Sample records for loa observatory hawaii

  1. Living in the shadow of Mauna Loa

    E-Print Network [OSTI]

    Hirji, Zahra R. (Zahra Rafik)

    2013-01-01T23:59:59.000Z

    One of Hawaii's most dangerous natural hazards is sitting in plain sight: Mauna Loa volcano. The mighty mountain makes up more than fifty percent of the island and is the largest volcano on Earth. Since 1843, when people ...

  2. Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...

    Open Energy Info (EERE)

    Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa...

  3. Re-evaluation of total and Umkehr ozone data from NOAA-CMDL Dobson spectrophotometer observatories. Final report

    SciTech Connect (OSTI)

    Komhyr, W.D.; Quincy, D.M.; Grass, R.D.; Koenig, G.L. [Univ. of Colorado, Boulder, CO (United States)] [Univ. of Colorado, Boulder, CO (United States); [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Lab.

    1995-12-01T23:59:59.000Z

    This report describes work to improve the quality of total ozone and Umkehr data obtained in the past at the NOAA Climate Monitoring and Diagnostics Laboratory and the Dobson spectrophotometer ozone observatories. The authors present results of total ozone data re-evaluations for ten stations: Byrd, Antarctica; Fairbanks, Alaska; Hallett, Antarctica; Huancayo, Peru; Haute Provence, France; Lauder, New Zealand; Perth, Australia; Poker Flat, Alaska; Puerto Montt, Chile; and South Pole, Antarctica. The improved data will be submitted in early 1996 to the World Meteorological Organization (WMO) World Ozone Data Center (WODC), and the Atmospheric Environment Service for archiving. Considerable work has been accomplished, also, in reevaluating Umkehr data from seven of the stations, viz., Huancayo, Haute Provence, Lauder, Perth, Poker Flat, Boulder, Colorado; and Mauna Loa, Hawaii.

  4. University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Firestone, Jeremy

    Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth

  5. Mauna Loa Northeast Rift Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens JumpMassachusetts/WindMauna Loa Northeast Rift

  6. Mauna Loa Southwest Rift Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic,Maud, Oklahoma:Maumelle,Mauna Loa

  7. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  8. Science Potential of a Deep Ocean Antineutrino Observatory

    E-Print Network [OSTI]

    Steve Dye

    2006-12-15T23:59:59.000Z

    This paper presents science potential of a deep ocean antineutrino observatory under development at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  9. Hawaii Bioenergy Master Plan Stakeholder Comment

    E-Print Network [OSTI]

    of Business, Economic Development and Tourism By University of Hawaii Hawaii Natural Energy Institute School ......................................................................................2 Hawaii Department of Transportation, Harbors Division..........................................................................................................................7 The Gas Co

  10. Integration Observatory

    E-Print Network [OSTI]

    Bogart, Richard S.

    Hill, Stephen Wampler National Solar Observatory Piet Martens, Alisdair Davey Montana State University Joseph B. Gurman, George Dimitoglou Solar Data Analysis Center #12; VSO Overview 1 Perspective + From documents. ê Independent of platform and programming language + Three major components â Data encapsulation

  11. Effort on Developing Cabled Ocean Observatories Research Assitant, Institute of Mechatronics Control Engineering, Zhejiang University

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    of Mechatronics Control Engineering, Zhejiang University Post-doctoral Research Fellow, Department of Ocean and Resources Engineering, University of Hawaii Abstract Cabled ocean observatory that enables abundant powerEffort on Developing Cabled Ocean Observatories in China Yanhu Chen Research Assitant, Institute

  12. Ferdinand Emmerich Quer durch Hawaii

    E-Print Network [OSTI]

    Prodinger, Helmut

    Ferdinand Emmerich Quer durch Hawaii 1. KAPITEL. Mein Kurs lag ostwärts. Meine Aufgabe war nahe- zu

  13. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01T23:59:59.000Z

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  14. Hawaii Guide to the Implementation and Practice of the Hawaii...

    Open Energy Info (EERE)

    the Implementation and Practice of the Hawaii Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  15. Designing Hawaiis First LEED Platinum Net Zero Community: ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kaupuni Village Department of Hawaiian Home Lands Designing Hawaii's first LEED Platinum Net Zero Community GUIDING PRINCIPALS *Pihapono *Hoa ina *Mlama ina Enable Native...

  16. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    for Hawaii. Some agricultural wastes and sugar industrygrains; to any kind of agricultural waste containing cellu~municipal solid wastes, agricultural residues, and crops

  17. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Sugar Cane Juice , Molasses • , Bagasse Pineapple MethanolSugar Cane • Sugar Production in Hawaii Bagasse Production/Consumption Bagasse and Cane Trash Displayed by Sugar

  18. Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,Energy Information Mauna Loa

  19. Storage Solutions for Hawaii's Smart Energy

    E-Print Network [OSTI]

    Storage Solutions for Hawaii's Smart Energy Future Presented to CMRU August 12, 2012 University of Hawaii at Manoa Hawaii Natural Energy Institute #12;Current Energy Storage Projects in Hawaii · 15 (2) · Spinning reserve/reserve support (2) #12;· Select and deploy Grid-scale energy storage systems

  20. Being Blue in Hawai‘i: Politics, Affect, and the Last Queen of Hawai‘i

    E-Print Network [OSTI]

    Harvey, Bruce

    2011-01-01T23:59:59.000Z

    Being Blue in Hawai‘i: Politics, Affect, and the Last Queenmore primarily violated. To be blue in Hawai‘i is to be in amore subtle nuances of being blue in Hawai‘i. Yet also in

  1. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Research

    E-Print Network [OSTI]

    , contaminant removal/control for gas quality improvement, H2 production · Biochemical ­ syngas fermentation #12;http://www.hnei.hawaii.edu Bio-Conversion of Syngas into Biopolyester & Bio-Oil Res

  2. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2011 1 (2011). Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. J. Geophysics

  3. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2000 1 Sensing Volcanism, Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series 116, Mouginis

  4. Environmental Compliance Schofield Barracks, Hawaii

    E-Print Network [OSTI]

    Environmental Compliance Specialist Schofield Barracks, Hawaii POSITION An Environmental Compliance Specialist (Research Associate II Special) position is available with the Center for Environmental Management resource stewardship. We collaborate with our sponsors and within CSU to resolve complex environmental

  5. Hawaii-Okinawa Building Evaluations

    SciTech Connect (OSTI)

    Metzger, I.; Salasovich, J.

    2013-05-01T23:59:59.000Z

    NREL conducted energy evaluations at the Itoman City Hall building in Itoman, Okinawa Prefecture, Japan, and the Hawaii State Capitol building in Honolulu, Hawaii. This report summarizes the findings from the evaluations, including the best practices identified at each site and opportunities for improving energy efficiency and renewable energy. The findings from this evaluation are intended to inform energy efficient building design, energy efficiency technology, and management protocols for buildings in subtropical climates.

  6. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science & Technology ­ University of Hawai`i at Mnoa Water, Energy and Soil Sustainability Phone: (808) 956-8890 ­ Fax

  7. Sensors for Environmental Observatories

    E-Print Network [OSTI]

    Hamilton, Michael P.

    Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop Evaluation Center (WTEC), Inc. 4800 Roland Avenue Baltimore, Maryland 21210 #12;In recent years

  8. Hawaii Bioenergy Master Plan Business Partnering

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Business Partnering Steven Chiang, Director Agribusiness Incubator a productive bioenergy industry, successful partnering amongst industry "players" is essential. This section of the Hawaii Bioenergy Master Plan specifically evaluates facilitating the bioenergy industry through

  9. Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oahu Kauai Maui Hawaii Lanai Molokai Total Biomass 355 Report b 7 20 8 20 No data 6 KIUC Renewable Energy Technology Assessment c 20 Hawaii Energy Strategy 2000 d 25 25 25 50...

  10. Hawaii energy strategy report, October 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  11. Hawaii energy strategy: Executive summary, October 1995

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This is an executive summary to a report on the Hawaii Energy Strategy Program. The topics of the report include the a description of the program including an overview, objectives, policy statement and purpose and objectives; energy strategy policy development; energy strategy projects; current energy situation; modeling Hawaii`s energy future; energy forecasts; reducing energy demand; scenario assessment, and recommendations.

  12. Hawaii Natural Energy Institute www.hnei.hawaii.edu

    E-Print Network [OSTI]

    + hours Endurance · Full tank of fuel · Fully charged battery pack · Repeated 20 minutes load profile estimate using energy balance results under a 20 minutes load profile #12;4Hawaii Natural Energy Institute three UAV Systems · Novel Partial Hybrid (PH) System · Non-Hybrid (Load Following (LF)) and Full Hybrid

  13. Alexey Kuznetsov Armagh Observatory

    E-Print Network [OSTI]

    by the high-energy electrons that are the key factor in development of the flares. Therefore, radio Observatory 8 Radiometers / radiopolarimeters Full-disk observations * + " + , ' - & . $ / $ 0 $ $ 0 $ $ 1 2 3

  14. Scale-free Universal Spectrum for Atmospheric Aerosol Size Distribution for Davos, Mauna Loa and Izana

    E-Print Network [OSTI]

    A. M. Selvam

    2014-08-14T23:59:59.000Z

    Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on the simple visualisation that large eddies form by space-time integration of enclosed turbulent eddies, a concept analogous to Kinetic Theory of Gases in Classical Statistical Physics. The ordered growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law form for fractal fluctuations expressed in terms of the golden mean. Atmospheric particulates are held in suspension in the fractal fluctuations of vertical wind velocity. The mass or radius (size) distribution for homogeneous suspended atmospheric particulates is expressed as a universal scale-independent function of the golden mean, the total number concentration and the mean volume radius. Model predicted spectrum is in agreement (within two standard deviations on either side of the mean) with total averaged radius size spectra for the AERONET (aerosol inversions) stations Davos and Mauna Loa for the year 2010 and Izana for the year 2009 daily averages. The general systems theory model for aerosol size distribution is scale free and is derived directly from atmospheric eddy dynamical concepts. At present empirical models such as the log normal distribution with arbitrary constants for the size distribution of atmospheric suspended particulates are used for quantitative estimation of earth-atmosphere radiation budget related to climate warming/cooling trends. The universal aerosol size spectrum will have applications in computations of radiation balance of earth-atmosphere system in climate models.

  15. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2003 1 volcanic collapse formation, Geochemistry, Geophysics, Geosystems, 4 (9), 1077, doi:10.1029/2002GC000483

  16. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2005 1. 2 craters. Journal of Geophysical Research 110, E10001, doi: 10.1029/2004JE002338, 2005. 7. Blewett, D. T

  17. Draft Bioenergy Master Plan for the State of Hawaii

    E-Print Network [OSTI]

    Draft Bioenergy Master Plan for the State of Hawaii Prepared for the U.S. Department of Energy DRAFT Hawaii Bioenergy Master Plan Volume I Prepared for State of Hawaii Department of Business

  18. Hawaii Bioenergy Master Plan Potential Environmental Impacts of

    E-Print Network [OSTI]

    Hawaii Bioenergy Master Plan Potential Environmental Impacts of Bioenergy Development in Hawaii of the potential environmental impacts associated with bioenergy development in Hawaii was conducted as part included the characterization of the general environmental impacts and issues associated with bioenergy

  19. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    Pathways #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Biomass Resources in Hawaii Manure Bagasse for transportation, greater power generation efficiency, greater number of potential end uses ­ Gasification quality standards (e.g. ash chemistry) to meet requirements of pyrolysis and gasification technologies

  20. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science) has identified a strategic need for energy storage technologies to mitigate the impacts of renewable

  1. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science/Affirmative Action Institution Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth Science Department of Energy) Contact Information: Richard Rocheleau Principal Investigator HNEI 808

  2. Hawaii geothermal resource assessment: 1982

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  3. Hawaii National Pollutant Discharge Elimination System (NPDES...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Hawaii National Pollutant Discharge Elimination System (NPDES) Permit PacketPermittingRegulatory...

  4. Progress report on renewable energy in Hawaii

    SciTech Connect (OSTI)

    Troy, M.; Brown, N.E.

    1982-04-01T23:59:59.000Z

    Renewable energy projects in Hawaii are reviewed as follows: geothermal energy, ocean energy, biomass, wind energy, direct solar energy, hydroelectric and other energy.

  5. Hawaii Department of Land and Natural Resources Division of Forestry...

    Open Energy Info (EERE)

    Name: Hawaii Department of Land and Natural Resources Division of Forestry and Wildlife Address: Kalanimoku Building 1151 Punchbowl St., Room 325 Place: Honolulu, Hawaii Zip:...

  6. Innovative Financing Solutions to Hawaii's Clean Energy Challenges...

    Energy Savers [EERE]

    Energy Challenges Overview of on-bill financing basics, Hawaii's energy landscape and Green Energy Market Securitization. Author: Hawaii Public Utilities Commission Innovative...

  7. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Environmental Management (EM)

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  8. Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village Designing Hawaii's First LEED Platinum Net Zero Community: Kaupuni Village U.S. Department of Energy...

  9. Hawaii Department of Land and Natural Resources Commission on...

    Open Energy Info (EERE)

    Hawaii Department of Land and Natural Resources Commission on Water Resource Management Address: Kalanimoku Building 1151 Punchbowl Street Room 227 Place: Honolulu, Hawaii Zip:...

  10. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and...

  11. Panel 1, Hawaii Hydrogen Projects Status & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status & Lessons Learned Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at...

  12. Sommers-Bausch Observatory

    E-Print Network [OSTI]

    Stowell, Michael

    Sommers-Bausch Observatory Handbook Ninth Edition, Fall 2013 DEPARTMENT OF ASTROPHYSICAL of the early years of SBO. Thanks also to the Denver Library for information and photos of Elmer Sommers, Ed here at Sommers-Bausch: Kelsey Johnson, Cori Krauss, John Weiss, James Roberts, Quyen Hart, Colin

  13. Sommers-Bausch Observatory

    E-Print Network [OSTI]

    Stowell, Michael

    The Sommers-Bausch Observatory Handbook Eighth Edition, Fall 2012 DEPARTMENT OF ASTROPHYSICAL to the Denver Library for information and photos of Elmer Sommers, Ed Kosmicki of Summit Magazine for the 16 the educational mission here at Sommers-Bausch: Kelsey Johnson, Cori Krauss, John Weiss, James Roberts, Quyen Hart

  14. The Sudbury Neutrino Observatory

    SciTech Connect (OSTI)

    Hime, A.

    1996-09-01T23:59:59.000Z

    A report is given on the status of the Sudbury Neutrino Observatory, presently under construction in the Creighton nickel mine near Sudbury, Ontario in Canada. Focus is upon the technical factors involving a measurement of the charged-current and neutral-current interactions of solar neutrinos on deuterium.

  15. 'El escribirlo no parte de la osadía': Tradición y mímica en la loa para El divino Narciso de Sor Juana Inés de la Cruz

    E-Print Network [OSTI]

    Benoist, Valé rie

    1999-10-01T23:59:59.000Z

    una obra mucho más compleja y autónoma (43). En este artículo mi objetivo es llevar más allá el estudio iniciado por Daniel sobre la imprescindible participación de Sor Juana en el desarrollo de la loa como género, analizando la dialéctica entre la... obra sacramental de Sor Juana y la de Calderón. Lo que propongo es apuntar cómo la loa para El divino Narciso de Sor Juana revela una ansiedad de inferioridad sobre su producción y recepción que se traduce en un rechazo de la aceptación de esa...

  16. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  17. Renewable energy in Hawaii--Lessons learned

    SciTech Connect (OSTI)

    Hubbard, H.M.; Totto, L.; Harvison, D. [Pacific International Center for High Technology Research, Honolulu, HI (United States)

    1993-11-01T23:59:59.000Z

    Hawaii`s extensive renewable resources and limited access to conventional fuels has, in a sense, created a natural environment for the development and implementation of renewable energy processes, technologies, and materials. Aside from its traditional combustion of bagasse at sugar mills, Hawaii has invested in a wide range of renewable energy technologies, including municipal waste-to-energy incineration, hydropower, wind energy, solar photovoltaic (PV), small-scale solar, geothermal, and innovative hybrid wind/diesel and wind/pumped hydro systems. While regarded as a leader in the field of renewable energy, Hawaii`s pioneering approach has generally focused on research and development rather on implementation and commercialization. Despite being a front-runner in the utilization of a number of renewable energy resources, Hawaii`s dependence on petroleum continues to be among the highest in the United States. In 1990, petroleum constituted 92% of Hawaii`s energy supply in contrast to renewable energy`s contribution of 8%. The introduction of coal-fired electricity generation in 1992 has helped to diversify the energy base and decrease the share of oil. But, coal`s low fuel costs may also impact negatively on the prospects for renewable energy. The combination of the impending decline of sugarcane and the growing concerns for the islands` energy and environmental security is changing Hawaii`s energy landscape. While a number of traditional options may be phased out over the next few years, the emergence of new prospects holds considerable promise for an expanded role for renewable energy in the future.

  18. The Green Computing Observatory: from

    E-Print Network [OSTI]

    Lefèvre, Laurent

    The Green Computing Observatory: from instrumentation to ontology Cécile Germain-Renaud1, Fredéric a gateway Files in XML format Available from the Grid Observatory portal GreenDays@LyonThe Green Computing) n GreenDays@LyonThe Green Computing Observatory #12;The GRIF-LAL computing room Green

  19. Hawaii County, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville,NewOpen EnergyWebpageCounty, Hawaii:

  20. Geothermal energy for Hawaii: a prospectus

    SciTech Connect (OSTI)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01T23:59:59.000Z

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  1. Hawaii Natural Energy Institute Energy Programs

    E-Print Network [OSTI]

    ) · Run-of-river Hydro (limited resource) · Ocean Energy ­ OTEC, Wave (UH National Marine Renewable EnergyHawaii Natural Energy Institute Energy Programs by Rick Rocheleau to Dr. M.R. C. Greenwood December 28, 2009 #12;Outline of Talk · Introduction to HNEI · Hawaii Energy Situation · HNEI Energy

  2. HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization of

    E-Print Network [OSTI]

    HAWAII NATURAL ENERGY INSTITUTEE CS 2004 Meeting www.hnei.hawaii.edu Optimization ofOptimization manufacture #12;HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu 5 E CS 2004 Meeting The HybridThe Hybrid of HybridHybrid PhotoelectrodePhotoelectrode forfor Solar WaterSolar Water--SplittingSplitting Bjorn Marsen

  3. Hawai'i's EVolution: Hawai'i Powered. Technology Driven. (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01T23:59:59.000Z

    This Hawaii Clean Energy Initiative (HCEI) brochure outlines Hawaii's energy and transportation goals and the implementation of electric vehicles (EV) and electric vehicle infrastructure since HCEI began in 2008. It includes information about Hawaii's role in leading the nation in available EV charging infrastructure per capita; challenges for continuing to implement EV technology; features on various successful EV users, including the Hawaiian Electric Company, Enterprise Rent-A-Car, and Senator Mike Gabbard; how EVs can integrate into and help propel Hawaii's evolving smart grid; and much more.

  4. Alternative Fuels Data Center: Hawaii Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Hawaii, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  5. Webinar: Supporting a Hawaii Hydrogen Economy

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

  6. Hawaii Clean Energy Initiative Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis of potential policy options to help the state reach the 70% Hawaii Clean Energy Initiative (HCEI) goal, including possible pathways to attain the goal based on currently available technology.

  7. Kaneohe, Hawaii Wind Resource Assessment Report

    SciTech Connect (OSTI)

    Robichaud, R.; Green, J.; Meadows, B.

    2011-11-01T23:59:59.000Z

    The Department of Energy (DOE) has an interagency agreement to assist the Department of Defense (DOD) in evaluating the potential to use wind energy for power at residential properties at DOD bases in Hawaii. DOE assigned the National Renewable Energy Laboratory (NREL) to facilitate this process by installing a 50-meter (m) meteorological (Met) tower on residential property associated with the Marine Corps Base Housing (MCBH) Kaneohe Bay in Hawaii.

  8. Geothermal spas in Hawaii: A new tourist industry. : A preliminary report

    SciTech Connect (OSTI)

    Woodruff, J.L.

    1987-07-01T23:59:59.000Z

    There are at least three very good uses for active volcanism: Obtain energy from it. Study it. Enjoy it. We are already obtaining electrical energy and industrial heat from Kilauea's abundant resource by drilling geothermal wells and building power plants. Our Volcano Observatory is recognized as a world renowned center of learning about volcanism. Our Volcanoes National Park allows us to view and appreciate this awesome phenomenon. For several years people have speculated about the high potential in Hawaii for another way of enjoying this warmth of mother earth -- spas or resorts that would make use of water that is naturally heated and mineralized by volcanic activity. However, before spas are developed in Hawaii, answers are needed to several important questions dealing with such topics as the suitability of our geothermal waters, sources of water that could be tapped, special equipment and materials needed, land availability, governmental and environmental hurdles, and the economics of this unique business. Though a considerable amount of research is still needed, it was felt worthwhile to summarize the information gathered to date from historical works, brochures, personal communications, and other sources. This report should stimulate interest in, and perhaps accelerate, the development of one of Hawaii's most important natural resources.

  9. The Enriched Xenon Observatory

    SciTech Connect (OSTI)

    Dolinski, M. J. [Stanford University Physics Department, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2009-12-17T23:59:59.000Z

    The Enriched Xenon Observatory (EXO) experiment will search for neutrinoless double beta decay of {sup 136}Xe. The EXO Collaboration is actively pursuing both liquid-phase and gas-phase Xe detector technologies with scalability to the ton-scale. The search for neutrinoless double beta decay of {sup 136}Xe is especially attractive because of the possibility of tagging the resulting Ba daughter ion, eliminating all sources of background other than the two neutrino decay mode. EXO-200, the first phase of the project, is a liquid Xe time projection chamber with 200 kg of Xe enriched to 80% in {sup 136}Xe. EXO-200, which does not include Ba-tagging, will begin taking data in 2009, with two-year sensitivity to the half-life for neutrinoless double beta decay of 6.4x10{sup 25} years. This corresponds to an effective Majorana neutrino mass of 0.13 to 0.19 eV.

  10. A University of Hawai`i Portrait 2011 Building Hawai`i's Future

    E-Print Network [OSTI]

    /affirmative action institution #12;1 Putting the power of higher education to work for Hawai`i I n February 2010, I`i is working to build a brighter future for the people of Hawai`i. As the state's sole system of public higher and Places highlights the people, programs and partnerships that illustrate how the University of Hawai

  11. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    processing for pilot scale production of bioplastics and bio-oil; Process economic evaluation for commercial be converted to bio-oil in supercritical methanol. The liquid products have the similar performance of C5-C24 & Technology ­ University of Hawai`i at Mnoa Bioplastics and Bio-OilTeam Partners: Hawai`i Natural Energy

  12. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2002 1-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances, Journal of Geophysical distribution of lunar composition: New results from Lunar Prospector Journal of Geophysical Research, VOL. 107

  13. Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii

    E-Print Network [OSTI]

    Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2006 1 with an albedo feature near Airy crater in the lunar nearside highlands. Geophysical Research Letters. 9. Boyce viewed by the THEMIS instrument: Double-layered ejecta craters. J. Geophysical Research, 111, E10005, doi

  14. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    & Technology ­ University of Hawai`i at Mnoa Hydrogen for GM Equinox Fuel Cell Vehicles Phone: (808) 956 for fueling General Motors (GM) Equinox fuel cell electric vehicles. Since the system at MCB Hawai`i will have fuel cell electric vehicles. Another goal is to provide validation for the various hydrogen

  15. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Integration Study Maui Grid Analysis Project Maui Smart Grid Project Hydrogen for GM Equinox Fuel Cell successful integration of additional renewable resources. #12;Hawai`i Natural Energy Institute ­ Oahu Grid & Technology ­ University of Hawai`i at Mnoa Oahu Grid Analysis Project Phone: (808) 956-8890 ­ Fax: (808) 956

  16. The University of Hawai`i 21st Century

    E-Print Network [OSTI]

    issues. President Greenwood welcomes your comments and questions. Call her at (808) 956-8207 Email her at mrcgreenwood@hawaii.edu Visit her webpage at www.hawaii.edu/offices/op An Equal Employment Opportunity

  17. http://business.uhh.hawaii.edu ...UH Hilo's

    E-Print Network [OSTI]

    Olsen, Stephen L.

    http://business.uhh.hawaii.edu ...UH Hilo's Business Administration Degree program! Coming Soon to West Hawai`i!... What? A five-semester cohort program leading to an accredited Business Administration degree from UH Hilo. Through a business pathway agreement between UH Hilo and Hawaii Community College

  18. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele Chillingworth Scott of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop for biofuel for biofuels has increased interest in growing algae in Hawaii for biofuels. An analysis of algae production

  19. Analysis of Land Suitable for Algae State of Hawaii

    E-Print Network [OSTI]

    Analysis of Land Suitable for Algae Production State of Hawaii Prepared for the U.S. Department agency thereof. #12;Analysis of Land Suitable for Algae Production State of Hawaii Prepared by Mele University of Hawaii at Manoa August 2011 #12;i Executive Summary Algae are considered to be a viable crop

  20. Hawaii Bioenergy Master Plan Financial Incentives And Barriers; And

    E-Print Network [OSTI]

    at levels sufficient to contribute a significant renewable energy resource to the State of HawaiHawaii Bioenergy Master Plan Financial Incentives And Barriers; And Other Funding Sources Prepared for: Hawai`i Natural Energy Institute University of Hawai`i at Manoa 1680 East West Road, POST 109

  1. Waipio, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: EnergyWaipio, Hawaii: Energy

  2. Kailua, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: EnergyKDOTIIKailua, Hawaii:

  3. Hawaii Hydrogen Energy Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting the HawaiiHawaii

  4. Final Technical Report: Hawaii Hydrogen Center for

    E-Print Network [OSTI]

    Alkaline Electrolyzer System 8 2.4.1.2 5 kW PEM Fuel Cell System 9 2.4.2 Experiments/Results and Economic 2.8 Acknowledgements 47 2.9 References 47 3 Task 2 ­ Hydrogen Fuel Purity Assessment 49 3.1 GoalsFinal Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy

  5. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  6. The Large Aperture GRB Observatory

    E-Print Network [OSTI]

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01T23:59:59.000Z

    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.

