

445

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network (OSTI)

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

446

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network (OSTI)

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

447

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

448

Housing Innovation Awards at the Solar Decathlon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing Innovation Awards at the Solar Decathlon Housing Innovation Awards at the Solar Decathlon Breakfast Presented by BASF Friday, October 4, 2013 8:30-10:30 a.m. Historic Hanger 244 Orange County Great Park in Irvine, CA Friday, October 4, 2013 8:30 AM-10:30 PM 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Housing Innovation Awards Christine Barbour Master of Ceremonies 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Housing Innovation Awards 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Thank you for making the Housing Innovation Awards breakfast possible! Housing Innovation Awards 5 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov

449

All Electric Houses in Cold Climates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Houses Electric Houses in Cold Climates Duncan Prahl, RA IBACOS BA Tech Update, April 29, 2013 Denver CO All Electric Houses in Cold Climates Caveats About Me: * I'm an Architect * I love math and science, but I'm not going to marry it * My engineering skills are primarily based on osmosis and graphics * "Close enough is good enough" All Electric Houses in Cold Climates Utility Unbundling * True costs becoming "transparent" * Allows for next level of analysis * Cash flow, Total Cost of Ownership All Electric Houses in Cold Climates Martha's Vineyard Community Images courtesy South Mountain Company All Electric Houses in Cold Climates Specifications Building System Specification Below Slab R-20 extruded polystyrene (XPS) foam Foundation Walls R-20 poly iso foam

450

Housing Innovation Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Housing Innovation Awards Housing Innovation Awards Housing Innovation Awards Photo of a line of Housing Innovation Awards statues lined up on a table. The U.S. Department of Energy's Housing Innovation Awards recognize the very best in innovation on the path to zero net-energy ready homes. The awards, presented on October 4, 2013, at a breakfast ceremony during the U.S. Department of Energy (DOE) Solar Decathlon 2013 in Irvine, CA, showcase a number of the Building Technologies Office residential programs under one umbrella event. DOE Challenge Home Builder Awards Orange Arrow Presented to DOE Challenge Home builders who are leading a major housing industry transformation to zero net-energy ready homes. The DOE Challenge Home designation is the symbol of excellence in home building. Only a

451

Recycling of Li-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

452

From corrosion to batteries: Electrochemical interface studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

453

Design of a thermophotovoltaic battery substitute  

Science Journals Connector (OSTI)

Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity lower weight and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

Edward F. Doyle; Frederick E. Becker; Kailash C. Shukla; Lewis M. Fraas

1999-01-01T23:59:59.000Z

454

Studies On Advanced Lead-Acid Batteries.  

E-Print Network (OSTI)

??Subsequent to the studies on precursor lead-acid systems by Daniel, Grove and Sindesten, practical lead-acid batteries began with the research and inventions of Raymond Gaston… (more)

Martha, Surendra Kumar

2005-01-01T23:59:59.000Z

455

Sulphur back in vogue for batteries  

Science Journals Connector (OSTI)

... densities and relative safety are more important than the thousands of charge cycles a commercial electric car requires. Researchers do not expect to see a commercial lithium–sulphur battery before the ...

Richard Van Noorden

2013-06-26T23:59:59.000Z

456

Vehicle Technologies Office: Applied Battery Research  

Energy.gov (U.S. Department of Energy (DOE))

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

457

Memorandum to DOE re Battery Chargers  

Energy.gov (U.S. Department of Energy (DOE))

We are following up on our meeting with DOE on August 7, 2014.  During the meeting, several topics were identified as warranting further investigation as related to battery chargers,  including...

458

Membrane-less hydrogen bromine flow battery  

E-Print Network (OSTI)

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

459

NREL: Energy Storage - Isothermal Battery Calorimeters  

NLE Websites -- All DOE Office Websites (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

460

A monolithically integrated thermo-adsorptive battery .  

