Sample records for load generation electric

  1. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    is to perform demand side management (DSM) [1], which aims at matching the consum- ers' electricity demand between electricity consumption and generation. On the consumption side, electric demand ramps upDistributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue

  2. A systems model and potential leverage points for base load electric generating options

    SciTech Connect (OSTI)

    Brownson, D.A.; Hanson, D.J.; Price, L.G.; Sebo, D.E.

    1993-09-01T23:59:59.000Z

    The mission and structure of electric utilities may change significantly to meet the challenges on the next several decades. In addition, providing electrical energy in an environmentally responsible manner will continue to be a major challenge. The methods of supplying electrical power may change dramatically in the future as utilities search for ways to improve the availability and reliability of electrical power systems. The role of large, base load generating capacity to supply the bulk of a utility`s electrical power is evolving, but it will continue to be important for many years to come. The objective of this study is to examine the systems structure of five base load capacity options available to a utility and identify areas where technological improvements could produce significant changes in their systems. These improvements would enhance the likelihood that these options would be selected for providing future electrical capacity. Technology improvements are identified and discussed, but it was beyond the scope of this work to develop strategies for specific Idaho National Engineering Laboratory involvement.

  3. Electrical and Production Load Factors 

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for ...

  4. Electrical and Production Load Factors

    E-Print Network [OSTI]

    Sen, Tapajyoti

    2010-07-14T23:59:59.000Z

    Load factors are an important simplification of electrical energy use data and depend on the ratio of average demand to peak demand. Based on operating hours of a facility they serve as an important benchmarking tool for the industrial sector...

  5. Electric Load Forecasting

    E-Print Network [OSTI]

    -commitment, coordination, and interchange evaluation. In addition, the liberalization of electric energy markets worldwide has led to the development of energy exchanges where consumers, 1066-033X/07/$25.00©2007IEEE OCTOBER/GODDARD SPACE FLIGHT CENTER SCIENTIFIC VISUALIZATION STUDIO Authorized licensed use limited to: Katholieke

  6. Coupling Wind Generation with Controllable Load and Storage

    E-Print Network [OSTI]

    Coupling Wind Generation with Controllable Load and Storage: A Time-Series Application of the Super Electric Energy System #12;Coupling Wind Generation with Controllable Load and Storage: A Time Wind Generation with Controllable Load and Storage: A Time-Series Application of the SuperOPF." (PSERC

  7. Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint

    E-Print Network [OSTI]

    Jackson, C. E.

    1984-01-01T23:59:59.000Z

    Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

  8. Sandia's research spans generation, storage, and load management at

    E-Print Network [OSTI]

    kW diesel genset, fuel cells, and additional interchangeable generators. Storage capabilitiesSandia's research spans generation, storage, and load management at the component and systems participate in the generation of industry guidelines, protocols, electric codes, and national

  9. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  10. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01T23:59:59.000Z

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  11. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  12. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  13. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  14. Electricity Generation by Rhodopseudomonas palustris

    E-Print Network [OSTI]

    ,6). Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA are two DMRB capable of electricity generationElectricity Generation by Rhodopseudomonas palustris DX-1 D E F E N G X I N G , , Y I Z U O manuscript received March 20, 2008. Accepted March 25, 2008. Bacteria able to generate electricity

  15. System and method employing a minimum distance and a load feature database to identify electric load types of different electric loads

    DOE Patents [OSTI]

    Lu, Bin; Yang, Yi; Sharma, Santosh K; Zambare, Prachi; Madane, Mayura A

    2014-12-23T23:59:59.000Z

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a load feature database of a plurality of different electric load types, each of the different electric load types including a first load feature vector having at least four different load features; sensing a voltage signal and a current signal for each of the different electric loads; determining a second load feature vector comprising at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the different electric loads; and identifying by a processor one of the different electric load types by determining a minimum distance of the second load feature vector to the first load feature vector of the different electric load types of the load feature database.

  16. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  17. Registration of Electric Generators (Connecticut)

    Broader source: Energy.gov [DOE]

    All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

  18. Electricity pricing for conservation and load shifting

    SciTech Connect (OSTI)

    Orans, Ren; Woo, C.K.; Horii, Brian; Chait, Michele; DeBenedictis, Andrew

    2010-04-15T23:59:59.000Z

    The electricity industry is facing the challenge of increasing costs of reliably meeting demand growth and fully complying with legislative renewable portfolio standards and greenhouse gas reduction targets. However, an electric utility's existing tariffs often don't have rates that increase with consumption volume or vary by time of use, thus not fully exploiting the potential benefits from customer conservation and load shifting. (author)

  19. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

    2008-11-18T23:59:59.000Z

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  20. ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM

    E-Print Network [OSTI]

    Krieg, B.

    2010-01-01T23:59:59.000Z

    Water Projects Generating Plants and Shiftable Generationfrom "base load" generating plants. ing" and saves energy.Cily flow PUfflj);ng - GeneratIng Plant San LUIS Reservo,,'

  1. Liquid soap film generates electricity

    E-Print Network [OSTI]

    Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

    2014-04-24T23:59:59.000Z

    We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

  2. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric...

  3. Clean Electric Power Generation (Canada)

    Broader source: Energy.gov [DOE]

    Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

  4. Extracting Operating Modes from Building Electrical Load Data: Preprint

    SciTech Connect (OSTI)

    Frank, S.; Polese, L. G.; Rader, E.; Sheppy, M.; Smith, J.

    2012-01-01T23:59:59.000Z

    Empirical techniques for characterizing electrical energy use now play a key role in reducing electricity consumption, particularly miscellaneous electrical loads, in buildings. Identifying device operating modes (mode extraction) creates a better understanding of both device and system behaviors. Using clustering to extract operating modes from electrical load data can provide valuable insights into device behavior and identify opportunities for energy savings. We present a fast and effective heuristic clustering method to identify and extract operating modes in electrical load data.

  5. Electrical transient stability and underfrequency load shedding analysis for a large pump station

    SciTech Connect (OSTI)

    Shilling, S.R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-12-31T23:59:59.000Z

    Electrical transients from faults, loss of generation, and load swings can disrupt pump station operations. Isolated stations with no utility tie and those with weak utility ties are especially at risk. Relative to this problem, the following four main issues are addressed: (1) Analyze the methods that use high-speed underfrequency load shedding to maintain system stability and preserve station operations. (2) Analyze combustion gas turbine generator and diesel generator transient responses, as they pertain to the Electrical Engineer. (3) Discuss system component modeling and the use of low voltage circuit switching devices to shed loads. (4) Compare two computer analysis program outputs for underfrequency load shedding responses.

  6. Electrical transient stability and underfrequency load shedding analysis for a large pump station

    SciTech Connect (OSTI)

    Shilling, S.R. [Saudi Aramco, Dhahran (Saudi Arabia)] [Saudi Aramco, Dhahran (Saudi Arabia)

    1997-01-01T23:59:59.000Z

    Electrical transients from faults, loss of generation, and load swings can disrupt pump station operations. Isolated stations with no utility tie, and those with weak utility ties, are especially at risk. Relative to this problem, the following four main issues are addressed: (1) analyze the methods that use high-speed underfrequency load shedding to maintain system stability and preserve station operations; (2) analyze combustion gas turbine generator and diesel generator transient responses, as they pertain to the electrical engineer; (3) discuss system component modeling and the use of low voltage circuit switching devices to shed loads; (4) compare two computer analysis program outputs for underfrequency load shedding responses.

  7. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  8. CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS

    E-Print Network [OSTI]

    upon privately owned rights. This report has not been approved or disapproved by the California Energy the need for new peaking generation capacity and associated transmission and distribution capacity's "load management" authority as a way to achieve higher levels of costeffective demand response

  9. Sandia National Laboratories: Electric Power Generation and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InterconnectsElectric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and...

  10. System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

    SciTech Connect (OSTI)

    Lu, Bin; Harley, Ronald G.; Du, Liang; Yang, Yi; Sharma, Santosh K.; Zambare, Prachi; Madane, Mayura A.

    2014-06-17T23:59:59.000Z

    A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.

  11. Prediction of Electric Load using Kohonen Maps -Application to the Polish Electricity Consumption

    E-Print Network [OSTI]

    Verleysen, Michel

    Prediction of Electric Load using Kohonen Maps - Application to the Polish Electricity Consumption on Kohonen maps is proposed. This method is applied to the prediction of the Polish electricity consumption of the electric load is specific. For each day, we have 24 values (or more) of the electricity consumption

  12. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06T23:59:59.000Z

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  13. California Customer Load Reductions during the Electricity Crisis...

    Open Energy Info (EERE)

    Reductions during the Electricity Crisis: Did They Help to Keep the Lights On? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Customer Load Reductions during...

  14. A Bio-Inspired Multi-Agent System Framework for Real-Time Load Management in All-Electric Ship Power Systems

    E-Print Network [OSTI]

    Feng, Xianyong

    2012-07-16T23:59:59.000Z

    All-electric ship power systems have limited generation capacity and finite rotating inertia compared with large power systems. Moreover, all-electric ship power systems include large portions of nonlinear loads and dynamic loads relative...

  15. Behavior of Capstone and Honeywell Microturbine Generators during Load Changes

    E-Print Network [OSTI]

    Behavior of Capstone and Honeywell Microturbine Generators during Load Changes CALIFORNIA ENERGY #12;LBNL-49095 Behavior of Capstone and Honeywell Microturbine Generators during Load Changes Prepared of Capstone and Honeywell Microturbine Generators During Load Changes ii Abstract This report describes test

  16. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

  17. A model for short term electric load forecasting

    E-Print Network [OSTI]

    Tigue, John Robert

    1975-01-01T23:59:59.000Z

    A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

  18. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect (OSTI)

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01T23:59:59.000Z

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  19. Methods for Analyzing Electric Load Shape and its Variability

    SciTech Connect (OSTI)

    Price, Philip

    2010-05-12T23:59:59.000Z

    Current methods of summarizing and analyzing electric load shape are discussed briefly and compared. Simple rules of thumb for graphical display of load shapes are suggested. We propose a set of parameters that quantitatively describe the load shape in many buildings. Using the example of a linear regression model to predict load shape from time and temperature, we show how quantities such as the load?s sensitivity to outdoor temperature, and the effectiveness of demand response (DR), can be quantified. Examples are presented using real building data.

  20. Statistical Review of UK Residential Sector Electrical Loads

    E-Print Network [OSTI]

    Tsagarakis, G; Kiprakis, A E

    2013-01-01T23:59:59.000Z

    This paper presents a comprehensive statistical review of data obtained from a wide range of literature on the most widely used electrical appliances in the UK residential load sector. It focuses on individual appliances and begins by consideration of the electrical operations performed by the load. This approach allows for the loads to be categorised based on the electrical characteristics, and also provides information on the reactive power characteristics of the load, which is often neglected from standard consumption statistics. This data is particularly important for power system analysis. In addition to this, device ownership statistics and probability distribution functions of power demand are presented for the main residential loads. Although the data presented is primarily intended as a resource for the development of load profiles for power system analysis, it contains a large volume of information which provides a useful database for the wider research community.

  1. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive.1 Optimum Electric-Power Generating Unit . . . . . . . . . . . . . . . . . . . . . . 8.7 Annual Capacity.21 Hydropower Generating Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.23 Largest Units

  2. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  3. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  4. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  5. The Economics of Steam Electric Generation

    E-Print Network [OSTI]

    Ophaug, R. A.; Birget, C. D.

    1980-01-01T23:59:59.000Z

    The economics of combining steam and electric generation for companies requiring both steam and electric services develop a challenge which few engineers and economists can realize. This paper outlines the general approach to this challenge...

  6. Electrical Generation Tax Reform Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the Montana electric utility industry that allows...

  7. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  8. Sandia National Laboratories: Ivanpah Solar Electric Generating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Generating System Sandia Report Presents Analysis of Glare Impacts of Ivanpah Solar Power Site On August 7, 2014, in Concentrating Solar Power, Energy, News, News &...

  9. Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi)

    Broader source: Energy.gov [DOE]

    The Senate Bill 2793 authorizes the Public Service Commission (PSC) to utilize an alternative cost recovery for certain base load generation. The PSC is authorized to include in an electric...

  10. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

  11. Economics of cool storage for electric load leveling

    SciTech Connect (OSTI)

    Asbury, J.G. (Argonne National Lab., IL); Dougherty, D.

    1981-01-01T23:59:59.000Z

    Equipment and methods for cold storage in commercial buildings to effect reduced summer peak load demands for electric utilities are described and the economics of this load leveling means is examined using the Potomac Electric Power Co. (PEPCO) studies and data. This examination reveals that investments in this technology can offer attractive paybacks (3 to 5 y) in new building applications. Partial storage, because of chiller-capacity savings, offers faster payback than full-storage systems. Estimates of its market potential indicate that cool storage will play an important role in PEPCO's Energy Use Management Plan. (LCL)

  12. Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure

    SciTech Connect (OSTI)

    Marnay, Chris; Venkataramanan, Giri

    2006-02-01T23:59:59.000Z

    The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

  13. Markovian Models for Electrical Load Prediction in Smart Buildings

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Markovian Models for Electrical Load Prediction in Smart Buildings Muhammad Kumail Haider, Asad,13100004,ihsan.qazi}@lums.edu.pk Abstract. Developing energy consumption models for smart buildings is important develop parsimo- nious Markovian models of smart buildings for different periods in a day for predicting

  14. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  15. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  16. Entanglement Generation by Electric Field Background

    E-Print Network [OSTI]

    Zahra Ebadi; Behrouz Mirza

    2014-10-12T23:59:59.000Z

    The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

  17. Assessing and Reducing Miscellaneous Electric Loads (MELs) in Banks

    SciTech Connect (OSTI)

    Rauch, Emily M.

    2012-09-01T23:59:59.000Z

    Miscellaneous electric loads (MELs) are loads outside of a building's core functions of heating, ventilating, air conditioning, lighting, and water heating. MELs are a large percentage of total building energy loads. This report reviews methods for reducing MELs in Banks. Reducing MELs in a bank setting requires both local and corporate action. Corporate action centers on activities to prioritize and allocate the right resources to correct procurement and central control issues. Local action includes branch assessment or audits to identify specific loads and needs. The worksheet at the end of this guide can help with cataloging needed information and estimating savings potential. The following steps provide a guide to MEL reductions in Bank Branches. The general process has been adapted from a process developed for office buildings the National Renewable Energy Laboratory (NREL, 2011).

  18. Analysis of interrelationships between photovoltaic power and battery storage for electric utility load management

    SciTech Connect (OSTI)

    Chowdhury, B.H.; Rahman, S.

    1988-08-01T23:59:59.000Z

    The impact of photovoltaic power generation on the electric utility's load shape under supply-side peak load management conditions is explored. Results show that some utilities employing battery storage for peak load shaving might benefit from use of photovoltaic (PV) power, the extent of its usefulness being dependent on the specific load shapes as well as the photovoltaic array orientations. Typical utility load shapes both in the eastern and in the western parts of the U.S. are examined for this purpose. While photovoltaic power generation seems to present a bigger impact on the load of the western utility, both utilities will experience considerable savings on the size of the battery system required to shave the peak loads and also in the night-time base capacity required to charge the battery. Results show that when the cost of 2-axis tracking PV systems drop to $2/Wp, the southwestern utility will experience net cost savings when the PV-battery hybrid system is employed for load management. On the other hand, because of lesser availability of solar energy, the southeastern utility shows adverse economics for such a system.

  19. California customer load reductions during the electricity crisis: Did they help to keep the lights on?

    E-Print Network [OSTI]

    Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

    2002-01-01T23:59:59.000Z

    Sustainability of Customer Load Reductions Customers reduced their electricity loads during summer 2001 through conservation behavior, increased attention to managing energy

  20. Bioaugmentation for Electricity Generation from Corn Stover

    E-Print Network [OSTI]

    that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using of an MFC, bacteria break down organic matter and release electrons to the electrode. Most MFC tests used by Zuo et al., 501 ( 20 mW/m2 was generated from a paper recycling wastewater containing cellulose

  1. Renewable Power Options for Electricity Generation on Kaua'i...

    Office of Environmental Management (EM)

    Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

  2. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  3. Renewable Generation and Interconnection to the Electrical Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

  4. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Energy Savers [EERE]

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

  5. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  6. Renewable Electricity Generation and Delivery at the Sacramento...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generation and Delivery at the Sacramento Municipal Utility District Renewable Electricity Generation and Delivery at the Sacramento Municipal Utility District Dairy...

  7. CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS

    E-Print Network [OSTI]

    upon privately owned rights. This report has not been approved or disapproved by the California Energy eliminate the need for new peaking generation capacity and associated transmission and distribution capacity" authority as a way to achieve higher levels of cost-effective DR. The California Energy Action Plan II (EAP

  8. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the annual potential and actual annual production of electrical energy from renewable energy resources. Only

  9. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01T23:59:59.000Z

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  10. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01T23:59:59.000Z

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  11. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

  12. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

  13. OPTIMAL DISTRIBUTED POWER GENERATION UNDER NETWORK LOAD CONSTRAINTS,

    E-Print Network [OSTI]

    Frank, Jason

    of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, small wind turbine or central-producers. Decentralized Power Generation (DPG) refers to an electric power source such as solar, wind or combined heat

  14. Simultaneous wastewater treatment and biological electricity generation

    E-Print Network [OSTI]

    Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 Ł 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

  15. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24T23:59:59.000Z

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  16. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect (OSTI)

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27T23:59:59.000Z

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  17. Electric current generation in distorted graphene

    E-Print Network [OSTI]

    Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

    2014-09-23T23:59:59.000Z

    Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

  18. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01T23:59:59.000Z

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  19. The Economics and Feasibility of Electricity Generation using

    E-Print Network [OSTI]

    Laughlin, Robert B.

    benefits of using biogas to generate electricity instead of coal are positive, implying that an otherwiseThe Economics and Feasibility of Electricity Generation using Manure Digesters on Small and Mid of electricity generation using methane from manure digesters on dairy farms under different electricity rate

  20. Third Generation Flywheels for electric storage

    SciTech Connect (OSTI)

    Ricci, Michael, R.; Fiske, O. James

    2008-02-29T23:59:59.000Z

    Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

  1. Restructuring, Ownership and Efficiency: The Case of Labor in Electricity Generation

    E-Print Network [OSTI]

    Shanefelter, Jennifer Kaiser

    2007-01-01T23:59:59.000Z

    inputs to electricity generation: fuel, capital, materialsand labor. Electricity generation is a fuel-intensive

  2. World Net Nuclear Electric Power Generation, 1980-2007 - Datasets...

    Open Energy Info (EERE)

    U.S. Energy Information ... World Net Nuclear Electric ... Dataset Activity Stream World Net Nuclear Electric Power Generation, 1980-2007 International data showing world net...