  7. Hawaii Energy Strategy program. Annual report 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This is the second annual report on the Hawaii Energy Strategy (HES) program which began on March 2, 1992, under a Cooperative Agreement (FCO3-92F19l68) with the United States Department of Energy (USDOE). The HES program is scheduled for completion by December 31, 1994. As outlined in the Statement of Joint Objectives. The purpose of the study is to develop an integrated State of Hawaii energy strategy, including an assessment of the State`s fossil fuel reserve requirements and the most effective way to meet those needs, the availability and practicality of increasing the use of native energy resources, potential alternative fossil energy technologies such as coal gasification and potential energy efficiency measures which could lead to demand reduction. This work contributes to the (US)DOE mission, will reduce the State`s vulnerability to energy supply disruptions and contributes to the public good.

  8. Hawaii Clean Energy Iniative - Construction Upon a State Highway...

    Open Energy Info (EERE)

    Construction Upon a State Highway Permit Packet Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean...

  9. University of Hawaii, EHSO October 2005 PROTOCOL FOR UNIVERSITY PERSONNEL

    E-Print Network [OSTI]

    or operation at any time. These agencies include: FEDERAL - Environmental Protection Agency (EPA), Nuclear (DOH), Department of Agriculture (DOA), Department of Labor and Industrial Relations (DLIR), Hawaii

  10. Hawaii Clean Energy Initiative Certificate of Public Convenience...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative Certificate of Public Convenience and Necessity Permit...

  11. Our Future. Energy Independence...It's Up To Us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Brochure for the Hawaii Clean Energy (HCEI) Initiative that estabishes the new HCEI brand and highlights two focus areas for achieving Hawaii's clean energy goals: conserve and convert.

  12. Hawaii Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hawaii Regions Hawaii Science Bowl National Science Bowl (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules,...

  13. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Broader source: Energy.gov (indexed) [DOE]

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment...

  14. Hawaii energy strategy project 2: Fossil energy review. Task 2: Fossil energy in Hawaii

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Yamaguchi, N.D.; Keeville, H. [and others

    1993-12-01T23:59:59.000Z

    In Task 2, the authors establish a baseline for evaluating energy use in Hawaii, and examine key energy and economic indicators. They provide a detailed look at fossil energy imports by type, current and possible sources of oil, gas and coal, quality considerations, and processing/transformation. They present time series data on petroleum product consumption by end-use sector, though they caution the reader that the data is imperfect. They discuss fuel substitutability to identify those end-use categories that are most easily switched to other fuels. They then define and analyze sequential scenarios of fuel substitution in Hawaii and their impacts on patterns of demand. They also discuss energy security--what it means to Hawaii, what it means to neighboring economies, whether it is possible to achieve energy security. 95 figs., 48 tabs.

  15. Boscovich and the Brera Observatory

    E-Print Network [OSTI]

    Antonello, E

    2013-01-01T23:59:59.000Z

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 R.G. Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera. The Specola was built in 1765 and it became quickly one of the main European observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  16. National Astronomical Observatory of Japan

    E-Print Network [OSTI]

    Iye, Masanori

    2009-01-01T23:59:59.000Z

    National Astronomical Observatory is an inter-university institute serving as the national center for ground based astronomy offering observational facilities covering the optical, infrared, radio wavelength domain. NAOJ also has solar physics and geo-lunar science groups collaborating with JAXA for space missions and a theoretical group with computer simulation facilities. The outline of NAOJ, its various unique facilities, and some highlights of recent science achievements are reviewed.

  17. Science with Virtual Observatory Tools

    E-Print Network [OSTI]

    P. Padovani

    2004-11-12T23:59:59.000Z

    The Virtual Observatory is now mature enough to produce cutting-edge science results. The exploitation of astronomical data beyond classical identification limits with interoperable tools for statistical identification of sources has become a reality. I present the discovery of 68 optically faint, obscured (i.e., type 2) active galactic nuclei (AGN) candidates in the two GOODS fields using the Astrophysical Virtual Observatory (AVO) prototype. Thirty-one of these sources have high estimated X-ray powers (>10^44 erg/s) and therefore qualify as optically obscured quasars, the so-called QSO 2. The number of these objects in the GOODS fields is now 40, an improvement of a factor > 4 when compared to the only 9 such sources previously known. By going ~ 3 magnitudes fainter than previously known type 2 AGN in the GOODS fields the AVO is sampling a region of redshift -- power space much harder to reach with classical methods. I also discuss the AVO move to our next phase, the EURO-VO, and our short-term plans to continue doing science with the Virtual Observatory.

  18. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    SciTech Connect (OSTI)

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01T23:59:59.000Z

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  19. Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH)

    E-Print Network [OSTI]

    Wave Energy Test Site (WETS) Marine Corps Base Hawaii (MCBH) Alexandra DeVisser, NAVFAC-EXWC Brian June 10, 2013 #12;Wave Energy Test Site (WETS) Objective: Provide location for year-long in Cable, Sound & Sea Technology (SST) Luis A. Vega, HNEI-University of Hawaii Energy Ocean International

  20. Identification and Assessment of Food Waste Generators in Hawaii

    E-Print Network [OSTI]

    Department of Agriculture By University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Sciences and Technology Wendy Okazaki Scott Q. Turn December 2005 #12;2 Table of Contents 1. Executive............................................................................................... 11 3.4 Survey data entry and Microsoft Access database

  1. UNIVERSITY OF HAWAI`I COMMUNITY COLLEGES POLICY

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of Hawai`i Executive Policy E5.211 Ethical Standards in Research and Scholarly Activities. http://www.hawaii.edu/apis these recognized standards of the profession an integral part of their professional lives. The expectation reinforces the expectations and standards, which we strive to achieve. II. Related University Policies

  2. Detailed Work Plan for Development of a Hawai`i

    E-Print Network [OSTI]

    Subtask 9.1 First Deliverable By the University of Hawaii Hawaii Natural Energy Institute School of Ocean energy and economic security and sustainability. Moreover, unlike wind, solar, geothermal, or ocean.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE-FC-06NT42847

  3. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Research http://www.onr.navy.mil Related Projects: Maui Smart Grid Batteries for Grid Management Grid to environmental changes, and interaction with the associated electric grid. A prime example test bed is the one for use in Hawai`i and application to future grid integration by HELCO and other utilities on O`ahu, Maui

  4. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    to electricity as power sources. BFCs promise niche applications for generation of electricity at small scale & Technology ­ University of Hawai`i at Mnoa Bio-Fuel Cells Project Period of Performance: From 2003 Project of immobilization (e.g., covalent attachment versus physical entrapment of enzyme). Project Benefits Bio-fuel cells

  5. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect (OSTI)

    Canon, P.

    1980-06-01T23:59:59.000Z

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  6. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    vehicles, hardware- in-loop dynamic testing or autonomous vehicles, and use of alternate fuels. Fuel Cell & Technology ­ University of Hawai`i at Mnoa Airborne Contaminants and Fuel Cell Performance Phone: (808) 956 Contaminants and Fuel Cell Performance Effects of Defects in Fuel Cell MEA Components Background

  7. http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE

    E-Print Network [OSTI]

    Hydrogen for GM Fuel Cell Vehicles Project Description and Goals As one of the tasks under an award from Laboratory www.nrl.navy.mil Related Projects: Bio-Fuel Cells Project Fuel Cell Hardware-in-Loop (HiL) Testing of HNEI's Hawai`i Fuel Cell Test Facility. Besides the basic energy need for hydrate exploitation, HNEI

  8. Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs #12;Social & Economic Benefits Flood Control Dam reservoirs help to control floods Mitigate high peak

  9. School of Ocean and Earth Science and Technology, University of Hawai`i at Mnoa Hawai`i's Changing Climate

    E-Print Network [OSTI]

    Wang, Yuqing

    1880). How is global warming influencing the climate in Hawai`i? The purpose of this briefing sheet of global warming. In Hawai`i: · Air temperature has risen; · Rainfall and stream flow have decreased`i's water resources and forests, coastal communities, and marine ecology. There is a significant need

  10. Metrics for Measuring Progress under the Hawai`i Clean Energy Initiative

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Manoa #12 by Hawai`i Natural Energy Institute School of Ocean and Earth Science and Technology University of HawaiMetrics for Measuring Progress under the Hawai`i Clean Energy Initiative: Hawai`i Clean Energy

  11. Energy Incentive Programs, Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgia EnergyHawaii

  12. MHK Projects/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformationGriffin ProjectHawaii

  13. Waikane, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources Jump to:

  14. Waimalu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources Jump

  15. Waimanalo, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources

  16. Waipahu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy ResourcesWainscott,

  17. Categorical Exclusion Determinations: Hawaii | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 Categorical ExclusionCalifornia|GeorgiaHawaii

  18. Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUKHydrogenGuascorHamidjojoHawaii: Energy

  19. Renewable Hawaii Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewable Hawaii Inc Jump to: navigation,

  20. Kahaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: Energy Resources

  1. Kahuku, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: EnergyKahuku,

  2. Kaneohe, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota: EnergyKaneohe, Hawaii:

  3. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's

  4. Kahului, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island, Florida: EnergyKDOTII

  5. Hauula, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville, NewPennsylvania:Hauula, Hawaii: Energy

  6. Punaluu, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant on Hawaii's

  7. Pupukea, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:ThisPublic PowerKentucky:Plant onPupukea, Hawaii:

  8. Hawaii State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney ElectricHaryanaHavanaHawaii

  9. IATP | Trade Observatory | Headlines q What's new

    E-Print Network [OSTI]

    IATP | Trade Observatory | Headlines q Home q What's new q Geneva Update q Headlines q Library q Treaty Database q Related sites q About Trade Observatory Select a category to display: Archives August Industries Unite to Seek Free and Fair Trade Canada NewsWire July 8, 2003 Email this pageCanada News

  10. MT STROMLO OBSERVATORY VISITOR GUIDE & WALK

    E-Print Network [OSTI]

    Botea, Adi

    to the Observatory and construction of a new Advanced Instrumentation and Technology Centre was begun. You can watch, the University of NSW, and the Faulkes Telescope Project. Mt Stromlo began operation as the Commonwealth Solar Optical Munitions Factory. After the war, the Observatory changed from solar to stellar astronomy

  11. The International Axion Observatory (IAXO)

    E-Print Network [OSTI]

    I. G. Irastorza; F. T. Avignone; G. Cantatore; S. Caspi; J. M. Carmona; T. Dafni; M. Davenport; A. Dudarev; G. Fanourakis; E. Ferrer-Ribas; J. Galan; J. A. Garcia; T. Geralis; I. Giomataris; S. Gninenko; H. Gomez; D. H. H. Hoffmann; F. J. Iguaz; K. Jakovcic; M. Krcmar; B. Lakic; G. Luzon; A. Lindner; M. Pivovaroff; T. Papaevangelou; G. Raffelt; J. Redondo; A. Rodr?guez; S. Russenschuck; J. Ruz; I. Shilon; H. Ten Kate; A. Tomas; S. Troitsky; K. van Bibber; J. A. Villar; J. Vogel; L. Walckiers; K. Zioutas

    2012-01-18T23:59:59.000Z

    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10$^{12}$ GeV$^{-1}$, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The project relies on improvements in magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to solve the white dwarfs anomaly, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. This contribution is a summary of our paper [1] to which we refer for further details.

  12. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Ocean Thermal Energy Conversion Team Partners: Hawai`i Natural Energy Institute School of Ocean and Earth of Ocean Thermal Energy Conversion (OTEC) in Hawai`i. OTEC uses the difference between the cold deep water

  13. UNIVERSITY OF HAWAI`I SYSTEM FEASIBILITY STUDY REPORT

    E-Print Network [OSTI]

    Olsen, Stephen L.

    STUDY OF GREEN ROOF TECHNOLOGIES IN URBAN DISTRICTS IN HAWAII SR-86 (2006) December 2006 #12;Feasibility Benefits...........................................................................19 Energy conservation Increase in wildlife habitat and native plant communities............................23 Noise and radiation

  14. Greta Smith Aeby Hawaii Institute of Marine Biology

    E-Print Network [OSTI]

    Wang, Yuqing

    Greta Smith Aeby Hawaii Institute of Marine Biology PO Box 1346 Kaneohe, HI 96744 Work, TM, Forsman, Rogers, A, Sanciangco, J, Sheppard, A, Sheppard, C, Smith, J, Stuart, S, Turak, E, Veron, J, Wallace, C

  15. MIE Regional Climate Change Impact Webinar Series: Hawaii & Pacific Islands

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Minorities in Energy Initiative is hosting a webinar on Hawaii and Pacific Islands impacts of climate change on minority and tribal communities featuring...

  16. Hawaii Solar Integration Study Final Technical Report for Oahu

    E-Print Network [OSTI]

    Hawaii Solar Integration Study Final Technical Report for Oahu Prepared for: The National Renewable ..................................................................................................................19 4.5. Statistical analysis of wind, solar and load data ................................................................................................................................... 21 5.1. Solar Site Selection Process

  17. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-02-21T23:59:59.000Z

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  18. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION TECHNICAL NOTE R. Lacasse #12;NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia 140-ft CASSEGRAIN BAa

  19. astrophysical observatory letter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling...

  20. astrophysical observatory cambridge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling...

  1. THE SAAO ASTRONOMICAL MUSEUM OBSERVATORY, CAPE TOWN

    E-Print Network [OSTI]

    Glass, Ian S.

    power came from the battery house next door. The batteries were charged by a steam-powered generator Observatory 1 #12;THE BUILDING The building which houses the museum is usually called the McClean, after its

  2. Recent results from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Gascón, Alberto [Dpto. Física Teórica y del Cosmos and CAFPE, Universidad de Granada (Spain); Collaboration: Pierre Auger Collaboration

    2014-07-23T23:59:59.000Z

    The Pierre Auger Observatory has been designed to investigate the origin and nature of Ultra High Energy Cosmic Rays (UHECR) using a hybrid detection technique. In this contribution we present some of the most recent results of the observatory, namely the upper-end of the spectrum of cosmic rays, state-of-the-art analyses on mass composition, the measurements of the proton-air cross-section, and the number of muons at ground.

  3. Study of EUV Emission and Properties of a Coronal Streamer from PROBA2/SWAP, Hinode/EIS and Mauna Loa Mk4 Observations

    E-Print Network [OSTI]

    Goryaev, F; Vainshtein, L; Williams, D R

    2014-01-01T23:59:59.000Z

    Wide-field EUV telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended ray-like coronal structures stretching radially from active regions to distances of 1.5-2Rsun, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on October 20-21, 2010 by the PROBA2/SWAP EUV telescope together with the Hinode/EIS spectrometer (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 A band comprising the Fe ix - Fe xi lines, the streamer was detected to a distance of 2Rsun. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2Rsun, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2Rsun from disk center were determined by forward-modeling the emissi...

  4. EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities

    E-Print Network [OSTI]

    UHM EMPLOYMENT OPPORTUNITIES Hawaii Ocean Observing System (HiOOS) Employment Opportunities FIELD TECHNICIAN OPPORTUNITY: employment with possible development of a senior thesis project in GESCarlo, edecarlo@soest.hawaii.edu JOB REFERENCE NUMBER ON STUDENT EMPLOYMENT WEBSITE: none Student

  5. Memorandum of Understanding Between the State of Hawaii and the U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document describes the Memorandum of Understanding signed between the state of Hawaii and the U.S. Department of Energy, outlining their intent to work together to help Hawaii develop its natural renewable resources.

  6. Synoptic Observing Programs at Big Bear Solar Observatory

    E-Print Network [OSTI]

    Solar Observatory in China, and will explore collaboration with observatories in Canary Island to extendSynoptic Observing Programs at Big Bear Solar Observatory Haimin Wang and Philip R. Goode Big Bear Solar Observatory, New Jersey Institute of Technology, Newark, NJ 07102, USA Abstract. New Jersey

  7. CHAPTER 3.4 Observatory mathematics in the nineteenth

    E-Print Network [OSTI]

    Aubin, David

    of science was in fact inaugurated by a debate about Tycho Brahe's observatory (Hannaway 1986; Shackelford

  8. Hawaii Natural Energy Institute: Annual report, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.

  9. DECEMBER 2000 Economic Impact of the University of Hawai`i System

    E-Print Network [OSTI]

    REPORT ON THE ECONOMIC IMPACT OF THE UNIVERSITY OF HAWAI`I SYSTEM DECEMBER 2000 #12;Economic Impact of the University of Hawai`i System Prepared by: University of Hawai`i: Economic Research Organization (UHERO Department of Business, Economic Development and Tourism. #12;1 Economic Impact of the University of Hawai

  10. Report on Business Case in Hawai`i for Storage Options

    E-Print Network [OSTI]

    Report on Business Case in Hawai`i for Storage Options Prepared for the U.S. Department of Energy on Business Case in Hawai`i for Storage Options Prepared by Hawai`i Natural Energy Institute School of Ocean, and minimize energy costs. This study will help determine where energy storage technologies can best fit

  11. HIGH SCHOOL BACKGROUND OF FIRST-TIME STUDENTS UNIVERSITY OF HAWAI`I

    E-Print Network [OSTI]

    HIGH SCHOOL BACKGROUND OF FIRST-TIME STUDENTS UNIVERSITY OF HAWAI`I FALL 2007 Institutional, Students Reports available online at: http://www.hawaii.edu/iro/maps.htm #12;HIGH SCHOOL BACKGROUND 1). Enrollment of first-time students from Hawai`i high schools measured 5,967, a 9.4% increase from

  12. Compilation of Expenditures for the Hawai`i Gateway Energy Center

    E-Print Network [OSTI]

    `i Distributed Energy Resource Technologies for Energy Security Subtask 2.2 Deliverable #3 By Hawai`i Natural`i Distributed Energy Resource Technologies for Energy Security project, the Hawai`i Natural Energy InstituteCompilation of Expenditures for the Hawai`i Gateway Energy Center Prepared for the U.S. Department

  13. 148 Faculty and Staff Hawai`i Community College 2013-2014 RobertYamane

    E-Print Network [OSTI]

    Olsen, Stephen L.

    and Staff 149Hawai`i Community College 2013-2014 Grace Funai Recipient, Chancellor's`A`ali`i Award James AU, KAREN L. Educational Specialist, University of Hawai`i Center, West Hawai`i B.A. 1998, University

  14. Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and

    E-Print Network [OSTI]

    Hawai'i Bioenergy Master Plan Green Jobs, Biofuels Development, and Hawaii's Labor Market associated with biofuels in Hawai'i. In particular, it discusses how a potential biofuels industry might policy makers and leaders consider how best to support biofuels. One major labor market question

  15. The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park

    E-Print Network [OSTI]

    Heggie, Travis Wade

    2006-04-12T23:59:59.000Z

    TABLE 15 Behavioral and preparedness factors most frequently involved in frontcountry incidents in Hawaii Volcanoes National Park??????. 72 16 Frontcountry destinations in Hawaii Volcanoes National Park with the highest number... Park????????????????????????. 86 27 Behavioral and preparedness factors commonly associated with backcountry incidents in Hawaii Volcanoes National Park??????.. 87 28 Distribution of roadway incidents by specific road and severity...

  16. Preliminary geothermal assessment surveys for the State of Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.E.; Lienert, B.R.; Kauahikaua, J.P.; Mattice, M.D.

    1980-09-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys in ten separate locations within the State of Hawaii in an effort to identify and assess potential geothermal areas throughout the state. The techniques applied include groundwater chemistry and temperatures, soil mercury surveys, ground radon emanometry, time-domain electromagnetic surveys and Schlumberger resistivity soundings. Although geochemical and geophysical anomalies were identified in nearly all the survey sites, those areas which show most promise, based on presently available data, for a geothermal resource are as follows: Puna, Kailua Kona, and Kawaihae on the island of Hawaii; Haiku-Paia and Olowalu-Ukumehame canyons on Maui; and Lualualei Valley on Oahu. Further surveys are planned for most of these areas in order to further define the nature of the thermal resource present.

  17. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, HINODE/EIS and Mauna Loa Mk4 observations

    SciTech Connect (OSTI)

    Goryaev, F.; Slemzin, V.; Vainshtein, L. [P.N. Lebedev Physical Institute of the RAS (LPI), Moscow 119991 (Russian Federation); Williams, David R., E-mail: goryaev_farid@mail.ru [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Surrey, RH5 6NT (United Kingdom)

    2014-02-01T23:59:59.000Z

    Wide-field extreme-ultraviolet (EUV) telescopes imaging in spectral bands sensitive to 1 MK plasma on the Sun often observe extended, ray-like coronal structures stretching radially from active regions to distances of 1.5-2 R {sub ?}, which represent the EUV counterparts of white-light streamers. To explain this phenomenon, we investigated the properties of a streamer observed on 2010 October 20 and 21, by the PROBA2/SWAP EUV telescope together with the Hinode/EIS (HOP 165) and the Mauna Loa Mk4 white-light coronagraph. In the SWAP 174 Å band comprising the Fe IX-Fe XI lines, the streamer was detected to a distance of 2 R {sub ?}. We assume that the EUV emission is dominated by collisional excitation and resonant scattering of monochromatic radiation coming from the underlying corona. Below 1.2 R {sub ?}, the plasma density and temperature were derived from the Hinode/EIS data by a line-ratio method. Plasma conditions in the streamer and in the background corona above 1.2 R {sub ?} from the disk center were determined by forward-modeling the emission that best fit the observational data in both EUV and white light. It was found that the plasma in the streamer above 1.2 R {sub ?} is nearly isothermal, with a temperature of T = 1.43 ± 0.08 MK. The hydrostatic scale-height temperature determined from the evaluated density distribution was significantly higher (1.72 ± 0.08 MK), which suggests the existence of outward plasma flow along the streamer. We conclude that, inside the streamer, collisional excitation provided more than 90% of the observed EUV emission, whereas, in the background corona, the contribution of resonance scattering became comparable with that of collisions at R ? 2 R {sub ?}.

  18. 3D Spectroscopy and the Virtual Observatory

    E-Print Network [OSTI]

    Bryan W. Miller

    2007-08-15T23:59:59.000Z

    Integral field, or 3D, spectroscopy is the technique of obtaining spectral information over a two-dimensional, hopefully contiguous, field of view. While there is some form of astronomical 3D spectroscopy at all wavelengths, there has been a rapid increase in interest in optical and near-infrared 3D spectroscopy. This has resulted in the deployment of a large variety of integral-field spectrographs on most of the large optical/infrared telescopes. The amount of IFU data available in observatory archives is large and growing rapidly. The complications of treating IFU data as both imaging and spectroscopy make it a special challenge for the virtual observatory. This article describes the various techniques of optical and near-infrared spectroscopy and some of the general needs and issues related to the handling of 3D data by the virtual observatory.

  19. Status of the Milagro $\\gamma$ Ray Observatory

    E-Print Network [OSTI]

    Atkins, R; Berley, D; Chen, M L; Coyne, D G; Delay, R S; Dingus, B L; Dorfan, D E; Ellsworth, R W; Evans, D; Falcone, A D; Fleysher, L; Fleysher, R; Gisler, G; Goodman, J A; Haines, T J; Hoffman, C M; Hugenberger, S; Kelley, L A; Leonor, I; Macri, J R; McConnell, M; McCullough, J F; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Ryan, J M; Schneider, M; Shen, B; Shoup, A L; Sinnis, G; Smith, A J; Sullivan, G W; Thompson, T N; Tümer, T O; Wang, K; Wascko, M O; Westerhoff, S; Williams, D A; Yang, T; Yodh, G B

    2001-01-01T23:59:59.000Z

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  20. Status of the Milagro Gamma Ray Observatory

    E-Print Network [OSTI]

    R. Atkins; W. Benbow; D. Berley; M. -L. Chen; D. G. Coyne; R. S. Delay; B. L. Dingus; D. E. Dorfan; R. W. Ellsworth; D. Evans; A. Falcone; L. Fleysher; R. Fleysher; G. Gisler; J. A. Goodman; T. J. Haines; C. M. Hoffman; S. Hugenberger; L. A. Kelley; I. Leonor; J. Macri; M. McConnell; J. F. McCullough; J. E. McEnery; R. S. Miller; A. I. Mincer; M. F. Morales; P. Nemethy; J. M. Ryan; M. Schneider; B. Shen; A. Shoup; G. Sinnis; A. J. Smith; G. W. Sullivan; T. N. Thompson; O. T. Tumer; K. Wang; M. O. Wascko; S. Westerhoff; D. A. Williams; T. Yang; G. B. Yodh

    1999-06-24T23:59:59.000Z

    The Milagro Gamma Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the sky at TeV energies. Located in northern New Mexico, Milagro will perform an all sky survey of the Northern Hemisphere at energies between ~250 GeV and 50 TeV. With a high duty cycle, large detector area (~5000 square meters), and a wide field-of-view (~1 sr), Milagro is uniquely capable of searching for transient and DC sources of high-energy gamma-ray emission. Milagro has been operating since February, 1999. The current status of the Milagro Observatory and initial results will be discussed.

  1. FAD Research in Hawaii the story so far...........

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    FAD Research in Hawaii ­ the story so far........... #12;#12;Characterization of Tuna Movements Around FADs Method: Active Acoustic Tracking #12;#12;#12;#12;#12;#12;#12;Characterization of Movements #12;#12;System Design · 192 kHz Side Scan like transducers · Mechanically scanned system · Battery

  2. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    faster #12;Galen Sasaki EE 361 University of Hawaii 5 Components: CMOS drain source gate n-channel transistor drain source gate p-channel transistor gate = `1' --> close gate = `0' --> open gate = `1 · Write bit back after a read Capacitor Passive transistor Word line Bit line A cell Word line

  3. Galen Sasaki EE 361 University of Hawaii 1 Memory technologies

    E-Print Network [OSTI]

    Sasaki, Galen H.

    faster #12;3 Galen Sasaki EE 361 University of Hawaii 5 Components: CMOS drain source gate n-channel transistor drain source gate p-channel transistor gate = `1' --> close gate = `0' --> open gate = `1 · Write bit back after a read Capacitor Passive transistor Word line Bit line A

  4. Internship Opportunities Akamai Internship Program for Hawaii Residents

    E-Print Network [OSTI]

    Internship Opportunities Akamai Internship Program for Hawaii Residents http://cfao.ucolick.org/EO/internshipsnew/akamai/index.php American Meteorological Society http://www.ametsoc.org/amsstudentinfo/internships.html Explorations information, visit: Geotimes Summer Internship http://www.geotimes.org/internship.html Joint

  5. Hawaii Bioenergy Master Plan Marc. M. Siah & Associates, Inc.

    E-Print Network [OSTI]

    energy future require an expeditious and broad implementation of clean and renewable energy applications of promising bioenergy projects in the state. To meet its clean energy goals, Hawaii cannot afford the perception that investment and green energy initiatives are hindered by a lack of support from State

  6. Hawaii Renewable Hydrogen Program State & Regional Initiatives Webinar

    E-Print Network [OSTI]

    MWPotential Biom ass W ind G eotherm alHydro Solar(roof) Solar(utility) M SW O cean Molokai Lanai Hawaii Maui Kauai Routes Crater Rim Drive 11 miles Elevation 4,000 ft Chain of Craters Road 48 miles round trip Steep

  7. Environmental Resources of Selected Areas of Hawaii: Socioeconomics (DRAFT)

    SciTech Connect (OSTI)

    Saulsbury, J.W.; Sorensen, B.M.; Schexnayder, S.M.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the Environmental Impact Statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed. Regis. 5925638), withdrawing its Notice of Intent (Fed Regis. 57:5433), of February 14, 1992, to prepare the HGPEIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District (Fig. 1). Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. This report describes existing socioeconomic resources in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are (1) population, (2) housing, (3) land use, (4) economic structure (primarily employment and income), (5) infrastructure and public services (education, ground transportation, police and fire protection, water, wastewater, solid waste disposal, electricity, and emergency planning), (6) local government revenues and expenditures, and (7) tourism and recreation.