E-Print Network (OSTI)

??A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150… (more)

McKay, Ian Salmon

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

How Advanced Batteries Are Energizing the Economy  

Energy.gov (U.S. Department of Energy (DOE))

Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

462

Intercalation dynamics in lithium-ion batteries  

E-Print Network (OSTI)

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

463

A High-Performance PHEV Battery Pack  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

464

USABC Battery Separator Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es007smith2010o.pdf More Documents & Publications USABC Battery Separator Development Celgard...

465

Washington: Battery Manufacturer Brings Material Production Home...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be...

466

High-discharge-rate lithium ion battery  

DOE Patents (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

467

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

468

2014 House Nuclear Cleanup Caucus Oak Ridge  

Office of Environmental Management (EM)

2014 House Nuclear Cleanup Caucus Oak Ridge August 16, 2014 Sue Cange Acting Manager Oak Ridge Office of Environmental Management Oak Ridge Site Specific Advisory Board Annual...

469

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

Single-Family Units Apartments in Buildings With-- Table HC3.10 Home Appliances Usage Indicators by Owner-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

470

Million U.S. Housing Units Total...............................  

Annual Energy Outlook 2012 (EIA)

Single-Family Units Apartments in Buildings With-- Table HC4.10 Home Appliances Usage Indicators by Renter-Occupied Housing Unit, 2005 Home Appliances Usage Indicators...

471

Testimony before the House Appropriations Committee, Subcommittee...  

National Nuclear Security Administration (NNSA)

... Testimony before the House Appropriations Committee, Subcommittee on Energy and Water Congressional Testimony Mar 4, 2010 Administrator Thomas D'Agostino As Prepared for...

472

Science to return to the White House  

Science Journals Connector (OSTI)

... Senators and Congressmen that he wants Congress to pass a bill to establish a small science policy ... policy office in the White House, headed by a ...

Colin Norman

1975-06-05T23:59:59.000Z

473

Fayette Country, Pennsylvania, Housing Market Analysis  

Energy.gov (U.S. Department of Energy (DOE))

This is a document from the Fayette County Housing Consortium posted to the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

474

Islip Housing Authority Energy Efficiency Turnover Protocols...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

outlets, wires, and lighting; sealing around the bath exhaust fan housing and ducts boots; replacing entry door weather stripping; caulking around entry door frame and windows;...

475

Solar energy, conservation, and rental housing  

SciTech Connect

Renters must pay the majority of energy costs either directly or in their rents. They have limited financial and legal abilities to make improvements necessary to increase substantially the energy efficiency of rental housing. This report discusses the problem of how to increase investments in energy conservation and solar energy devices for rental housing, which constitutes over one-third of US housing. As background, this report characterizes the rental-housing market, including owners' decision-making criteria. Federal, state, and local policies that affect energy-related investments in rental housing are described. Programs are divided into five major categories: (1) programs for tenants, (2) financial incentives for owners, (3) leasing of solar energy equipment, (4) mediation between tenants and landlords, and (5) regulation. The report concludes that energy and conservation programs aimed at the residential sector must disaggregate owner-occupied housing from rental housing for maximum effect. No one program is advocated since local rental-housing markets differ substantially. For improvements greater than no-cost or low-cost items, programs must be directed at rental-housing owners and not only at tenants.

Levine, A.; Raab, J.

1981-03-01T23:59:59.000Z

476

Slideshow of the White House Energy Datapalooza  

Energy.gov (U.S. Department of Energy (DOE))

This post included photo's from the Energy Datapalooza hosted jointly by the White House Office of Technology-Policy and the Department of Energy.

477

Index Revision, House Price Risk, and the Market for House Price Derivatives  

E-Print Network (OSTI)

bias in repeat-sales home price indices. Freddie Mac workingpaper #05–03. Index Revision, House Price Risk, and theMarket for House Price Derivatives Calhoun, C. A. (1996).

Deng, Yongheng; Quigley, John M.

2008-01-01T23:59:59.000Z

478

ANNUAL FIRE SAFETY REPORT For Student Housing  

E-Print Network (OSTI)

and in the public areas of each of these 15 halls. The smoke detectors located in Estill Street Complex are battery, emergency lights and fire egress systems. Twenty Eight of the 50 apartments in the Ecovillage, designed

Baltisberger, Jay H.