  3. Why do Particle Clouds Generate Electric Charges?

    E-Print Network [OSTI]

    T. Pähtz; H. J. Herrmann; T. Shinbrot

    2015-03-16T23:59:59.000Z

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

  4. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26T23:59:59.000Z

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  5. Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    on the wavelet transform to forecast the load curve seen as a functional-valued autoregressive Hilbertian processConstruction of an Informative Hierarchical Prior Distribution: Application to Electricity Load the methodology to a working model for the electricity load forecasting on both simulated and real datasets, where

  6. TEC as electric generator in an automobile catalytic converter

    SciTech Connect (OSTI)

    Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

    1996-12-31T23:59:59.000Z

    Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

  7. Reliability Evaluation of Electric Power Generation Systems with Solar Power

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

  8. Behavior of Capstone and Honeywell microturbine generators during load changes

    SciTech Connect (OSTI)

    Yinger, Robert J.

    2001-07-01T23:59:59.000Z

    This report describes test measurements of the behavior of two microturbine generators (MTGs) under transient conditions. The tests were conducted under three different operating conditions: grid-connect; stand-alone single MTG with load banks; and two MTGs running in parallel with load banks. Tests were conducted with both the Capstone 30-kW and Honeywell Parallon 75-kW MTGs. All tests were conducted at the Southern California Edison /University of California, Irvine (UCI) test facility. In the grid-connected mode, several test runs were conducted with different set-point changes both up and down and a start up and shutdown were recorded for each MTG. For the stand-alone mode, load changes were initiated by changing load-bank values (both watts and VARs). For the parallel mode, tests involved changes in the load-bank settings as well as changes in the power set point of the MTG running in grid-connect mode. Detailed graphs of the test results are presented. It should be noted that these tests were done using a specific hardware and software configuration. Use of different software and hardware could result in different performance characteristics for the same units.

  9. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel, mainly because of the development of novel components for decentral power generation (solar panels, small (DPG) refers to an electric power source such as solar, wind or combined heat power (CHP) connected

  10. An Automatic Load Sharing Approach for a DFIG Based Wind Generator in a Microgrid

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    An Automatic Load Sharing Approach for a DFIG Based Wind Generator in a Microgrid M. A. Barik and H generator. An automatic load sharing approach for a doubly-fed induction generator (DFIG) based wind wind velocity. The load demand for the wind generator is determined based on the variation of its

  11. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1992-01-01T23:59:59.000Z

    The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

  12. Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes

    SciTech Connect (OSTI)

    Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

    2008-11-01T23:59:59.000Z

    This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

  13. Electrical generation plant design practice intern experience at Power Systems Engineering, Inc.: an internship report

    E-Print Network [OSTI]

    Lee, Ting-Zern Joe, 1950-

    2013-03-13T23:59:59.000Z

    .2 Steady-State Performance of Electrical Conductors 22 2.3- Transient Performance of Electrical Conductors and Supports 27 2.4 Applications of Instrument Transformers 43 2.5 The R-X Diagram 47 CHAPTER 3 GENERATOR PROTECTION 52 3.1 Philosophy... Basis Devices 21 Figure 2.3 Shape Correction Factors for Strap Buses 35 Figure 2.4 Ice and Wind Loading on Electrical Conductors 37 Figure 2.5 System Conditions on the R-X Diagram 50 Figure 3.1 Differential Protection for a Wye-Connected Generator...

  14. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Bushnell, James B.; Wolfram, Catherine

    2005-01-01T23:59:59.000Z

    ciency of Electric Generating Plants: A Stochastic Frontierthe existing stock of electricity generating plants. Betweenover 300 electric generating plants in the US, accounting

  15. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    Cost Efficiency of Electric Generating Plants: A Stochasticat US Electricity Generating Plants? Kira Markiewicz, Nancyat US Electricity Generating Plants? Kira Markiewicz UC

  16. Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via

    E-Print Network [OSTI]

    Li, Xiaodong

    power industry. A major objective for the coal-fired power generation loading optimization results of the power generation loading optimization based on a coal-fired power plant demonstratesPower Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via PSO

  17. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01T23:59:59.000Z

    Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies Jerry Jackson, Associate Professor, Texas A&M University, College Station, TX Abstract Electric power failures... available with new building-sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure...

  18. ANN-based Short-Term Load Forecasting in Electricity Markets

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    ANN-based Short-Term Load Forecasting in Electricity Markets Hong Chen Claudio A. Ca~nizares Ajit1 Abstract--This paper proposes an Artificial Neu- ral Network (ANN)-based short-term load forecasting, electricity markets, spot prices, Artificial Neural Networks (ANN) I. Introduction Short

  19. Abstract--We present new approaches for building yearly and seasonal models for 5-minute ahead electricity load

    E-Print Network [OSTI]

    Koprinska, Irena

    electricity load forecasting. They are evaluated using two full years of Australian electricity load data. We first analyze the cyclic nature of the electricity load and show that the autocorrelation function to building a single yearly model. I. INTRODUCTION PREDICTING the future electricity demand, also called

  20. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  1. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  2. Exotic Electricity Options and the Valuation of Electricity Generation and Transmission

    E-Print Network [OSTI]

    Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

  3. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

    2007-09-01T23:59:59.000Z

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

  4. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  5. Integration of decentralized generators with the electric power grid

    E-Print Network [OSTI]

    Finger, Susan

    1981-01-01T23:59:59.000Z

    This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

  6. EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available for Download October 22, 2010 EIS-0416: EPA Notice of Availability of the Final Environmental Impact Statement Ivanpah Solar Electric Generating System (07-AFC-5)...

  7. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  8. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    for Hybrid Vehicles Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  9. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15th, 2013 R.Vijayagopal,...

  10. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  11. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SANDIA REPORT SAND2011-3119 Unlimited Release Printed May 2011 Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Joseph W. Pratt,...

  12. Variability of Behaviour in Electricity Load Profile Clustering; Who Does Things at the

    E-Print Network [OSTI]

    Aickelin, Uwe

    Variability of Behaviour in Electricity Load Profile Clustering; Who Does Things at the Same Time://ima.ac.uk/dent 2 The James Hutton Institute, Aberdeen, UK Abstract. UK electricity market changes provide opportunities to alter households' electricity usage patterns for the benefit of the overall elec- tricity

  13. Non-parametric estimation for aggregated functional data for electric load monitoring

    E-Print Network [OSTI]

    Dias, Ronaldo

    . In Brazil, the concession contract between the government and the electricity Corresponding author: IMECC on energy consumption around 6­8pm (due partially to the use of electric showers), while commercialNon-parametric estimation for aggregated functional data for electric load monitoring Ronaldo Dias

  14. Improving Dynamic Load and Generator Response PerformanceTools

    SciTech Connect (OSTI)

    Lesieutre, Bernard C.

    2005-11-01T23:59:59.000Z

    This report is a scoping study to examine research opportunities to improve the accuracy of the system dynamic load and generator models, data and performance assessment tools used by CAISO operations engineers and planning engineers, as well as those used by their counterparts at the California utilities, to establish safe operating margins. Model-based simulations are commonly used to assess the impact of credible contingencies in order to determine system operating limits (path ratings, etc.) to ensure compliance with NERC and WECC reliability requirements. Improved models and a better understanding of the impact of uncertainties in these models will increase the reliability of grid operations by allowing operators to more accurately study system voltage problems and the dynamic stability response of the system to disturbances.

  15. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  16. Minimizing electricity costs with an auxiliary generator using stochastic programming

    E-Print Network [OSTI]

    Rafiuly, Paul, 1976-

    2000-01-01T23:59:59.000Z

    This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

  17. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology. The focus of...

  18. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect (OSTI)

    Forsberg, Charles W [ORNL

    2008-01-01T23:59:59.000Z

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  19. Detection of Periodic Beacon Loads in Electrical Distribution Substation Data

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Guttromson, Ross T.; Lu, Ning; Boyd, Paul A.; Trudnowski, Daniel; Chassin, David P.; Bonebrake, Christopher A.; Shaw, James M.

    2006-05-31T23:59:59.000Z

    This research explores methods for identifying a whether a load is sending a signal to the utility SCADA system. Such a system can identify whether various loads are signialing using existing SCADA infrastructure, that is, without added, high cost communications infrastructure.

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    power  flow  relations  for  electric  transmission  lines  (electric power  costs  are  cheap:  if  a  large  power  consumer  is  close  to  the  generator,  the  excess  power  needs associated with transmission line electric grid consists of a network of transmission lines.  Power 

  1. Atmospheric Mercury Deposition Impacts of Future Electric Power Generation

    E-Print Network [OSTI]

    , a number of scenarios for future emissions from coal-fired electricity generation plants in the UnitedAtmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical on 2000 data submitted to Environment Canada's National Pollutant Release Inventory (NPRI). Finally

  2. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

  3. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, J.E.

    1992-01-14T23:59:59.000Z

    The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

  4. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01T23:59:59.000Z

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  5. Axial Current Generation from Electric Field: Chiral Electric Separation Effect

    E-Print Network [OSTI]

    Xu-Guang Huang; Jinfeng Liao

    2013-06-07T23:59:59.000Z

    We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

  6. Axial Current Generation from Electric Field: Chiral Electric Separation Effect

    E-Print Network [OSTI]

    Huang, Xu-Guang

    2013-01-01T23:59:59.000Z

    We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

  7. Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning

    SciTech Connect (OSTI)

    Price, Phillip N.; Mathieu, Johanna L.; Kiliccote, Sila; Piette, Mary Ann

    2011-07-01T23:59:59.000Z

    Whole-building electric load data can often reveal problems with building equipment or operations. In this paper, we present methods for analyzing 15-minute-interval electric load data. These methods allow building operators, energy managers, and commissioning agents to better understand a building's electricity consumption over time and to compare it to other buildings, helping them to 'ask the right questions' to discover opportunities for electricity waste elimination, energy efficiency, peak load management, and demand response. For example: Does the building use too much energy at night, or on hot days, or in the early evening? Knowing the answer to questions like these can help with retro-commissioning or continuous commissioning. The methods discussed here can also be used to assess how building energy performance varies with time. Comparing electric load before and after fixing equipment or changing operations can help verify that the fixes have the intended effect on energy consumption. Analysis methods discussed in this paper include: ways to graphically represent electric load data; the definition of various parameters that characterize facility electricity loads; and a regression-based electricity load model that accounts for both time of week and outdoor air temperature. The methods are illustrated by applying them to data from commercial buildings. We demonstrate the ability to recognize changes in building operation, and to quantify changes in energy performance. Some key findings are: 1) Plotting time series electric load data is useful for understanding electricity consumption patterns and changes to those patterns, but results may be misleading if data from different time intervals are not weather-normalized. 2) Parameter plots can highlight key features of electric load data and may be easier to interpret than plots of time series data themselves. 3) A time-of-week indicator variable (as compared to time-of-day and day-of-week indicator variables) improves the accuracy of regression models of electric load. 4) A piecewise linear and continuous outdoor air temperature dependence can be derived without the use of a change-point model (which would add complexity to the modeling algorithm) or assumptions about when structural changes occur (which could introduce inaccuracy). 5) A model that includes time-of-week and temperature dependence can be used for weather normalization and can determine whether the building is unusually temperature-sensitive, which can indicate problems with HVAC operation.

  8. Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing

    E-Print Network [OSTI]

    Huang, Jianwei

    Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing Hao Wang infrastructure often known as the smart grid [10]. Smart grid is differences. However, the impact of load redistribu- tions on the power grid is not well understood yet

  9. Real-Time Load Elasticity Tracking and Pricing for Electric Vehicle Charging

    E-Print Network [OSTI]

    Giannakis, Georgios

    owners may also benefit from lower energy cost in the face of spiking gasoline prices. Although1 Real-Time Load Elasticity Tracking and Pricing for Electric Vehicle Charging Nasim Yahya Soltani price intelligently for individual customers to elicit desirable load curves. In this context

  10. ELECTRICAL LOAD MANAGEMENT FOR THE CALIFORNIA WATER SYSTEM

    E-Print Network [OSTI]

    Krieg, B.

    2010-01-01T23:59:59.000Z

    sections of aqueducts. Hydroelectric power generated withinthe CVP generates only hydroelectric power, its By importingthe peaking power is supplied by hydroelectric plants, the

  11. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    of about 80 GW of coal-based generation technologyand reduces coal-based electricity generation by 18%.to offset coal- and natural gas-based electricity generation

  12. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01T23:59:59.000Z

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  13. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01T23:59:59.000Z

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  14. Behavior of Capstone and Honeywell microturbine generators during load changes

    E-Print Network [OSTI]

    Yinger, Robert J.

    2001-01-01T23:59:59.000Z

    Capstone and Honeywell Microturbine Generators During Loadof the behavior of two microturbine generators (MTGs) underof the behavior of two microturbine generators (MTGs) under

  15. Utility-Aware Deferred Load Balancing in the Cloud Driven by Dynamic Pricing of Electricity

    E-Print Network [OSTI]

    Gupta, Rajesh

    in energy prices along with the rise of cloud computing brings up the issue of making clouds energy. In this paper, we use deferral with dynamic pricing of electricity for energy efficiency while using utilityUtility-Aware Deferred Load Balancing in the Cloud Driven by Dynamic Pricing of Electricity

  16. A MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS

    E-Print Network [OSTI]

    induction turbine-generator, and demonstrated a maximum output power of 192µW under driven excitation [1]. Holmes et al. have integrated a 7.5mm diameter permanent-magnet generator, an axial-flow polymer turbineA MICROFLUIDIC-ELECTRIC PACKAGE FOR POWER MEMS GENERATORS Florian Herrault, Chang-Hyeon Ji, Seong

  17. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect (OSTI)

    Zitney, Stephen

    2012-08-29T23:59:59.000Z

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

  18. A resonant load circuit to develop electrical power transfer of thermionic converters

    SciTech Connect (OSTI)

    Perez, G.; Estrada, C.A.; Jimenez, A.E.

    1998-07-01T23:59:59.000Z

    Low internal impedance of thermionic converters requires a low impedance load in the DC mode to obtain optimal power transfer. An internal resistance near 0.1 W for thermionic converters is common. According to the maximum power theorem [Desoer,1969], a similar magnitude for the resistance load must be fixed. Due to temperature changes, the internal plasma resistance and the resistance of the leads is modified [Houston,1959], for this reason, it is difficult to maintain maximum power transfer to the load. This paper presents a resonant load circuit for thermionic converters in the AC mode, to develop impedance coupling. The circuit employs an electrical transformer and positive feedback; by this way, oscillations are themselves maintained. It is used an electrical circuit model [Perez et al, 1997], to simulate the electrical behavior of the thermionic converter.

  19. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  20. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect (OSTI)

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01T23:59:59.000Z

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  1. Analysis of viscoelastic soft dielectric elastomer generators operating in an electrical circuit

    E-Print Network [OSTI]

    Eliana Bortot; Ralf Denzer; Andreas Menzel; Massimiliano Gei

    2014-11-13T23:59:59.000Z

    A predicting model for soft Dielectric Elastomer Generators (DEGs) must consider a realistic model of the electromechanical behaviour of the elastomer filling, the variable capacitor and of the electrical circuit connecting all elements of the device. In this paper such an objective is achieved by proposing a complete framework for reliable simulations of soft energy harvesters. In particular, a simple electrical circuit is realised by connecting the capacitor, stretched periodically by a source of mechanical work, in parallel with a battery through a diode and with an electrical load consuming the energy produced. The electrical model comprises resistances simulating the effect of the electrodes and of the conductivity current invariably present through the dielectric film. As these devices undergo a high number of electro-mechanical loading cycles at large deformation, the time-dependent response of the material must be taken into account as it strongly affects the generator outcome. To this end, the viscoelastic behaviour of the polymer and the possible change of permittivity with strains are analysed carefully by means of a proposed coupled electro-viscoelastic constitutive model, calibrated on experimental data available in the literature for an incompressible polyacrilate elastomer (3M VHB4910). Numerical results showing the importance of time-dependent behaviour on the evaluation of performance of DEGs for different loading conditions, namely equi-biaxial and uniaxial, are reported in the final section.

  2. Monitoring of Electrical End-Use Loads in Commercial Buildings

    E-Print Network [OSTI]

    Martinez, M.; Alereza, T.; Mort, D.

    1988-01-01T23:59:59.000Z

    Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing...

  3. Field Test Protocol: Standard Internal Load Generation in Unoccupied Test Homes

    SciTech Connect (OSTI)

    Fang, X.; Christensen, D.; Barker, G.; Hancock, E.

    2011-06-01T23:59:59.000Z

    This document describes a simple and general way to generate House Simulation Protocol (HSP)-consistent internal sensible and latent loads in unoccupied homes. It is newly updated based on recent experience, and provides instructions on how to calculate and set up the operational profiles in unoccupied homes. The document is split into two sections: how to calculate the internal load magnitude and schedule, and then what tools and methods should be used to generate those internal loads to achieve research goals.

  4. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18T23:59:59.000Z

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  5. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  6. Applications for Certificates for Electric Generation Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

  7. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  8. Competitive electricity markets and investment in new generating capacity

    E-Print Network [OSTI]

    Joskow, Paul L.