  8. Environmental resources of selected areas of Hawaii: Socioeconomics

    SciTech Connect (OSTI)

    Saulsbury, J.W.; Sorensen, B.M.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Schexnayder, S.M. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background information on socioeconomic resources collected during the preparation of the environmental impact statement (EIS) for Phases 3--4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The USDOE published a notice withdrawing its Notice of Intent to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This document provides background information on socioeconomic resources in Hawaii County, with particular emphasis on the Puna District. Information is being made available for use by others in conducting future socioeconomic impact assessments in this area. this report describes existing socioeconomic resources in the areas studied and does not represent an assessment of environmental impacts. The socioeconomic resources described are primarily those that would be affected by employment and population growth associated with any future large-scale development. These resource categories are population, housing, land use, economic structure, infrastructure and public services, local government revenues and expenditures, and tourism and recreation.

  9. DOE 2003 Program Review Hawaii Natural Energy Institute

    E-Print Network [OSTI]

    DOE 2003 Program Review Hawaii Natural Energy Institute School of Ocean&Earth ScienceHydrogen Production Eric L.Miller Richard E. Rocheleau ACKNOWLEDGEMENTS -U.S. Department of Energy for continued.)catalyst films CIS, CIGS iron-oxideelectrochemical metal oxide semiconductor films tungsten trioxide titanium

  10. The Social Networks of Hawaii's Longline Fishery a

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    The Social Networks of Hawaii's Longline Fishery ­ a preliminary assessment Michele Barnes, Shawn Future Outlook #12;Introduction Project Goal Examine the role of Social Networks on vessel economic) Vietnamese-American (57) source: panoramio.com #12;Methodology 1. Social Network Analysis Structured survey

  11. Principle Investigator M. Cooney (Hawaii Natural Energy Institute)

    E-Print Network [OSTI]

    (Engineering Overview), Hawaii American Waters (Host WWTP), RealGreen Power (Technology Provider), Pacific Biodiesel (Produce Biodiesel from grease trap waste and fryer grease), Diacarbon Energy (Biochar producer that approaches theoretical maximum of 0.35 m3/Kg COD reduced. GTW Brown grease for biodiesel Separated wastewater

  12. Environmental Resources of Selected Areas of Hawaii: Ecological Resources (DRAFT)

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R.; Jones, A.T.; Smith, C.R.; Kalmijn, A.J.

    1994-06-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (COE) published a notice in the Federal Register on May 17, 1994 (Fed. Regist. 5925638) withdrawing its Notice of Intent (Fed. Regst. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County, including the southeastern coast, a potential development corridor along the Saddle Road between Hilo and the North Kohala District on the northwestern coast, and on the southeastern coast of Maui. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information is being made available for future research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  13. Environmental resources of selected areas of Hawaii: Ecological resources

    SciTech Connect (OSTI)

    Trettin, C.C.; Tolbert, V.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Jones, A.T. [Jones (Anthony T.), Vancouver, British Columbia (Canada); Smith, C.R. [Smith (Craig R.), Kailna, HI (United States); Kalmijn, A.J. [Kalmijn (Adrianus J.), Encinitas, CA (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on ecological resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report focus on several areas of Hawaii County. In this report, reference is made to these areas as study areas rather than as areas where proposed or alternative facilities of the HGP would be located. The resource areas addressed herein include terrestrial ecology, aquatic ecology, and marine ecology. The scientific background data and related information that were obtained from review of the (1) scientific literature, (2) government and private sector reports, (3) studies done under DOE interagency agreements with the US Fish and Wildlife Service (FWS) and with the US Army Corps of Engineers (COE), and (4) observations made during site visits are being made available for future research in these areas.

  14. Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications

    E-Print Network [OSTI]

    Energy Institute School of Ocean and Earth Sciences and Technology Scott Q. Turn Vheissu Keffer MiltonAnalysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples

  15. Solar Dynamics Observatory/ Extreme Ultraviolet Variability Experiment

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Solar Dynamics Observatory/ EVE Extreme Ultraviolet Variability Experiment Frequently Asked and model solar extreme ultraviolet irradiance variations due to solar flares, solar rotation, and solar and structure of the Sun. What is solar variability? Solar radiation varies on all time scales ranging from

  16. UNIVERSITY OF CALIFORNIA, SANTA CRUZ UC OBSERVATORIES

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ UC OBSERVATORIES POSTDOCTORAL SCHOLAR ­ EMPLOYEE The Inter Stellar+Galactic Medium Program of Studies (IMPS) at the University of California, Santa Cruz invites of funding. START DATE: October 2013 TO APPLY: Applicants should send curriculum vitae with list

  17. Neutrino Observations from the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    A. W. P. Poon; for the SNO Collaboration

    2001-10-07T23:59:59.000Z

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D$_{2}$O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar $\

  18. The endless mantra : innovation at the Keck Observatory

    E-Print Network [OSTI]

    Bobra, Monica Godha

    2005-01-01T23:59:59.000Z

    A study of historical, current, and future developments at the Keck Observatory revealed a thriving philosophy of innovation. Intended to defy obsoletion and keep the observatory competitive over long time scales, this ...

  19. "Towards Optics-Based Measurements in Ocean Observatories"

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    /JPSS ­ UAV ­ Ocean optics, Biological ­ Laser penetration New opportunity · Insitu Sensors ­ (Gliders"Towards Optics-Based Measurements in Ocean Observatories" "Ocean Observatories Contributions to Ocean Models and Data Assimilation For Ecosystems" Ocean Optics 2012 Glasgow Scotland Robert Arnone

  20. Operations of and Future Plans for the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01T23:59:59.000Z

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  1. HAWAI`I UNDERSEA RESEARCH LABORATORY NOAA's Undersea Research Center for Hawai`i and the Western Pacific

    E-Print Network [OSTI]

    resources of the Pa- cific and renewable energy from the sea, HURL's contributions will continue to play accepts funded requests from private, state, or federal agencies and participates in international Region Hawai`i Northwestern Hawaiian Islands American SamoaAustralia Japan CNMI Guam Marshall IslandsFederated

  2. Geo-neutrinos and silicate earth enrichment of U and Th Hawaii Pacific University, Kaneohe, Hawaii, USA

    E-Print Network [OSTI]

    Mcdonough, William F.

    Frontiers Geo-neutrinos and silicate earth enrichment of U and Th S.T. Dye Hawaii Pacific of refractory lithophile elements, including U and Th, in the silicate earth by 1.5. Global removal of volatile elements potentially increases this enrichment to 2.8. The K content of the silicate earth follows from

  3. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  4. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  5. Updated Multichannel Infrared Solar Spectrograph at Purple Mountain Observatory

    E-Print Network [OSTI]

    Li, Hui

    Updated Multichannel Infrared Solar Spectrograph at Purple Mountain Observatory LI Hui( û), YOU Jianqi( � ), WU Qindi( ¸Ð) and YU Xingfeng(åÐ ) Purple Mountain Observatory, CAS, Nanjing 210008, China National Astronomical Observatories, CAS, Beijing 100012, China Email: lihui@mail.pmo.ac.cn Tel: 025

  6. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Inverters for High- Penetration Photovoltaic Applications Team Partners: Hawai`i Natural Energy Institute Projects: Maui Smart Grid Project PV Test Beds in the Micro- Climates of Hawai`i Energy Efficiency Research-industry partnership for a multi-year project to develop a Smart Grid Inverter (SGI). The SGI will be used to assess

  7. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ://www.heco.com Maui Electric Company http://www.mauielectric.com General Electric Company Periods of Performance-Principal Investigator HNEI 808-956-8346 rochelea@hawaii.edu Links: HNEI http://www.hnei.hawaii.edu General Electric. General Electric Company ­ it will provide expertise in application of smart grid technology. Project

  8. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    for GM Equinox Fuel Cell Vehicles Team Partners: Hawai`i Natural Energy Institute School of Ocean Motors (GM) Equinox fuel cell electric vehicles located at Marine Corps Base (MCB) Hawai at MCB Hawai`i. Overall, this project will support operations of the GM fuel cell vehicle demonstration

  9. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  10. Knowledge Discovery Framework for the Virtual Observatory

    E-Print Network [OSTI]

    Thomas, Brian; Huang, Zenping; Teuben, Peter

    2015-01-01T23:59:59.000Z

    We describe a framework that allows a scientist-user to easily query for information across all Virtual Observatory (VO) repositories and pull it back for analysis. This framework hides the gory details of meta-data remediation and data formatting from the user, allowing them to get on with search, retrieval and analysis of VO data as if they were drawn from a single source using a science based terminology rather than a data-centric one.

  11. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    SciTech Connect (OSTI)

    Matsuoka, J.K; Minerbi, L. [Cultural Advocacy Network for Developing Options (CANDO) (United States); Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury [Oak Ridge National Lab., TN (United States); Trettin, L.D. [Tennessee Univ., Knoxville, TN (United States)

    1996-05-01T23:59:59.000Z

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

  12. 36 ways to save energy and money - right now! Hawai'i Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and money in Hawaii, in the office, at home, and in the car. 47304.pdf More Documents & Publications Energy Conservation Plans Energy Saver Guide Emergency Preparedness Resources...

  13. Hawaii Energy Strategy Project 2: Fossil Energy Review. Task IV. Scenario development and analysis

    SciTech Connect (OSTI)

    Yamaguchi, N.D.; Breazeale, K. [ed.

    1993-12-01T23:59:59.000Z

    The Hawaii Energy Strategy (HES) Program is a seven-project effort led by the State of Hawaii Department of Business, Economic Development & Tourism (DBEDT) to investigate a wide spectrum of Hawaii energy issues. The East-West Center`s Program on Resources: Energy and Minerals, has been assigned HES Project 2, Fossil Energy Review, which focuses on fossil energy use in Hawaii and the greater regional and global markets. HES Project 2 has four parts: Task I (World and Regional Fossil Energy Dynamics) covers petroleum, natural gas, and coal in global and regional contexts, along with a discussion of energy and the environment. Task II (Fossil Energy in Hawaii) focuses more closely on fossil energy use in Hawaii: current utilization and trends, the structure of imports, possible future sources of supply, fuel substitutability, and energy security. Task III`s emphasis is Greenfield Options; that is, fossil energy sources not yet used in Hawaii. This task is divided into two sections: first, an in-depth {open_quotes}Assessment of Coal Technology Options and Implications for the State of Hawaii,{close_quotes} along with a spreadsheet analysis model, which was subcontracted to the Environmental Assessment and Information Sciences Division of Argonne National Laboratory; and second, a chapter on liquefied natural gas (LNG) in the Asia-Pacific market and the issues surrounding possible introduction of LNG into the Hawaii market.

  14. Hawaii Clean Energy Initiative Permit to Cross or Enter the State...

    Open Energy Info (EERE)

    Reference LibraryAdd to library PermittingRegulatory Guidance - Instructions: Hawaii Clean Energy Initiative Permit to Cross or Enter the State Energy CorridorPermitting...

  15. Lana'ai Hawaii: An Inside Look at the World's Most Advanced Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Lanai with multi-megawatt solar PV generation. Location Hawaii United States See map: Google Maps Date October 2009 Topic Solar Basics & Educating Consumers Systems...

  16. Siting Evaluation for Biomass-Ethanol Production in Hawaii

    SciTech Connect (OSTI)

    Kinoshita, C.M.; Zhou, J.

    2000-10-15T23:59:59.000Z

    This report examines four Hawaiian islands, Oahu, Hawaii, Maui, and Kauai, to identify three best combinations of potential sites and crops for producing dedicated supplies of biomass for conversion to ethanol. Key technical and economic factors considered in the siting evaluation include land availability (zoning and use), land suitability (agronomic conditions), potential quantities and costs of producing biomass feedstocks, infrastructure (including water and power supplies), transportation, and potential bioresidues to supplement dedicated energy crops.

  17. Sandia-Power Surety Task Force Hawaii foam analysis.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-11-01T23:59:59.000Z

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  18. The Impact of Trade-wind Strength on Precipitation over the Windward Side of the Island of Hawaii

    E-Print Network [OSTI]

    Chen, Yi-Leng

    The Impact of Trade-wind Strength on Precipitation over the Windward Side of the Island of Hawaii@hawaii.edu #12;ABSTRACT The effects of trade-wind strength and the diurnal heating cycle on the production of summer trade-wind rainfall on the windward side of the island of Hawaii are examined from the data

  19. The Virtual Observatory and Grid in Spain

    E-Print Network [OSTI]

    J. D. Santander-Vela

    2008-07-08T23:59:59.000Z

    The Virtual Observatory (VO) is nearing maturity, and in Spain the Spanish VO (SVO) exists since June 2004. There have also been numerous attempts at providing more or less encompassing grid initiatives at the national level, and finally Spain has an official National Grid Initiative (NGI). In this article we will show the VO and Grid development status of nationally funded initiatives in Spain, and we will hint at potential joint VO-Grid use-cases to be developed in Spain in the near future.

  20. Cylindrical Equidis LAMONT (LDEO) WOODS HOLE O.I. NOAA U.HAWAII SOEST US NAVY

    E-Print Network [OSTI]

    HOLE O.I. NOAA U.HAWAII SOEST US NAVY SCRIPPS INST.OC U RHODE ISLAND RUSSIA US COAST GUARD GERMANY US NOAA 330 415326 415326 0 0 0 0 1932257 U.HAWAII SOEST 1 5873 5319 3992 5387 0 0 69927 US NAVY 3 3486

  1. Estimation of Fire Danger in Hawai`i Using Limited Weather Data and Simulation1

    E-Print Network [OSTI]

    Stephens, Scott L.

    199 Estimation of Fire Danger in Hawai`i Using Limited Weather Data and Simulation1 David R. Weise: The presence of fire in Hawai`i has increased with introduction of nonnative grasses. Fire danger estimation using the National Fire Danger Rat- ing System (NFDRS) typically requires 5 to 10 yr of data

  2. Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions

    E-Print Network [OSTI]

    Liquified Natural Gas (LNG) for Hawaii: Policy, Economic, and Technical Questions This report presents analyses for the potential demand for LNG in Hawai`i, potential benefits and costs of LNG importation, and features of the regulatory structure, policy, and practices for LNG. The report was submitted

  3. The Development and Decline of Hawaii's Skipjack Tuna Fishery CHRISTOFER H. BOGGS and BERT S. KIKKAWA

    E-Print Network [OSTI]

    pelamis, was the largest commercial fishery in Hawaii. Annual pole-and-line landings of skipjack tuna, I Bert S. Kikkawa. An update of the skipjack tuna, Katsuwonus pelamis, baitboat fishery in Hawaii-2396, unpub!. manuscr. ABSTRACT-The pole-and-line fishery for skipjack tuna, Katsuwonus pelamis

  4. Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu Ocean Thermal Resources

    E-Print Network [OSTI]

    Ocean Thermal Resource and Site Selection Criteria (January 2011) luisvega@hawaii.edu 1 Ocean Thermal Resources The vast size of the ocean thermal resource and the baseload capability of OTEC systems of Hawaii throughout the year and at all times of the day. This is an indigenous renewable energy resource

  5. auger observatory status: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pierre Auger Observatory is presently under construction in Malargue, Mendoza, Argentina. It combines two complementary air shower observation techniques; the detection of...

  6. auger observatory closes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pierre Auger Observatory (PAO), currently under construction in Province of Mendoza, Argentina, and with another site planned in the Northern hemisphere, is a major international...

  7. auger observatory celebrates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pierre Auger Observatory (PAO), currently under construction in Province of Mendoza, Argentina, and with another site planned in the Northern hemisphere, is a major international...

  8. auger observatory estudo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pierre Auger Observatory (PAO), currently under construction in Province of Mendoza, Argentina, and with another site planned in the Northern hemisphere, is a major international...

  9. auger observatory surface: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The southern site of the Auger Observatory, now approaching completion in Mendoza, Argentina, features an array of 1600 water-Cherenkov surface detector stations covering 3000...

  10. auger observatory progress: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of the Auger Observatory, now under construction in the Province of Mendoza, Argentina, is well over half finished. Active detectors have been recording events for one and...

  11. auger observatory project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pierre Auger Observatory (PAO), currently under construction in Province of Mendoza, Argentina, and with another site planned in the Northern hemisphere, is a major international...

  12. LIST OF FISH AT A PROPOSED OTEC SITE OFF KE-AHOLE POINT, HAWAII, DERIVED FROM COMMERCIAL FISH RECORDS, 1959-1978

    E-Print Network [OSTI]

    Jones, Anthony T.

    2012-01-01T23:59:59.000Z

    a proposed Ocean Thermal Energy Conversion Hawaii areproposed Ocean Thermal Energy Conversion (OTEC) site are A

  13. LIST OF FISH AT A PROPOSED OTEC SITE OFF KE-AHOLE POINT, HAWAII, DERIVED FROM COMMERCIAL FISH RECORDS, 1959-1978

    E-Print Network [OSTI]

    Jones, Anthony T.

    2012-01-01T23:59:59.000Z

    a proposed Ocean Thermal Energy Conversion Hawaii area presented. proposed Ocean Thermal Energy Conversion (OTEC)

  14. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01T23:59:59.000Z

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  15. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  16. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01T23:59:59.000Z

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  17. Aeromagnetic study of the Island of Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) | OpenInformation Zablocki,Energyof Hawaii

  18. Waimanalo Beach, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy Resources JumpWaimanalo

  19. Waipio Acres, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane, Hawaii: Energy

  20. Whitmore Village, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: EnergyWhitman County, Washington:Village, Hawaii:

  1. HAWAI'I CLEAN ENERGY DRAFT PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthePerformanceofPathwaySeptember 11HAWAI'I

  2. Hawaii Clean Energy Initiative (HCEI) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz! | DepartmentThe Hawaii

  3. Spurring Solar Installations in Hawaii | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's NuclearSpurring Solar Installations in Hawaii Spurring

  4. Hawaii Department of Transportation Highways Division | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |Hatchet RidgeInformation Hawaii

  5. Hawaii's 1st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategy |HatchetInformation Hawaii's 1st

  6. Hawaii Habitat Conservation Plans Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii Habitat Conservation

  7. Hawaii Historic Preservation Permit Packet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii Habitat

  8. Hawaii Individual Wastewater Management Permit Packet | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaii

  9. Hawaii Land Study Bureau's Land Classification Finder | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen

  10. Hawaii Underground Injection Control Program Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI ReferenceNoiseInformation State of Hawaii

  11. Mililani Town, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii: Energy Resources Jump to:

  12. Hawaii Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »FundingGlenn6-7, 2013of ScienceHawaii

  13. Hawaii Solar Integration Study: Executive Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEN TO THEHudson YearHarvesting theRenewableHawaii

  14. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: EnergyOnlineMontana <UtahGeneralHawaii <

  15. RAPID/Geothermal/Environment/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:Colorado < RAPID‎ |Hawaii < RAPID‎ |

  16. RAPID/Geothermal/Land Access/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia:ColoradoNevada <WashingtonHawaii <

  17. RAPID/Geothermal/Water Use/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas < RAPID‎ |UseHawaii < RAPID‎

  18. RAPID/Geothermal/Well Field/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <Field < RAPID‎Hawaii <

  19. RAPID/Overview/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation Texas <FieldSiting/Colorado <Hawaii)

  20. Geothermal Energy in Hawaii: Present and Future | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |Information 6thGeothermalInformationHawaii:

  1. Village Park, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging JumpWorkstreamVilas County,Park, Hawaii:

  2. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    SciTech Connect (OSTI)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O'Toole, D.; Fetter, J.

    2010-04-01T23:59:59.000Z

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  3. Health-hazard Evaluation Report Heta 90-179-2172, National Park Service, Hawaii Volcanoes National Park, Hilo, Hawaii

    SciTech Connect (OSTI)

    Burr, G.A.; Stephenson, R.L.; Kawamoto, M.W.

    1992-01-01T23:59:59.000Z

    In response to a request from the National Park Service, an evaluation was undertaken of possible hazardous exposures to volcanic emissions, both gases and particulates, at the Hawaii Volcanoes National Park (SIC-7999) on the island of Hawaii in the State of Hawaii. Concerns included exposures to sulfur-dioxide (7446095) (SO2), asphalt decomposition products from burning pavement, acid mists when lava enters the ocean, volcanic caused smog, and Pele's hair (a fibrous glass like material). Two other related requests for study were also received in regard to civil defense workers in these areas. No detectable levels of SO2 were found during long term colorimetric detector tube sampling used to characterize park workers' personal full shift exposures. Short term detector tube samples collected near a naturally occurring sulfur vent showed SO2 levels of 1.2 parts per million (ppm). Work related symptoms reported by more than 50% of the respondents included headache, eye irritation, throat irritation, cough, and phlegm. Chest tightness or wheezing and shortness of breath were also frequently reported. Samples collected for hydrochloric-acid (7647010) and hydrofluoric-acid (7664393) recorded concentrations of up to 15ppm for the former and 1.0ppm for the latter acid. Airborne particulates in the laze plume were comprised largely of chloride salts. Airborne fibers were detected at a concentration of 0.16 fibers per cubic centimeter. The authors conclude that excessive exposure to SO2 can occur at some locations within the park. The authors recommend that workers and visitors to the park be informed of the potential for exposures.

  4. Updated Multichannel Infrared Solar Spectrograph at Purple Mountain Observatory #

    E-Print Network [OSTI]

    Li, Hui

    in solar flare [12] , which is # Supported by the National Natural Science Foundation of China (NSFC, NoUpdated Multichannel Infrared Solar Spectrograph at Purple Mountain Observatory # LI Hui(©¿), YOU Jianqi(Æ?OÅ ), WU Qindi(Ã?,l) and YU Xingfeng(â?¢lb) Purple Mountain Observatory, CAS, Nanjing 210008, China

  5. Towards a Taxonomy for Web Observatories Web Science Institute

    E-Print Network [OSTI]

    Towards a Taxonomy for Web Observatories Ian Brown Web Science Institute University of Southampton University of Southampton Southampton, SO17 1BJ, UK +44 (0)23 8059 5000 wh@soton.ac.uk Lisa Harris Web.j.harris@soton.ac.uk ABSTRACT In this paper, we propose an initial structure to support a taxonomy for Web Observatories (WO

  6. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT and Ionospheric Center, Arecibo, Puerto Rico by the National Radio Astronomy Observatory at Green Bank, West Virginia. The general design concept was taken from previous receivers assembled at NRAO. S. Weinreb and N

  7. NATIONAL RADIO ASTRONOMY OBSERVATORY Green, Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green, Bank, West Virginia Electronics Division Internal Rep preformed by the Standard Receiver Section of the National Radio Astronomy Observatory at Green Bank, West Virginia. The following breakdown was used to divide the costs into various categories: (1) Emckajs.c1 . 1

  8. The Green Computing Observatory: status of acquisition and analysis

    E-Print Network [OSTI]

    Lefèvre, Laurent

    The Green Computing Observatory: status of acquisition and analysis Cécile Germain-Renaud1, Julien, CNRS, INRIA 2: Laboratoire de l'Accélérateur Linéaire, CNRS-IN2P3 #12; Previous GreenDays talks o GreenDays@Paris The Green Computing Observatory: plans and scientific challenges o GreenDays@Lyon The Green Computing

  9. Oceanography Vol.22, No.2128 Distributed Ocean Observatory

    E-Print Network [OSTI]

    together for intensive multi-institutional experiments. RU COOL is now a core component of the National Partnership Program (NOPP), which transformed our predominantly academic endeavors of the early 1990s observatory and the international ocean observatory movement (Glenn et al., 2000a,b, 2004; Schofield et al

  10. Radio Wavelength Observatories within the Exploration Architecture

    E-Print Network [OSTI]

    J. Lazio; R. J. Macdowall; J. Burns; L. Demaio; D. L. Jones; K. W. Weiler

    2007-01-26T23:59:59.000Z

    Observations at radio wavelengths address key problems in astrophysics, astrobiology, and lunar structure including the first light in the Universe (the Epoch of Reionization), the presence of magnetic fields around extrasolar planets, particle acceleration mechanisms, and the structure of the lunar ionosphere. Moreover, achieving the performance needed to address these scientific questions demands observations at wavelengths longer than those that penetrate the Earth's ionosphere, observations in extremely "radio quiet" locations such as the Moon's far side, or both. We describe a series of lunar-based radio wavelength interferometers of increasing capability. The Radio Observatory for Lunar Sortie Science (ROLSS) is an array designed to be deployed during the first lunar sorties (or even before via robotic rovers) and addressing particle acceleration and the lunar ionosphere. Future arrays would be larger, more capable, and deployed as experience is gained in working on the lunar surface.

  11. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J.; Falcey, J.

    2011-11-01T23:59:59.000Z

    DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.

  12. Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii...

    Broader source: Energy.gov (indexed) [DOE]

    Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations K. Burman, A. Kandt, L. Lisell, S. Booth, A. Walker, J. Roberts and J. Falcey...

  13. University of Hawai`i ACCESS REQUEST TO DATAAND REPORTS IN OPERATIONAL DATA STORE (ODS)

    E-Print Network [OSTI]

    Olsen, Stephen L.

