National Library of Energy BETA

Sample records for lng power sources

  1. Secretary Bodman Tours LNG Powered City Bus in Seoul | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LNG Powered City Bus in Seoul Secretary Bodman Tours LNG Powered City Bus in Seoul December 13, 2006 - 9:46am Addthis Joins Secretary Gutierrez to Highlight Cooperation in Developing and Deploying Clean Energy Technologies SEOUL, KOREA - U.S. Secretary of Energy Samuel W. Bodman today joined U.S. Commerce Secretary Carlos Gutierrez in Seoul, Korea to view a city bus and industrial equipment powered by liquefied natural gas (LNG) built with U.S. technology. Secretaries Bodman and Gutierrez and

  2. Puerto Rico`s EcoElectrica LNG/power project marks a project financing first

    SciTech Connect (OSTI)

    Lammers, R.; Taylor, S.

    1998-02-23

    On Dec. 15, 1997, Enron International and Kenetech Energy Services achieved financial close on the $670 million EcoElectrica liquefied natural gas terminal and cogeneration project proposed for Puerto Rico. The project involves construction of a liquefied natural gas terminal, cogeneration plant, and desalination unit on the southern coast of Puerto Rico, in the Penuelas/Guayanilla area. EcoElectrica will include a 500-mw, combined-cycle cogeneration power plant fueled mainly by LNG imported from the 400 MMcfd Atlantic LNG project on the island of Trinidad. Achieving financial close on a project of this size is always a time-consuming matter and one with a number of challenges. These challenges were increased by the unique nature of both the project and its financing--no project financing had ever before been completed that combined an LNG terminal and power plant. The paper discusses the project, financing details and challenges, key investment considerations, and integrated project prospects.

  3. LNG links remote supplies and markets

    SciTech Connect (OSTI)

    Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N.; Rethore, T.J.

    1997-06-02

    Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

  4. Potential for long-term LNG supplies to the United States

    SciTech Connect (OSTI)

    Lihn, M.L.

    1992-02-01

    Topics discussed here include: (1) terminal capacity; (2) potential sources for US LNG (liquefied natural gas) imports; (3) LNG liquefaction and transportation capacity; (4) historical US LNG imports; (5) LNG supply costs; (6)delivered cost of future LNG imports.

  5. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  6. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  7. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  8. New LNG process scheme

    SciTech Connect (OSTI)

    Foglietta, J.H.

    1999-07-01

    A new LNG cycle has been developed for base load liquefaction facilities. This new design offers a different technical and economical solution comparing in efficiency with the classical technologies. The new LNG scheme could offer attractive business opportunities to oil and gas companies that are trying to find paths to monetize gas sources more effectively; particularly for remote or offshore locations where smaller scale LNG facilities might be applicable. This design offers also an alternative route to classic LNG projects, as well as alternative fuel sources. Conceived to offer simplicity and access to industry standard equipment, This design is a hybrid result of combining a standard refrigeration system and turboexpander technology.

  9. LNG 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 LNG 2016 PDF icon LNG 2016.pdf More Documents & Publications LNG Annual Report - 2015 LNG Annual Report - 2013 LNG Annual Report - 2014

  10. LNG plants in the US and abroad

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-12-31

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT`s LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  11. Louisiana LNG Energy LLC - FE Dkt. No. 14-29-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    29-LNG Louisiana LNG Energy LLC - FE Dkt. No. 14-29-LNG The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric tons per year of LNG (approximately 103.4 bcf of natural gas using a conversion factor of 51.7 bcf of natural gas per million metric tons of LNG) produced from domestic sources for a 25-year period commencing on the earlier of the date of first

  12. ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC |

    Energy Savers [EERE]

    Department of Energy 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC ORDER 3770: BEAR HEAD LNG CORPORATION and BEAR HEAD LNG (USA), LLC OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT U.S.-SOURCED NATURAL GAS BY PIPELINE TO CANADA FOR LIQUEFACTION AND RE-EXPORT IN THE FORM OF LIQUEFIED NATURAL GAS TO NON-FREE TRADE AGREEMENT COUNTRIES On February 5, 2016, the Energy Department issued an authorization to Bear Head LNG Corporation and Bear Head LNG

  13. LNG plants in the US and abroad. [Liquefied Natural Gas (LNG)

    SciTech Connect (OSTI)

    Blazek, C.F.; Biederman, R.T.

    1992-01-01

    The Institute of Gas Technology recently conducted a comprehensive survey of LNG production and storage facilities in North America. This survey was performed as part of IGT's LNG Observer newsletter which covers both domestic and international LNG news, reports on LNG related economics and statistics, and routinely conducts interviews with key industry leaders. In addition to providing consulting services to the LNG industry, IGT has cosponsored the International Conference on Liquefied Natural Gas for the part 20 years. The objective of this paper is to present a summary of our recent survey results as well as provide an overview of world LNG trade. This information is important in assessing the potential near term availability of LNG for transportation applications. The IGT LNG Survey appraised the capacity and current market activity of LNG peak shaving, satellite storage, and import receiving facilities in the United States and Canada. Information was requested from facilities on three main topics: liquefaction, storage, and regasification. Additional questions were posed regarding the year of operation, designer/contractor for liquefaction cycle and storage, source of LNG (for storage-only facilities), plans for expansion, and level of interest in providing LNG as a vehicle fuel. The IGT LNG Survey has to date received information on 56 LNG peak shaving facilities, 28 satellite storage facilities, and 4 LNG import receiving terminals.

  14. Nippon Kokan technical report No. 42, December 1984: overseas. LNG technology special issue

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Contents INCLUDE: fracture toughness of 9% Ni steel and safety of LNG storage tank; fatigue strength and safety assessment of membrane components; comparison of LNG carriers of membrane tank system and spherical tank system; diesel-driven LNG carrier with reliquefaction plant; construction of TGZ MK I system LNG carrier model tank and its cryogenic tests; vacuum insulation test using LNG model tank; estimation of impact pressure and hydrodynamic force due to sloshing in LNG carrier; Higashi-Ohgishima LNG receiving facility for the Tokyo Electric Power Co., Inc.; design of LNG receiving facility; receiving and circulation control system of Higashi-Ohgishima LNG terminal; welding procedure of LNG pipelines; the design method of inground LNG storage tank; the design method of aboveground LNG storage tank; various applications of LNG tank roll-over simulation program ROSP.

  15. LNG Monthly Report - 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Monthly Report - 2015 LNG Monthly Report - 2015 LNG Monthly Report - 2015 PDF icon LNG 2015.pdf More Documents & Publications LNG Annual Report - 2014 LNG Annual Report - 2013

  16. LNG Annual Report - 2010 | Department of Energy

    Office of Environmental Management (EM)

    10 LNG Annual Report - 2010 LNG Annual Report - 2010 PDF icon LNG Annual Report - 2010 More Documents & Publications LNG Annual Report - 2009 LNG Annual Report - 2008

  17. LNG Reports | Department of Energy

    Energy Savers [EERE]

    LNG Reports LNG Reports March 15, 2016 LNG 2016 February 12, 2016 LNG Annual Report - 2015 LNG Annual Report - 2015 June 17, 2015 LNG Annual Report - 2014 LNG Annual Report - 2014 May 28, 2015 Order 3643: Alaska LNG Project, LLC This is the order authorizing Alaska LNG Project, LLC to export Liquefied Natural Gas (LNG) to non-FTA countries. May 12, 2015 Order 3638: Corpus Christi Liquefaction Project This is the order authorizing the Corpus Christi Liquefaction Project to export Liquefied

  18. Hybrid power source

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  19. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan (10516 Royal Birkdale, NE., Albuquerque, NM 87111); Ingersoll, David (5824 Mimosa Pl., NE., Albuquerque, NM 87111)

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  20. Strategic evaluation central to LNG project formation

    SciTech Connect (OSTI)

    Nissen, D.; DiNapoli, R.N.; Yost, C.C.

    1995-07-03

    An efficient-scale, grassroots LNG facility of about 6 million metric tons/year capacity requires a prestart-up outlay of $5 billion or more for the supply facilities--production, feedgas pipeline, liquefaction, and shipping. The demand side of the LNG chain requires a similar outlay, counting the import-regasification terminal and a combination of 5 gigawatts or more of electric power generation or the equivalent in city gas and industrial gas-using facilities. There exist no well-developed commodity markets for free-on-board (fob) or delivered LNG. A new LNG supply project is dedicated to its buyers. Indeed, the buyers` revenue commitment is the project`s only bankable asset. For the buyer to make this commitment, the supply venture`s capability and commitment must be credible: to complete the project and to deliver the LNG reliably over the 20+ years required to recover capital committed on both sides. This requirement has technical, economic, and business dimensions. In this article the authors describe a LNG project evaluation system and show its application to typical tasks: project cost of service and participant shares; LNG project competition; alternative project structures; and market competition for LNG-supplied electric power generation.

  1. LNG Annual Report - 2015 | Department of Energy

    Energy Savers [EERE]

    Annual Report - 2015 LNG Annual Report - 2015 LNG Annual Report - 2015 PDF icon LNG 2015.pdf More Documents & Publications LNG Annual Report - 2014 LNG Annual Report - 2013 LNG Annual Report - 2012

  2. LNG Annual Report - 2004 | Department of Energy

    Office of Environmental Management (EM)

    4 LNG Annual Report - 2004 LNG Annual Report - 2004 PDF icon LNG Annual Report - 2004 More Documents & Publications LNG Annual Report - 2005 LNG Annual Report - 2007 LNG Annual Report - 2006

  3. LNG Annual Report - 2005 | Department of Energy

    Office of Environmental Management (EM)

    5 LNG Annual Report - 2005 LNG Annual Report - 2005 PDF icon LNG Annual Report - 2005 More Documents & Publications LNG Annual Report - 2004 LNG Annual Report - 2006 LNG Annual Report - 2007

  4. LNG Annual Report - 2006 | Department of Energy

    Office of Environmental Management (EM)

    6 LNG Annual Report - 2006 LNG Annual Report - 2006 PDF icon LNG Annual Report - 2006 More Documents & Publications LNG Annual Report - 2007 LNG Annual Report - 2005 LNG Annual Report - 2008

  5. LNG Annual Report - 2007 | Department of Energy

    Office of Environmental Management (EM)

    7 LNG Annual Report - 2007 LNG Annual Report - 2007 (Revised 10/10/2008) PDF icon LNG Annual Report - 2007 More Documents & Publications LNG Annual Report - 2008 LNG Annual Report - 2006 LNG Annual Report - 2005

  6. LNG Annual Report - 2011 | Department of Energy

    Office of Environmental Management (EM)

    1 LNG Annual Report - 2011 LNG Annual Report - 2011 (Revised 3/15/2012) PDF icon LNG Annual Report 2011 More Documents & Publications LNG Annual Report - 2012 LNG Annual Report - 2013 LNG Annual Report - 2010

  7. LNG Annual Report - 2012 | Department of Energy

    Office of Environmental Management (EM)

    2 LNG Annual Report - 2012 LNG Annual Report - 2012 (Revised 3/21/2013) PDF icon LNG Annual Report - 2012 More Documents & Publications LNG Annual Report - 2013 LNG Annual Report - 2014 LNG Annual Report - 2011

  8. LNG Annual Report - 2013 | Department of Energy

    Office of Environmental Management (EM)

    3 LNG Annual Report - 2013 LNG Annual Report - 2013 PDF icon LNG 2013.pdf More Documents & Publications LNG Annual Report - 2012 LNG Annual Report - 2014 LNG Annual Report - 2015

  9. LNG Annual Report - 2014 | Department of Energy

    Office of Environmental Management (EM)

    Annual Report - 2014 LNG Annual Report - 2014 LNG Annual Report - 2014 rev PDF icon LNG 2014 rev2.pdf More Documents & Publications LNG Annual Report - 2013 LNG Annual Report - 2012 LNG Annual Report - 2015

  10. American LNG Hialeah Facility Terminal

    Broader source: Energy.gov [DOE]

    1. R = Registration of company; C (LNG) = Contract involving LNG; C (NG)= Contract involving natural gas supply

  11. LNG Annual Report - 2008 | Department of Energy

    Office of Environmental Management (EM)

    8 LNG Annual Report - 2008 LNG Annual Report - 2008 (Revised 10/14/2009) PDF icon LNG Annual Report - 2008 More Documents & Publications LNG Annual Report - 2009

  12. LNG Annual Report - 2009 | Department of Energy

    Office of Environmental Management (EM)

    9 LNG Annual Report - 2009 LNG Annual Report - 2009 PDF icon LNG Annual Report - 2009 More Documents & Publications LNG Annual Report - 2008

  13. Compact portable electric power sources

    SciTech Connect (OSTI)

    Fry, D.N.; Holcomb, D.E.; Munro, J.K.; Oakes, L.C.; Matson, M.J.

    1997-02-01

    This report provides an overview of recent advances in portable electric power source (PEPS) technology and an assessment of emerging PEPS technologies that may meet US Special Operations Command`s (SOCOM) needs in the next 1--2- and 3--5-year time frames. The assessment was performed through a literature search and interviews with experts in various laboratories and companies. Nineteen PEPS technologies were reviewed and characterized as (1) PEPSs that meet SOCOM requirements; (2) PEPSs that could fulfill requirements for special field conditions and locations; (3) potentially high-payoff sources that require additional R and D; and (4) sources unlikely to meet present SOCOM requirements. 6 figs., 10 tabs.

  14. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect (OSTI)

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  15. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT...

    Office of Environmental Management (EM)

    TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 October 2014 April 2015 More...

  16. SEMI-ANNUAL REPORT - PORT ARTHUR LNG - DKT. NO. 15-53-LNG - ORD...

    Broader source: Energy.gov (indexed) [DOE]

    SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC DBA WALLER POINT LNG - FE DKT. NO. 12-152-LNG...

  17. Conventional power sources for colliders

    SciTech Connect (OSTI)

    Allen, M.A.

    1987-07-01

    At SLAC we are developing high peak-power klystrons to explore the limits of use of conventional power sources in future linear colliders. In an experimental tube we have achieved 150 MW at 1 ..mu..sec pulse width at 2856 MHz. In production tubes for SLAC Linear Collider (SLC) we routinely achieve 67 MW at 3.5 ..mu..sec pulse width and 180 pps. Over 200 of the klystrons are in routine operation in SLC. An experimental klystron at 8.568 GHz is presently under construction with a design objective of 30 MW at 1 ..mu..sec. A program is starting on the relativistic klystron whose performance will be analyzed in the exploration of the limits of klystrons at very short pulse widths.

  18. LNG -- A paradox of propulsion potential

    SciTech Connect (OSTI)

    McKay, D.J.

    1995-12-31

    Liquefied natural gas (LNG) has been demonstrating its viability as a clean-burning alternative fuel for buses and medium- and heavy-duty trucks for the past 30 years. The first known LNG vehicle project began in San Diego in 1965, When San Diego Gas and Electric converted 22 utility trucks and three passenger vehicles to dedicated LNG. A surge in LNG vehicle project activity over the past five years has led to a fairly robust variety of vehicles testing the fuel, from Class 8 tractors, refuse haulers and transit buses to railroad locomotives and ferry boats. Recent technology improvements in engine design, cryogenic tanks, fuel nozzles and other related equipment have made LNG more practical to use than in the 1960s. LNG delivers more than twice the driving range from the same-sized fuel tank as a vehicle powered by compressed natural gas (CNG). Although technical and economic hurdles must be overcome before this fuel can achieve widespread use, various ongoing demonstration projects are showing LNG`s practicality, while serving the vital role of pinpointing those areas of performance that are the prime candidates for improvement.

  19. Power Sources Inc | Open Energy Information

    Open Energy Info (EERE)

    Sources Inc Jump to: navigation, search Name: Power Sources Inc. Place: Charlotte, North Carolina Sector: Biomass Product: US-based operator and developer of biomass-to-energy...

  20. LNG vehicle markets and infrastructure. Final report, October 1994-October 1995

    SciTech Connect (OSTI)

    Nimocks, R.

    1995-09-01

    A comprehensive primary research of the LNG-powered vehicle market was conducted, including: the status of the LNG vehicle programs and their critical constraints and development needs; estimation of the U.S. LNG liquefaction and delivery capacity; profiling of LNG vehicle products and services vendors; identification and evaluation of key market drivers for specific transportation sector; description of the critical issues that determine the size of market demand for LNG as a transportation fuel; and forecasting the demand for LNG fuel and equipment.

  1. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  2. Caribbean LNG project marks progress; LNG tanker launched

    SciTech Connect (OSTI)

    1997-10-20

    World LNG trade continues to expand as construction of a major LNG project in the Caribbean hits full stride this fall and another LNG carrier was launched earlier this year. Engineering is nearly complete and construction is nearing midway on Trinidad`s Atlantic LNG. In Japan, NKK Corp. launched another LNG tanker that employs the membrane-storage system. The 50-mile pipeline to move natural gas to the Atlantic LNG facility is also on track for completion by October 1998.

  3. Technical efforts focus on cutting LNG plant costs

    SciTech Connect (OSTI)

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1995-07-03

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  4. Sabine Pass LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sabine Pass LNG Terminal Sabine Pass LNG Terminal Sabine Pass LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 02/17/13 C (LNG) See Appendix A of Application in Docket 13-30-LNG 04/02/13 C (LNG) See Appendix A of Application in Docket 13-42-LNG 02/14/14 C (NG) Sabine Pass Liquefaction, LLC FE Docket Nos. 10-85-LNG and 10-111-LNG 04/30/14 C (NG) Sabine Pass Liquefaction, LLC FE Docket Nos. 10-85-LNG and 10-111-LNG

  5. Prestressed glass, aezoelectric electrical power source

    DOE Patents [OSTI]

    Newson, Melvin M.

    1976-01-01

    An electrical power source which comprises a body of prestressed glass having a piezoelectric transducer supported on the body in direct mechanical coupling therewith.

  6. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  7. Thermodynamic analysis of solar energy utilization combined with the exploitation of the LNG physical energy

    SciTech Connect (OSTI)

    Bisio, G.; Pisoni, C.

    1995-11-01

    The consumption of LNG (liquid natural gas) is growing and will probably increase rapidly in the near future. Consequently, (in addition to the use of the chemical exergy) the exploitation of the physical energy of LNG, due to its state in liquid phase at a temperature under that of the environment, is becoming more important. Nowadays most of LNG is regassified using the thermal energy of sea water or of warm sea water effluent from a power plant, destroying in this way its physical exergy. Several processes have been considered to utilize the physical exergy of fluids in liquid phase by vaporizing these fluids at atmospheric pressure and cryogenic temperatures. Two general alternatives may be envisaged: (a) direct utilization in cryogenic facilities (cold storage or other process uses); (b) indirect utilization in the generation of electric power. Griepentrog and Weber and others proposed a closed-cycle gas turbine with several kinds of heat sources and with liquid natural gas or hydrogen as the heat sink. In this paper a combined system utilizing a gas turbine with solar heating and LNG refrigerating is examined.

  8. SEMI-ANNUAL REPORT - PORT ARTHUR LNG - DKT. NO. 15-53-LNG - ORD. 3698 |

    Energy Savers [EERE]

    Department of Energy - PORT ARTHUR LNG - DKT. NO. 15-53-LNG - ORD. 3698 SEMI-ANNUAL REPORT - PORT ARTHUR LNG - DKT. NO. 15-53-LNG - ORD. 3698 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG - FE DKT. NO. 12-152-LNG - ORDER 3211 SEMI-ANNUAL REPORT FOR LNG DEVELOPMENT COMPANY, LLC (d/b/a OREGON LNG - NFTA*) FE DKT. NO. 12-77-LNG -

  9. Dominion Cove LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dominion Cove LNG Terminal Dominion Cove LNG Terminal Dominion Cove LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 05/12/13 C (LNG) Update of Dominion Cove Point Concerning Signed LNG Export Contracts 12/30/14 C (LNG) Dominion Cove Point LNG, LP - FE Dkt. No. 11-128-LNG - Public Summary of Contract R = Registration of company; C (LNG) = Contract involving LNG; C (NG)= Contract involving natural gas supply More

  10. Portable thermo-photovoltaic power source

    DOE Patents [OSTI]

    Zuppero, Anthony C. (Idaho Falls, ID); Krawetz, Barton (Idaho Falls, ID); Barklund, C. Rodger (Idaho Falls, ID); Seifert, Gary D. (Idaho Falls, ID)

    1997-01-14

    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  11. EA-164-A Constellation Power Source, Inc | Department of Energy

    Energy Savers [EERE]

    A Constellation Power Source, Inc EA-164-A Constellation Power Source, Inc Order authorizing Constellation Power Source, Inc to export electric energy to Canada. PDF icon EA-164-A Constellation Power Source, Inc More Documents & Publications EA-164 Constellation Power Source, Inc EA-196-A Minnesota Power, Sales EA-232 OGE Energy Resources

  12. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-05-03

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  13. LNG Export Studies

    Broader source: Energy.gov [DOE]

    In 2012, and again in 2015, DOE released studies to assess the macroeconomic impacts of liquefied natural gas (LNG) exports, to inform the decisions on applications seeking authorization to export...

  14. SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13-160-LNG - 3443 | Department of Energy TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 PDF icon October 2014 PDF icon April 2015 More Documents & Publications SEMI-ANNUAL REPORTS - TEXAS LNG BROWNSVILLE LLC - FE DKT. 15-62-LNG - Order 3716 FTA SEMI-ANNUAL REPORTS FOR - STROM, INC. - FE DKT. NO. 14-56-LNG - ORDER NO 3537 SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG

  15. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  16. Supplying LNG markets using nitrogen rejection units at Exxon Shute Creek Facility

    SciTech Connect (OSTI)

    Hanus, P.M.; Kimble, E.L.