    2006-01-01T23:59:59.000Z

    Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

  9. Sales and Use Tax Exemption for Electrical Generating Facilities

    Broader source: Energy.gov [DOE]

    Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible...

  10. Alternative electric generation impact simulator : final summary report

    E-Print Network [OSTI]

    Gruhl, Jim

    1981-01-01T23:59:59.000Z

    This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

  11. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    not exacerbate the global warming problem. However, renewable energy is inherently intermittent and variableManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions

  12. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper.S. strive to reduce reliance on the import of fossil fuels, and to meet increasing electricity demand

  13. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  14. Improving Dynamic Load and Generator Response Performance Tools

    E-Print Network [OSTI]

    Lesieutre, Bernard C.

    2005-01-01T23:59:59.000Z

    in dynamic simulations of power systems. Using the PCMDynamic Simulations: The Probabilistic Collocation Method,” IEEE Transactions on Power Systems,Dynamic Simulations with Improved Representation of Loads and their Connection to a Power System,”

  15. Adaptive load control of microgrids with non-dispatchable generation

    E-Print Network [OSTI]

    Brokish, Kevin Martin

    2009-01-01T23:59:59.000Z

    Intelligent appliances have a great potential to provide energy storage and load shedding for power grids. Microgrids are simulated with high levels of wind energy penetration. Frequency-adaptive intelligent appliances are ...

  16. Renewable Electricity Generation Success Stories | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

  17. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    transmission to deliver wind generation to load centers. Toof integrating variable wind generation into the electricityfrom wind. Annual wind energy generation was specified in

  18. 308 Building electrical load list and panel schedules

    SciTech Connect (OSTI)

    Giamberardini, S.J.

    1994-09-13T23:59:59.000Z

    This report contains two lists. The first lists equipment, load location, source of power, and breaker identification. The second compiles the same information but in a different format, namely, for each power source, the breaker, equipment, and location is given. Building 308 is part of the Fuels and Materials Examination Facility which houses the Secure Automated Fabrication process line for fabrication of reactor fuels and the Breeder Processing Engineering Test for processing Fast Flux Test Facility fuel to demonstrate closure of the fuel cycle.

  19. Loading and pre-loading processes generate a distinct siRNA population in Tetrahymena

    SciTech Connect (OSTI)

    Mochizuki, Kazufumi, E-mail: kazufumi.mochizuki@imba.oeaw.ac.at; Kurth, Henriette M.

    2013-07-05T23:59:59.000Z

    Highlights: •The Tetrahymena Argonaute protein Twi1p binds to ?28–30-nt siRNAs called scnRNAs. •The size of scnRNAs is determined during a pre-loading process. •The 5? uracil bias of scnRNAs is attributed to pre-loading and loading processes. •The thermodynamic asymmetry of scnRNA duplex doesnot affect the guide strand decision. •scnRNAs may be produced non-sequentially from dsRNA substrates by Dicer. -- Abstract: The various properties of small RNAs, such as length, terminal nucleotide, thermodynamic asymmetry and duplex mismatches, can impact their sorting into different Argonaute proteins in diverse eukaryotes. The developmentally regulated 26- to 32-nt siRNAs (scnRNAs) are loaded to the Argonaute protein Twi1p and display a strong bias for uracil at the 5? end. In this study, we used deep sequencing to analyze loaded and unloaded populations of scnRNAs. We show that the size of the scnRNA is determined during a pre-loading process, whereas their 5? uracil bias is attributed to both pre-loading and loading processes. We also demonstrate that scnRNAs have a strong bias for adenine at the third base from the 3? terminus, suggesting that most scnRNAs are direct Dicer products. Furthermore, we show that the thermodynamic asymmetry of the scnRNA duplex does not affect the guide and passenger strand decision. Finally, we show that scnRNAs frequently have templated uracil at the last base without a strong bias for adenine at the second base indicating non-sequential production of scnRNAs from substrates. These findings provide a biochemical basis for the varying attributes of scnRNAs, which should help improve our understanding of the production and turnover of scnRNAs in vivo.

  20. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  1. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  2. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area(Sasada, 1988) |Fluor CorpElectric

  3. Electrical faults modeling of the photovoltaic generator Wail Rezgui1

    E-Print Network [OSTI]

    Boyer, Edmond

    energy by the photovoltaic phenomena. So, the degradation of these two factors means the presenceElectrical faults modeling of the photovoltaic generator Wail Rezgui1 , Leďla-Hayet Mouss1 , Kinza presented a new methodology for the mathematical modeling of the photovoltaic generator's characteristics

  4. Modeling of a detonation driven, linear electric generator facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    the heat and the force produced from the detonation wave. In previous experimental work, a single that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One. For instance, it may be possible to design a generator that uses the force created by the pressure rise from

  5. Commercial and Industrial Conservation and Load Management Programs at New England Electric

    E-Print Network [OSTI]

    Gibson, P. H.

    COMMERCIAL AND INDUSTRIAL CONSERVAT~ON AND LOAD MANAGEMENT PROGRAMS AT NEW ENGLAND ELECTRIC PETER H. GIBSON Manager, Load Management and Conservation Services New England Power Service Company Westborough, Massachusetts ABSTRACT New... is directed mainly toward the commercial and industrial classes, which mske up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a...

  6. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    in programs that influence electric demand in ways that produce desired changes in the pattern and magnitude of a utility's electric load profile. These programs, commonly termed "de mand side management" (DSH) , have a customer orien tation... such a rescheduling. The residential customer class appears least suited to load-shaping efforts. Al though characterized by a relatively low load-profile (high peak-to-average ratio) and consistent electricity consumption pat terns, the timing...

  7. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  8. Integration of MHD load models with circuit representations the Z generator.

    SciTech Connect (OSTI)

    Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

    2013-03-01T23:59:59.000Z

    MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

  9. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect (OSTI)

    Pratt, R.G.; Ross, B.A.

    1991-11-01T23:59:59.000Z

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  10. Permissible loadings of generators and large motors. Facilities instructions, standards, and techniques. Volume 1-4

    SciTech Connect (OSTI)

    Watson, H.

    1991-03-01T23:59:59.000Z

    This volume is intended to fill the need for practical information concerning the temperature and mechanical and electrical overload limits of rotating electric equipment such as generators and large motors. Rotating electrical equipment cannot be overloaded on the same basis as transformers and is not as able to stand short-time overloads.

  11. HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity

    E-Print Network [OSTI]

    goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

  12. Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

    E-Print Network [OSTI]

    Zeineldin, H. H.

    Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

  13. TIME-FREQUENCY CHARACTERISATION FOR ELECTRIC LOAD MONITORING Mabrouka El Guedri 1, 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are increasingly interested in energy monitoring for economic and environmental reasons. A non-intrusive solution understanding their bills and better control their consumption A non-intrusive and economical solution may rely of a distribution network. Non-intrusive electric load monitoring has been subject to several approaches over

  14. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01T23:59:59.000Z

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  15. Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

    2011-04-18T23:59:59.000Z

    Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

  16. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10T23:59:59.000Z

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  17. Effects of pulsed-power loads upon an electric power grid

    SciTech Connect (OSTI)

    Smolleck, H.A.; Ranade, S.J.; Prasad, N.R. (New Mexico State Univ., Las Cruces, NM (USA). Dept. of Electrical and Computer Engineering); Velasco, R.O. (Los Alamos National Lab., NM (USA))

    1990-01-01T23:59:59.000Z

    Certain proposed particle-accelerator and laser experiments, and other devices related to fusion research, require multi-megawatt, repetitive power pulses, often at low (subsynchronous) frequency. While some power-delivery technologies call for a certain degree of buffering of the utility demand using capacitive, inductive, or inertial energy storage, considerations have also been made for serving such loads directly from the line. In either case, such pulsed loads represent non-traditional applications from the utility's perspective which, in certain cases, can have significant design and operational implications. This paper outlines an approach to the analysis of the effects of such loads upon the electric power grid using existing analysis techniques. The impacts studied include busvoltage flicker, transient and dynamic stability, and torsional excitation. The impact of a particular pulsed load is examined and illustrated for the power network serving the Los Alamos National Laboratory. 19 refs., 13 figs.

  18. Wavelet-Based Nonlinear Multiscale Decomposition Model for Electricity Load Forecasting

    E-Print Network [OSTI]

    Murtagh, Fionn

    electrical power systems. Furthermore, power systems need to operate at even higher efficiency lead to extra power being generated and therefore may result in excessive investment in electric plant that is not fully utilized. On the other hand, a forecast that is too low may lead to some revenue loss from sales

  19. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  20. ADVANCED INTERNAL COMBUSTION ELECTRICAL GENERATOR Peter Van Blarigan

    E-Print Network [OSTI]

    Livermore, CA 94550 Abstract In this paper, research on hydrogen internal combustion engines is discussed with industrial partners. The electrical generator is based on developed internal combustion reciprocating engine. In light of these factors, the capabilities of internal combustion engines have been reviewed. In regards

  1. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation from model organic wastewater in a cassette-008-1516-0 T. Shimoyama :S. Komukai :K. Watanabe Laboratory of Applied Microbiology, Marine Biotechnology, Tobitakyu, Chofu, Tokyo 182-0036, Japan B. E. Logan Department of Civil and Environmental Engineering

  2. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling

    E-Print Network [OSTI]

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater) 80:349­355 DOI 10.1007/s00253-008-1546-7 L. Huang School of Environmental and Biological Science of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA e

  3. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01T23:59:59.000Z

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  4. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  5. Transmission and Generation Investment In a Competitive Electric Power Industry

    E-Print Network [OSTI]

    California at Berkeley. University of

    .3 Transmission Property Rights and Congestion Contracts . . . . . . . . . . . . . . . . . 7 2.4 How TransmissionPWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James of California Energy Institute 2539 Channing Way Berkeley, California 94720-5180 www.ucei.berkeley.edu/ucei #12

  6. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15T23:59:59.000Z

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  7. Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant

    2010-01-01T23:59:59.000Z

    Value Power Plants Electricity Generation Imported Coal 6665plants. The projected peak load and capacity (Figures 3 and 4), and the consequent electricity generation,

  8. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01T23:59:59.000Z

    in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

  9. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01T23:59:59.000Z

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  10. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01T23:59:59.000Z

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  11. A functional analysis of electrical load curve modelling for some households specific electricity end-uses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    % 2 of the GHG emissions. That is to say that some efforts in demand side management should have In France in 2008, the buildings (housing stock) are responsible for 27% 1 of the final energy demand and 16 points that allow to build-up a relevant load curve. This will lead us to step down at the appliance

  12. Load control in low voltage level of the electricity grid using CHP appliances

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    1 Load control in low voltage level of the electricity grid using µCHP appliances M.G.C. Bosman, V.g.c.bosman@utwente.nl Abstract--The introduction of µCHP (Combined Heat and Power) appliances and other means of distributed on the transformers and, thus, on the grid. In this work we study the influence of introducing µCHP appliances

  13. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-28T23:59:59.000Z

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  14. Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel Cell

    E-Print Network [OSTI]

    and the exoelectrogen Geobacter sulfurreducens generated electricity, and the power generated using soluble celluloseARTICLE Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel.interscience.wiley.com). DOI 10.1002/bit.22015 ABSTRACT: Electricity can be directly generated by bacteria in microbial fuel

  15. Abstract--Linear electrical loading system (LELS) driven by electrical cylinder with permanent magnet synchronous

    E-Print Network [OSTI]

    Yao, Bin

    magnet synchronous motor (PMSM) offers several advantages of high transmission efficiency and high cylinder driven by permanent magnet synchronous motor (PMSM). Though direct-drive linear motors has some to direct-drive linear motor, the solution of electrical cylinder with PMSM has larger output force

  16. Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area of An InterconnectedSystem

    E-Print Network [OSTI]

    Gross, George

    Abstract: Electric power systems of today are experiencing a difficulty of constrained transmission lines, present electric system networks are experiencing the difficulty of constrained transmission lines: Photovoltaic Generation, Power System Economics, Dispersed Generation, Transmission-Constrained Interconnected

  17. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

  18. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  19. Microgrids in the Evolving Electricity Generation and Delivery Infrastructure

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri

    2006-01-01T23:59:59.000Z

    on the electrical system, but unscheduled outages arelevels of electrical service [7]. Outages may be scheduled

  20. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01T23:59:59.000Z

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  1. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01T23:59:59.000Z

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

  2. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

  3. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  4. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  5. Load-shedding probabilities with hybrid renewable power generation and energy storage

    E-Print Network [OSTI]

    Xu , Huan

    Load-shedding probabilities with hybrid renewable power generation and energy storage Huan Xu, Ufuk to the intermittency in the power output. These difficulties can be alleviated by effectively utilizing energy storage turbines, supplemented with energy storage. We use a simple storage model alongside a combination

  6. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix A PACIFIC NORTHWEST GENERATING RESOURCES

    E-Print Network [OSTI]

    and generating capacity of power plants located in the Northwest is shown in Figure A-1 Capacity and primary NORTHWEST GENERATING RESOURCES This Appendix describes the electric power generating resources describing individual projects. GENERATING CAPACITY Over 460 electricity generating projects are located

  7. Co-generation: a new energy system to generate both steam and electricity

    SciTech Connect (OSTI)

    Carraway, P.M.; Kloth, T.L.; Bull, A.D.

    1981-01-01T23:59:59.000Z

    A discussion is presented of the installation and operation of a co-generation system at Tenneco's Fee ''C'' Lease, whereby hot combustion gas from a turbine fueled by gas or lease crude will be used to generate steam for enhanced recovery, with the same turbine providing the power to generate electricity for sale to a utility. A summary is also given of the history of the project, some of the contractual requirements, the physical layout of the system, component descriptions, environmental considerations, and the composition of the final system.

  8. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01T23:59:59.000Z

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  9. Monitoring and Characterization of Miscellaneous Electrical Loads in a Large Retail Environment

    SciTech Connect (OSTI)

    Gentile-Polese, L.; Frank, S.; Sheppy, M.; Lobato, C.; Rader, E.; Smith, J.; Long, N.

    2014-02-01T23:59:59.000Z

    Buildings account for 40% of primary energy consumption in the United States (residential 22%; commercial 18%). Most (70% residential and 79% commercial) is used as electricity. Thus, almost 30% of U.S. primary energy is used to provide electricity to buildings. Plug loads play an increasingly critical role in reducing energy use in new buildings (because of their increased efficiency requirements), and in existing buildings (as a significant energy savings opportunity). If all installed commercial building miscellaneous electrical loads (CMELs) were replaced with energy-efficient equipment, a potential annual energy saving of 175 TWh, or 35% of the 504 TWh annual energy use devoted to MELs, could be achieved. This energy saving is equivalent to the annual energy production of 14 average-sized nuclear power plants. To meet DOE's long-term goals of reducing commercial building energy use and carbon emissions, the energy efficiency community must better understand the components and drivers of CMEL energy use, and develop effective reduction strategies. These goals can be facilitated through improved data collection and monitoring methodologies, and evaluation of CMELs energy-saving techniques.

  10. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    control strategies (load-follow, no-DG, and heat-follow),are nearly identical to the load-follow results; i.e. , theare lower than under either load-follow or no-DG, suggesting

  11. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01T23:59:59.000Z

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  12. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    the  modeling  and  analysis  of  electric  power  systems modeling  and  simulation  technologies  both in electric power systems modeling granularity sufficient to identify electric  system 

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    2nd  edition  of  Electrical  Power  System  Applications elements of an electrical power system for the purpose of estimates.   In  electrical  power  system  applications, 

  14. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    Under Various Electricity Tariffs Firestone, R. , Creighton,Under Various Electricity Tariffs Table of Contents Table of3 2.1 Electricity Tariff

  15. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12T23:59:59.000Z

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  16. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2008-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  17. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage...UTILITYIINDUSTRY PARTNERSHIPS INVOLVING DISTRIBUTED GENERATION TECHNOLOGIES IN EVOLVING ELECTRICITY MARKETS Daniel M. Rastler Manager, Fuel Cells and Distributed Generation Electric Power Research Institute Palo Alto, California ABSTRACT...

  18. We Need to Talk... Developing Communicating Power Supplies to Monitor & Control Miscellaneous Electric Loads

    SciTech Connect (OSTI)

    Weber, Andrew; Lanzisera, Steven; Liao, Anna; Meier, Alan

    2014-08-11T23:59:59.000Z

    Plug loads represent 30percent of total electricity use in residential buildings. Significant energy savings would result from an accurate understanding of which miscellaneous electric devices are using energy, at what time, and in what quantity. Commercially available plug load monitoring and control solutions replace or limit the attached device's native controls - forcing the user to adapt to a separate set of controls associated with the monitoring and control hardware. A better solution is integration of these capabilities at the power supply level. In this paper, we demonstrate a method achieving this integration. Our solution allows unobtrusive power monitoring and control while retaining native device control features. Further, our prototype enables intelligent behaviors by allowing devices to respond to the state of one another automatically. The CPS enables energy savings while demonstrating an added level of functionality to the user. If CPS technology became widespread in devices, a combination of automated and human interactive solutions would enable high levels of energy savings in buildings.

  19. Development of an Energy-Savings Calculation Methodology for Residential Miscellaneous Electric Loads: Preprint

    SciTech Connect (OSTI)

    Hendron, R.; Eastment, M.

    2006-08-01T23:59:59.000Z

    In order to meet whole-house energy savings targets beyond 50% in residential buildings, it will be essential that new technologies and systems approaches be developed to address miscellaneous electric loads (MELs). These MELs are comprised of the small and diverse collection of energy-consuming devices found in homes, including what are commonly known as plug loads (televisions, stereos, microwaves), along with all hard-wired loads that do not fit into other major end-use categories (doorbells, security systems, garage door openers). MELs present special challenges because their purchase and operation are largely under the control of the occupants. If no steps are taken to address MELs, they can constitute 40-50% of the remaining source energy use in homes that achieve 60-70% whole-house energy savings, and this percentage is likely to increase in the future as home electronics become even more sophisticated and their use becomes more widespread. Building America (BA), a U.S. Department of Energy research program that targets 50% energy savings by 2015 and 90% savings by 2025, has begun to identify and develop advanced solutions that can reduce MELs.