    University of Hawai`i ACCESS REQUEST TO DATAAND REPORTS IN OPERATIONAL DATA STORE (ODS) Name Title Approved Denied ODS Data Administrator's name (print or type) Signature Date Send completed form to

  14. Hawai'i Makes Progress Toward Clean Energy Goals with Energy...

    Office of Environmental Management (EM)

    29, 2014 - 4:50pm Addthis Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  15. U.S. Department of Energy and State of Hawaii Sign Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    Energy on Island Nations Set in the Waianae Valley of Oahu, Kaupuni Village is the first net-zero energy affordable housing community in Hawaii.| Photo by Ryan Siphers Group 70,...

  16. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009- June 30, 2010

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  17. Assessing Pathways in the U.S. Virgin Islands and Hawai'i | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Hawai'i Establishes Goal of Achieving 70% Clean Energy by 2030 Energy Transition Initiative: Islands Playbook A 448-kW PV system installed at the Cyril...

  18. Energy Independence . . . It's up to us. Hawaii Clean Energy Initiative (HCEI) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    This tri-fold brochure provides an overview of how the State of Hawaii will work toward a goal of 70% clean energy by 2030 and the importance of meeting this goal.

  19. Results of Electric Survey in the Area of Hawaii Geothermal Test...

    Open Energy Info (EERE)

    of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey...

  20. Residential building design : comprehensive comparative guidelines for building single-family dwellings in Hawaii

    E-Print Network [OSTI]

    Nagata, Rochelle Morie

    1997-01-01T23:59:59.000Z

    Energy shortages, earthquakes, and hurricanes are environmental factors that challenge the home designers of Hawaii. The depletion of renewable natural resources and global warming trends foreshadow energy shortage and the ...

  1. Report Summarizing Development and Testing of Solar Forecasting for Hawai`i

    E-Print Network [OSTI]

    .S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE.1 Deliverable 5 Photovoltaic Systems By the Hawai`i Natural Energy Institute School of Ocean and Earth Science

  2. The causes and consequences of condo hotel conversion in Waikiki, Hawaii

    E-Print Network [OSTI]

    Lu, Mark C. K

    2005-01-01T23:59:59.000Z

    This paper explores the causes and consequences of the recent conversions of hotels into 'condo hotels' in Waikiki, Hawaii, through an examination of local and national real estate trends. Condo hotels result from the ...

  3. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    SciTech Connect (OSTI)

    Finch, P.; Potes, A.

    2010-06-01T23:59:59.000Z

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  4. A New Day in Hawai‘i: the Lingle to Abercrombie Transition and the State Budget

    E-Print Network [OSTI]

    Belt, Todd L.

    2012-01-01T23:59:59.000Z

    Transition and the State Budget Abstract: The Stateof Hawai‘i’s budget for Fiscal Year 2012 was balanced by aon his predecessor’s budget proposal, against a some- what

  5. Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure...

  6. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. The University of Hawaii Wide Field Imager (UHWFI)

    E-Print Network [OSTI]

    Klaus W. Hodapp; Andreas Seifahrt; Gerard A. Luppino; Richard Wainscoat; Ed Sousa; Hubert Yamada; Alan Ryan; Richard Shelton; Mel Inouye; Andrew J. Pickles; Yanko K. Ivanov

    2006-04-01T23:59:59.000Z

    The University of Hawaii Wide-Field Imager (UHWFI) is a focal compressor system designed to project the full half-degree field of the UH 2.2 m telescope onto the refurbished UH 8Kx8K CCD camera. The optics use Ohara glasses and are mounted in an oil-filled cell to minimize light losses and ghost images from the large number of internal lens surfaces. The UHWFI is equipped with a six-position filter wheel and a rotating sector blade shutter,both driven by stepper motors. The instrument saw first light in 2004 in an engineering mode. After filling the lens cell with index matching oil, integration of all software components into the user interface, tuning of the CCD performance, and the purchase of the final filter set, UHWFI is now fully commissioned at the UH 2.2 m telescope.

  9. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  10. Low Energy Investigations at Kamioka Observatory

    E-Print Network [OSTI]

    Sekiya, Hiroyuki

    2013-01-01T23:59:59.000Z

    At Kamioka Observatory many activities for low energy rare event search are ongoing. Super-Kamiokande(SK), the largest water Cherenkov neutrino detector, currently continues data taking as the fourth phase of the experiment (SK-IV). In SK-IV, we have upgraded the water purification system and tuned water flow in the SK tank. Consequently the background level was lowered significantly. This allowed SK-IV to derive solar neutrino results down to 3.5MeV energy region. With these data, neutrino oscillation parameters are updated from global fit; $\\Delta m^2_{12}=7.44^{+0.2}_{-0.19}\\times10^{-5} {\\rm eV}^2$, $\\sin^2\\theta_{12}=0.304\\pm0.013$, $\\sin^2\\theta_{13}=0.030^{+0.017}_{-0.015}$. NEWAGE, the directional sensitive dark matter search experiment, is currently operated as "NEWAGE-0.3a" which is a $0.20\\times0.25\\times0.31$ m$^3$ micro-TPC filled with CF4 gas at 152 Torr. Recently we have developed "NEWAGE-0.3b". It was succeeded to lower the operation pressure down to 76 Torr and the threshold down to 50 keV (F...

  11. Low-multiplicity Burst Search at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Chen, Min

    Results are reported from a search for low-multiplicity neutrino bursts in the Sudbury Neutrino Observatory. Such bursts could indicate the detection of a nearby core-collapse supernova explosion. The data were taken from ...

  12. apache point observatory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sky observatory's largest telescope is the versatile ARC 3.5-m, which Telescope, Dan LongAPO APOLLO and 3.5-m Observations One synoptic study is the APOLLO (Apache PointApache...

  13. auger southern observatory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auger Collaboration intends to extend the energy range of its southern observatory in Argentina for high quality data from 0.1 to 3 EeV. The extensions, described in accompanying...

  14. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Elec-xonics Division Internal Report 140 MV The battery voltage as a function of temperature was also measured. The voltage was extremely

  15. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report with the calculator. It is constructed from CMOS logic for lowest power consumption and has a NiCad battery back

  16. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report an opposition battery, a DC Null Voltmeter and a recorder. With this set-up a variation in temperature of .02 °C

  17. Full simulation of the Sudbury Neutrino Observatory proportional counters

    E-Print Network [OSTI]

    Beltran, B.

    The third phase of the Sudbury Neutrino Observatory (SNO) experiment added an array of [superscript 3]He proportional counters to the detector. The purpose of this neutral-current detection (NCD) array was to observe ...

  18. 36 Ways to Save Energy and Money - Right Now! Hawai'i Clean Energy Initiative (HCEI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    Fact sheet outlining top ways to save energy and money in Hawaii, in the office, at home, and in the car.

  19. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect (OSTI)

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01T23:59:59.000Z

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will be concentrated in two areas: (1) HCEI Working Groups will be formed and made up of private, state, and U.S. government experts in the areas of Transportation and Fuels, Electricity Generation, Energy Delivery and Transmission, and End-Use Efficiency; and (2) Partnership Projects will be undertaken with local and mainland partners that demonstrate and commercialize new technologies and relieve technical barriers.

  20. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    and Innovation for Vehicle efficiency and Energy sustainability) partnership. Existing lithium-ion battery ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Battery.energy.gov/v ehiclesandfuels/about/partners hips/usdrive.html Related Projects: Batteries for Grid Management HNEI

  1. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    : Grid Management Using Hydrogen Hydrogen for GM Equinox Vehicles Fuel Cell Hydrogen Contaminants Project, the Hawai`i Natural Energy Institute (HNEI) will provide hydrogen for fueling plug-in hybrid electric of the overall system to provide hydrogen for fueling the PHEV shuttle buses used for visitors to HAVO, 2

  2. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Description and Goals With funding from federal agencies and industrial sponsors, Dr. Jian Yu has invented renewable energy; developing bioreactors with high mass transfer rate of insoluble gases for high cell ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Bio

  3. Copyright 1998 IEEE. Published in the Proceedings of the Hawai'i International Conference On System Sciences, January 6-9, 1998, Kona, Hawaii.

    E-Print Network [OSTI]

    of the electric power market, the viability of a spot market for reactive power remains cloudy. In [2 Sciences, January 6- 9, 1998, Kona, Hawaii. A Simulation Based Approach to Pricing Reactive Power James D the simulation of real and reactive power spot markets. While spot pricing of real power remains a viable option

  4. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Inverters for High- Penetration Photovoltaic Applications Team Partners: Hawai`i Natural Energy Institute://www.heco.com Maui Electric Company http://www.mauielectric.com Related Projects: Maui Smart Grid Project PV Test into a Fronius inverter to create a Smart Grid inverter (SGI). The project will then demonstrate the ability

  5. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ) validation of the various hydrogen infrastructure elements involved, 3) validation for operation of the PHEV infrastructure required to advance the "Hydrogen Economy." Status A vendor for supply of the hydrogen dispensing ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Hydrogen

  6. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ) validation of the various hydrogen infrastructure elements involved, 3) validation for operation of the PHEV infrastructure required to advance the "Hydrogen Economy." Status The hydrogen production, storage, dispensing ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Hydrogen

  7. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    ENERGY INSTITUTE School of Ocean & Earth Science & Technology ­ University of Hawai`i at Mnoa Batteries that fast-response Battery Energy Storage System (BESS) solutions are an integral part of a comprehensive) wind farm and on O`ahu at the Waiawa substation with a large distributed PV system. The objective

  8. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    of fuel cell systems and avoid future costly failures in fuel cell vehicles and electricity generation Contaminants and Fuel Cell Performance Team Partners: Hawai`i Natural Energy Institute Center for Clean Energy in HNEI's fuel cell test facility to characterize, analyze, and understand the effects of airborne

  9. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    for GM Equinox Fuel Cell Vehicles Team Partners: Hawai`i Natural Energy Institute School of Ocean systems for fueling General Motors (GM) Equinox fuel cell electric vehicles located at Marine Corps Base`i. Overall, this project will support operations of the GM fuel cell vehicle demonstration program in Hawai

  10. http://www.hnei.hawaii.edu/ Phone: (808) 956-8890 Fax: (808) 956-2336 1680 East-West Road, POST 109 Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    Laboratory www.nrl.navy.mil Related Projects: Bio-Fuel Cells Project Hydrogen for GM Fuel Cell Vehicles Ocean of HNEI's Hawai`i Fuel Cell Test Facility. Besides the basic energy need for hydrate exploitation, HNEI hydrate technologies are relevant in areas such as subsea power and logistical fuel supply; geophysical

  11. School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa 1680 East West Rd, POST 802, Honolulu, HI 96822 USA ! www.soest.hawaii.edu

    E-Print Network [OSTI]

    School of Ocean and Earth Science and Technology at the University of Hawaii at Manoa 1680 East West Rd, POST 802, Honolulu, HI 96822 USA ! www.soest.hawaii.edu The UH School of Ocean and Earth School ­ Kapalama "Identification of Marine Fungi Found on Oahu Beaches" SOEST Senior Research, Second

  12. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01T23:59:59.000Z

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  13. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M. [Oak Ridge National Lab., TN (United States); Hamilton, C.B. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  14. Kaupuni Village: A Closer Look at the First Net-Zero Energy Affordable Housing Community in Hawai'i (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01T23:59:59.000Z

    This is the first of four Hawaii Clean Energy Initiative community brochures focused on HCEI success stories. This brochure focuses on the first LEED Platinum net-zero energy affordable housing community in Hawaii. Our lead NREL contact for HCEI is Ken Kelly.

  15. Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project

    E-Print Network [OSTI]

    Wang, Yuqing

    Hawai`i Institute of Marine Biology to house state-of-the-art solar energy project Landmark purchasing agreement (PPA) with SolarCity to provide renewable solar energy to the Hawai`i Institute this one make solar both logical and affordable." Power purchase agreements for renewable energy

  16. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01T23:59:59.000Z

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  17. Star Formation in the Era of the Three Great Observatories

    E-Print Network [OSTI]

    Scott J. Wolk; Norbert Schulz; John Stauffer; Nancy Evans; Leisa Townsley; Tom Megeath; Dave Huenemoerder; Claus Leitherer; Ray Jayawardana

    2006-04-19T23:59:59.000Z

    This paper summarizes contributions and suggestions as presented at the Chandra Workshop Star Formation in the Era of Three Great Observatories conducted in July 2005. One of the declared goals of the workshop was to raise recognition within the star formation research community about the sensible future utilization of the space observatories Spitzer, Hubble, and Chandra in their remaining years of operation to tackle imminent questions of our understanding of stellar formation and the early evolution of stars. A white paper was generated to support the continuous and simultaneous usage of observatory time for star formation research. The contents of this paper have been presented and discussed at several other meetings during the course of 2005 and January 2006.

  18. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sengupta, M.; Andreas, A.

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  19. Measurements of electric and magnetic fields in the Waianae, Hawaii area

    SciTech Connect (OSTI)

    Mantiply, E.D.

    1992-07-01T23:59:59.000Z

    During November 27--30, 1990, the US Environmental Protection Agency (EPA) conducted a measurement survey of electric and magnetic field levels along the southwest coast of Oahu, Hawaii. These measurements were requested by the State of Hawaii to determine the levels of radiofrequency (RF) electric and magnetic fields near Naval radio transmitters at Lualualei. The objective was to determine maximum fields in residential areas. This report documents the measurement results. Also, a few measurements were made of extremely-low-frequency (ELF) electric and magnetic fields at 60 hertz, the frequency used for electrical power.

  20. UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF UC OBSERVATORIES

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF UC OBSERVATORIES Postdoctoral Scholar The Inter) and the University of California, Santa Cruz (UCSC) invites applications for the position of Postdoctoral Scholar: Postdoctoral Scholar - Employee SALARY: $51,776 ­ $55,128, commensurate with qualifications and experience

  1. Jose Groh (Geneva Observatory, Switzerland) Luminous Blue Variables

    E-Print Network [OSTI]

    Crowther, Paul

    Jose Groh (Geneva Observatory, Switzerland) Luminous Blue Variables: massive stars extremely close Groh - Luminous BlueVariables: massive stars extremely close to the Eddington limit JD2:Very massive Jose Groh - Luminous BlueVariables: massive stars extremely close to the Eddington limit JD2:Very

  2. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia ELECTRONICS DIVISION INTERNAL REPORT the earth's axis and perpendic- ular to the Greenwich Meridian, call it the east-west plane. A telescope's rectangular cordinate components (x,y,z) are X = 882880.0208m Distance from the east-west plane, Greenwich

  3. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report which has been used on all systems mounted in the past at the 300-foot telescope. The East and West 14 are so made to allow the East and West 1410 MHz feeds to be positioned 2. 63, 5.24, 7.88 and 10. 52

  4. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report (Polarization) Focus Declination Beam East on Sky (Feed West of Center) Beam North to West on Sky (Feed North to West on Sky) Feed moves down toward surface Beam South on Sky Position Read- out Sign 300-FOOT

  5. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK ) WEST VIRGINIA

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK ) WEST VIRGINIA ELECTRONICS DIVISION INTERNAL REPORT No. 159 INTERFERENCE POTENTIAL FOR RADIO ASTRONOMY OBSERVATIONS AT GREEN BANK, WEST VIRGINIA CRAIG ASTRONOMY OBSERVATIONS AT GREEN BANK, WEST VIRGINIA Craig R. Moore and James L. Dolan Introduction

  6. INDIA-BASED NEUTRINO OBSERVATORY INO/2005/01

    E-Print Network [OSTI]

    Udgaonkar, Jayant B.

    important developments have occurred recently in neutrino physics and neutrino astronomy. OscillationsINDIA-BASED NEUTRINO OBSERVATORY INO/2005/01 Interim Project Report Volume I I N O #12;#12;The INO of neutrinos and the inferred discovery that neutrinos have mass are likely to have far-reaching consequences

  7. Results from the Milagro Gamma-Ray Observatory

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    V energies, and a search for transient emission above 100 GeV from gamma-ray bursts. 1 Introduction remnants and gamma-ray bursts (GRB). Gamma rays are also produced when high-energy cosmic rays interactResults from the Milagro Gamma-Ray Observatory E. Blaufuss for the Milagro Collaboration a,1 , a

  8. BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH

    E-Print Network [OSTI]

    BIG BEAR SOLAR OBSERVATORY CENTER FOR SOLAR-TERRESTRIAL RESEARCH Faculty Position in Solar Physics, New Jersey Institute of Technology A tenure track faculty position in solar physics is available of NJIT's program in solar physics, visit http://solar.njit.edu. Applicants are required to have a Ph

  9. 11Chandra 'Sees' a Distant Planet Evaporating NASA's Chandra Observatory

    E-Print Network [OSTI]

    energy. A simple model of this planet's interior suggests that its atmosphere might account for as much11Chandra 'Sees' a Distant Planet Evaporating NASA's Chandra Observatory has discovered that the star CoRot-2a is a powerful X-ray source. This is unfortunate because it is also known that a planet

  10. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  11. Supporting a Social Media Observatory with Customizable Index Structures --Architecture

    E-Print Network [OSTI]

    research activity in analysis of social media and micro- blogging data in recent years suggests media data. To support these "social media observatories" effectively, a storage platform must satisfy special requirements for loading and storage of multi-terabyte datasets, as well as efficient evaluation

  12. FIRST RESULTS FROM SUPER-KAMIOKANDE Kamioka Observatory,

    E-Print Network [OSTI]

    Tokyo, University of

    FIRST RESULTS FROM SUPER-KAMIOKANDE Y. TOTSUKA Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashimozumi, Kamioka, Gifu, 506-12 Japan (for the Super-Kamiokande Collaboration) A 50,000ton water Cerenkov detector, Super-Kamiokande, has been operational since April 1996

  13. Part I: Instrumentation The Chandra X-ray Observatory and

    E-Print Network [OSTI]

    -ray Observatory showing the HRMA, four sci- entific instruments (two types of gratings, HRC, and ACIS) and major://asc.harvard.edu. 2.2 Scientific Instruments 2.2.1 HRMA At energies above 10 eV, photons scatter at incident angles and (usually) prohibitively expensive endeavor. The High Resolution Mirror Assembly (HRMA) gives Chandra

  14. Part I: Instrumentation The Chandra Xray Observatory and

    E-Print Network [OSTI]

    of the Chandra X­ray Observatory showing the HRMA, four sci­ entific instruments (two types of gratings, HRC://asc.harvard.edu. 2.2 Scientific Instruments 2.2.1 HRMA At energies above ¸10 eV, photons scatter at incident angles and (usually) prohibitively expensive endeavor. The High Resolution Mirror Assembly (HRMA) gives Chandra

  15. The HAWC Gamma-Ray Observatory: Design, Calibration, and Operation

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01T23:59:59.000Z

    The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is under construction 4100 meters above sea level at Sierra Negra, Mexico. We describe the design and cabling of the detector, the characterization of the photomultipliers, and the timing calibration system. We also outline a next-generation detector based on the water Cherenkov technique.

  16. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report line. A 12 V stor- e battery may be attached to the battery connector with pin 1 ground and pin 2 +12 V DC nominal. When the primary power fails, the battery will supply power to the clock. About 1 1/2 amp

  17. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION TECHNICAL NOTE .:41; CLOCK INFORMATION FOR AST 286 COMPUTERS Ronald B. Weimer The battery backed clock is only read (which does not set the battery clock) the AST keeps time from a second crystal oscillator. A rough block

  18. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report No. 109 BATTERY PACK FOR HEWLETT-PACKARD 5065A RUBIDIUM FREQUENCY STANDARD Michael Balister OCTOBER 1971 NUMBER OF COPIES: 150 #12;BATTERY PACK FOR HEWLETT-PACKARD 5065A RUBIDIUM FREQUENCY STANDARD

  19. Early Science Results from SOFIA, the World's Largest Airborne Observatory

    E-Print Network [OSTI]

    De Buizer, James M

    2013-01-01T23:59:59.000Z

    The Stratospheric Observatory For Infrared Astronomy, or SOFIA, is the largest flying observatory ever built,consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt (DLR). By flying at altitudes up to 45000 feet, the observatory gets above 99.9 percent of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This paper reviews a few of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and...

  20. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    SciTech Connect (OSTI)

    Bob Busey; Larry Hinzman

    2012-04-01T23:59:59.000Z

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  1. NATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA

    E-Print Network [OSTI]

    Groppi, Christopher

    not attempted to measure the electrical loss of the samples, nor have we tried plating the EDM'ed surfacesNATIONAL RADIO ASTRONOMY OBSERVATORY GREEN BANK, WEST VIRGINIA ELECTRONICS DIVISION TECHNICAL NOTE FOR SMALL WAVEGUIDE FABRICATION A. R. Kerr, J. W. Lamb, N. J. Bailey, M. Crawford, and N. Horner Electric

  2. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

    1993-10-01T23:59:59.000Z

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

  3. Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration as a CUAHSI Hydrologic Observatory

    E-Print Network [OSTI]

    Tarboton, David

    1 Great Salt Lake Basin Hydrologic Observatory Prospectus Submitted to CUAHSI for consideration.S., the Great Salt Lake Basin provides the opportunity to observe climate and human-induced land-surface changes relationship between people and water across the globe and make the Great Salt Lake Basin a microcosm

  4. Contribution, Linkages and Impacts of the Fisheries Sector to Hawaii's Economy

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    : A Social Accounting Matrix Analysis Shawn Arita Joint Institute for Marine and Atmospheric Research details to reflect the income distribution process of the economy. Hawaii's fisheries operate in a complex environment that is constantly changing due to the varied interest involved with the fishery. The legal issues

  5. 1UNIVERSITY OF HAWAI`I AT HILO GENERAL CATALOG GENERAL CATALOG

    E-Print Network [OSTI]

    Wiegner, Tracy N.

    earned their doctorate degrees · Due to small class size, our faculty are able to develop teaching success. The University of Hawai`i at Hilo truly offers a quality education at a great value. I constantly ....................................................................................... 11 College of Agriculture, Forestry & Natural Resource Management (CAFNRM

  6. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under of the United States Government. Neither the United States Government nor any agency thereof, nor any

  7. University of Hawai`i Watt Watcher: Energy Consumption Data Analysis

    E-Print Network [OSTI]

    University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Final Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

  8. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect (OSTI)

    Trettin, L.D. [Univ. of Tennessee (United States)] [Univ. of Tennessee (United States); Petrich, C.H.; Saulsbury, J.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1996-01-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  9. Hawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

    E-Print Network [OSTI]

    the performance of traditional and emerging PV materials and inverter technologies," Institute Director Richard of the inverters, which convert direct current or DC power generated by the PV panels into alternating currentHawaii Natural Energy Institute installs PV systems at public schools Pacific Business News

  10. Presented at the 34th Annual Hawaii Conference on Systems Sciences, January 3-6 ,2001

    E-Print Network [OSTI]

    company, and the Long Island Power Authority (LIPA) serves customers on the island through itsPresented at the 34th Annual Hawaii Conference on Systems Sciences, January 3-6 ,2001 "Electricity Since electricity, and its reliable provision on command, is a multi-attribute commodity, it should

  11. Bibliography of documents and related materials collected for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Glenn, F.M.; Boston, C.R.; Burns, J.C.; Hagan, C.W. Jr.; Saulsbury, J.W.; Wolfe, A.K.

    1995-03-01T23:59:59.000Z

    This report has been prepared to make available and archive information developed during preparation of the Environmental Impact Statement for Phases 3 and 4 of the Hawaii Geothermal Project as defined by the state of Hawaii in its April 1989 proposal to Congress. On May 17, 1994, the USDOE published a notice in the Federal Register withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report provides a bibliography of documents, published papers, and other reference materials that were obtained or used. The report provides citations for approximately 642 documents, published papers, and other reference materials that were gathered to describe the potentially affected environment on the islands of Hawaii, Maui, and Oahu. The listing also does not include all the reference materials developed by support subcontractors and cooperating agencies who participated in the project. This listing does not include correspondence or other types of personal communications. The documents listed in this report can be obtained from original sources or libraries.

  12. University of Hawai`i Strategic Plan for Information Technology 2000

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of information technology as recurring costs that include stable budgets for computers, software, maintenanceUniversity of Hawai`i Strategic Plan for Information Technology 2000 Executive Summary This Strategic Plan for Information Technology outlines the vision and planning context for moving forward

  13. Hawai'i Community College John Morton, Vice President for Community Colleges

    E-Print Network [OSTI]

    1 Focusing on Boundaries 2 Hawai'i DOE UH Community Colleges 3 High School to College 2,931 3,020 3 Graduates Fall Placement DOE Student Readiness 8 New HS graduation requirements effective with Fall 2012 sciences Common core standards in math and English Common assessment for these standards CTE pathway

  14. Assessment of coal technology options and implications for the State of Hawaii

    SciTech Connect (OSTI)

    Carlson, J.L.; Elcock, D.; Elliott, T.J. [and others] [and others

    1993-12-01T23:59:59.000Z

    The mandate of this research report was to provide the state of Hawaii with an assessment of the potential opportunities and drawbacks of relying on coal-fired generating technologies to diversify its fuel mix and satisfy future electric power requirements. This assessment was to include a review of existing and emerging coal-based power technologies-including their associated costs, environmental impacts, land use, and infrastructure requirements-to determine the range of impacts likely to occur if such systems were deployed in Hawaii. Coupled with this review, the report was also to (1) address siting and safety issues as they relate to technology choice and coal transport, (2) consider how environmental costs associated with coal usage are included in the integrated resource planning (ERP) process, and (3) develop an analytical tool from which the Department of Business, Economic Development & Tourism of the State of Hawaii could conduct first-order comparisons of power plant selection and siting. The prepared report addresses each element identified above. However, available resources and data limitations limited the extent to which particular characteristics of coal use could be assessed. For example, the technology profiles are current but not as complete regarding future developments and cost/emissions data as possible, and the assessment of coal technology deployment issues in Hawaii was conducted on an aggregate (not site-specific) basis. Nonetheless, the information and findings contained in this report do provide an accurate depiction of the opportunities for and issues associated with coal utilization in the state of Hawaii.