    1995-11-01

    Interest is growing in the United States for using Liquid Natural Gas (LNG) as an alternative transportation fuel for diesel and as a source of heating fuel. For gas producers, LNG offers a premium price opportunity versus conventional natural gas sales. To supply this developing market, two existing Nitrogen Rejection Units (NRU) at the Exxon Shute Creek Facility in Wyoming were modified allowing LNG extraction and truck loading for transport to customers. The modifications involved adding heat exchanger capacity to the NRUs to compensate for the refrigeration loss when LNG is removed. Besides allowing for LNG extraction, the modifications also debottlenecked the NRUs resulting in higher methane recovery and lower compression costs. With the modifications, the NRUs are capable of producing for sale 60,000 gpd (5 MMscfd gas equivalent) of high purity LNG. Total investment has been $5 million with initial sales of LNG occurring in September 1994.

  17. Power conditioning system for energy sources

    DOE Patents [OSTI]

    Mazumder, Sudip K. (Chicago, IL); Burra, Rajni K. (Chicago, IL); Acharya, Kaustuva (Chicago, IL)

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  18. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  19. Complete LNG Terminal Status Maps

    Broader source: Energy.gov [DOE]

    A series of slides showing the status of various LNG terminals (existing, under construction, proposed, etc.) in North America.

  20. SEMI-ANNUAL REPORT FOR LNG DEVELOPMENT COMPANY, LLC (d/b/a OREGON LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NFTA*) FE DKT. NO. 12-77-LNG - COND ORDER 3465 | Department of Energy REPORT FOR LNG DEVELOPMENT COMPANY, LLC (d/b/a OREGON LNG - NFTA*) FE DKT. NO. 12-77-LNG - COND ORDER 3465 SEMI-ANNUAL REPORT FOR LNG DEVELOPMENT COMPANY, LLC (d/b/a OREGON LNG - NFTA*) FE DKT. NO. 12-77-LNG - COND ORDER 3465 No Reports Received More Documents & Publications SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER

  1. SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FE DKT. NO. 12-152-LNG - ORDER 3211 | Department of Energy WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG - FE DKT. NO. 12-152-LNG - ORDER 3211 SEMI-ANNUAL REPORTS FOR WALLER LNG SERVICES, LLC D/B/A WALLER POINT LNG - FE DKT. NO. 12-152-LNG - ORDER 3211 PDF icon April 2014 PDF icon October 2013 PDF icon April 2013 More Documents & Publications SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORT FOR LNG DEVELOPMENT COMPANY, LLC (d/b/a

  2. Project financing knits parts of costly LNG supply chain

    SciTech Connect (OSTI)

    Minyard, R.J.; Strode, M.O.

    1997-06-02

    The supply and distribution infrastructure of an LNG project requires project sponsors and LNG buyers to make large, interdependent capital investments. For a grassroots project, substantial investments may be necessary for each link in the supply chain: field development; liquefaction plant and storage; ports and utilities; ships; receiving terminal and related facilities; and end-user facilities such as power stations or a gas distribution network. The huge sums required for these projects make their finance ability critical to implementation. Lenders have become increasingly comfortable with LNG as a business and now have achieved a better understanding of the risks associated with it. Raising debt financing for many future LNG projects, however, will present new and increasingly difficult challenges. The challenge of financing these projects will be formidable: political instability, economic uncertainty, and local currency volatility will have to be recognized and mitigated. Described here is the evolution of financing LNG projects, including the Rasgas LNG project financing which broke new ground in this area. The challenges that lie ahead for sponsors seeking to finance future projects selling LNG to emerging markets are also discussed. And the views of leading experts from the field of project finance, specifically solicited for this article, address major issues that must be resolved for successful financing of these projects.

  3. Freeport LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freeport LNG Terminal Freeport LNG Terminal Freeport LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 09/04/12 R Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC ("FLEX") 09/04/12 R Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC ("FLEX") 04/12/13 C (LNG) Long-term Contracts Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC ("FLEX") 10/25/13 C (LNG) Long-term Contracts

  4. Property:EnergyAccessPowerSource | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Property Name EnergyAccessPowerSource Property Type String Description Power Source Retrieved from "http:en.openei.orgwindex.php?titleProperty:Energy...

  5. Shanghai Pearl Hydrogen Power Source Technology | Open Energy...

    Open Energy Info (EERE)

    Hydrogen Power Source Technology Jump to: navigation, search Name: Shanghai Pearl Hydrogen Power Source Technology Place: Shanghai, Shanghai Municipality, China Product: Chinese...

  6. Power sources manufactures association : power technology roadmap workshop - 2006.

    SciTech Connect (OSTI)

    Bowers, John S.

    2006-03-01

    The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

  7. Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads

    Gasoline and Diesel Fuel Update (EIA)

    14, 2014 Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads The U.S. Energy Information Administration expects liquefied natural gas, or LNG, to play an increasing role in powering freight locomotives in the coming years. EIA's Reference case, in its recently released Annual Energy Outlook 2014 indicates that growing natural gas production and lower natural gas spot prices compared to crude oil prices could provide significant cost savings for locomotives that use LNG as a

  8. SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3620 | Department of Energy SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059

  9. SEMI-ANNUAL REPORTS - TEXAS LNG BROWNSVILLE LLC - FE DKT. 15-62-LNG - Order

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3716 FTA | Department of Energy REPORTS - TEXAS LNG BROWNSVILLE LLC - FE DKT. 15-62-LNG - Order 3716 FTA SEMI-ANNUAL REPORTS - TEXAS LNG BROWNSVILLE LLC - FE DKT. 15-62-LNG - Order 3716 FTA PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600 (FTA) SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG

  10. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3391-A | Department of Energy CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059

  11. SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3680 | Department of Energy Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 PDF icon October 2015 More Documents & Publications SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059

  12. SEMI-ANNUAL REPORTS FOR DELFIN LNG - DKT. NO. 13-129-LNG - ORDER 3393; and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FE DKT. 13-147-LNG (ORDER PENDING) | Department of Energy DELFIN LNG - DKT. NO. 13-129-LNG - ORDER 3393; and FE DKT. 13-147-LNG (ORDER PENDING) SEMI-ANNUAL REPORTS FOR DELFIN LNG - DKT. NO. 13-129-LNG - ORDER 3393; and FE DKT. 13-147-LNG (ORDER PENDING) PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 Summary of LNG Export Applications

  13. SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO. 3600 (FTA) | Department of Energy DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600 (FTA) SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600 (FTA) No Reports Received More Documents & Publications SEMI-ANNUAL REPORTS FOR - STROM, INC. - FE DKT. NO. 14-56-LNG - ORDER NO 3537 SEMI-ANNUAL REPORTS FOR TEXAS LNG - TEXAS LNG - FTA - FE DKT. NO. 13-160-LNG - 3443 SEMI-ANNUAL REPORTS - TEXAS LNG BROWNSVILLE LLC - FE DKT. 15-62-LNG - Order 3716 FTA

  14. SEMI-ANNUAL REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (D/B/A Oregon LNG) -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FE DKT. NO. 12-48-LNG - ORDER 3100 | Department of Energy LNG DEVELOPMENT COMPANY, LLC (D/B/A Oregon LNG) - FE DKT. NO. 12-48-LNG - ORDER 3100 SEMI-ANNUAL REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (D/B/A Oregon LNG) - FE DKT. NO. 12-48-LNG - ORDER 3100 PDF icon April 2013 More Documents & Publications ORDER NO. 3465: LNG DEVELOPMENT COMPANY, LLC Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC) SEMI-ANNUAL REPORT -

  15. U.S. LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    LNG Imports from Canada Champlain, NY Highgate Springs, VT Sumas, WA LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake...

  16. PowerPoint Presentation

    Gasoline and Diesel Fuel Update (EIA)

    LNG World LNG Imports 1964 - 2007 World LNG Imports 1964 - 2007 0 20 40 60 80 100 120 140 160 180 200 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 Americas Total Europe Total Asia in mtpa 7.7%pa 2 LNG 0 4 8 12 16 1 9 6 8 1 9 7 3 1 9 7 8 1 9 8 3 1 9 8 8 1 9 9 3 1 9 9 8 2 0 0 3 Algeria Trinidad Egypt Nigeria Eq. Guinea M. East Pacific Basin in mtpa US LNG Imports by Source 1968-2007 US LNG Imports by Source 1968-2007 3 LNG Regional LNG Production 1990 - 2007 Regional LNG Production 1990

  17. Dimethyl ether fuel proposed as an alternative to LNG

    SciTech Connect (OSTI)

    Kikkawa, Yoshitsugi; Aoki, Ichizo

    1998-04-06

    To cope with the emerging energy demand in Asia, alternative fuels to LNG must be considered. Alternative measures, which convert the natural gas to liquid fuel, include the Fischer-Tropsch conversion, methanol synthesis, and dimethyl ether (DME) synthesis. Comparisons are evaluated based on both transportation cost and feed-gas cost. The analysis will show that DME, one alternative to LNG as transportation fuel, will be more economical for longer distances between the natural-gas source and the consumer. LNG requires a costly tanker and receiving terminal. The break-even distance will be around 5,000--7,000 km and vary depending on the transported volume. There will be risk, however, since there has never been a DME plant the size of an LNG-equivalent plant [6 million metric tons/year (mty)].

  18. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  19. LNG annotated bibliography

    SciTech Connect (OSTI)

    Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

    1982-09-01

    This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

  20. EA-164 Constellation Power Source, Inc | Department of Energy

    Energy Savers [EERE]

    Constellation Power Source, Inc EA-164 Constellation Power Source, Inc Order authorizing Constellation Power Source, Inc to export electric energy to Canada. PDF icon EA-164 Constellation Power Source, Inc More Documents & Publications EA-162 PP&L, Inc EA-163 Duke Energy Trading and Marketing, L.L.C EA-158 Williams Energy Services Company

  1. Development of a simple 5-15 litre per hour LNG refueling system

    SciTech Connect (OSTI)

    Corless, A.J.; Sarangi, S.; Hall, J.L.; Barclay, J.A.

    1994-12-31

    A variable capacity, small-scale liquefied natural gas (LNG) refueling system has been designed, built, and tested at the Cryofuel Systems` Laboratory, University of Victoria, Canada. The system, designed to continuously liquefy between 5 and 15 litres of NG, utilizes liquid nitrogen (LN{sub 2}) as its cold source and contains most of the components found in a typical commercial refueling system; i.e. purification system, liquefier, LNG storage, automatic control and monitoring system. This paper describes the design of the system as well as the results of a set of LNG production trials. The performance of the system exceeded expected LNG production rates, but at levels of efficiency somewhat less than predicted. Cryofuel Systems expects to use this system to implement an LNG vehicle demonstration program and to gain experience in the integration of LNG refueling systems which exploit advanced liquefaction technology such as magnetic refrigeration.

  2. Annova LNG, LLC- 14-004-CIC

    Broader source: Energy.gov [DOE]

    Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

  3. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  4. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect (OSTI)

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size and shape to optimize temperature and emission spectra.

  5. High efficiency Brayton cycles using LNG

    DOE Patents [OSTI]

    Morrow, Charles W.

    2006-04-18

    A modified, closed-loop Brayton cycle power conversion system that uses liquefied natural gas as the cold heat sink media. When combined with a helium gas cooled nuclear reactor, achievable efficiency can approach 68 76% (as compared to 35% for conventional steam cycle power cooled by air or water). A superheater heat exchanger can be used to exchange heat from a side-stream of hot helium gas split-off from the primary helium coolant loop to post-heat vaporized natural gas exiting from low and high-pressure coolers. The superheater raises the exit temperature of the natural gas to close to room temperature, which makes the gas more attractive to sell on the open market. An additional benefit is significantly reduced costs of a LNG revaporization plant, since the nuclear reactor provides the heat for vaporization instead of burning a portion of the LNG to provide the heat.

  6. LNG Vehicle High-Pressure Fuel System and ''Cold Energy'' Utilization

    SciTech Connect (OSTI)

    powers,Charles A.; Derbidge, T. Craig

    2001-03-27

    A high-pressure fuel system for LNG vehicles with direct-injection natural gas engines has been developed and demonstrated on a heavy-duty truck. A new concept for utilizing the ''cold energy'' associated with LNG vehicles to generate mechanical power to drive auxiliary equipment (such as high-pressure fuel pumps) has also been developed and demonstrated in the laboratory. The high-pressure LNG fuel system development included the design and testing of a new type of cryogenic pump utilizes multiple chambers and other features to condense moderate quantities of sucked vapor and discharge supercritical LNG at 3,000 to 4,000 psi. The pump was demonstrated on a Class 8 truck with a Westport high-pressure direct-injection Cummins ISX engine. A concept that utilizes LNG's ''cold energy'' to drive a high-pressure fuel pump without engine attachments or power consumption was developed. Ethylene is boiled and superheated by the engine coolant, and it is cooled and condensed by rejecting h eat to the LNG. Power is extracted in a full-admission blowdown process, and part of this power is applied to pump the ethylene liquid to the boiler pressure. Tests demonstrated a net power output of 1.1. hp at 1.9 Lbm/min of LNG flow, which is adequate to isentropically pump the LNG to approximately 3,400 psi..

  7. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  8. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  9. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT LLC - FE DKT. NO. 14-96-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER NO. 3554 | Department of Energy ALASKA LNG PROJECT LLC - FE DKT. NO. 14-96-LNG - ORDER NO. 3554 SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT LLC - FE DKT. NO. 14-96-LNG - ORDER NO. 3554 PDF icon APRIL 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORT - PORT ARTHUR LNG - DKT. NO. 15-53-LNG - ORD. 3698 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO.

  10. SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC, FE DKT. 15-19-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3656 | Department of Energy AMERICAN LNG MARKETING LLC, FE DKT. 15-19-LNG - ORDER 3656 SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC, FE DKT. 15-19-LNG - ORDER 3656 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG - ORDER NO. 3601 SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 SEMI-ANNUAL REPORTS FOR MAIN PASS ENERGY HUB, LLC - FE DKT. NO. 12-114-LNG - ORDER 3220

  11. SEMI-ANNUAL REPORTS FOR MAGNOLIA LNG, LLC - FE DKT. NO. 12-183-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3245; 13-131-LNG ORDER 3406 | Department of Energy MAGNOLIA LNG, LLC - FE DKT. NO. 12-183-LNG - ORDER 3245; 13-131-LNG ORDER 3406 SEMI-ANNUAL REPORTS FOR MAGNOLIA LNG, LLC - FE DKT. NO. 12-183-LNG - ORDER 3245; 13-131-LNG ORDER 3406 PDF icon Feb. 26, 2013 thru Feb. 28, 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 PDF icon October 2014 (Order 3406) More Documents & Publications SEMI-ANNUAL REPORT FOR SCT&E LNG LLC - FE DKT. NO. 14-89-LNG - ORDER NO. 3566

  12. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG -

    Energy Savers [EERE]

    ORDER 3643 (NFTA) | Department of Energy ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT LLC - FE DKT. NO. 14-96-LNG - ORDER NO. 3554 SEMI-ANNUAL REPORT - PORT ARTHUR LNG - DKT. NO. 15-53-LNG - ORD. 3698 Order 3643: Alaska LNG Project, LLC

  13. Complete LNG Terminal Status Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete LNG Terminal Status Maps Complete LNG Terminal Status Maps A series of slides showing the status of various LNG terminals (existing, under construction, proposed, etc.) in...

  14. SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG...

    Broader source: Energy.gov (indexed) [DOE]

    4 April 2015 October 2015 More Documents & Publications SEMI ANNUAL REPORTS - CAMERON LNG, LLC - FE DKT. NO. 14-204-LNG - ORDER NO. 3620 Semi-annual Reports for Cameron LNG LLC -...

  15. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect (OSTI)

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  16. International LNG report/Developments proceed slowly in world LNG industry

    SciTech Connect (OSTI)

    Hale, D.

    1980-03-01

    A discussion of developments in the world LNG industry covers U.S. developments, including the Pipeline Safety Act of 1979, the National Fire Protection Association's 1979 edition of Standard 59A for the production, storage, and handling of LNG, and progress in the permitting of major LNG import projects changes in U.S. rules on LNG pricing; LNG accidents, including the grounding of the LNG carrier Vertical BarEl Paso Paul Kaise.

  17. SEMI-ANNUAL REPORTS FOR - EOS LNG - FTA - FE DKT. NO. 13-115-LNG - Order

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3364 | Department of Energy - EOS LNG - FTA - FE DKT. NO. 13-115-LNG - Order 3364 SEMI-ANNUAL REPORTS FOR - EOS LNG - FTA - FE DKT. NO. 13-115-LNG - Order 3364 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR BARCA LNG - FTA - FE DKT. NO. 13-117-LNG - ORDER 3365

  18. SEMI-ANNUAL REPORTS FOR BARCA LNG - FTA - FE DKT. NO. 13-117-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3365 | Department of Energy BARCA LNG - FTA - FE DKT. NO. 13-117-LNG - ORDER 3365 SEMI-ANNUAL REPORTS FOR BARCA LNG - FTA - FE DKT. NO. 13-117-LNG - ORDER 3365 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR - EOS LNG - FTA - FE DKT. NO. 13-115-LNG - Order 3364

  19. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Index 80 F.R. 20482 3681 FTA; 3770 Non-FTAC 15-036-LNG 02232015 Export FTA Cameron LNG, ... Index 80 FR 51792 3792 15-067-LNG 04032015 Export NFTA Cameron LNG, LLC Dkt. Index 80 FR ...

  20. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE...

    Energy Savers [EERE]

    GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon ...

  1. Renewable, Green LNG: Update on the World's Largest Landill Gass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Presentation at the ...

  2. Cameron LNG LLC - 14-001-CIC | Department of Energy

    Energy Savers [EERE]

    Cameron LNG LLC - 14-001-CIC Cameron LNG LLC - 14-001-CIC Application of Cameron LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement...

  3. SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER NO. 3601 | Department of Energy AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG - ORDER NO. 3601 SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG - ORDER NO. 3601 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC, FE DKT. 15-19-LNG - ORDER 3656 SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT.

  4. SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3482 | Department of Energy Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG - ORDER NO. 3601 SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC, FE DKT. 15-19-LNG - ORDER 3656 SEMI-ANNUAL REPORTS FOR MAIN PASS ENERGY

  5. LNG -- Technology on the edge

    SciTech Connect (OSTI)

    Alexander, C.B.

    1995-10-01

    With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry`s recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ``clean`` diesel fuels.

  6. SEMI-ANNUAL REPORT - G2 LNG LLC - FE DKT. NO. 15-44-LNG - ORDER 3682 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy REPORT - G2 LNG LLC - FE DKT. NO. 15-44-LNG - ORDER 3682 SEMI-ANNUAL REPORT - G2 LNG LLC - FE DKT. NO. 15-44-LNG - ORDER 3682 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR HEAD (USA) LLC - FE DKT. NO. 15-33-LNG - ORDER 3681 SEMI-ANNUAL REPORT FOR SCT&E LNG LLC - FE DKT. NO. 14-89-LNG - ORDER NO. 3566 SEMI-ANNUAL REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (D/B/A Oregon LNG) - FE DKT. NO. 12-48-LNG -

  7. Downeast LNG, Inc.- FE Dkt. No. 14-172-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed October 15, 2014, by Downeast LNG, Inc. (Downeast), seeking a long-term multi-contract authorization to export...

  8. Cameron LNG, LLC- FE Dkt. No. 15-90-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed May 28, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically...

  9. Rio Grande LNG LLC- Dkt. No. 15-190-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed December 23, 2015, by Rio Grande LNG, LLC (Rio Grande), seeking a long-term multi-contract authorization to export...

  10. Cameron LNG, LLC- FE Dkt. No. 15-67-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed on April 3, 2015, by Cameron LNG, LLC seeking long-term, multi-contract authorization to export domestically produced...

  11. Texas Brownsville LNG LLC- FE Dkt. 15-62-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed April 15, 2015, by Texas Brownsville LNG LLC (TBLNG), seeking a long-term multi-contract authorization to export...

  12. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  13. High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989

    SciTech Connect (OSTI)

    Atallah, S.; Shah, J.N.; Peterlinz, M.E.

    1990-05-01

    One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

  14. Compact portable electric power sources (Technical Report) |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Org: USDOE, Washington, DC (United States) Country of Publication: United States Language: English Subject: 24 POWER TRANSMISSION AND DISTRIBUTION; 25 ENERGY STORAGE; POWER...

  15. The diseconomics of long-haul LNG trading

    SciTech Connect (OSTI)

    Stauffer, T.R.

    1995-12-31

    Long-haul liquefied natural gas (LNG) exports yield little or no economic rent. Trades, such as Borneo to Japan, are economical, but government takes otherwise are minimal. Today, the price of LNG is capped by the technical option of modifying gas turbines to bum liquid fuels. The maximum premium for LNG is less than 50 cents per thousand cubic feet (/Mcf), and buyers are resisting any price above oil parity. Costs of LNG are high and increase with distance. The netback value is zero or even negative for the longer-distance trades. The value of extracted co-products (natural gas liquids) is 50 cents to $1/Mcf. These credits are the principal source of profit, especially for foreign partners because natural gas liquids are taxed at low {open_quotes}industrial{close_quotes} rates. Returns are even less when the gas supply is nonassociated so that the project must {open_quotes}pay{close_quotes} the production costs as well. Some exporting countries profit; but the Organization of the Petroleum Exporting Countries as a whole looses because low-revenue LNG energy displaces at the margin fully taxed oil.