479

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

480

A robust approach to battery fuel gauging, part I: Real time model identification  

Science Journals Connector (OSTI)

Abstract In this paper, the first of a series of papers on battery fuel gauge (BFG), we present a real time parameter estimation strategy for robust state of charge (SOC) tracking. The proposed parameter estimation scheme has the following novel features: it models hysteresis as an error in the open circuit voltage (OCV) and employs a combination of real time, linear parameter estimation and SOC tracking technique to compensate for it. This obviates the need for modeling of hysteresis as a function of SOC and load current. We identify the presence of correlated noise that has been so far ignored in the literature and use it to enhance the accuracy of model identification. As a departure from the conventional “one model fits all” strategy, we identify four different equivalent models of the battery that represent four modes of typical battery operation and develop the framework for seamless SOC tracking by switching. The proposed parameter approach enables a robust initialization/re-initialization strategy for continuous operation of the BFG. The performance of the online parameter estimation scheme was first evaluated through simulated data. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "load house batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

482

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

483

Statement of Patricia Hoffman before the United States House of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

before the United States House of before the United States House of Representatives House Appropriations Subcommittee on Energy and Water Development Statement of Patricia Hoffman before the United States House of Representatives House Appropriations Subcommittee on Energy and Water Development Statement of Patricia Hoffman before the United States House of Representatives House Appropriations Subcommittee on Energy and Water Development to appear before you today to discuss the President's Fiscal Year (FY) 2012 budget request for the Department of Energy's (DOE) Office of Electricity Delivery and Energy Reliability (OE). Statement of Patricia Hoffman before the United States House of Representatives House Appropriations Subcommittee on Energy and Water Development More Documents & Publications

484

Load regulating expansion fixture  

DOE Patents (OSTI)

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

Wagner, L.M.; Strum, M.J.

1998-12-15T23:59:59.000Z

485

Load regulating expansion fixture  

DOE Patents (OSTI)

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

1998-01-01T23:59:59.000Z

486

Load sensing system  

DOE Patents (OSTI)

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

1999-05-04T23:59:59.000Z

487

Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report  

SciTech Connect

In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

Ingersoll, D.; Clark, N.H.

1999-04-01T23:59:59.000Z

488

Making Li-air batteries rechargeable: material challenges  

SciTech Connect

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

489

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

490

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network (OSTI)

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

491

On-site Housing | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

On-site Housing On-site Housing Note: All guests wishing to stay on-site must be registered and approved in the BNL Guest Information System (GIS). Welcome to Brookhaven National Laboratory. BNL attracts more than 4,500 visiting scientists from all over the world each year to perform scientific research and work with our staff. To support our guests, there are 333 on-site housing units. These units are comprised of 66 family-style apartments, 39 efficiency apartments, 213 dormitory rooms, 13 Guest House rooms, and 2 year round private houses. Location: Hours of Operation: Research Support Building (400A), 20 Brookhaven Avenue Monday - Friday: 8:00 am to Midnight Reservations: (631) 344-2541 or 344-2551 Saturday: Closed* Fax: (631) 344-3098 Sunday: 4:00 pm to Midnight

492

Please transfer ALL data off /house  

NLE Websites -- All DOE Office Websites (Extended Search)

Please transfer ALL data off /house before Please transfer ALL data off /house before 12/1/2013 Please transfer ALL data off house September 3, 2013 by Kjiersten Fagnan (0 Comments) We are happy to announce that all the file systems: /global/projectb, /global/dna and /webfs are available for use. We now strongly encourage users to begin the data transfer process from /house to the other file systems. House will retire on December 20, 2013! For more information on the best ways to transfer data and what each file system should be used for, check this page . Post your comment You cannot post comments until you have logged in. Login Here. Comments No one has commented on this page yet. RSS feed for comments on this page | RSS feed for all comments User Announcements Email announcement archive Subscribe via RSS