  15. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect (OSTI)

    Abreu, Pedro; et al.,

    2013-12-01T23:59:59.000Z

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  16. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect (OSTI)

    Erkelens, Conrad

    1994-03-01T23:59:59.000Z

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  17. Measurement of Aerosols at the Pierre Auger Observatory

    E-Print Network [OSTI]

    S. Y. BenZvi; F. Arqueros; R. Cester; M. Chiosso; B. M. Connolly; B. Fick; A. Filipcic; B. García; A. Grillo; F. Guarino; M. Horvat; M. Iarlori; C. Macolino; M. Malek; J. Matthews; J. A. J. Matthews; D. Melo; R. Meyhandan; M. Micheletti; M. Monasor; M. Mostafá; R. Mussa; J. Pallotta; S. Petrera; M. Prouza; V. Rizi; M. Roberts; J. R. Rodriguez Rojo; D. Rodríguez-Frías; F. Salamida; M. Santander; G. Sequeiros; P. Sommers; A. Tonachini; L. Valore; D. Verberic; E. Visbal; S. Westerhoff; L. Wiencke; D. Zavrtanik; M. Zavrtanik; for the Pierre Auger Collaboration

    2007-06-21T23:59:59.000Z

    The air fluorescence detectors (FDs) of the Pierre Auger Observatory are vital for the determination of the air shower energy scale. To compensate for variations in atmospheric conditions that affect the energy measurement, the Observatory operates an array of monitoring instruments to record hourly atmospheric conditions across the detector site, an area exceeding 3,000 square km. This paper presents results from four instruments used to characterize the aerosol component of the atmosphere: the Central Laser Facility (CLF), which provides the FDs with calibrated laser shots; the scanning backscatter lidars, which operate at three FD sites; the Aerosol Phase Function monitors (APFs), which measure the aerosol scattering cross section at two FD locations; and the Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence of aerosol attenuation.

  18. Managing Distributed Software Development in the Virtual Astronomical Observatory

    E-Print Network [OSTI]

    Evans, Janet D; Bonaventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-01-01T23:59:59.000Z

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides gu...

  19. US earthquake observatories: recommendations for a new national network

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report is the first attempt by the seismological community to rationalize and optimize the distribution of earthquake observatories across the United States. The main aim is to increase significantly our knowledge of earthquakes and the earth's dynamics by providing access to scientifically more valuable data. Other objectives are to provide a more efficient and cost-effective system of recording and distributing earthquake data and to make as uniform as possible the recording of earthquakes in all states. The central recommendation of the Panel is that the guiding concept be established of a rationalized and integrated seismograph system consisting of regional seismograph networks run for crucial regional research and monitoring purposes in tandem with a carefully designed, but sparser, nationwide network of technologically advanced observatories. Such a national system must be thought of not only in terms of instrumentation but equally in terms of data storage, computer processing, and record availability.

  20. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01T23:59:59.000Z

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  1. Technology development for a neutrino astrophysical observatory. Letter of intent

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J. [and others

    1996-02-01T23:59:59.000Z

    The authors propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  2. Technology Development for a Neutrino AstrophysicalObservatory

    SciTech Connect (OSTI)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-02-01T23:59:59.000Z

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory.

  3. A 100-micron polarimeter for the Kuiper Airborne Observatory

    SciTech Connect (OSTI)

    Novak, G.; Gonatas, D.P.; Hildebrand, R.H.; Platt, S.R.

    1989-02-01T23:59:59.000Z

    Consideration is given to the design and performance of the 100-micron polarimeter proposed for use on the NASA Kuiper Airborne Observatory. The polarimeter specifications are listed. The polarimeter design and data reduction techniques are based on the work of Hildebrand et al. (1984) and Dragovan (1986). The polarimeter has an improved signal-to-noise ratio and systematic measurement errors below 0.2 percent. 20 refs.

  4. High-energy Astrophysics and the Virtual Observatory

    E-Print Network [OSTI]

    P. Padovani

    2005-07-26T23:59:59.000Z

    The Virtual Observatory (VO) will revolutionise the way we do Astronomy by allowing easy access to all astronomical data and by making the handling and analysis of datasets at various locations across the globe much simpler and faster. I report here on the need for the VO and its status in Europe, concentrating on the recently started EURO-VO project, and then give two specific applications of VO tools to high-energy astrophysics.

  5. A SURVEY OF EGRET SOURCES USING THE MILAGRO OBSERVATORY

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    V. The third EGRET catalog contained 271 new gamma-ray sources with energies above 100 MeV. The 271 sources OBSERVATORY By Chuan Chen Very high energy gamma-rays can be used to understand some of the most pow- erful detected gamma-ray emission from 30 keV to 30 GeV. EGRET covered an energy range between 20 MeV and 30 Ge

  6. The HAWC Gamma-Ray Observatory: Observations of Cosmic Rays

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01T23:59:59.000Z

    We describe measurements of GeV and TeV cosmic rays with the High-Altitude Water Cherenkov Gamma-Ray Observatory, or HAWC. The measurements include the observation of the shadow of the moon; the observation of small-scale and large-scale angular clustering of the TeV cosmic rays; the prospects for measurement of transient solar events with HAWC; and the observation of Forbush decreases with the HAWC engineering array and HAWC-30.

  7. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    SciTech Connect (OSTI)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Marcum, P. M.; Roellig, T. L.; Temi, P. [NASA Ames Research Center, MS 232, Moffett Field, CA 94035 (United States); Herter, T. L. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Guesten, R. [Max-Planck Institut fuer Radioastronomie, Auf dem Huegel 69, Bonn (Germany); Dunham, E. W. [Lowell Observatory, 1400 W. Mars Hill Rd., Flagstaff AZ 86001 (United States); Backman, D.; Burgdorf, M. [SOFIA Science Center, NASA Ames Research Center, MS 211-1, Moffett Field, CA 94035 (United States); Caroff, L. J.; Erickson, E. F. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Davidson, J. A. [School of Physics, The University of Western Australia (M013), 35 Stirling Highway, Crawley WA 6009 (Australia); Gehrz, R. D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S. E., University of Minnesota, Minneapolis, MN 55455 (United States); Harper, D. A. [Yerkes Observatory, University of Chicago, 373 W. Geneva St., Williams Bay, WI (United States); Harvey, P. M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); and others

    2012-04-20T23:59:59.000Z

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  8. Long-term management and discounting of groundwater resources with a case study of KukioÌ? HawaiiÌ?

    E-Print Network [OSTI]

    Duarte, Thomas Kae̕ o, 1973-

    2002-01-01T23:59:59.000Z

    Long-term management strategies for groundwater resources are examined with theoretical examples and with a case study of Kuki'o, Hawai'i. In Part I a groundwater mining and a dryland salinization optimal management problem ...

  9. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    SciTech Connect (OSTI)

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01T23:59:59.000Z

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  10. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01T23:59:59.000Z

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

  11. Wind Energy Resource Atlas. Volume 11. Hawaii and Pacific Islands Region

    SciTech Connect (OSTI)

    Schroeder, T.A.; Hori, A.M.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-02-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, and assessments of the wind resource in each division of the region. Background on how the wind resource is assessed and on how the results of the assessment should be inerpreted is presented. An introduction and outline to the descriptions of the wind resource for each division are provided. Assessments for individual divisions are presented as separate chapters. Much of the information in the division chapters is given in graphic or tabular form. The sequences for each chapter are similar, but some presentations used for Hawaii are inappropriate or impractical for presentation with the Pacific Islands. Hawaii chapter figure and tables are cited below and appropriate Pacific Islands figure and table numbers are included in brackets ().

  12. Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

    SciTech Connect (OSTI)

    Burman, K.; Kandt, A.; Lisell, L.; Booth, S.

    2012-05-01T23:59:59.000Z

    This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.

  13. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  14. Aperture calculation of the Pierre Auger Observatory surface detector

    SciTech Connect (OSTI)

    Allard, D.; Allekotte, I.; Armengaud, E.; Aublin, J.; Bertou, Xavier; Chou, A.; Ghia, P.L.; Gomez Berisso, M.; Hamilton, J.C.; Lhenry-Yvon, I.; Medina, C.; Navarra, G.; Parizot, E.; Tripathi, A.

    2005-08-01T23:59:59.000Z

    We determine the instantaneous aperture and integrated exposure of the surface detector of the Pierre Auger Observatory, taking into account the trigger efficiency as a function of the energy, arrival direction (with zenith angle lower than 60 degrees) and nature of the primary cosmic-ray. We make use of the so-called Lateral Trigger Probability function (or LTP) associated with an extensive air shower, which summarizes all the relevant information about the physics of the shower, the water tank Cherenkov detector, and the triggers.

  15. The Astrophysical Virtual Observatory to EURO-VO Transition

    E-Print Network [OSTI]

    P. Padovani

    2005-11-09T23:59:59.000Z

    The Astrophysical Virtual Observatory (AVO) initiative, jointly funded by the European Commission and six European organisations, had the task of creating the foundations of a regional scale infrastructure by conducting a research and demonstration programme on the VO scientific requirements and necessary technologies. The AVO project is now formally concluded. I highlight AVO's main achievements and then describe its successor, the EURO-VO project. With its three new interlinked structures, the Data Centre Alliance, the Facility Centre, and the Technology Centre, the EURO-VO is the logical next step for the deployment of an operational VO in Europe.

  16. The Torino Observatory Parallax Program: White Dwarf Candidates

    E-Print Network [OSTI]

    R. L. Smart; M. G. Lattanzi; B. Bucciarelli; G. Massone; R. Casalegno; G. Chiumiento; R. Drimmel; L. Lanteri; F. Marocco; A. Spagna

    2003-03-24T23:59:59.000Z

    We present parallax determinations for six white dwarf candidates in the Torino Observatory Parallax Program. The absolute parallaxes are found with precisions at the 2-3 milliarcsecond level. For WD 1126+185 we find a distance incompatible with being a white dwarf, implying an incorrect classification. For WD 2216+484 we find our distance is consistent with a simple DA white dwarf rather than a composite system as previously proposed in the literature. In general it is found that the published photometric distance is an overestimate of the distance found here.

  17. Performance of the Pierre Auger Observatory Surface Detector

    E-Print Network [OSTI]

    Tiina Suomijarvi for the Pierre Auger Collaboration

    2007-09-12T23:59:59.000Z

    The Surface Detector of the Pierre Auger Observatory will consist of 1600 water Cherenkov tanks sampling ground particles of air showers produced by energetic cosmic rays. The arrival times are obtained from GPS and power is provided by solar panels. The construction of the array is nearly completed and a large number of detectors has been operational for more than three years. In this paper the performance of different components of the detectors are discussed. The accuracy of the signal measurement and the trigger stability are presented. The performance of the solar power system and other hardware, as well as the water purity and its long-term stability are discussed.

  18. Astrophysical Sources of Cosmic Rays and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01T23:59:59.000Z

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data; (2) Discriminating potential astrophysical sources of the highest energy cosmic rays with the Pierre Auger Observatory; (3) Intrinsic anisotropy of the UHECR from the Pierre Auger Observatory; (4) Ultra-high energy photon studies with the Pierre Auger Observatory; (5) Limits on the flux of diffuse ultra high energy neutrinos set using the Pierre Auger Observatory; (6) Search for sidereal modulation of the arrival directions of events recorded at the Pierre Auger Observatory; (7) Cosmic Ray Solar Modulation Studies in the Pierre Auger Observatory; (8) Investigation of the Displacement Angle of the Highest Energy Cosmic Rays Caused by the Galactic Magnetic Field; (9) Search for coincidences with astrophysical transients in Pierre Auger Observatory data; and (10) An alternative method for determining the energy of hybrid events at the Pierre Auger Observatory.

  19. The Cosmic Ray Energy Spectrum and Related Measurements with the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01T23:59:59.000Z

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the cosmic ray energy spectrum above 10{sup 18} eV with the Pierre Auger Observatory; (2) The cosmic ray flux observed at zenith angles larger than 60 degrees with the Pierre Auger Observatory; (3) Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory; (4) Exposure of the Hybrid Detector of The Pierre Auger Observatory; and (5) Energy scale derived from Fluorescence Telescopes using Cherenkov Light and Shower Universality.

  20. Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wilson, Cathy; Rowland, Joel

    The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

  1. Digital Elevation Model, 0.5-m, Barrow Environmental Observatory, Alaska, 2012

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wilson, Cathy; Rowland, Joel

    2013-12-08T23:59:59.000Z

    The dataset is a digital elevation model, DEM, of a 2km by 7km region in the vicinity of the Barrow Environmental Observatory near Barrow, Ak.

  2. LAGOVirtual: A Collaborative Environment for the Large Aperture GRB Observatory

    E-Print Network [OSTI]

    R. Camacho; R. Chacon; G. Diaz; C. Guada; V. Hamar; H. Hoeger; A. Melfo; L. A. Nunez; Y. Perez; C. Quintero; M. Rosales; R. Torrens; the LAGO Collaboration

    2009-12-12T23:59:59.000Z

    We present the LAGOVirtual Project: an ongoing project to develop platform to collaborate in the Large Aperture GRB Observatory (LAGO). This continental-wide observatory is devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts, by using the single particle technique in arrays of Water Cherenkov Detectors (WCD) at high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). This platform will allow LAGO collaboration to share data, and computer resources through its different sites. This environment has the possibility to generate synthetic data by simulating the showers through AIRES application and to store/preserve distributed data files collected by the WCD at the LAGO sites. The present article concerns the implementation of a prototype of LAGO-DR adapting DSpace, with a hierarchical structure (i.e. country, institution, followed by collections that contain the metadata and data files), for the captured/simulated data. This structure was generated by using the community, sub-community, collection, item model; available at the DSpace software. Each member institution-country of the project has the appropriate permissions on the system to publish information (descriptive metadata and associated data files). The platform can also associate multiple files to each item of data (data from the instruments, graphics, postprocessed-data, etc.).

  3. LAGOVirtual: A Collaborative Environment for the Large Aperture GRB Observatory

    E-Print Network [OSTI]

    Camacho, R; Diaz, G; Guada, C; Hamar, V; Hoeger, H; Melfo, A; Nunez, L A; Perez, Y; Quintero, C; Rosales, M; Torrens, R

    2009-01-01T23:59:59.000Z

    We present the LAGOVirtual Project: an ongoing project to develop platform to collaborate in the Large Aperture GRB Observatory (LAGO). This continental-wide observatory is devised to detect high energy (around 100 GeV) component of Gamma Ray Bursts, by using the single particle technique in arrays of Water Cherenkov Detectors (WCD) at high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). This platform will allow LAGO collaboration to share data, and computer resources through its different sites. This environment has the possibility to generate synthetic data by simulating the showers through AIRES application and to store/preserve distributed data files collected by the WCD at the LAGO sites. The present article concerns the implementation of a prototype of LAGO-DR adapting DSpace, with a hierarchical structure (i.e. country, institution, followed by collections that contain the metadata and data files), for the captured/simulate...

  4. http://www.bizjournals.com/pacific/blog/morning_call/2012/11/fuel-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST

    E-Print Network [OSTI]

    system costs, Scott Seu, vice president for energy resources at Hawaiian Electric, a subsidiary-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST Fuel cell test lab renamed Hawaii Sustainable Energy Research Facility Staff Pacific Business News The Hawaii Fuel Cell Test Facility, a 10-year-old research project sponsored

  5. Sophia E. Brumer Lamont-Doherty Earth Observatory of Columbia University

    E-Print Network [OSTI]

    Sophia E. Brumer Lamont-Doherty Earth Observatory of Columbia University Ocean and Climate Physics Graduate Research Fellow, Columbia University Department of Earth and Environmental Science (DEES. Gordon, A. Sobel Columbia University, Lamont-Doherty Earth Observatory 2010--2011 J. Hirshi, A. Megann

  6. Progress on the 1.6-meter New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    Progress on the 1.6-meter New Solar Telescope at Big Bear Solar Observatory C. Denkera, P. R, Newark, NJ 07102, U.S.A. bBig Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314, U.S.A. cSeoul National University, School of Earth and Environmental Science, Seoul, 151-742 Republic

  7. Engineering in the service of science; construction of a cabled ocean observatory

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Engineering in the service of science; construction of a cabled ocean observatory Mr. Peter Phibbs for maintenance can quickly make a system uneconomic. Peter Phibbs was project manager for the $75M construction ocean observatory, and went into operation fifteen months ago. The infrastructure demonstrates not only

  8. Thompson March 2003 -1STEREO -Solar Terrestrial Relations Observatory Mission STEREO GS PR

    E-Print Network [OSTI]

    Thompson ­ March 2003 - 1STEREO - Solar Terrestrial Relations Observatory Mission STEREO GS PR STEREO Science Center (SSC) William T. Thompson STEREO Science Center Code 682, NASA-Goddard (William.T.Thompson@gsfc.nasa.gov 301-286-2040) #12;Thompson ­ March 2003 - 2STEREO - Solar Terrestrial Relations Observatory Mission

  9. The Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    mirror (M1) and its alignment with the secondary mirror (M2) will be actively controlled. HighThe Telescope Control System of the New Solar Telescope at Big Bear Solar Observatory G. Yang*a, J of Technology, 323 Martin Luther King Blvd., Newark, NJ 07104; bBig Bear Solar Observatory, 40386 North Shore

  10. GOALS: The Great Observatories All-Sky LIRG Survey J. M. MAZZARELLA,2

    E-Print Network [OSTI]

    Spoon, Henrik

    GOALS: The Great Observatories All-Sky LIRG Survey L. ARMUS,1 J. M. MAZZARELLA,2 A. S. EVANS,3,4 J. The Great Observatories All-Sky LIRG Survey (GOALS20 ) combines data from NASA's Spitzer Space Telescope 200 low-redshift (z Luminous Infrared Galaxies (LIRGs). The LIRGs are a complete subset

  11. AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    E-Print Network [OSTI]

    Sánchez-Janssen, Rubén

    2011-01-01T23:59:59.000Z

    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood -especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwar's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.

  12. The Theoretical Astrophysical Observatory: Cloud-Based Mock Galaxy Catalogues

    E-Print Network [OSTI]

    Bernyk, Maksym; Tonini, Chiara; Hodkinson, Luke; Hassan, Amr H; Garel, Thibault; Duffy, Alan R; Mutch, Simon J; Poole, Gregory B

    2014-01-01T23:59:59.000Z

    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires an expert knowledge of galaxy modelling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalogue suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light-cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, a...

  13. Optical calibration hardware for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    B. A. Moffat; R. J. Ford; F. A. Duncan; K. Graham; A. L. Hallin; C. A. W. Hearns; J. Maneira; P. Skensved; D. R. Grant

    2005-07-19T23:59:59.000Z

    The optical properties of the Sudbury Neutrino Observatory (SNO) heavy water Cherenkov neutrino detector are measured in situ using a light diffusing sphere ("laserball"). This diffuser is connected to a pulsed nitrogen/dye laser via specially developed underwater optical fibre umbilical cables. The umbilical cables are designed to have a small bending radius, and can be easily adapted for a variety of calibration sources in SNO. The laserball is remotely manipulated to many positions in the D2O and H2O volumes, where data at six different wavelengths are acquired. These data are analysed to determine the absorption and scattering of light in the heavy water and light water, and the angular dependence of the response of the detector's photomultiplier tubes. This paper gives details of the physical properties, construction, and optical characteristics of the laserball and its associated hardware.

  14. Single Ion Trapping for the Enriched Xenon Observatory

    SciTech Connect (OSTI)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC; ,

    2006-03-28T23:59:59.000Z

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  15. VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Ángeles, F; Arceo, R; Arteaga-Velázquez, J C; Avila-Aroche, A; Solares, H A Ayala; Badillo, C; Barber, A S; Baughman, B M; Bautista-Elivar, N; Gonzalez, J Becerra; Belmont, E; Benítez, E; BenZvi, S Y; Berley, D; Bernal, A; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Cabrera, I; Carramiñana, A; Castañeda-Martínez, L; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Diaz-Azuara, A; Diaz-Cruz, L; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; Dultzin, D; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; García-Torales, G; Garfias, F; González, A; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Guzmán-Cerón, C; Hampel-Arias, Z; Harding, J P; Hernández-Cervantes, L; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Langarica, R; Lara, A; Lara, G; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-Garcia, R; Marinelli, A; Martínez, L A; Martínez, H; Martínez, O; Martínez-Castro, J; Martos, M; Matthews, J A J; McEnery, J; Torres, E Mendoza; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Page, D P; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Ramírez, I; Renter, A; Rivière, C; Rosa-González, D; Ruiz-Sala, F; Ruiz-Velasco, E L; Ryan, J; Sacahui, J R; Salazar, H; Salesa, F; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Woodle, K Sparks; Springer, R W; Suarez, F; Taboada, I; Tepe, A; Toale, P A; Tollefson, K; Torres, I; Tinoco, S; Ukwatta, T N; Galicia, J F Valdés; Vanegas, P; Vázquez, A; Villaseñor, L; Wall, W; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2014-01-01T23:59:59.000Z

    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.

  16. Species trials for biomass plantations in Hawaii: a first appraisal. Forest Service research paper (Final)

    SciTech Connect (OSTI)

    Schubert, T.H.; Whitesell, C.D.

    1985-08-01T23:59:59.000Z

    Fast-growing trees producing high-density wood are required to justify from an exonomic standpoint short rotation biomass plantations. Nine species trials were established on five sub-tropical sites on the island of Hawaii. Survival and growth of 27 introduced species and the native Acacia koa were appraised at one or more locations, for periods from 24 to 60 months. Performance varied greatly, within, and between all species tested. Eucalyptus saligna and E. grandis usually proved to be the species best adapted to well drained sites. Most failures a-d unsatisfactory performances related to harsh site conditions, such as low soil fertility, droughts, and high winds.

  17. Hawaii Information Package for Chemical Inventory Form (HCIF)/Tier II |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpen Energy

  18. Hawaii NPDES General Permit Notice of Intent Forms Webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEI Reference LibraryAddHawaiiOpenInformation

  19. Introduction: Observatory Techniques in Nineteenth-Century Science and Society David Aubin, Charlotte Bigg, and H. Otto Sibum

    E-Print Network [OSTI]

    Aubin, David

    >David Aubin, Charlotte Bigg, and H. Otto Sibum Observatories--Temples of the most sublime of the sciences

  20. Evaluation of Model Results and Measured Performance of Net-Zero Energy Homes in Hawaii: Preprint

    SciTech Connect (OSTI)

    Norton, P.; Kiatreungwattana, K.; Kelly, K. J.

    2013-03-01T23:59:59.000Z

    The Kaupuni community consists of 19 affordable net-zero energy homes that were built within the Waianae Valley of Oahu, Hawaii in 2011. The project was developed for the native Hawaiian community led by the Department of Hawaiian Homelands. This paper presents a comparison of the modeled and measured energy performance of the homes. Over the first year of occupancy, the community as a whole performed within 1% of the net-zero energy goals. The data show a range of performance from house to house with the majority of the homes consistently near or exceeding net-zero, while a few fall short of the predicted net-zero energy performance. The impact of building floor plan, weather, and cooling set point on this comparison is discussed. The project demonstrates the value of using building energy simulations as a tool to assist the project to achieve energy performance goals. Lessons learned from the energy performance monitoring has had immediate benefits in providing feedback to the homeowners, and will be used to influence future energy efficient designs in Hawaii and other tropical climates.

  1. The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I: Observations and Numerical Predictions*

    E-Print Network [OSTI]

    The Surface Expression of Semidiurnal Internal Tides near a Strong Source at Hawaii. Part I differ significantly. The S2 kinetic energy pattern re- sembles the predicted pattern. In contrast, the observed structure and magnitude of the more important M2 kinetic energy pattern differs significantly from

  2. University of Hawaii Advisory Task Group -Operational Assessment Report on System Level Administration Operating Policies and Practices

    E-Print Network [OSTI]

    #12;University of Hawaii ­ Advisory Task Group - Operational Assessment Report on System Level") approved the formation of an Advisory Task Group on Operational and Financial Controls Improvement ("ATG of eight members, four members from the BOR, and four from private industry with expertise in financial

  3. World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS

    E-Print Network [OSTI]

    IEEE 4 th World Conference on Photovoltaic Conversion, Hawaii, May 8-12, 2006 QUANTIFYING THE LIFE-CYCLE ENVIRONMENTAL PROFILE OF PHOTOVOLTAICS AND COMPARISONS WITH OTHER ELECTRICITY-GENERATING TECHNOLOGIES V and Australian studies portrayed photovoltaic systems as causing significant life-cycle environmental and health

  4. Weather Internship opportunity with KITV 4 Island Television is the ABC television affiliate in Honolulu, Hawai`i.

    E-Print Network [OSTI]

    Weather Internship opportunity with KITV 4 Island Television is the ABC television affiliate in Honolulu, Hawai`i. KITV recognizes that a good internship program can add practical experience to the education a student gains in college or graduate school. KITV has a long-established Internship Program

  5. UNIVERSITYOF HAWAI'I lIl3RARY INTERNAL TIDE SCATTERING AT M1DOCEAN TOPOGRAPHY

    E-Print Network [OSTI]

    Luther, Douglas S.

    of the topography and along a tidal beam up to the first surface bounce. A transition from a beam structure nearUNIVERSITYOF HAWAI'I lIl3RARY INTERNAL TIDE SCATTERING AT M1DOCEAN TOPOGRAPHY A DISSERTATION The scattering ofmode-oneM, internal tides from I) idealized Gaussian topography and 2) the Line Islands Ridge

  6. MTS/IEEE Oceans 2001, Honolulu, Hawaii, November 2001 Controlling an uninstrumented ROV manipulator by visual servoing

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MTS/IEEE Oceans 2001, Honolulu, Hawaii, November 2001 Controlling an uninstrumented ROV manipulator of the approach. I. INTRODUCTION In this paper we present a vision-based method to control the manipulator manipulator called Sherpa. The Sherpa manipulator is not instrumented and is open-loop controlled

  7. Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

  8. Impacts of Radioactive 137Cs on Marine Bacterioplankton: Effects of the Fukushima Disaster on Hawaii's Kaneohe Bay Bacterial Communities

    E-Print Network [OSTI]

    Heller, Paul

    Impacts of Radioactive 137Cs on Marine Bacterioplankton: Effects of the Fukushima Disaster such catastrophe, a tsunami off the coast of Japan, occurred on March 11, 2011. The tsunami caused the Fukushima on the bacterioplankton community of Kaneohe Bay in Oahu, Hawaii. The bay is in the direct path of Fukushima's radioactive

  9. Sequence Logos: A Powerful, Yet Simple, Tool version = 3.03 of hawaii.tex 2003 Feb 12

    E-Print Network [OSTI]

    Schneider, Thomas D.