  16. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  17. Venture Global Plaquemines LNG, LLC (Plaquemines LNG)- FE Dkt. No. 16-28-LNG- FTA/NFTA

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 1, 2016, by Venture Global Plaquemines LNG, LLC (Plaquemines LNG), seeking a long-term multi-contract authorization...

  18. Conversion of Coal Mine Gas to LNG

    Office of Scientific and Technical Information (OSTI)

    Conversion of Coal Mine Gas to LNG Final Technical Report Reporting Period Start Date Reporting Period End Date Report issued October 01, 2000 March 31, 2013 February 5, 2016 Cooperative Agreement No. DE-FC26-00NT40978 Submitted by: Appalachian-Pacific Coal Mine Methane Power Company 5053 Glenbrook Terrace NW Washington, DC 20016-2602 1 DISCLAIMER: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor

  19. American LNG Marketing LLC - FE Dkt. No. 15-19-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American LNG Marketing LLC - FE Dkt. No. 15-19-LNG American LNG Marketing LLC - FE Dkt. No. 15-19-LNG The Office of Fossil Energy gives notice of receipt of an application filed on February 3, 2015, by American LNG Marketing LLC (American LNG) requests long-term, multi-contract authorization to export up to 30.2 Bcf of natural gas per year (equivalent to approximately 600,000 metric tons of LNG per year) (I) to any country with which the United States has, or in the future may enter into, a FTA

  20. Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059 Semi-annual Reports for Cameron LNG LLC - Dk. No. 11-145-LNG - Order 3059 PDF icon April 2012 PDF icon October 2012 PDF icon April 2013 PDF icon April 2014 PDF icon October 2013 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR CAMERON LNG LLC - DKT. NO. 11-162-LNG - ORDER 3391-A SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE

  1. SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3106 | Department of Energy SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 PDF icon October 2012 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION

  2. SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG -

    Energy Savers [EERE]

    ORDER 3106 | Department of Energy SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 PDF icon October 2012 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION

  3. LNG: new driving force

    SciTech Connect (OSTI)

    Adkins, R.E.

    1981-11-01

    Spurred by recent legislation promoting the use of methane as a motor fuel, Beech Aircraft is gearing up for market production of a complete vehicular conversion kit and ground support equipment for a liquefied-methane fuel system that is suitable for the use of conventional LNG or methane collected from coalbeds, sewage plants, or landfills and liquefied on site. As demonstrated in field tests of prototype fuel systems, liquefied methane stores conveniently and is safe in motor vehicles. Compared with compressed methane, the liquefied form provides more horsepower and longer mileage between fuelings. Fully fueled, the Beech system weighs less than a gasoline or diesel tank of the same size. The system features electronic-capacitance gaging for direct dashboard quantity reading, a standby time of 14 days (from filling time until the time it reaches the maximum allowable vapor pressure of 60 psi), and the choice of vapor or liquid withdrawal.

  4. Advanced Power Sources Ltd APS | Open Energy Information

    Open Energy Info (EERE)

    Sources Ltd APS Jump to: navigation, search Name: Advanced Power Sources Ltd (APS) Place: United Kingdom Product: UK R&D company based at Loughborough University focusing on fuel...

  5. HuanYu Power Source Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Product: Henan - based maker of rechargeable batteries using Nickel, Lead and Lithium Chemistries and for a wide variety of applications. References: HuanYu Power Source...

  6. Shenzhen Power Source Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Co., Ltd Place: China Product: China-based manufacturer and researcher of lithium rechargeable batteries. References: Shenzhen Power Source Technology Co., Ltd1 This...

  7. DOE - Fossil Energy: 2013 LNG Export Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LNG LLC Dkt. Index Comment Period Closed 78 FR 75339 13-120-NG 080513 Expt Mexico Energia Chihuahua, S.A. de C.V. Dkt. Index 3348 13-121-LNG 082313 Expt FTANFTA Sabine Pass...

  8. Freeport LNG Development, L.P. (Freeport LNG)- Blanket Authorization to Export Previously Imported LNG- FE Dkt. No. 15-103-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed June 25, 2015 by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied...

  9. SEMI-ANNUAL REPORT FOR SCT&E LNG LLC - FE DKT. NO. 14-89-LNG - ORDER NO.

    Energy Savers [EERE]

    3566 | Department of Energy FOR SCT&E LNG LLC - FE DKT. NO. 14-89-LNG - ORDER NO. 3566 SEMI-ANNUAL REPORT FOR SCT&E LNG LLC - FE DKT. NO. 14-89-LNG - ORDER NO. 3566 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SCT&E LNG, LLC - FE Dkt. No. 14-89-LNG SCT&E LNG, LLC - FE DKT. NO. 14-98-LNG NFTA SCT&E LNG, LLC - FE Dkt. No. 14-72-LNG

  10. Introduction to LNG vehicle safety. Topical report

    SciTech Connect (OSTI)

    Bratvold, D.; Friedman, D.; Chernoff, H.; Farkhondehpay, D.; Comay, C.

    1994-03-01

    Basic information on the characteristics of liquefied natural gas (LNG) is assembled in this report to provide an overview of safety issues and practices for the use of LNG vehicles. This document is intended for those planning or considering the use of LNG vehicles, including vehicle fleet owners and operators, public transit officials and boards, local fire and safety officials, manufacturers and distributors, and gas industry officials. Safety issues and mitigation measures that should be considered for candidate LNG vehicle projects are addressed.

  11. Method for processing LNG for rankine cycle

    SciTech Connect (OSTI)

    Aoki, I.; Matsumoto, O.

    1983-06-14

    A method is disclosed for processing lng using a mixed heat medium for performing a rankine cycle to gasify the lng. The medium is prepared by batch distillation using only lng. The method comprises the steps of condensing an upflow vapor in a single distillation column employing part of the lng in an lng batch distillation cycle, venting one fraction having low boiling point components mainly containing methane, and accumulating the other fractions containing ethane and components heavier than ethane. The supply of lng to be distilled in the column is halted. A total condensing operation is performed in which the other fractions are sequentially condensed by part of the lng at the condenser to sequentially recover and mix each component with the other fractions. Lng is added as the methane component to the recovered mixture of components to prepare a mixed heat medium consisting of components selected from hydrocarbons having 1-6 carbon atoms, or hydrocarbons having 1-6 carbon atoms and nitrogen. The mixed heat medium is stored. A mixed heat medium vapor generated by heat input to the stored mixed heat medium is condensed by lng and returned to the mixed heat medium; collection and complete gasification of the low boiling point components mainly containing methane and the lng is gasified by condensation to provide an lng vapor gas. Lng is gasified by performing the rankine cycle with the mixed heat medium.

  12. Cheniere Marketing, LLC - FE Dkt. No. 14-31-LNG (Re-export) | Department

    Office of Environmental Management (EM)

    of Energy Cheniere Marketing, LLC - FE Dkt. No. 14-31-LNG (Re-export) Cheniere Marketing, LLC - FE Dkt. No. 14-31-LNG (Re-export) The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an Application filed on March 7, 2014, by Cheniere Marketing, LLC (CMI), requesting blanket authorization to export liquefied natural gas (LNG) previously imported into the United States from foreign sources in a volume equivalent to approximately 500 Billion cubic feet

  13. ConocoPhillips Company - FE Dkt. - 15-130-LNG | Department of Energy

    Office of Environmental Management (EM)

    ConocoPhillips Company - FE Dkt. - 15-130-LNG ConocoPhillips Company - FE Dkt. - 15-130-LNG The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2015, by ConocoPhillips Company (ConocoPhillips), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources in an amount up to the equivalent of 500 billion cubic feet (Bcf) of natural gas for a period of twenty-five months

  14. Recommended research on LNG safety

    SciTech Connect (OSTI)

    Carpenter, H.J.; Gilmore, F.R.

    1981-03-01

    The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

  15. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D.

    1995-12-31

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  16. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect (OSTI)

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  17. Louisiana LNG Energy LLC - FE Dkt. No. 14-19-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    19-LNG Louisiana LNG Energy LLC - FE Dkt. No. 14-19-LNG The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export domestically produced liquefied natural gas (LNG) from a proposed liquefaction facility to be located on the East Bank of the Mississippi River, down-river from the Port of New Orleans, in Plaquemines Parish, Louisiana. LLNG seeks to export LNG to any

  18. Downeast LNG, Inc. - FE Dkt. No. 14-173-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Downeast LNG, Inc. - FE Dkt. No. 14-173-LNG Downeast LNG, Inc. - FE Dkt. No. 14-173-LNG The Office of Fossil Energy gives notice of receipt of an Application filed October 15, 2014, by Downeast LNG, Inc. (Downeast), seeking a long-term multi-contract authorization to export domestically produced liquefied natural gas (LNG) up to the equivalent of 168 billion cubic feet of natural gas per year to Non Free Trade Agreement countries. Authorization is for a 20-year period commencing on the earlier

  19. CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA) The Office of Fossil Energy gives notice of receipt of an Application filed February 23, 2015, by Cameron LNG, LLC (Cameron), seeking a long-term multi-contract authorization to export domestically produced liquefied natural gas (LNG) up to the equivalent of 515 billion cubic feet of natural gas per year to Free Trade Agreement (FTA) countries. Authorization is for a 20-year period commencing on the

  20. Source term estimation during incident response to severe nuclear power

    Office of Scientific and Technical Information (OSTI)

    plant accidents (Technical Report) | SciTech Connect Source term estimation during incident response to severe nuclear power plant accidents Citation Details In-Document Search Title: Source term estimation during incident response to severe nuclear power plant accidents × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to

  1. Compact portable electric power sources (Technical Report) | SciTech

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Compact portable electric power sources Citation Details In-Document Search Title: Compact portable electric power sources × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the

  2. SCT&E LNG, LLC - FE Dkt. No. 14-89-LNG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2. 121514 - Order 3566 Granting Long-Term Multi-Contract Authorization to Export LNG by Vessel from the Proposed SCT&E LNG Terminal in Cameron Parish, Louisiana, to ...

  3. Port Arthur LNG, (LLC)- FE Dkt.No. 15-53-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 20, 2015, by Port Arthur LNG, (LLC) (Port Arthur LNG), seeking a long-term multi-contract authorization to export...

  4. AMERICAN LNG MARKETING LLC- FE Dkt. No. 14-209-LNG

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Fossil Energy gives notice of receipt of an application filed on December 31, 2014, by American LNG Marketing LLC (American LNG) requests long-term, multi-contract authorization to...

  5. Port Arthur LNG, (LLC)- FE Dkt.No. 15-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 20, 2015, by Port Arthur LNG, (LLC) (Port Arthur LNG), seeking a long-term multi-contract authorization to export...

  6. Sempra LNG Marketing, LLC- FE Dkt. No. 14-177-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed October 24, 2014 by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export...

  7. Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant | Department of Energy Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Renewable, Green LNG: Update on the World's Largest Landill Gass to LNG Plant Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_eckhardt.pdf More Documents & Publications From Cleanup to Stewardship Hydrogen Embrittlement Fundamentals, Modeling, and Experiment QER - Comment of Energy Innovation 6

  8. An Update on Proposed Changes to the Energy Department's LNG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Conditionally Authorizes Oregon LNG to Export Liquefied Natural Gas Energy Department Authorizes Cameron LNG and Carib Energy to Export Liquefied Natural Gas

  9. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Broader source: Energy.gov (indexed) [DOE]

    to a proposed liquefied natural gas (LNG) import terminal in Warrenton, Oregon, and ... and export of natural gas, including LNG, unless it finds that the import or export ...

  10. Energy Department Conditionally Authorizes Oregon LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas ...

  11. Energy Department Authorizes Cameron LNG and Carib Energy to...

    Broader source: Energy.gov (indexed) [DOE]

    the final authorization to Cameron LNG, LLC (Cameron) and Carib Energy LLC (Carib) to export domestically produced liquefied natural gas (LNG) to countries that do not have a ...

  12. Energy Department Conditionally Authorizes Cameron LNG to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG to Export Liquefied Natural Gas Energy Department Conditionally Authorizes Cameron LNG to Export Liquefied Natural Gas February 11, 2014 - 11:15am Addthis WASHINGTON -...

  13. Energy Department Authorizes American LNG Marketing LLC's Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American LNG Marketing LLC's Application to Export Liquefied Natural Gas Energy Department Authorizes American LNG Marketing LLC's Application to Export Liquefied Natural Gas ...

  14. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Broader source: Energy.gov (indexed) [DOE]

    which would reconfigure an existing pipeline system to serve the LNG terminal site. ... EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No ...

  15. 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Energy Savers [EERE]

    - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2016 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas ...

  16. Orders Granting Natural Gas, LNG & CNG Authorizations Issued...

    Office of Environmental Management (EM)

    Orders Granting Natural Gas, LNG & CNG Authorizations Issued in 2014 Orders Granting Natural Gas, LNG & CNG Authorizations Issued in 2014 Order 3378 - Encana Natural Gas Inc. Order...

  17. Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14-88-LNG | Department of Energy Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG Venture Global Calcasieu Pass, LLC - (Formerly Venture Global LNG, LLC) - 14-88-LNG The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition to the volumes proposed in Docket 13-69-LNG) domestically produced LNG of up to five million

  18. Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per ...

  19. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear

  20. Advanced radioisotope power source options for Pluto Express

    SciTech Connect (OSTI)

    Underwood, M.L.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  1. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  2. LNG - Engine Delivery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search LNG - Engine Delivery Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary This is a method of improved delivery of liquid natural gas (LNG) within an engine delivery system. The LNG is first pumped into the insulated holding tank from a fueling station. As a tank is refueled, any remaining natural gas vapors are condensed and returned to the liquid state. This allows the tank to fill

  3. Microsoft Word - LNG_Jan2007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    07 1 January 2007 Short-Term Energy Outlook Supplement: U.S. LNG Imports - The Next Wave Damien Gaul and Kobi Platt Overview * This supplement to the Energy Information Administration's (EIA) January 2007 Short-Term Energy Outlook (STEO) focuses on recent trends in global and U.S. liquefied natural gas (LNG) trade and presents factors expected to influence U.S. LNG imports through 2008. * After substantial increases early this decade (including more than doubling between 2002 and 2003), the

  4. Method and apparatus for dispensing compressed natural gas and liquified natural gas to natural gas powered vehicles

    SciTech Connect (OSTI)

    Bingham, Dennis A.; Clark, Michael L.; Wilding, Bruce M.; Palmer, Gary L.

    2005-05-31

    A fueling facility and method for dispensing liquid natural gas (LNG), compressed natural gas (CNG) or both on-demand. The fueling facility may include a source of LNG, such as cryogenic storage vessel. A low volume high pressure pump is coupled to the source of LNG to produce a stream of pressurized LNG. The stream of pressurized LNG may be selectively directed through an LNG flow path or to a CNG flow path which includes a vaporizer configured to produce CNG from the pressurized LNG. A portion of the CNG may be drawn from the CNG flow path and introduced into the CNG flow path to control the temperature of LNG flowing therethrough. Similarly, a portion of the LNG may be drawn from the LNG flow path and introduced into the CNG flow path to control the temperature of CNG flowing therethrough.

  5. ,"Arkansas Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Maryland Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Nevada Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Nebraska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Wisconsin Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Connecticut Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"Idaho Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Tennessee Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Indiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Missouri Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Pennsylvania Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Minnesota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Nevada Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Alaska Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska...

  1. ,"California Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Georgia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Washington Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Oregon Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Connecticut Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Tennessee Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Maryland Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Arkansas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Louisiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Alaska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Natural Gas LNG Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"Missouri Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Texas Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"Colorado Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"Washington Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Alabama Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Georgia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"Virginia Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"California Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"Virginia Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"Indiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"Louisiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  4. ,"Minnesota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. ,"Oregon Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  8. ,"Nebraska Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  9. ,"Alabama Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  10. ,"Massachusetts Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"Maine Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  12. ,"Maine Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015"...

  13. 2012 LNG Export Study | Department of Energy

    Energy Savers [EERE]

    2012 LNG Export Study 2012 LNG Export Study As part of a broader effort to further inform decisions related to LNG exports, the Department of Energy commissioned NERA Economic Consulting to conduct a third party study in order to gain a better understanding of how U.S. LNG exports could affect the public interest, with an emphasis on the energy and manufacturing sectors. The Department is releasing that study and making it available for public review and comment. As this is not a Department of

  14. Automated Surface Observing System: Standby Power Options | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Automated Surface Observing System: Standby Power Options Automated Surface Observing System: Standby Power Options This presentation by Anthony Leonardo of the National Weather Service was given at the Fuel Cell Meeting in April 2007. PDF icon fuel_cell_mtng_leonardo.pdf More Documents & Publications Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG Market Transformation: Fuel Cell Early Adoption (Presentation)

  15. Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG |

    Energy Savers [EERE]

    Department of Energy 331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG FINAL ORDER AND OPINION GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE DOMINION COVE POINT LNG TERMINAL IN CALVERT COUNTY, MARYLAND TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the Dominion

  16. Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG | Department of

    Office of Environmental Management (EM)

    Energy Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE COVE POINT LNG TERMINAL TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the DCP Application have not demonstrated that the requested authorization will be

  17. LNG Analysis Summary: A Different Way of Looking at the Future of World LNG Trade

    Broader source: Energy.gov [DOE]

    This report examines alternative future scenarios for global LNG trade. The analysis calibrates initial liquefied natural gas (LNG) demand projections to external forecasts. Alternative LNG demand and supply scenarios are then generated to assess a range of potential outcomes. Scenarios include variations in Chinese, European and Japanese market conditions, changes in natural gas pipeline supplies and alternative LNG export conditions from the Middle East. Overall, the report foresees a LNG market where supply growth is likely to outpace demand and lead to downward pressure on LNG prices. The analysis projects North American LNG exports to the Atlantic Basin to fall in a range between 8.8 billion cubic feet per day (Bcfd) and 12.2 Bcfd in 2030.

  18. U.S. LNG Exports:

    Energy Savers [EERE]

    LNG Exports: State-Level Impacts on Energy Markets and the Economy November 13, 2013 Submitted to: American Petroleum Institute 1220 L Street NW Washington, D.C. 20005 Submitted by: ICF International 9300 Lee Highway Fairfax, VA USA ICF Contact Harry Vidas 703-218-2745 Other ICF Contributors Briana Adams William Pepper Robert Hugman Warren Wilczewski Thu Nguyen blank page Warranties and Representations. ICF endeavors to provide information and projections consistent with standard practices in a

  19. LNG Safety Assessment Evaluation Methods

    SciTech Connect (OSTI)

    Muna, Alice Baca; LaFleur, Angela Christine

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  20. Using LNG as a Fuel in Heavy-Duty Tractors

    SciTech Connect (OSTI)

    Liquid Carbonic, Inc. and Trucking Research Institute

    1999-08-09

    Recognizing the lack of operational data on alternative fuel heavy-truck trucks, NREL contracted with the Trucking Research Institute (TRI) in 1994 to obtain a cooperative agreement with Liquid Carbonic. The purpose of this agreement was to (1) purchase and operate liquid natural gas- (LNG-) powered heavy-duty tractor-trailers with prototype Detroit Diesel Corporation (DDC) Series 60 natural gas (S60G) engines in over-the-road commercial service applications; and (2) collect and provide operational data to DDC to facilitate the on-road prototype development of the engine and to NREL for the Alternative Fuels Data Center. The vehicles operated from August 1994 through April of 1997 and led to a commercially available, emissions-certified S60G in 1998. This report briefly documents the engine development, the operational characteristics of LNG, and the lessons learned during the project.

  1. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  2. Annova LNG, LLC - 14-004-CIC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annova LNG, LLC - 14-004-CIC Annova LNG, LLC - 14-004-CIC Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment. PDF icon Application Requesting Change in Control PDF icon Order 3464 Approving Change in Control to Annova LNG Common Infrastructure, LLC (FTANs) More Documents & Publications SEMI-ANNUAL REPORTS FOR ANNOVA LNG COMMON INFRASTRUCTURE, LLC - FE DKT. NO. 13-140-LNG/14-004-CIC

  3. Cameron LNG LLC Final Order | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG LLC Final Order Cameron LNG LLC Final Order FE Dkt. No. 11-162-LNG - Order 3391-A The Final Opinion and Order Granting Long-term Multi-contract Authorization to Export Liquefied Natural Gas (LNG) by Vessel from the Cameron LNG Terminal in Cameron Parish, Louisiana, to Non-Free Trade Agreement Nations can be found in the PDF below. PDF icon 1. 09/10/14 - Order 3391-A More Documents & Publications Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG

  4. Reserves hike to buoy Bontang LNG

    SciTech Connect (OSTI)

    Not Available

    1992-07-27

    This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

  5. Energy Department Conditionally Authorizes Oregon LNG to Export Liquefied

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas | Department of Energy WASHINGTON - The Energy Department announced today that it has conditionally authorized LNG Development Co., LLC (Oregon LNG) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States, from the Oregon LNG Terminal in Warrenton, Oregon. The Oregon LNG application was next in the order of precedence and review of the application was initiated before the Department issued the

  6. Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied

    Office of Environmental Management (EM)

    Natural Gas | Department of Energy Alaska LNG Project, LLC to Export Liquefied Natural Gas Energy Department Authorizes Alaska LNG Project, LLC to Export Liquefied Natural Gas May 28, 2015 - 1:55pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- The Energy Department announced today that it has issued a conditional authorization for the Alaska LNG Project, LLC (Alaska LNG) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement

  7. SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3163 | Department of Energy GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 PDF icon October 2014 - February 2015 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL

  8. SEMI-ANNUAL REPORTS FOR JORDAN COVE LNG L.P. - FE DKT. NO. 13-141-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3412 | Department of Energy JORDAN COVE LNG L.P. - FE DKT. NO. 13-141-LNG - ORDER 3412 SEMI-ANNUAL REPORTS FOR JORDAN COVE LNG L.P. - FE DKT. NO. 13-141-LNG - ORDER 3412 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY PROJECT, L.P. - FE DKT. NO. 11-127-LNG - ORDER 3041 SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY FE DKT. NO. 12-32-LNG - ORDER 3413 ORDER NO. 3413: Jordan Cove LNG

  9. Improved current control makes inverters the power sources of choice

    SciTech Connect (OSTI)

    Yamamoto, H.; Harada, S.; Ueyama, T.