  20. Sub-wavelength waveguide loaded by a complementary electric metamaterial for vacuum electron devices

    SciTech Connect (OSTI)

    Duan, Zhaoyun, E-mail: zhyduan@uestc.edu.cn [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St., Cambridge, Massachusetts 02139 (United States); Institute of High Energy Electronics, School of Physical Electronics, University of Electronic Science and Technology of China, No.4, Section 2, North Jianshe Road, Chengdu 610054 (China); Hummelt, Jason S.; Shapiro, Michael A., E-mail: shapiro@psfc.mit.edu; Temkin, Richard J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 167 Albany St., Cambridge, Massachusetts 02139 (United States)

    2014-10-15T23:59:59.000Z

    We report the electromagnetic properties of a waveguide loaded by complementary electric split ring resonators (CeSRRs) and the application of the waveguide in vacuum electronics. The S-parameters of the CeSRRs in free space are calculated using the HFSS code and are used to retrieve the effective permittivity and permeability in an effective medium theory. The dispersion relation of a waveguide loaded with the CeSRRs is calculated by two approaches: by direct calculation with HFSS and by calculation with the effective medium theory; the results are in good agreement. An improved agreement is obtained using a fitting procedure for the permittivity tensor in the effective medium theory. The gain of a backward wave mode of the CeSRR-loaded waveguide interacting with an electron beam is calculated by two methods: by using the HFSS model and traveling wave tube theory; and by using a dispersion relation derived in the effective medium model. Results of the two methods are in very good agreement. The proposed all-metal structure may be useful in miniaturized vacuum electron devices.

  1. Decision-making in Electricity Generation Based on Global Warming Potential and Life-cycle Assessment for Climate Change

    E-Print Network [OSTI]

    Horvath, Arpad

    2005-01-01T23:59:59.000Z

    the global warming effect associated with electricityin Electricity Generation Based on Global Warming Potentialin Electricity Generation Based on Global Warming Potential

  2. Power System load management

    SciTech Connect (OSTI)

    Rudenko, Yu.N.; Semenov, V.A.; Sovalov, S.A.; Syutkin, B.D.

    1984-01-01T23:59:59.000Z

    The variation in demand nonuniformity is analyzed for the Unified Electric Power System of the USSR and certain interconnected power systems; the conditions for handling such nonuniformity with utilization of generating equipment having differing flexibility capabilities are also considered. On this basis approaches and techniques for acting on user loads, load management, in order to assure a balance between generated and consumed power are considered.

  3. Protecting Consumer Privacy from Electric Load Stephen McLaughlin Patrick McDaniel

    E-Print Network [OSTI]

    McDaniel, Patrick Drew

    energy use. These profiles can be mined by Non Intrusive Load Monitors (NILMs) to expose much sensors to collect and report load profiles. Load profiles are histories of energy usage collected as Non-Intrusive Load Monitoring (NILM): Load monitoring Load profile Lighting Oven Heater ... Appliance

  4. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    than a third arises from generating electricity. With the accumulating evidence of global warming, any affect the equilibrium electric power supply chain network production outputs, the transactions betweenModeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain

  5. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  6. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  7. Science Blog -Bacterium cleans up uranium, generates electricity Create an account

    E-Print Network [OSTI]

    Lovley, Derek

    Science Blog - Bacterium cleans up uranium, generates electricity Create an account :: Home electricity Department of Energy-funded researchers have decoded and analyzed the genome of a bacterium with the potential to bioremediate radioactive metals and generate electricity. In an article published

  8. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05T23:59:59.000Z

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

  9. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    electric power grid constitutes the fundamental infrastructure infrastructure:  Toward  smart  self?healing  electric  power infrastructure  that  is  national  in  scope  has  been  recently  proposed  (American  Electric  Power, 

  10. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01T23:59:59.000Z

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  11. Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency

    SciTech Connect (OSTI)

    R. Wigeland; K. Hamman

    2009-09-01T23:59:59.000Z

    Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

  12. RESEARCH ARTICLE The proteome survey of an electricity-generating organ

    E-Print Network [OSTI]

    Vertes, Akos

    RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

  13. Parallel electric field generation by Alfven wave turbulence

    E-Print Network [OSTI]

    Bian, N H; Brown, J C

    2010-01-01T23:59:59.000Z

    {This work aims to investigate the spectral structure of the parallel electric field generated by strong anisotropic and balanced Alfvenic turbulence in relation with the problem of electron acceleration from the thermal population in solar flare plasma conditions.} {We consider anisotropic Alfvenic fluctuations in the presence of a strong background magnetic field. Exploiting this anisotropy, a set of reduced equations governing non-linear, two-fluid plasma dynamics is derived. The low-$\\beta$ limit of this model is used to follow the turbulent cascade of the energy resulting from the non-linear interaction between kinetic Alfven waves, from the large magnetohydrodynamics (MHD) scales with $k_{\\perp}\\rho_{s}\\ll 1$ down to the small "kinetic" scales with $k_{\\perp}\\rho_{s} \\gg 1$, $\\rho_{s}$ being the ion sound gyroradius.} {Scaling relations are obtained for the magnitude of the turbulent electromagnetic fluctuations, as a function of $k_{\\perp}$ and $k_{\\parallel}$, showing that the electric field develops ...

  14. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Carrying  renewable electricity across the u.s.a.   http://electricity  supply  industry  (for  ten  years),  and various universities in Australia and the USA.  

  15. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01T23:59:59.000Z

    Only Load Electricity Generation By Fuel in the U.S.electricity generation from most sources, except oil, is growing to meet the growing demand and that fossil fuels

  16. Generating Electricity with your Steam System: Keys to Long Term Savings

    E-Print Network [OSTI]

    Bullock, B.; Downing, A.

    2010-01-01T23:59:59.000Z

    The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

  17. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    E-Print Network [OSTI]

    Bottaro, Drew

    1981-01-01T23:59:59.000Z

    The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

  18. Comparison of costs for solar electric sources with diesel generators in remote locations

    E-Print Network [OSTI]

    Boyer, Edmond

    369 Comparison of costs for solar electric sources with diesel generators in remote locations F. K alternative sources for generating power in remote regions of the world. These include diesel electric-10 years are gasoline or diesel generators [1]. This merely touches the surface of the worldwide interest

  19. Performance of solar electric generating systems on the utility grid

    SciTech Connect (OSTI)

    Roland, J.R.

    1986-01-01T23:59:59.000Z

    The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    reliability  theory  and  control,  with  special  emphasis  on  applications  to  electric  power  systems  and  power  electronics.  

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Scale  Integration  of  Wind  Generation Including Network Scale  Integration  of  Wind  Generation Including Network with Large  Penetration of Wind Generation: Wind energy is 

  2. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

  3. Electric Power Generation from Co-Produced Fluids from Oil and...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type ...

  4. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01T23:59:59.000Z

    biogas digester systems can generate electricity and thermal energy to serve heatingbiogas (mostly methane) can be captured and used to provide energy services either by direct heating

  5. Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems

    E-Print Network [OSTI]

    Alexander, H. R.; Rogge, D. S.

    of the nonlinear loads with respect to that system. The distortion increases as the percentage of nonlinear loads increases. (2) PROBLEMS ENCOUNTERED WITH HARMONICS High Neutral Conductor Currcnts Perhaps the dominant harmonic problem encountered... in commercial facilities and some industrial plants has been the overheating of neutral conductors of 3-phase, 4-wire branch and feeder distribution systems. In a balanced, 3-phase, 4-wire wye system with phase-to-ncutral linear loads, the neutral current...

  6. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    Data  Acquisition  (SCADA)  systems.     These  systems system  configuration, the SCADA platform determines a shed  loads,  etc.   The  SCADA  system  also  plays  key 

  7. Demand-response (DR) programs, in which facilities reduce their electric loads in response to a utility signal, represent a

    E-Print Network [OSTI]

    The Issue Demand-response (DR) programs, in which facilities reduce their electric loads (Figure 1). The testing covered four Lighting the Way to Demand ResponseLighting the Way to Demand Response California Energy Commission's Public Interest Energy Research Program Technical Brief PIER

  8. Strategic Behavior in Spot Markets for Electricity when Load is Stochastic Department of Agricultural, Resource, and Managerial Economics

    E-Print Network [OSTI]

    Strategic Behavior in Spot Markets for Electricity when Load is Stochastic T.D. Mount Department that the average price in 1999, when market-based offers were allowed, was twice as high as it was in the previous two seasons when offers had to be cost-based. The primary cause was that the price spikes in 1999 were

  9. Solar Electric Generating System II finite element analysis

    SciTech Connect (OSTI)

    Dohner, J.L.; Anderson, J.R.

    1994-04-01T23:59:59.000Z

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  10. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB - Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA

  11. General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis

    E-Print Network [OSTI]

    : C61 C68 D58 Q43 Keywords: Carbon policy Energy modeling Electric power sector Bottom-up Top of generation technologies and the overall electricity system. By construction, these models are partial equilib of an integrated representation of economic and electricity systems makes simplifying assumptions appealing

  12. A System Dynamics Study of Carbon Cycling and Electricity Generation from Energy Crops

    E-Print Network [OSTI]

    Ford, Andrew

    Pullman, WA 99164-4430 USA Abstract The Climate Stewardship Act, a global warming mitigation policy1 A System Dynamics Study of Carbon Cycling and Electricity Generation from Energy Crops Hilary of these rotations. Our results show that using energy crops to displace coal in electricity generation will have

  13. Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Water Research 39 (2005) 942­952 Electricity generation from cysteine in a microbial fuel cell Abstract In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter. Keywords: Bacteria; Biofuel cell; Microbial fuel cell; Electricity; Power output; Shewanella; Fuel cell 1

  14. Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge

    E-Print Network [OSTI]

    Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum

  15. Reliability Evaluation of Electric Power Generation Systems with Solar Power 

    E-Print Network [OSTI]

    Samadi, Saeed

    2013-11-08T23:59:59.000Z

    reliability evaluation of generation systems including Photovoltaic (PV) and Concentrated Solar Power (CSP) plants. Unit models of PV and CSP are developed first, and then generation system model is constructed to evaluate the reliability of generation systems...

  16. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01T23:59:59.000Z

    utility experience with RTP tariffs is described in 3. Distributed GenerationUtilities Commission, Division of Ratepayer Advocates have also provided support on related work. Distributed Generation

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    component  (such  as  a  line  transmission,  generator,  or  transformer)  is  out  of  service,  the  power 

  18. Load-side Demand Management in Buildings using Controlled Electric Springs

    E-Print Network [OSTI]

    Soni, Jayantika; Krishnanand, KR; Panda, Sanjib

    2014-01-01T23:59:59.000Z

    Load-side Demand Management in Buildings using Controlleddemand side management has been a keen topic of interest. Buildings,

  19. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  20. Optimal energy-harvesting cycles for load-driven dielectric generators in plane strain

    E-Print Network [OSTI]

    R. Springhetti; E. Bortot; G. deBotton; M. Gei

    2014-03-13T23:59:59.000Z

    The performances of energy harvesting generators based on dielectric elastomers are investigated. The configuration is of a thin dielectric film coated by stretchable electrodes at both sides. The film is first stretched, then charged and subsequently, afterwards it is released, and finally the charge is harvested at a higher electric potential. The amount of energy extracted by this cycle is bounded by the electric breakdown and the ultimate stretch ratio of the film as well as by structural instabilities due to loss of tension. To identify the optimal cycle that complies with these limits we formulate a constraint optimization problem and solve it with a dedicated solver for two typical classes of elastic dielectrics. As anticipated, we find that the performance of the generator depends critically on the ultimate stretch ratio of the film. However, more surprising is our finding of a universal limit on the dielectric strength of the film beyond which the optimal cycle is independent of this parameter. Thus, we reveal that, regardless of how large the dielectric strength of the material is, there is an upper bound on the amount of harvested energy that depends only on the ultimate stretch ratio. We conclude the work with detailed calculations of the optimal cycles for two commercially available elastic dielectrics.

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    the  computing  needs for building this smart grid,  and using the cloud for building the smart grid.   4.1 The requirements  for  building  successful  smart  electric 

  2. Electrical ship demand modeling for future generation warships

    E-Print Network [OSTI]

    Sievenpiper, Bartholomew J. (Bartholomew Jay)

    2013-01-01T23:59:59.000Z

    The design of future warships will require increased reliance on accurate prediction of electrical demand as the shipboard consumption continues to rise. Current US Navy policy, codified in design standards, dictates methods ...

  3. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  4. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    et al.  On?line power system security analysis.  power grid is going through transformational reform to be efficient,  reliable and secure smart electric grid in line with the national energy security 

  5. Electric Generating and Transmission Facilities – Emissions Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

  6. Proof-of-Principle Detonation Driven, Linear Electric Generator Facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    . Atmospheric initial mixtures of oxygen with hydrogen, propane, and methane were detonated. A load wall. Nomenclature A Piston face area, m2 CJ Chapman-Jouguet property cp Constant pressure heat capacity, kJ/(kg·K) F COMBUSTION via detonation releases the chemical energy of a reactive mixture with higher efficiency compared

  7. A Microfabricated Inductively-Coupled Plasma Generator Department of Electrical and Computer Engineering,

    E-Print Network [OSTI]

    of the supplied power. This mechanism of RF plasma generation is referred to as capacitive coupling. Electrodeless generation7 . The inductively-coupled plasma (ICP) is one type of electrodeless discharge that is now widelyA Microfabricated Inductively-Coupled Plasma Generator J. Hopwood Department of Electrical

  8. Major Long Haul Truck Idling Generators in Key States ELECTRIC POWER RESEARCH INSTITUTE

    E-Print Network [OSTI]

    Major Long Haul Truck Idling Generators in Key States 1013776 #12;#12;ELECTRIC POWER RESEARCH-0813 USA 800.313.3774 650.855.2121 askepri@epri.com www.epri.com Major Long Haul Truck Idling Generators Haul Truck Idling Generators in Key States. EPRI, Palo Alto, CA: 2008. 1013776. #12;#12;v PRODUCT

  9. Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-09-01T23:59:59.000Z

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system “breaking points”, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

  10. Theoretical study of the electrical power behavior of a cesium thermionic converter for switching resistive and reactive loads

    SciTech Connect (OSTI)

    Perez, J.G. [ICUAP-BUAP, Puebla (Mexico). Semiconductor Devices Research Center; Estrada, C.A.; Jimenez, A.E.; Cervantes, J.G. [UNAM, Temixco (Mexico). Energy Research Center

    1997-12-31T23:59:59.000Z

    Pulsed ionized diodes have shown to be an attractive mode to develop thermionic converters. Usually the investigations have been focused to work with additive gases and constant loads at steady state. The experimental transient graphs reported suggest a dynamic behavior of the thermionic converter. Periods of the order of 300 {micro}s have been reported for the decay time of voltage and current, a condition that is similar to a capacitive discharge. A circuit model for a thermionic converter to define this condition is proposed. Using this model, an electrical analysis of the thermionic converter power with different switching loads is made. Both, resistive and reactive loads are connected. Special emphasis is dedicated to determine the resonance frequencies.

  11. Studies of penetration of the magnetic field into electrically imploded loads in the Angara-5-1 facility

    SciTech Connect (OSTI)

    Aleksandrov, V. V.; Barsuk, V. A.; Grabovski, E. V.; Gritsuk, A. N.; Zukakishvili, G. G.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M. [Troitsk Institute for Innovation and Thermonuclear Fusion Research (Russian Federation); Sasorov, P. V. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2009-03-15T23:59:59.000Z

    Results are presented from measurements of the distributions of the azimuthal magnetic field in aluminum, copper, molybdenum, tungsten and other wire arrays electrically imploded at currents of up to 3 MA in the Angara-5-1 facility. It is shown that the time during which the magnetic field of the current pulse reaches the array axis depends on the material of the wires or wire coating. The current of the precursor formed on the array axis before the implosion of the main load mass is measured. It is shown that the penetration of the load material with the frozen-in magnetic field into a polymer (agar-agar) foam liner is drastically different from that in the case of a wire array. It is found that the rate of current transfer to the array axis is maximum for tungsten wire arrays. The rates of plasma production during implosion of loads made of different materials are compared.

  12. Controller for controlling operation of at least one electrical load operating on an AC supply, and a method thereof

    DOE Patents [OSTI]

    Cantin, Luc (Baie Comeau, CA); Deschenes, Mario (Baie Comeau, CA); D'Amours, Mario (Sept Iles, CA)

    1995-08-15T23:59:59.000Z

    A controller is provided for controlling operation of at least one electrical load operating on an AC supply having a typical frequency, the AC supply being provided via power transformers by an electrical power distribution grid. The controller is associated with the load and comprises an input interface for coupling the controller to the grid, a frequency detector for detecting the frequency of the AC supply and producing a signal indicative of the frequency, memory modules for storing preprogrammed commands, a frequency monitor for reading the signal indicative of the frequency and producing frequency data derived thereof, a selector for selecting at least one of the preprogrammed commands with respect to the frequency data, a control unit for producing at least one command signal representative of the selected preprogrammed commands, and an output interface including a device responsive to the command signal for controlling the load. Therefore, the load can be controlled by means of the controller depending on the frequency of the AC supply.

  13. A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets

    SciTech Connect (OSTI)

    Weller, G.H.

    2001-07-15T23:59:59.000Z

    Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

  14. Short-term load forecasting using generalized regression and probabilistic neural networks in the electricity market

    SciTech Connect (OSTI)

    Tripathi, M.M.; Upadhyay, K.G.; Singh, S.N.