    Sequence Logos: A Powerful, Yet Simple, Tool version = 3.03 of hawaii.tex 2003 Feb 12 Mark C DNA and protein sequences, the sequence logo, is now available to re- searchers. This method has advantages over the con- ventional method of creating a consensus. For exam- ple, a logo of DNA shows all

  10. Ocean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu Ocean Thermal Resources off the Hawaiian Islands

    E-Print Network [OSTI]

    information to assist developers of ocean thermal energy conversion (OTEC) systems in site selection Energy Conversion The immense size of the ocean thermal resource and the baseload capability of OTECOcean Thermal Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Ocean Thermal Resources off

  11. Was Lepenski Vir an ancient Sun or Pleiades observatory?

    E-Print Network [OSTI]

    Pankovic, Vladan; Krmar, Miodrag

    2015-01-01T23:59:59.000Z

    In this work we consider some old hypotheses according to which remarkable mesolithic village Lepenski Vir (9500 -- 5500 BC) at the right (nearly west) Danube riverside in the Iron gate in Serbia was an ancient (one of the oldest) Sun observatory. We use method recently suggested by A. C. Sparavigna, concretely we use "freely available software" or local Sun radiation direction simulation computer programs. In this way we obtain and discuss pictures of the sunrise in the Lepenski Vir during winter and summer solstice and spring and autumn equinox in relation to position of the mountains, especially Treskavac (Trescovat) and Kukuvija at left (nearly east) Danube riverside (in Romania). While mountain Kukuvija represents really the marker for the Sun in date of the winter solstice, mountain Treskavac, in despite to usual opinions, does not represent a real marker for the Sun in date of the summer solstice. Sun rises behind Treskavac, roughly speaking, between 22.April and 1. May. It corresponds to year period w...

  12. The Large Observatory For x-ray Timing

    E-Print Network [OSTI]

    Feroci, M; Bozzo, E; Barret, D; Brandt, S; Hernanz, M; van der Klis, M; Pohl, M; Santangelo, A; Stella, L; Watts, A; Wilms, J; Zane, S; Ahangarianabhari, M; Albertus, C; Alford, M; Alpar, A; Altamirano, D; Alvarez, L; Amati, L; Amoros, C; Andersson, N; Antonelli, A; Argan, A; Artigue, R; Artigues, B; Atteia, J -L; Azzarello, P; Bakala, P; Baldazzi, G; Balman, S; Barbera, M; van Baren, C; Bhattacharyya, S; Baykal, A; Belloni, T; Bernardini, F; Bertuccio, G; Bianchi, S; Bianchini, A; Binko, P; Blay, P; Bocchino, F; Bodin, P; Bombaci, I; Bidaud, J -M Bonnet; Boutloukos, S; Bradley, L; Braga, J; Brown, E; Bucciantini, N; Burderi, L; Burgay, M; Bursa, M; Budtz-Jørgensen, C; Cackett, E; Cadoux, F R; Cais, P; Caliandro, G A; Campana, R; Campana, S; Capitanio, F; Casares, J; Casella, P; Castro-Tirado, A J; Cavazzuti, E; Cerda-Duran, P; Chakrabarty, D; Château, F; Chenevez, J; Coker, J; Cole, R; Collura, A; Cornelisse, R; Courvoisier, T; Cros, A; Cumming, A; Cusumano, G; D'Aì, A; D'Elia, V; Del Monte, E; De Luca, A; De Martino, D; Dercksen, J P C; De Pasquale, M; De Rosa, A; Del Santo, M; Di Cosimo, S; Diebold, S; Di Salvo, T; 1), I Donnarumma; (32), A Drago; (33), M Durant; (107), D Emmanoulopoulos; (135), M H Erkut; (85), P Esposito; (1, Y Evangelista; 1b),; (24), A Fabian; (34), M Falanga; (25), Y Favre; (35), C Feldman; (128), V Ferrari; (3), C Ferrigno; (133), M Finger; (36), M H Finger; (35, G W Fraser; +),; (2), M Frericks; (7), F Fuschino; (125), M Gabler; (37), D K Galloway; (6), J L Galvez Sanchez; (6), E Garcia-Berro; (10), B Gendre; (62), S Gezari; (39), A B Giles; (40), M Gilfanov; (10), P Giommi; (102), G Giovannini; (102), M Giroletti; (4), E Gogus; (105), A Goldwurm; (86), K Goluchová; (16), D Götz; (16), C Gouiffes; (56), M Grassi; (42), P Groot; (17), M Gschwender; (128), L Gualtieri; (32), C Guidorzi; (3), L Guy; (2), D Haas; (50), P Haensel; (29), M Hailey; (19), F Hansen; (42), D H Hartmann; (43), C A Haswell; (88), K Hebeler; (37), A Heger; (2), W Hermsen; (28), J Homan; (19), A Hornstrup; (23, R Hudec; 72),; (45), J Huovelin; (5), A Ingram; (2), J J M in't Zand; (27), G Israel; (20), K Iwasawa; (47), L Izzo; (2), H M Jacobs; (17), F Jetter; (118, T Johannsen; 127),; (2), H M Jacobs; (2), P Jonker; (126), J Josè; (49), P Kaaret; (123), G Kanbach; (23), V Karas; (6), D Karelin; (29), D Kataria; (49), L Keek; (29), T Kennedy; (17), D Klochkov; (50), W Kluzniak; (17), K Kokkotas; (45), S Korpela; (51), C Kouveliotou; (87), I Kreykenbohm; (2), L M Kuiper; (19), I Kuvvetli; (7), C Labanti; (52), D Lai; (53), F K Lamb; (2), P P Laubert; (105), F Lebrun; (8), D Lin; (29), D Linder; (54), G Lodato; (55), F Longo; (19), N Lund; (131), T J Maccarone; (14), D Macera; (8), S Maestre; (62), S Mahmoodifar; (17), D Maier; (56), P Malcovati; (120), I Mandel; (144), V Mangano; (50), A Manousakis; (7), M Marisaldi; (109), A Markowitz; (35), A Martindale; (59), G Matt; (107), I M McHardy; (60), A Melatos; (61), M Mendez; (85), S Mereghetti; (68), M Michalska; (20), S Migliari; (85, R Mignani; 108),; (62), M C Miller; (49), J M Miller; (57), T Mineo; (112), G Miniutti; (64), S Morsink; (65), C Motch; (13), S Motta; (66), M Mouchet; (8), G Mouret; (19), J Mula?ová; (1, F Muleri; 1b),; (140), T Muñoz-Darias; (95), I Negueruela; (28), J Neilsen; (43), A J Norton; (28), M Nowak; (35), P O'Brien; (19), P E H Olsen; (102), M Orienti; (99, M Orio; 110),; (7), M Orlandini; (68), P Orleanski; (35), J P Osborne; (69), R Osten; (70), F Ozel; (1, L Pacciani; 1b),; (119), M Paolillo; (6), A Papitto; (20), J M Paredes; (83, A Patruno; 141),; (71), B Paul; (17), E Perinati; (115), A Pellizzoni; (47), A V Penacchioni; (136), M A Perez; (72), V Petracek; (10), C Pittori; (95), J Pons; (6), J Portell; (115), A Possenti; (73), J Poutanen; (122), M Prakash; (16), P Le Provost; (70), D Psaltis; (8), D Rambaud; (8), P Ramon; (76), G Ramsay; (1, M Rapisarda; 1b),; (77), A Rachevski; (77), I Rashevskaya; (78), P S Ray; (6), N Rea; (80), S Reddy; (113, P Reig; 81),; (63), M Reina Aranda; (28), R Remillard; (62), C Reynolds; (124), L Rezzolla; (20), M Ribo; (2), R de la Rie; (115), A Riggio; (138), A Rios; (82, P Rodríguez- Gil; 104),; (16), J Rodriguez; (3), R Rohlfs; (57), P Romano; (83), E M R Rossi; (50), A Rozanska; (29), A Rousseau; (84), F Ryde; (63), L Sabau-Graziati; (6), G Sala; (85), R Salvaterra; (61), A Sanna; (134), J Sandberg; (130), S Scaringi; (16), S Schanne; (86), J Schee; (87), C Schmid; (117), S Shore; (27), R Schneider; (88), A Schwenk; (89), A D Schwope; (114), J -Y Seyler; (90), A Shearer; (29), A Smith; (58), D M Smith; (29), P J Smith; (23), V Sochora; (1), P Soffitta; (61), P Soleri; (29), A Spencer

    2014-01-01T23:59:59.000Z

    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we ...

  13. The Final Results from the Sudbury Neutrino Observatory

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.

  14. The 16N Calibration Source for the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    M. R. Dragowsky; A. Hamer; Y. D. Chan; R. Deal; E. D. Earle; W. Frati; E. Gaudette; A. Hallin; C. Hearns; J. Hewett; G. Jonkmans; Y. Kajiyama; A. B. McDonald; B. A. Moffat; E. B. Norman; B. Sur; N. Tagg

    2001-09-15T23:59:59.000Z

    A calibration source using gamma-rays from 16N (t_1/2 = 7.13 s) beta-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form of CO2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D2O or H2O) in a CO2 gas stream via small diameter capillary tubing. The bulk of the activity decays in a decay/trigger chamber designed to block the energetic beta-particles yet permit the primary branch 6.13 MeV gamma-rays to exit. Detection of the coincident beta-particles with plastic scintillator lining the walls of the decay chamber volume provides a tag for the SNO electronics. This paper gives details of the production, transfer, and triggering systems for this source along with a discussion of the source gamma-ray output and performance.

  15. Milagro - A TeV Observatory for Gamma Ray Bursts

    SciTech Connect (OSTI)

    Dingus, B.L. [Los Alamos National Laboratory (United States)

    2004-09-28T23:59:59.000Z

    Milagro is a large field of view ({approx} 2 sr), high duty cycle ({approx}90%), ground-based observatory sensitive to gamma-rays above {approx}100 GeV. This unique detector is ideal for observing the highest energy gamma-rays from gamma-ray bursts. The highest energy gamma rays supply very strong constraints on the nature of gamma-ray burst sources as well as fundamental physics. Because the highest energy gamma-rays are attenuated by pair production with the extragalactic infrared background light, Milagro's sensitivity decreases rapidly for bursts with redshift > 0.5. While only 10 % of bursts have been measured to be within z=0.5, these bursts are very well studied at all wavelengths resulting in the most complete understanding of GRB phenomena. Milagro has sufficient sensitivity in units of E2 dN/dE to detect VHE luminosities lower than the observed luminosities at {approx} 100 keV for these nearby bursts. Therefore, the launch of SWIFT and its ability to localize and measure redshifts of many bursts points to great future possibilities.

  16. Japanese Virtual Observatory (JVO) as an advanced astronomical research enviroment

    E-Print Network [OSTI]

    Y. Shirasaki; M. Tanaka; S. Kawanomoto; S. Honda; M. Ohishi; Y. Mizumoto; N. Yasuda; Y. Masunaga; Y. Ishihara; J. Tsutsumi; H. Nakamoto; Y. Kobayashi; M. Sakamoto

    2006-04-28T23:59:59.000Z

    We present the design and implementation of the Japanese Virtual Observatory (JVO) system. JVO is a portal site to various kinds of astronomical resources distributed all over the world. We have developed five components for constructing the portal: (1) registry, (2) data service, (3) workflow system, (4) data analysis service (5) portal GUI. Registry services are used for publishing and searching data services in the VO, and they are constructed using an OAI-PMH metadata harvesting protocol and a SOAP web service protocol so that VO standard architecture is applied. Data services are developed based on the Astronomical Data Query Language (ADQL) which is an international VO standard and an extension of the standard SQL. The toolkit for building the ADQL-based service is released to the public on the JVO web site. The toolkit also provides the protocol translation from a Simple Image Access Protocol (SIAP) to ADQL protocol, so that both the VO standard service can be constructed using our toolkit. In order to federate the distributed databases and analysis services, we have designed a workflow language which is described in XML and developed execution system of the workflow. We have succeeded to connect to a hundred of data resources of the world as of April 2006. We have applied this system to the study of QSO environment by federating a QSO database, a Subaru Suprim-Cam database, and some analysis services such a SExtractor and HyperZ web services. These experiences are described is this paper.

  17. Performance of the Pierre Auger Observatory Surface Array

    E-Print Network [OSTI]

    The Pierre Auger Collaboration

    2005-08-22T23:59:59.000Z

    The surface detector of the Pierre Auger Observatory is a 1600 water Cherenkov tank array on a triangular 1.5 km grid. The signals from each tank are read out using three 9'' photomultipliers and processed at a sampling frequency of 40 MHz, from which a local digital trigger efficiently selects shower candidates. GPS signals are used for time synchronization and a wireless communication system connects all tanks to the central data acquisition system. Power is provided by a stand-alone solar panel system. With large ambient temperature variations, that can reach over 20 degrees in 24 hours, high salinity, dusty air, high humidity inside the tank, and remoteness of access, the performance and reliability of the array is a challenge. Several key parameters are constantly monitored to ensure consistent operation. The Surface Array has currently over 750 detectors and has been in reliable operation since January 2004. Good uniformity in the response of different detectors and good long term stability is observed.

  18. Conceptual Design of the International Axion Observatory (IAXO)

    E-Print Network [OSTI]

    Armengaud, E; Betz, M; Brax, P; Brun, P; Cantatore, G; Carmona, J M; Carosi, G P; Caspers, F; Caspi, S; Cetin, S A; Chelouche, D; Christensen, F E; Dael, A; Dafni, T; Davenport, M; Derbin, A V; Desch, K; Diago, A; Döbrich, B; Dratchnev, I; Dudarev, A; Eleftheriadis, C; Fanourakis, G; Ferrer-Ribas, E; Galán, J; García, J A; Garza, J G; Geralis, T; Gimeno, B; Giomataris, I; Gninenko, S; Gómez, H; González-Díaz, D; Guendelman, E; Hailey, C J; Hiramatsu, T; Hoffmann, D H H; Horns, D; Iguaz, F J; Irastorza, I G; Isern, J; Imai, K; Jakobsen, A C; Jaeckel, J; Jakov?i?, K; Kaminski, J; Kawasaki, M; Karuza, M; Kr?mar, M; Kousouris, K; Krieger, C; Laki?, B; Limousin, O; Lindner, A; Liolios, A; Luzón, G; Matsuki, S; Muratova, V N; Nones, C; Ortega, I; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Redondo, J; Ringwald, A; Russenschuck, S; Ruz, J; Saikawa, K; Savvidis, I; Sekiguchi, T; Semertzidis, Y K; Shilon, I; Sikivie, P; Silva, H; Kate, H ten; Tomas, A; Troitsky, S; Vafeiadis, T; Bibber, K van; Vedrine, P; Villar, J A; Vogel, J K; Walckiers, L; Weltman, A; Wester, W; Yildiz, S C; Zioutas, K

    2014-01-01T23:59:59.000Z

    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, w...

  19. Preliminary systems engineering evaluations for the National Ecological Observatory Network.

    SciTech Connect (OSTI)

    Robertson, Perry J.; Kottenstette, Richard Joseph; Crouch, Shannon M.; Brocato, Robert Wesley; Zak, Bernard Daniel; Osborn, Thor D.; Ivey, Mark D.; Gass, Karl Leslie; Heller, Edwin J.; Dishman, James Larry; Schubert, William Kent; Zirzow, Jeffrey A.

    2008-11-01T23:59:59.000Z

    The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

  20. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  1. MEASUREMENT OF THE 8 B SOLAR NEUTRINO ENERGY SPECTRUM AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    MEASUREMENT OF THE 8 B SOLAR NEUTRINO ENERGY SPECTRUM AT THE SUDBURY NEUTRINO OBSERVATORY Monica me everything from the fine details of signal extraction, iii #12; Fortran and C++ to bird watching

  2. Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Formaggio, Joseph A.

    We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory (SNO). By exploiting particle identification information obtained from the proportional counters installed ...

  3. A measurement of the atmospheric neutrino flux and oscillation parameters at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Sonley, Thomas John

    2009-01-01T23:59:59.000Z

    Through-going muon events are analyzed as a function of their direction of travel through the Sudbury Neutrino Observatory. Based on simulations and previous measurements, muons with a zenith angle of 1 < cos([theta]zenith) ...

  4. A Reusable Process Control System Framework for the Orbiting Carbon Observatory and NPP Sounder PEATE missions

    E-Print Network [OSTI]

    Mattmann, Chris

    PEATE missions Chris A. Mattmann, Dana Freeborn, Dan Crichton, Brian Foster, Andrew Hart, David Woollard missions: the Orbiting Carbon Observatory (OCO), and NPP Sounder PEATE projects. 1 Introduction Data volume

  5. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15T23:59:59.000Z

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Resu

  6. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  7. Final Technical Report: Hawaii Hydrogen Center for Development and Deployment of Distributed Energy Systems

    SciTech Connect (OSTI)

    Rocheleau, Richard E.

    2008-09-30T23:59:59.000Z

    Hydrogen power park experiments in Hawai‘i produced real-world data on the performance of commercialized electrochemical components and power systems integrating renewable and hydrogen technologies. By analyzing the different losses associated with the various equipment items involved, this work identifies the different improvements necessary to increase the viability of these technologies for commercial deployment. The stand-alone power system installed at Kahua Ranch on the Big Island of Hawaii required the development of the necessary tools to connect, manage and monitor such a system. It also helped the electrolyzer supplier to adapt its unit to the stand-alone power system application. Hydrogen fuel purity assessments conducted at the Hawai‘i Natural Energy Institute (HNEI) fuel cell test facility yielded additional knowledge regarding fuel cell performance degradation due to exposure to several different fuel contaminants. In addition, a novel fitting strategy was developed to permit accurate separation of the degradation of fuel cell performance due to fuel impurities from other losses. A specific standard MEA and a standard flow field were selected for use in future small-scale fuel cell experiments. Renewable hydrogen production research was conducted using photoelectrochemical (PEC) devices, hydrogen production from biomass, and biohydrogen analysis. PEC device activities explored novel configurations of ‘traditional’ photovoltaic materials for application in high-efficiency photoelectrolysis for solar hydrogen production. The model systems investigated involved combinations of copper-indium-gallium-diselenide (CIGS) and hydrogenated amorphous silicon (a-Si:H). A key result of this work was the establishment of a robust “three-stage” fabrication process at HNEI for high-efficiency CIGS thin film solar cells. The other key accomplishment was the development of models, designs and prototypes of novel ‘four-terminal’ devices integrating high-efficiency CIGS and a-Si:H with operating features compatible with high-efficiency photoelectrochemical (PEC) water-splitting. The objective of one activity under the hydrogen production from biomass task was to conduct parametric testing of the Pearson gasifier and to determine the effects of gasifier operating conditions on the gas yields and quality. The hydrogen yield from this gasifier was evaluated in a parametric test series over a range of residence times from 0.8 to 2.2 seconds. H2 concentrations as high as 55% (volume) were measured in the product gas at the longer residence times and this corresponds to a hydrogen yield of 90 kg per tonne of bagasse without gas upgrading. The objective of another activity was to develop hot gas clean-up capabilities for the HNEI gasifier test facility to support hydrogen-from-biomass research. The product gas stream at the outlet of the hot gas filter was characterized for concentrations of permanent gas species and contaminants. Biomass feedstock processing activity included a preliminary investigation into methods for processing sugar cane trash at the Puunene Sugar Factory on the island of Maui, Hawaii. The objective of the investigation was to explore treatment methods that would enable the successful use of cane trash as fuel for the production of hydrogen via gasification. Analyses were completed for the technical and economic feasibility of producing biofuel from photosynthetic marine microbes on a commercial scale. Results included estimates for total costs, energy efficiency, and return on investment. The biohydrogen team undertook a comprehensive review of the field and came to what is considered a realistic conclusion. To summarize, continued research is recommended in the fundamentals of the science related to genetic engineering and specific topics to cover knowledge gaps. In the meantime, the team also advocates continued development of related processes which can be linked to pollution control and other real world applications. The extra revenues hydrogen can provide to these multi-product systems can

  8. Hawaii energy strategy project 2: Fossil energy review. Task 1: World and regional fossil energy dynamics

    SciTech Connect (OSTI)

    Breazeale, K. [ed.; Isaak, D.T.; Yamaguchi, N.; Fridley, D.; Johnson, C.; Long, S.

    1993-12-01T23:59:59.000Z

    This report in the Hawaii Energy Strategy Project examines world and regional fossil energy dynamics. The topics of the report include fossil energy characteristics, the world oil industry including reserves, production, consumption, exporters, importers, refining, products and their uses, history and trends in the global oil market and the Asia-Pacific market; world gas industry including reserves, production, consumption, exporters, importers, processing, gas-based products, international gas market and the emerging Asia-Pacific gas market; the world coal industry including reserves, classification and quality, utilization, transportation, pricing, world coal market, Asia-Pacific coal outlook, trends in Europe and the Americas; and environmental trends affecting fossil fuels. 132 figs., 46 tabs.

  9. A Preliminary Report on the Early History and Archaeology of Kahauale'A, Puna, Hawaii

    SciTech Connect (OSTI)

    Holmes, Tommy

    1982-04-14T23:59:59.000Z

    The following is a report on the findings of a documentary literature search on the ahupuaa of Kahauale'a in the Puna District of the island of Hawaii. Attention is given to the entirety of the ahupuaa, though the emphasis is on the mauka portions from about 1,500 to 3,800-feet elevation, or roughly three miles inland to the northern terminus of the ahupuaa, just below Kilauea. The report was commissioned by The Estate of James Campbell for purposes of ascertaining what the extent of early Hawaiian activities and/or habitation occurred in the mauka regions of Kahauale'a--specifically to see if proposed geothermal drilling activities in these areas would disturb any archaeological sites.

  10. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31T23:59:59.000Z

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  11. WEST VIRGINIA UNIVERSITY and NATIONAL RADIO ASTRONOMY OBSERVATORY APPLICATION FOR RARECATS PROGRAM Deadline for postmark of this application and supporting

    E-Print Network [OSTI]

    Groppi, Christopher

    WEST VIRGINIA UNIVERSITY and NATIONAL RADIO ASTRONOMY OBSERVATORY APPLICATION FOR RARECATS PROGRAM 604 Allen Hall, PO Box 6122 West Virginia University Morgantown, WV 26506-6122 #12;

  12. The Virtual Astronomical Observatory: Re-engineering Access to Astronomical Data

    E-Print Network [OSTI]

    Hanisch, R J; Lazio, T J W; Bunn, S Emery; Evans, J; McGlynn, T A; Plante, R

    2015-01-01T23:59:59.000Z

    The U.S. Virtual Astronomical Observatory was a software infrastructure and development project designed both to begin the establishment of an operational Virtual Observatory (VO) and to provide the U.S. coordination with the international VO effort. The concept of the VO is to provide the means by which an astronomer is able to discover, access, and process data seamlessly, regardless of its physical location. This paper describes the origins of the VAO, including the predecessor efforts within the U.S. National Virtual Observatory, and summarizes its main accomplishments. These accomplishments include the development of both scripting toolkits that allow scientists to incorporate VO data directly into their reduction and analysis environments and high-level science applications for data discovery, integration, analysis, and catalog cross-comparison. Working with the international community, and based on the experience from the software development, the VAO was a major contributor to international standards ...

  13. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    SciTech Connect (OSTI)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01T23:59:59.000Z

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  14. The Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    SciTech Connect (OSTI)

    Murphy, TW; Adelberger, Eric G.; Battat, J.; Carey, LN; Hoyle, Charles D.; LeBlanc, P.; Michelsen, EL; Nordtvedt, K.; Orin, AE; Strasburg, Jana D.; Stubbs, CW; Swanson, HE; Williams, E.

    2008-01-01T23:59:59.000Z

    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to aproximately one-orderof-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.

  15. APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    E-Print Network [OSTI]

    T. W. Murphy, Jr.; E. G. Adelberger; J. B. R. Battat; L. N. Carey; C. D. Hoyle; P. LeBlanc; E. L. Michelsen; K. Nordtvedt; A. E. Orin; J. D. Strasburg; C. W. Stubbs; H. E. Swanson; E. Williams

    2007-11-08T23:59:59.000Z

    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.

  16. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  17. THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS

    SciTech Connect (OSTI)

    Gwyn, Stephen D. J., E-mail: Stephen.Gwyn@nrc-cnrc.gc.ca [Canadian Astronomy Data Centre, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia, V9E 2E7 (Canada)

    2012-02-15T23:59:59.000Z

    This paper describes the image stacks and catalogs of the Canada-France-Hawaii Telescope Legacy Survey produced using the MegaPipe data pipeline at the Canadian Astronomy Data Centre. The Legacy Survey is divided into two parts. The Deep Survey consists of four fields each of 1 deg{sup 2}, with magnitude limits (50% completeness for point sources) of u = 27.5, g = 27.9, r = 27.7, i = 27.4, and z = 26.2. It contains 1.6 Multiplication-Sign 10{sup 6} sources. The Wide Survey consists of 150 deg{sup 2} split over four fields, with magnitude limits of u = 26.0, g = 26.5, r = 25.9, i = 25.7, and z = 24.6. It contains 3 Multiplication-Sign 10{sup 7} sources. This paper describes the calibration, image stacking, and catalog generation process. The images and catalogs are available on the web through several interfaces: normal image and text file catalog downloads, a 'Google Sky' interface, an image cutout service, and a catalog database query service.

  18. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    SciTech Connect (OSTI)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01T23:59:59.000Z

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  19. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01T23:59:59.000Z

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  20. AN INFRARED SPACE OBSERVATORY ATLAS OF BRIGHT SPIRAL GALAXIES1 George J. Bendo,2,3,4

    E-Print Network [OSTI]

    Joseph, Robert D.