    1997-02-01

    It is now generally understood that by increasing the operating or switching frequency of a power source the size of the main transformer and main reactor can be shrunk. Thus, a 300-A DC welding power source weighing well under 100 lb can be produced. This makes the inverter power source an ideal choice for applications requiring equipment maneuverability. It is also generally understood that due to higher switching frequencies, a smoother output is obtained from inverter power sources. In the late 1980s, the company developed a new double-inverter power source by which inverted DC weld output is inverted back to AC weld output. This product was the first of its kind in the world. Again, the small compact size of this product was of great interest. Utilizing current waveform control, it was realized that fast response switching from electrode negative to electrode positive could be accurately controlled, offering benefits such as AC GTA welding with high-frequency start only, even at a low welding current. The primary benefit is the ability to limit the electrode positive half cycle to less than 5%. The electrode positive half cycle is responsible for tungsten erosion, which also creates the balling effect of a tungsten electrode. By limiting the electrode positive portion of the AC cycle to a very low level, a rather sharp point can be maintained on the tungsten, which creates a very concentrated, focused arc column. This ability provides excellent joint penetration in fillet welding of aluminum alloys, especially on thick plate. It also reduces the heat-affected zone in AC GTA welding of aluminum.

  10. SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36...

    Energy Savers [EERE]

    Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER 3680 NO REPORTS RECEIVED More Documents &...

  11. SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO....

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) SEMI-ANNUAL REPORTS FOR ALASKA LNG PROJECT, LLC - FE DKT NO. 14-96-LNG - ORDER 3643 (NFTA) PDF icon October 2015 ...

  12. SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12...

    Energy Savers [EERE]

    SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 PDF icon October ...

  13. SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR HEAD (USA) LLC - FE DKT. NO. ... REPORTS FOR LNG DEVELOPMENT COMPANY, LLC (DBA Oregon LNG) - FE DKT. NO. 12-48-LNG - ...

  14. Power from bio-sources in Italy incentives and results

    SciTech Connect (OSTI)

    Gerardi, V.; Ricci, A.; Scoditti, E.

    1996-12-31

    In Italy most of the technologies for producing power from bio-sources, as well as from other non-conventional renewable Energy Sources (RES), are rather mature, but their exploitation is still not completely convenient from the economic point of view. It depends on many factors, such as designing of plants, selection of energy conversion system and components, selection of installation site, size of market still too limited, high production costs of the technologies and lack of adequate financial supports. In the early nineties, in the attempt to overcome this situation, the Italian Government issued a series of measures addressed mainly to the power production from RES. This gives a short description of the regulations in force and some details about an important incentive tool (CIP 6/92 and relative decrees) for RES power plants installation. In particular, it indicates the possible power plant typologies, the criteria to assimilate the fossil fuel plants to RES ones, the present prices of electricity transferred into the grid and the methodology for updating the prices. Furthermore, the paper gives some data concerning submitted proposals, plant operation planning and their geographic distribution according to different bio-sources typologies.

  15. Energy Department Authorizes American LNG Marketing LLC’s Application to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    The Energy Department authorizes American LNG Marketing LLC’s Application to export Liquefied Natural Gas (LNG).

  16. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  17. Development and Use of the Galileo and Ulysses Power Sources

    SciTech Connect (OSTI)

    Bennett, Gary L; Hemler, Richard J; Schock, Alfred

    1994-10-01

    Paper presented at the 45th Congress of the International Astronautical Federation, October 1994. The Galileo mission to Jupiter and the Ulysses mission to explore the polar regions of the Sun required a new power source: the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG), the most powerful RTG yet flow. Four flight-qualified GPHS-RTGs were fabricated with one that is being used on Ulysses, two that are being used on Galileo and one that was a common spare (and is now available for the Cassini mission to Saturn). In addition, and Engineering Unit and a Qualification Unit were fabricated to qualify the design for space through rigorous ground tests. This paper summarizes the ground testing and performance predictions showing that the GPHS-RTGs have met and will continue to meet or exceed the performance requirements of the ongoing Galileo and Ulysses missions. There are two copies in the file.

  18. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.93 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  19. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  20. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt. No.- 15-33-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 25, 2015, by Bear Head LNG, requesting long-term multi-contract authority as further described in their...

  1. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect (OSTI)

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  2. Gas treating alternatives for LNG plants

    SciTech Connect (OSTI)

    Clarke, D.S.; Sibal, P.W.

    1998-12-31

    This paper covers the various gas treating processes available for treating sour natural gas to specifications required for LNG production. The LNG product specification requires that the total sulfur level be less than 30--40 ppmv, the CO{sub 2} level be less than 50 ppmv and the water level be less than 100 ppmv to prevent freezing problems in the LNG cryogenic column. A wide variety of natural gas compositions are encountered in the various fields and the gas treating process selection is dependent on the type of impurities present in the gas, namely, levels of H{sub 2}S, CO{sub 2}, mercaptans and other organic sulfur compounds. This paper discusses the implications various components in the feed to the LNG plant can have on process selection, and the various treating processes that are available to condition the gas. Process selection criteria, design and operating philosophies are discussed. An economic comparison for two treating schemes is provided.

  3. Norcal Prototype LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Not Available

    2004-07-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

  4. LNG production for peak shaving operations

    SciTech Connect (OSTI)

    Price, B.C.

    1999-07-01

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  5. ORDER NO. 3465: LNG DEVELOPMENT COMPANY, LLC

    Broader source: Energy.gov [DOE]

    ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE OREGON LNG TERMINAL IN WARRENTON, CLATSOP COUNTY, OREGON TO NON-FREE TRADE AGREEMENT NATIONS

  6. LNG ventures raise economic, technical, partnership issues

    SciTech Connect (OSTI)

    Acord, H.K.

    1995-07-03

    The author feels that natural gas will remain a competitive energy alternative and the preferred fuel for many residential and industrial customers around the globe. The article attempts to explain where liquefied natural gas will fit into the global picture. The paper discusses the growth in the Asia-Pacific region; the complex interactions in a LNG project involving buyers, sellers, governments, financial institutions, and shipping companies; the cost of development of such projects; and the elements of a LNG venture.

  7. A 12 GHz RF Power Source for the CLIC Study

    SciTech Connect (OSTI)

    Schirm, Karl; Curt, Stephane; Dobert, Steffen; McMonagle, Gerard; Rossat, Ghislain; Syratchev, Igor; Timeo, Luca; Haase, Andrew Jensen, Aaron; Jongewaard, Erik; Nantista, Christopher; Sprehn, Daryl; Vlieks, Arnold; Hamdi, Abdallah; Peauger, Franck; Kuzikov, Sergey; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  8. Energy Department Authorizes Dominion Cove Point LNG to Export...

    Broader source: Energy.gov (indexed) [DOE]

    Dominion Cove Point LNG, LP to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States. The Cove ...

  9. 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports ...

    Energy Savers [EERE]

    5 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas Applications 2015 - LNG Export, Compressed Natural Gas (CNG), Re-Exports & Long Term Natural Gas...

  10. Pangea LNG (North America) Holdings, LLC- 14-003-CIC

    Broader source: Energy.gov [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC  to Next Decade Partners, LLC. and Revision...

  11. Annotated bibliography: LNG safety and environmental control research

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This bibliography provides brief summaries of literature related to LNG safety and environmental control, organized alphabetically by author.

  12. Tempe Transportation Division: LNG Turbine Hybrid Electric Buses

    SciTech Connect (OSTI)

    Not Available

    2002-02-01

    Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

  13. U.S. LNG Markets and Uses: June 2004 Update

    Reports and Publications (EIA)

    2004-01-01

    This article is an update of the Energy Information Administration's January 2003 report U.S. LNG Markets and Uses.

  14. American LNG Marketing (Hialeah Facility) Order 3690 (Aug. 7, 2015)

    Broader source: Energy.gov [DOE]

    American (Haileah) TerminalLong-Term Contract Information and Registrationsat U.S. LNG Export Facilities

  15. LNG Safety Research Report to Congress | Department of Energy

    Energy Savers [EERE]

    Safety Research Report to Congress LNG Safety Research Report to Congress LNG Safety Research Report to Congress May 2012 The February 2007 Government Accountability Office Report (GAO Report 07-316), Public Safety Consequences of a Terrorist Attack on a Tanker Carrying Liquefied Natural Gas Need Clarification, identified several key Liquefied Natural Gas (LNG) research priorities highlighted by a GAO-convened panel of experts on LNG safety in order to provide the most comprehensive and accurate

  16. Order 3643: Alaska LNG Project, LLC | Department of Energy

    Energy Savers [EERE]

    43: Alaska LNG Project, LLC Order 3643: Alaska LNG Project, LLC ORDER CONDITIONALLY GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE PROPOSED ALASKA LNG TERMINAL IN NIKISKI, ALASKA, TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the Alaska LNG Application have not demonstrated that the requested authorization will be inconsistent with

  17. Energy Department Authorizes Freeport LNG to Export Liquefied Natural Gas |

    Office of Environmental Management (EM)

    Department of Energy Freeport LNG to Export Liquefied Natural Gas Energy Department Authorizes Freeport LNG to Export Liquefied Natural Gas November 14, 2014 - 2:00pm Addthis News Media Contact 202-586-4940 Energy Department Authorizes Freeport LNG to Export Liquefied Natural Gas WASHINGTON - The Energy Department announced today that it has issued two final authorizations for Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC (Freeport) to export domestically produced liquefied natural

  18. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu

    Office of Environmental Management (EM)

    Parish, Louisiana | Department of Energy 8: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana Summary The Federal Energy Regulatory Commission prepared an EIS that analyzes the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near Lake Charles, Louisiana.

  19. Bear Head LNG Corporation and Bear Head LNG (USA), LLC- FE Dkt No. 15-14-NG

    Broader source: Energy.gov [DOE]

    On January 23, 2015, Bear Head LNG Corporation and Bear Head LNG (USA), LLC (together, “Bear Head LNG”), filed an application for long-term, multi-contract authorization to engage in imports from,...

  20. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator...

  1. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect (OSTI)

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. Operating costs of a salt cavern terminal are lower than tank based terminals because ''boil off'' is eliminated and maintenance costs of caverns are lower than LNG tanks. Phase II included the development of offshore mooring designs, wave tank tests, high pressure LNG pump field tests, heat exchanger field tests, and development of a model offshore LNG facility and cavern design. Engineers designed a model facility, prepared equipment lists, and confirmed capital and operating costs. In addition, vendors quoted fabrication and installation costs, confirming that an offshore salt cavern based LNG terminal would have lower capital and operating costs than a similarly sized offshore tank based terminal. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or purposeful damage, and much more acceptable to the community. More than thirty industry participants provided cost sharing, technical expertise, and guidance in the conduct and evaluation of the field tests, facility design and operating and cost estimates. Their close participation has accelerated the industry's acceptance of the conclusions of this research. The industry participants also developed and submitted several alternative designs for offshore mooring and for high pressure LNG heat exchangers in addition to those that were field tested in this project. HNG Storage, a developer, owner, and operator of natural gas storage facilities, and a participant in the DOE research has announced they will lead the development of the first offshore salt cavern based LNG import facility. Which will be called the Freedom LNG Terminal. It will be located offshore Louisiana, and is expected to be jointly developed with other members of the research group yet to be named. An offshore port license application is scheduled to be filed by fourth quarter 2005 and the terminal could be operational by 2009. This terminal allows the large volume importation of LNG without disrupting coastal port operations by being offshore, out of sight of land.

  2. Safety implications of a large LNG tanker spill over water.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Gritzo, Louis Alan; Luketa-Hanlin, Anay Josephine

    2005-04-01

    The increasing demand for natural gas in the United States could significantly increase the number and frequency of marine LNG (liquefied natural gas) imports. Although many studies have been conducted to assess the consequences and risks of potential LNG spills, the increasing importance of LNG imports suggests that consistent methods and approaches be identified and implemented to help ensure protection of public safety and property from a potential LNG spill. For that reason the U.S. Department of Energy (DOE), Office of Fossil Energy, requested that Sandia National Laboratories (Sandia) develop guidance on a risk-based analysis approach to assess and quantify potential threats to an LNG ship, the potential hazards and consequences of a large spill from an LNG ship, and review prevention and mitigation strategies that could be implemented to reduce both the potential and the risks of an LNG spill over water. Specifically, DOE requested: (1) An in-depth literature search of the experimental and technical studies associated with evaluating the safety and hazards of an LNG spill from an LNG ship; (2) A detailed review of four recent spill modeling studies related to the safety implications of a large-scale LNG spill over water; (3) Evaluation of the potential for breaching an LNG ship cargo tank, both accidentally and intentionally, identification of the potential for such breaches and the potential size of an LNG spill for each breach scenario, and an assessment of the potential range of hazards involved in an LNG spill; (4) Development of guidance on the use of modern, performance-based, risk management approaches to analyze and manage the threats, hazards, and consequences of an LNG spill over water to reduce the overall risks of an LNG spill to levels that are protective of public safety and property.

  3. LNG shipments in 1994 set records

    SciTech Connect (OSTI)

    1996-01-15

    Worldwide LNG shipments by ocean-going vessels in 1994 increased to 1,619 voyages, according to an LNG shipping industry statistical annual. LNG Log 20 published the recently compiled 1994 data in the last quarter of 1995. The publication is from the Society of International Gas Tanker and Terminal Operators Ltd., London. The year`s total was 8.8% more than for 1993 and the most in 35 years of records. The trips were made and the vessels loaded and discharged without report of serious safety or environmental incident, says the publication. Of the voyages completed during the year, 596 were to European receiving terminals (up 2.8% over 1993), and 1,003 went to the Far East (an increase of 10.7%); shipments to the US, however, dropped to 20, from 32 in 1993. This paper shows that the 1,619 voyages represent 3.6 million nautical miles logged by 78 vessels active during the year. These ships pumped ashore record annual volumes of approximately 144.3 million cu m of LNG, 110.1 million cu m (76.3%) of which went to Far Eastern customers. The paper also summarizes containment systems in use in 1994 and since LNG began to be shipped in 1959.

  4. Asia-Pacific focus of coming LNG trade boom

    SciTech Connect (OSTI)

    Not Available

    1992-11-16

    This paper reports that the Asia-Pacific region remains the centerpiece of a booming world trade in liquefied natural gas. Biggest growth in LNG demand is expected from some of the region's strongest economies such as Japan, South Korea, and Taiwan, Key LNG exporters such as Brunei, Malaysia, and Indonesia are scrambling to implement projects to meet that expected demand growth. Uncertainties cloud the outlook for Far East LNG trade, Australia, for one, is more cautious in pressing expansion of its LNG export capacity as more competing LNG expansions spring up around the world, notably in the Middle East and Africa.

  5. Cameron LNG LLC - 14-001-CIC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron LNG LLC - 14-001-CIC Cameron LNG LLC - 14-001-CIC Application of Cameron LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Conditional Long-term Authorization to Export LNG to Non-free Trade Agreement Nations. The Comment Period for this Docket is now closed. Please follow the instructions in the Federal Register Notice of Application to file a protest, comments or a Motion to Intervene or Notice of Intervention. PDF icon

  6. First LNG from North field overcomes feed, start-up problems

    SciTech Connect (OSTI)

    Redha, A.; Rahman, A.; Al-Thani, N.H.; Ishikura, Masayuki; Kikkawa, Yoshitsugi

    1998-08-24

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  7. Comparative safety analysis of LNG storage tanks

    SciTech Connect (OSTI)

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  8. LNG imports make strong recovery in 1996; exports increase also

    SciTech Connect (OSTI)

    Swain, E.J.

    1998-01-19

    LNG imports to the US jumped in 1996 as Algerian base-load plants resumed operations following major revamps. Exports from Alaska to Japan grew by nearly 4% over 1995. Total LNG imports to the US in 1996 were 40.27 bcf compared to 17.92 bcf in 1995, an increase of 124.8%. Algeria supplied 35.32 bcf; Abu Dhabi, 4.95 bcf. About 82.3% of the imported LNG was received at Distrigas Corp.`s terminal north of Boston. The remaining LNG was received at the Pan National terminal in Lake Charles, LA. LNG imports during 1995 fell to such a low level not because of depressed US demand but because of limited supply. The paper discusses LNG-receiving terminals, base-load producers, LNG pricing, and exports.

  9. Custody transfer measurements for LNG/LPG

    SciTech Connect (OSTI)

    Williams, R.A.

    1984-04-01

    The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

  10. Parallax Enterprises (NOLA) LLC- (Formerly Louisiana LNG Energy LLC) FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  11. Parallax Enterprises (NOLA) LLC (Formerly Louisiana LNG Energy LLC) FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  12. SCT&E LNG, LLC- FE Dkt. No. 14-72-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed May 23, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  13. G2 LNG LLC- FE Dkt. No. 15-44-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19, 2015, by G2 LNG LLC (G2), seeking a long-term, multi-contract authorization to export domestically produced...

  14. Venture Global Calcasieu Pass, LLC- (Formerly Venture Global LNG, LLC)- 14-88-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on May 13, 2014, by Venture Global LNG, LLC (VGP) requesting long-term, multi-contract authority to export (in addition...

  15. G2 LNG LLC- FE Dkt. No. 15-45-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed March 19, 2015, by G2 LNG LLC (G2), seeking a long-term multi-contract authorization to export domestically produced...

  16. SCT&E LNG, LLC- FE DKT. NO. 14-98-LNG NFTA

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed July 24, 2014, by SCT&E LNG, LLC (SCT&E), seeking a long-term multi-contract authorization to export domestically...

  17. Order 3331-A: Dominion Cove Point LNG, LP - Dk. No. 11-128-LNG...

    Broader source: Energy.gov (indexed) [DOE]

    VESSEL FROM THE DOMINION COVE POINT LNG TERMINAL IN CALVERT COUNTY, MARYLAND TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set...

  18. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Broader source: Energy.gov [DOE]

    Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  19. Eagle LNG Partners Jacksonville LLC- Dkt. No. 16-15-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application), filed on January 27, 2016, by Eagle LNG Partners Jacksonville LLC (Eagle...

  20. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Energy Savers [EERE]

    EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ...

  1. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG ...

  2. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Office of Environmental Management (EM)

    0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOEFE) issued ...

  3. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION...

    Energy Savers [EERE]

    - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT....

  4. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTIO...

    Energy Savers [EERE]

    EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG -...

  5. SEMI-ANNUAL REPORTS FOR - BEAR HEAD LNG CORPORATION AND BEAR...

    Broader source: Energy.gov (indexed) [DOE]

    October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 CAMERON LNG, LLC - FE DKT. NO. 15-36-LNG (FTA)...

  6. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  7. Technology advances keeping LNG cost-competitive

    SciTech Connect (OSTI)

    Bellow, E.J. Jr.; Ghazal, F.P.; Silverman, A.J.; Myers, S.D.

    1997-06-02

    LNG plants, often very expensive in the past, will in the future need to cost less to build and operate and yet maintain high safety and reliability standards, both during construction and operation. Technical advancements, both in the process and in equipment scaling, manufacturing, and metallurgy, will provide much of the impetus for the improved economics. Although world energy demand is predicted to grow on average of about 2% annually over the next decade, LNG is expected to contribute an increasing portion of this growth with annual growth rates averaging about 7%. This steep growth increase will be propelled mainly by the environmentally friendlier burning characteristics of natural gas and the strong industrial growth in Asian and pacific Rim countries. While LNG is emerging as the fuel of choice for developing economies, its delivered cost to consumers will need to stay competitive with alternate energy supplies if it is to remain in front. The paper discusses LNG process development, treating process, equipment developments (man heat exchanger, compressors, drivers, and pressure vessels), and economy of scale.

  8. Detailed Monthly and Annual LNG Import Statistics (2004-2012) | Department

    Energy Savers [EERE]

    of Energy Detailed Monthly and Annual LNG Import Statistics (2004-2012) Detailed Monthly and Annual LNG Import Statistics (2004-2012) Detailed Monthly and Annual LNG Import Statistics (2004-2012) PDF icon Detailed Monthly and Annual LNG Import Statistics (2004-2012) More Documents & Publications U.S. LNG Imports and Exports (2004-2012) Natural Gas Imports and Exports Fourth Quarter Report 2013 LNG Safety Research Report to Congress

  9. Summary of LNG Export Applications of the Lower 48 States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Summary of LNG Export Applications of the Lower 48 States Summary of LNG Export Applications of the Lower 48 States List of current LNG Export Applications of the Lower 48 States before the Department of Energy (as of December 4, 2015). For Listing of all LNG Export Applications before the Department of Energy, please select year: 2015, 2014. PDF icon Summary of LNG Export Applications More Documents & Publications EA-1942: Finding of No Significant Impact Order 3690: American LNG

  10. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  11. Nuclear energy is an important source of power, supplying 20

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can ...

  12. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE...

    Broader source: Energy.gov (indexed) [DOE]

    (FLEX II Conditional Order) to Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, ... PDF icon Order 3357-B - Final Opinion and Order Granting LNG Export Authorization More ...