    2008-11-15T23:59:59.000Z

    For the economic and secure operation of power systems, a precise short-term load forecasting technique is essential. Modern load forecasting techniques - especially artificial neural network methods - are particularly attractive, as they have the ability to handle the non-linear relationships between load, weather temperature, and the factors affecting them directly. A test of two different ANN models on data from Australia's Victoria market is promising. (author)

  15. Comparison of the response of two and four-stroke diesel-generator sets to transient loading

    E-Print Network [OSTI]

    Willett, Kenneth Ray

    1979-01-01T23:59:59.000Z

    COMPARISON OF THE RESPONSE OF TWO AND FOUR-STROKE DIESEL-GENERATOR SETS TO TRANSIENT LOADING A Thesis by KENNETH RAY WILLETT Submitted to the Graduate College of Texas Ai!M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1979 Major Subject: Mechanical Engineering COMPARISON OF THE RESPONSE OF TWO AND FOUR-STROKE DIESEL-GENERATOR SETS TO TRANSIENT LOADING A Thesis by KENNETH RAV MILLETT Approved as to style and content by: ~~m J'V (Cha1...

  16. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    Institute State Generation and Transmission Siting Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

  17. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Environmental Management (EM)

    of Minnesota, Morris, in collaboration with the University of Minnesota Center for Diesel Research, Cummins Power Generation Inc., ALL Power Labs, and Hammel, Green &...

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

  19. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: EfficientMultiferroicElectricElectric

  20. A Hierarchical Control Algorithm for Managing Electrical Energy Storage Systems in Homes Equipped with PV Power Generation

    E-Print Network [OSTI]

    Pedram, Massoud

    use their PV-based generation and controllable storage devices for peak shaving on their power demand controller should possess the ability of forecasting future PV-based power generation and load power consumption profiles for better performance. In this paper we present novel PV power generation and load power

  1. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation couldC/year. If required, however, a reduction in CO2 emissions of 15 MtC/year in the electricity generation sector by 2020

  2. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01T23:59:59.000Z

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  3. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration 

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25T23:59:59.000Z

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  4. Renewable Generation and Interconnection to the Electrical Grid in Southern California

    Broader source: Energy.gov [DOE]

    Presentation covers the topic of "Renewable Generation and Interconnection to the Electrical Grid in Southern California," given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  5. General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement

    E-Print Network [OSTI]

    Lanz, Bruno, 1980-

    Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

  6. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  7. Did English generators play cournot? : capacity withholding in the electricity pool

    E-Print Network [OSTI]

    Green, Richard

    2004-01-01T23:59:59.000Z

    Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which ...

  8. A two-phase spherical electric machine for generating rotating uniform magnetic fields

    E-Print Network [OSTI]

    Lawler, Clinton T. (Clinton Thomas)

    2007-01-01T23:59:59.000Z

    This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

  9. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  10. Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

  11. Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation

    E-Print Network [OSTI]

    Maglinao, Amado Latayan

    2013-04-11T23:59:59.000Z

    ) gasification for electrical power generation was conducted in a fluidized bed gasifier and the feasibility of using a control system was evaluated to facilitate its management and operation. The performance of an engine using the gas produced was evaluated. A...

  12. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01T23:59:59.000Z

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  13. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01T23:59:59.000Z

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  14. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    power generation, energy policy, fuel economy ABSTRACT Prioritizing the numerous technology and policy Publications for book titled "Energy Consumption: Impacts of Human Activity, Current and Future Challenges, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric

  15. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Strzepek, Kenneth M.

    2012-06-15T23:59:59.000Z

    Water withdrawals for thermoelectric cooling account for a significant portion of total water use in the United States. Any change in electrical energy generation policy and technologies has the potential to have a major ...

  16. Gas production response to price signals: Implications for electric power generators

    SciTech Connect (OSTI)

    Ferrell, M.L.

    1995-12-31T23:59:59.000Z

    Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

  17. Quantifying the system balancing cost when wind energy is incorporated into electricity generation system 

    E-Print Network [OSTI]

    Issaeva, Natalia

    2009-01-01T23:59:59.000Z

    Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

  18. Use of Geothermal Energy for Electric Power Generation

    SciTech Connect (OSTI)

    Mashaw, John M.; Prichett, III, Wilson (eds.)

    1980-10-23T23:59:59.000Z

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  19. A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption

    E-Print Network [OSTI]

    Nagurney, Anna

    A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption Anna Nagurney and Dmytro Matsypura Department of Finance and Operations Management Isenberg School, Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production

  20. Stresa, Italy, 26-28 April 2006 OPTIMIZATION OF PIEZOELECTRIC ELECTRICAL GENERATORS

    E-Print Network [OSTI]

    Boyer, Edmond

    Stresa, Italy, 26-28 April 2006 OPTIMIZATION OF PIEZOELECTRIC ELECTRICAL GENERATORS POWERED the PEG output power [2,3]. Although the power electronic interface used for optimization induces Villeurbanne Cedex, France ABSTRACT This paper compares the performances of a vibration- powered electrical

  1. The impact of the European Union Emission Trading Scheme on electricity generation sectors

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The impact of the European Union Emission Trading Scheme on electricity generation sectors Djamel the Kyoto Protocol, France and Germany par- ticipate to the European Union Emission Trading Scheme (EU ETS, the European market for emission allowances has increased the market power of the historical French electricity

  2. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    Price Reduction Offsetting demand for natural gas in the electricity sector by increasing wind energy’price reductions, and water savings. Index Terms—power system modeling, wind energywind energy to offset coal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  3. Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance at ferromagnet/nonmagnet contact

    E-Print Network [OSTI]

    van der Wal, Caspar H.

    Electrical detection of spin pumping: dc voltage generated by ferromagnetic resonance We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal metal acts as a pump of spin-polarized current

  4. Abstract--We consider the management of electric vehicle (EV) loads within a market-based Electric Power System

    E-Print Network [OSTI]

    Caramanis, Michael

    , we develop a decision support method for an EV Load Aggregator or Energy Service Company (ESCo. In order to streamline our presentation, we assume that (i) an ESCo is selected by EV owners to manage EV EV owner input about the desired departure time; and (iii) the ESCo recovers information at will from

  5. A more efficient formulation for computation of the maximum loading points in electric power systems

    SciTech Connect (OSTI)

    Chiang, H.D. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Jean-Jumeau, R. [Electricite d`Haita, Port-au-Prince (Haiti)

    1995-05-01T23:59:59.000Z

    This paper presents a more efficient formulation for computation of the maximum loading points. A distinguishing feature of the new formulation is that it is of dimension (n + 1), instead of the existing formulation of dimension (2n + 1), for n-dimensional load flow equations. This feature makes computation of the maximum loading points very inexpensive in comparison with those required in the existing formulation. A theoretical basis for the new formulation is provided. The new problem formulation is derived by using a simple reparameterization scheme and exploiting the special properties of the power flow model. Moreover, the proposed test function is shown to be monotonic in the vicinity of a maximum loading point. Therefore, it allows one to monitor the approach to maximum loading points during the solution search process. Simulation results on a 234-bus system are presented.

  6. Understanding the use of natural gas storage for generators of electricity

    SciTech Connect (OSTI)

    Beckman, K.L. [International Gas Consulting, Inc., Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Underground natural gas storage is aggressively used by a handful of utility electric generators in the United States. While storage facilities are often utilized by the natural gas pipeline industry and the local distribution companies (LDCs), regional electric generators have taken advantgage of abundant storage and pipeline capacity to develop very cost efficient gas fired electric generating capacity, especially for peaking demand. Most types of natural gas storage facilities are located underground, with a few based above-ground. These facilities have served two basic types of natural gas storage service requirements: seasonal baseload and needle peakshaving. Baseload services are typically developed in depleted oil and gas reservoirs and aquifers while mined caverns and LNG facilities (also Propane-air facilities) typically provide needle peakshaving services. Reengineering of the natural gas infrastructure will alter the historical use patterns, and will provide the electric industry with new gas supply management tools. Electric generators, as consumers of natural gas, were among the first open access shippers and, as a result of FERC Order 636, are now attempting to reposition themselves in the {open_quotes}new{close_quotes} gas industry. Stated in terms of historical consumption, the five largest gas burning utilities consume 40% of all the gas burned for electric generation, and the top twenty accounted for approximately 70%. Slightly more than 100 utilities, including municipals, have any gas fired generating capacity, a rather limited number. These five are all active consumers of storage services.

  7. Attend a Webinar on AMO's Next Generation Electric Machines Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will fund four to six projects that develop a new generation of energy efficient, high power density, high speed, integrated medium voltage drive systems for a wide variety of...

  8. AMO FOA Targets Advanced Components for Next-Generation Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 20 million is now available to develop a new generation of energy efficient, high power density, high speed integrated MV drive systems for a wide variety of critical energy...

  9. Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation

    E-Print Network [OSTI]

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

    2005-01-01T23:59:59.000Z

    2: L A City, DWP Valley Generating 1: Hunters Point 2: PG &E Co, Hunters Point Power 1: SDG & E Co/Kearny Mesa GT 2:Angeles ST(4) BF(2) Hunters Point San Francisco NG, Diesel

  10. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    play this role.   i. The smart home.   In this vision, the Aware Appliances in a Smart Home  According to the most challenges  Varies  Smart  home  Next  generation  SCADA 

  11. Simplest AB-Thermonuclear Space Propulsion and Electric Generator

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-19T23:59:59.000Z

    The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

  12. Market Power and Technological Bias: The Case of Electricity Generation

    E-Print Network [OSTI]

    Twomey, Paul; Neuhoff, Karsten

    2006-03-14T23:59:59.000Z

    , the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... fixed, exogenously set, strike price. The results are not sensitive to the strike price - but further research is required to assess the impact of multiple types of option contracts with different strike prices. The outline of this paper is as follows...

  13. Dynamic load Variation and Stability Analysis in Distribution Networks with Distributed Generators

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    to the electric energy consumers. Demand for electricity is growing with great rapidity as for nations modernize and economies develop. Due to this development, there is an increased demand in electricity. The increased demand for electricity has outstripped that for other forms of energy. Renewable energy which comes from

  14. Algorithm for calculation of characterisitcs of thermionic electricity-generating assemblies

    SciTech Connect (OSTI)

    Babushkin, Yu.V.; Mendel'baum, M.A.; Savinov, A.P.; Sinyavskii, V.V.

    1981-01-01T23:59:59.000Z

    A numerical algorithm has been developed for calculating the kinetic characteristics of electricity-generating coaxial cells and assemblies; it is based on separate solution of the equations describing the thermal and electrical processes with their subsequent coordination by way of the volt-ampere characteristics of an elementary thermionic converter by means of piecewise-linear approximation of the nonlinear characteristics at the operating points. The possibilities and advantages of the proposed calculation algorithm for investigation of the transients occurring in the course of operation of the electricity generating assemblies (EGA) are indicated. Results are reported for sample calculations of several EGA static and kinetic characteristics. 10 refs.

  15. Deregulation and environmental differentiation in the electric utility industry

    E-Print Network [OSTI]

    Delmas, M; Russo, M V; Montes-Sancho, M J

    2007-01-01T23:59:59.000Z

    inefficient set of generating plants. Here, in the price-all U.S. electricity generating plants. EGRID containsplants that serve only peak loads, coal has enjoyed steady popularity as a generating

  16. Interpreting human activity from electrical consumption data through non-intrusive load monitoring

    E-Print Network [OSTI]

    Gillman, Mark Daniel

    2014-01-01T23:59:59.000Z

    Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear ...

  17. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  18. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01T23:59:59.000Z

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  19. Table 11.3 Electricity: Components of Onsite Generation, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components3

  20. Table 11.3 Electricity: Components of Onsite Generation, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components33

  1. Table 11.4 Electricity: Components of Onsite Generation, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity: Components334

  2. Table 11.4 Electricity: Components of Onsite Generation, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API Gravity Period: MonthlyDistrict of Columbia" "TechnologyVermont" "Technology by1 Electricity:

  3. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage Silicon CarbideAgency:UNM:Education andElectric

  4. MHK Technologies/Electric Generating Wave Pipe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK Projects JumpPlaneElectric Buoy.jpg Technology

  5. Proceedings of the Computational Needs for the Next Generation Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by 2030, May 2009 |Electric GridGrid

  6. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *

    E-Print Network [OSTI]

    transmission rights (FTRs) by generation firms. We investigate the way in which the allocation of FTRs may-Efficient Transmission Investments? * Enzo E. Sauma a, ** , Shmuel S. Oren b a Industrial and Systems Engineering that generation firms have in restructured electricity markets for supporting long-term transmission investments

  7. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  8. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  9. Native American Technical Assistance and Training for Renewable Energy Resource Development and Electrical Generation Facilities Management

    SciTech Connect (OSTI)

    A. David Lester

    2008-10-17T23:59:59.000Z

    The Council of Energy Resource Tribes (CERT) will facilitate technical expertise and training of Native Americans in renewable energy resource development for electrical generation facilities, and distributed generation options contributing to feasibility studies, strategic planning and visioning. CERT will also provide information to Tribes on energy efficiency and energy management techniques.This project will provide facilitation and coordination of expertise from government agencies and private industries to interact with Native Americans in ways that will result in renewable energy resource development, energy efficiency program development, and electrical generation facilities management by Tribal entities. The intent of this cooperative agreement is to help build capacity within the Tribes to manage these important resources.

  10. Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph A. Doucet and Shmuel S. Oren

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Onsite Backup Generation and Interruption Insurance for Electricity Distribution Author(s): Joseph customerownedonsitebackupdecisionswillpre-emptthe utility'splan to mitigatecompensationpaymentsbyprovidingonsitebackup generation access to The Energy Journal. http://www.jstor.org #12;Onsite Backup Generation and Interruption

  11. Rotating electrical machines - Part 22: AC generators for reciprocating internal combustion (RIC) engine driven generating sets

    E-Print Network [OSTI]

    International Electrotechnical Commission. Geneva

    1996-01-01T23:59:59.000Z

    Establishes the principal characteristics of a.c. generators under the control of their voltage regulators when used for reciprocating internal combustion engine driven generating sets. Supplements the requirements given in IEC 60034-1.

  12. A Study of Environmental Load Reduction Technique for University Facilities Part9 The effort towards the countermeasures against imbalance of electric power

    E-Print Network [OSTI]

    Miyashita, Yasushi

    The University of Tokyo While electricity usage restriction is exercised by the government in response 9 A Study of Environmental Load Reduction Technique for University Facilities Part9 The effort towards the countermeasures against imbalance of electric power supply and demand of last summer

  13. Feasibility Study of Biomass Electrical Generation on Tribal Lands

    SciTech Connect (OSTI)

    Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

    2005-03-29T23:59:59.000Z

    The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

  14. Zhenkang County Jineng Electricity Generation Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Generating Engineering

  15. 1994 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-12-01T23:59:59.000Z

    The 1994 Pacific Northwest Loads and Resources Study presented herein establishes a picture of how the agency is positioned today in its loads and resources balance. It is a snapshot of expected resource operation, contractual obligations, and rights. This study does not attempt to present or analyze future conservation or generation resource scenarios. What it does provide are base case assumptions from which scenarios encompassing a wide range of uncertainties about BPA`s future may be evaluated. The Loads and Resources Study is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the 1993 Pacific Northwest Loads and Resources Study, published in December 1993. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The Federal system and regional analyses for medium load forecast are presented.

  16. Electric load information system based on non-intrusive power monitoring

    E-Print Network [OSTI]

    Lee, Kwangduk Douglas, 1970-

    2003-01-01T23:59:59.000Z

    Obtaining high quality information economically and reliably is always a difficult objective to achieve. The electric power industry and consumers recently face many challenges, such as deregulation, autonomous power systems ...

  17. Using Whole-Building Electric Load Data in Continuous or Retro-Commissioning

    E-Print Network [OSTI]

    Price, Phillip N.

    2012-01-01T23:59:59.000Z

    Building Electricity Use, With Application to Demand Response,”Demand Response Research Center and a Program Manager in the Buildingand demand response. For example: Does the building use too

  18. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, Carsten M. (Dadeville, AL); Deeds, W. Edward (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  19. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, C.M.; Deeds, W.E.

    1999-07-13T23:59:59.000Z

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  20. Assessment of the possibilities of electricity and heat co-generation from biomass in Romania's case

    SciTech Connect (OSTI)

    Matei, M.

    1998-07-01T23:59:59.000Z

    This paper examines the use of biomass for electricity (and heat) production. The objectives of the works developed by RENEL--GSCI were to determine the Romanian potential biomass resources available in economic conditions for electricity production from biomass, to review the routes and the available equipment for power generation from biomass, to carry out a techno-economic assessment of different systems for electricity production from biomass, to identify the most suitable system for electricity and heat cogeneration from biomass, to carry out a detailed techno-economic assessment of the selected system, to perform an environmental impact assessment of the selected system and to propose a demonstration project. RENEL--GSCI (former ICEMENERG) has carried out an assessment concerning Romania's biomass potential taking into account the forestry and wood processing wastes (in the near term) and agricultural wastes (in mid term) as well as managing plantations (in the long term). Comparative techno-economical evaluation of biomass based systems for decentralized power generation was made. The cost analysis of electricity produced from biomass has indicated that the system based on boiler and steam turbine of 2,000 kW running on wood-wastes is the most economical. A location for a demonstration project with low cost financing possibilities and maximum benefits was searched. To mitigate the electricity cost it was necessary to find a location in which the fuel price is quite low, so that the low yield of small installation can be balanced. In order to demonstrate the performances of a system which uses biomass for electricity and heat generation, a pulp and paper mill which needed electricity and heat, and, had large amount of wood wastes from industrial process was found as the most suitable location. A technical and economical analysis for 8 systems for electricity production from bark and wood waste was performed.