    AN INFRARED SPACE OBSERVATORY ATLAS OF BRIGHT SPIRAL GALAXIES1 George J. Bendo,2,3,4 Robert D in a series we present an atlas of infrared images and photometry from 1.2 to 180 lm for a sample of bright galaxies. Using the Infrared Space Observatory (ISO), we have obtained 12 lm images and photometry at 60

  1. LamontDoherty Earth Observatory The Earth Institute at Columbia UniversityThe Earth Institute at Columbia Univ

    E-Print Network [OSTI]

    12 12 Lamont­Doherty Earth Observatory The Earth Institute at Columbia UniversityThe Earth-DOHERTYEARTHOBSERVATORYTHEEARTHINSTITUTEATCOLUMBIAUNIVERSITYBIENNIALREPORT2000­2002 #12;Lamont-Doherty Earth Observatory is renowned in the internationLamont-Doherty Earth suc- cess and innovation in advancing understanding of Earth, for itcess and innovation in advancing

  2. Contact information: Richard Rocheleau (808) 956-8346; Larry Cutshaw (808) 956-7787 Phone: (808) 956-8890; Fax: (808) 956-2336; 1680 East-West Road, POST 109; Honolulu, Hawai`i 96822

    E-Print Network [OSTI]

    in the CCS Figure 4 Flow chart of initial Wind Smoothing Algorithm embedded in the CCS After completing://www.hnei.hawaii.edu/ An Equal Opportunity/Affirmative Action Institution HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean Description Integrating intermittent renewable energy resources onto the electricity grid gives rise

  3. The Astrophysical Multimessenger Observatory Network (AMON) M.W.E. Smith a,b,

    E-Print Network [OSTI]

    Babu, G. Jogesh

    Gravitational radiation Neutrinos Cosmic rays Gamma-ray bursts Supernovae a b s t r a c t We summarize including the Swift [6] and Fermi [7] satellites, the HESS [8], VERITAS [9], and MAGIC [10] TeV gamma-ray telescopes, and the HAWC [11] TeV gamma-ray observatory. Collectively, these facilities promise the first

  4. SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    SEARCH FOR NEUTRON ANTI-NEUTRON OSCILLATION AT THE SUDBURY NEUTRINO OBSERVATORY A Thesis Presented to explain the baryon asymmetry of the universe. In this thesis, a limit on the neutron anti-neutron (nnbar is sampled from the three phases of the SNO experiment to construct a three-phase blind analysis. The profile

  5. Prospects for and Status of CUORE ? The Cryogenic Underground Observatory for Rare Events

    SciTech Connect (OSTI)

    Norman, E B

    2009-07-07T23:59:59.000Z

    CUORE (Cryogenic Underground Observatory for Rare Events) is a next generation experiment designed to search for the neutrinoless DBD of {sup 130}Te using a bolometric technique. The present status of the CUORE is presented along with the latest results from its prototype, CUORICINO.

  6. Directions to the National Radio Astronomy Observatory Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    Directions to the National Radio Astronomy Observatory Green Bank, West Virginia From Charleston Roanoke, VA: Via I-64 West, exit at White Sulphur Springs (Exit 181) and take Rt. 92 North to Green Bank, then take Rt. 92 South to Green Bank. From Washington DC: Via I-66 West to I-81 South. Option 1: Take I-81

  7. Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas-to-particle

    E-Print Network [OSTI]

    Jacobson, Mark

    Size distributions of ionic aerosols measured at Waliguan Observatory: Implication for nitrate gas Plateau. Size-resolved ionic aerosols (NH4 + , Na+ , K+ , Ca2+ , Mg2+ , SO4 2À , ClÀ , NO3 À CO3 2À , formate, acetate and oxalate), organic aerosols, black carbon and gaseous HNO3 and SO2 were measured

  8. MilagroA TeV Observatory for Gamma Ray Bursts

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Milagro­A TeV Observatory for Gamma Ray Bursts B.L. Dingus and the Milagro Collaboration Los energy gamma-rays from gamma-ray bursts. The highest energy gamma rays supply very strong constraints on the nature of gamma-ray burst sources as well as fundamental physics. Because the highest energy gamma-rays

  9. PRELIMINARY PARALLAXES OF 40 L AND T DWARFS FROM THE US NAVAL OBSERVATORY INFRARED ASTROMETRY PROGRAM

    E-Print Network [OSTI]

    Golimowski, David A.

    Observatory, Flagstaff Station, P.O. Box 1149, Flagstaff, AZ 86002; fjv@nofs.navy.mil, aah@nofs.navy.mil, cbl@nofs.navy.mil, guetter@nofs.navy.mil, jam@nofs.navy.mil, blaise@nofs.navy.mil A. J. Burgasser2 Division of Astronomy

  10. Proceedings of ICRC 2001: 1 c Copernicus Gesellschaft 2001 Status of the Milagro Gamma Ray Observatory

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    , active galactic nuclei (AGN), and gamma ray bursts (GRB). In addition, more exotic sources like Gamma Ray Observatory, located at an altitude of 8,600 feet in the Jemez Mountains of New Mexico for sources of TeV gamma rays. It is uniquely capable of search- ing for transient sources of VHE gamma rays

  11. Results from the Milagro Gamma-Ray Observatory E. Blaufuss a

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    V emission from the galactic plane, and a search for transient emission above 100 GeV from gamma ray bursts- clei (AGN), supernova remnants and gamma-ray bursts (GRB). Gamma rays are also produced when high1 Results from the Milagro Gamma-Ray Observatory E. Blaufuss a for the Milagro Collaboration

  12. PROFESSOR WILLIAM MENKE, F-AGU LAMONT-DOHERTY EARTH OBSERVATORY OF COLUMBIA UNIVERSITY

    E-Print Network [OSTI]

    Menke, William

    PROFESSOR WILLIAM MENKE, F-AGU LAMONT-DOHERTY EARTH OBSERVATORY OF COLUMBIA UNIVERSITY CONTACT Prof PREPARATION Ph.D. 1982, Department of Geological Sciences, Columbia University, Geological Sciences, Thesis of Geological Sciences, Columbia University. MS, BS 1976, Department of Earth and Planetary Sciences

  13. Soil CO2 production and surface flux at four climate observatories in eastern Canada

    E-Print Network [OSTI]

    Soil CO2 production and surface flux at four climate observatories in eastern Canada David Risk the climatic controls on soil respiration. We use subsurface CO2 concentrations, surface CO2 flux and detailed physical monitoring of the subsurface regime to examine physical controls on soil CO2 production. Results

  14. The Thermal Control of the New Solar Telescope at Big Bear Observatory

    E-Print Network [OSTI]

    The Thermal Control of the New Solar Telescope at Big Bear Observatory Angelo P. Verdonia and Carsten Denkera aNew Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd, Newark, NJ 07102, US ABSTRACT We present the basic design of the THermal Control System

  15. A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology

    E-Print Network [OSTI]

    Katul, Gabriel

    A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology Witold F. Krajewski,1 Martha C. Anderson,2 William E. Eichinger,1 Dara Entekhabi,3 Brian K arise primarily from an inadequate understanding of the hydrological cycle: on land, in oceans

  16. Nasmyth focus instrumentation of the New Solar Telescope at Big Bear Solar Observatory

    E-Print Network [OSTI]

    field stop and heat reflector (heat-stop), elliptical secondary mirror (SM) and diagonal flats. Figure 1Nasmyth focus instrumentation of the New Solar Telescope at Big Bear Solar Observatory Wenda Caoab Coulterb, and Philip R. Goodeab aCenter for Solar-Terrestrial Research, New Jersey Institute of Technology

  17. 30th International Cosmic Ray Conference Hybrid Performance of the Pierre Auger Observatory

    E-Print Network [OSTI]

    present the results for the hybrid performance of the Observatory, including trigger efficiency, energy 5005, Australia 2 Observatorio Pierre Auger, Av. San Mart´in Norte 304, (5613) Malarg¨ue, Mendoza design, in which ultra high energy cosmic rays are detected simultaneously by fluorescence telescopes

  18. Oceans. Europe2005 An Acoustically-Linked Deep-Ocean Observatory

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    to communications power efficiency and cost of the acoustic and satellite telemetry systems. The efficiency ship servicing. Solarcells on the buoy provide enough power for many hours of Iridium terminalHole Oceano a hicKnstitution A6slmei - A buoy-based observatory that uses acoustic communication to retrieve

  19. NATIONAL RADIO ASTRONOMY OBSERVATORY TITLE: A REVISED VAX FARANT SPLOT ROUTINE AND RELATED APPLE

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY TITLE: A REVISED VAX FARANT SPLOT ROUTINE AND RELATED APPLE #12;A REVISED VAX FARANT SPLOT ROUTINE AND RELATED APPLE II PLOTTING PROGRAM. The purpose of this report is to describe some upgrades made to the VAX 1 SPLOT" routine and the related Apple plotting

  20. Tycho Brahe made observations of the motions of the planets from his great observatory on

    E-Print Network [OSTI]

    Tycho Brahe made observations of the motions of the planets from his great observatory,and understood the importance of random and systematic errors in his observations. In 1600Tycho Brahe employed such a diligent observer inTycho Brahe that his observations convicted this Ptolemaic calculation of an error of 8

  1. Double beta decays and solar neutrinos with 100 MOON(Mo Observatory Of Neutrinos)

    E-Print Network [OSTI]

    Washington at Seattle, University of

    nuclear laboratory for spectroscopic studies of neutrinos Neutrinos are key particles for new frontiers) are sensitive and realistic experiments for studying the Majorana nature of the neutrino and the absolute massDouble beta decays and solar neutrinos with 100 Mo ­MOON(Mo Observatory Of Neutrinos)­ May 24, 2005

  2. Infrared Imaging Solar Spectrograph at Purple Mountain Observatory Hui Li , Zhongyu Fan and Jianqi You

    E-Print Network [OSTI]

    Li, Hui

    Infrared Imaging Solar Spectrograph at Purple Mountain Observatory Hui Li , Zhongyu Fan and Jianqi, Chinese Academy of Sciences Abstract. Since 1986, we have made some improvements to the multichannel solar to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe

  3. Arizona Radio Observatory (ARO) The SMT is the most accurate submillimeter astronomical

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    Arizona Radio Observatory (ARO) The SMT is the most accurate submillimeter astronomical telescope-183 GHz range (2 and 3 mm windows), and the SMT supports 200-490 GHz receivers. Future instrumentation.I.T. Haystack. SMT Structure Geometry Main reflector: paraboloid D=10 m F/D=0.35. Subreflector: hyperboloid d=0

  4. FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY

    E-Print Network [OSTI]

    Waltham, Chris

    FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY NEUTRINO OBSERVATORY for approaching problems that I found to be more generally useful. Godwin Mayers, Chuck Alexander, Jim Cook and with me. v #12; ABSTRACT FIRST MEASUREMENT OF THE FLUX OF SOLAR NEUTRINOS FROM THE SUN AT THE SUDBURY

  5. Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii

    SciTech Connect (OSTI)

    None

    1981-06-01T23:59:59.000Z

    The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

  6. Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)

    SciTech Connect (OSTI)

    None

    1992-09-18T23:59:59.000Z

    This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

  7. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    SciTech Connect (OSTI)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01T23:59:59.000Z

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  8. Early recovery of a Hawaiian lowland rainforest following clearcutting at Kalapana on the Island of Hawaii

    SciTech Connect (OSTI)

    Grossman, D.H.

    1992-01-01T23:59:59.000Z

    The recovery of lowland rainforest vegetation on the Island of Hawaii was evaluated 2 years after clearcutting. Rainforest quality was assessed with regeneration success associated with the environmental changes. Sixty-three percent of the 57 vascular species in the forest were native to the Hawaiian rainforest. Phanerophytes were the most important life form. The presence of Psidium cattleianum and other alien species demonstrated disturbances had occurred in selected areas prior to the clearcutting. Two years after clearcutting (1987), only 24% of the 101 species coming into the clearcut area were native. The shrubs, micro- and nano-phanerophyte, were the dominant life forms, represented by Pipturus albidus, a native rainforest shrub or tree, and four non-native shrub species. Metrosideros polymorpha, the dominant tree in the native forest, was successfully regenerating from seed across the clear-cut area. The forest seedbank analysis also demonstrated that Metrosideros, along with the seeds of important exotic species colonizing the clearcut area were presented in the forest soils. The forest and clearcut species had a high rate of correlation with the elevation gradient. The underlying lava flows strong influenced past and present vegetation associations. In the clearcut area, the degree of compaction and distance from the forest were critical factors determining the composition of recovering vegetation. The microclimate variables of soils, significantly altered due to the effects of clearcutting, and competition from weeds probably lead to poor germination and growth of native rainforest species. This native forest is not pristine, but unique in stature, in complex of cohort stands, and in position on the landscape. It is extremely prone to species composition shift following perturbation, due to the presence of the weed seedbank in the forest seedbank as demonstrated in the dominance of these species across the clearcut area.

  9. Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

    E-Print Network [OSTI]

    Mariangela Settimo; for the Pierre Auger Collaboration

    2012-10-11T23:59:59.000Z

    The energy spectrum of ultra-high energy cosmic rays above 10$^{18}$ eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.

  10. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    E-Print Network [OSTI]

    The Pierre Auger Collaboration; A. Aab; P. Abreu; M. Aglietta; M. Ahlers; E. J. Ahn; I. Al Samarai; I. F. M. Albuquerque; I. Allekotte; J. Allen; P. Allison; A. Almela; J. Alvarez Castillo; J. Alvarez-Muñiz; R. Alves Batista; M. Ambrosio; A. Aminaei; L. Anchordoqui; S. Andringa; C. Aramo; F. Arqueros; H. Asorey; P. Assis; J. Aublin; M. Ave; M. Avenier; G. Avila; A. M. Badescu; K. B. Barber; J. Bäuml; C. Baus; J. J. Beatty; K. H. Becker; J. A. Bellido; C. Berat; X. Bertou; P. L. Biermann; P. Billoir; F. Blanco; M. Blanco; C. Bleve; H. Blümer; M. Bohá?ová; D. Boncioli; C. Bonifazi; R. Bonino; N. Borodai; J. Brack; I. Brancus; P. Brogueira; W. C. Brown; P. Buchholz; A. Bueno; M. Buscemi; K. S. Caballero-Mora; B. Caccianiga; L. Caccianiga; M. Candusso; L. Caramete; R. Caruso; A. Castellina; G. Cataldi; L. Cazon; R. Cester; A. G. Chavez; S. H. Cheng; A. Chiavassa; J. A. Chinellato; J. Chudoba; M. Cilmo; R. W. Clay; G. Cocciolo; R. Colalillo; L. Collica; M. R. Coluccia; R. Conceição; F. Contreras; M. J. Cooper; S. Coutu; C. E. Covault; A. Criss; J. Cronin; A. Curutiu; R. Dallier; B. Daniel; S. Dasso; K. Daumiller; B. R. Dawson; R. M. de Almeida; M. De Domenico; S. J. de Jong; J. R. T. de Mello Neto; I. De Mitri; J. de Oliveira; V. de Souza; L. del Peral; O. Deligny; H. Dembinski; N. Dhital; C. Di Giulio; A. Di Matteo; J. C. Diaz; M. L. D\\'\\iaz Castro; P. N. Diep; F. Diogo; C. Dobrigkeit; W. Docters; J. C. D'Olivo; P. N. Dong; A. Dorofeev; Q. Dorosti Hasankiadeh; M. T. Dova; J. Ebr; R. Engel; M. Erdmann; M. Erfani; C. O. Escobar; J. Espadanal; A. Etchegoyen; P. Facal San Luis; H. Falcke; K. Fang; G. Farrar; A. C. Fauth; N. Fazzini; A. P. Ferguson; M. Fernandes; B. Fick; J. M. Figueira; A. Filevich; A. Filip?i?; B. D. Fox; O. Fratu; U. Fröhlich; B. Fuchs; T. Fuji; R. Gaior; B. Garc\\'\\ia; S. T. Garcia Roca; D. Garcia-Gamez; D. Garcia-Pinto; G. Garilli; A. Gascon Bravo; F. Gate; H. Gemmeke; P. L. Ghia; U. Giaccari; M. Giammarchi; M. Giller; C. Glaser; H. Glass; F. Gomez Albarracin; M. Gómez Berisso; P. F. Gómez Vitale; P. Gonçalves; J. G. Gonzalez; B. Gookin; A. Gorgi; P. Gorham; P. Gouffon; S. Grebe; N. Griffith; A. F. Grillo; T. D. Grubb; Y. Guardincerri; F. Guarino; G. P. Guedes; P. Hansen; D. Harari; T. A. Harrison; J. L. Harton; A. Haungs; T. Hebbeker; D. Heck; P. Heimann; A. E. Herve; G. C. Hill; C. Hojvat; N. Hollon; E. Holt; P. Homola; J. R. Hörandel; P. Horvath; M. Hrabovský; D. Huber; T. Huege; A. Insolia; P. G. Isar; K. Islo; I. Jandt; S. Jansen; C. Jarne; M. Josebachuili; A. Kääpä; O. Kambeitz; K. H. Kampert; P. Kasper; I. Katkov; B. Kégl; B. Keilhauer; A. Keivani; E. Kemp; R. M. Kieckhafer; H. O. Klages; M. Kleifges; J. Kleinfeller; R. Krause; N. Krohm; O. Krömer; D. Kruppke-Hansen; D. Kuempel; N. Kunka; G. La Rosa; D. LaHurd; L. Latronico; R. Lauer; M. Lauscher; P. Lautridou; S. Le Coz; M. S. A. B. Leão; D. Lebrun; P. Lebrun; M. A. Leigui de Oliveira; A. Letessier-Selvon; I. Lhenry-Yvon; K. Link; R. López; A. Lopez Agëra; K. Louedec; J. Lozano Bahilo; L. Lu; A. Lucero; M. Ludwig; H. Lyberis; M. C. Maccarone; M. Malacari; S. Maldera; J. Maller; D. Mandat; P. Mantsch; A. G. Mariazzi; V. Marin; I. C. Mari?; G. Marsella; D. Martello; L. Martin; H. Martinez; O. Mart\\'\\inez Bravo; D. Martraire; J. J. Mas\\'\\ias Meza; H. J. Mathes; S. Mathys; A. J. Matthews; J. Matthews; G. Matthiae; D. Maurel; D. Maurizio; E. Mayotte; P. O. Mazur; C. Medina; G. Medina-Tanco; M. Melissas; D. Melo; E. Menichetti; A. Menshikov; S. Messina; R. Meyhandan; S. Mi?anovi?; M. I. Micheletti; L. Middendorf; I. A. Minaya; L. Miramonti; B. Mitrica; L. Molina-Bueno; S. Mollerach; M. Monasor; D. Monnier Ragaigne; F. Montanet; C. Morello; J. C. Moreno; M. Mostafá; C. A. Moura; M. A. Muller; G. Müller; M. Münchmeyer; R. Mussa; G. Navarra; S. Navas; P. Necesal; L. Nellen; A. Nelles; J. Neuser; D. Newton; M. Niechciol; L. Niemietz; T. Niggemann; D. Nitz; D. Nosek; V. Novotny; L. Nožka; L. Ochilo; A. Olinto; M. Oliveira; V. M. Olmos-Gilbaja; M. Ortiz; N. Pacheco; D. Pakk Selmi-Dei; M. Palatka; J. Pallotta; N. Palmieri; P. Papenbreer; G. Parente; A. Parra; S. Pastor; T. Paul; M. Pech; J. P?kala; R. Pelayo; I. M. Pepe; L. Perrone; R. Pesce; E. Petermann; C. Peters; S. Petrera; A. Petrolini; Y. Petrov; R. Piegaia; T. Pierog; P. Pieroni; M. Pimenta; V. Pirronello; M. Platino; M. Plum; A. Porcelli; C. Porowski; P. Privitera; M. Prouza; V. Purrello; E. J. Quel; S. Querchfeld; S. Quinn; J. Rautenberg; O. Ravel; D. Ravignani; B. Revenu; J. Ridky; S. Riggi; M. Risse; P. Ristori; V. Rizi; J. Roberts; W. Rodrigues de Carvalho; I. Rodriguez Cabo; G. Rodriguez Fernandez; J. Rodriguez Rojo; M. D. Rodr\\'\\iguez-Fr\\'\\ias; G. Ros; J. Rosado; T. Rossler; M. Roth; E. Roulet; A. C. Rovero; C. Rühle; S. J. Saffi; A. Saftoiu; F. Salamida; H. Salazar; F. Salesa Greus

    2014-07-11T23:59:59.000Z

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^\\circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  11. Upper limit on the primary photon fraction from the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Risse, Markus; /Karlsruhe, Forschungszentrum

    2005-07-01T23:59:59.000Z

    Based on observations of the depth of shower maximum performed with the hybrid detector of the Auger Observatory, an upper limit on the cosmic-ray photon fraction of 26% (at 95% confidence level) is derived for primary energies above 10{sup 19} eV. Additional observables recorded with the surface detector array, available for a sub-set of the data sample, support the conclusion that a photon origin of the observed events is not favoured.

  12. The Canadian Automated Meteor Observatory (CAMO): System overview R.J. Weryk a,

    E-Print Network [OSTI]

    Wiegert, Paul

    The Canadian Automated Meteor Observatory (CAMO): System overview R.J. Weryk a, , M.D. Campbell-Brown a,b , P.A. Wiegert a,b , P.G. Brown a,b , Z. Krzeminski a , R. Musci a a Dept. of Physics and Brown, 2012, 2013) using the Canadian Meteor Orbit Radar (CMOR) and a number of Gen-III image

  13. A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    B. Aharmim; S. N. Ahmed; A. E. Anthony; N. Barros; E. W. Beier; A. Bellerive; B. Beltran; M. Bergevin; S. D. Biller; K. Boudjemline; M. G. Boulay; B. Cai; Y. D. Chan; D. Chauhan; M. Chen; B. T. Cleveland; G. A. Cox; X. Dai; H. Deng; J. A. Detwiler; M. DiMarco; M. D. Diamond; P. J. Doe; G. Doucas; P. -L. Drouin; F. A. Duncan; M. Dunford; E. D. Earle; S. R. Elliott; H. C. Evans; G. T. Ewan; J. Farine; H. Fergani; F. Fleurot; R. J. Ford; J. A. Formaggio; N. Gagnon; J. TM. Goon; K. Graham; E. Guillian; S. Habib; R. L. Hahn; A. L. Hallin; E. D. Hallman; P. J. Harvey; R. Hazama; W. J. Heintzelman; J. Heise; R. L. Helmer; A. Hime; C. Howard; M. Huang; P. Jagam; B. Jamieson; N. A. Jelley; M. Jerkins; K. J. Keeter; J. R. Klein; L. L. Kormos; M. Kos; C. Kraus; C. B. Krauss; A. Krueger; T. Kutter; C. C. M. Kyba; R. Lange; J. Law; I. T. Lawson; K. T. Lesko; J. R. Leslie; I. Levine; J. C. Loach; R. MacLellan; S. Majerus; H. B. Mak; J. Maneira; R. Martin; N. McCauley; A. B. McDonald; S. R. McGee; M. L. Miller; B. Monreal; J. Monroe; B. G. Nickel; A. J. Noble; H. M. O'Keeffe; N. S. Oblath; R. W. Ollerhead; G. D. Orebi Gann; S. M. Oser; R. A. Ott; S. J. M. Peeters; A. W. P. Poon; G. Prior; S. D. Reitzner; K. Rielage; B. C. Robertson; R. G. H. Robertson; M. H. Schwendener; J. A. Secrest; S. R. Seibert; O. Simard; J. J. Simpson; D. Sinclair; P. Skensved; T. J. Sonley; L. C. Stonehill; G. Tesic; N. Tolich; T. Tsui; R. Van Berg; B. A. VanDevender; C. J. Virtue; B. L. Wall; D. Waller; H. Wan Chan Tseung; D. L. Wark; P. J. S. Watson; J. Wendland; N. West; J. F. Wilkerson; J. R. Wilson; J. M. Wouters; A. Wright; M. Yeh; F. Zhang; K. Zuber

    2013-09-04T23:59:59.000Z

    The Sudbury Neutrino Observatory (SNO) has confirmed the standard solar model and neutrino oscillations through the observation of neutrinos from the solar core. In this paper we present a search for neutrinos associated with sources other than the solar core, such as gamma-ray bursters and solar flares. We present a new method for looking for temporal coincidences between neutrino events and astrophysical bursts of widely varying intensity. No correlations were found between neutrinos detected in SNO and such astrophysical sources.

  14. Detection of Inclined and Horizontal Showers in the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Elewyck, V. van [Observatorio Pierre Auger, Av. San Martin Norte 304 (5613) Malarguee (Argentina)

    2006-01-06T23:59:59.000Z

    The Pierre Auger Observatory can detect with high efficiency the air showers induced by ultra-high energy cosmic rays incident at large zenith angles {theta} > 60 deg. We describe here the specific characteristics of inclined and horizontal showers, as well as the characteristics of their signal in the surface detector. We point out their relevance both to extend the potential of the detector, and in the context of the detection of high-energy cosmic neutrinos.

  15. Radial Velocity Jitter in Stars from the California and Carnegie Planet Search at Keck Observatory

    E-Print Network [OSTI]

    J. T. Wright

    2005-05-11T23:59:59.000Z

    I present an empirical model for predicting a star's radial velocity jitter from its B-V color, activity level, and absolute magnitude. This model is based on observations of 450 well- observed stars from Keck Observatory for the California and Carnegie Planet Search Program. The model includes noise from both astrophysical sources and systematic errors, and describes jitter as generally increasing with a star's activity and height above the main sequence.

  16. Looking for matter enhanced neutrino oscillations via day v. night asymmetries in the NCD phase of the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Ott, Richard Anthony, III

    2011-01-01T23:59:59.000Z

    To measure the regeneration of electron neutrinos during passage through the Earth via the MSW effect, the difference in electron neutrino flux between day and night is measured at the Sudbury Neutrino Observatory (SNO). ...

  17. Atlantis 11-32 Report Page 1 Update on Experiments Associated with CORK Subseafloor Observatories installed during IODP

    E-Print Network [OSTI]

    Fisher, Andrew

    ) replacement of data loggers at Holes 1026B, 1301A, and 1301B and installation of a supplemental battery associated with other CORK observatories, microbiological sampling, and in-situ analysis

  18. Low-energy-threshold analysis of the Phase I and Phase II data sets of the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    Monroe, Jocelyn

    Results are reported from a joint analysis of Phase I and Phase II data from the Sudbury Neutrino Observatory. The effective electron kinetic energy threshold used is Teff=3.5 MeV, the lowest analysis threshold yet achieved ...

  19. Proceedings of ICRC 2001: 773 c Copernicus Gesellschaft 2001 Implementation of the first level trigger for the auger observatory

    E-Print Network [OSTI]

    (Suomij¨arvi, 2001) powered by solar panels. The station electronics communicates with the observatory delivery schedule, power consump- tion, functionality, and cost goals. This paper discusses the trigger

  20. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont. Together, these firms operated about 820 mines. Estimated value of all marketable clay produced was about

  1. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin. A total of 238 companies operated approximately 700 clay pits or quarries. The leading 20 firms

  2. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, these firms operated approximately 739 mines. The estimated value of all marketable clay produced was about $1

  3. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  4. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode clay produced was about $2.14 billion. Major domestic uses for specific clays were estimated as follows

  5. Hawaii Hydrogen Power Park The U.S. Department of Energy (U.S. DOE) has promoted the vision that the transition to a

    E-Print Network [OSTI]

    ). The objective of the PICHTR project was developing and testing the use of wind and solar power to power small demonstration program we used the electricity generated by the wind turbine and solar array to powerHawaii Hydrogen Power Park Background The U.S. Department of Energy (U.S. DOE) has promoted

  6. The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES

    E-Print Network [OSTI]

    Maruyama, Shigeo

    The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN ABSTRACT Several heat transfer problems related to single

  7. PHOTOMETRIC REDSHIFTS IN THE HAWAII-HUBBLE DEEP FIELD-NORTH (H-HDF-N)

    SciTech Connect (OSTI)

    Yang, G.; Xue, Y. Q.; Kong, X.; Wang, J.-X.; Yuan, Y.-F.; Zhou, H. Y. [Key Laboratory for Research in Galaxies and Cosmology, Center for Astrophysics, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lehmer, B. D. [The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Wu, X.-B. [Department of Astronomy, Peking University, Beijing 100871 (China); Yuan, F., E-mail: yg1991@mail.ustc.edu.cn, E-mail: xuey@ustc.edu.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2015-01-01T23:59:59.000Z

    We derive photometric redshifts (z {sub phot}) for sources in the entire (?0.4 deg{sup 2}) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point-spread-function-matched photometry of 15 broad bands from the ultraviolet (U band) to mid-infrared (IRAC 4.5 ?m). Our catalog consists of a total of 131,678 sources. We evaluate the z {sub phot} quality by comparing z {sub phot} with spectroscopic redshifts (z {sub spec}) when available, and find a value of normalized median absolute deviation ?{sub NMAD} = 0.029 and an outlier fraction of 5.5% (outliers are defined as sources having |z{sub phot} – z{sub spec} |/(1 + z{sub spec} ) > 0.15) for non-X-ray sources. More specifically, we obtain ?{sub NMAD} = 0.024 with 2.7% outliers for sources brighter than R = 23 mag, ?{sub NMAD} = 0.035 with 7.4% outliers for sources fainter than R = 23 mag, ?{sub NMAD} = 0.026 with 3.9% outliers for sources having z < 1, and ?{sub NMAD} = 0.034 with 9.0% outliers for sources having z > 1. Our z {sub phot} quality shows an overall improvement over an earlier z {sub phot} work that focused only on the central H-HDF-N area. We also classify each object as a star or galaxy through template spectral energy distribution fitting and complementary morphological parameterization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2 Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having z {sub spec}), we improve their z {sub phot} quality by adding three additional active galactic nucleus templates, achieving ?{sub NMAD} = 0.035 and an outlier fraction of 12.5%. We make our catalog publicly available presenting both photometry and z {sub phot}, and provide guidance on how to make use of our catalog.

  8. alto loa norte: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    II Coloquio de Teatro y Literatura Dramtica: South BorderFrontera Norte University of Kansas - KU ScholarWorks Summary: FALL 1998 173 II Coloquio de Teatro y Literatura...

  9. altas del loa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de Computacion Cientifica y Programacion Paralela http:luna.inf.um.esgrupo investigacion San Alberto, 14 noviembre 2014 Computacion de Altas Prestaciones San...

  10. Direct-Current Resistivity Survey At Mauna Loa Southwest Rift...

    Open Energy Info (EERE)

    soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys....

  11. angles loa mutation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law...

  12. Mauna Loa Northeast Rift Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic,Maud, Oklahoma:Maumelle,

  13. Mauna Loa Southwest Rift Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy Resources JumpMastic,Maud, Oklahoma:Maumelle,Mauna

  14. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  15. Observatory Collaboration

    E-Print Network [OSTI]

    Waltham, Chris

    . Gaudette, G. Milton, B.Sur Chalk River Laboratories, AECL Research, Chalk River, Ontario K0J 1J0 CANADA 2 J

  16. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  17. The Chicagoland Observatory Underground for Particle Physics cosmic ray veto system

    SciTech Connect (OSTI)

    Crisler, M.; Hall, J.; Ramberg, E.; Kiper, T.; /Fermilab

    2010-11-01T23:59:59.000Z

    A photomultiplier (PMT) readout system has been designed for use by the cosmic ray veto systems of two warm liquid bubble chambers built at Fermilab by the Chicagoland Observatory Underground for Particle Physics (COUPP) collaboration. The systems are designed to minimize the infrastructure necessary for installation. Up to five PMTs can be daisy-chained on a single data link using standard Category 5 network cable. The cables is also serve distribute to low voltage power. High voltage is generated locally on each PMT base. Analog and digital signal processing is also performed locally. The PMT base and system controller design and performance measurements are presented.

  18. Calibration of Muon Reconstruction Algorithms Using an External Muon Tracking System at the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    SNO Collaboration

    2011-05-06T23:59:59.000Z

    To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6 degrees.

  19. Proposal for a quantity based data model in the Virtual Observatory

    E-Print Network [OSTI]

    Brian Thomas; Edward Shaya

    2003-12-23T23:59:59.000Z

    We propose the beginnings of a data model for the Virtual Observatory (VO) built up from simple ``quantity'' objects. In this paper we present how an object-oriented, domain (or namespace)-scoped simple quantity may be used to describe astronomical data. Our model is designed around the requirements that it be searchable and serve as a transport mechanism for all types of VO data and meta-data. In this paper we describe this model in terms of an OWL ontology and UML diagrams. An XML schema is available online.

  20. The HAWC Gamma-Ray Observatory: Sensitivity to Steady and Transient Sources of Gamma Rays

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01T23:59:59.000Z

    The High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory is designed to record air showers produced by cosmic rays and gamma rays between 100 GeV and 100 TeV. Because of its large field of view and high livetime, HAWC is well-suited to measure gamma rays from extended sources, diffuse emission, and transient sources. We describe the sensitivity of HAWC to emission from the extended Cygnus region as well as other types of galactic diffuse emission; searches for flares from gamma-ray bursts and active galactic nuclei; and the first measurement of the Crab Nebula with HAWC-30.

  1. The HAWC Gamma-Ray Observatory: Dark Matter, Cosmology, and Fundamental Physics

    E-Print Network [OSTI]

    Abeysekara, A U; Alvarez, C; Álvarez, J D; Arceo, R; Arteaga-Velázquez, J C; Solares, H A Ayala; Barber, A S; Baughman, B M; Bautista-Elivar, N; Belmont, E; BenZvi, S Y; Berley, D; Rosales, M Bonilla; Braun, J; Caballero-Lopez, R A; Caballero-Mora, K S; Carramiñana, A; Castillo, M; Cotti, U; Cotzomi, J; de la Fuente, E; De León, C; DeYoung, T; Hernandez, R Diaz; Díaz-Vélez, J C; Dingus, B L; DuVernois, M A; Ellsworth, R W; Fernandez, A; Fiorino, D W; Fraija, N; Galindo, A; Garfias, F; González, L X; González, M M; Goodman, J A; Grabski, V; Gussert, M; Hampel-Arias, Z; Hui, C M; Hüntemeyer, P; Imran, A; Iriarte, A; Karn, P; Kieda, D; Kunde, G J; Lara, A; Lauer, R J; Lee, W H; Lennarz, D; Vargas, H León; Linares, E C; Linnemann, J T; Longo, M; Luna-GarcIa, R; Marinelli, A; Martinez, H; Martinez, O; Martínez-Castro, J; Matthews, J A J; Miranda-Romagnoli, P; Moreno, E; Mostafá, M; Nava, J; Nellen, L; Newbold, M; Noriega-Papaqui, R; Oceguera-Becerra, T; Patricelli, B; Pelayo, R; Pérez-Pérez, E G; Pretz, J; Rivière, C; Rosa-González, D; Salazar, H; Salesa, F; Sanchez, F E; Sandoval, A; Santos, E; Schneider, M; Silich, S; Sinnis, G; Smith, A J; Sparks, K; Springer, R W; Taboada, I; Toale, P A; Tollefson, K; Torres, I; Ukwatta, T N; Villaseñor, L; Weisgarber, T; Westerhoff, S; Wisher, I G; Wood, J; Yodh, G B; Younk, P W; Zaborov, D; Zepeda, A; Zhou, H

    2013-01-01T23:59:59.000Z

    The High-Altitude Water Cherenkov Gamma Ray Observatory (HAWC) is designed to perform a synoptic survey of the TeV sky. The high energy coverage of the experiment will enable studies of fundamental physics beyond the Standard Model, and the large field of view of the detector will enable detailed studies of cosmologically significant backgrounds and magnetic fields. We describe the sensitivity of the full HAWC array to these phenomena in five contributions shown at the 33rd International Cosmic Ray Conference in Rio de Janeiro, Brazil (July 2013).

  2. Inverse diffraction for the Atmospheric Imaging Assembly in the Solar Dynamics Observatory

    E-Print Network [OSTI]

    Torre, Gabriele; Benvenuto, Federico; Massone, Anna Maria; Piana, Michele

    2015-01-01T23:59:59.000Z

    The Atmospheric Imaging Assembly in the Solar Dynamics Observatory provides full Sun images every 1 seconds in each of 7 Extreme Ultraviolet passbands. However, for a significant amount of these images, saturation affects their most intense core, preventing scientists from a full exploitation of their physical meaning. In this paper we describe a mathematical and automatic procedure for the recovery of information in the primary saturation region based on a correlation/inversion analysis of the diffraction pattern associated to the telescope observations. Further, we suggest an interpolation-based method for determining the image background that allows the recovery of information also in the region of secondary saturation (blooming).

  3. The Fluorescence Detector of the Pierre Auger Observatory - a Calorimeter for UHECR

    SciTech Connect (OSTI)

    Keilhauer, B. [Universitaet Karlsruhe, Institut fuer Experimentelle Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany); Observatorio Pierre Auger, Av. San Martin Norte 304, 5613 Malarguee (Argentina)

    2006-10-27T23:59:59.000Z

    The Pierre Auger Observatory is a hybrid detector for ultrahigh energy cosmic rays (UHECR) with energies above 1018.5 eV. Currently the first part of the Observatory nears completion in the southern hemisphere in Argentina. One detection technique uses over 1600 water Cherenkov tanks at ground where samples of secondary particles of extensive air showers (EAS) are detected. The second technique is a calorimetric measurement of the energy deposited by EAS in the atmosphere. Charged secondary particles of EAS lose part of their energy in the atmosphere via ionization. The deposited energy is converted into excitation of molecules of the air and afterwards partly emitted as fluorescence light mainly from nitrogen in the wavelength region between 300 and 400 nm. This light is observed with 24 fluorescence telescopes in 4 stations placed at the boundary of the surface array. This setup provides a combined measurement of the longitudinal shower development and the lateral particle distribution at ground of the same event. Details on the fluorescence technique and the necessary atmospheric monitoring will be presented, as well as first physics results on UHECR.

  4. HAWC (High Altitude Water Cherenkov) Observatory for Surveying the TeV Sky

    SciTech Connect (OSTI)

    Dingus, Brenda L. [Los Alamos National Lab, Los Alamos, NM 87545 (United States)

    2007-07-12T23:59:59.000Z

    The HAWC observatory is a proposed, large field of view ({approx}2 sr), high duty cycle (>95%) TeV gamma-ray detector which uses a large pond of water (150 m x 150 m) located at 4300 m elevation. The pond contains 900 photomultiplier tubes (PMTs) to observe the relativistic particles and secondary gamma lays in extensive air showers. This technique has been used successfully by the Milagro observatory to detect known, as well as new, TeV sources. The PMTs and much of the data acquisition system of Milagro will be reused for HAWC, resulting in a cost effective detector ({approx}6M$) that can be built quickly in 2-3 years. The improvements of HAWC will result in {approx}15 times the sensitivity of Milagro. HAWC will survey 2{pi} sr of the sky every day with a sensitivity of the Crab flux at a median energy of 1 TeV. After five years of operation half of the sky will be surveyed to 20 mCrab. This sensitivity will likely result in the discovery of new sources as well as allow the identification of which GLAST sources extend to higher energies.

  5. A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report

    SciTech Connect (OSTI)

    Evans, K.; Woodside, D.; Bruegmann, M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

    1994-08-01T23:59:59.000Z

    A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds, resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.

  6. The exposure of the hybrid detector of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The 'hybrid' detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.

  7. SSALMON - The Solar Simulations for the Atacama Large Millimeter Observatory Network

    E-Print Network [OSTI]

    Wedemeyera, S; Brajsa, R; Barta, M; Hudson, H; Fleishman, G; Loukitcheva, M; Fleck, B; Kontar, E; De Pontieu, B; Tiwari, S; Kato, Y; Soler, R; Yagoubov, P; Black, J H; Antolin, P; Gunar, S; Labrosse, N; Benz, A O; Nindos, A; Steffen, M; Scullion, E; Doyle, J G; Zaqarashvili, T; Hanslmeier, A; Nakariakov, V M; Heinzel, P; Ayres, T; Karlicky, M

    2015-01-01T23:59:59.000Z

    The Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated in 2014 in connection with two ALMA development studies. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new tool, which can also observe the Sun at high spatial, temporal, and spectral resolution. The international SSALMONetwork aims at coordinating the further development of solar observing modes for ALMA and at promoting scientific opportunities for solar physics with particular focus on numerical simulations, which can provide important constraints for the observing modes and can aid the interpretation of future observations. The radiation detected by ALMA originates mostly in the solar chromosphere - a complex and dynamic layer between the photosphere and corona, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere. Potential targets include active regions, prominences, quiet Sun regions, flares. Here, we give a...

  8. The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters

    E-Print Network [OSTI]

    Kaur, Daljeet; Kumar, Sanjeev

    2014-01-01T23:59:59.000Z

    The India-based Neutrino Observatory (INO) will host a 50 kt magnetized iron calorimeter (ICAL) detector that will be able to detect muon tracks and hadron showers produced by Charged-Current muon neutrino interactions in the detector. The ICAL experiment will be able to determine the precision of atmospheric neutrino mixing parameters and neutrino mass hierarchy using atmospheric muon neutrinos through earth matter effect. In this paper, we report on the sensitivity for the atmospheric neutrino mixing parameters ($\\sin^{2}\\theta_{23}$ and $|\\Delta m^{2}_{32}|$) for the ICAL detector using the reconstructed neutrino energy and muon direction as observables. We apply realistic resolutions and efficiencies obtained by the ICAL collaboration with a GEANT4-based simulation to reconstruct neutrino energy and muon direction. Our study shows that using neutrino energy and muon direction as observables for a $\\chi^{2}$ analysis, ICAL detector can measure $\\sin^{2}\\theta_{23}$ and $|\\Delta m^{2}_{32}|$ with 13% and 4%...

  9. Simulation for Iron Calorimeter prototype detector of India-based Neutrino Observatory

    SciTech Connect (OSTI)

    Ghosh, Tapasi; Chattopadhyay, Subhasis [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata-700 064 (India)

    2010-03-30T23:59:59.000Z

    The India-based Neutrino Observatory (INO) collaboration is proposing to build a 50 kton magnetized iron calorimeter (ICAL) detector in an underground laboratory to be located in South India. As a first step towards building the ICAL detector, a 35 ton prototype of the same design has been set up on the surface to track cosmic ray muons. This paper discusses the prototype detector geometry simulation by GEANT4, and the detector response to the cosmic muons. We have developed a track fitting procedure based on the Kalman Filter technique for the prototype detector when the detector is exposed to single muon tracks. The relevant track parameters i.e., momentum, direction and charge are reconstructed and analyzed. Finally we show the resolution of reconstructed momenta.

  10. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-12-01T23:59:59.000Z

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore »design and performance of the TARA transmitter and receiver systems.« less

  11. Anisotropy studies around the Galactic Centre at EeV energies with the Auger Observatory

    SciTech Connect (OSTI)

    Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Anjos, J.C.; Aramo, C.; /Centro Atomico Bariloche /Buenos Aires, IAFE /Buenos Aires, CONICET /Pierre Auger Observ. /La Plata U. /Natl. Tech. U., San Rafael /Adelaide U. /Catholic U. of Bolivia, La Paz /Bolivia U. /Rio de Janeiro, CBPF /Sao Paulo U.; ,

    2006-07-01T23:59:59.000Z

    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius A. Also the events detected simultaneously by the surface and fluorescence detectors (the ''hybrid'' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.

  12. Search for Very High Energy Emission from Satellite-triggered GRBs with the Milagro Observatory

    E-Print Network [OSTI]

    Parkinson, P M S; Atkins, R; Benbow, W; Berley, D; Blaufuss, E; Coyne, D G; De Young, T R; Dingus, B L; Dorfan, D E; Ellsworth, R W; Fleysher, L; Gisler, G; González, M M; Goodman, J A; Haines, T J; Hays, E; Hoffman, C M; Kelley, L A; Lansdell, C P; Linnemann, J T; McEnery, J E; Miller, R S; Mincer, A I; Morales, M F; Némethy, P; Noyes, D; Ryan, J M; Samuelson, F W; Saz-Parkinson, P M; Shoup, A; Sinnis, G; Smith, A J; Sullivan, G W; Williams, D A; Wilson, M E; Xu, X W; Yodh, G B

    2005-01-01T23:59:59.000Z

    The Milagro gamma-ray observatory employs a water Cherenkov detector to observe extensive air showers produced by high energy particles interacting in the Earth's atmosphere. Milagro has a wide field of view (2 sr) and high duty cycle (> 90%) making it an ideal all-sky monitor of the northern hemisphere in the 100 GeV to 100 TeV energy range. More than 45 satellite-triggered gamma-ray bursts (GRBs) have occurred in the field of view of Milagro since January 2000, with the rate of bursts increasing significantly with the launch of Swift. We discuss the most recent results of a search for very high energy (VHE) emission from these GRBs.

  13. Goals and strategies in the global control design of the OAJ Robotic Observatory

    E-Print Network [OSTI]

    Yanes-Díaz, A; Antón, J L; Rueda-Teruel, F; Moles, M; Cenarro, A J; Marín-Franch, A; Ederoclite, A; Gruel, N; Varela, J; Cristóbal-Hornillos, D; Chueca, S; Díaz-Martín, M C; Guillén, L; Luis-Simoes, R; Maícas, N; Lamadrid, J L; López-Sainz, A; Hernández-Fuertes, J; Valdivielso, L; de Oliveira, C Mendes; Penteado, P; Schoenell, W; Kanaan, A

    2014-01-01T23:59:59.000Z

    There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrof\\'isico de Javalambre (OAJ) is a new astronomical facility located at the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed under a global point of view including not only astronomical subsystems but also infrastructure and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtain high cost reduction maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active opt...

  14. New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope

    E-Print Network [OSTI]

    Segev BenZvi; Martina Bohacova; Brian Connolly; Jiri Grygar; Miroslav Hrabovsky; Tatiana Karova; Dusan Mandat; Petr Necesal; Dalibor Nosek; Libor Nozka; Miroslav Palatka; Miroslav Pech; Michael Prouza; Jan Ridky; Petr Schovanek; Radomir Smida; Petr Travnicek; Primo Vitale; Stefan Westerhoff; for the Pierre Auger Collaboration

    2007-06-12T23:59:59.000Z

    FRAM - F/(Ph)otometric Robotic Atmospheric Monitor is the latest addition to the atmospheric monitoring instruments of the Pierre Auger Observatory. An optical telescope equipped with CCD camera and photometer, it automatically observes a set of selected standard stars and a calibrated terrestrial source. Primarily, the wavelength dependence of the attenuation is derived and the comparison between its vertical values (for stars) and horizontal values (for the terrestrial source) is made. Further, the integral vertical aerosol optical depth can be obtained. A secondary program of the instrument, the detection of optical counterparts of gamma-ray bursts, has already proven successful. The hardware setup, software system, data taking procedures, and first analysis results are described in this paper.

  15. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abbasi, R. [Univ. of Utah, Salt Lake City, UT (United States); Takai, H. [Brookhaven National Laboratory (BNL), Upton, NY (United States); Allen, C. [Univ. of Kansas, Lawrence, KS (United States); Beard, L. [Purdue Univ., West Lafayette, IN (United States); Belz, J. [Univ. of Utah, Salt Lake City, UT (United States); Besson, D. [Univ. of Kansas, Lawrence, KS (United States). Moscow Engineering and Physics Inst. (Russian Federation); Byrne, M. [Univ. of Utah, Salt Lake City, UT (United States); Abou Bakr Othman, M. [Univ. of Utah, Salt Lake City, UT (United States); Farhang-Boroujeny, B. [Univ. of Utah, Salt Lake City, UT (United States); Gardner, A. [Univ. of Utah, Salt Lake City, UT (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT (United States); Hanlon, W. [Univ. of Utah, Salt Lake City, UT (United States); Hanson, J. [Univ. of Kansas, Lawrence, KS (United States); Jayanthmurthy, C. [Univ. of Utah, Salt Lake City, UT (United States); Kunwar, S. [Univ. of Kansas, Lawrence, KS (United States); Larson, S. L. [Utah State Univ., Logan, UT (United States); Myers, I. [Univ. of Utah, Salt Lake City, UT (United States); Prohira, S. [Univ. of Kansas, Lawrence, KS (United States); Ratzlaff, K. [Univ. of Kansas, Lawrence, KS (United States); Sokolsky, P. [Univ. of Utah, Salt Lake City, UT (United States); Thomson, G. B. [Univ. of Utah, Salt Lake City, UT (United States); Von Maluski, D. [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01T23:59:59.000Z

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  16. Probing low-x QCD with cosmic neutrinos at the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Anchordoqui, Luis A.; /Northeastern U. /Wisconsin U., Milwaukee; Cooper-Sarkar, Amanda M.; /Oxford U.; Hooper, Dan; /Fermilab; Sarkar, Subir; /Oxford U.

    2006-05-01T23:59:59.000Z

    The sources of the observed ultra-high energy cosmic rays must also generate ultra-high energy neutrinos. Deep inelastic scattering of these neutrinos with nucleons on Earth probe center-of-mass energies {radical}s {approx} 100 TeV, well beyond those attainable at terrestrial colliders. By comparing the rates for two classes of observable events, any departure from the benchmark (unscreened perturbative QCD) neutrino-nucleon cross-section can be constrained. Using the projected sensitivity of the Pierre Auger Observatory to quasi-horizontal showers and Earth-skimming tau neutrinos, we show that a ''Super-Auger'' detector can thus provide an unique probe of strong interaction dynamics.

  17. Ultra-stable performance of an underground-based laser interferometer observatory for gravitational waves

    E-Print Network [OSTI]

    S. Sato; S. Miyoki; S. Telada; D. Tatsumi; A. Araya; M. Ohashi; Y. Totsuka; M. Fukushima; M. -K. Fujimoto

    2004-03-18T23:59:59.000Z

    In order to detect the rare astrophysical events that generate gravitational wave (GW) radiation, sufficient stability is required for GW antennas to allow long-term observation. In practice, seismic excitation is one of the most common disturbances effecting stable operation of suspended-mirror laser interferometers. A straightforward means to allow more stable operation is therefore to locate the antenna, the ``observatory'', at a ``quiet'' site. A laser interferometer gravitational wave antenna with a baseline length of 20m (LISM) was developed at a site 1000m underground, near Kamioka, Japan. This project was a unique demonstration of a prototype laser interferometer for gravitational wave observation located underground. The extremely stable environment is the prime motivation for going underground. In this paper, the demonstrated ultra-stable operation of the interferometer and a well-maintained antenna sensitivity are reported.

  18. Solving the Solar Neutrino Problem 2 km Underground -- the Sudbury Neutrino Observatory

    E-Print Network [OSTI]

    A. W. P. Poon; for the SNO Collaboration

    2003-11-30T23:59:59.000Z

    The Sudbury Neutrino Observatory (SNO) is capable of measuring simultaneously the flux of electron-type neutrinos and the total flux of all active flavours of neutrinos originating from the Sun. A model-independent test of neutrino flavour transformation was performed by comparing these two measurements. Assuming an undistorted neutrino energy spectrum, this transformation has been definitively demonstrated in the pure D2O phase of the SNO experiment. In the second phase with dissolved NaCl in the D2O, the total active solar neutrino flux was measured without any assumption on the energy dependence of flavour transformation. In this talk, results from these measurements, their physics implications and the current status of the SNO experiment are presented.

  19. Operating Water Cherenkov Detectors in high altitude sites for the Large Aperture GRB Observatory

    E-Print Network [OSTI]

    Allard, D; Asorey, H; Barros, H; Bertou, X; Castillo, M; Chirinos, J M; De Castro, A; Flores, S; González, J; Berisso, M Gomez; Grajales, J; Guada, C; Day, W R Guevara; Ishitsuka, J; López, J A; Martínez, O; Melfo, A; Meza, E; Loza, P Miranda; Barbosa, E Moreno; Murrugarra, C; Núñez, L A; Ormachea, L J Otiniano; Pérez, G; Perez, Y; Ponce, E; Quispe, J; Quintero, C; Rivera, H; Rosales, M; Rovero, A C; Saavedra, O; Salazar, H; Tello, J C; Peralda, R Ticona; Varela, E; Velarde, A; Villaseñor, L; Wahl, D; Zamalloa, M A

    2009-01-01T23:59:59.000Z

    Water Cherenkov Detectors (WCD) are efficient detectors for detecting GRBs in the 10 GeV - 1 TeV energy range using the single particle technique, given their sensitivity to low energy secondary photons produced by high energy photons when cascading in the atmosphere. The Large Aperture GRB Observatory (LAGO) operates arrays of WCD in high altitude sites (above 4500 m a.s.l.) in Bolivia, Mexico and Venezuela, with planned extension to Peru. Details on the operation and stability of these WCD in remote sites with high background rates of particles will be detailed, and compared to simulations. Specific issues due to operation at high altitude, atmospheric effects and solar activity, as well as possible hardware enhancements will also be presented.

  20. Generation region of pulsating aurora obtained simultaneously by the FAST satellite and a Syowa-Iceland conjugate pair of observatories

    E-Print Network [OSTI]

    California at Berkeley, University of

    Generation region of pulsating aurora obtained simultaneously by the FAST satellite and a Syowa 2004; published 7 October 2004. [1] We have carried out a direct comparison of pulsating auroras), with reference to simultaneous data obtained by a Syowa-Iceland conjugate pair of observatories. The aurora