  13. SEMI-ANNUAL REPORTS FOR ANNOVA LNG COMMON INFRASTRUCTURE, LLC - FE DKT. NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13-140-LNG/14-004-CIC ORDERS 3394 AND 3464 | Department of Energy REPORTS FOR ANNOVA LNG COMMON INFRASTRUCTURE, LLC - FE DKT. NO. 13-140-LNG/14-004-CIC ORDERS 3394 AND 3464 SEMI-ANNUAL REPORTS FOR ANNOVA LNG COMMON INFRASTRUCTURE, LLC - FE DKT. NO. 13-140-LNG/14-004-CIC ORDERS 3394 AND 3464 PDF icon December 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications Annova LNG, LLC - 14-004-CIC SEMI-ANNUAL REPORTS FOR Cameron LNG, LLC - FE Dkt. No. 15-36-LNG - ORDER

  14. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - FE DKT. 10-160-LNG - ORDER 2913 | Department of Energy LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-160-LNG - ORDER 2913 No report submitted at this time. More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P.

  15. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly

    Energy Savers [EERE]

    Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 | Department of Energy LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL

  16. Breakout Session: Solar as a Base Load Power Source | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Base Load Power Source Breakout Session: Solar as a Base Load Power Source May 21, 2014 2:45PM to 3:45PM PDT Huntington Does solar have a future as a base load electricity source? This session explores a vision in which solar power plants can provide dispatchability, predictability, and reliability comparable to conventional generation, while offering affordable electricity for consumers. Panelists will address the possible configuration, components, and performance characteristics of such

  17. Second Stage Intercooling Using LNG for Turbocharged Heavy Duty Road Vehicles Phase I Final Report

    SciTech Connect (OSTI)

    1999-09-21

    It is well documented in engine performance literature that reduced engine inlet air temperature increases power output and reduces NO, emissions for both diesel and spark ignited (SI) engines. In addition, reduced inlet temperature increases the knock resistance of SI engines. In that most HD natural gas engines are SI derivatives of diesel engines it is appropriate to evaluate the benefits of reduced engine air temperature through LNG fuel. This project investigated the ''real world'' possibilities of a patented process for utilizing the ''cold'' in LNG to chill engine inlet air. The results support the conclusion that doing so is a practical means to increase engine power and reduce engine-out NO{sub x}.

  18. Method of producing stable metal oxides and chalcogenides and power source

    DOE Patents [OSTI]

    Doddapaneni, Narayan (10516 Royal Birkdale, N.E., Albuquerque, NM 87111); Ingersoll, David (5824 Mimosa Pl., N.E., Albuquerque, NM 87111)

    1996-01-01

    A method of making chemically and electrochemically stable oxides or other chalcogenides for use as cathodes for power source applications, and of making batteries comprising such materials.

  19. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology

  20. DOE LNG Exports Announcements - May 29, 2014 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE LNG Exports Announcements - May 29, 2014 DOE LNG Exports Announcements - May 29, 2014 On May 29, 2014, the Department of Energy ("DOE" or "the Department") is proposing a change to its procedures to reflect changing market conditions, ensuring an efficient process that will also enable the Department to have more complete information when it makes public interest determinations for Liquefied Natural Gas (LNG) exports to non-Free Trade Agreement (FTA) countries. In

  1. ORDER NO. 3357: Freeport LNG | Department of Energy

    Energy Savers [EERE]

    57: Freeport LNG ORDER NO. 3357: Freeport LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the FLEX Application have not demonstrated that the requested authorization will be inconsistent with the public interest and

  2. ORDER NO. 3391: CAMERON LNG | Department of Energy

    Energy Savers [EERE]

    91: CAMERON LNG ORDER NO. 3391: CAMERON LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE CAMERON LNG TERMINAL IN CAMERON PARISH, LOUISIANA, TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the Cameron Application have not demonstrated that the requested authorization will be inconsistent with the public interest and

  3. LNG Export Study - Related Documents | Department of Energy

    Office of Environmental Management (EM)

    Export Study - Related Documents LNG Export Study - Related Documents PDF icon Federal Register Notice of Availability of the LNG Export Study PDF icon EIA Analysis (Study - Part 1) PDF icon NERA Economic Consulting Analysis (Study - Part 2) PDF icon Order of Precedence for Processing Non-FTA Applications PDF icon Procedural Order, January 28, 2013 More Documents & Publications Before the Senate Energy and Natural Resources Committee ORDER NO. 3465: LNG DEVELOPMENT COMPANY, LLC ORDER NO.

  4. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi |

    Office of Environmental Management (EM)

    Department of Energy 4: Gulf LNG Liquefaction Project, Jackson County, Mississippi EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi SUMMARY The Federal Energy Regulatory Commission (FERC) announced its intent to prepare an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Jackson County Mississippi and modify related facilities to enable the terminal to liquefy natural gas for export. DOE

  5. EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine |

    Office of Environmental Management (EM)

    Department of Energy 8: Downeast LNG Import-Export Project, Robbinston, Maine EIS-0508: Downeast LNG Import-Export Project, Robbinston, Maine SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) import and export terminal facilities in Washington County, Maine. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the

  6. EIS-0509: Mississippi River LNG Project, Plaquemines Parish, Louisiana |

    Office of Environmental Management (EM)

    Department of Energy 9: Mississippi River LNG Project, Plaquemines Parish, Louisiana EIS-0509: Mississippi River LNG Project, Plaquemines Parish, Louisiana SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of proposed liquefied natural gas (LNG) export terminal facilities in Plaquemines Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3

  7. EIS-0512: Alaska LNG Project, Alaska | Department of Energy

    Office of Environmental Management (EM)

    2: Alaska LNG Project, Alaska EIS-0512: Alaska LNG Project, Alaska SUMMARY The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS to analyze the potential environmental impacts of a proposal to develop, construct, and operate facilities that would commercialize the natural gas resources on Alaska's North Slope. The proposed Alaska LNG Project would include a gas treatment plant, more than 800 miles of natural gas pipeline, liquefaction and storage

  8. EIS-0518: Annova LNG Brownsville Project; Cameron County, Texas |

    Office of Environmental Management (EM)

    Department of Energy 18: Annova LNG Brownsville Project; Cameron County, Texas EIS-0518: Annova LNG Brownsville Project; Cameron County, Texas Summary The Federal Energy Regulatory Commission (FERC), with DOE as a cooperating agency, is preparing an EIS that analyzes the potential environmental impacts of a proposal to construct and operate a liquefied natural gas (LNG) production, storage, and export facility on the southern bank of the Brownsville Ship Channel. DOE, Office of Fossil

  9. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu...

    Energy Savers [EERE]

    with the public interest. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects Public Comment Opportunities No public comment opportunities available at this time....

  10. ,"New Hampshire Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  11. ,"New Jersey Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  12. ,"New York Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"New Hampshire Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. ,"South Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  15. ,"North Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Rhode Island Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"North Carolina Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. ,"New Mexico Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"New York Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. ,"South Dakota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  1. ,"South Carolina Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. ,"South Dakota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota...

  4. ,"New Jersey Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  5. LPG-recovery processes for baseload LNG plants examined

    SciTech Connect (OSTI)

    Chiu, C.H.

    1997-11-24

    With demand on the rise, LPG produced from a baseload LNG plant becomes more attractive as a revenue-earning product similar to LNG. Efficient use of gas expanders in baseload LNG plants for LPG production therefore becomes more important. Several process variations for LPG recovery in baseload LNG plants are reviewed here. Exergy analysis (based on the Second Law of Thermodynamics) is applied to three cases to compare energy efficiency resulting from integration with the main liquefaction process. The paper discusses extraction in a baseload plant, extraction requirements, process recovery parameters, extraction process variations, and exergy analysis.

  6. Small Scale LNG Terminals Market Installed Capacity is anticipated...

    Open Energy Info (EERE)

    Although large scale LNG terminals have been preferably constructed across the world till date, the emergence of small demand centers for natural gas within small...

  7. EIS-0487: Freeport LNG Liquefaction Project, Brazoria County, Texas

    Broader source: Energy.gov [DOE]

    Federal Energy Regulatory Commission (FERC) prepared an EIS to analyze the potential environmental impacts of a proposal to construct and operate the Freeport Liquefied Natural Gas (LNG) Liquefaction Project, which would expand an existing LNG import terminal and associated facilities in Brazoria County, Texas, to enable the terminal to liquefy and export LNG. DOE, Office of Fossil Energy a cooperating agency in preparing the EIS has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  8. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States. Subject to environmental review and final...

  9. SEMI-ANNUAL REPORTING REQUIREMENTS (LNG EXPORTERS) 2010-2015...

    Broader source: Energy.gov (indexed) [DOE]

    Companies with authorizations to export LNG are required to file, on a semi-annual basis, written reports describing the progress of the planned liquefaction facility project that...

  10. ,"Texas Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","ngaepg0salstxmmcfa.xls" ,"Available ...

  11. Order 3690: American LNG Marketing LLC | Department of Energy

    Energy Savers [EERE]

    90: American LNG Marketing LLC Order 3690: American LNG Marketing LLC FINAL OPINION AND ORDER GRANTING LONG-TERM, MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS IN ISO CONTAINERS LOADED AT THE HIALEAH FACILITY NEAR MEDLEY, FLORIDA, AND EXPORTED BY VESSEL TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of American LNG Marketing LLC's application to export LNG from its Hialeah

  12. Energy Department Authorizes Alaska LNG Project, LLC to Export...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Slope gas has been a stranded resource unavailable to commercial markets. The project proposed by Alaska LNG includes a pipeline intended to make North Slope gas accessible ...

  13. Risks of LNG and LPG. [Review

    SciTech Connect (OSTI)

    Fay, J.A.

    1980-01-01

    Since the use of liquefied natural gas (LNG) and liquefied petroleum gases (LPG) as fuels is likely to increase and will certainly persist for some time to come, assessment of the safety of LNG/LPG systems will continue to draw attention and is quite likely to force continuing review of operating and design standards for LNG/LPG facilities. Scientific investigations to date appear to have identified the major hazards. Except for the dispersive behavior of vapor clouds - a not-insignificant factor in risk evaluation - the consequences of spills are well circumscribed by current analyses. The physically significant effects accompanying nonexplosive combustion of spilled material are fairly well documented; yet, potentially substantial uncertainties remain. Catastrophic spills of 10/sup 4/-10/sup 5/ m/sup 3/ on land or water are possible, given the current size of storage vessels. Almost all experimental spills have used less than 10 m/sup 3/ of liquid. There is thus some uncertainty regarding the accuracy and validity of extrapolation of current empirical information and physical models to spills of catastrophic size. The less-likely but still-possible explosive or fireball combustion modes are not well understood in respect to their inception. The troubling experience with such violent combustion of similar combustible vapors suggests that this possibility will need further definition. Extant LNG and LPG risk analyses illustrate the difficulties of substantiating the numerous event probabilities and the determination of all event sequences that can lead to hazardous consequences. Their disparate results show that significant improvements are needed. Most importantly, a detailed critique of past efforts and a determination of an exhaustive set of criteria for evaluating the adequacy of a risk analysis should precede any further attempts to improve on existing studies. 44 references, 1 table.

  14. Comparative Safety Analysis of LNG Storage Tanks B. A. Fecht

    Office of Scientific and Technical Information (OSTI)

    ... 4.2 PRESTRESSED CONCRETE TANKS 5.0 METHODOLOGY vii iii v 1.1 2.1 3.1 3.1 3.2 3.6 3.12 ... a larger LNG safety studies program to research LNG release prevention and control, this ...

  15. Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12-184-LNG New Company Name: NextDecade Partnerss, LLC) | Department of Energy Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC) Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC) Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC and a Revision of

  16. SEMI-ANNUAL REPORT - FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - 15-38-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3691 | Department of Energy REPORT - FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - 15-38-LNG - ORDER 3691 SEMI-ANNUAL REPORT - FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - 15-38-LNG - ORDER 3691 PDF icon October 2015 More Documents & Publications FLORIDIAN NATURAL GAS STORAGE COMPANY, LLC - FE DKT. NO. 15-38-LNG SEMI-ANNUAL REPORTS - TEXAS LNG BROWNSVILLE LLC - FE DKT. 15-62-LNG - Order 3716 FTA SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG -

  17. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12-47-LNG - ORDER 3104 | Department of Energy REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon October 2012 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL

  18. SEMI-ANNUAL REPORTS FOR PANGEA LNG (NORTH AMERICA) HOLDINGS, LLC - FE DKT.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NO. 12-174-LNG - ORDER 3227 | Department of Energy PANGEA LNG (NORTH AMERICA) HOLDINGS, LLC - FE DKT. NO. 12-174-LNG - ORDER 3227 SEMI-ANNUAL REPORTS FOR PANGEA LNG (NORTH AMERICA) HOLDINGS, LLC - FE DKT. NO. 12-174-LNG - ORDER 3227 PDF icon April 2014 PDF icon October 2013 PDF icon April 2013 More Documents & Publications QER - Comment of America's Natural Gas Alliance 2 Pangea LNG (North America) Holdings, LLC - 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss,

  19. SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG -

    Energy Savers [EERE]

    ORDER 3639 | Department of Energy PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG - ORDER 3019 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600

  20. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect (OSTI)

    Grimaila, B.

    1995-12-31

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  1. U.S. LNG Imports and Exports (2004-2012) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) PDF icon U.S. LNG Imports and Exports (2004-2012) More Documents & Publications Detailed Monthly and Annual LNG Import Statistics (2004-2012) Natural Gas Imports and Exports - Fourth Quarter Report 2012 Natural Gas Imports and Exports Fourth Quarter Report 2013

  2. LNG Imports by Vessel into the U.S. Form | Department of Energy

    Office of Environmental Management (EM)

    Vessel into the U.S. Form LNG Imports by Vessel into the U.S. Form File Excel Version of LNG Imports by Vessel into the U.S. Form.xlsx PDF icon PDF Version of LNG Imports by Vessel into the U.S. Form More Documents & Publications LNG Exports by Vessel out of the U.S. Form LNG Exports by Vessel in ISO Containers

  3. Alternative Fuels Data Center: Clean Cities Coalitions Bring LNG to the

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    East Coast Clean Cities Coalitions Bring LNG to the East Coast to someone by E-mail Share Alternative Fuels Data Center: Clean Cities Coalitions Bring LNG to the East Coast on Facebook Tweet about Alternative Fuels Data Center: Clean Cities Coalitions Bring LNG to the East Coast on Twitter Bookmark Alternative Fuels Data Center: Clean Cities Coalitions Bring LNG to the East Coast on Google Bookmark Alternative Fuels Data Center: Clean Cities Coalitions Bring LNG to the East Coast on

  4. Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Adds Regional Heavy-Duty LNG Fueling Station to someone by E-mail Share Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Facebook Tweet about Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Twitter Bookmark Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling Station on Google Bookmark Alternative Fuels Data Center: Sacramento Adds Regional Heavy-Duty LNG Fueling

  5. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. "In these devices, a fraction of light transmitted through the window is absorbed by nano-sized particles (semiconductor quantum dots)

  6. Finding Alternative Water Sources for Power Plants with Google Earth

    Broader source: Energy.gov [DOE]

    Sobering news from experts: Rising populations, regional droughts, and decreasing groundwater levels are draining the nation’s fresh water supply. What plant operators need is a system that catalogs in one place nontraditional water sources that can be used for electricity production instead of valuable, limited fresh water. Now, thanks to a Department of Energy (DOE)-supported project, there’s an app for that.

  7. Cameron LNG, LLC- FE Dkt. No. 16-34-LNG- Application for Blanket Authority to Export LNG on a Short-Term Basis to FTA and NFTA Countries

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application (Application), filed on February 19, 2016, by  Cameron LNG, LLC, seeking blanket...

  8. Method of producing stable metal oxides and chalcogenides and power source

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1996-10-22

    A method is described for making chemically and electrochemically stable oxides or other chalcogenides for use as cathodes for power source applications, and of making batteries comprising such materials. 6 figs.

  9. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    SciTech Connect (OSTI)

    Theiss, T.J.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should be estimated to evaluate its potential suitability for expeditionary forces. The overriding conclusion of this effort is that we feel a suitable prime mover can be found but that the development will be technically challenging and trade-offs will be made before an optimum solution is found.

  10. Pangea LNG (North America) Holdings, LLC- 14-002-CIC (FE Dkt. No. 12-184-LNG New Company Name: NextDecade Partnerss, LLC)

    Broader source: Energy.gov [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC and a Revision of the Point from which the...

  11. Rotational motion based, electrostatic power source and methods thereof

    DOE Patents [OSTI]

    Potter, Michael D. (Churchville, NY)

    2007-05-01

    A power system includes a member with two or more sections and at least one pair of electrodes. Each of the two or more sections has a stored static charge. Each of the pair of electrodes is spaced from and on substantially opposing sides of the member from the other electrode and is at least partially in alignment with the other electode. At least one of the member and the at least one pair of electrodes is moveable with respect to the other. When at least one of the sections is at least partially between the pair of electrodes, the at least one of the sections has the stored static electric charge closer to one of the pair of electrodes. When at least one of the other sections is at least partially between the pair of electrodes, the other section has the stored static electric charge closer to the other one of the pair of electrodes.

  12. LNG_v11_appendixupdate.qxd

    Office of Environmental Management (EM)

    n d e r s t a n d i n g t h e B a s i c F a c t s Liquefied Natural Gas: About This Report Growing Demand for Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. Although natural gas production in North America is projected to gradually increase through 2025, consumption has begun to outpace available domestic natural gas supply. Over time, this gap will widen. Emergence of the Global LNG Market One of several

  13. U.S. LNG imports 1996--1997 should recover from low 1995 levels

    SciTech Connect (OSTI)

    Swain, E.J.

    1997-01-27

    Imports of LNG into the US in 1995 were the lowest since 1988, when 17.5 billion cu ft were imported. Total 1995 LNG imported from Algeria was 17.92 bcf compared to 50.78 in 1994, a decrease of 64.7%. About 72% of imported Algerian LNG was received at the Distrigas Corp. terminal north of Boston. The remaining LNG was received at the Trunkline LNG CO. terminal, Lake Charles, La., which was reopened in December 1989. The dramatic decline in LNG imports over the past 2 years (78%) can largely be attributed to Sonatrach`s multiyear renovation project to restore its LNG plants to their original capacities. This major renovation project has resulted in LNG export curtailments to all of its customers. The paper discusses US terminals, base-load producers, LNG pricing, and exports.

  14. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  15. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  16. ORDER NO. 3413: Jordan Cove LNG | Department of Energy

    Energy Savers [EERE]

    NO. 3413: Jordan Cove LNG ORDER NO. 3413: Jordan Cove LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE JORDAN COVE LNG TERMINAL IN COOS BAY, OREGON TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the Jordan Cove Application have not demonstrated that the requested authorization will be inconsistent with the public

  17. FE DOCKET NO. 10-161-LNG | Department of Energy

    Office of Environmental Management (EM)

    0-161-LNG FE DOCKET NO. 10-161-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the FLEX Application have not demonstrated that the requested authorization would be inconsistent with the public interest. As further

  18. Understanding Bulk Power Reliability: The Importance of Good Data and A Critical Review of Existing Sources

    SciTech Connect (OSTI)

    Fisher, Emily; Eto, Joseph H.; LaCommare, Kristina Hamachi

    2011-10-19

    Bulk power system reliability is of critical importance to the electricity sector. Complete and accurate information on events affecting the bulk power system is essential for assessing trends and efforts to maintain or improve reliability. Yet, current sources of this information were not designed with these uses in mind. They were designed, instead, to support real-time emergency notification to industry and government first-responders. This paper reviews information currently collected by both industry and government sources for this purpose and assesses factors that might affect their usefulness in supporting the academic literature that has relied upon them to draw conclusions about the reliability of the US electric power system.

  19. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  20. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L.; Lawler, J.S.

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  1. SEMI-ANNUAL REPORTS FOR - STROM, INC. - FE DKT. NO. 14-56-LNG - ORDER NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3537 | Department of Energy STROM, INC. - FE DKT. NO. 14-56-LNG - ORDER NO 3537 SEMI-ANNUAL REPORTS FOR - STROM, INC. - FE DKT. NO. 14-56-LNG - ORDER NO 3537 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR DOWNEAST LNG, INC. - FT DKT. NO. 14-172-LNG - ORDER NO. 3600 (FTA) SEMI-ANNUAL REPORTS FOR DOMINION COVE POINT, LP - DKt. NO. 11-115-LNG - ORDER 3019 SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDE

  2. SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY FE DKT. NO. 12-32-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3413 | Department of Energy JORDAN COVE ENERGY FE DKT. NO. 12-32-LNG - ORDER 3413 SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY FE DKT. NO. 12-32-LNG - ORDER 3413 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR JORDAN COVE ENERGY PROJECT, L.P. - FE DKT. NO. 11-127-LNG - ORDER 3041 SEMI-ANNUAL REPORTS FOR JORDAN COVE LNG L.P. - FE DKT. NO. 13-141-LNG - ORDER 3412 SEMI-ANNUAL REPORT - GULF LNG

  3. SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3324 | Department of Energy LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC (formerly Trunkline LNG Export, LLC) - DK. NO. 13-04-LNG - ORDER 3252 FE DOCKET NO. 11-59-LNG EIS-0491: Draft

  4. SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC

    Energy Savers [EERE]

    - FE DKT. 10-161-LNG - ORDER 3282 | Department of Energy - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 SEMI-ANNUAL REPORTS - FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. 10-161-LNG - ORDER 3282 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT.