  1. Generated using version 3.1.2 of the official AMS LATEX template Electric Field Reversal in Sprite Electric Field Signature1

    E-Print Network [OSTI]

    Hager, William

    Electric Field Signature1 Richard G. Sonnenfeld Langmuir Laboratory and Physics Department, New Mexico trigonometry), resulting in a net positive39 electric field at the observer. The intermediate point between P1Generated using version 3.1.2 of the official AMS LATEX template Electric Field Reversal in Sprite

  2. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J. (Energy Systems); ( NE)

    2011-02-24T23:59:59.000Z

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  3. Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions

    E-Print Network [OSTI]

    Tabors, Richard D.

    1991-01-01T23:59:59.000Z

    The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

  4. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  5. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  6. Generating Revenue for Generating Green Electricity: Evidence from Laboratory Experiments on

    E-Print Network [OSTI]

    Edwards, Paul N.

    commonly employed in green electricity programs: the voluntary contribution mechanism, the green tariff mechanism, and the all-or- nothing green tariff mechanism. [These mechanisms will be described momentarily the voluntary contribution mechanism (VCM), the green tariff mechanism (GTM), and the all-or-nothing green

  7. Carbon-free generation Carbon-free central generation of electricity, either through fossil

    E-Print Network [OSTI]

    Ohta, Shigemi

    of superconducting materials, which are key to integrating renewables on the grid. The 32-megawatt Long Island Solar will serve as a focal point for research and industrial involvement in tackling systems performance and grid, reducing the amount of precious metals needed to manufacture fuel cells for electric cars,

  8. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01T23:59:59.000Z

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  9. Real-Time Deferrable Load Control: Handling the Uncertainties of Renewable Generation

    E-Print Network [OSTI]

    Low, Steven H.

    - ables are not only intermittent but also difficult to predict. For example, wind generation prediction

  10. Financial comparison of time-of-use pricing with technical DSM programs and generating plants as electric-utility resource options

    SciTech Connect (OSTI)

    Hill, L.J.

    1994-04-01T23:59:59.000Z

    Changing electricity prices to more closely reflect production costs has a significant impact on the consumption of electricity. It is known, for example, that most of the efficiency gains in the electric power sectors of the industrialized world since the first international oil price shock in 1973 are attributable to the rising trend of electricity prices. This was due to the rising average price of electricity. Because of the unique characteristics of producing electricity, its marginal cost is higher than its average cost during many hours of the day. This study shows that, for utilities not reflecting these cost differences in their rates, there is ample room to satisfy a portion of their resource needs by exploiting the load-shaping properties of time-of-use (TOU) rates. Satisfying a portion of resource requirements by implementing a TOU-pricing program, however, is not costless. Metering and administering TOU pricing requires a financial commitment by an electric utility. And the commitment has an opportunity cost. That is, the funds could be used to construct generating plants or run DSM programs (other than a TOU-pricing program) and satisfy the same resource needs that TOU pricing does. The question addressed in this study is whether a utility is better-served financially by (i) implementing TOU pricing or (ii) running technical DSM programs and building power plants. The answer is that TOU pricing compares favorably on a financial basis with other resources under a wide set of conditions that real-world utilities confront.

  11. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  12. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    the Value of Wind-Generated Electricity References TrueWindValuing the Time-Varying Electricity Production of Solarthe Value of Wind-Generated Electricity References Gipe, P.

  13. Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory BoardNucleate Boiling EfficientState Electric VehicleDepartment

  14. Estimated Savings from Turning Off Unnecessary Electrical Loads During Unoccupied Periods at the Langford Architecture Center

    E-Print Network [OSTI]

    Soebarto, V. I.; Haberl, J. S.; Degelman, L. O.

    1996-01-01T23:59:59.000Z

    in those studios during unoccupied hours. Turning off the lights on the third and fourth floor studios would reduce the electricity cost by $4,757 per year and the associated heating and cooling costs by an additional $583 for a total savings of $5...

  15. Oscillation annealing and driver/tire load torque estimation in Electric Power Steering Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the improved LuGre-tire friction model. Index Terms-- Electric Power Steering systems (EPSs), LQ control, Lu a control framework that includes a realistic model of a steering column accounting for all other torque. The contributions of this paper are: a) Optimal output control feedback: Based on the steer- ing column model

  16. On electrical load tracking scheduling for a steel Alain Hait1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Various types of energy bills exist, calculated from energy consumption, power limits and fix or time and objectives challenge the classical production mod- els, from long term to short term management and from plants. Electrical de- vices may induce a high power demand if the schedule is not focused on energy

  17. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect (OSTI)

    Struhsacker, D.W. (ed.)

    1981-01-01T23:59:59.000Z

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  18. Role of Electricity Markets and Market Design in Integrating Solar Generation: Solar Integration Series. 2 of 3 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2001-05-01T23:59:59.000Z

    The second out of a series of three fact sheets describing the role of electricity markets and market design in integrating solar generation.

  19. Load Management for Industry

    E-Print Network [OSTI]

    Konsevick, W. J., Jr.

    1982-01-01T23:59:59.000Z

    customer management programs exist. EPRI Report (EM-1606) loads to beneficially alter a'utility's load curve. (Page 1-2) list them as: Load management alternatives are covered. 1. Direct or voluntary control of customer Load management methods can... and Electric Power Research Institute (EPRI) Report energy management programs. (EM-1606) states that "the objective of load manage ment is to alter the real or apparent pattern of Our load management program was designed electricity use in order to...

  20. Method and apparatus for transferring and injecting rf energy from a generator to a resonant load

    DOE Patents [OSTI]

    Hoffert, William J. (Albuquerque, NM)

    1987-01-01T23:59:59.000Z

    Improved apparatus and method are provided for the coherent amplification and injection of radio-frequency (rf) energy into a load cavity using a plurality of amplifier tubes. A plurality of strip line cavities (30, 32, 34, 36, 40, 42, 44) are laterally joined to define a continuous closed cavity (48), with an amplifier tube (50, 52, 54, 56, 58, 60, 62, 64) mounted within each resonant strip cavity. Rf energy is injected into the continuous cavity (48) from a single input (70) for coherent coupling to all of the amplifier tubes for amplification and injection into the load cavity (76).

  1. California customer load reductions during the electricity crisis: Did they help to keep the lights on?

    E-Print Network [OSTI]

    Goldman, Charles A.; Eto, Joseph H.; Barbose, Galen L.

    2002-01-01T23:59:59.000Z

    long term, the CEC’s Demand Response Buildings and Real-timebuildings, on-site generation, and demand-response enablingdemand response deployed through the CEC’s Demand Responsive Buildings

  2. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel

    E-Print Network [OSTI]

    Sun, Baolin

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell-Verlag 2009 Abstract Increasing the ionic strength of the electrolyte in a microbial fuel cell (MFC) can in some MFC applications. Keywords Microbial fuel cell . Shewanella marisflavi . Ionic strength . Internal

  3. Evaluating Policies to Increase the Generation of Electricity from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Focusing on the U.S. and the E.U., this essay seeks to advance four main propositions. First, the incidence of the short-run costs of programs to subsidize the generation of electricity from renewable sources varies with ...

  4. Present coal potential of Turkey and coal usage in electricity generation

    SciTech Connect (OSTI)

    Yilmaz, A.O. [Karadeniz Technical University, Trabzon (Turkey). Mining Engineering Department

    2009-07-01T23:59:59.000Z

    Total coal reserve (hard coal + lignite) in the world is 984 billion tons. While hard coal constitutes 52% of the total reserve, lignite constitutes 48% of it. Turkey has only 0.1% of world hard coal reserve and 1.5% of world lignite reserves. Turkey has 9th order in lignite reserve, 8th order in lignite production, and 12th order in total coal (hard coal and lignite) consumption. While hard coal production meets only 13% of its consumption, lignite production meets lignite consumption in Turkey. Sixty-five percent of produced hard coal and 78% of produced lignite are used for electricity generation. Lignites are generally used for electricity generation due to their low quality. As of 2003, total installed capacity of Turkey was 35,587 MW, 19% (6,774 MW) of which is produced from coal-based thermal power plants. Recently, use of natural gas in electricity generation has increased. While the share of coal in electricity generation was about 50% for 1986, it is replaced by natural gas today.

  5. "The Dynamics of Market Power with Deregulated Electricity Generation Richard E. Schuler,

    E-Print Network [OSTI]

    "The Dynamics of Market Power with Deregulated Electricity Generation Supplies" Richard E. Schuler previously developed models of dynamic oligopoly pricing, estimates are provided of how rapidly and how far of competition in long distance telephone service the United States, where they "predict" AT&T dynamic price

  6. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07T23:59:59.000Z

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  7. Use of Linear Predictive Control for a Solar Electric Generating System

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    behavior can be used to design and operate plants. The solar power plant is characterized by significant1 Use of Linear Predictive Control for a Solar Electric Generating System Thorsten Stuetzle, Nathan Blair, William A. Beckman, John W. Mitchell Solar Energy Laboratory University of Wisconsin-Madison 1500

  8. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1996-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  9. Method and apparatus for improving the performance of a nuclear power electrical generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1995-01-01T23:59:59.000Z

    A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

  10. EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

  11. Effect of real-time electricity pricing on renewable generators and system emissions

    E-Print Network [OSTI]

    Connolly, Jeremiah P. (Jeremiah Peter)

    2008-01-01T23:59:59.000Z

    Real-time retail pricing (RTP) of electricity, in which the retail price is allowed to vary with very little time delay in response to changes in the marginal cost of generation, offers expected short-run and long-run ...

  12. How Does Electricity Generated from Woody Biomass Fit into California's Energy Future?

    E-Print Network [OSTI]

    Iglesia, Enrique

    & Steam Turbine/ Generator Electricity Reforming/CO2 Separation** Boiler Ash (slag) Gaseous emissions required) Efficiency 17-25% 38-41% Emissions & byproducts SOx, NOx, PM, CO, CO2 SOx, NOx, PM, CO, CO2 Char CO2 emission · 3-8% methane leaks during well operation · 20x worse than CO2 as a greenhouse gas

  13. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09T23:59:59.000Z

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  14. Real-Time Deferrable Load Control: Handling the Uncertainties of Renewable Generation

    E-Print Network [OSTI]

    Low, Steven H.

    are difficult to predict. For example, wind generation pre- diction has a root-mean-square error of around 18

  15. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01T23:59:59.000Z

    Wires Manage Wires defer capital Optimize Energy Services Not Utility Business Not Utility Business New Business Opportunities DISTRIBUTED GENERATION Distributed generation includes small gas turbines, micro-turbines, fuel cells, storage... Residential Single Family Multi Family 1-10 kW 15- 50 kW Ultra micro-turbines Stirling Engines Fuel Cells PEMFC SOFC PV BatterylUPS Remote Loads 5 kW - 1,000 kW IC engines Off Grid Diesel Engine Micro turbine Stirling Engines Distribution...

  16. Environmental review of Southern Maryland Electric Cooperative's proposed combustion-turbine generating facility at Chalk Point

    SciTech Connect (OSTI)

    Peters, N.; Tomko, J.; Keating, R.; Corio, L.; Stern, M.

    1989-12-01T23:59:59.000Z

    The report provides an environmental assessment of a 70-100 MW gas turbine generating facility which the Southern Maryland Electric Cooperative, Inc. (SMECO) has proposed to construct on the site of Potomac Electric Power Company's (PEPCO) Chalk Point Generating Station. The facility, to be used as a peaking plant, will be SMECO's first generating station. Construction of the facility is expected to begin in March 1990, with completion scheduled for December 1990. Commercial operation is expected to begin prior to January 1, 1991. On the basis of the information available, no deficiencies have been identified which warrant finding the Chalk Point site unsuitable for construction of the proposed SMECO facility. Potential impacts from air emissions, ground water withdrawal, release of contaminants to ground water, noise emissions, discharge of effluent, and disturbance of the site were specifically examined. Recommendations for evaluations following construction are also provided.

  17. An Electricity-focused Economic Input-output Model: Life-cycle Assessment and Policy Implications of Future Electricity Generation Scenarios

    E-Print Network [OSTI]

    , and the different means of generating power. We build a flexible framework for creating new industry sectors, supply of Future Electricity Generation Scenarios Joe Marriott Submitted in Partial Fulfillment of the Requirements in the input- output model of the U.S. economy, the power generation sector is an excellent candidate

  18. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01T23:59:59.000Z

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  19. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOE Patents [OSTI]

    Cresap, Richard L. (Portland, OR); Taylor, Carson W. (Portland, OR); Kreipe, Michael J. (Portland, OR)

    1982-01-01T23:59:59.000Z

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  20. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  1. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    4 to 7 percent of the plants ' generating capacity (17,20).Boiler Baghouse, Nucla Generating Plant," Bradway, R. M. andof Electrical Generating Plants Effect of Load Factor on

  2. Scientists decipher genome of bacterium that remediates uranium contamination, generates electricity Public release date: 11-Dec-2003

    E-Print Network [OSTI]

    Lovley, Derek

    that remediates uranium contamination, generates electricity Analysis of Geobacter sulfurreducens genes reveals easily removed. Small charges of electricity are also created through the reduction process. Geobacter electricity Public release date: 11-Dec-2003 [ Print This Article | Close This Window ] Contact: Robert Koenig

  3. Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric-of-service regulation to market-oriented environments for many U.S. electric generating plants. Our estimates of input their wholesale electricity markets improved the most. The results suggest modest medium-term efficiency benefits

  4. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect (OSTI)

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17T23:59:59.000Z

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  5. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  6. What explains the increased utilization of Powder River Basin coal in electric power generation?

    SciTech Connect (OSTI)

    Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

    2008-11-15T23:59:59.000Z

    This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01T23:59:59.000Z

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  8. Potential growth of nuclear and coal electricity generation in the US

    SciTech Connect (OSTI)

    Bloomster, C.H.; Merrill, E.T.

    1989-08-01T23:59:59.000Z

    Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

  9. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  10. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30T23:59:59.000Z

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  11. Abstract--Load serving entities (LSE) and holders of default service obligations, in restructured electricity markets, provide

    E-Print Network [OSTI]

    Oren, Shmuel S.

    , in restructured electricity markets, provide electricity service at regulated or contracted fixed prices while standard forward contracts and commodity derivatives. Keywords: Electricity Markets, Risk Management, Volumetric hedging, I. INTRODUCTION The introduction of competitive wholesale markets in the electricity

  12. 1990 Pacific Northwest Loads and Resources Study, Technical Appendix.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-12-01T23:59:59.000Z

    The 1990 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration's (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility, (2) a summary of Federal system and Pacific Northwest region loads and resources, and (3) a technical appendix detailing forecasted Pacific Northwest economic trends and loads. This technical appendix provides utility-specific information that BPA uses in its long-range planning. It incorporates the following for each utility: electrical demand--firm loads--under the medium 1990 Draft Joint Load Forecast; generating resources; and contracts both inside and outside the region.

  13. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOE Patents [OSTI]

    Kasper, Stanley (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  14. Puget Sound Area Electric Reliability Plan. Appendix B : Local Generation Evaluation : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01T23:59:59.000Z

    The information and data contained in this Appendix was extracted from numerous sources. The principle sources used for technical data were Bonneville Power Administration's 1990 Resource Program along with its technical appendix, and Chapter 8 of the Draft 1991 Northwest Conservation and Electric Power Plan. All cost data is reported 1988 dollars unless otherwise noted. This information was supplemented by other data developed by Puget Sound utilities who participated on the Local Generation Team. Identifying generating resources available to the Puget Sound area involved a five step process: (1) listing all possible resources that might contribute power to the Puget Sound area, (2) characterizing the technology/resource status, cost and operating characteristics of these resources, (3) identifying exclusion criteria based on the needs of the overall Puget Sound Electric Reliability Plan study, (4) applying these criteria to the list of resources, and (5) summarizing of the costs and characteristics of the final list of resources. 15 refs., 20 tabs.

  15. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N [Los Alamos National Laboratory; Yu, Z [UNIV OF MANCHESTER; Jaworski, A J [UNIV OF MANCHESTER

    2010-01-01T23:59:59.000Z

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  16. Potential Impacts of Plug-in Hybrid Electric Vehicles (PHEVs) on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

    2009-01-01T23:59:59.000Z

    PHEVs are expected to penetrate market soon. If recharging occurs during off-peak hours, the grid will not be significantly affected. However, peak-time recharging may lead to capacity shortfalls. This paper analyzes the potential impact of PHEVs on electricity demand, supply, generation structure, prices, and emissions levels in 2020 and 2030 in 13 U.S. regions under 7 recharging scenarios. The simulations predict that the PHEV introduction could impact demand peaks, reduce reserve margins, and increase prices. The type of power generation used to recharge the PHEVs and associated emissions will depend upon the region and the timing of the recharge.

  17. IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION

    E-Print Network [OSTI]

    unknown authors

    Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NREL’s micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

  18. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01T23:59:59.000Z

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  19. The marginal costs and pricing of gas system upgrades to accommodate new electric generators

    SciTech Connect (OSTI)

    Ambrose, B.

    1995-12-31T23:59:59.000Z

    In the coming years, competitive forces and restructuring in the electric industry can be expected to increase substantially the demand for gas delivery service to new electric generating units by local distribution companies (LDCs) and pipeline companies across the United States. In meeting this demand, it is important that the prices paid by electric generators for gas delivery service properly reflect the costs of the resources utilized in providing service to them in order that their decisions regarding what to build and where as well as the manner in which their units are dispatched are as efficient as possible from a societal standpoint. This will assure that society`s resources will be neither squandered nor underutilized in providing service to these generators and aid in assuring that, once built, the units are run in an efficient manner. While the most efficient solution to this problem is a secondary market in tradeable pipeline capacity rights, we do not have such a system in place at this time. Further, tradeable rights for LDC capacity may be difficult to establish. An interim solution that will work in the confines of the present system and not create problems for the transition to tradeable rights is required. This purpose of this paper is to set out the important first principals involved in applying marginal costing to the provision of gas delivery service to new electric generating units rather than to present empirical data on the marginal costs of such service. Experience has shown that marginal costs are usually unique to the particular situation being costed.