493

OpenEI Community - White House  

Open Energy Info (EERE)

/0 en New report from White /0 en New report from White House outlines largest problems facing United States energy grid http://en.openei.org/community/blog/new-report-white-house-outlines-largest-problems-facing-united-states-energy-grid house-outlines-largest-problems-facing-united-states-energy-grid" target="_blank">read more http://en.openei.org/community/blog/new-report-white-house-outlines-largest-problems-facing-united-states-energy-grid#comments energy grid OpenEI President Smart Grid United States White House Fri, 16

494

Computer aided solar house design made of ``Guadua`` in Bogota, Colombia  

SciTech Connect

Bogota, Colombia, is the third highest capital in South America, its location near the equator assures high altitudes over the horizon and almost 5 hours of daily mean sunshine. Since 1981, efforts for using natural energy instead of nonrenewable fuel have been targeted to Colombia`s residential construction industry. This paper focuses on a computer aided design process for passive solar low-income row housing in Bogota. Thermal comfort for this tropical climate has been achieved through employing ``Guadua,`` a strong bamboo specie,as an alternative wall system to the traditional brick, adobe, or concrete structures. Through computer analysis, several energy conservation and passive solar strategies have been optimized for a case study row housing type common to the region. The load savings compared to a 6 inch CMU house totaled 72%, while the operating cost has been reduced by 71%. Furthermore, this lightweight and inexpensive ``Guadua`` material has reduced the construction cost by 30%.

Lozano, M.C.; Chalfoun, N.V. [Univ. of Arizona, Tucson, AZ (United States). College of Architecture

1995-11-01T23:59:59.000Z

495

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts  

Science Journals Connector (OSTI)

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts ... Aqueous Rechargeable Li and Na Ion Batteries ...

Eunjoo Yoo; Haoshen Zhou

2011-03-25T23:59:59.000Z

496

Predicting pipeline frost load  

SciTech Connect

A study was undertaken to find a formula for predicting the additional load imposed on underground pipelines by soil freezing. The authors conclude that a modified Boussinesq equation can be used to assess this load. Results also showed that frost affects the modulus of soil reaction and therefore the induced stress in flexible pipe.

Fielding, M.B.; Cohen, A.

1988-11-01T23:59:59.000Z

497

Cooling with a Whole House Fan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling with a Whole House Fan Cooling with a Whole House Fan Cooling with a Whole House Fan May 30, 2012 - 6:54pm Addthis Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. Whole house fan installed as part of a home retrofit project in California. | Photo courtesy of Lieko Earle, NREL. What does this mean for me? A whole-house fan may be sufficient to cool your house, at least for part of the year. In many climates, a whole-house fan can save you money and maintain comfort during the cooling season. How does it work? A whole-house fan works by pulling air in through windows and exhausting it through the attic and roof. Whole house cooling using a whole house fan can substitute for an air conditioner most of the year in most climates. Whole house fans combined

498

Technological rules and constraints affecting design of precast concrete housing  

E-Print Network (OSTI)

Precast concrete technology is of great importance in multifamily housing. This technology provides the possibility to the industrialize housing construction and thus enhance the availability and quality of houses. With ...

Nakamura, Takashi

1994-01-01T23:59:59.000Z

499

White_House_0921.pdf | Department of Energy  

Office of Environmental Management (EM)

WhiteHouse0921.pdf WhiteHouse0921.pdf WhiteHouse0921.pdf More Documents & Publications EA-0921: Finding of No Significant Impact whmissionstatus.pdf Environmental Leaders,...

500

New York Battery and Energy Storage Technology Consortium NY BEST | Open  

Open Energy Info (EERE)

Storage Technology Consortium NY BEST Storage Technology Consortium NY BEST Jump to: navigation, search Name New York Battery and Energy Storage Technology Consortium (NY-BEST) Place Albany, New York Zip 12203 Product Albany-based project of NYSERDA promoting battery and energy storage in New York. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}