  5. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION,

    Energy Savers [EERE]

    LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 | Department of Energy EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG -

  6. LNG Exports by Truck out of the U.S. Form | Department of Energy

    Office of Environmental Management (EM)

    Truck out of the U.S. Form LNG Exports by Truck out of the U.S. Form File Excel Version of LNG Exports by Truck out of the U.S. Form.xlsx PDF icon PDF Version of LNG Exports by Truck out of the U.S. Form More Documents & Publications LNG Imports by Truck into the U.S. Form LNG Exports by Vessel out of the U.S. Form LNG Exports by Vessel in ISO Containers out of

  7. LNG Exports by Vessel in ISO Containers out of the U.S. Form | Department

    Office of Environmental Management (EM)

    of Energy Vessel in ISO Containers out of the U.S. Form LNG Exports by Vessel in ISO Containers out of the U.S. Form File Excel Version of LNG Exports by Vessel in ISO Container out of the U.S. Form.xlsx PDF icon PDF Version of LNG Exports by Vessel in ISO Containers out of the U.S. Form More Documents & Publications LNG Exports by Vessel out of the U.S. Form LNG Exports by Truck out of the U.S. Form LNG Imports by Vessel into

  8. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Public Comment Opportunities No events...

  9. Norcal Prototype LNG Truck Fleet: Final Data Report

    SciTech Connect (OSTI)

    Chandler, K.; Proc, K.

    2005-02-01

    U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final data.

  10. Topsides equipment, operating flexibility key floating LNG design

    SciTech Connect (OSTI)

    Yost, K.; Lopez, R.; Mok, J.

    1998-03-09

    Use of a large-scale floating liquefied natural gas (LNG) plant is an economical alternative to an onshore plant for producing from an offshore field. Mobil Technology Co., Dallas, has advanced a design for such a plant that is technically feasible, economical, safe, and reliable. Presented were descriptions of the general design basis, hull modeling and testing, topsides and storage layouts, and LNG offloading. But such a design also presents challenges for designing topsides equipment in an offshore environment and for including flexibility and safety. These are covered in this second article. Mobil`s floating LNG plant design calls for a square concrete barge with a moon-pool in the center. It is designed to produce 6 million tons/year of LNG with up to 55,000 b/d of condensate from 1 bcfd of raw feed gas.

  11. EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces...

    Broader source: Energy.gov (indexed) [DOE]

    3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest....

  12. Chevron U.S.A. Inc.- 14-119-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an Application filed August 27, 2014 by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural gas (LNG)...

  13. LNG Technology Is in the News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LNG Technology Is in the News Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  14. Price of Northeast Gateway Natural Gas LNG Imports from Trinidad...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and Tobago (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr...

  15. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per...

    Gasoline and Diesel Fuel Update (EIA)

    (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2015...

  16. ,"New Hampshire Natural Gas LNG Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2013 ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","na1350snh2a.xls" ,"Available from Web ...

  17. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  18. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expansion Project (between Sumas and Woodland, WA) | Department of Energy 2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of proposals (1) to add

  19. EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Jackson Counties, Texas | Department of Energy EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas EIS-0494: Excelerate Liquefaction Solutions Lavaca Bay LNG Project, Calhoun and Jackson Counties, Texas SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal

  20. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington

    Office of Environmental Management (EM)

    Expansion Project (between Sumas and Woodland, WA) | Department of Energy 2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) SUMMARY The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of proposals (1) to add

  1. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique power panel approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin power panels consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 C and cold-side temperatures = 40 C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

  2. Aussie LNG players target NE Asia in expansion bid

    SciTech Connect (OSTI)

    Not Available

    1994-02-28

    Australia's natural gas players, keen to increase their presence in world liquefied natural gas trade, see Asia as their major LNG market in the decades to come. That's despite the fact that two spot cargoes of Australian Northwest Shelf LNG were shipped to Europe during the last 12 months and more are likely in 1994. Opportunities for growth are foreseen within the confines of the existing Northwest Shelf gas project for the rest of the 1990s. But the main focus for potential new grassroots project developers and expansions of the existing LNG plant in Australia is the expected shortfall in contract volumes of LNG to Japan, South Korea, and Taiwan during 2000--2010. Traditionally the price of crude oil has been used as a basis for calculating LNG prices. This means the economics of any new 21st century supply arrangements are delicately poised because of the current low world oil prices, a trend the market believes is likely to continue. In a bid to lessen the effect of high initial capital outlays and still meet projected demand using LNG from new projects and expansion of the existing plant, Australia's gas producers are working toward greater cooperation with prospective Asian buyers.

  3. The Asia Pacific LNG trade: Status and technology development

    SciTech Connect (OSTI)

    Hovdestad, W.R.

    1995-10-01

    The Asia Pacific Region is experiencing a period of sustained economic expansion. Economic growth has led to an increasing demand for energy that has spurred a rapid expansion of baseload liquefied natural gas (LNG) facilities in this region. This is illustrated by the fact that seven of the ten baseload facilities in existence provide LNG for markets in the Asia Pacific region. With the three exceptions having been initially commissioned in 1972 and earlier, it is fair to observed that most advances in LNG technology have been developed and applied for this market. The paper presents the current status and identified future trends for the Asia Pacific LNG trade. Technology development in terms of application to onstream production, processing and transportation facilities, including LNG tankers, is presented. The potential of future advances to applied technology and operational practices to improve the cost-effectiveness of new and existing facilities is discussed. Current design data and methods as actually used are examined in terms of identifying where fundamental research and basic physical data are insufficient for optimization purposes. These findings are then summarized and presented in terms of the likely evolution of future and existing LNG projects in the Asia Pacific region.

  4. Fitness for service applications in LNG plants

    SciTech Connect (OSTI)

    Bagnoli, D.L.; Polk, C.J.; Yin, H.; Gordon, J.R.

    1995-12-31

    Fitness-for-service assessments can provide information regarding operational reliability of equipment. However, to be meaningful, such assessments require an analytical procedure to determine the ability of engineering structures to tolerate the presence of weld flaws. In recent years, there has been a significant interest in this technology by the refining and petrochemical industries for predicting and avoiding fracture in pressurized components. Most applications have covered pressure vessel and piping where carbon and low alloy steels are the traditional materials of construction. More recently, fitness for service questions have developed for equipment with highly ductile materials such as aluminum alloys. In order to handle these questions ductile tearing resistance must be considered and R curve methods are required. In this paper examples are cited where fitness for service assessments were required for an aluminum heat exchanger in LNG service. Suitable R curve data were developed in order to establish flaw tolerance following UT inspections of this equipment.

  5. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  6. Prospects for using high power x-rays as a volumetric heat source

    SciTech Connect (OSTI)

    Rosenberg, R.A.; Farrell, W.; Ma, Q.

    1997-09-01

    Third-generation, high-intensity, x-ray synchrotron radiation sources are capable of producing high heat-flux x-ray beams. In many applications finding ways to handle these powers is viewed as a burden. However, there are some technological applications where the deep penetration length of the x-rays may find beneficial uses as a volumetric heat source. In this paper the authors discuss the prospects for using high power x-rays for volumetric heating and report some recent experimental results. The particular applications they focus on are welding and surface heat treatment. The radiation source is an undulator at the Advanced Photon Source (APS). Results of preliminary tests on aluminum, aluminum metal matrix composites, and steel will be presented.

  7. renewable sources of power. Demand for fossil fuels surely will overrun supply s

    Broader source: Energy.gov (indexed) [DOE]

    renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And

  8. Multi-source energy harvester to power sensing hardware on rotating structures

    SciTech Connect (OSTI)

    Schlichting, Alezander D; Ouellette, Scott; Carlson, Clinton P; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles

    2010-01-01

    The U.S. Department of Energy (DOE) proposes to meet 20% of the nation's energy needs through wind power by the year 2030. To accomplish this goal, the industry will need to produce larger (> 100m diameter) turbines to increase efficiency and maximize energy production. It will be imperative to instrument the large composite structures with onboard sensing to provide structural health monitoring capabilities to understand the global response and integrity of these systems as they age. A critical component in the deployment of such a system will be a robust power source that can operate for the lifespan of the wind turbine. In this paper we consider the use of discrete, localized power sources that derive energy from the ambient (solar, thermal) or operational (kinetic) environment. This approach will rely on a multi-source configuration that scavenges energy from photovoltaic and piezoelectric transducers. Each harvester is first characterized individually in the laboratory and then they are combined through a multi-source power conditioner that is designed to combine the output of each harvester in series to power a small wireless sensor node that has active-sensing capabilities. The advantages/disadvantages of each approach are discussed, along with the proposed design for a field ready energy harvester that will be deployed on a small-scale 19.8m diameter wind turbine.

  9. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  10. Pangea LNG (North America) Holdings, LLC - 14-003-CIC | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Amendment of Application to Export LNG to Non-free Trade Agreement Countries to Reflect a Change in Ownership of Pangea LNG (North America) Holdings, LLC to Next Decade Partners, ...

  11. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 EIS-0491: Draft Environmental Impact Statement FE DOCKET NO. 11-59-LNG

  12. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...

    Broader source: Energy.gov (indexed) [DOE]

    April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066

  13. SEMI-ANNUAL REPORTS FOR LAKE CHARLES LNG EXPORT COMPANY, LLC...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications SEMI-ANNUAL REPORTS FOR LAKE CHARLES EXPORTS, LLC - FE DKT. NO. 11-59-LNG - ORDER 3324 EIS-0491: Draft Environmental Impact Statement FE DOCKET NO. 11-59-LNG...

  14. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Non-free Trade Agreement Nations in FE Dkts. 10-160-LNG;...

  15. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTI...

    Energy Savers [EERE]

    EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 11-161-LNG - ORDER 3357 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO....

  16. An Update on Proposed Changes to the Energy Department's LNG Export

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision-Making Procedures | Department of Energy Proposed Changes to the Energy Department's LNG Export Decision-Making Procedures An Update on Proposed Changes to the Energy Department's LNG Export Decision-Making Procedures August 15, 2014 - 9:00am Addthis A tanker carries liquified natural gas (LNG) off the coast of Homer, Alaska. | Photo courtesy of the Federal Energy Regulatory Commission. A tanker carries liquified natural gas (LNG) off the coast of Homer, Alaska. | Photo courtesy of

  17. Energy Department Authorizes Dominion Cove Point LNG to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    Press release announcing the authorization of Dominion Cove Point LNG in Calvert County, Maryland to export Liquefied Natural Gas.

  18. How to Obtain Authorization to Import and/or Export Natural Gas and LNG

    Broader source: Energy.gov [DOE]

    LNG Exports | Long Terms | Blanket Authorizations | Vacate | Name Change | Contents of Application | FTA and non-FTA Countries

  19. A Proposed Change to the Energy Department's LNG Export Decision-Making

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy A Proposed Change to the Energy Department's LNG Export Decision-Making Procedures A Proposed Change to the Energy Department's LNG Export Decision-Making Procedures May 29, 2014 - 2:22pm Addthis A tanker carries liquified natural gas (LNG) off the coast of Homer, Alaska. | Photo courtesy of the Federal Energy Regulatory Commission. A tanker carries liquified natural gas (LNG) off the coast of Homer, Alaska. | Photo courtesy of the Federal Energy Regulatory

  20. LNG Imports by Truck into the U.S. Form | Department of Energy

    Office of Environmental Management (EM)

    Truck into the U.S. Form LNG Imports by Truck into the U.S. Form File Excel Version of LNG Imports by Truck into the U.S. Form.xlsx PDF icon PDF Version of LNG Imports by Truck into the U.S. Form More Documents & Publications LNG Exports by Truck out of the U.S. Form CNG Exports by Truck

  1. Source-term reevaluation for US commercial nuclear power reactors: a status report

    SciTech Connect (OSTI)

    Herzenberg, C.L.; Ball, J.R.; Ramaswami, D.

    1984-12-01

    Only results that had been discussed publicly, had been published in the open literature, or were available in preliminary reports as of September 30, 1984, are included here. More than 20 organizations are participating in source-term programs, which have been undertaken to examine severe accident phenomena in light-water power reactors (including the chemical and physical behavior of fission products under accident conditions), update and reevaluate source terms, and resolve differences between predictions and observations of radiation releases and related phenomena. Results from these source-term activities have been documented in over 100 publications to date.

  2. LNG cascading damage study. Volume I, fracture testing report.

    SciTech Connect (OSTI)

    Petti, Jason P.; Kalan, Robert J.

    2011-12-01

    As part of the liquefied natural gas (LNG) Cascading Damage Study, a series of structural tests were conducted to investigate the thermal induced fracture of steel plate structures. The thermal stresses were achieved by applying liquid nitrogen (LN{sub 2}) onto sections of each steel plate. In addition to inducing large thermal stresses, the lowering of the steel temperature simultaneously reduced the fracture toughness. Liquid nitrogen was used as a surrogate for LNG due to safety concerns and since the temperature of LN{sub 2} is similar (-190 C) to LNG (-161 C). The use of LN{sub 2} ensured that the tests could achieve cryogenic temperatures in the range an actual vessel would encounter during a LNG spill. There were four phases to this test series. Phase I was the initial exploratory stage, which was used to develop the testing process. In the Phase II series of tests, larger plates were used and tested until fracture. The plate sizes ranged from 4 ft square pieces to 6 ft square sections with thicknesses from 1/4 inches to 3/4 inches. This phase investigated the cooling rates on larger plates and the effect of different notch geometries (stress concentrations used to initiate brittle fracture). Phase II was divided into two sections, Phase II-A and Phase II-B. Phase II-A used standard A36 steel, while Phase II-B used marine grade steels. In Phase III, the test structures were significantly larger, in the range of 12 ft by 12 ft by 3 ft high. These structures were designed with more complex geometries to include features similar to those on LNG vessels. The final test phase, Phase IV, investigated differences in the heat transfer (cooling rates) between LNG and LN{sub 2}. All of the tests conducted in this study are used in subsequent parts of the LNG Cascading Damage Study, specifically the computational analyses.

  3. Floating LNG plant will stress reliability and safety

    SciTech Connect (OSTI)

    Kinney, C.D.; Schulz, H.R.; Spring, W.

    1997-07-01

    Mobil has developed a unique floating LNG plant design after extensive studies that set safety as the highest priority. The result is a production, storage and offloading platform designed to produce 6 million tons per year of LNG and up to 55,000 bpd of condensate from 1 Bcfd of feed gas. All production and off-loading equipment is supported by a square donut-shaped concrete hull, which is spread-moored. The hull contains storage tanks for 250,000 m{sup 3} of LNG, 6540,000 bbl of condensate and ballast water. Both LNG and condensate can be directly offloaded to shuttle tankers. Since the plant may be moved to produce from several different gas fields during its life, the plant and barge were designed to be generic. It can be used at any location in the Pacific Rim, with up to 15% CO{sub 2}, 100 ppm H{sub 2}S, 55 bbl/MMcf condensate and 650 ft water depth. It can be modified to handle other water depths, depending upon the environment. In addition, it is much more economical than an onshore grassroots LNG plant, with potential capital savings of 25% or more. The paper describes the machinery, meteorology and oceanography, and safety engineering.

  4. Overview study of LNG release prevention and control systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Holter, G.M.; Powers, T.B.

    1982-03-01

    The liquefied natural gas (LNG) industry employs a variety of release prevention and control techniques to reduce the likelihood and the consequences of accidental LNG releases. A study of the effectiveness of these release prevention and control systems is being performed. Reference descriptions for the basic types of LNG facilities were developed. Then an overview study was performed to identify areas that merit subsequent and more detailed analyses. The specific objectives were to characterize the LNG facilities of interest and their release prevention and control systems, identify possible weak links and research needs, and provide an analytical framework for subsequent detailed analyses. The LNG facilities analyzed include a reference export terminal, marine vessel, import terminal, peakshaving facility, truck tanker, and satellite facility. A reference description for these facilities, a preliminary hazards analysis (PHA), and a list of representative release scenarios are included. The reference facility descriptions outline basic process flows, plant layouts, and safety features. The PHA identifies the important release prevention operations. Representative release scenarios provide a format for discussing potential initiating events, effects of the release prevention and control systems, information needs, and potential design changes. These scenarios range from relatively frequent but low consequence releases to unlikely but large releases and are the principal basis for the next stage of analysis.

  5. Noise power spectral density of a fibre scattered-light interferometer with a semiconductor laser source

    SciTech Connect (OSTI)

    Alekseev, A E; Potapov, V T

    2013-10-31

    Spectral characteristics of the noise intensity fluctuations at the output of a scattered-light interferometer, caused by phase fluctuations of semiconductor laser radiation are considered. This kind of noise is one of the main factors limiting sensitivity of interferometric sensors. For the first time, to our knowledge, the expression is obtained for the average noise power spectral density at the interferometer output versus the degree of a light source coherence and length of the scattering segment. Also, the approximate expressions are considered which determine the power spectral density in the low-frequency range (up to 200 kHz) and in the limiting case of extended scattering segments. The expression obtained for the noise power spectral density agrees with experimental normalised power spectra with a high accuracy. (interferometry of radiation)

  6. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  7. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  8. SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3253 | Department of Energy GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 SEMI-ANNUAL REPORTS FOR GASFIN DEVELOPMENT USA, LLC - FE DKT. NO. 13-06-LNG - ORDER 3253 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR - EOS LNG - FTA - FE DKT. NO.

  9. SEMI-ANNUAL REPORTS FOR GOLDEN PASS PRODUCTS LLC - FE DKT. NO. 12-88-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3147 | Department of Energy GOLDEN PASS PRODUCTS LLC - FE DKT. NO. 12-88-LNG - ORDER 3147 SEMI-ANNUAL REPORTS FOR GOLDEN PASS PRODUCTS LLC - FE DKT. NO. 12-88-LNG - ORDER 3147 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO.

  10. SEMI-ANNUAL REPORTS FOR SEAONE PASCAGOULA, LLC - FE DKT. NO. 14-83-LNG -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORDER 3555 | Department of Energy SEMI-ANNUAL REPORTS FOR SEAONE PASCAGOULA, LLC - FE DKT. NO. 14-83-LNG - ORDER 3555 SEMI-ANNUAL REPORTS FOR SEAONE PASCAGOULA, LLC - FE DKT. NO. 14-83-LNG - ORDER 3555 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SeaOne Gulfport, LLC (formerly known as SeaOne Pascaguola, LLC)- FE Dkt. No. 14-83-CGL SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORTS FOR AMERICAN LNG

  11. SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION,

    Energy Savers [EERE]

    LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 | Department of Energy EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO. 12-06-LNG - ORDER 3066 PDF icon April 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT LNG EXPANSION, L.P. & FLNG LIQUEFACTION, LLC - FE DKT. NO.

  12. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Office of Environmental Management (EM)

    10-161-LNG | Department of Energy 0-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 10-161-LNG On May 17, 2013, the Office of Fossil Energy of the Department of Energy (DOE/FE) issued Order No. 3282 (FLEX I Conditional Order) to Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC, pursuant to section 3(a) of the Natural Gas Act (NGA). As discussed in the below PDF, DOE/FE subsequently amended Order No. 3282 to add FLNG Liquefaction 2, LLC and FLNG

  13. Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No.

    Office of Environmental Management (EM)

    11-161-LNG | Department of Energy 1-161-LNG Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC - FE Dkt. No. 11-161-LNG On November 15, 2013, the Office of Fossil Energy of the Department of Energy (DOE/FE) issued Order No. 3357 (FLEX II Conditional Order) to Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC, and FLNG Liquefaction 3, LLC (collectively, FLEX) pursuant to section 3(a) of the Natural Gas Act (NGA). As discussed in the PDF below, DOE/FE

  14. LNG Exports by Vessel out of the U.S. Form | Department of Energy

    Office of Environmental Management (EM)

    out of the U.S. Form LNG Exports by Vessel out of the U.S. Form File Excel Version of LNG Exports by Vessel out of the U.S. Form.xlsx PDF icon PDF Version of LNG Exports by Vessel out of the U.S. Form More Documents & Publications LNG Imports by Vessel into the U.S. Form LNG Exports by Vessel in ISO Containers out of the U.S. Form Heating Ventilation and Air Conditioning Efficiency

  15. Magnolia LNG and Lake Charles Expansion Projects Final Environmental Impact Statement

    Office of Environmental Management (EM)

    Energy Regulatory Commission Office of Energy Projects Washington, DC 20426 Magnolia LNG and Lake Charles Expansion Projects Final Environmental Impact Statement Magnolia LNG, LLC and Kinder Morgan Louisiana Pipeline LLC FERC Docket Nos. CP14-347-000 and CP14-511-000 DOE Docket Nos. 12-183-LNG, 13-131-LNG, and 13-132-LNG FERC/EIS-0260F, DOE/EIS-0498 Cooperating Agencies: U.S. Coast Guard U.S. Department of Energy U.S. Department of Transportation U.S. Army Corps of Engineers U.S. Environmental

  16. 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",,4,85.9,80.09

    U.S. Energy Information Administration (EIA) Indexed Site

    State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",,4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",,3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial

  17. Hawaii energy strategy project 2: Fossil energy review. Task 3 -- Greenfield options: Prospects for LNG use

    SciTech Connect (OSTI)

    Breazeale, K.; Fesharaki, F.; Fridley, D.; Pezeshki, S.; Wu, K.

    1993-12-01

    This paper begins with an overview of the Asia-Pacific LNG market, its major players, and the likely availability of LNG supplies in the region. The discussion then examines the possibilities for the economic supply of LNG to Hawaii, the potential Hawaiian market, and the viability of an LNG project on Oahu. This survey is far from a complete technical assessment or an actual engineering/feasibility study. The economics alone cannot justify LNG`s introduction. The debate may continue as to whether fuel diversification and environmental reasons can outweigh the higher costs. Several points are made. LNG is not a spot commodity. Switching to LNG in Hawaii would require a massive, long-term commitment and substantial investments. LNG supplies are growing very tight in the Asia-Pacific region. Some of the environmental benefits of LNG are not entirely relevant in Hawaii because Hawaii`s air quality is generally excellent. Any air quality benefits may be more than counterbalanced by the environmental hazards connected with large-scale coastal zone construction, and by the safety hazards of LNG carriers, pipelines, etc. Lastly, LNG is not suitable for all energy uses, and is likely to be entirely unsuitable for neighbor island energy needs.