  20. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  1. Reliability evaluation of electric power generation systems including unconventional energy sources

    E-Print Network [OSTI]

    Lago-Gonzalez, Alex

    1984-01-01T23:59:59.000Z

    through photovoltaic cells, and wind power generation, proto- types have been built and tested. Commercial operation of these two is expected to start in the late 1980's or early 1990's. For the rest of the alternatives the expected date of operation... appropiate for these units because they may have several derated states. However, due to the short operating experience with these units, there is not enough data available to develop more accurate models. 3. 1 Description of PEPS Photovoltaic electric...

  2. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01T23:59:59.000Z

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  3. A Study of Distributed Generation System Characteristics and Protective Load Control Strategy

    E-Print Network [OSTI]

    Chen, Zhe

    different type of WTs are integrated into a DGS, the DGS presents different properties. Therefore Turbines (WT) have attracted significant attentions. A DGS with renewable sources such as WTs and solar panels is distinct from a conventional power system. The renewable generation units make a DGS

  4. The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    59 Microturbinefor volumetric electricity rate variation and microturbinefor volumetric electricity rate variation and microturbine

  5. Community Energy: Analysis of Hydrogen Distributed Energy Systems with Photovoltaics for Load Leveling and Vehicle Refueling

    SciTech Connect (OSTI)

    Steward, D.; Zuboy, J.

    2014-10-01T23:59:59.000Z

    Energy storage could complement PV electricity generation at the community level. Because PV generation is intermittent, strategies must be implemented to integrate it into the electricity system. Hydrogen and fuel cell technologies offer possible PV integration strategies, including the community-level approaches analyzed in this report: (1) using hydrogen production, storage, and reconversion to electricity to level PV generation and grid loads (reconversion scenario); (2) using hydrogen production and storage to capture peak PV generation and refuel hydrogen fuel cell electric vehicles (FCEVs) (hydrogen fueling scenario); and (3) a comparison scenario using a battery system to store electricity for EV nighttime charging (electric charging scenario).

  6. GENERATION OF ELECTRIC CURRENTS IN THE CHROMOSPHERE VIA NEUTRAL-ION DRAG

    SciTech Connect (OSTI)

    Krasnoselskikh, V. [LPC2E, CNRS-University of Orleans, 3A Avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France); Vekstein, G. [School of Physics and Astronomy, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Hudson, H. S.; Bale, S. D.; Abbett, W. P. [Space Sciences Laboratory, University of California at Berkeley, CA 94720 (United States)

    2010-12-01T23:59:59.000Z

    We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion-neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron-neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes fully ionized, and resistive dissipation continues to heat electrons and ions. This heating process is so efficient that it can result in typical temperature increases with altitude as large as 0.1-0.3 eV km{sup -1}. We conclude that this process can play a major role in the heating of the chromosphere and corona.

  7. An Assessment of the Economics of Future Electric Power Generation Options and the Implications for Fusion

    SciTech Connect (OSTI)

    Delene, J.G.; Hadley, S.; Reid, R.L.; Sheffield, J.; Williams, K.A.

    1999-09-01T23:59:59.000Z

    This study examines the potential range of electric power costs for some major alternatives to fusion electric power generation when it is ultimately deployed in the middle of the 21st century and, thus, offers a perspective on the cost levels that fusion must achieve to be competitive. The alternative technologies include coal burning, coal gasification, natural gas, nuclear fission, and renewable energy. The cost of electricity (COE) from the alternatives to fusion should remain in the 30-50 mils/kWh (1999 dollars) range of today in carbon sequestration is not needed, 30-60 mils/kWh if sequestration is required, or as high as 75 mils/kWh for the worst-case scenario for cost uncertainty. The reference COE range for fusion was estimated at 70-100 nmils/kWh for 1- to 1.3-GW(e) scale power plants. Fusion costs will have to be reduced and/or alternative concepts derived before fusion will be competitive with the alternatives for the future production of electricity. Fortunately, there are routes to achieve this goal.

  8. Wakefield generation by a relativistic ring beam in a coaxial two channel dielectric loaded structure.

    SciTech Connect (OSTI)

    Liu, W.; Gai, W. (High Energy Physics)

    2009-05-12T23:59:59.000Z

    In this paper, we give a complete analytical solution for wakefields generated by an azimuthally symmetric ring beam propagating in a coaxial two-channel dielectric structure. This wakefield can be used to accelerate a witness beam in the central channel. The ratio of the peak accelerating field in the center channel to the decelerating field in the ring channel (defined as transformer ratio R) is also derived. We find that, by appropriate choice of parameters, R can be much greater than 2, the limiting value for collinear wakefield accelerators.

  9. High-order harmonic generation in the presence of a static electric field

    SciTech Connect (OSTI)

    Odzak, S. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Milosevic, D.B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2005-09-15T23:59:59.000Z

    We consider high-order harmonic generation by a linearly polarized laser field and a parallel static electric field. We first develop a modified saddle-point method which enables a quantitative analysis of the harmonic spectra even in the presence of Coulomb singularities. We introduce a classification of the saddle-point solutions and show that, in the presence of a static electric field which breaks the inversion symmetry, an additional classification number has to be introduced and that the usual saddle-point approximation and the uniform approximation in the case of the coalescing saddle points have to be modified. The theory developed offers a simple and accurate explanation of the static-field-induced multiplateau structure of the harmonic spectra. The longer quantum orbits are responsible for a long extension of the harmonic plateau, while the larger initial electron velocities are the reason of lower harmonic emission rates.

  10. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, J.H.

    1993-08-10T23:59:59.000Z

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  11. High-Efficiency Solar Cells for Large-Scale Electricity Generation & Design Considerations for the Related Optics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.k; Kibbler, A.; Kramer, C.; Ward, S.; Duda, A.; Young, M.; Carapella, J.

    2007-09-17T23:59:59.000Z

    The photovoltaic industry has been growing exponentially at an average rate of about 35%/year since 1979. Recently, multijunction concentrator cell efficiencies have surpassed 40%. Combined with concentrating optics, these can be used for electricity generation.

  12. The effect of falling market concentration on prices, generator behaviour and productive efficiency in the England and Wales electricity market

    E-Print Network [OSTI]

    Sweeting, Andrew

    2001-01-01T23:59:59.000Z

    A universal prediction of the various oligopoly models used to predict and explain behaviour in the England and Wales (E&W) electricity wholesale market is that divestiture of plants by the two large incumbent generators ...

  13. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31T23:59:59.000Z

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  14. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from to produce electricity from fuels. To speed the search for why fuel cell performance decreases over time fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

  15. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01T23:59:59.000Z

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  16. Buildings Stock Load Control

    E-Print Network [OSTI]

    Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

    2006-01-01T23:59:59.000Z

    and distribution electricity infrastructures The second part presents the approach used to rise the objectives : ? To aggregat the individual loads and to analyze the impact of different strategies from load shedding to reduce peak power demand by: ? Developing...

  17. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03T23:59:59.000Z

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01T23:59:59.000Z

    and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

  19. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30T23:59:59.000Z

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  20. Preconstruction schedules, costs, and permit requirements for electric power generating resources in the Pacific Northwest

    SciTech Connect (OSTI)

    Hendrickson, P.L.; Smith, S.A.; Thurman, A.G.; Watts, R.L.; Weakley, S.A.

    1990-07-01T23:59:59.000Z

    This report was prepared for the Generation Programs Branch, Office of Energy Resources, Bonneville Power Administration (BPA). The principal objective of the report is to assemble in one document preconstruction cost, schedule, and permit information for twelve specific generating resources. The report is one of many documents that provide background information for BPA's Resource Program, which is designed to identify the type and amount of new resources that BPA may have to add over the next twenty years to maintain an adequate and reliable electric power supply in the Pacific Northwest. A predecessor to this report is a 1982 report prepared by the Pacific Northwest Laboratory (PNL) for the Northwest Power Planning Council (the Council''). The 1982 report had a similar, but not identical, content and format. 306 refs., 14 figs., 22 tabs.

  1. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01T23:59:59.000Z

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

  2. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02T23:59:59.000Z

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  3. Program Plan for Renewable Energy generation of electricity. Response to Section 2111 of the Energy Policy Act of 1992

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    A 5-Year Program Plan for providing cost-effective options for generating electricity from renewable energy sources is presented by the US Department of Energy Office of Energy Efficiency and Renewable Energy. The document covers the Utility-Sector situation, scope of the program, specific generating technologies, and implementation of the program plan.

  4. Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions

    E-Print Network [OSTI]

    Reid, Matthew

    time due to a growing number of applications such as imaging,1­3 illicit-drug detection,4Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric July 2005 Polarized second-harmonic generation and terahertz radiation in reflection from 100 , 110

  5. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  6. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    SciTech Connect (OSTI)

    Sullivan, John

    2013-06-04T23:59:59.000Z

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  7. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01T23:59:59.000Z

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  8. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    SciTech Connect (OSTI)

    Sulaeman, M. Y.; Widita, R. [Department of Physics, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-09-30T23:59:59.000Z

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20–100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of ?1.5 kV with falltime 3 ns and risetime 15 ns into a 50? load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.

  9. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Electrical Energy Conservation Opportunities for Plug Loads and Lighting in UBC

    E-Print Network [OSTI]

    Conservation Opportunities for Plug Loads and Lighting in UBC Office Buildings Natalie Yao University for plug loads and lighting in UBC Office Buildings Natalie Yao University of British Columbia Clean Energy), Robert Padwick (IT group), David Rogers and Alvin Wai (BC Hydro's Power Smart), and all UBC staff who

  10. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Load Profiles Nobuyuki Yamaguchi, Central Research Institute of Electric PowerElectric Power Industry. A Meanwhile, load profiles of each

  11. Intraclass Price Elasticity & Electric Rate Design

    E-Print Network [OSTI]

    Gresham, K. E.

    INTRACLASS PRICE ELASTICITY &ELECTRIC RATE DESIGN KEVIN E. GRESHAM Senior Research Analyst Houston Lighting & Power Company Houston, Texas ABSTRACT PRICE ELASTICITY Electric ~ate design relies on cost incur rance for pricing and pricing... industries are already affecting electric utilities. Cogeneration is one example of competition which effects electric utilities. Utilities now have a competing source of generation which often causes load and revenue losses. Competition has specifically...

  12. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  13. Telemetering system supports load curtailment and billing

    SciTech Connect (OSTI)

    Mabry, R. (Potomac Electric Power Co., Washington, DC (United States)); Biagini, D. (Landis and Gyr Systems, Inc., San Jose, CA (United States))

    1993-04-01T23:59:59.000Z

    One of the greatest challenges facing electric utilities today is satisfying increasing peak demand without adding new generating capacity. Supporting utilities in this quest are state-of-the-art computer systems designed to accommodate complex load management as well as billing and load survey programs. The Potomac Electric Power Company (PEPCO) is utilizing such computer technology along with an innovative organizational approach to implement a comprehensive energy plan for its customers. The plan is enabling the utility to meet the growing demand placed on its power system by intensive expansion in the greater Washington DC area.

  14. Estimating carbon emissions avoided by electricity generation and efficiency projects: A standardized method (MAGPWR)

    E-Print Network [OSTI]

    Meyers, S.; Marnay, C.; Schumacher, K.; Sathaye, J.

    2000-01-01T23:59:59.000Z

    into a load duration curve (LDC). A load duration curve is aOnce one has filled in a LDC for a given period, deriving ais simpler to construct an LDC based on projected operation

  15. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29T23:59:59.000Z

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  16. Technical efficiency in electricity generation - the impact of smallness and isolation of island economies

    E-Print Network [OSTI]

    Domah, Preetum

    2004-06-16T23:59:59.000Z

    : Generation Capacity Utilisation Year 7654321 O u tp ut pe r I n st al le d Ca pa ci ty 7 6 5 4 3 2 1 0 Legend Islands Non-Islands 5.2: Results from Stochastic Frontier Analyses In this section SFA results of the translog equation (1) is estimated... . ln(Yi) = ?0 + ?1ln(Li) + ?2ln(Ki) + ?3ln(Fi) + ?4ln(Li)2 + ?5ln(Ki)2 + ?6ln(Fi)2 + ?7ln(Li)ln(Ki) + ?8ln(Li)ln(Fi) + ?9ln(Ki)ln(Fi) + ?10ln(L)(t) + ?11ln(K)(t) + ?12ln(F)(t) + ?13(t) + ?14(t)2 + vi – ui, i = 1,2,…,N. (1) where Yi = electricity...

  17. Electric-field-induced spin wave generation using multiferroic magnetoelectric cells

    SciTech Connect (OSTI)

    Cherepov, Sergiy; Khalili Amiri, Pedram; Alzate, Juan G.; Wong, Kin; Lewis, Mark; Upadhyaya, Pramey; Nath, Jayshankar; Bao, Mingqiang; Wang, Kang L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Bur, Alexandre; Wu, Tao; Carman, Gregory P. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States); Khitun, Alexander [Department of Electrical Engineering, University of California, Riverside, California 92521 (United States)

    2014-02-24T23:59:59.000Z

    In this work, we report on the demonstration of voltage-driven spin wave excitation, where spin waves are generated by multiferroic magnetoelectric (ME) cell transducers driven by an alternating voltage, rather than an electric current. A multiferroic element consisting of a magnetostrictive Ni film and a piezoelectric [Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}]{sub (1?x)}–[PbTiO{sub 3}]{sub x} substrate was used for this purpose. By applying an AC voltage to the piezoelectric, an oscillating electric field is created within the piezoelectric material, which results in an alternating strain-induced magnetic anisotropy in the magnetostrictive Ni layer. The resulting anisotropy-driven magnetization oscillations propagate in the form of spin waves along a 5??m wide Ni/NiFe waveguide. Control experiments confirm the strain-mediated origin of the spin wave excitation. The voltage-driven spin wave excitation, demonstrated in this work, can potentially be used for low-dissipation spin wave-based logic and memory elements.

  18. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    SciTech Connect (OSTI)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G. (DLR, German Aerospace, Cologne); Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01T23:59:59.000Z

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  19. 1997 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1997-12-01T23:59:59.000Z

    The 1997 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. Data detailing Pacific Northwest non-utility generating (NUG) resources is also available upon request. This analysis updates the 1996 pacific Northwest Loads and Resources Study, published in December 1996. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. This document analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system which includes loads and resources in addition to the Federal system. This study presents the Federal system and regional analyses for the medium load forecast. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1998--99 through 2007--08.

  20. Electric vehicle system for charging and supplying electrical power

    DOE Patents [OSTI]

    Su, Gui Jia

    2010-06-08T23:59:59.000Z

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  1. Intelligence in Electricity Networks for Embedding Renewables and

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    their loads due to highly-inefficient transmission. Furthermore, multiple electric lines were needed for each. At the same time, introducing more combined heat and power generation (CHP) couples electricity production. Tesla's `new system' made it possible to transmit electrical power over long dis- tances and to use one

  2. Economic Evaluation of Electrical Power Generation Using Laser Inertial Fusion Energy (LIFE)

    E-Print Network [OSTI]

    Tm Anklam; Wayne Meier; Al Erl; Robin Miles; Aaron Simon

    2009-01-01T23:59:59.000Z

    With the completion of the National Ignition Facility (NIF) and upcoming ignition experiments, there is renewed interest in laser fusion-fission hybrids and pure fusion systems for base load power generation. An advantage of a laser fusion based system is that it would produce copious neutrons ( ~ 1.8x10 20 /s for a 500 MW fusion source). This opens the door to hybrid systems with once through, high burn-up, closed fuel cycles. With abundant fusion neutrons, only modest fission gain (5 to 10) is needed for power production. Depleted uranium can be used as the fission fuel, effectively eliminating the need for uranium mining and enrichment. With high burn up, a hybrid would generate only 5 % to 10% the volume of high-level nuclear waste per kilowatt hour that a once through light water reactor (LWR) does. Reprocessing is no longer needed to close the fuel cycle as the spent fuel can, after interim cooling, go directly to geologic disposal. While the depleted uranium fuel cycle offers advantages of simplicity and proliferation avoidance, it has the most challenging fuel lifetime requirements. Fissile fuel such as plutonium, or plutonium and minor actinides separated from spent nuclear fuel, would have roughly twice the fission gain and incur only about 25 % of the radiation damage to reach the same burn up level as depleted uranium. These missions are interesting in their own right and also provide an opportunity for early market entry of laser fusion based energy sources. A third fuel cycle option is to burn spent fuel directly, without prior separation of the plutonium and minor actinides. The neutronic and economic performance of this fuel cycle is very similar to the depleted uranium system. The primary difference is the need to fabricate new LIFE fuel from spent LWR fuel. The advantage of this fuel cycle is that it would burn the residual actinides in spent nuclear fuel, greatly reducing long term radio-toxicity and heat load, while avoiding the need to chemically separate spent LWR fuel.

  3. Methods and apparatus for rotor load control in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2006-08-22T23:59:59.000Z

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  4. Peculiarity of convergence of shock wave generated by underwater electrical explosion of ring-shaped wire

    SciTech Connect (OSTI)

    Shafer, D.; Toker, G. R.; Gurovich, V. Tz.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)] [Physics Department, Technion, Haifa 32000 (Israel)

    2013-05-15T23:59:59.000Z

    Nanosecond timescale underwater electrical wire explosions of ring-shaped Cu wires were investigated using a pulsed generator with a current amplitude up to 50 kA. It was shown that this type of wire explosion results in the generation of a toroidal shock wave (SW). Time- and space-resolved optical diagnostics were used to determine azimuthal uniformity of the shock wave front and its velocity. It was found that the shock wave preserves its circular front shape in the range of radii 50?m

  5. Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

  6. A model for hedging load and price risk in the Texas electricity market Michael Coulon , Warren B. Powell, Ronnie Sircar

    E-Print Network [OSTI]

    Powell, Warren B.

    to the challenges of electricity price modeling. Given the growth of intermit- tent wind energy in Texas Accepted 20 May 2013 Available online 15 June 2013 JEL classification: C60 C80 G12 G13 Q40 Keywords: Electricity market Structural model Spikes Forward prices Spread options Hedging Energy companies

  7. CARBON MANAGEMENT STRATEGIES FOR U.S. ELECTRICITY GENERATION CAPACITY: A VINTAGE-BASED APPROACH

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Dooley, James J.