  18. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    SciTech Connect (OSTI)

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10/sup -10/ torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs.

  19. Potential for long-term LNG supplies to the United States

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Liquefied natural gas (LNG) has been a component of the US gas supply mix since 1970. Between 1970 and 1981 LNG terminals were constructed that have the current capability of receiving annual LNG shipments equivalent to about 700 Bcf. Additional terminal capacity was proposed and sites were under consideration in 1985 when reduced demand for natural gas and softening of gas prices resulted in the termination of plans for new capacity and suspension of contracts for imports. In the 1990s, however, shipments of LNG are again being received, and it is expected that imports of LNG by seaborne trade will play a significant role in meeting the growing US requirements for natural gas supply. It is expected that all existing US terminals will be operational by the mid-1990s, and the existing terminal capacity would be fully utilized by the year 2000. The report summarizes the analysis of the LNG terminal capacity aimed at identifying future LNG liquefaction and transportation needs.

  20. PPPL delivers a plasma source that will enable high-power beam pulses in a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new Berkeley Lab accelerator | Princeton Plasma Physics Lab PPPL delivers a plasma source that will enable high-power beam pulses in a new Berkeley Lab accelerator March 19, 2012 Tweet Widget Google Plus One Share on Facebook Erik Gilson with a copper-clad module and chamber for testing the units. (Photo by Elle Starkman, PPPL Office of Communications) Erik Gilson with a copper-clad module and chamber for testing the units. Gallery: Interior views of a plasma-source module. (Photo by Elle

  1. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-02-21

    This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

  2. Condensed Matter Cluster Reactions in LENR Power Cells for a Radical New Type of Space Power Source

    SciTech Connect (OSTI)

    Yang Xiaoling; Miley, George H.; Hora, Heinz

    2009-03-16

    This paper reviews previous theoretical and experimental study on the possibility of nuclear events in multilayer thin film electrodes (Lipson et al., 2004 and 2005; Miley et al., 2007), including the correlation between excess heat and transmutations (Miley and Shrestha, 2003) and the cluster theory that predicts it. As a result of this added understanding of cluster reactions, a new class of electrodes is under development at the University of Illinois. These electrodes are designed to enhance cluster formation and subsequent reactions. Two approaches are under development. The first employs improved loading-unloading techniques, intending to obtain a higher volumetric density of sites favoring cluster formation. The second is designed to create nanostructures on the electrode where the cluster state is formed by electroless deposition of palladium on nickel micro structures. Power units employing these electrodes should offer unique advantages for space applications. This is a fundamental new nuclear energy source that is environmentally compatible with a minimum of radiation involvement, high specific power, very long lifetime, and scalable from micro power to kilowatts.

  3. Monitoring, safety systems for LNG and LPG operators

    SciTech Connect (OSTI)

    True, W.R.

    1998-11-16

    Operators in Korea and Australia have chosen monitoring and control systems in recent contracts for LNG and LPG storage. Korea Gas Corp. (Kogas) has hired Whessoe Varec, Calais, to provide monitoring systems for four LNG storage tanks being built at Kogas` Inchon terminal. For Elgas Ltd., Port Botany, Australia, Whessoe Varec has already shipped a safety valve-shutdown system to a new LPG cavern-storage facility under construction. The paper describes the systems, terminal monitoring, dynamic approach to tank management, and meeting the growing demand for LPG.

  4. Comparison of CNG and LNG technologies for transportation applications

    SciTech Connect (OSTI)

    Sinor, J.E. Consultants, Inc., Niwot, CO )

    1992-01-01

    This report provides a head-to-head comparison of compressed natural gas (CNG) and liquefied natural gas (LNG) supplied to heavy-duty vehicles. The comparison includes an assessment of the overall efficiency of the fuel delivery system, the cost of the fuel supply system, the efficiency of use in heavy-duty vehicles, and the environmental impact of each technology. The report concludes that there are applications in which CNG will have the advantage, and applications in which LNG will be preferred.

  5. Opening of the Cheniere Energy Sabine Pass LNG Regasification Facility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cheniere Energy Sabine Pass LNG Regasification Facility Opening of the Cheniere Energy Sabine Pass LNG Regasification Facility April 21, 2008 - 10:49am Addthis Remarks As Prepared for Delivery by Energy Secretary Samuel Bodman Good morning. Charif, thank you for inviting me to be here and thank you for the tour. It's good to see Senator Vitter, Congressman Boustany and Secretary Abraham. And I am pleased we are joined by my good friends from the Federal Energy Regulatory

  6. Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 1 158 319 467 697 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Withdrawals of Liquefied Natural Gas from

  7. Analysis of LNG peakshaving-facility release-prevention systems

    SciTech Connect (OSTI)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.; Schreiber, A.M.; Hobbs, J.M.; Daling, P.M.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems were evaluated.

  8. Ruling on Liquefied Natural Gas (LNG) Tax Rate Sparks Debate

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    IRS Ruling On August 7, 1995, the Federal Register reported the Internal Revenue Service (IRS) ruling that liquefied natural gas (LNG) is a liquid fuel and will thus be taxed as a "special motor fuel," effective October 1, 1995. This definition covers all liquids that substitute for gasoline and diesel. The ruling refuted the claim of petitioners, such as the Natural Gas Vehicle (NGV) Coalition, that LNG is the same as compressed natural gas (CNG) and should be taxed at the equivalent

  9. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  10. A source of high-power pulses of elliptically polarized ultrawideband radiation

    SciTech Connect (OSTI)

    Andreev, Yu. A. Efremov, A. M.; Koshelev, V. I.; Kovalchuk, B. M.; Petkun, A. A.; Sukhushin, K. N.; Zorkaltseva, M. Yu.

    2014-10-01

    Here, we describe a source of high-power ultrawideband radiation with elliptical polarization. The source consisting of a monopolar pulse generator, a bipolar pulse former, and a helical antenna placed into a radioparent container may be used in tests for electromagnetic compatibility. In the source, the helical antenna with the number of turns N = 4 is excited with a high-voltage bipolar pulse. Preliminary, we examined helical antennas at a low-voltage source aiming to select an optimal N and to estimate a radiation center position and boundary of a far-field zone. Finally, characteristics of the source in the operating mode at a pulse repetition rate of 100 Hz are presented in the paper as well. Energy efficiency of the antenna is 0.75 at the axial ratio equal to 1.3. The effective potential of radiation of the source at the voltage amplitudes of the bipolar pulse generator equal to -175/+200 kV reaches 280 kV.

  11. Optimization of the output and efficiency of a high power cascaded arc hydrogen plasma source

    SciTech Connect (OSTI)

    Vijvers, W. A. J.; Gils, C. A. J. van; Goedheer, W. J.; Meiden, H. J. van der; Veremiyenko, V. P.; Westerhout, J.; Lopes Cardozo, N. J.; Rooij, G. J. van; Schram, D. C.

    2008-09-15

    The operation of a cascaded arc hydrogen plasma source was experimentally investigated to provide an empirical basis for the scaling of this source to higher plasma fluxes and efficiencies. The flux and efficiency were determined as a function of the input power, discharge channel diameter, and hydrogen gas flow rate. Measurements of the pressure in the arc channel show that the flow is well described by Poiseuille flow and that the effective heavy particle temperature is approximately 0.8 eV. Interpretation of the measured I-V data in terms of a one-parameter model shows that the plasma production is proportional to the input power, to the square root of the hydrogen flow rate, and is independent of the channel diameter. The observed scaling shows that the dominant power loss mechanism inside the arc channel is one that scales with the effective volume of the plasma in the discharge channel. Measurements on the plasma output with Thomson scattering confirm the linear dependence of the plasma production on the input power. Extrapolation of these results shows that (without a magnetic field) an improvement in the plasma production by a factor of 10 over where it was in van Rooij et al. [Appl. Phys. Lett. 90, 121501 (2007)] should be possible.

  12. LNG scene; Qatar's export plans intensify; sale of Columbia's U. S. terminal in doubt

    SciTech Connect (OSTI)

    Not Available

    1992-07-20

    This paper reports that Activity continues to percolate in Qatar's massive liquefied natural gas export program. In the latest development, France's Ste. Nationale Elf Aquitaine and Japan's Sumitomo Corp. agreed to promote development of Qatar's LNG export project based on supergiant North Offshore gas field and step up discussions with potential buyers in coming months. Target markets lie in Japan and the Far East. Among other LNG operations, Columbia Gas System Inc. last week the it was told by Shell LNG Co. it is unlikely that presale conditions will be met prior to Shell LNG's scheduled purchase July 29 of 40.8% of the stock in Columbia LNG. Columbia LNG owns and LNG receiving terminal at Cove Point, Md., with a design sendout capacity of 1 bcfd of regasified LNG. That makes it the biggest in type U.S. Columbia the it had not received work on what action Shell LNG will take on the purchase agreement. However, failure to meet the undisclosed conditions will allow Shell LNG to end the agreement.

  13. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Iraj A. Salehi

    2004-09-30

    This quarterly report for DE-FG26-04NT42030 covers a period from July 1, 2004 to September 30, 2004. Activity during this period included preparation of a CD containing the FEM3a FORTRAN code for distribution and organization of an LNG safety workshop. Contract negotiation between GTI and University of Arkansas continued.

  14. Development of mid-scale and floating LNG facilities

    SciTech Connect (OSTI)

    Price, B.C.; Mortko, R.A.

    1998-12-31

    The development of large-scale base load LNG facilities has dominated the process industry for decades. However, in many areas of the world, base load facilities are not feasible due to inadequate reserves. Mid-scale facilities can be economically attractive in certain locations and, in fact, have several advantages which aid in their development. The PRICO II LNG liquefaction process offers a process configuration which fits well with these developments. The process has been used in a range of facility sizes from base load to peak shaving applications. In addition to onshore facilities, floating liquefaction facilities can be developed on barges or tankers to handle mid-scale to large scale LNG production. Concepts for several sizes and configurations of floating facilities have been developed using the PRICO II process integrated into a total production, liquefaction, and load-out system. This paper covers the PRICO process concept, application areas and facility configurations which are currently being developed for mid-scale and floating LNG facilities.

  15. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect (OSTI)

    Lidia, S. M.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Vanecek, D. L.; Yu, S. S. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Houck, T. L.; Westenskow, G. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1999-05-07

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  16. Relativistic-Klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect (OSTI)

    Lidia, S.M.; Anderson, D.E.; Eylon, S.; Henestroza, E.; Vanecek, D.L.; Yu, S.S. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Westenskow, G.A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1999-05-01

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2-kA, 1-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1{percent} energy variation), and a normalized edge emittance of less than 300 pi-mm-mr. The prototype accelerator will be used to study, physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented. {copyright} {ital 1999 American Institute of Physics.}

  17. Relativistic-klystron two-beam accelerator as a power source for future linear colliders

    SciTech Connect (OSTI)

    Anderson, D E; Eylon, S; Henestroza, E; Houck, T L; Lidia, M; Vanecek, D L; Westenskow, G A; Yu, S S

    1998-10-05

    The technical challenge for making two-beam accelerators into realizable power sources for high-energy colliders lies in the creation of the drive beam and in its propagation over long distances through multiple extraction sections. This year we have been constructing a 1.2&A, l-MeV, induction gun for a prototype relativistic klystron two-beam accelerator (RK-TBA). The electron source will be a 8.9 cm diameter, thermionic, flat-surface cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150-ns flat top (1% energy variation), and a normalized edge emittance of less than 300 pi-mm-n-n. The prototype accelerator will be used to study physics, engineering, and costing issues involved in the application of the RK-TBA concept to linear colliders. We have also been studying optimization parameters, such as frequency, for the application of the RK-TBA concept to multi-TeV linear colliders. As an rf power source the RK-TBA scales favorably up to frequencies around 35 GHz. An overview of this work with details of the design and performance of the prototype injector, beam line, and diagnostics will be presented.

  18. Analysis of LNG import terminal release prevention systems

    SciTech Connect (OSTI)

    Baker, E G

    1982-04-01

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  19. Institutional impediments to using alternative water sources in thermoelectric power plants.

    SciTech Connect (OSTI)

    Elcock, D.

    2011-08-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Obtaining adequate water supplies for cooling and other operations at a reasonable cost is a key factor in siting new and maintaining existing thermoelectric power plant operations. One way to reduce freshwater consumption is to use alternative water sources such as reclaimed (or recycled) water, mine pool water, and other nontraditional sources. The use of these alternative sources can pose institutional challenges that can cause schedule delays, increase costs, or even require plants to abandon their plans to use alternative sources. This report identifies and describes a variety of institutional challenges experienced by power plant owners and operators across the country, and for many of these challenges it identifies potential mitigating approaches. The information comes from publically available sources and from conversations with power plant owners/operators familiar with using alternative sources. Institutional challenges identified in this investigation include, but are not limited to, the following: (1) Institutional actions and decisions that are beyond the control of the power plant. Such actions can include changes in local administrative policies that can affect the use of reclaimed water, inaccurate growth projections regarding the amount of water that will be available when needed, and agency workloads and other priorities that can cause delays in the permitting and approval processes. (2) Developing, cultivating, and maintaining institutional relationships with the purveyor(s) of the alternative water source, typically a municipal wastewater treatment plant (WWTP), and with the local political organizations that can influence decisions regarding the use of the alternative source. Often a plan to use reclaimed water will work only if local politics and power plant goals converge. Even then, lengthy negotiations are often needed for the plans to come to fruition. (3) Regulatory requirements for planning and developing associated infrastructure such as pipelines, storage facilities, and back-up supplies that can require numerous approvals, permits, and public participation, all of which can create delays and increased costs. (4) Permitting requirements that may be difficult to meet, such as load-based discharge limits for wastewater or air emissions limitations for particulate matter (which will be in the mist of cooling towers that use reclaimed water high in dissolved solids). (5) Finding discharge options for cooling tower blowdown of reclaimed water that are acceptable to permitting authorities. Constituents in this wastewater can limit options for discharge. For example, discharge to rivers requires National Pollutant Discharge Elimination System (NPDES) permits whose limits may be difficult to meet, and underground injection can be limited because many potential injection sites have already been claimed for disposal of produced waters from oil and gas wells or waters associated with gas shale extraction. (6) Potential liabilities associated with using alternative sources. A power plant can be liable for damages associated with leaks from reclaimed water conveyance systems or storage areas, or with mine water that has been contaminated by unscrupulous drillers that is subsequently discharged by the power plant. (7) Community concerns that include, but are not limited to, increased saltwater drift on farmers fields; the possibility that the reclaimed water will contaminate local drinking water aquifers; determining the 'best' use of WWTP effluent; and potential health concerns associated with emissions from the cooling towers that use recycled water. (8) Interveners that raise public concerns about the potential for emissions of emerging pollutants of concern to cause health or environmental problems. Mitigating solutions range from proactive communications with the local communities (which can be implemented by the power plants) to technical solutions, such as developing means to reduce the concentrations of total dissolved solids (TDS) and other contaminants in cooling water to maintain plant efficiency and while meeting discharge limits. These kinds of solutions may be appropriate for DOE research and development (R&D) funding.

  20. SEMI-ANNUAL REPORTS FOR MAIN PASS ENERGY HUB, LLC - FE DKT. NO. 12-114-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3220 | Department of Energy MAIN PASS ENERGY HUB, LLC - FE DKT. NO. 12-114-LNG - ORDER 3220 SEMI-ANNUAL REPORTS FOR MAIN PASS ENERGY HUB, LLC - FE DKT. NO. 12-114-LNG - ORDER 3220 PDF icon April 2014 PDF icon October 2013 PDF icon April 2013 More Documents & Publications SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT. NO. 13-26-LNG - ORDER 3290 SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG - ORDER NO. 3601 SEMI-ANNUAL REPORTS FOR Louisiana LNG

  1. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect (OSTI)

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  2. DOE-STD-3003-2000; Backup Power Sources for DOE Facilities

    Office of Environmental Management (EM)

    DOE-STD-3003-2000 January 2000 Superseding DOE-STD-3003-94 September 1994 DOE STANDARD BACKUP POWER SOURCES FOR DOE FACILITIES U.S. Department of Energy AREA EDCN Washington, D.C. 20858 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. METRIC This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823.

  3. Qualitative Risk Assessment for an LNG Refueling Station and Review of Relevant Safety Issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, J.S.; Cadwallader, L.; Reece, W.; Byers, J.

    1998-02-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tank truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of ``best practice`` information throughout the LNG community.

  4. A review of large-scale LNG spills : experiment and modeling.

    SciTech Connect (OSTI)

    Luketa-Hanlin, Anay Josephine

    2005-04-01

    The prediction of the possible hazards associated with the storage and transportation of liquefied natural gas (LNG) by ship has motivated a substantial number of experimental and analytical studies. This paper reviews the experimental and analytical work performed to date on large-scale spills of LNG. Specifically, experiments on the dispersion of LNG, as well as experiments of LNG fires from spills on water and land are reviewed. Explosion, pool boiling, and rapid phase transition (RPT) explosion studies are described and discussed, as well as models used to predict dispersion and thermal hazard distances. Although there have been significant advances in understanding the behavior of LNG spills, technical knowledge gaps to improve hazard prediction are identified. Some of these gaps can be addressed with current modeling and testing capabilities. A discussion of the state of knowledge and recommendations to further improve the understanding of the behavior of LNG spills on water is provided.

  5. Interim qualitative risk assessment for an LNG refueling station and review of relevant safety issues

    SciTech Connect (OSTI)

    Siu, N.; Herring, S.; Cadwallader, L.; Reece, W.; Byers, J.

    1997-07-01

    This report is a qualitative assessment of the public and worker risk involved with the operation of a liquefied natural (LNG) vehicle refueling facility. This study includes facility maintenance and operations, tanker truck delivers and end-use vehicle fueling; it does not treat the risks of LNG vehicles on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes and Effects analysis and historical operating experiences. The event trees were drawn to depict possible sequences of mitigating events following the initiating events. The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of procedures and training, station design, and the dissemination of best practice information throughout the LNG community.

  6. Order of Precedence - non-FTA LNG Export Applications | Department of

    Energy Savers [EERE]

    Energy Order of Precedence - non-FTA LNG Export Applications Order of Precedence - non-FTA LNG Export Applications On August 15, 2014, the Department of Energy's (DOE) Office of Fossil Energy announced its Procedures for Liquefied Natural Gas Export Decisions (Procedures). Pursuant to these Procedures, DOE will act on applications to export liquefied natural gas (LNG) from the lower-48 states to non-FTA countries only after the review required by the National Environmental Policy Act (NEPA)

  7. EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kenedy, Willacy, and Cameron Counties, Texas EIS-0519: Rio Grande LNG Project and Rio Bravo Pipeline Project; Kleberg, Kenedy, Willacy, and Cameron Counties, Texas Summary ...

  8. Sabine Pass Liquefaction, LLC - FE Dkt. No. 14-92-LNG | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sabine Pass Liquefaction, LLC - FE Dkt. No. 14-92-LNG Sabine Pass Liquefaction, LLC - FE Dkt. No. 14-92-LNG The Office of Fossil Energy gives notice of receipt of an Application filed on July 11, 2014, by Sabine Pass Liquefaction, LLC (SPL), seeking long-term multi-contract authorization to export domestically produced liquefied natural gas (LNG) in an amount up to the equivalent of 203 billion standard cubic feet (Bcf) of natural gas per year. SPL proposes to export LNG from the

  9. Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC and FLNG Liquefaction 3, LLC - 14-005-CIC | Department of Energy Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export LNG

  10. SEMI-ANNUAL REPORTS FOR CE FLNG, LLC (CAMBRIDGE) - DK. NO. 12-123-LNG -

    Energy Savers [EERE]

    ORDER 3193 | Department of Energy CE FLNG, LLC (CAMBRIDGE) - DK. NO. 12-123-LNG - ORDER 3193 SEMI-ANNUAL REPORTS FOR CE FLNG, LLC (CAMBRIDGE) - DK. NO. 12-123-LNG - ORDER 3193 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications CE FLNG, LLC - FE DKT. NO. 12-123-LNG - ORDER 3193 EIS-0497: Notice of Intent to Prepare an Environmental Impact Statement SEMI-ANNUAL REPORTS FOR FREEPORT LNG

  11. Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Trucks Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks to someone by E-mail Share Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Facebook Tweet about Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Twitter Bookmark Alternative Fuels Data Center: Largest U.S. Port Complex Embraces LNG for Heavy-Duty Trucks on Google Bookmark Alternative Fuels Data Center: Largest U.S. Port

  12. Cove Point: A step back into the LNG business

    SciTech Connect (OSTI)

    Katz, M.G.