    2004-06-01T23:59:59.000Z

    This paper examines the stock of fossil-fired power generation capacity in the United States within the context of climate change. At present, there are over 1,337 fossil-fired power generating units of at least 100 MW in capacity, that began operating between the early 1940s and today. Together these units provide some 453 GW of electric power. Launching a national program to accelerate the early retirement of this stock or tearing them down and undertaking near-term brownfield redevelopment with advanced power cycle technologies as a means of addressing their greenhouse gas emissions will not be a sensible option for all of these units. Considering a conservative 40-year operating life, there are over 667 existing fossil-fired power plants, representing a capacity of over 291 GW, that have at least a decades worth of productive life remaining. This paper draws upon specialized tools developed by Battelle to analyze the characteristics of this subset of U.S. power generation assets and explore the relationships between plant type, location, emissions, and vintage. It examines the use of retrofit carbon capture technologies, considering criteria such as the proximity of these power plants to geologic reservoirs, to assess the potential that geologic sequestration of CO2 offers these plants for managing their emissions. The average costs for retrofitting these plants and sequestering their CO2 into nearby geologic reservoirs are presented. A discussion of a set of planned U.S. fossil-fired power projects within this context is also included.

  8. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOE Patents [OSTI]

    de Rooij, Michael Andrew (Clifton Park, NY); Steigerwald, Robert Louis (Burnt Hills, NY); Delgado, Eladio Clemente (Burnt Hills, NY)

    2008-12-16T23:59:59.000Z

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  9. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR. GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  10. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  11. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF FOSSIL-FUEL NUCLEAR, GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  12. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  13. A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Rosen, L.C.

    2010-01-01T23:59:59.000Z

    IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

  14. INTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads on Louisiana interstate highways.These heavier loads are currently being

    E-Print Network [OSTI]

    Harms, Kyle E.

    , are significant parameters of highway traffic.TEA 21 is allowing sugarcane trucks to haul loads up to 100,000 lb that the study include vehicles hauling sugarcane biomass for alternative fuel and electricity generation. DuringINTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads

  15. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30T23:59:59.000Z

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  16. Boston.com / News / Local / New fuel cell uses germs to generate electricity Page 1 THIS STORY HAS BEEN FORMATTED FOR EASY PRINTING

    E-Print Network [OSTI]

    Lovley, Derek

    Boston.com / News / Local / New fuel cell uses germs to generate electricity Page 1 THIS STORY HAS BEEN FORMATTED FOR EASY PRINTING New fuel cell uses germs to generate electricity By Gareth Cook, Globe://www.boston.com/news/local/articles/2003/09/08/new_fuel_cell_uses_germs_to_generate_electricity?mode=9:15:28 AM 9/8/2003 #12;Boston

  17. Development of a quiet Stirling cycle multi-fuel engine for electric power generation. Final report Feb-Aug 82

    SciTech Connect (OSTI)

    Mercer, J.E.; Emigh, S.G.; Riggle, P.; Tremoulet, O.L.; White, M.A.

    1982-08-01T23:59:59.000Z

    The work described in this report summarizes a six-month study to develop a lightweight, tactical electric power plant with a low level of aural, I. R., and visual detectability, based on a Stirling engine. The conceptual design presented was analyzed and predicted to have power output qualities exceeding those specified by the Army for tactical generators. The unit promises to have maintenance and overhaul requirement characteristics superior to any generator system in current use.

  18. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Energy Facilities. ” American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

  19. Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

    E-Print Network [OSTI]

    1986-01-01T23:59:59.000Z

    Proposal for the award of a contract for the supply and maintenance of six 380 V 50 Hz diesel generators for the LEP electrical distribution system

  20. The California Climate Action Registry: Development of methodologies for calculating greenhouse gas emissions from electricity generation

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    simplified load duration curve (LDC). Table 2 compares thesefrom import totals. c The LDC approach could includeload duration curve (LDC), as many simulation models do (

  1. Integrating demand into the U.S. electric power system : technical, economic, and regulatory frameworks for responsive load

    E-Print Network [OSTI]

    Black, Jason W. (Jason Wayne)

    2005-01-01T23:59:59.000Z

    The electric power system in the US developed with the assumption of exogenous, inelastic demand. The resulting evolution of the power system reinforced this assumption as nearly all controls, monitors, and feedbacks were ...

  2. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    of electric generating plants usefully begins with anmatters, a plant's position within the generating networkthe plant may be divided into a steam generating system and

  3. In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, S.; Shapiro, C.

    2012-04-01T23:59:59.000Z

    CARB partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and LAMELs through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and lighting, appliances, and miscellaneous loads (LAMELs).

  4. Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines

    E-Print Network [OSTI]

    -mm-coaxial transmission lines Tae-In Jeona) and D. Grischkowskyb) School of Electrical and Computer Engineering, Oklahoma efficient direct optoelectronic generation of sub-ps-THz pulses on 50 coaxial transmission lines with a 330 larger bandwidths with 1/10 the loss of lithographically defined co- planar transmission lines.3 Although

  5. Radial electric field generated by resonant trapped electron pinch with radio frequency injection in a tokamak plasma

    E-Print Network [OSTI]

    Radial electric field generated by resonant trapped electron pinch with radio frequency injection of Modern Physics, University of Science and Technology of China, Hefei 230026, China (Received 10 May 2011 by charge accumulation due to a resonant trapped electron pinch effect. The radial field can then drive

  6. Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed photovoltaic generation in the

    E-Print Network [OSTI]

    Sandiford, Mike

    Retrospective modeling of the merit-order effect on wholesale electricity prices from distributed, the depression in wholesale prices has significant value. c 5 GW of solar generation would have saved $1.8 billion in the market over two years. c The depression of wholesale prices offsets the cost of support

  7. A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations

    E-Print Network [OSTI]

    Ituzaro, Fred Agyekum

    2012-07-16T23:59:59.000Z

    overcurrent protection scheme to reduce the number of customers affected by faults in RDS with DGs. Further, a technique is presented that utilizes customers loading information from smart meters in AMI to improve the sensitivity of substation OC relays...

  8. Investment in nuclear generation in a restricted electricity market : an analysis of risks and financing options

    E-Print Network [OSTI]

    Berger, Raphael

    2006-01-01T23:59:59.000Z

    Since the late 1970s, the US electric power industry has been undergoing major changes. The electric utility industry had mainly consisted of highly regulated, vertically integrated, local monopolies, providing customers ...

  9. Diversity and Security in UK Electricity Generation: The Influence of Low Carbon Objectives

    E-Print Network [OSTI]

    Grubb, Michael; Butler, Lucy; Sinden, Graham

    2006-03-14T23:59:59.000Z

    We explore the relationship between low carbon objectives and the strategic security of electricity in the context of the UK Electricity System. We consider diversity of fuel source mix to represent one dimension of security - robustness against...

  10. Production and maintenance planning for electricity generators: modeling and application to Indian power systems

    E-Print Network [OSTI]

    Dragoti-Ă?ela, Eranda

    power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag of NREB planning engineers in several important ways. Keywords: electric power system planning, linear system planning An electrical power system comprises a number of subsystems, with some activities

  11. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    None

    1980-11-01T23:59:59.000Z

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  12. Decentralized customerlevel under frequency load shedding in...

    Open Energy Info (EERE)

    enables the management of large groups of distributed loads under a single innovative control schemes to use the flexibility of electrical loads for power system purposes....

  13. Next-generation building energy management systems and implications for electricity markets.

    SciTech Connect (OSTI)

    Zavala, V. M.; Thomas, C.; Zimmerman, M.; Ott, A. (Mathematics and Computer Science); (Citizens Utility Board); (BuildingIQ Pty Ltd, Australia); (PJM Interconnection LLC)

    2011-08-11T23:59:59.000Z

    The U.S. national electric grid is facing significant changes due to aggressive federal and state targets to decrease emissions while improving grid efficiency and reliability. Additional challenges include supply/demand imbalances, transmission constraints, and aging infrastructure. A significant number of technologies are emerging under this environment including renewable generation, distributed storage, and energy management systems. In this paper, we claim that predictive energy management systems can play a significant role in achieving federal and state targets. These systems can merge sensor data and predictive statistical models, thereby allowing for a more proactive modulation of building energy usage as external weather and market signals change. A key observation is that these predictive capabilities, coupled with the fast responsiveness of air handling units and storage devices, can enable participation in several markets such as the day-ahead and real-time pricing markets, demand and reserves markets, and ancillary services markets. Participation in these markets has implications for both market prices and reliability and can help balance the integration of intermittent renewable resources. In addition, these emerging predictive energy management systems are inexpensive and easy to deploy, allowing for broad building participation in utility centric programs.

  14. Use of High Temperature Electrochemical Cells for Co-Generation of Chemicals and Electricity

    SciTech Connect (OSTI)

    Scott Barnett

    2007-09-30T23:59:59.000Z

    In this project, two key issues were addressed to show the feasibility of electrochemical partial oxidation (EPOx) in a SOFC. First, it was demonstrated that SOFCs can reliably operate directly with natural gas. These results are relevant to both direct-natural-gas SOFCs, where the aim is solely electrical power generation, and to EPOx. Second, it must be shown that SOFCs can work effectively as partial oxidation reactors, i.e, that they can provide high conversion efficiency of natural gas to syngas. The results of this study in both these areas look extremely promising. The main results are summarized briefly: (1) Stability and coke-free direct-methane SOFC operation is promoted by the addition of a thin porous inert barrier layer to the anode and the addition of small amounts of CO{sub 2} or air to the fuel stream; (2) Modeling results readily explained these improvements by a change in the gas composition at the Ni-YSZ anode to a non-coking condition; (3) The operation range for coke-free operation is greatly increased by using a cell geometry with a thin Ni-YSZ anode active layer on an inert porous ceramic support, i.e., (Sr,La)TiO{sub 3} or partially-stabilized zirconia (in segmented-in-series arrays); (4) Ethane and propane components in natural gas greatly increase coking both on the SOFC anode and on gas-feed tubes, but this can be mitigated by preferentially oxidizing these components prior to introduction into the fuel cell, the addition of a small amount of air to the fuel, and/or the use of ceramic-supported SOFC; (5) While a minimum SOFC current density was generally required to prevent coking, current interruptions of up to 8 minutes yielded only slight anode coking that caused no permanent damage and was completely reversible when the cell current was resumed; (6) Stable direct-methane SOFC operation was demonstrated under EPOx conditions in a 350 h test; (7) EPOx operation was demonstrated at 750 C that yielded 0.9 W/cm{sup 2} and a syngas production rate of 30 sccm/cm{sup 2}, and the reaction product composition was close to the equilibrium prediction during the early stages of cell testing; (8) The methane conversion to syngas continuously decreased during the first 100 h of cell testing, even though the cell electrical characteristics did not change, due to a steady decrease in the reforming activity of Ni-YSZ anodes; (9) The stability of methane conversion was substantially improved via the addition of a more stable reforming catalyst to the SOFC anode; (10) Modeling results indicated that a SOFC with anode barrier provides similar non-coking performance as an internal reforming SOFC, and provides a simpler approach with no need for a high-temperature exhaust-gas recycle pump; (11) Since there is little or no heat produced in the EPOx reaction, overall efficiency of the SOFC operated in this mode can, in theory, approach 100%; and (12) The combined value of the electricity and syngas produced allows the EPOx generator to be economically viable at a >2x higher cost/kW than a conventional SOFC.

  15. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06T23:59:59.000Z

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  16. Soft and hybrid-doped Pb(Zr,Ti)O{sub 3} ceramics under stress, electric field, and temperature loading

    SciTech Connect (OSTI)

    Suchanicz, J.; Kim-Ngan, N.-T.; Konieczny, K.; Jankowska-Sumara, I. [Institute of Physics, Pedagogical University, ul. Podchorazych 2, 30-084 Krakow (Poland); Balogh, A. G. [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstrasse 23, 64287 Darmstadt (Germany)

    2011-05-15T23:59:59.000Z

    We investigated the influence of uniaxial pressure (0-1000 bars) applied parallelly or perpendicularly to the ac or dc electric field (in a one-dimensional or two-dimensional manner) on dielectric and ferroelectric properties of selected soft and hybrid-doped PZT ceramics (1 mol. % Gd, 1 mol. % La and 1 mol. % (La+Fe)-doped Pb(Zr{sub 0.54}Ti{sub 0.46}) O{sub 3}). Applying uniaxial pressure leads to a reduction of the peak intensity of the electric permittivity ({epsilon}), of the frequency dispersion, and of the dielectric hysteresis. The peak intensity of {epsilon} becomes diffused and shifts to a higher temperatures with increasing pressure. Simultaneous application of uniaxial pressure and dc electric field (perpendicular to each other) in the poling process implies in improvement of the ferroelectric properties, indicating a new possibility for poling materials with a high coercive field and/or high electric conductivity. It was also found that simultaneous application of uniaxial pressure and dc electric field (perpendicular to each other) allowed observation of the space charge in the depolarization process. The electrostrictive coefficient Q{sub 11} and differential permittivity were evaluated from obtained data. Our results show that applying uniaxial pressure induces similar effects as increasing the Ti-ion concentration in the PZT system. We interpreted our results based on the Cochran soft-mode and domain switching processes under the action of pressure.

  17. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  18. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  19. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01T23:59:59.000Z

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  20. High voltage dc--dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOE Patents [OSTI]

    Shimer, D.W.; Lange, A.C.

    1995-05-23T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.

  1. High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs

    DOE Patents [OSTI]

    Shimer, Daniel W. (Danville, CA); Lange, Arnold C. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output of the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules.

  2. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01T23:59:59.000Z

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  3. Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance

    E-Print Network [OSTI]

    income tax rate n/a 35% 35% Federal investment tax credit n/a 0% 0% Tax recovery period n/a 20 years 20-FIRED STEAM-ELECTRIC PLANTS Coal-fired steam-electric power plants are a mature technology, in use for over a century. Coal is the largest source of electric power in the United States as a whole, and the second

  4. Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Warner, E. S.; Heath, G. A.

    2012-04-01T23:59:59.000Z

    A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

  5. San Diego Solar Panels Generate Clean Electricity Along with Clean Water

    Broader source: Energy.gov [DOE]

    Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption.

  6. The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    sources under various tariffs no inv. inv. standby no inv.The Effects of Electricity Tariff Structure on Distributedthe greatest. Standby tariffs tend to encourage installing

  7. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  8. Effects of Temporal Wind Patterns on the Value of Wind-GeneratedElectricity at Different Sites in California and the Northwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-08-04T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this paper, we use wind speed data from three different sources to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwestern United States. By ''value'', we refer to either the contribution of wind power to meeting the electric system's peak loads, or the financial value of wind power in electricity markets. Sites for wind power projects are often screened or compared based on the annual average power production that would be expected from wind turbines at each site (Baban and Parry 2001; Brower et al. 2004; Jangamshetti and Rau 2001; Nielsen et al. 2002; Roy 2002; Schwartz 1999). However, at many locations, variations in wind speeds during the day and year are correlated with variations in the electric power system's load and wholesale market prices (Burton et al. 2001; Carlin 1983; Kennedy and Rogers 2003; Man Bae and Devine 1978; Sezgen et al. 1998); this correlation may raise or lower the value of wind power generated at each location. A number of previous reports address this issue somewhat indirectly by studying the contribution of individual wind power sites to the reliability or economic operation of the electric grid, using hourly wind speed data (Fleten et al.; Kahn 1991; Kirby et al. 2003; Milligan 2002; van Wijk et al. 1992). However, we have not identified any previous study that examines the effect of variations in wind timing across a broad geographical area on wholesale market value or capacity contribution of those different wind power sites. We have done so, to determine whether it is important to consider wind-timing when planning wind power development, and to try to identify locations where timing would have a more positive or negative effect. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in California and the Northwest (Washington, Oregon, Idaho, Montana and Wyoming) with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. We also assess whether modeled wind data from TrueWind Solutions, LLC, can help answer such questions, by comparing results found using the TrueWind data to those found using anemometers or wind farm power production data. This paper summarizes results that are presented in more detail in a recent report from Lawrence Berkeley National Laboratory (Fripp and Wiser 2006). The full report is available at http://eetd.lbl.gov/EA/EMP/re-pubs.html.

  9. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.

  10. ,"Table 2. Noncoincident Peak Load, by North American Electric Reliability Corporation Assessment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energy

  11. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net Energya.

  12. ,"Table 2a. Noncoincident Summer Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere.. Net

  13. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..

  14. ,"Table 2b. Noncoincident Winter Peak Load, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere..3 and

  15. Transportation Electrification Load Development For A Renewable Future Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Mai, T.; Kintner-Meyer, M.

    2010-12-01T23:59:59.000Z

    The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

  16. 1999 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1999-12-01T23:59:59.000Z

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to its regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book will not be used in calculations for the 2002 regional power sales contract subscription process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands--firm loads--are subtracted from the projected capability of existing and ''contracted for'' resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA's Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem. The 1999 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix (available electronically only) detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1998 Pacific Northwest Loads and Resources Study. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 2000-01 through 2009-10. The study shows the Federal system's and the region's monthly estimated maximum electricity demand, monthly energy demand, monthly energy generation, and monthly maximum generating capability--capacity--for OY 2000-01, 2004-05, and 2009-10. The Federal system and regional monthly capacity surplus/deficit projections are summarized for 10 operating years. This document analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for wh

  17. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

  18. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

    2007-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  19. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere. Historical7,1. Net1.

  20. ,"Table 1. Net Energy For Load, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold to Electric Powere. Historical7,1.