    1995-12-31

    In 1978, ships began unloading LNG from Algeria at Cove Point`s berthing facilities 1.25 miles offshore. An underwater pipeline transported the LNG to land, where it was stored in the terminal`s four 140-foot-high cryogenic storage tanks. When the LNG was needed, the terminals 10 vaporizers converted it back to gas for send out via an 87-mile-long, 36-inch-diameter pipeline linking the terminal with interstate pipelines of CNG Transmission Corp. and Columbia Gas Transmission Corp. in Loudon County, Va. But Cove Point handled only about 80 shiploads of LNG before shutting down in December 1980, after a dispute about gas prices between US customers and Algeria. The plant sat dormant until the natural gas industry`s deregulation under Order 636. Deregulation resulted in major pipelines abandoning their sales service, and gas distributors and large customers found it was now their obligation to ensure that they had adequate gas supplies during winter peak-demand periods. Enter Cove Point`s peaking capabilities. They had to add the liquefaction unit and recommission other parts of the plant, but the timing was right. Cove Point`s new liquefaction unit is liquefying about 15 million cubic feet (MMcf) of LNG per day of domestic gas. It chills the gas to {minus}260 degrees Fahrenheit to turn it into a liquid for injection and storage in one of the facility`s double-walled insulated tanks. During its initial injection season, which ends Dec. 15, Cove Point is expected to produce enough LNG to almost fill one tank, which can store up to 1.25 billion cubic feet (Bcf). Were the gas not intended for peak-shaving purposes, it would be enough to supply 14,000 homes for a year. As it is, most of the gas will be returned as pipeline gas, during next January and February`s expected cold snaps, to the utilities and users who supplied it. Cove Point`s initial daily sendout capacity is about 400 MMcf.

  13. High-power linac for a US spallation-neutron source

    SciTech Connect (OSTI)

    Wangler, T.P.; Billen, J.; Jason, A. Krawczyk, F.; Nath, S.; Shafer, R.; Staples, J.; Takeda, H.; Tallerico, P.

    1996-09-01

    We present status of high-power linac design studies for a proposed National Spallation Neutron Source (NSNS), based on a linac/accumulator-ring accelerator system. Overall project is a collaboration involving 5 national laboratories. ORNL will be responsible for the target, facilities, and conceptual design; BNL will be responsible for the ring; LBNL will be responsible for the injector, including the RFQ and a low-energy chopper in front of the RFQ; LANL will be responsible for the main linac; and ANL will be responsible for the instrumentation. The facility will be built at Oak Ridge. In the first phase, the dual-frequency linac with 402.5 and 805 MHz frequencies must deliver to the accumulator ring an H{sup -} beam near 1 GeV, with about 1 ms pulse length, a repetition rate 60 Hz, and average beam power {ge} 1 MW. The linac can be upgraded by a factor of 4 in beam power by increasing the dc injector current, and by funneling the beams from two 402.5 MHz low-energy linacs into the 805-MHz high-energy linac. Requirements for low beam loss in both linac and ring have important implications for linac design, including the requirement to provide efficient beam chopping to provide low-loss extraction for the ring. Linac design options and initial parameters are presented together with initial beam-dynamics simulation results.

  14. An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments

    SciTech Connect (OSTI)

    Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; Prost, Spencer A.; Lamarche, Brian L.; Leach, Franklin E.; Auberry, Kenneth J.; Smith, Richard D.; Koppenaal, David W.; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2015-09-18

    Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DC voltages in the range of 400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.

  15. Accident source terms for Light-Water Nuclear Power Plants. Final report

    SciTech Connect (OSTI)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ``Calculation of Distance Factors for Power and Test Reactors`` which specified a release of fission products from the core to the reactor containment for a postulated accident involving ``substantial meltdown of the core``. This ``source term``, tile basis for tile NRC`s Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC`s reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ``source term`` release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ``source term`` is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it.

  16. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEEDplatform@ee.doe.gov. WHAT IS 0PEN SOURCE? Open source means that the base software code is publically available so that anyone has the ability to access and contribute to the code OPEN SOURCE BENEFITS * Platform is flexible and adaptable * Developers can create proprietary platform add- ons while still maintaining an inter-operable system * A national brand and standard is created * Local jurisdiction officials can have input on the direction and maintanence of the core code * The code base

  17. LNG as a fuel for railroads: Assessment of technology status and economics. Topical report, June-September 1992

    SciTech Connect (OSTI)

    Pera, C.J.; Moyer, C.B.

    1993-01-06

    The objective of the research was to investigate the feasibility of liquefied natural gas (LNG) as a fuel for railroads. The investigation included assessment of the status of relevant technologies (i.e., LNG-fueled locomotive engines, tender cars, refueling equipment), a review of current demonstration projects, and an analytical evaluation of LNG railroad economics.

  18. Second user workshop on high-power lasers at the Linac Coherent Light Source

    SciTech Connect (OSTI)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 new experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.

  19. Second user workshop on high-power lasers at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heimann, Phil; Glenzer, Siegfried

    2015-05-28

    The second international workshop on the physics enabled by the unique combination of high-power lasers with the world-class Linac Coherent Light Source (LCLS) free-electron X-ray laser beam was held in Stanford, CA, on October 7–8, 2014. The workshop was co-organized by UC Berkeley, Lawrence Berkeley, Lawrence Livermore, and SLAC National Accelerator Laboratories. More than 120 scientists, including 40 students and postdoctoral scientists who are working in high-intensity laser-matter interactions, fusion research, and dynamic high-pressure science came together from North America, Europe, and Asia. The focus of the second workshop was on scientific highlights and the lessons learned from 16 newmore » experiments that were performed on the Matter in Extreme Conditions (MEC) instrument since the first workshop was held one year ago.« less

  20. Railguns and plasma accelerators: arc armatures, pulse power sources and US patents

    SciTech Connect (OSTI)

    Friedrich, O.M. Jr.

    1980-11-01

    Railguns and plasma accelerators have the potential for use in many basic and applied research projects, such as in creating high-pressures for equation-of-state studies and in impact fusion. A brief review of railguns and plasma accelerators with references is presented. Railgun performance is critically dependent on armature operation. Plasma arc railgun armatures are addressed. Pulsed power supplies for multi-stage railguns are considered. This includes brief comments on the compensated pulsed alternator, or compulsator, rotating machinery, and distributed energy sources for railguns. References are given at the end of each section. Appendix A contains a brief review of the US Patents on multi-staging techniques for electromagnetic accelerators, plasma propulsion devices, and electric guns.

  1. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  2. Design advanced for large-scale, economic, floating LNG plant

    SciTech Connect (OSTI)

    Naklie, M.M.

    1997-06-30

    A floating LNG plant design has been developed which is technically feasible, economical, safe, and reliable. This technology will allow monetization of small marginal fields and improve the economics of large fields. Mobil`s world-scale plant design has a capacity of 6 million tons/year of LNG and up to 55,000 b/d condensate produced from 1 bcfd of feed gas. The plant would be located on a large, secure, concrete barge with a central moonpool. LNG storage is provided for 250,000 cu m and condensate storage for 650,000 bbl. And both products are off-loaded from the barge. Model tests have verified the stability of the barge structure: barge motions are low enough to permit the plant to continue operation in a 100-year storm in the Pacific Rim. Moreover, the barge is spread-moored, eliminating the need for a turret and swivel. Because the design is generic, the plant can process a wide variety of feed gases and operate in different environments, should the plant be relocated. This capability potentially gives the plant investment a much longer project life because its use is not limited to the life of only one producing area.

  3. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma

    SciTech Connect (OSTI)

    Vodopyanov, A. V.; Golubev, S. V.; Khizhnyak, V. I.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Vizir, A. V.; Yushkov, G. Yu.

    2008-02-15

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 {mu}s, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  4. Power combination of two phase-locked high power microwave beams from a new coaxial microwave source based on dual beams

    SciTech Connect (OSTI)

    Li, Yangmei; Zhang, Xiaoping Zhang, Jiande; Dang, Fangchao; Yan, Xiaolu

    2014-10-15

    The new coaxial high power microwave source based on dual beams has demonstrated two phase-locked output microwave beams generated by its two sub-sources. In order to achieve a single higher output power, we present a three-port waveguide-based power combiner to combine the two microwave beams. Particle-in-cell simulation results show that when the diode voltage is 675?kV and the guiding magnetic field is 0.8?T, a combined microwave with an average power of about 4.0?GW and a frequency of 9.74 GHz is generated; the corresponding power conversion efficiency is 29%. The combination effect of the combiner is further validated in the diode voltage range from 675?kV to 755?kV as well as in the pulse regime. The simulations indicate that the maximum surface axial electric field strength of the electrodynamic structure is 720?kV/cm, which is relatively low corresponding to an output power of 4.0?GW. The stable combined output suggests the probability of long-pulse operation for the combined source.

  5. Energy Department Authorizes Cameron LNG and Carib Energy to Export Liquefied Natural Gas

    Broader source: Energy.gov [DOE]

    The Energy Department announced today that it has issued the final authorization to Cameron LNG, LLC (Cameron) and Carib Energy LLC (Carib) to export domestically produced liquefied natural gas (LNG) to countries that do not have a Free Trade Agreement (FTA) with the United States.

  6. The potential for LNG as a railroad fuel in the U.S.

    SciTech Connect (OSTI)

    Fritz, S.G.

    2000-01-01

    Freight railroad operations in the US represent a substantial opportunity for liquefied natural gas (LNG) to displace diesel fuel. With the promise of achieving an overwhelming economic advantage over diesel fuel, this paper presents some discussion to the question, ``Why is the application of LNG for railroad use in the US moving so slowly?'' A brief overview of the freight railroad operations in the US is given, along with a summary of several railroad LNG demonstration projects. US Environmental Protection Agency and California Air Resources Board exhaust emission regulations may cause the railroad industry to move from small-scale LNG demonstration projects to using LNG as a primary freight railroad transportation fuel in selected regions or route-specific applications.

  7. Comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG) used by transit agencies in Texas. Research report

    SciTech Connect (OSTI)

    Lede, N.W.

    1997-09-01

    This study is a detailed comparative analysis of liquefied natural gas (LNG) and compressed natural gas (CNG). The study provides data on two alternative fuels used by transit agencies in Texas. First, we examine the `state-of-the- art` in alternative fuels to established a framework for the study. Efforts were made to examine selected characteristics of two types of natural gas demonstrations in terms of the following properties: energy source characteristics, vehicle performance and emissions, operations, maintenance, reliability, safety costs, and fuel availability. Where feasible, two alternative fuels were compared with conventional gasoline and diesel fuel. Environmental considerations relative to fuel distribution and use are analyzed, with a focus on examining flammability an other safety-related issues. The objectives of the study included: (1) assess the state-of-the-art and document relevant findings pertaining to alternative fuels; (2) analyze and synthesize existing databases on two natural gas alternatives: liquefied natural gas (LNG) and compressed natural gas (CNG): and (3) compare two alterative fuels used by transit properties in Texas, and address selected aspects of alternative fuels such as energy source characteristics, vehicle performance and emissions, safety, costs, maintenance and operations, environmental and related issues.

  8. SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT. NO. 13-26-LNG - ORDER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3290 | Department of Energy McMoran - FE DKT. NO. 13-26-LNG - ORDER 3290 SEMI-ANNUAL REPORTS FOR FREEPORT McMoran - FE DKT. NO. 13-26-LNG - ORDER 3290 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR MAIN PASS ENERGY HUB, LLC - FE DKT. NO. 12-114-LNG - ORDER 3220 SEMI-ANNUAL REPORTS FOR AMERICAN LNG MARKETING LLC - FTA - DKT. 14-209-LNG - ORDER NO. 3601 SEMI-ANNUAL REPORTS FOR

  9. Solid core dipoles and switching power supplies: Lower cost light sources?

    SciTech Connect (OSTI)

    Benesch, Jay; Philip, Sarin

    2015-05-05

    As a result of improvements in power semiconductors, moderate frequency switching supplies can now provide the hundreds of amps typically required by accelerators with zero-to-peak noise in the kHz region ~ 0.06% in current or voltage mode. Modeling was undertaken using a finite electromagnetic program to determine if eddy currents induced in the solid steel of CEBAF magnets and small supplemental additions would bring the error fields down to the 5ppm level needed for beam quality. The expected maximum field of the magnet under consideration is 0.85 T and the DC current required to produce that field is used in the calculations. An additional 0.1% current ripple is added to the DC current at discrete frequencies 360 Hz, 720 Hz or 7200 Hz. Over the region of the pole within 0.5% of the central integrated BdL the resulting AC field changes can be reduced to less than 1% of the 0.1% input ripple for all frequencies, and a sixth of that at 7200 Hz. Doubling the current, providing 1.5 T central field, yielded the same fractional reduction in ripple at the beam for the cases checked. A small dipole was measured at 60, 120, 360 and 720 Hz in two conditions and the results compared to the larger model for the latter two frequencies with surprisingly good agreement. Thus, for light sources with aluminum vacuum vessels and full energy linac injection, the combination of solid core dipoles and switching power supplies may result in significant cost savings.

  10. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    SciTech Connect (OSTI)

    Li, Fangxing; Kueck, John D; Rizy, D Tom; King, Thomas F

    2006-04-01

    A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power and the best way to allocate the benefit among customers, utilities, transmission companies or RTOs.

  11. Highgate Springs, VT LNG Imports from Canada

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Pipeline Volumes 8,895 10,319 8,247 9,769 10,557 12,445 1996-2015 Pipeline Prices 6.54 5.81 4.90 5.33 6.59 5.20 1996-2015 Liquefied Natural Gas Volumes 555 63 400 2013-2015 Liquefied Natural Gas Prices 12.72 9.45 8.70 2013-2015

  12. LNG Safety Research: FEM3A Model Development

    SciTech Connect (OSTI)

    Liese Dallbauman

    2004-06-30

    During this reporting period, kickoff and planning meetings were held. Subcontracted experimental and modeling tasks were defined. Efforts to address the numerical stability problems that hamper FEM3A's applicability to low wind speed, stable atmospheric conditions were initiated. A detailed review of FEM3A code and its execution, required for development of an accessible user interface, was also begun. A one-day workshop on LNG safety models has been scheduled for September 2004. The goals of this project are to develop a national focal point for LNG safety research and technical dissemination and to develop the FEM3A dispersion model for application to general scenarios involving dispersion problems with obstacle and terrain features of realistic complexity. During this reporting period, the objectives and scope of the project and its constituent tasks were discussed at a project kickoff meeting in Morgantown. Details of the subcontracted experimental and modeling tasks were further defined at a separate meeting at the University of Arkansas. Researchers at the university have begun to modify the turbulence closure model used in FEM3A to insure numerical stability during simulation of low-wind-speed, stable atmospheric conditions. The university's wind tunnel is being prepared for upcoming experimental studies. GTI has begun a detailed review of the FEM3A code and its execution that will provide guidance during development of an accessible user interface. Plans were made for a one day workshop on LNG safety models that will be held at the end of September and will provide an introduction to currently available and pending software tools.

  13. LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT

    SciTech Connect (OSTI)

    Jerry Havens; Iraj A. Salehi

    2005-05-10

    The objective of this report is to develop the FEM3A model for application to general scenarios involving dispersion problems with obstacles and terrain features of realistic complexity, and for very low wind speed, stable weather conditions as required for LNG vapor dispersion application specified in 49 CFR 193. The dispersion model DEGADIS specified in 49 CFR 193 is limited to application for dispersion over smooth, level terrain free of obstacles (such as buildings, tanks, or dikes). There is a need for a dispersion model that allows consideration of the effects of terrain features and obstacles on the dispersion of LNG vapor clouds. Project milestones are: (1) Simulation of Low-Wind-Speed Stable Atmospheric Milestones Conditions; (2) Verification for Dispersion over Rough Surfaces, With And Without Obstacles; and (3) Adapting the FEM3A Model for General Application. Results for this quarter are work continues to underway to address numerical problems during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, we have been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A. The present effort is directed to describing the ground surface temperature decrease as a function of time.

  14. Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -589 739 -295 -493 431 -234 3,636 621 4,442 -462 1990's 44 -70 213 466 630 -985 2,128 -29 -36 312 2000's -964 265 -160 81 128 -588 93 82 65 703 2010's 54 22 -545 255 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  15. Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Missouri Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 -26 -13 -14 47 -10 5 10 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Net Withdrawals of Liquefied

  16. Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Nebraska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 95 -54 -286 162 -70 -136 -48 14 132 -204 1990's 339 -119 111 65 26 -134 127 122 -351 176 2000's -132 348 -31 -83 -8 121 -122 18 -15 -10 2010's 39 -73 -140 280 -202 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  17. Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Nevada Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 289 149 68 89 110 256 -170 205 1990's -548 728 -71 9 -30 31 72 61 -31 -29 2000's -17 1 6 21 -1 8 -55 -73 17 -76 2010's -69 -42 -63 -57 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  18. Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Colorado Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Net Withdrawals of Liquefied Natural Gas

  19. Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Connecticut Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -820 701 -1,356 -385 544 -187 198 121 75 -604 1990's 822 -103 -355 -29 -61 -373 680 94 66 -66 2000's -471 -169 182 140 -91 -240 -286 102 207 164 2010's 178 129 260 -68 -327 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  20. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 -3 -3 -29 39 7 -71 -60 4 -38 1990's 6 7 -5 3 23 -1 11 -8 8 31 2000's 83 10 -43 -28 -10 7 -1 -6 17 3 2010's -2 -31 51 -68 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  1. Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Idaho Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19 132 -16 -52 -634 -932 -86 334 165 1990's 23 113 -47 51 182 -29 -25 32 -460 492 2000's -361 307 -42 91 120 143 -140 -99 -147 387 2010's 70 -19 139 -259 -676 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  2. Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Illinois Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -41 22 47 -530 653 -205 -270 -96 69 -579 1990's 580 -229 222 -31 9 -12 -289 -200 -351 241 2000's -370 231 -283 -548 -58 402 119 132 -381 -260 2010's 74 127 419 -322 -442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  3. Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Indiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -129 204 1,991 -498 1,878 429 615 541 6,077 344 1990's 230 595 -339 738 -95 -239 -234 653 486 582 2000's -480 223 -376 -28 -187 236 -275 86 -766 -590 2010's 835 -380 -977 -81 771 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  4. Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Iowa Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -609 -259 726 -1,220 1,015 -813 -496 -208 -171 292 1990's 541 1,343 412 75 346 -651 1,978 241 280 72 2000's -53 -411 -743 -1,077 761 219 -899 -115 -166 -244 2010's 146 14 428 -151 -647 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  5. Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Maine Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -86 15 -85 5 12 6 0 0 4 1990's -4 1 4 -2 5 3 4 -2 17 15 2000's 12 0 6 51 22 34 18 -21 0 -33 2010's -25 -18 2 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Net

  6. Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 185 30 66 -580 459 -459 132 -46 164 -422 1990's 456 -19 239 215 448 -164 -303 425 32 -219 2000's -285 -136 298 -47 19 114 -7 -209 -73 178 2010's -21 -75 -22 63 -206 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  7. Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -2,581 1980's 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's -1 1 0 0 0 0 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Net Withdrawals of Liquefied

  8. Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 -19 -11 -34 36 -8 4 9 -12 -32 1990's 106 -11 -1 9 5 -27 -85 -11 2 -1 2000's -1 -2 4 52 -36 -20 12 -3 -21 -24 2010's 2 -7 9 12 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. California Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) California Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -916 -105 19 -430 -335 -207 -5 0 -11 0 1990's 0 32 -38 -24 -80 -33 -13 -58 -114 -59 2000's 234 -1 4 3 -1 -31 -16 10 -1 -5 2010's 2 7 -5 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  10. Alabama Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Alabama Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 655 908 754 353 838 512 581 465 607 512 1990's 893 511 501 612 944 524 979 960 501 564 2000's 729 504 871 655 509 493 704 868 1,003 1,676 2010's 946 754 562 822 1,664 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  11. Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Alabama Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 470 878 688 933 379 971 449 511 444 934 1990's 437 530 262 396 497 688 1,282 535 469 783 2000's 1,014 641 573 607 528 606 698 1,078 1,076 1,498 2010's 968 829 583 759 1,869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  12. Alaska Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Alaska Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,581 1980's 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 159 319 467 697 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Additions of Liquefied

  13. Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Arkansas Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 14 5 21 0 44 18 22 52 42 30 1990's 128 38 50 53 73 29 0 57 64 52 2000's 52 50 85 36 76 72 45 54 51 27 2010's 42 47 57 52 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  14. Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Arkansas Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 24 32 34 8 26 18 43 54 62 1990's 23 49 51 44 68 56 85 68 62 53 2000's 52 52 81 88 40 51 57 57 72 51 2010's 40 53 48 40 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  15. Cryogenic flexible pipes for offshore LNG-LPG production

    SciTech Connect (OSTI)

    Dumay, J.M.

    1981-01-01

    Available in long, flexible pieces (up to several miles), the high-performance Coflexip pipe comprises four basic layers: (1) an interlocked, spiraled-steel carcass to resist crushing and prevent deformation, (2) an inner thermoplastic sheath to render the line internally leakproof, (3) two cross-laid steel-wire armors to oppose the stresses induced by internal pressure, and (4) an external thermoplastic sheath to ensure water-tightness and resist corrosion. Coflexip pipe is particularly suitable for transporting cryogenic liquids such as LNG from, for example, an offshore liquefaction plant.

  16. Missouri Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Missouri Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 7 26 29 57 21 28 58 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Additions of Liquefied Natural

  17. Missouri Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Missouri Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 33 39 43 10 31 23 48 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Withdrawals of Liquefied

  18. Nebraska Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Nebraska Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 225 119 7 283 65 4 81 130 299 210 1990's 493 92 283 287 393 115 915 505 0 377 2000's 288 598 187 601 449 185 303 214 159 165 2010's 346 147 1 407 481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  19. Nebraska Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Nebraska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 130 173 293 121 135 140 129 115 167 414 1990's 155 211 173 222 367 248 788 383 351 201 2000's 421 251 217 518 441 306 181 196 174 175 2010's 308 220 141 128 683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  20. Nevada Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Nevada Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 294 241 133 419 217 441 213 696 1990's 356 767 83 253 241 259 180 276 92 206 2000's 153 211 181 193 199 587 316 202 174 106 2010's 125 112 82 153 227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: