Powered by Deep Web Technologies
Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lawrence Livermore National Laboratory (LLNL): Hydrogen Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated at Mt.LAWRENCE BERKELEY63725

2

Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996  

SciTech Connect (OSTI)

This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

Tweed, J.

1996-10-01T23:59:59.000Z

3

Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments  

DOE R&D Accomplishments [OSTI]

For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

2002-00-00T23:59:59.000Z

4

Lawrence Livermore National Laboratory Environmental Report 2010  

SciTech Connect (OSTI)

The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

2011-09-14T23:59:59.000Z

5

Lawrence Livermore National Laborotory Safety Basis Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Laboratory Safety Basis Assessment INTRODUCTION This site visit report documents the collective results of the review of Lawrence Livermore National...

6

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary  

SciTech Connect (OSTI)

Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

Peterson, S

2007-09-05T23:59:59.000Z

7

Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

Not Available

1987-12-01T23:59:59.000Z

8

Independent Oversight Review, Lawrence Livermore National Laboratory...  

Office of Environmental Management (EM)

Livermore National Laboratory - September 2011 September 2011 Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory This report...

9

Analysis Activities at Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

10

Technical Safety Appraisal of the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

Not Available

1990-12-01T23:59:59.000Z

11

Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005  

Broader source: Energy.gov [DOE]

Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

12

Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009  

Broader source: Energy.gov [DOE]

Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

13

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore National Laboratory Lawrence

14

Science on Saturday @ Lawrence Livermore Lab | Department of...  

Broader source: Energy.gov (indexed) [DOE]

on Saturday @ Lawrence Livermore Lab Science on Saturday @ Lawrence Livermore Lab January 26, 2013 1:30PM EST Bankhead Theatre in downtown Livermore, CA Science on Saturday....

15

Lawrence Livermore National Laboratory environmental report for 1990  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

1990-01-01T23:59:59.000Z

16

Independent Oversight Review, Lawrence Livermore National Laboratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

within the DOE Office of Enterprise Assessments, conducted a targeted assessment of radiation protection program activity-level implementation performed by Lawrence Livermore...

17

Preliminary Notice of Violation, Lawrence Livermore National...  

Energy Savers [EERE]

- EA-2006-01 Type B Accident Investigation Board Report on the June 2002 High Radiation Dose to Extremities in Building 151, Lawrence Livermore National Laboratory...

18

Independent Activity Report, Lawrence Livermore National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

technicians, and the Alameda County Fire Department to a fire in a fume hood containing a depleted uranium part. Independent Activity Report, Lawrence Livermore National Laboratory...

19

Lawrence Livermore and Los Alamos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore National

20

EIS-0348: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL) is critical to National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide.

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Precision and manufacturing at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Precision Engineering is one of Lawrence Livermore National Laboratory`s core strengths. This paper discusses the past and present current technology transfer efforts of LLNL`s Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machining Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

Saito, T.T.; Wasley, R.J.; Stowers, I.F.; Donaldson, R.R.; Thompson, D.C.

1993-11-01T23:59:59.000Z

22

Site Visit Report, Lawrence Livermore National Laboratory- March 2010  

Broader source: Energy.gov [DOE]

Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

23

Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011  

Broader source: Energy.gov [DOE]

Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

24

Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

25

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344  

E-Print Network [OSTI]

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL Vulcan TAW Helen Trident Texas Vulcan PW LULI 2000 TITAN Gekko XII FIREX I NIF ARC Quad OMEGA EP PETAL

26

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344  

E-Print Network [OSTI]

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL States of Matter ­ FI Advanced Concepts Exploration ­ Virtual Lab for Technology ITER NIF Burning Plasma

27

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

SciTech Connect (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

28

Electroplating waste minimization at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This paper describes efforts on waste minimization in the electroplating facility at Lawrence Livermore National Laboratory (LLNL). Issues that are covered include: elimination of cadmium plating, copper cyanide plating, hexavalent chromium plating and vapor degreasing, segregation of cyanide solutions, changing rinsing practices, recycling of rinse water, changing cleaning of aluminum parts and rejuvenation of gold plating solutions. Discussion is also presented on other issues currently being worked and these include: combining electroplating and physical vapor deposition, elimination of all cyanide plating processes, and recycling of electroless nickel and spent acid solutions.

Dini, J.W.; Steffani, C.P.

1992-04-01T23:59:59.000Z

29

LabUPDATE ISSUE 8 AUGUST 6, 2003 News about the Berkeley, Livermore and Los Alamos national laboratories,  

E-Print Network [OSTI]

with LLNL, Sandia, Northrop Grumman Space Technology/Cutting Edge Optronics.) From Lawrence Livermore

Knowles, David William

30

Lawrence Livermore National Laboratory December 13, 2004  

E-Print Network [OSTI]

John Lindl Lawrence Livermore National Laboratory December 13, 2004 The NIF Ignition Program Presentation to Fusion Power Associates Meeting #12;NIF-0202-0XXXXppt 15/GHM/tr Outline · Ignition Introduction 104 105 500 50 5 0.5 Capsule energy (KJ) NIF Relaxed pressure and stability requirements

31

Lawrence Livermore National Laboratory, P. O. Box  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore National LaboratoryLawrence

32

Research collaboration opportunities at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

Budwine, C.M.

1996-09-01T23:59:59.000Z

33

Geothermal programs at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

34

UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY  

E-Print Network [OSTI]

June 1995 UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY University of California · Livermore, California · 94550 Science on High-Energy Lasers: From Today to the NIF Richard W. Lee, Richard. WorkperformedundertheauspicesoftheU.S.DepartmentofEnergybyLawrenceLivermoreNationalLaboratoryunder Contract W-7405-Eng-48. #12

35

Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document  

SciTech Connect (OSTI)

The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

NONE

1999-03-01T23:59:59.000Z

36

Lawrence Livermore National Laboratory Working Reference Material Production Pla  

SciTech Connect (OSTI)

This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

Amy Wong; Denise Thronas; Robert Marshall

1998-11-04T23:59:59.000Z

37

Environmental monitoring at the Lawrence Livermore National Laboratory: Annual report, 1987  

SciTech Connect (OSTI)

This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore Laboratory (LLNL) for 1987. To evaluate the effect of LLNL operations on the local environment, measurements were made of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, sewage effluents, surface water, groundwater, vegetation, foodstuff, and milk at both the Livermore site and nearby Site 300. Evaluations were made of LLNL's compliance with the applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicates that the only releases in excess of applicable standards were four releases to the sanitary sewer. LLNL operations had no adverse impact on the environment during 1987. 65 refs., 24 figs.

Holland, R.C.; Brekke, D.D.

1988-04-01T23:59:59.000Z

38

FY 2011 Lawrence Livermore National Security, LLC, PER Summary...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lawrence Livermore National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

39

Lawrence Livermore National Laboratory is home to the National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement...

40

Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...  

National Nuclear Security Administration (NNSA)

manufacturing * Special nuclear materials-plutonium and tritium * High performance computing FY2015 Ten Year Site Plan Limited Report Page 3 of 6 Lawrence Livermore...

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

First-of-a-kind supercomputer at Lawrence Livermore available...  

National Nuclear Security Administration (NNSA)

by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing cluster is available for collaborative projects with industry through...

42

Independent Oversight Review of the Lawrence Livermore National...  

Energy Savers [EERE]

Laboratory's health services and to conduct an Accreditation Association of Ambulatory Health Care accreditation survey. Independent Oversight Review of the Lawrence Livermore...

43

Lawrence Livermore National Laboratory | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore National Laboratory

44

Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California  

SciTech Connect (OSTI)

The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

Not Available

1993-10-01T23:59:59.000Z

45

EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA  

Broader source: Energy.gov [DOE]

The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

46

Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

47

Lawrence Livermore National Laboratory 2007 Annual Report  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

Chrzanowski, P; Walter, K

2008-04-25T23:59:59.000Z

48

Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

Wilson, K. L.

1997-08-01T23:59:59.000Z

49

Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

50

Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

51

NSO PAC 4 Meeting Agenda Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

NSO PAC 4 Meeting Agenda Lawrence Livermore National Laboratory Summit Room in Bldg 132 Thursday of NIF 7:00 pm Adjourn for Dinner Friday, November 30, 2001 8:00 am Preparation of Report 10:15 am Break

52

Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment  

SciTech Connect (OSTI)

This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

Sharry, J A

2009-12-30T23:59:59.000Z

53

Mitigation Monitoring and Reporting Program for continued operation of Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A Mitigation Monitoring and Reporting Program, required by the California Environmental Quality Act, was developed by UC as part of the Final EIS/EIR process. This document describing the program is a companion to the Final Environmental Impact Statement/Environmental Impact Report (EIS/EIR) for the Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). The Final EIS/EIR analyzes the potential environmental impacts of the proposed action, which for the purposes of NEPA is: continued operation, including near-term (within 5 to 1 0 years) proposed projects, of LLNL and SNL, Livermore. The proposed action for the EIR is the renewal of the contract between DOE and UC for UC`s continued operation and management of LLNL. The Mitigation Monitoring and Reporting Program is for implementing and monitoring progress of measures taken to mitigate the significant impacts of the proposed action. A complete description of the impacts and proposed mitigations is in Section 5 of Volume I of the Final EIS/EIR. This report summarizes the mitigation measures, identifies the responsible party at the Laboratory for implementing the mitigation measure, states when monitoring will be implemented, when the mitigation measure will be in place and monitoring completed, and who will verify that the mitigation measure was implemented.

Not Available

1992-08-01T23:59:59.000Z

54

EIS-0157: Site-wide for Continued Operation of Lawrence Livermore/Sandia National Laboratory, Livermore  

Broader source: Energy.gov [DOE]

The Department of Energy prepared this environmental impact statement to analyze the potential environmental impacts of the continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratory - Livermore, including programmatic enhancements and facility modifications to occur over the subsequent 10-year term that are pursuant to research and development missions established for the Laboratories by Congress and the President.

55

Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

2009-11-16T23:59:59.000Z

56

Lawrence Livermore National Laboratory Proposal to Participate...  

Broader source: Energy.gov (indexed) [DOE]

19, 2003 LLNL leads the DOE effort in tank R&D Insulated pressure vessels Lightweight tanks We have already demonstrated >11% by weight storage Tanks are the "ace in the hole"...

57

DHS-STEM Internship at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL) current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and/or update several TaqMan probes for these and develop a plan of identification for the more difficult ones. One suggestion for a genus with low conservation was to separate species into several groups and look for probes within these and then use a combination of probes to identify a genus. This has the added benefit of also providing subgenus identification in larger genera. During both projects I had developed a set of computer programs to simplify or consolidate several processes. These programs were constructed with the intent of being reused to either repeat these results, further this research, or to start a similar project. A big problem in the bioinformatic/sequencing field is the variability of data storage formats which make using data from various sources extremely difficult. Excluding for the moment the many errors present in online database genome sequences, there are still many difficulties in converting one data type into another successfully every time. Dealing with hundreds of files, each hundreds of megabytes, requires automation which in turn requires good data mining software. The programs I developed will help ease this issue and make more genomic sources available for use. With these programs it is extremely easy to gather the data, cleanse it, convert it and run it through some analysis software and even analyze the output of this software. When dealing with vast amounts of data it is vital for the researcher to optimize the process--which became clear to me with only ten weeks to work with. Due to the time constraint of the internship, I was unable to finish my metagenomic project; I did finish with success, my second project, discovering TaqMan identification for genera and species. Although I did not complete my first project I made significant findings along the way that suggest the need for further research on the subject. I found several instances of false positives in the metagenomic data from our microarrays which indicates the need to sequence more metagenomic samples. My initial research shows the importance of expanding our known metagenomic

Feldman, B

2008-08-18T23:59:59.000Z

58

Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997  

SciTech Connect (OSTI)

This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

NONE

1997-03-01T23:59:59.000Z

59

Environmental impact report addendum for the continued operation of Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

An environmental impact statement/environmental impact report (ES/EIR) for the continued operation and management of Lawrence Livermore National Laboratory (LLNL) was prepared jointly by the U.S. Department of Energy (DOE) and the University of California (UC). The scope of the document included near-term (within 5-10 years) proposed projects. The UC Board of Regents, as state lead agency under the California Environmental Quality Act (CEQA), certified and adopted the EIR by issuing a Notice of Determination on November 20, 1992. The DOE, as the lead federal agency under the National Environmental Policy Act (NEPA), adopted a Record of Decision for the ES on January 27, 1993 (58 Federal Register [FR] 6268). The DOE proposed action was to continue operation of the facility, including near-term proposed projects. The specific project evaluated by UC was extension of the contract between UC and DOE for UC`s continued operation and management of LLNL (both sites) from October 1, 1992, through September 30, 1997. The 1992 ES/EIR analyzed impacts through the year 2002. The 1992 ES/EIR comprehensively evaluated the potential environmental impacts of operation and management of LLNL within the near-term future. Activities evaluated included programmatic enhancements and modifications of facilities and programs at the LLNL Livermore site and at LLNL`s Experimental Test Site (Site 300) in support of research and development missions 2048 established for LLNL by Congress and the President. The evaluation also considered the impacts of infrastructure and building maintenance, minor modifications to buildings, general landscaping, road maintenance, and similar routine support activities.

Weston, R. F. [Roy F. Weston, Inc. (United States)

1996-10-01T23:59:59.000Z

60

Timely delivery of LIFE Tom Anklam, Lawrence Livermore  

E-Print Network [OSTI]

Timely delivery of LIFE Tom Anklam, Lawrence Livermore National Laboratory October 19, 2011 LIFE_Royal_Society_9/7/11 6 LIFE Fusion Chamber is About the Same Scale as the NIF Target Chamber #12;LIFE Fusion Physics will be Demonstrated on the NIF #12;LIFE will use a modular laser architeccture #12;#12;#12;11 NIF

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Screening Program Reduced Melanoma Mortality at the Lawrence Livermore National Laboratory, 1984-1996  

SciTech Connect (OSTI)

Worldwide incidence of cutaneous malignant melanoma has increased substantially, and no screening program has yet demonstrated reduction in mortality. We evaluated the education, self examination and targeted screening campaign at the Lawrence Livermore National Laboratory (LLNL) from its beginning in July 1984 through 1996. The thickness and crude incidence of melanoma from the years before the campaign were compared to those obtained during the 13 years of screening. Melanoma mortality during the 13-year period was based on a National Death Index search. Expected yearly deaths from melanoma among LLNL employees were calculated by using California mortality data matched by age, sex, and race/ethnicity and adjusted to exclude deaths from melanoma diagnosed before the program began or before employment at LLNL. After the program began, crude incidence of melanoma thicker than 0.75 mm decreased from 18 to 4 cases per 100,000 person-years (p = 0.02), while melanoma less than 0.75mm remained stable and in situ melanoma increased substantially. No eligible melanoma deaths occurred among LLNL employees during the screening period compared with a calculated 3.39 expected deaths (p = 0.034). Education, self examination and selective screening for melanoma at LLNL significantly decreased incidence of melanoma thicker than 0.75 mm and reduced the melanoma-related mortality rate to zero. This significant decrease in mortality rate persisted for at least 3 yr after employees retired or otherwise left the laboratory.

Schneider, MD, J S; II, PhD, D; MD, PhD, M

2006-10-12T23:59:59.000Z

62

Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300  

SciTech Connect (OSTI)

This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

Crow, N.B.; Lamarre, A.L.

1990-08-01T23:59:59.000Z

63

Lawrence Livermore National Laboratory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton, California: EnergyLavon,Livermore

64

Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report  

SciTech Connect (OSTI)

The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

Ryerson, F. J., Institute of Geophysics and Planetary Physics

1998-03-23T23:59:59.000Z

65

EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

66

Lawrence Livermore National Laboratory | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2Larry BergLawrence

67

National Nuclear Security Administration Lawrence Livermore  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | NationalADR services are contractedLawrence

68

Industrial ecology at Lawrence Livermore National Laboratory summary statement  

SciTech Connect (OSTI)

This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

Gilmartin, T.J.

1996-05-21T23:59:59.000Z

69

Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach  

SciTech Connect (OSTI)

This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

Coty, J

2009-03-16T23:59:59.000Z

70

Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300  

SciTech Connect (OSTI)

Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

NONE

1997-10-30T23:59:59.000Z

71

Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

Dreicer, M.

1985-12-01T23:59:59.000Z

72

Inspection Report "Personal Property Management at Lawrence Livermore National Laboratory"  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of November 2008 the Laboratory managed 64,933 items of Government personal property valued at about $1 billion. At the beginning of Fiscal Year 2008, Livermore reported 249 DOE property items valued at about $1.3 million that were missing, unaccounted for, or stolen during Fiscal Year 2007. Livermore centrally tracks property utilizing the Sunflower Assets system (Sunflower), which reflects the cradle to grave history of each property item. Changes in the custodianship and/or location of a property item must be timely reported by the custodian to the respective property center representative for updating in Sunflower. In Fiscal Year 2008, over 2,000 individuals were terminated as a result of workforce reduction at Livermore, of which about 750 received a final notification of termination on the same day that they were required to depart the facility. All of these terminations potentially necessitated updates to the property database, but the involuntary terminations had the potential to pose particular challenges because of the immediacy of individuals departures. The objective of our inspection was to evaluate the adequacy of Livermore's internal controls over Government property. Based upon the results of our preliminary field work, we particularly focused on personal property assigned to terminated individuals and stolen laptop computers. We concluded that Livermore's internal controls over property could be improved, which could help to reduce the number of missing, unaccounted for, or stolen property items. Specifically, we found that: (1) The location and/or custodian of approximately 18 percent of the property items in our sample, which was drawn from the property assigned to individuals terminated on short notice in 2008, was inaccurately reflected in Sunflower. The data in this system is relied upon for tracking purposes, so inaccurate entries could increase the probability of property not being located during inventories and, thus, being reported as 'lost' or 'missing'. We believe that providing formal training to property custodians, which was not being done at the time of our inspection, could help improve this situation. (2) Some property custodians were not adequately protecting their Government laptop computers when taking them offsite, and they were not held accountable for the subsequent theft of the laptops. We made several recommendations to management intended to improve property controls at Livermore.

None

2009-05-01T23:59:59.000Z

73

Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1  

SciTech Connect (OSTI)

This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

2003-02-24T23:59:59.000Z

74

The Computation Directorate at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

Cook, L

2006-09-07T23:59:59.000Z

75

DOE Selects Lawrence Livermore National Security, LLC to Manage its  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S. Department ofLawrence Livermore

76

Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 4, Comments and responses  

SciTech Connect (OSTI)

This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories` operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them.

Not Available

1992-08-01T23:59:59.000Z

77

Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 1, Text  

SciTech Connect (OSTI)

This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories` operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives.

Not Available

1992-08-01T23:59:59.000Z

78

Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 3, Appendices F--M  

SciTech Connect (OSTI)

This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories` operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices F through M. Appendix L has been revised to reflect public information activities since publication of the Draft EIS/EIR. These appendices provide technical support for the analyses in Volume 1 and also provide additional information and references.

Not Available

1992-08-01T23:59:59.000Z

79

Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Executive summary  

SciTech Connect (OSTI)

The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented.

Not Available

1992-08-01T23:59:59.000Z

80

Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2, Appendices A--D  

SciTech Connect (OSTI)

This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories` operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references.

Not Available

1992-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Overview of crash and impact analysis at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

Logan, R.W.; Tokarz, F.J.

1993-08-05T23:59:59.000Z

82

Application of system simulation for engineering the technical computing environment of the Lawrence Livermore National Laboratorie  

SciTech Connect (OSTI)

This report summarizes an investigation performed by Lawrence Livermore National Laboratory? s (LLNL) Scientific Computing & Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L

1998-09-15T23:59:59.000Z

83

LLNL-PRES-662854 This work was performed under the auspices of the U.S. Department  

E-Print Network [OSTI]

Convergence ratio of ~ 35 Lawrence Livermore National Laboratory Ignition on NIF requires compress pressures-ray: Produced by NIF laser at LLNL with an Internt'l team Lawrence Livermore National Laboratory A hohlraum indirectly d 1.8 MJ National Ignition inners outers at NIF #12;Lawrence Livermore National Laboratory 4 Rosen

84

Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document  

SciTech Connect (OSTI)

This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

Sharry, J A

2009-12-30T23:59:59.000Z

85

Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

86

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect (OSTI)

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

87

Review of the Lawrence Livermore Nationa Laboratory Identiified...  

Broader source: Energy.gov (indexed) [DOE]

United States Container Corporation. The distributor obtained the drums from the manufacturer, Myers Containers Corporation, an LLNL evaluated and approved vendor. Myers...

88

Exploring Viral Genomics at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

Kilpatrick, K; Hiddessen, A

2007-08-22T23:59:59.000Z

89

Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006  

SciTech Connect (OSTI)

This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

2007-06-07T23:59:59.000Z

90

Science on Saturday @ Lawrence Livermore Lab | Department of...  

Broader source: Energy.gov (indexed) [DOE]

2, 2013 1:30PM EST Bankhead Theatre, downtown Livermore CA Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students. Each...

91

Science on Saturday @ Lawrence Livermore Lab | Department of...  

Broader source: Energy.gov (indexed) [DOE]

23, 2013 2:30PM EST Bankhead Theatre in downtown Livermore CA Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students....

92

Science on Saturday @ Lawrence Livermore Lab | Department of...  

Broader source: Energy.gov (indexed) [DOE]

16, 2013 2:30PM EST Bankhead Theatre in downtown Livermore, CA Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students....

93

NNSA Corporate CPEP Process NNSA Lawrence Livermore National...  

National Nuclear Security Administration (NNSA)

NNSANA-00.2 Page 1 of 23 Executive Summary This report was produced by the Department of EnergyNational Nuclear Security Administration (DOENNSA), Livermore Field Office (LFO)...

94

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

95

Industrial ecology at Lawrence Livermore National Laboratory summary statement  

SciTech Connect (OSTI)

At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

Gilmartin, T.J.

1996-06-04T23:59:59.000Z

96

Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and  

E-Print Network [OSTI]

for hydrogen storage. These materials have intrinsic high storage capacity with active carbon nanostructureLawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride storage Tanks are the "ace in the hole" storage technology Vacuum Shell Insulation Composite Overwrap

97

Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

1994-09-01T23:59:59.000Z

98

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010  

SciTech Connect (OSTI)

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

Pawloski, G A

2011-01-03T23:59:59.000Z

99

Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations  

SciTech Connect (OSTI)

The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

Bainer, R.; Duarte, J.

1993-07-01T23:59:59.000Z

100

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2  

SciTech Connect (OSTI)

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

Pawloski, G A

2012-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2Larry BergLawrenceLawrence

102

Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

103

Type B accident investigation board report of the July 2, 1997 curium intake by shredder operator at Building 513 Lawrence Livermore National Laboratory, Livermore, California. Final report  

SciTech Connect (OSTI)

On July 2, 1997 at approximately 6:00 A.M., two operators (Workers 1 and 2), wearing approved personal protective equipment (PPE), began a shredding operation of HEPA filters for volume reduction in Building 513 (B-513) at Lawrence Livermore National Laboratory (LLNL). The waste requisitions indicated they were shredding filters containing {le} 1 {micro}Ci of americium-241 (Am-241). A third operator (Worker 3) provided support to the shredder operators in the shredding area (hot area) from a room that was adjacent to the shredding area (cold area). At Approximately 8:00 A.M., a fourth operator (Worker 4) relieved Worker 2 in the shredding operation. Sometime between 8:30 A.M. and 9:00 A.M., Worker 3 left the cold area to make a phone call and set off a hand and foot counter in Building 514. Upon discovering the contamination, the shredding operation was stopped and surveys were conducted in the shredder area. Surveys conducted on the workers found significant levels of contamination on their PPE and the exterior of their respirator cartridges. An exit survey of Worker 1 was conducted at approximately 10:05 A.M., and found contamination on his PPE, as well as on the exterior and interior of his respirator. Contamination was also found on his face, chest, back of neck, hair, knees, and mustache. A nose blow indicated significant contamination, which was later determined to be curium-244.

NONE

1997-08-01T23:59:59.000Z

104

Lawrence Livermore National Laboratory Proposal to Participate in the  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated at Mt.LAWRENCE

105

Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

N /A

2004-02-27T23:59:59.000Z

106

Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions  

SciTech Connect (OSTI)

The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

Krishnan, A

2006-08-30T23:59:59.000Z

107

Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

1997-01-01T23:59:59.000Z

108

Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

Davis, G.; Mansur, D.L.; Ruhter, W.D.; Steele, E.; Strait, R.S.

1994-01-01T23:59:59.000Z

109

Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

1993-10-01T23:59:59.000Z

110

1Option:UCRL#! Option:Additional Information! Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

:Additional Information! Lawrence Livermore National Laboratory We replicate sound speeds for N2 for pressures to 25 kbars Laboratory We also replicate sound speed data for CH4 to 35 kbars and isotherms for CO2 to 10 kbars #12, SiO2, Fe3O4, CaCO3, Ni (solid, liquid), Al2SiO5, AlN (b1-solid, b4-solid), NiO, Al6O13Si2, FeS2, Si

Kaiser, Ralf I.

111

Signal and Image Processing Research at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

2009-06-29T23:59:59.000Z

112

Lawrence Livermore charitable campaign raises $3.3 million for local  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore Nationalorganizations |

113

LLNL NESHAPs 2008 Annual Report  

SciTech Connect (OSTI)

Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 {mu}Sv) to any member of the public. Using measured and calculated emissions, and building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 1.0, to calculate the dose to the maximally exposed individual for the Livermore site and Site 300. The dose for the LLNL site-wide maximally exposed members of the public from operations in 2008 are summarized here: {sm_bullet} Livermore site: 0.0013 mrem (0.013 {mu}Sv) (26% from point source emissions, 74% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by EPA Region IX; the resulting dose is used for compliance purposes. {sm_bullet} Site 300: 0.000000044 mrem (0.00000044 {mu}Sv) (100% from point source emissions).

Bertoldo, N; Gallegos, G; MacQueen, D; Wegrecki, A; Wilson, K

2009-06-25T23:59:59.000Z

114

Recent results from the EBIT and Super EBIT at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The electron beam ion trap (EBIT), and the higher-energy Super EBIT at Lawrence Livermore National Laboratory can produce any highly charged ion. These highly charged ions are used in a variety of research programs. Recent results from four different experiments are reviewed here. K-shell ionization cross sections have been measured for the hydrogenlike ions of several elements, and L-shell ionization cross sections have been measured for uranium ions. A measurement of the ground-state hyperfine transition in hydrogenlike {sup 165}H{sup 66+} is notable because of the complete absence of Doppler shifts. A cryogenic Penning trap, injected with EBIT ions, has been used to observe a single highly charged ion as it recombines by sequential electron capture from H{sub 2} gas. A large sputtered ion yield, suggesting a surface Coulomb explosion, has been observed from insulators bombarded with very highly charged EBIT ions. 21 refs., 11 figs.

Marrs, R.E.

1996-10-07T23:59:59.000Z

115

Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300  

SciTech Connect (OSTI)

The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

1996-08-01T23:59:59.000Z

116

DDLAB Primer A. Arsenlis, Lawrence Livermore National Laboratory (arsenlis1@llnl.gov)  

E-Print Network [OSTI]

.mat. To load a restart file and execute the code follow the execution procedure given for the saved dataset script named input.m type the following lines on the MATLAB Command Line: >>input >>dd3d To execute the code from a saved dataset named saveddata.mat type the following lines on the MATLAB Command Line: #12

Cai, Wei

117

Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2  

SciTech Connect (OSTI)

Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

Kilmer, J.

1997-08-01T23:59:59.000Z

118

Office of Inspector General report on audit of renovation and new construction projects at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The Oakland Operations Office (Oakland) is responsible for acquiring facilities needed to satisfy mission needs and to do so at the least cost to the Department of Energy (Department). The objective of the audit was to determine if proposed renovation and new construction projects at the Lawrence Livermore National Laboratory (Livermore) met mission needs while minimizing cost to the Government. In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the best alternatives for meeting the Department`s needs while minimizing cost. Livermore was able to pursue these projects because Oakland did not ensure that the laboratory had performed cost and benefit analyses of all alternatives. Further, Oakland did not establish benchmarks to assess the reasonableness of the total costs of designing, constructing, and managing these projects. As a result, it was likely that the Department was spending more than necessary on renovation and new construction projects at Livermore. Although the projects met mission needs, it was recommended that the Manager, Oakland: (1) require Livermore to perform analyses of expected costs and benefits for alternatives; (2) evaluate the adequacy of Livermore`s cost and benefit analyses of alternatives; (3) establish benchmarks based on industry and other government agency cost data to assess the reasonableness of Livermore`s total design, construction, and project management costs; and (4) select the alternative that meets established needs at the least cost to the Government. Oakland agreed with the recommendations and will implement them starting with the Fiscal Year 1999 project submission and validation.

NONE

1997-06-05T23:59:59.000Z

119

Nuclear physics and heavy element research at LLNL  

SciTech Connect (OSTI)

This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

2009-05-11T23:59:59.000Z

120

Cancer risks from soil emissions of volatile organic compounds at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The emission isolation flux chamber (EIFC) methodology was applied to Superfund investigations at the Lawrence Livermore National Laboratory Site 300 to determine if on-site workers were exposed to VOCs volatilizing from the subsurface and what, if any, health risks could be attributed to the inhalation of the VOCs volatilizing from the subsurface. During July and August of 1996, twenty, eighteen, and twenty six VOC soil vapor flux samples were collected in the Building 830, 832, and 854 areas, respectively using EIFCS. The VOC concentrations in the vapor samples were used to calculate soil flux rates which were used as input into an air dispersion model to calculate ambient air exposure-point concentrations. The exposure-point concentrations were compared to EPA Region IX Preliminary Remediation Goals (PRGs). Buildings 830 and 832 exposure-point concentrations were less then the PRGs therefore no cancer risks were calculated. The cancer risks for Building 854 ranged from 1.6 x 10{sup -7} to 2.1 x 10{sup -6}. The resultant inhalation cancer risks were all within the acceptable range, implying that on-site workers were not exposed to VOC vapors volatilizing from the subsurface soil that could have significant cancer risks. Therefore remediation in these areas would not be necessary.

Dibley, V. R., LLNL

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

Jordan, C. W., LLNL

1998-04-01T23:59:59.000Z

122

Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

1997-04-01T23:59:59.000Z

123

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect (OSTI)

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

124

Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

Campbell, C G; Folks, K; Mathews, S; Martinelli, R

2003-10-06T23:59:59.000Z

125

Plutonium discharges to the sanitary sewer: Health impacts at the Livermore Water Reclamation Plant  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is the largest discharger of sewage treated by the Livermore Water Reclamation (LWRP), contributing approximately 7% by volume of the LWRP influent LILNL operations, as potential sources both of industrial pollutants and radioactivity, are therefore of particular concern to the LWRP. For this reason, LLNL has maintained vigorous wastewater discharge control and monitoring programs. In particular, the monitoring program has demonstrated that, except in a few rare instances, the concentration of contaminants in LLNL effluent have always remained below the appropriate regulatory standards. The exceptions have generally been due to inadvertent discharges of metals-bearing solutions produced by metal plating or cleaning operations.

Balke, B.K.

1993-04-16T23:59:59.000Z

126

Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

NONE

1997-09-01T23:59:59.000Z

127

Environmental monitoring at the Lawrence Livermore National Laboratory. 1982 annual report  

SciTech Connect (OSTI)

Environmental monitoring efforts spanned air, water, vegetation and foodstuffs, and radiation doses. Monitoring data collection, analysis, and evaluation are presented for air, soils, sewage, water, vegetation and foodstuffs, milk, and general environmental radioactivity. Non-radioactive monitoring addresses beryllium, chemical effluents in sewage, noise pollution, and storm runoff and liquid discharge site pollutants. Quality assurance efforts are addressed. Five appendices present tabulated data; environmental activity concentration; dose calculation method; discharge limits to sanitary sewer systems of Livermore; and sampling and analytical procedures for environmental monitoring. (PSB)

Griggs, K.S.; Gonzalez, M.A.; Buddemeier, R.W.

1983-03-14T23:59:59.000Z

128

Lawrence Livermore National Laboratory Main Site FFA Under CERCLA Section 120, November 1, 1988 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite |Federal FacilityLawrence

129

Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

130

Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.

Moody, K J; Shaughnessy, D A; Gostic, J M

2011-11-29T23:59:59.000Z

131

Magnetic core studies at LBNL and LLNL  

E-Print Network [OSTI]

LLNL) and DE-AC03-76SF00098 (LBNL). References Wayne Meier,Magnetic Core Studies at LBNL and LLNL A. W. Molvik a,* , A.Livermore, CA 94550, USA LBNL, Berkeley, CA 94720, USA c

Molvik, A.W.

2008-01-01T23:59:59.000Z

132

LLNL NESHAPs project 1997 annual report  

SciTech Connect (OSTI)

NESHAP`s limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 ({mu}Sv) to any member of the public The EDEs for the Lawrence Livermore National Laboratory (LLNL) site- wide maximally exposed members of the public from 1997 operations were Livermore site. 0 097 mrem (0 97 {mu}Sv) (80% from point-source emissions), 20% from diffuse-source emissions), Site 300 0 014 mrem (O 14 {mu}Sv) (38% from point-source emissions, 62% from diffuse-source emissions) The EDEs were generally calculated using the EPA-approved CAP88-PC air- dispersion/dose-assessment model Site-specific meteorological data, stack flow data, and emissions estimates based on radionuclide inventory data or continuous-monitoring systems data were the specific input to CAP88-PC for each modeled source.

Gallegos, G.M.

1998-06-01T23:59:59.000Z

133

Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011

134

Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|UpcomingElectrolyteLaboratory Home

135

The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update  

SciTech Connect (OSTI)

This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

Epperly, T W

2008-12-03T23:59:59.000Z

136

Description and application of the AERIN Code at LLNL  

SciTech Connect (OSTI)

The AERIN code was written at the Lawrence Livermore National Laboratory in 1976 to compute the organ burdens and absorbed dose resulting from a chronic or acute inhalation of transuranic isotopes. The code was revised in 1982 to reflect the concepts of ICRP-30. This paper will describe the AERIN code and how it has been used at LLNL to study more than 80 cases of internal deposition and obtain estimates of internal dose. A comparison with the computed values of the committed organ dose is made with ICRP-30 values. The benefits of using the code are described. 3 refs., 3 figs., 6 tabs.

King, W.C.

1986-01-02T23:59:59.000Z

137

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

138

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344 Blank template  

E-Print Network [OSTI]

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore here Title or division here Date 00, 2008 #12;Humankind challenges NIF-1208-15665.ppt 2Moses, FPA, LIFE, 12/03/08 #12;NIF-1208-15665.ppt Moses, FPA, LIFE, 12/03/08 3 Achieving ignition at the NIF can

139

Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project  

SciTech Connect (OSTI)

This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

Brunckhorst, K

2009-04-21T23:59:59.000Z

140

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Microsoft Word - Renewable Energy Project at LLNL_June 2011_jb...  

National Nuclear Security Administration (NNSA)

422-2567 NATIONAL NUCLEAR SECURITY ADMINISTRATION PURSUING DEVELOPMENT OF A RENEWABLE ENERGY PROJECT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Livermore, CA - The U.S....

142

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect (OSTI)

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

143

Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

Winterberg, Friedwardt

2009-01-01T23:59:59.000Z

144

Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization  

SciTech Connect (OSTI)

A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiation Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site wide ALARA Committee and administrative control levels would focus attention on improved processes. Currently LLNL issues dosimeters to a large number of employees and visitors that do not enter areas requiring dosimetry. This includes 25,000 visitor TLDs per year. Dosimeters should be issued to only those personnel who enter areas where dosimetry is required.

Sygitowicz, L S

2008-03-20T23:59:59.000Z

145

LLNL scientist receives NNSA award for developing uncrackable...  

National Nuclear Security Administration (NNSA)

award for developing uncrackable code for nuclear weapons Mark Hart, a scientist and engineer in Lawrence Livermore National Laboratory's Defense Technologies Division, has been...

146

University of California Lawrence Livermore  

E-Print Network [OSTI]

and the Inertial Fusion Energy Program #12;Outline of Talk · The National Ignition Facility (NIF) · Indirect Drive activated for experiments #12;NIF Target Chamber upper hemisphere #12;First four NIF beams installed and operational #12;Target positioner and alignment system inside target chamber #12;#12;NIF has begun

147

Santer of Lawrence Livermore National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity8 6/1/2011 6.28 Human Effects on

148

Lawrence Livermore National Laboratory Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser WakefieldEnergy Innovation

149

LLNL: Science in the National Interest  

ScienceCinema (OSTI)

This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

George Miller

2010-09-01T23:59:59.000Z

150

Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event  

SciTech Connect (OSTI)

Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

A., B

2008-07-31T23:59:59.000Z

151

Livermore Contract Announcement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

afternoon. Thank you all for coming and welcome to the Lawrence Livermore National Laboratory employees who are watching this on our Webcast. I know my remarks are of special...

152

Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy, quarter ending March 31, 1993  

SciTech Connect (OSTI)

This quarterly report discusses activities in the Safeguards Technology Program (STP) which is a program in LLNL`s Nuclear Chemistry Division that develop advanced, nondestructive-analysis (NDA) technology for measurement of special nuclear materials. The work focuses on R&D relating to x{minus} and gamma-ray spectrometry techniques and to the development of computer codes for interpreting the spectral data obtained by these techniques.

Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

1993-04-01T23:59:59.000Z

153

Simulation of High Efficiency Clean Combustion Engines and Detailed...  

Broader source: Energy.gov (indexed) [DOE]

on LLNL website and by email http:www-pls.llnl.gov?urlscienceandtechnology-chemistry-combustion LLNL-PRES-427539 17 LLNL-PRES-477791 2011 DEER Lawrence Livermore...

154

High heat flux testing of a two-tube copper panel specimen for LLNL at ASURF  

SciTech Connect (OSTI)

This letter documents the results of the test program conducted for Lawrence Livermore National Laboratory (LLNL) by Westinghouse Advanced Energy Systems Division (AESD) in fulfillment of the Third Amendment to Subcontract 9125401. The original test matrix of 20,000 heating cycles on two test articles called for in the contract was not technically feasible due to the inability of the test articles supplied by LLNL to perform successfully at the required test conditions. Burnout occurred in one of the tubes of a two-tube target during the first series of tests. As a result, the work scope was changed by LLNL such that the tests on the milled copper plate panel specimen were replaced by a second set of heating tests on the second tube of the two-tube copper panel specimen to confirm the conditions for burnout failure. The testing requirements were completed following failure of the second tube at nominally identical conditions under which the first tube failed, and verification of these conditions. This letter completes all contractual obligations by serving as the final report on the test program.

Easoz, J.R.; Sink, D.A.

1984-12-01T23:59:59.000Z

155

Microsoft Word - Environmental Review of B832 Canyon at LLNL...  

National Nuclear Security Administration (NNSA)

Release John Belluardo February 25, 2011 (925) 422-2567 ENVIRONMENTAL REVIEW OF THE BUILDING 832 CANYON OPERABLE UNIT AT LAWRENCE LIVERMORE NATIONAL LABORATORY'S SITE 300 BY U.S....

156

Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300  

SciTech Connect (OSTI)

This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

Mathews, S.

1997-04-01T23:59:59.000Z

157

Technical Qualification Program Self-Assessment Report- Livermore Field Office- 2013  

Broader source: Energy.gov [DOE]

The purpose of the Livermore Field Office (LFO) Teclmical Qualification Program (TQP) is to ensure that federal teclmical personnel with safety oversight responsibilities at defense nuclear facilities at Lawrence Livermore National Laboratory possess competence commensurate with responsibilities.

158

Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

Winterberg, F.

2009-10-29T23:59:59.000Z

159

SciTech Connect:  

Office of Scientific and Technical Information (OSTI)

Laramie Energy Technology Center (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) Lawrence Livermore National Laboratory (LLNL),...

160

Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE participants were limited in what they were allowed to do at the Caliban and Silene exercises and testing of various elements of the nuclear accident dosimetry programs cannot always be performed as guests at other sites, it has become evident that DOE needs its own capability to test nuclear accident dosimeters. Angular dependence determination and correction factors for NADs desperately need testing as well as more evaluation regarding the correct determination of gamma doses. It will be critical to properly design any testing facility so that the necessary experiments can be performed by DOE laboratories as well as guest laboratories. Alternate methods of dose assessment such as using various metals commonly found in pockets and clothing have yet to be evaluated. The DOE is planning to utilize the Godiva or Flattop reactor for testing nuclear accident dosimeters. LLNL has been assigned the primary operational authority for such testing. Proper testing of nuclear accident dosimeters will require highly specific characterization of the pulse fields. Just as important as the characterization of the pulsed fields will be the design of facilities used to process the NADs. Appropriate facilities will be needed to allow for early access to dosimeters to test and develop quick sorting techniques. These facilities will need appropriate laboratory preparation space and an area for measurements. Finally, such a facility will allow greater numbers of LLNL and DOE laboratory personnel to train on the processing and interpretation of nuclear accident dosimeters and results. Until this facility is fully operational for test purposes, DOE laboratories may need to continue periodic testing as guests of other reactor facilities such as Silene and Caliban.

Hickman, D P; Wysong, A R; Heinrichs, D P; Wong, C T; Merritt, M J; Topper, J D; Gressmann, F A; Madden, D J

2011-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Environmental Protection Department LLNL NESHAPs 2007 Annual Report  

SciTech Connect (OSTI)

This annual report is prepared pursuant to the National Emission Standards for Hazardous Air Pollutants (NESHAPs; Title 40 Code of Federal Regulations [CFR] Part 61, Subpart H). Subpart H governs radionuclide emissions to air from U.S. Department of Energy (DOE) facilities. NESHAPs limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 {micro}Sv) to any member of the public. The EDEs for the Lawrence Livermore National Laboratory (LLNL) site-wide maximally exposed members of the public from operations in 2007 are summarized here. Livermore site: 0.0031 mrem (0.031 {micro}Sv) (42% from point source emissions, 58% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by the U.S. Environmental Protection Agency (EPA) Region IX; the resulting dose is used for compliance purposes. Site 300: 0.0035 mrem (0.035 {micro}Sv) (90% from point source emissions, 10% from diffuse source emissions). The EDEs were calculated using the U.S. EPA-approved CAP88-PC air dispersion/dose-assessment model, except for doses for two diffuse sources that were estimated using measured radionuclide concentrations and dose calculations. Specific inputs to CAP88-PC for the modeled sources included site-specific meteorological data and source emissions data, the latter variously based on continuous stack effluent monitoring data, stack flow or other release-rate information, ambient air monitoring data, and facility knowledge.

Bertoldo, N A; Larson, J M; Wilson, K R

2008-06-25T23:59:59.000Z

162

The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development  

SciTech Connect (OSTI)

The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

1987-09-17T23:59:59.000Z

163

7/3/2014 WSU Physics and Astronomy-Events -Colloquium Schedule http://physics.wsu.edu/Events/Events-Colloquium.html 1/2  

E-Print Network [OSTI]

, NIF User Office, Lawrence Livermore National Laboratory (LLNL) and incoming Vice President and Materials Division, Lawrence Livermore National Laboratory Abstract Title: Predicting the Properties

Collins, Gary S.

164

Lawrence Livermore National Laboratory / Energy Security and  

E-Print Network [OSTI]

(Acting) Associate Program Leader Highly Enriched Uranium, Guy Armantrout NERI, Gas Hydrates, Bill Durham Blake Natural Gas Infrastructure, Bill Pickles S2TAR GEN IV, AAA, and AFCI, Bill Halsey Geothermal Group Leader: Applied Statistics and Economics DOE Hydrogen, Fuel Cells, and Infrastructure Technologies

165

Lawrence Livermore National Laboratory | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I1UsLocations /

166

Dr. Yuan Ping Lawrence Livermore National Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal CycleDonald1 JulDr.Robert

167

Categorical Exclusion Determinations: Lawrence Livermore Site Office |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 20149Department of

168

Independent Activity Report, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe full text of what

169

Independent Activity Report, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe full text of whatOctober 2012 | Department of

170

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatmentImmobilizationMarch 2013

171

Independent Oversight Review, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatmentImmobilizationMarch 2013September

172

Physicist, Lawrence Livermore National Laboratory | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and Modeling Los AlamosAerosol. |] aSecurity

173

University of California LawrenceLivermore  

E-Print Network [OSTI]

and Material Microstructural Properties on Capillary Barrier Design and Performance H51A-30 1 2 Dorthe the Kelvin's Law-range of processes with a traditional numerical modeling approach, - the model might have 0.39 0.48 porosity of coarse layer 0.50 0.41 average pump rate (ml/h) 29.8 29.3 average pump rate (m

Wildenschild, Dorthe

174

Lawrence Livermore National Laboratory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd Jump to:Kenersys

175

Enterprise Assessments Targeted Review, Lawrence Livermore National  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy2 ENRONDecember 2014 |

176

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffect of DryCorrectionComplex Research and2008 Nobel

177

Researcher, Lawrence Livermore National Laboratory | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffect of DryCorrectionComplex Research and2008

178

Biomedical Environmental Sciences Divisions Lawrence Livermore  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuelHelpBiologyB I I O O mBiomedical

179

Lawrence Livermore National Laboratory Technology Marketing Summaries -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser WakefieldEnergy InnovationEnergy

180

'Jeopardy!' features Lawrence Livermore National Laboratory ...  

National Nuclear Security Administration (NNSA)

and programs, among them laser science and the National Ignition Facility, high performance computing and Sequoia, astrophysics and the GeMINI planet imager, satellite technology...

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

1David N. Hill, 10/12/01 11:31 AM -0700, NSO-PAC4 meeting at LLNL on Nov 29 X-Sender: e393909@poptop.llnl.gov  

E-Print Network [OSTI]

Dear NSO PAC member, The next NSO PAC meeting will be at Lawrence Livermore National Lab November 29th ***************************************** Permanent Business address: Dr. David N. Hill, L-637 Lawrence Livermore National Laboratory P.O. Box 808 in the fusion program or participate in a tour of SSPX or NIF (we are trying to arrange for a tour of NIF

182

Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952-1965) and was a staff member at Los Alamos National Laboratory, [LANL] from 1976 to 1991 and from  

E-Print Network [OSTI]

in nuclear weapons, both design and diagnostics. In 1952-1954 he led diagnostic testing for several nuclear Department, for 2 the treaty on the Discontinuance of Nuclear Weapons Tests. In 1964 he became president for the LLNL tests. He designed and executed a weapons test at NTS in the 60's, and initiated the laser fusion

183

LLNL 1981: technical horizons  

SciTech Connect (OSTI)

Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

Not Available

1981-07-01T23:59:59.000Z

184

Empirical validation of the conceptual design of the LLNL 60-kg contained-firing facility  

SciTech Connect (OSTI)

In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) is proposing to modify an existing facility to add a 60-kg firing chamber and related support areas. This modification will provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the hazardous waste generated. The major design consideration of such a chamber is its overall structural dynamic response in terms of its long-term ability to contain all blast effects from repeated internal detonations of high explosives. Another concern is how much other portions of the facility outside the firing chamber must be hardened to ensure personnel protection in the event of an accidental detonation while the chamber door is open. To assess these concerns, a 1/4-scale replica model of the planned contained firing chamber was engineered, constructed, and tested with scaled explosive charges ranging from 25 to 125% of the operational explosives limit of 60 kg. From 16 detonations of high explosives, 880 resulting strains, blast pressures, and temperatures within the model were measured to provide information for the final design.

Pastrnak, J.W.; Baker, C.F.; Simmons, L.F.

1995-02-24T23:59:59.000Z

185

Lawrence R Walker | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore

186

LLNL input to FY94 hydrogen annual report  

SciTech Connect (OSTI)

This report summarizes the FY 1994 progress made in hydrogen research at the Lawrence Livermore National Laboratory. Research programs covered include: Technical and Economic Assessment of the Transport and Storage of Hydrogen; Research and Development of an Optimized Hydrogen-Fueled Internal Combustion Engine; Hydrogen Storage in Engineered Microspheres; Synthesis, Characterization and Modeling of Carbon Aerogels for Hydrogen Storage; Chemical Kinetic Modeling of H2 Applications; and, Municipal Solid Waste to Hydrogen.

Schock, R.N.; Smith, J.R.; Rambach, G.; Pekala, R.W.; Westbrook, C.K.; Richardson, J.H.

1994-12-16T23:59:59.000Z

187

Initial Joint Review of Wildland Fire Safety at DOE Sites  

Broader source: Energy.gov (indexed) [DOE]

National Engineering and Environmental Laboratory LANL Los Alamos National Laboratory LBNL Lawrence Berkeley National Laboratory LLNL Lawrence Livermore National Laboratory NFPA...

188

Direct Liquid Cooling for Electronic Equipment  

E-Print Network [OSTI]

technology   kW   kilowatt   LBNL   Lawrence  Berkeley  National  Laboratory   LLNL   Lawrence  Livermore  National  Laboratory   PDU   power  distribution  unit   pPUE   partial  power  usage  

Coles, Henry

2014-01-01T23:59:59.000Z

189

Application of system simulation for engineering the technical computing environment of the Lawrence  

SciTech Connect (OSTI)

This report summarizes an investigation performed by Lawrence Livermore National Laboratory s (LLNL) Scientific Computing Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L.

1998-09-15T23:59:59.000Z

190

LabUPDATE ISSUE 7 JUNE 11, 2003 News about the Berkeley, Livermore and Los Alamos national laboratories,  

E-Print Network [OSTI]

: The National Ignition Facility at Lawrence Livermore National Laboratory has produced a record energy levelLabUPDATE ISSUE 7 ­ JUNE 11, 2003 News about the Berkeley, Livermore and Los Alamos national technical goals. "Full NIF equivalent" performance (extrapolating the single beam output to the 192 beams

Knowles, David William

191

Director of Lawrence Livermore National Laboratory to Step Down...  

National Nuclear Security Administration (NNSA)

out the NNSA's stockpile stewardship program. The program ensures the safety and reliability of the nation's nuclear stockpile. Tarter has also expanded the lab's work in the...

192

Expanding Your Horizons Conference, Lawrence Livermore National Lab  

Broader source: Energy.gov [DOE]

Our goal is to introduce young women in grades 6 through 12 to a variety of diverse and challenging careers and encourage their interest in science and mathematics. At the conference, participants...

193

Earthquake engineering programs at the Lawrence Livermore Laboratory  

SciTech Connect (OSTI)

Information is presented concerning assessments of current seismic design methods; systematic evaluation program for older operating reactors; seismic vulnerability of fuel reprocessing facilities; and advisability of seismic scram.

Tokarz, F.J.

1980-02-28T23:59:59.000Z

194

John Lindl and Bruce Hammel Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

Advances in Indirect Drive ICF Target Physics Presentation to 20th IAEA Fusion Energy Conference #12;NIF in Inertial Confinement Fusion Inertial Confinement Fusion uses direct or indirect drive to couple driver by cold, dense main fuel Direct Drive Hot spot (10 keV) Cold, dense main fuel (200-1000 g/cm3) Indirect

195

Lawrence Livermore Site Office Safety Basis Self-Assessment Final...  

Broader source: Energy.gov (indexed) [DOE]

13-17, 2010. The assessment revealed that LSO has implemented appropriate plans, procedures, and mechanisms to oversee implementation of the safety basis and unreviewed safety...

196

Site Visit Report - Review of the Lawrence Livermore National...  

Broader source: Energy.gov (indexed) [DOE]

The Facilities and Infrastructure Directorate provides the lower- tier implementing procedures for applying engineering project management resources and submitting...

197

DOE Selects Lawrence Livermore National Security, LLC to Manage...  

Office of Environmental Management (EM)

Addthis Related Articles Department of Energy Announces Completion of World's Largest Laser U.S. Department of Energy and IBM to Collaborate in Advancing Supercomputing...

198

Director of the National Ignition Facility, Lawrence Livermore National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation ofthe APS User OfficeDirector of

199

Independent Activity Report, Lawrence Livermore National Laboratory - March  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe full text of whatOctober 2012 | Department

200

Independent Oversight Review of the Lawrence Livermore National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatment andofIndependent Oversight-

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Independent Oversight Review, Lawrence Livermore National Laboratory - July  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatmentImmobilizationMarch

202

Preliminary Notice of Violation, Lawrence Livermore National Security, LLC  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutagesDepartment ofWEA-2013-01 |2015LLC

203

2013 Annual Planning Summary for the Lawrence Livermore National Laboratory  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE)2012 NuclearDepartmentof Energy|

204

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015anDepartmentDepartment ofEA-2000-12 |

205

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015anDepartmentDepartment ofEA-2000-12

206

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015anDepartmentDepartment ofEA-2000-12EA-98-01

207

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015anDepartmentDepartment

208

Secretary of Energy Advisory Board Lawrence Livermore Laboratory  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas | Department ofofDelivered | Department

209

Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2Larry

210

Lessons Learned by Lawrence Livermore National Laboratory Activity-level  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx TrapsLeasingLeslie09091Work Planning

211

FY 2008 Lawrence Livermore National Security, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 Performance and7Annual PerformanceBudget

212

FY 2009 Lawrence Livermore National Security, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudget » FY 2009Nuclear Security

213

FY 2010 Lawrence Livermore National Security, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudget »WESTERN AREABudget

214

FY 2011 Lawrence Livermore National Security, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 PerformanceBudgetNuclearNationalBudget

215

FY 2012 Lawrence Livermore National Security, LLC, PEP | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG Recovery ActNationalNationalSecurity

216

FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG Recovery

217

Technical Sessions J. E. Penner Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8, 2013Battelle:Technical Services.T.Penner

218

Enforcement Letter, Lawrence Livermore National Laboratory - August 22,  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartment of Energy May 28, 19971996

219

Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartment of Energy May 28,

220

Enforcement Letter, Lawrence Livermore National Laboratory - November 5,  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartment of Energy May 28,1999 |

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Enforcement Letter, Lawrence Livermore National Security, LLC - May 2008 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartment of Energy May 28,1999

222

Human Resources at Lawrence Livermore National Laboratory | Critical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortalAllBPAHydrazide

223

Retired lab physicist and computational pioneer, Lawrence Livermore  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource Program September 2010 B O N N E V Iphotovoltaics

224

Consent Order, Lawrence Livermore National National Security, LLC -  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart Grid RFI:FresnoM-WG Idaho, LLC -WCO-2010-01 | Department

225

Lawrence Livermore National National Security. LLC Consent Order  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*)Boyd About Us Lauren Boyd -

226

Edward Jones, Lawrence Livermore National Laboratory, Outcomes of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM IncludedEcoHouseinINDIAN ENERGY BEAT

227

Preliminary Notice of Violation, Lawrence Livermore National Security, LLC  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers |ofDepartmentEA-98-01 | Department of- September

228

Lawrence Livermore National Laboratory Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission StatementCenter for Gas SeparationsRelevantNews-

229

Veterans reflect on their Lawrence Livermore internships | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardship ScienceAdministration

230

Cleantech Open meets with Lawrence Livermore, Sandia national laboratories  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration helps|STEMChernobyl Nuclear Accident|

231

Associate director for Physical and Life Sciences, Lawrence Livermore  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2ArgonneAssembly ofReuse -National Laboratory

232

Lawrence Livermore National Laboratory is home to the National Ignition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser WakefieldEnergy

233

Lawrence Livermore researchers awarded early career funding | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs spaceLaser WakefieldEnergyNuclear Security

234

Preliminary Notice of Violation issued to Lawrence Livermore National Security  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactorBatteriesDiseaseDOEViolation EA-2001-06 Preliminary

235

Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite | DepartmentaLauraBerkeley

236

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

237

llnl  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding6/%2A en William

238

Lawrence Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERNSemiconductorEnergywith E.O. Lawrence

239

ERNEST ORLANDO LAWRENCE BERKELEYNATIONALLABORATORY  

E-Print Network [OSTI]

Port Royal Road, Springfield, VA 22161 Ernest Orlando Lawrence Berkeley National Laboratory is an equal Orlando Lawrence Berkeley National Laboratory University of California Berkeley ,California 94720 JuneLBNL-41914 ERNEST ORLANDO LAWRENCE BERKELEYNATIONALLABORATORY Nonlinear Interaction of Plane

Korneev, Valeri A.

240

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-POST-######. This research is supported in part by the Department of Energy Office of Science Graduate  

E-Print Network [OSTI]

by ORISE-ORAU under contract no. DE-AC05-06OR23100. Exploring Performance Data with Boxfish Katherine by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. Exploring Performance Data with Boxfish Katherine Isaacs1,3 Aaditya Landge2,3 Todd Gamblin3 Peer

California at Davis, University of

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - affairs division llnl Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.wikipedia.orgwikiFile:NOVAlaser.jpg (LLNL) Figure 2: lasers.llnl.govaboutnifabout.php (LLNL) Figure 3: lasers.llnl... .govprogramsscienceattheextremesplasmaphysics...

242

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov [DOE]

Document:  ace013_pitz_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Bill PitzPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

243

Former Tribal Energy Program Intern Guides Tribes Toward a More...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

working at the Lawrence Livermore National Laboratory (LLNL) as an Energy and Thermal Fluids Analyst where she has an ongoing project to produce Sankey diagrams to analyze energy...

244

Taking a Look at 4.57 Billion Year Old Space Objects | Department...  

Broader source: Energy.gov (indexed) [DOE]

at the Energy Department's Lawrence Livermore National Laboratory (LLNL) and NASA's Johnson Space Center are investigating tiny and ancient objects known as calcium,...

245

Women @ Energy: Maya Gokhale | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maya Gokhale has been a Computer Scientist at the Lawrence Livermore National Laboratory (LLNL) since 2007. Her career spans research conducted in academia, industry, and National...

246

Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines  

Broader source: Energy.gov [DOE]

Document:  ace012_flowers_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Dan FlowersPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

247

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

Demonstration LLNL Lawrence Livermore National Laboratory MSW Municipal Solid Waste OSHA Occupational Safety and Health Administration PPE Personal Protective Equipment POTW Publicly Owned Treatment Works RCRA Resource

248

NERSC's Names and Logos over the Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Founded in 1974 at Lawrence Livermore National Laboratory (LLNL) as the Controlled Thermonuclear Research Computer Center, NERSC has evolved from its early days supporting...

249

What's in a Name? NERSC Logos Over the Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Founded in 1974 at Lawrence Livermore National Laboratory (LLNL) as the Controlled Thermonuclear Research Computer Center, NERSC has evolved from its early days supporting...

250

Results of rapid pyrolysis experiments using eastern US oil shale in the Livermore solid-recycle retort  

SciTech Connect (OSTI)

Over the past several years Lawrence Livermore National Laboratory has operated a 2-ton/day pilot-scale solid-recycle system for the study of oil shale retorting under rapid-pyrolysis conditions. Results of processing eastern US New Albany oil shale are presented and compared with results obtained previously using two western US Green River oil shales. The retort consists of a cascading mixer and plug-flow soak-tank pyrolyzer with an air lift pipe and cascading-bed combustor. In the solid-recycle system, spent shale leaving the pyrolyzer is burned in the lift and cascading-bed combustor and then returned to the retort to heat the incoming raw shale. In laboratory experiments, when raw shale is rapidly heated in a fluidized bed of sand, oil yields above those of Fischer assay are obtained. In the present experiments, hot-recycled shale is used as the heat-carrying media, resulting in oil yields comparable to those obtained from Fischer assay. The distribution and composition of solid, oil, and gas throughout the recycle system is reported for the three shales studied. The distribution of sulfur and nitrogen during processing Green River oil shale has been the focus of environmental studies at LLNL. Eastern oil shale contains 5 to 10 times more sulfur and approximately the same amount of nitrogen as western oil shale. The high sulfur content coupled with low carbonate mineral concentrations results in significant sulfur releases in the combustor-gas, compared with trace releases for western shale. Iron oxide in the recycled solid was found to effectively scrub H/sub 2/S from the pyrolysis gas for both western and eastern shales. From 0.4 to 3% of the raw shale nitrogen is released as NO/sub x/ in the combustor-gas for western shale. Releases for New Albany shale are one-tenth these levels. 8 refs., 9 figs., 7 tabs.

Cena, R.J.; Taylor, R.W.

1986-11-01T23:59:59.000Z

251

Planning for the National Ignition Campaign on NIF Presentation to  

E-Print Network [OSTI]

Meeting Dec 3-4, 2008 Lawrence Livermore National Laboratory John Lindl NIF Programs Chief Scientist Lawrence Livermore National Laboratory LLNL-PRES-409110 Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. #12;We have

252

Fire science at LLNL: A review  

SciTech Connect (OSTI)

This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

Hasegawa, H.K. (ed.)

1990-03-01T23:59:59.000Z

253

Women @ Energy: Hye-Sook Park | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

doc position at the University of California, Berkeley, and then one at the Lawrence Livermore National Laboratory (LLNL) in 1987. She has been a staff scientist at LLNL since...

254

Science & Technology - 2014  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Presentations NIF&PS People In the News Press Kit S&TR Articles Contact LLNL Lawrence Livermore National Laboratory 7000 East Avenue * Livermore, CA 94550 Operated by...

255

LANL, LLNL researchers among Early Career Research Program award...  

National Nuclear Security Administration (NNSA)

Urban Right photo: LLNL's Yuan Ping stands next to the target chamber in the Europa laser bay, part of the Jupiter Laser Facility. LANL, LLNL researchers among Early Career...

256

2014 Annual Workforce Analysis and Staffing Plan Report - Livermore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Livermore Field Office 2014 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office Managers perform an annual workforce analysis of their organization and...

257

2012 Annual Workforce Analysis and Staffing Plan Report - Livermore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office 2012 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office Managers perform an...

258

FUSION POWER ASSOCIATES Annual Meeting and Symposium  

E-Print Network [OSTI]

Energetics U. Rochester - Tom Anklam, Lawrence Livermore National Laboratory - Mark Herrmann, Sandia National - Pravesh Patel, Lawrence Livermore National Laboratory - Peter Seidl, Lawrence Berkeley National Laboratory, ITER Organization 8:50 NIF: Recent Experiments and Future Plans ­ John Edwards, LLNL 9:20 Status of U

259

Lawrence Berkeley National Laboratory Overview  

Office of Energy Efficiency and Renewable Energy (EERE)

Presentation about the history, structure, and projects of the Lawrence Berkeley National Laboratory.

260

EIS-0157: Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Lawrence Livermore National Laboratory, Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Livermore Lab's giant laser system will bring star power to Earth  

SciTech Connect (OSTI)

In the 50 years since the laser was first demonstrated in Malibu, California, on May 16, 1960, Lawrence Livermore National Laboratory (LLNL) has been a world leader in laser technology and the home for many of the world's most advanced laser systems. That tradition continues today at LLNL's National Ignition Facility (NIF), the world's most energetic laser system. NIF's completion in March 2009 not only marked the dawn of a new era of scientific research - it could also prove to be the next big step in the quest for a sustainable, carbon-free energy source for the world. NIF consists of 192 laser beams that will focus up to 1.8 million joules of energy on a bb-sized target filled with isotopes of hydrogen - forcing the hydrogen nuclei to collide and fuse in a controlled thermonuclear reaction similar to what happens in the sun and the stars. More energy will be produced by this 'ignition' reaction than the amount of laser energy required to start it. This is the long-sought goal of 'energy gain' that has eluded fusion researchers for more than half a century. Success will be a scientific breakthrough - the first demonstration of fusion ignition in a laboratory setting, duplicating on Earth the processes that power the stars. This impending success could not be achieved without the valuable partnerships forged with other national and international laboratories, private industry and universities. One of the most crucial has been between LLNL and the community in which it resides. Over 155 businesses in the local Tri-Valley area have contributed to the NIF, from industrial technology and engineering firms to tool manufacturing, electrical, storage and supply companies. More than $2.3B has been spent locally between contracts with nearby merchants and employee salaries. The Tri-Valley community has enabled the Laboratory to complete a complex and far-reaching project that will have national and global impact in the future. The first experiments were conducted on NIF last summer and fall, successfully delivering a world-record level of ultraviolet laser energy - more than 1.2 million joules - to a target. The experiments also demonstrated the target drive and target capsule conditions required to achieve fusion ignition. When ignition experiments begin later this year, NIF's lasers will create temperatures and pressures in the hydrogen target that exist only in the cores of stars and giant planets and inside thermonuclear weapons. As a key component of the National Nuclear Security Administration's Stockpile Stewardship Program, NIF will offer the means for sustaining a safe, secure and reliable U.S. nuclear deterrent without nuclear testing. NIF is uniquely capable of providing the experimental data needed to develop and validate computer models that will enable scientists to assess the continuing viability of the nation's nuclear stockpile. Along with this vital national security mission, success at NIF also offers the possibility of groundbreaking scientific discoveries in a wide variety of disciplines ranging from hydrodynamics to astrophysics. As a unique facility in the world that can create the conditions that exist in supernovas and in the cores of giant planets, NIF will help unlock the secrets of the cosmos and inspire the next generation of scientists. It is NIF's third mission, energy security that has been generating the most excitement in the news media and the international scientific community. The reasons are obvious: global energy demand, driven by population growth and the aspirations of the developing world, already is straining the planet's existing energy resources. Global need for electricity is expected to double from its current level of about two trillion watts (TW) to four TW by 2030 and could reach eight to ten TW by the end of the century. As many as 10,000 new billion-watt power plants will have to be built to keep up with this demand. Meeting this pressing need will require a sustainable carbon-free energy technology that can supply base load electricity to the world. Successful ignition experim

Moses, E

2010-04-08T23:59:59.000Z

262

Status of gadolinium enrichment technology at LLNL  

SciTech Connect (OSTI)

A method based on,polarization selectivity and three step laser photoionization is presented for separation of the odd isotopes of gadolinium. Measurements of the spectroscopic parameters needed to quantify the excitation pathway are discussed. Model results are presented for the efficiency of photoionization. The vapor properties of electron beam vaporized gadolinium are presented which show dramatic cooling during the expansion of the hot dense vapor into a vacuum. This results in a significant increase in the efficiency of conversion of natural feed into enriched product in the AVLIS process. Production of enriched gadolinium for use in commercial power reactors appears to be economically viable using technology in use at LLNL.

Haynam, C.; Comaskey, B.; Conway, J.; Eggert, J.; Glaser, J.; Ng, E.; Paisner, J.; Solarz, R.; Worden, E.

1993-01-01T23:59:59.000Z

263

LLNL Section I Clauses/Prescriptions  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77NuclearSecurity CampusAC52-06NA27344 LLNL

264

Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)  

ScienceCinema (OSTI)

The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

Chu, Steven (U.S. Energy Secretary)

2012-06-28T23:59:59.000Z

265

Cyber Science and Security - An R&D Partnership at LLNL  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory has established a mechanism for partnership that integrates the high-performance computing capabilities of the National Labs, the network and cyber technology expertise of leading information technology companies, and the long-term research vision of leading academic cyber programs. The Cyber Science and Security Center is designed to be a working partnership among Laboratory, Industrial, and Academic institutions, and provides all three with a shared R&D environment, technical information sharing, sophisticated high-performance computing facilities, and data resources for the partner institutions and sponsors. The CSSC model is an institution where partner organizations can work singly or in groups on the most pressing problems of cyber security, where shared vision and mutual leveraging of expertise and facilities can produce results and tools at the cutting edge of cyber science.

Brase, J; Henson, V

2011-03-11T23:59:59.000Z

266

Voluntary Protection Program Onsite Review, Livermore Operations- January 2012  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Livermore Operations is continuing to perform at a level deserving DOE-VPP Star recognition.

267

User's manual for the code STAPRE as implemented at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report gives a detailed description of the input and output of the statistical model code STAPRE for compound-nucleus reactions including a special section on the various level density options of the code. It is to be used in conjunction with the report IRK 76/01 + Add 76 + Add 78 by B. Strohmaier and M. Uhl which describes in detail the physical models on which the code is based and its general organization and structure.

Vonach, H.

1982-08-17T23:59:59.000Z

268

GAO-04-986R Lawrence Livermore National Laboratory: Further Improvemen...  

Office of Environmental Management (EM)

engd@gao.gov. Additional contributors to this assignment were Rick Kusman, Delores Lee, Kelly Lehr, Diane Morris, Estelle Tsay, and Eric Wenner. Linda M. Calbom Director, Financial...

269

George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory  

Office of Scientific and Technical Information (OSTI)

payloads to the nearest star. Alpha Centauri, in about a hundred years or very rapid solar system transport. The parameters reported in this paper are based on a very...

270

Rationale and summary of methods for determining ultrasonic properties of materials at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This report is a summary of the methods used to determine ultrasonic velocities through the many materials tested at the Acoustic Properties of Materials Laboratory. Ultrasonic velocity techniques enable the determination of material properties, including elastic moduli, without harming the materials being tested, an advantage some over mechanical methods. Ultrasonic modulus determination has other advantages as well: (1) relative ease and low cost of material preparation; and (2) comparative analysis to physical testing as a function of material loading rate dependence. In addition, ultrasonic measurement provides clues to determine grain size and orientation, and provides a relative indication of material anisotropy with respect to the material geometry. The authors usually perform ultrasonic measurements on materials in ambient atmospheric conditions, and in a relatively free-free condition. However, the authors can perform them in other environments, as required. This paper describes some of the techniques used in this laboratory and shows how ultrasonic velocities are used to establish elastic constants. It also includes a sample test report for a homogeneous isotropic solid, along with a list of references.

Brown, A.E.

1995-02-09T23:59:59.000Z

271

Los Alamos National Laboratory and Lawrence Livermore National Laboratory Plutonium Sustainment Monthly Program Report September 2012  

SciTech Connect (OSTI)

In March of 2012 the Plutonium Sustainment program at LANL completed or addressed the following high-level activities: (1) Delivered Revision 2 of the Plutonium Sustainment Manufacturing Study, which incorporated changes needed due to the release of the FY2013 President's Budget and the delay in the Chemistry and Metallurgy Research Replacement Nuclear Facility (CMRRNF). (2) W87 pit type development activities completed a detailed process capability review for the flowsheet in preparation for the Engineering Development Unit Build. (3) Completed revising the Laser Beam Welding schedule to address scope and resource changes. (4) Completed machining and inspecting the first set of high-fidelity cold parts on Precitech 2 for Gemini. (5) The Power Supply Assembly Area started floor cutting with a concrete saw and continued legacy equipment decommissioning. There are currently no major issues associated with achieving MRT L2 Milestones 4195-4198 or the relevant PBIs associated with Plutonium Sustainment. There are no budget issues associated with FY12 final budget guidance. Table 1 identifies all Baseline Change Requests (BCRs) that were initiated, in process, or completed during the month. The earned value metrics overall for LANL are within acceptable thresholds, so no high-level recovery plan is required. Each of the 5 major LANL WBS elements is discussed in detail.

McLaughlin, Anastasia Dawn [Los Alamos National Laboratory; Storey, Bradford G. [Los Alamos National Laboratory; Bowidowicz, Martin [Los Alamos National Laboratory; Robertson, William G. [Los Alamos National Laboratory; Hobson, Beverly F. [Los Alamos National Laboratory

2012-10-22T23:59:59.000Z

272

Electron beam related manufacturing technology development at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

In the defense community, certain uranium-alloy components have been manufactured by methods which generate large quantities of uranium bearing waste. Our estimates show that these components can be fabricated by vapor deposition and reduce waste generation by more than an order of magnitude. We present results from a series of uranium-alloy vapor deposition tests designed to produce samples of free-standing structures. Both flat plate and cylindrical shells were produced. The deposits were fully dense, defect free and displayed a high quality surface finish. The uranium-alloy was co-evaporated from a single source. Bulk chemistry specifications for the material were met, although some residual variation in chemistry was observed in sample cross sections. After heat treatment, the vapor deposited samples exhibited tensile properties similar to conventional ingot processed material.

Anklam, T.M.

1995-12-14T23:59:59.000Z

273

Electron beam related manufacturing technology development at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

In the defense community, certain uranium-alloy components have been manufactured by methods which generate large quantities of uranium bearing waste. The authors estimates show that these components can be fabricated by vapor deposition and reduce waste generation by more than an order of magnitude. They present results from a series of uranium-alloy vapor deposition tests designed to produce samples of free-standing structures. Both flat plate and cylindrical shells were produced. The deposits were fully dense, defect free and displayed a high quality surface finish. The uranium-alloy was co-evaporated from a single source. Bulk chemistry specifications for the material were met, although some residual variation in chemistry was observed in sample cross sections. After heat treatment, the vapor deposited samples exhibited tensile properties similar to conventional ingot processed material.

Anklam, T. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

1995-12-31T23:59:59.000Z

274

Lawrence Livermore National Laboratory Robin L. Newmark, S. Julio Friedmann, A.J. Simon,  

E-Print Network [OSTI]

Laboratory The dominant energy trends are increased fuel use and increased CO2 emission Nuclear Hydro Gas Oil Resource Natural Gas More than 5,000 Tcf Coal 984 billion tons Oil Just over 1 trillion barrels Methane. · Flood peaks will become higher and natural spring/ summer runoff will become lower. · A possible sea

Keller, Arturo A.

275

Lawrence Livermore National Laboratory oil shale project. Quarterly report, April-June 1982  

SciTech Connect (OSTI)

The effect of the proportion of oxidized shale to raw shale, on the heat of combustion of retort product was studied in a fluidized sand bed at 500/sup 0/C. Results show a significant increase in the heat of combustion, produced by the activity of the oxidized shale. The functionality of organic sulfur in various oil shale types is being investigated. An oil shale pyrolyzer for aboveground retorting is being studied in an engineering facility. Thermochemical and experimental equations were developed for the heat of combustion of raw shale. A heat balance was calculated for 24.6 gal/ton Colorado oil shale. The rapid-pyrolysis data was analyzed to determine the best kinetic scheme for retort modeling. Incipient fluidization velocity measurements were made for various crushed oil shale mixtures of different particle sizes. 10 figures, 1 table. (DLC)

Carley, J.F. (ed.)

1982-09-14T23:59:59.000Z

276

The Hazardous Material Technician Apprenticeship Program at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

This document describes an apprenticeship training program for hazardous material technician. This entry-level category is achieved after approximately 216 hours of classroom and on-the-job training. Procedures for evaluating performance include in-class testing, use of on-the-job checks, and the assignment of an apprentice mentor for each trainee. (TEM)

Steiner, S.D.

1987-07-01T23:59:59.000Z

277

Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

2005-05-27T23:59:59.000Z

278

GAO-04-986R Lawrence Livermore National Laboratory: Further Improvements  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for Fast-Track CooperativeGAO ProtestReport

279

NNSA Weapons Chief Participates in ROTC Day at Lawrence Livermore National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclear Security Administration Weapons Chief

280

Performance of Work for a Non-Department Entity at Lawrence Livermore National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | Department of Energy Reviews thePerformance of

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

6th US-Russian Pu Science Workshop Lawrence Livermore National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe ÎČ- Decay Evaluated Dataα,US-Russian Pu

282

2008 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2009-09-21T23:59:59.000Z

283

2006 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2008-03-27T23:59:59.000Z

284

2007 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2008-05-20T23:59:59.000Z

285

2010 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.

U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs

2011-08-16T23:59:59.000Z

286

Inspection of Lawrence Livermore National Laboratory Protective Force and Special Response Team, IG-0534  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 | Department7 Inspection Report:0-029IS019 Inspection

287

Director of Lawrence Livermore National Laboratory to Step Down as Director  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates by Website AdministratorCenterEnergy|

288

Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyThe sun rises on| Department of Energy

289

NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | National NNSA

290

Donald J. Kintzer named to the Lawrence Livermore and Los Alamos Boards of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:Directives Templates8. U.S.

291

Ellen O. Tauscher named to Lawrence Livermore and Los Alamos Boards of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for theâ€čElectronicElizabeth Case AboutEllen

292

George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATEDOEFinal R eportGas ContentFISSION

293

Concurrence' Lawrence Livermore National Laboratory FY2015 Ten Year Site Plan  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration helps|STEMChernobylMarch 2015

294

First-of-a-kind supercomputer at Lawrence Livermore available for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified|North Americacollaborative research

295

Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson LabJeffersonStandardsWelcomeJohnTri-Lab Directors'

296

Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite |

297

Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite |

298

Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite |Federal Facility

299

Lawrence Livermore National Laboratory Main Site FFA Under CERCLA Section 120, November 1, 1988  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite |Federal Facility

300

Presentation Title Option: Date  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-482489 Performance...

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Five Livermore and LANL Scientists Named "Most Influential Scientific...  

National Nuclear Security Administration (NNSA)

pioneered research that applies codes from studying weapons dynamics to combustion chemistry. William Pitz, LLNL (bottom right) Pitz's research focuses on the development of...

302

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-6607E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Measurement-Based Evaluation thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National. Singer Environmental Energy Technologies Division Lawrence Berkeley National Laboratory April 3, 2014

303

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-254E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY ALDEHYDE AND OTHER VOLATILE ORGANIC of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;LBNL Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

304

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 53606 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Improving Air Handler Efficiency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Department Lawrence Berkeley National Laboratory Berkeley, CA. 94720, USA ABSTRACT In continuing

305

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 58752 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Laboratory Evaluation of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract A testing program was undertaken at Lawrence Berkeley National Laboratory and an electric utility

306

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-58252 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Rationale for Measuring Duct Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National

307

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-6349E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Assessing the Costs and Benefits Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Acknowledgment This work Division Lawrence Berkeley National Laboratory Ridah Sabouni and Tracy Evans Energetics Incorporated Paul

308

Addressing transportation energy and environmental impacts: technical and policy research directions  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

1995-08-01T23:59:59.000Z

309

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 43382 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Evaluation of PEGIT Duct Connection of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 2 #12

310

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 54767 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Duct Tape Durability Testing M of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Legal

311

Sandia National Laboratories: Locations: Livermore, California: Visiting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa StateClimateLightingLivermore:Sandia/California:

312

June 20-21, 2005 HAPL Program Workshop, LLNL 1  

E-Print Network [OSTI]

with adequate margin State of the target before injection Model thermal behavior during injection Analyze LANLJune 20-21, 2005 HAPL Program Workshop, LLNL 1 Modeling Target Behavior During Injection Presented''rad on target Target Injection Target Implosion Point · Predict survival of target during injection in chamber

Raffray, A. René

313

LLNL-PRES-421079 NIF-1109-17901  

E-Print Network [OSTI]

LLNL-PRES-421079 #12;NIF-1109-17901 Lasers Moses, Fusion Power Associates 2 #12;NIF-1109-17901 NIF concentrates all 192 beam energy in a football stadium-sized fac. Moses, Fusion Power Associates 3 #12;NIF-1109-17901 Moses, Fusion Power Associates 4 NIF Missions #12;NIF-1109-17901 Moses, Fusion Power Associates 5 #12

314

Proceedings of the LLNL Technical Women`s Symposium  

SciTech Connect (OSTI)

This report documents events of the LLNL Technical Women`s Symposium. Topics include; future of computer systems, environmental technology, defense and space, Nova Inertial Confinement Fusion Target Physics, technical communication, tools and techniques for biology in the 1990s, automation and robotics, software applications, materials science, atomic vapor laser isotope separation, technical communication, technology transfer, and professional development workshops.

von Holtz, E. [ed.

1993-12-31T23:59:59.000Z

315

Proceedings of the LLNL technical women`s symposium  

SciTech Connect (OSTI)

Women from institutions such as LLNL, LBL, Sandia, and SLAC presented papers at this conference. The papers deal with many aspects of global security, global ecology, and bioscience; they also reflect the challenges faced in improving business practices, communicating effectively, and expanding collaborations in the industrial world. Approximately 87 ``abstracts`` are included in six sessions; more are included in the addendum.

von Holtz, E. [ed.

1994-12-31T23:59:59.000Z

316

Lawrence Berkeley National Laboratory 1996 Site Environmental Report Vol. I  

E-Print Network [OSTI]

A 22161 Ernest Orlando Lawrence Berkeley National Laboratoryfor Ernest Orlando Lawrence Berkeley National Laboratory isErnest Orlando Lawrence Berkeley National Laboratory

2010-01-01T23:59:59.000Z

317

Lawrence O. "Larry" Bailey, Jr., Joins Carlsbad Field Office as Deputy Manager  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore Nationalorganizations

318

Lawrence Pack, train conductor, and Y-12s uranium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 Lawrence Livermore

319

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

320

LLNL oil shale project review: METC third annual oil shale contractors meeting  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

Cena, R.J.; Coburn, T.T.; Taylor, R.W.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LBNL-6288E ERNEST ORLANDO LAWRENCE  

E-Print Network [OSTI]

Energy Technologies Division, Lawrence Berkeley National Laboratory, One Cyclotron over the course of five years through the Energy Savings Assessment 1 LBNL-6288E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

322

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 51550 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Evaluation of Flow Capture of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12 available flow hoods for residential applications. Results of laboratory and field tests indicate

323

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 54760 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Improving Air Handler Efficiency Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 2 #12;Improving Air National Laboratory, Berkeley, CA ABSTRACT Although furnaces, air conditioners and heat pumps have become

324

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-4143E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Power and Frequency Control of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;Power a subcontract administered by the Lawrence Berkeley National Laboratory, which is operated by the University

McCalley, James D.

325

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-63193 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Multizone Age-of-Air Analysis MAX H thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Energy Performance of Buildings Group Lawrence Berkeley National Laboratory1 ABSTRACT Age of air

326

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 42127 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Distribution System Leakage Impacts of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 1 #12, ventilation. Iain S. Walker is a staff scientist at Lawrence Berkeley National Laboratory, Berkeley, CA

327

Ernest Orlando Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory LBL-27170 (2009) Volume I Site Environmental of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;Site Environmental Report for 2008 Volume I September 2009 Ernest Orlando Lawrence Berkeley National Laboratory

328

Type B Accident Investigation Board Report of the July 2, 1997, Curium Intake by Shredder Operator at Building 513, Lawrence Livermore National Laboratory, Livermore, California  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by James M. Turner, Ph.D., Manager of the U.S. Department of Energy, Oakland Operations Office.

329

Modularized training for technical editors  

SciTech Connect (OSTI)

This paper outlines the editorial services provided at the Lawrence Livermore National Laboratory (LLNL), sketches a syllabus of basic training for technical editors, describes the approach being used to develop this cost-effective individualized instruction for editors (experienced or not) new to work at LLNL, and enumerates the advantages of this approach. 8 refs.

Murphy, P.W.

1988-09-08T23:59:59.000Z

330

Edmund J. Synakowski Fusion Power Associates Meeting  

E-Print Network [OSTI]

by the University of California, Lawrence Livermore National Laboratory, under contract W-7405-Eng-48 #12;10/2/06 11 capabilities · IFE opportunities: NIF and present research elements The LLNL FEP research & resources enable Fusion Energy Program: leadership roles in both MFE and IFE, buoyed by ITER, NIF science, and LLNL

331

Geomechanical Simulations of Caprock Integrity Using the Livermore Distinict Element Method  

SciTech Connect (OSTI)

Large-scale carbon capture and sequestration (CCS) projects involving annual injections of millions of tons of CO2 are a key infrastructural element needed to substantially reduce greenhouse gas emissions. The large rate and volume of injection will induce pressure and stress gradients within the formation that could activate existing fractures and faults, or drive new fractures through the caprock. We will present results of an ongoing investigation to identify conditions that will activate existing fractures/faults or make new fractures within the caprock using the Livermore Distinct Element Code (LDEC). LDEC is a multiphysics code, developed at LLNL, capable of simulating dynamic fracture of rock masses under a range of conditions. As part of a recent project, LDEC has been extended to consider fault activation and dynamic fracture of rock masses due to pressurization of the pore-space. We will present several demonstrations of LDEC functionality and an application of LDEC to a CO2 injection scenario. We present results from our investigations of Teapot Dome using LDEC to study the potential for fault activation during injection. Using this approach, we built finite element models of the rock masses surrounding bounding faults and explicitly simulated the compression and shear on the fault interface. A CO2 injection source was introduced and the area of fault activation was predicted as a function of injection rate. This work presents an approach where the interactions of all locations on the fault are considered in response to specific injection scenarios. For example, with LDEC, as regions of the fault fail, the shear load is taken up elsewhere on the fault. The results of this study are consistent with previous studies of Teapot Dome and indicate significantly elevated pore pressures are required to activate the bounding faults, given the assumed in situ stress state on the faults.

Morris, J; Johnson, S; Friedmann, S J

2008-04-17T23:59:59.000Z

332

Geomechanical Simulations of CO2 Storage Integrity using the Livermore Distinct Element Method  

SciTech Connect (OSTI)

Large-scale carbon capture and sequestration (CCS) projects involving annual injections of millions of tons of CO{sub 2} are a key infrastructural element needed to substantially reduce greenhouse gas emissions. The large rate and volume of injection will induce pressure and stress gradients within the formation that could activate existing fractures and faults, or drive new fractures through the caprock. We will present results of an ongoing investigation to identify conditions that will activate existing fractures/faults or make new fractures within the caprock using the Livermore Distinct Element Code (LDEC). LDEC is a multiphysics code, developed at LLNL, capable of simulating dynamic fracture of rock masses under a range of conditions. As part of a recent project, LDEC has been extended to consider fault activation and dynamic fracture of rock masses due to pressurization of the pore-space. We will present several demonstrations of LDEC functionality and applications of LDEC to CO{sub 2} injection scenarios including injection into an extensively fractured rockmass. These examples highlight the advantages of explicitly including the geomechanical response of each interface within the rockmass. We present results from our investigations of Teapot Dome using LDEC to study the potential for fault activation during injection. Using this approach, we built finite element models of the rock masses surrounding bounding faults and explicitly simulated the compression and shear on the fault interface. A CO{sub 2} injection source was introduced and the area of fault activation was predicted as a function of injection rate. This work presents an approach where the interactions of all locations on the fault are considered in response to specific injection scenarios. For example, with LDEC, as regions of the fault fail, the shear load is taken up elsewhere on the fault. The results of this study are consistent with previous studies of Teapot Dome and indicate significantly elevated pore pressures are required to activate the bounding faults, given the assumed in situ stress state on the faults.

Morris, J P; Johnson, S M; Friedmann, S J

2008-07-11T23:59:59.000Z

333

LBNL/PUB-5515 Ernest Orlando Lawrence  

E-Print Network [OSTI]

LBNL/PUB-5515 Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed ............................................2 Grant Logan Jonathan Wurtele Wim Leemans Enabling High Energy Density Physics at LBNL

334

An Experimental Study of the Effect of Reshock on the Inclined Interface Richtmyer-Meshkov Instability  

E-Print Network [OSTI]

at the National Ignition Facility (NIF) [23] at Lawrence Livermore National Laboratory (LLNL). The National Ignition Facility is a prime example of the integrated progress of simulations and experiments. While experiments are being developed and performed... new fission fuel, from elements that are readily available in ocean water. Current developmental work in ICF is being done at the National Ignition Facility at Lawrence Livermore National Lab. In their work, the fuel target is compressed through...

Creel, Skylar

2014-04-29T23:59:59.000Z

335

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-58713 LBNL-58713 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Report on Applicability Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-58713 ii #12 serves as the technical basis for this report. LBNL-58713 iii #12;In this report we applied

336

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab  

E-Print Network [OSTI]

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab Berkeley Lab is a U.S. Department and energy research. Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who of Energy (DOE) national laboratory that conducts a wide variety of unclassified scientific research for DOE

Eisen, Michael

337

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 51551 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Evaluation of Commercially Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 2 #12;Evaluation of the United States Government or any agency thereof, or The Regents of the University of California. Ernest

338

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 54005 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Register Closing Effects on Forced Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 2 #12;Executive Summary Closing registers

339

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-56292 LBNL 56292 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Efficacy of Intermittent Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-56292 iii #12;Efficacy of Intermittent

340

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-57236 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Review of Literature Related Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;Abstract This paper Government or any agency thereof, or The Regents of the University of California or any other sponsor. Ernest

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 40588 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Technical Background for default thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 3 #12;Abstract ASHRAE Standard 152P (Method of Test

342

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 53811 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Ventilation Technologies Scoping Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;VENTILATIONS STANDARDS of the United States Government or any agency thereof, or The Regents of the University of California. Ernest

343

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-59041 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Development of a Mathematical Air Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. This work was also Government or any agency thereof, or The Regents of the University of California or any other sponsor. Ernest

344

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 57225 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Duct Tape and Sealant Performance I of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Legal Berkeley National Laboratory (LBNL), we have studied the durability and longevity of duct sealants for more

345

Tellus (2009), 61B, 536546 C 2009 Lawrence Livermore National Laboratory Journal compilation C 2009 Blackwell Munksgaard  

E-Print Network [OSTI]

-dependent fractionation using measurements of 13 C/12 C. Emissions from fossil fuel combustion thus add CO2 with a 14 C). Observation-based estimates of CO2 emitted by fossil fuel combustion could additionally provide a method of fossil fuel-derived CO2, as the combustion of million year old fossil carbon produces CO2 containing only

Stephens, Britton B.

346

CLIMATE MODELING BEST ESTIMATE DATASET (CMBE) -NEW ADDITIONS Renata McCoy, Shaocheng Xie, Stephen Klein, Lawrence Livermore National Laboratory  

E-Print Network [OSTI]

CLIMATE MODELING BEST ESTIMATE DATASET (CMBE) - NEW ADDITIONS Renata McCoy, Shaocheng Xie, Stephen ARM product, the Climate Modeling Best Estimate (CMBE) dataset, is being augmented with the additional observational and model data. The CMBE dataset was created to serve the needs of climate model developers

347

Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977 through March 1998  

SciTech Connect (OSTI)

This bibliography contains 685 citations published from September, 1977 through March, 1998, describing site characterization activities and research projects related to the radioactive waste disposal facilities being planned for Yucca Mountain, Nevada. An additional 35 citations are listed for reports in progress.

NONE

1998-03-01T23:59:59.000Z

348

Fixed Monthly Living Expense Payments at the Lawrence Livermore National Laboratory, INS-L-11-05  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview

349

Audit of Renovation and New Construction Projects at Lawrence Livermore National Laboratory, WR-B-97-06  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 Audit Report:820West Virginia, 1995FOR THE

350

Nano-High: Lawrence Berkeley National Laboratory Lecture on the...  

Broader source: Energy.gov (indexed) [DOE]

Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct" Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"...

351

Research results reported by OEO summer (1981) student employees of LLNL working with Earth Sciences (K) Division personnel  

SciTech Connect (OSTI)

Significant experimental results were achieved in a number of research programs that were carried out during the summer of 1981 by students sponsored by the Office of Equal Opportunity at the Lawrence Livermore National Laboratory. These students were working with Earth Sciences (K) Division personnel. Accomplishments include the following: (1) preparation of post-burn stratigraphic sections for the Hoe Creek III experiment, Underground Coal Gasification project; (2) preparation of miscellaneous stratigraphic sections in the Climax granite near the Spent Fuel Test, Nevada Test Site, for the Waste Isolation Project; (3) confirmation of the applicability of a new theory relating to subsidence (solid matrix movement); (4) experimental confirmation that organic groundwater contaminants produced during an underground coal gasification experiment can be removed by appropriate bacterial treatment; (5) development of data supporting the extension of the Greenville Fault Zone into the Northern Diablo Range (Alameda and Santa Clara Counties, California); (6) completion of a literature review on hazardous waste (current disposal technology, regulations, research needs); (7) preparation of a map showing levels of background seismic noise in the USSR; (8) demonstration of a correlation of explosion size with the P-wave magnitude of the seismic signal produced by the explosion; and (9) reduction of data showing the extent of ground motion resulting from subsidence in the vicinity of the Hoe Creek III experiment, Underground Coal Gasification Project.

Doyle, M. C.; Griffith, P. J.; Kreevoy, E. P.; Turner, III, H. J.; Tatman, D. A.

1982-01-01T23:59:59.000Z

352

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect (OSTI)

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

353

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear...

354

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

as the potential electricity savings associated with energy efficiency improvements. The model is applied; energy efficiency; information technology Please use the following citation for this report: Masanet, EERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Estimating the Energy Use and Efficiency

355

Ernest Orlando Lawrence Berkeley National Laboratory 06/12/2000 E.O. Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

0 Ernest Orlando Lawrence Berkeley National Laboratory 06/12/2000 E.O. Lawrence Berkeley National Year 1999 Site Name: Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) Operation Office The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is a multi- program national

356

Ernest Orlando Lawrence Berkeley National Laboratory 03/8/2001 E.O. Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

0 Ernest Orlando Lawrence Berkeley National Laboratory 03/8/2001 E.O. Lawrence Berkeley National Year 2000 Site Name: Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) Operation Office The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is a multi- program national

357

Boralex Beaver Livermore Falls Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE ISJumpSphereBonitaBooleanElectricLivermore

358

Sandia National Laboratories: Livermore Valley Open Campus (LVOC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind and WaterDatabaseHydrogenLivermore

359

Sandia National Laboratories: Locations: Livermore, California: Life in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind andSandia/New MexicoLivermore

360

Sandia National Laboratories: Livermore Valley Open Campus (LVOC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa StateClimateLighting Developments toLindeLivermore

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sandia National Laboratories: Locations: Livermore, California: Life in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa StateClimateLightingLivermore: Education

362

Sandia National Laboratories: Locations: Livermore, California: Life in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa StateClimateLightingLivermore:

363

An Arbitrary Lagrangian Eulerian Formulation with Adaptive Mesh ...  

E-Print Network [OSTI]

... Lawrence Livermore National Laboratory Abstract: An efficient numerical ... of Energy by University of California Lawrence Livermore National Laboratory ...

364

Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California  

SciTech Connect (OSTI)

This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs.

Not Available

1988-01-01T23:59:59.000Z

365

Fire Protection Program Manual  

SciTech Connect (OSTI)

This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

Sharry, J A

2012-05-18T23:59:59.000Z

366

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...  

Broader source: Energy.gov (indexed) [DOE]

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow...

367

Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials...  

Broader source: Energy.gov (indexed) [DOE]

on Materials Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials February 23, 2013 3:00PM EST UC Berkeley campus Nano-High, a program of the Lawrence Berkeley...

368

Nano-High: Lawrence Berkeley National Laboratory Lecture on Good...  

Broader source: Energy.gov (indexed) [DOE]

on Good Sugars Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars February 2, 2013 3:00PM EST UC Berkeley Campus Nano-High, a program of the Lawrence Berkeley...

369

LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report  

SciTech Connect (OSTI)

The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes: (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing prioritization. Therefore, we will describe our methods, analyses and conclusions separately for each category.

Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

2009-09-29T23:59:59.000Z

370

Factorizations of Operator Matrices Lawrence A. Harris  

E-Print Network [OSTI]

Factorizations of Operator Matrices Lawrence A. Harris Mathematics Department University matrix as a product of an upper triangular operator matrix and an involutory, unitary or J- unitary L(H, K) and (A - WC)-1 exists; moreover, S = T-1 . Theorem 1 Put R = -(A - W0C) AZ0 + W0D 0 CZ0 + D

Harris, Larry

371

LAWRENCE S. MOSS Department of Mathematics  

E-Print Network [OSTI]

LAWRENCE S. MOSS Department of Mathematics Indiana University Bloomington, Indiana 47405 lsm children. Education 1984: Ph.D., Mathematics, UCLA Ph.D. Dissertation: Power Set Recursion Thesis Advisor: Yiannis N. Moschovakis 1981: M.A., Mathematics, UCLA 1979: B.A., Mathematics, UCLA Academic Employment

Indiana University

372

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

373

Lawrence E. Carlson Professor of Mechanical Engineering  

E-Print Network [OSTI]

Education, American Society of Mechanical Engineers, pp. 31-33. Solar Stirling Engine 2Cam Rock ClimbingPortfolio Lawrence E. Carlson Professor of Mechanical Engineering Founding Co-Director, Integrated Teaching and Learning Program and Laboratory University of Colorado at Boulder #12;ENGINEERING EDUCATION

Carlson, Lawrence E.

374

Lawrence Berkeley National Laboratory University of California  

E-Print Network [OSTI]

Lawrence Berkeley National Laboratory University of California Internal Audit T.L. HAMILTON Division Director Materials Sciences R.A. SEGALMAN Division Director, Acting Energy Sciences D.J. DEPAOLO Associate Laboratory Director Computational Research D.L. BROWN Division Director National Energy Research

Eisen, Michael

375

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 57287 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY HOMEOWNER BEST PRACTICES GUIDE was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies O R R E S I D E N T I A L H VAC R E T RO F I T S INTRODUCTION This best practices guide for HVAC

376

1995 Site Development Plan. [Annual report  

SciTech Connect (OSTI)

The mission of the Lawrence Livermore National Laboratory (LLNL) is to apply science and technology in the national interest. LLNL`s focus is on global security, global ecology, and bioscience. Laboratory, employees are working with industrial and academic partners to increase national economic competitiveness and improve science education. Laboratory`s mission is dynamic and has been changed over the years to meet new national needs.

NONE

1995-12-31T23:59:59.000Z

377

Former Tribal Energy Program Intern Guides Tribes Toward a More Sustainable Path  

Broader source: Energy.gov [DOE]

Suzanne Singer is working at the Lawrence Livermore National Laboratory (LLNL) as an Energy and Thermal Fluids Analyst where she has an ongoing project to produce Sankey diagrams to analyze energy data and life cycle flows on tribal lands. Applying the knowledge and insights she gained from her work at LLNL, her internship, and her science, technology, engineering, and math (STEM) education, Singer is educating Tribes on how to use their own resources and land to live a more sustainable lifestyle.

378

Spent Shale Grouting of Abandoned In-Situ Oil Shale Retorts  

E-Print Network [OSTI]

Mineral Reactions in Colorado Oil Shale," Lawrence Livermore1978. of Decomposition of Colorado Oil Shale: II. LivermoreEffects Lawrence of Steam on Oil Shale Retorting: Livermore

Fox, J.P.; Persoff, P.

1980-01-01T23:59:59.000Z

379

Energy and Technology Review  

SciTech Connect (OSTI)

This is the first of two issues commemorating the 30th anniversary of the Lawrence Livermore National Laboratory. The early history of the laboratory is reviewed, including: the LLNL-Nevada organization; project Plowshare; the chemistry and materials science department; and development of computer systems. (GHT)

Not Available

1982-09-01T23:59:59.000Z

380

ESG2006, Grenoble, 30/08-01/09/2006 Third International Symposium on the Effects of Surface Geology on Seismic Motion  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory (LLNL), USA. E3D is listed by the OECD's Nuclear Energy AgencyESG2006, Grenoble, 30/08-01/09/2006 1 Third International Symposium on the Effects of Surface Benchmark: Seismic Modeling Trials Using E3D with the ModelAssembler Community Modeling Environment John N

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network [OSTI]

-member user group, with 22% of its members coming from host Lawrence Livermore National Laboratory (LLNL at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996

382

Peter A. Norreys Professor of Inertial Fusion Science,  

E-Print Network [OSTI]

Credit: Lawrence Livermore National Laboratory #12;EEE n output nuclear Nuclear energy output from Campaign · "Science of Ignition on the NIF" Workshop · Central Laser Facility / ORION #12;Universities: LLNL NIF Point Design #12;Cryogenic target & shield #12;Target Gain G is NOT a physics parameter

383

Donna J. Governor- Biography  

Broader source: Energy.gov [DOE]

Donna Governor is currently the P&I Deputy Department Head assisting the Department in the day-to-day department operations, including managing the Systems Planning Division and has worked at Lawrence Livermore National Laboratory (LLNL) for twenty-five years.

384

Lawrence Berkeley Laboratory 1993 Site Environmental Report  

SciTech Connect (OSTI)

This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

Not Available

1994-05-01T23:59:59.000Z

385

Life sciences: Lawrence Berkeley Laboratory, 1988  

SciTech Connect (OSTI)

Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

Not Available

1989-07-01T23:59:59.000Z

386

Parcel Per Parcel Toward A More Refined Carbon Emissions Estimation For Livermore, CA  

E-Print Network [OSTI]

A More Refined Carbon Emissions Estimation For Livermore, CAof lifestyle on carbon emissions in the residential sector [an all-time low in carbon emissions, though most use overall

Živanovi?, Ana

2014-01-01T23:59:59.000Z

387

LLNL Contribution to LLE FY09 Annual Report: NIC and HED Results  

SciTech Connect (OSTI)

In FY09, LLNL led 238 target shots on the OMEGA Laser System. Approximately half of these LLNL-led shots supported the National Ignition Campaign (NIC). The remainder was dedicated to experiments for the high-energy-density stewardship experiments (HEDSE). Objectives of the LLNL led NIC campaigns at OMEGA included: (1) Laser-plasma interaction studies in physical conditions relevant for the NIF ignition targets; (2) Demonstration of Tr = 100 eV foot symmetry tuning using a reemission sphere; (3) X-ray scattering in support of conductivity measurements of solid density Be plasmas; (4) Experiments to study the physical properties (thermal conductivity) of shocked fusion fuels; (5) High-resolution measurements of velocity nonuniformities created by microscopic perturbations in NIF ablator materials; (6) Development of a novel Compton Radiography diagnostic platform for ICF experiments; and (7) Precision validation of the equation of state for quartz. The LLNL HEDSE campaigns included the following experiments: (1) Quasi-isentropic (ICE) drive used to study material properties such as strength, equation of state, phase, and phase-transition kinetics under high pressure; (2) Development of a high-energy backlighter for radiography in support of material strength experiments using Omega EP and the joint OMEGA-OMEGA-EP configuration; (3) Debris characterization from long-duration, point-apertured, point-projection x-ray backlighters for NIF radiation transport experiments; (4) Demonstration of ultrafast temperature and density measurements with x-ray Thomson scattering from short-pulse laser-heated matter; (5) The development of an experimental platform to study nonlocal thermodynamic equilibrium (NLTE) physics using direct-drive implosions; (6) Opacity studies of high-temperature plasmas under LTE conditions; and (7) Characterization of copper (Cu) foams for HEDSE experiments.

Heeter, R F; Landen, O L; Hsing, W W; Fournier, K B

2009-10-01T23:59:59.000Z

388

Comparison of CAISO-run Plexos output with LLNL-run Plexos output  

SciTech Connect (OSTI)

In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

Schmidt, A; Meyers, C; Smith, S

2011-12-20T23:59:59.000Z

389

Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL  

SciTech Connect (OSTI)

Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

Soufli, R; Robinson, J C; Spiller, E; Baker, S L; Dollar, F J; Gullikson, E M

2006-02-22T23:59:59.000Z

390

Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL  

SciTech Connect (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1982-01-01T23:59:59.000Z

391

CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY  

E-Print Network [OSTI]

BERKELEY LABORATORY: 1978 INVENTORY f(ECEfVED tAWRENCE!FILES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY B. R.1979 ABSTRACT This inventory describes the cartographic base

Burkhart, B.R.

2011-01-01T23:59:59.000Z

392

Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...  

Office of Environmental Management (EM)

his work advancing computer, information, and knowledge sciences. Margaret S. Wooldridge, University of Michigan: for her work advancing energy science and innovation. The Lawrence...

393

Department of Energy Announces 2009 Ernest Orlando Lawrence Award...  

Office of Environmental Management (EM)

for the Lawrence Award are solicited in each of the following seven fields: chemistry; materials research; environmental science and technology; life sciences (including...

394

Analysis of Minimizers of the Lawrence-Doniach Energy for ...  

E-Print Network [OSTI]

an asymptotic formula for the minimum Lawrence-Doniach energy as e and the ... In this case, an analysis of the behavior of energy minimizers and their.

2014-04-07T23:59:59.000Z

395

LAWRENCE BERKELEY NATIONAL LABORATORY REPORT NO. LBNL-59202 ERNEST ORLANDO LAWRENCE  

E-Print Network [OSTI]

information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

396

Andrew C. Lawrence | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaskaMoney |ofAnalyticalC. Lawrence About

397

Developed by: Lawrence Berkeley National Laboratory with input from industry partners representing high tech  

E-Print Network [OSTI]

Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory UniversityLBNL-50599 Developed by: Lawrence Berkeley National Laboratory with input from industry partners For High Tech Buildings #12;DISCLAIMER The Lawrence Berkeley National Laboratory, 1 Cyclotron Road

398

Satkartar Kinney and Mary Ann Piette Ernest Orlando Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Satkartar Kinney and Mary Ann Piette Ernest Orlando Lawrence Berkeley National Laboratory HPCBS Division Ernest Orlando Lawrence Berkeley National Laboratory University of California 1 Cyclotron Road Technologies Department, Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National

399

AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN  

E-Print Network [OSTI]

AN ECONOMIC EVALUATION OF THE ST. LAWRENCE RIVER-EASTERN LAKE ONTARIO BASS FISHERY The St. Lawrence information on the economic importance of the bass fishery, considered by many to be one of the best smallmouth bass fisheries in the world. The economic value of this recreational fishery should be taken

400

NREL/TP-620-35609 ERNEST ORLANDO LAWRENCE  

E-Print Network [OSTI]

LBNL-54437 NREL/TP-620-35609 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY NATIONAL Ryan Wiser and Scott Olson Lawrence Berkeley National Laboratory 1 Cyclotron Rd., MS 90-4000 Berkeley, California 94720 Lori Bird and Blair Swezey National Renewable Energy Laboratory 1617 Cole Blvd. Golden

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

October, 2009 Page 1 Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

of the Ernest Orlando Lawrence Berkeley National Laboratory, consistent with the DOE guidelines (DOE Order 0 413October, 2009 Page 1 Lawrence Berkeley National Laboratory Guidelines on Laboratory of Berkeley Lab and the DOE and which further Berkeley Lab's position as a leading national laboratory

402

Draft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

. LBNL Transportation Demand Management Plan F-1 G. U.S. Department of Energy Policy StatementDraft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY LONG-RANGE DEVELOPMENT PLAN Seattle Tampa 201074 Draft Environmental Impact Report LAWRENCE BERKELEY NATIONAL LABORATORY LONG

Lee, Jason R.

403

LLNL Update  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen IAjani Stewartand647055 High Performance

404

LLNL Update  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen IAjani Stewartand647055 High

405

LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility  

SciTech Connect (OSTI)

This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

Candy, J V

1999-10-31T23:59:59.000Z

406

Lawrence Berkeley Laboratory Affirmative Action Program. Revised  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

NONE

1995-06-01T23:59:59.000Z

407

Type B Accident Investigation Board Report on the June 2002 High Radiation Dose to Extremities in Building 151, Lawrence Livermore National Laboratory  

Broader source: Energy.gov [DOE]

This report is an independent product of the Type B Accident Investigation Board appointed by Camille Yuan-Soo Hoo, Manager of the U.S. Department of Energy, Oakland Operations Office.

408

Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned  

Broader source: Energy.gov [DOE]

Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

409

11. 2.. 30 LBNL-41343 ERNEST ORLANDO LAWRENCE  

E-Print Network [OSTI]

11. 2.. 30 LBNL-41343 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Steady-State Solution Berkeley National Laboratory is an equal opportunity employer. #12;LBNL-41343 STEADY-STATE SOLUTION

410

Lawrence B. Flanagan Craig S. Cook James R. Ehleringer  

E-Print Network [OSTI]

Lawrence B. Flanagan ĂĄ Craig S. Cook James R. Ehleringer Unusually low carbon isotope ratios limited overlap in species distributions inside and out- side these gardens. Solar exposure in hanging

Ehleringer, Jim

411

Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)  

SciTech Connect (OSTI)

Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

Heinrichs, D P

2006-06-26T23:59:59.000Z

412

L. John Perkins LLNL 5/8/01 Ignition/Burn is a Done Deal Or is It?  

E-Print Network [OSTI]

There is No Fusion Analogy (Unfortunately!) 4m ~4.5m CP-1 FIRE #12;L. John Perkins LLNL 5/8/01 The Hanford Pile B-100's sub-critical experiments (No parallel) Fermi's CP-1 zero power pile ITER / FIRE / Ignitor.... Hanford critical at Hanford (fission's "ignition/burn" experiment) 1945 The rest is history! #12;L. John Perkins

413

EA-1442: Final Environmental Assessment  

Broader source: Energy.gov [DOE]

Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, CA

414

EA-1442: Final Environmental Assessment, Revised  

Broader source: Energy.gov [DOE]

Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California

415

EIS-0157-SA-01: Supplement Analysis  

Broader source: Energy.gov [DOE]

Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore, Oakland Operations Office, Oakland, California

416

Environmental Report 1994, Volume No. 1  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL), a U.S. Department of Energy (DOE) facility operated by the University of California, serves as a national resource of scientific, technical, and engineering capability. The Laboratory`s mission focuses on nuclear weapons and national security, and over the years has been broadened to include areas such as strategic defense, energy, the environment, biomedicine, technology transfer, the economy, and education. The Laboratory carries out this multifaceted mission in compliance with local, state, and federal environmental regulatory requirements. It does so with the support of the Environmental Protection Department, which is responsible for environmental monitoring and analysis, hazardous waste management, environmental restoration, and ensuring compliance with environmental laws and regulations. LLNL comprises two sites: the Livermore site and Site 300. The Livermore site occupies an area of 3.28 square kilometers on the eastern edge of Livermore, California. Site 300, LLNL`s experimental testing site, is located 24 kilometers to the east in the Altamont Hills, and occupies an area of 30.3 square kilometers. Environmental monitoring activities are conducted at both sites as well as in surrounding areas. This summary provides an overview of LLNL`s environmental activities in 1994, including radiological and nonradiological sampling and surveillance monitoring, remediation, assessment of radiological releases and doses, and determination of the impact of LLNL operations on the environment and public health.

Rath, K.S. [ed.; Harrach, R.J.; Gallegos, G.M.; Failor, R.A. [and others

1995-09-01T23:59:59.000Z

417

Environmental Report 2008  

SciTech Connect (OSTI)

The purposes of the Lawrence Livermore National Laboratory Environmental Report 2008 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2008: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary. The report is the responsibility of LLNL's Environmental Protection Department. Monitoring data were obtained through the combined efforts of the Environmental Protection Department; Environmental Restoration Department; Physical and Life Sciences Environmental Monitoring Radiation Laboratory; and the Hazards Control Department.

Gallegos, G; Bertoldo, N A; Campbell, C G; Cerruti, S; Dibley, V; Doman, J L; Grayson, A R; Jones, H E; Kumamoto, G; MacQueen, D H; Nelson, J C; Paterson, L; Revelli, M A; Wegrecki, A M; Wilson, K; Woollett, J

2009-09-16T23:59:59.000Z

418

Review Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oversight Review, Lawrence Livermore National Laboratory - September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory September 23, 2013...

419

NIF Experiments Presentation by Omar Hurricane | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications NIF Presentation by Ed Moses Independent Oversight Review, Lawrence Livermore National Laboratory - August 2014 Lessons Learned by Lawrence Livermore...

420

Type A Accident Report of the June 26, 2009 Vehicle Fatality...  

Broader source: Energy.gov (indexed) [DOE]

the June 26, 2009 Vehicle Fatality at Lawrence Livermore National Laboratory Type A Accident Report of the June 26, 2009 Vehicle Fatality at Lawrence Livermore National...

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table-top transient collisional excitation x-ray laser research at LLNL: Status June 1997  

SciTech Connect (OSTI)

This is a status report of transient collisional excitation x-ray laser experiments at LLNL during June 1997 that have the advantage of being conducted on a table-top. Two laser drivers with modest energy {approximately}6 J are used in the scheme: a long {approximately}1 ns pulse to preform and ionize the plasma followed by a short {approximately}1 ps pulse to produce the excitation and population inversion. The beams are co-propagated and focused using a combination of a cylindrical lens and paraboloid to a line of {approximately}70 {micro}m x 12.5 mm dimensions. High repetition rates approaching 1 shot/3 min. allow typically in excess of 50 target shots in a day. Various slab targets have been irradiated and we report preliminary results for x-ray laser gain in 3p-3s J=0-1 Ne-like Ti and Fe transitions where gains as high as 24 cm{sup -1} and gL products of {approximately}15 have been observed.

Dunn, J., LLNL

1997-07-01T23:59:59.000Z

422

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect (OSTI)

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09T23:59:59.000Z

423

LLNL underground-coal-gasification project. Quarterly progress report, April-June 1982  

SciTech Connect (OSTI)

Cavity mapping has been completed for the large block experiments, which were done near Centralia, Washington, in the winter of 1981-1982. Postburn excavations into the experimental sites show all the cavities to be largely filled with rubble consisting of dried coal, char, ash, and slag. None of the five injection holes remained completely open through its associated cavity. Temperature histories for all the in situ thermocouples in the large block experiments have been analyzed. The interpretation of most of this temperature data is straightforward and consistent with other observations. As a further refinement in our underground coal gasification (UCG) modeling effort, transient temperature profiles have been calculated for open borehole gasification in wet coal by the isotherm migration method, using the LSODE computer code developed at LLNL. The next logical step in this calculation would be to make the rate of combustion surface movement a function of the rate of steam generation at the vaporization interface. Follow-up observations have continued at the Hoe Creek UCG experiment sites in Wyoming. Phenols have been detected at very low but significant levels in groundwater 400 ft from the Hoe Creek 2 experiment, which was done in 1977. It appears important to continue this investigation of phenol transport at Hoe Creek, and to extend it by drilling and sampling additional wells. The controlled retracting injection point (CRIP) technique, which was devised for UCG application, may also have applications in enhanced recovery of crude oil.

Not Available

1982-08-06T23:59:59.000Z

424

Status of LLNL Hot-Recycled-Solid oil shale retort, January 1991--September 30, 1993  

SciTech Connect (OSTI)

Our objective, together with our CRADA partners, is to demonstrate advanced technology that could lead to an economic and environmentally acceptable commercialization of oil shale. We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Cena, R.J.

1993-11-01T23:59:59.000Z

425

Five-Year NRHP Re-Evaluation of Historic Buildings Assessment  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) 'Draft Programmatic Agreement among the Department of Energy and the California State Historic Preservation Officer Regarding Operation of Lawrence Livermore National Laboratory' requires a review and re-evaluation of the eligibility of laboratory properties for the National Register of Historic Places (NRHP) every five years. The original evaluation was published in 2005; this report serves as the first five-year re-evaluation. This re-evaluation includes consideration of changes within LLNL to management, to mission, and to the built environment. it also determines the status of those buildings, objects, and districts that were recommended as NRHP-eligible in the 2005 report. Buildings that were omitted from the earlier building list, those that have reached 50 years of age since the original assessment, and new buildings are also addressed in the re-evaluation.

Ullrich, R A; Heidecker, K R

2011-09-12T23:59:59.000Z

426

Request for Qualifications for Developers for the Lawrence Berkeley National Lab (LBNL)  

E-Print Network [OSTI]

Request for Qualifications for Developers for the Lawrence Berkeley National Lab (LBNL) Second for the Lawrence Berkeley National Lab (LBNL) Second Campus at the Richmond Field Station I. Introduction for the Lawrence Berkeley National Lab (LBNL) Second Campus. The Second Campus will be home to a state

Walker, Matthew P.

427

Developed by: Lawrence Berkeley National Laboratory with input from industry partners representing data  

E-Print Network [OSTI]

Division Ernest Orlando Lawrence Berkeley National Laboratory University of California 1 Cyclotron RoadLBNL-53483 Developed by: Lawrence Berkeley National Laboratory with input from industry partners RROOAADDMMAAPP A 10-Year Research Plan For Data Center Buildings #12;DISCLAIMER The Lawrence Berkeley National

428

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

-4298 Site Information Operator: University of California Ernest Orlando Lawrence Berkeley National.3 SOURCE DESCRIPTION 1.1 SITE DESCRIPTION 1.1.1 Laboratory Operations The Ernest Orlando Lawrence BerkeleyE.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Environmental

429

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

DESCRIPTION 1.1 SITE DESCRIPTION 1.1.1 Laboratory Operations The Ernest Orlando Lawrence Berkeley National#12;#12;E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Lawrence Berkeley National Laboratory Address: MS 85B0198 One Cyclotron Road Berkeley, CA 94720 Contact

430

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

DESCRIPTION 1.1 SITE DESCRIPTION 1.1.1 Laboratory Operations The Ernest Orlando Lawrence Berkeley National Report (Subpart H of 40 CFR 61) Calendar Year 2001 Site Name: Ernest Orlando Lawrence Berkeley National Orlando Lawrence Berkeley National Laboratory Address: One Cyclotron Road Berkeley, CA 94720 Contractor

431

E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division  

E-Print Network [OSTI]

#12;E.O. Lawrence Berkeley National Laboratory Environment, Health, and Safety Division Lawrence Berkeley National Laboratory Operation Office Information Office: U.S. Department of Energy: (510) 486-4298 Site Information Operator: University of California Ernest Orlando Lawrence Berkeley

432

E.O. Lawrence Berkeley National Laboratory Environment, Health, & Safety Division  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory 06/09/99 #12;Section I. Facility Information Site Description: Laboratory Operations The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab Figure 1. LBNL on Site Buildings Ernest Orlando Lawrence Berkeley National Laboratory 06/09/99 2 #12;HILL

433

LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake  

SciTech Connect (OSTI)

The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hosts over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.

Rodgers, A J; Petersson, N A; Morency, C E; Simmons, N A; Sjogreen, B

2012-01-23T23:59:59.000Z

434

Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000  

SciTech Connect (OSTI)

This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

NONE

1994-12-01T23:59:59.000Z

435

Ad Hoc Mobile Networking and General Mobility Issues Ramon Lawrence  

E-Print Network [OSTI]

Ad Hoc Mobile Networking and General Mobility Issues Ramon Lawrence Department of Computer Science of networking and mobility come many interesting opportunities and difficult problems. Mobile computing allows around in the environment. Unfortunately, to support this mobility places several restrictive restraints

Lawrence, Ramon

436

Eurographics Symposium on Rendering 2010 Jason Lawrence and Marc Stamminger  

E-Print Network [OSTI]

Eurographics Symposium on Rendering 2010 Jason Lawrence and Marc Stamminger (Guest Editors) Volume 29 (2010), Number 4 Compressive estimation for signal integration in rendering Pradeep Sen and Soheil Darabi Advanced Graphics Lab, University of New Mexico Abstract In rendering applications, we are often

Sen, Pradeep

437

Building Footprints (Shapefile) of University of Kansas, Lawrence Campus  

E-Print Network [OSTI]

Data layer geneated with Intention to have basic building dataset for data analysis and generation of maps, for Lawrence Campus of the University of Kansas. Building outlines were digitized using ArcMap in ca. 2007 from aerial photograph to create...

Houser, Rhonda

2011-02-18T23:59:59.000Z

438

Lawrence Berkeley National Laboratory Safety Assessment Document (SAD)  

E-Print Network [OSTI]

Lawrence Berkeley National Laboratory Safety Assessment Document (SAD) for the Advanced Light Assessment Document, Rev. 7 (May 29, 2009) ii Signature Page for Rev. 7 of the ALS SAD Prepared by: ALS EHS Program Manager Date: Reviewed by: ALS Deputy Division Director Date: ALS Deputy for Operations

Knowles, David William

439

www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO PASCUCCI (LLNL),  

E-Print Network [OSTI]

www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL (LLNL) E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO

Utah, University of

440

Environmental Report 2007  

SciTech Connect (OSTI)

The purposes of the 'Lawrence Livermore National Laboratory Environmental Report 2007' are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites--the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2007: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

Mathews, S; Gallegos, G; Berg, L L; Bertoldo, N A; Campbell, C G; Cerruti, S; Doman, J L; Ferry, L S; Grayson, A R; Jones, H E; Kumamoto, G; Larson, J; MacQueen, D H; Paterson, L; Revelli, M A; Ridley, M; Rueppel, D; Wegrecki, A M; Wilson, K; Woollett, J

2008-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Environmental report 1994. Volume No. 2  

SciTech Connect (OSTI)

This volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1994 is a detailed data report that provides individual data points, where applicable, along with some summary data and more detailed accounts of sample collection and analytical methods. Six chapters have information on monitoring of air, surface water, groundwater, soil and sediment, vegetation and foodstuffs, and environmental radiation; two other chapters cover compliance sel-monitoring and quality assurance.

Rath, K.S. [ed.; Harrach, R.J.; Gallegos, G.M.; Failor, R.A.; Christofferson, E. [and others

1995-09-01T23:59:59.000Z

442

High energy laser optics manufacturing: a preliminary study  

SciTech Connect (OSTI)

This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

Baird, E.D.

1980-07-01T23:59:59.000Z

443

Fusion Power Associates Annual Meeting and Symposium Fusion and Energy Policy  

E-Print Network [OSTI]

, General Atomics 4:30 Status of Planning for Ignition on NIF - B. Hammel, Lawrence Livermore National Lab 5-339 Rayburn House Office Building 1:30 Status of Construction of NIF ­ Ed Moses, LLNL 2:00 Status of U. Davies, DOE/OFES 9:30 Overview of ICF and NIF Program - Chris Keane, DOE/NNSA 10:00 Break 10:30 Status

444

Forceful Fluid: Scientists Discover a Starchy Substance with Oily Applications  

Broader source: Energy.gov [DOE]

Researchers at the Energy Department’s Lawrence Livermore National Laboratory (LLNL) set out to find the proper mix of fluids needed to cap the powerful flow of oil that can occur during a spill, an objective that was principally driven by the failure of the top-kill method during last year's oil spill in the Gulf of Mexico. You'll be surprised what starchy substance made the grade.

445

Enhanced verification test suite for physics simulation codes  

SciTech Connect (OSTI)

This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.; Cotrell, David L.; Johnson, Bryan; Knupp, Patrick; Rider, William J.; Trucano, Timothy G.; Weirs, V. Gregory

2008-09-01T23:59:59.000Z

446

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

447

Laser Program annual report 1984  

SciTech Connect (OSTI)

The Laser Program Annual Report is part of the continuing series of reports documenting the progress of the unclassified Laser Fusion Program at the Lawrence Livermore National Laboratory (LLNL). As in previous years, the report is organized programmatically. The first section is an overview of the basic goals and directions of the LLNL Inertial Confinement Fusion (ICF) Program, and highlights the year's important accomplishments. Sections 2 through 7 provide the detailed information on the various program elements: Laser Systems and Operations, Target Design, Target Fabrication, Laser Experiments and Advanced Diagnostics, Advanced Laser Development, and Applications of Inertial Confinement Fusion. Individual sections will be indexed separately. 589 refs., 333 figs., 25 tabs.

Rufer, M.L.; Murphy, P.W. (eds.)

1985-06-01T23:59:59.000Z

448

Climate Modeling using High-Performance Computing  

SciTech Connect (OSTI)

The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

Mirin, A A

2007-02-05T23:59:59.000Z

449

Initiatives in the US nuclear material tracking system  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Nonproliferation and National Security is in the process of developing a new worldwide nuclear materials tracking system. Its purpose is for DOE to better fulfill its international and domestic nuclear material tracking obligations and needs. The Lawrence Livermore National Laboratory (LLNL), is developing the International Nuclear Analysis (INA) Program to meet this goal. LLNL will assume the function and duties of the current Nuclear Materials management and Safeguards System (NMMSS) operated by Martin Marietta Energy Systems. The program is jointly funded by the DOE, the Nuclear Regulatory Commission and the US Enrichment Corporation.

Smith, M.R.; Kuzmycz, G. [Department of Energy, Washington, DC (United States); Heaton, E.R. [Pacific Northwest Lab., Richland, WA (United States)

1994-07-01T23:59:59.000Z

450

Lawrence County, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. It is classifiedAthalia,Lawrence

451

Chronic Beryllium Disease Prevention Program Report  

SciTech Connect (OSTI)

This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

Lee, S

2012-03-29T23:59:59.000Z

452

Science and technology review, April 1998  

SciTech Connect (OSTI)

The April 1998 edition highlights several research projects being conducted at Lawrence Livermore National Laboratory.

Hunter, S.; Wilt, G.

1998-04-01T23:59:59.000Z

453

Anomalous electron-ion energy coupling in electron drift wave turbulence  

E-Print Network [OSTI]

NIF) [6] is an updated inertial confinement device whose construction was completed at Lawrence Livermore

Zhao, Lei

454

Snowmass Outcomes Gerald Navratil (Columbia University)  

E-Print Network [OSTI]

building the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The NIF, and other

455

EIS-0348: EPA Notice of Availability of the Final Environmental Impact Statement  

Broader source: Energy.gov [DOE]

Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

456

10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

your research at Lawrence Berkeley National Laboratory? AW: Throughout my career at LBNL, my group has focused on thermal and water management, especially in relation to...

457

Neutron Soft Errors in Xilinx FPGAs at Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Quasi-Monoenergetic Neutron Beam from Deuteron Breakup”, inexperiments of atmospheric neutron effects on deep sub-Neutron Soft Errors in Xilinx FPGAs at Lawrence Berkeley

George, Jeffrey S.

2008-01-01T23:59:59.000Z

458

LULESH V.1.0  

Energy Science and Technology Software Center (OSTI)

002592WKSTN00 Livermore Unstructured Lagrange Explicit Shock Hydrodynamics  https://computation.llnl.gov/casc/software.html 

459

Lawrence Berkeley National Laboratory 1995 site environmental report  

SciTech Connect (OSTI)

The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

1996-07-01T23:59:59.000Z

460

General Groves and Ernest O. Lawrence visit 9731  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepool QuarterlyGeneraland Ernest O. Lawrence

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight  

SciTech Connect (OSTI)

the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work on Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.

Hazi, A

2005-09-20T23:59:59.000Z

462

Overview of the current spectroscopy effort on the Livermore electron beam ion traps  

SciTech Connect (OSTI)

An overview is given of the current spectroscopic effort on the Livermore electron beam ion trap facilities. The effort focuses on four aspects: spectral line position, line intensity, temporal evolution, and line shape. Examples of line position measurements include studies of the K-shell transitions in heliumlike Kr{sup 34+} and the 2s-2p intrashell transitions in lithiumlike Th{sup 87+} and U{sup 89+}, which provide benchmark values for testing the theory of relativistic and quantum electrodynamical contributions in high-Z ions. Examples of line intensity measurements are provided by measurements of the electron-impact excitation and dielectronic recombination cross sections of heliumlike transition-metal ions Ti{sup 20+} through CO{sup 25+}. A discussion of radiative lifetime measurements of metastable levels in heliumlike ions is given to illustrate the time-resolved spectroscopy techniques in the microsecond range. The authors also present a measurement of the spectral lineshape that illustrates the very low ion temperatures that can be achieved in an EBIT.

Beiersdorfer, P.; Lopez-Urrutia, J.C. [Lawrence Livermore National Lab., CA (United States); Brown, G. [Auburn Univ., AL (United States)] [and others

1995-06-29T23:59:59.000Z

463

Routine environmental audit of the Sandia National Laboratories, California, Livermore, California  

SciTech Connect (OSTI)

This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit`s functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites.

Not Available

1994-03-01T23:59:59.000Z

464

Sandia National Laboratories, Livermore Environmental Protection Implementation Plan for the period November 9, 1991--November 9, 1992  

SciTech Connect (OSTI)

Sandia National Laboratories, as part of the DOE complex, is committed to full compliance with all applicable environmental laws and regulations. This Environmental Protection Implementation Plan (EPIP) is intended to ensure that the environmental program objectives of DOE Order 5400.1 are achieved at SNL, Livermore. The EPIP will serve as an aid to management and staff to implement these new programs in a timely manner. 23 refs., 4 figs., 1 tab.

Not Available

1991-10-01T23:59:59.000Z

465

Non-storm water discharges technical report  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

Mathews, S.

1994-07-01T23:59:59.000Z

466

Exact Solutions in a Model of Vertical Gas Migration Dmitriy B. Silin, SPE, Lawrence Berkeley National Laboratory / UC Berkeley; Tad W. Patzek, SPE,  

E-Print Network [OSTI]

Berkeley National Laboratory / UC Berkeley; Tad W. Patzek, SPE, UC Berkeley / Lawrence Berkeley National

Patzek, Tadeusz W.

467
468

Waste minimization and pollution prevention awareness plan. Revision 1  

SciTech Connect (OSTI)

The purpose of this plan is to document Lawrence Livermore National Laboratory (LLNL) projections for present and future waste minimization and pollution prevention. The plan specifies those activities and methods that are or will be used to reduce the quantity and toxicity of wastes generated at the site. It is intended to satisfy Department of Energy (DOE) requirements. This Waste Minimization and Pollution Prevention Awareness Plan provides an overview of projected activities from FY 1994 through FY 1999. The plans are broken into site-wide and problem-specific activities. All directorates at LLNL have had an opportunity to contribute input, estimate budgets, and review the plan. In addition to the above, this plan records LLNL`s goals for pollution prevention, regulatory drivers for those activities, assumptions on which the cost estimates are based, analyses of the strengths of the projects, and the barriers to increasing pollution prevention activities.

Not Available

1994-07-01T23:59:59.000Z

469

Radioactive Waste Management BasisSept 2001  

SciTech Connect (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

470

Estimated use of explosives in the mining industries of Algeria, Iran, Iraq, and Libya  

SciTech Connect (OSTI)

This work was performed under Memorandum of Agreement B291534 Between the Lawrence Livermore National Laboratory (LLNL) and the United States Bureau of Mines. The Bureau of Mines authors are members of the Minerals Availability Field Office (MAFO) in Denver, CO, which uses an extensive network of information sources to develop and maintain the Minerals Availability database concerning mining and minerals properties worldwide. This study was initiated and directed by F. Heuze at LLNL. A previous study on the same subject had been commissioned by LLNL from the Mining Journal Research Services (MJRS) in London ,UK. Its results were integrated into this report. MJRS is shown as one of the numerous sources which were used for this work. All sources are listed in the report. This document is arranged in four sections, one for each country, in alphabetical order. Thie outline is the same for each country.

Wilburn, D.R.; Russell, J.A.; Bleiwas, D.I. [and others

1995-09-01T23:59:59.000Z

471

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network [OSTI]

Facility NIF , currently under construction at the Lawrence Livermore National Laboratory, will provide Ignition Facility1 NIF is a 192 beam laser system Fig. 1 currently under construction at Lawrence Livermore. Sangster Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 R. J. Leeper

472

The technical basis for air pathway assessment of resuspended radioactive aerosols: LLNL experiences at seven sites around the world  

SciTech Connect (OSTI)

There is a large uncertainty in quantifying the inhalation pathway and the aerosol emission rate in human health assessments of radioactive-contamination sites. The need for site-specific assessments led to formation of our team of specialists at LLNL, who have participated in numerous field campaigns around the world. Our goal was to obtain all the information necessary for determining potential human exposures and to estimate source terms for turbulent transport of the emissions during both normal and disturbed soil conditions. That is, measurements were made of the key variables to quantify the suspended aerosols at the actual contamination sites, but different scenarios for habitation, site management, and site cleanup were included. The most notable locations of these site-investigations were the Marshall Islands (Bikini, Enewetak, and Rongelap), Nevada Test Site (GMX, Little Feller, Palanquin, and Plutonium Valley), Tonopah (Nevada--site of Roller Coaster), Savannah River Lab (South Carolina--H-Area site), Johnston Island (cleanup of rocket-impact site), Chernobyl (Ukraine--grass field end sandy beach sites near Nuclear Power Plant Unit 4), and Palomares (Spain--site of aircraft accident). This discussion will review the variables quantified, methods developed, general results, uncertainty of estimations, and recommendations for future research that are a result of our experience in these field studies.

Shinn, J.H.

1993-09-01T23:59:59.000Z

473

Lawrence Berkeley National Laboratory Advanced Light Source Beamline 1.4  

E-Print Network [OSTI]

Levenson, UC student at beamline1.4. #12;3 Table of Contents ABOUT LBNL......................................................................................................................4 THE LBNL calculation Second calculation · Janis He-3 cryostat #12;4 About LBNL The LBNL The Lawrence Berkeley National

474

VWA-0007- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.  

Broader source: Energy.gov [DOE]

This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

475

VWA-0008- In the Matter of C. Lawrence Cornett, Maria Elena Torano Associates, Inc.  

Broader source: Energy.gov [DOE]

This Decision involves a complaint filed by C. Lawrence Cornett (Complainant) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. Complainant contends that...

476

Building community assets through individual development accounts : growing a strategic network in Lawrence, Massachusetts  

E-Print Network [OSTI]

This thesis aims to inform the decision-making process for growing an asset-building program through strategic partnerships with other community-based organizations (CBOs). The impetus for this paper came from Lawrence ...

Wu, Cindy C. (Cindy Cin-Wei)

2007-01-01T23:59:59.000Z

477

Redeveloping Lawrence, Massachusetts' [sic] Historic Mill District : insights into adaptive reuse in untested residential markets  

E-Print Network [OSTI]

Lawrence, Massachusetts is one of a number of post-industrial cities in the northeastern United States that has the potential to convert underutilized industrial buildings into a valuable community asset, namely housing. ...

Clark, Heather, 1978-

2004-01-01T23:59:59.000Z

478

Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)  

Broader source: Energy.gov [DOE]

This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

479

Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein* and Mitchell R. Zakin  

E-Print Network [OSTI]

Cavitation Thermometry Using Molecular and Continuum Sonoluminescence Lawrence S. Bernstein (SB) sonoluminescence (SL) is explored as a probe of bubble temperature during cavitational collapse discrete intervals along the cavitational collapse time line, thus yielding different cavitation

Suslick, Kenneth S.

480

Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"  

Broader source: Energy.gov [DOE]

Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

Note: This page contains sample records for the topic "llnl lawrence livermore" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars  

Broader source: Energy.gov [DOE]

Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

482

Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars  

Broader source: Energy.gov [DOE]

Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

483

A guide to source materials of the life and work of Lawrence B. Anderson '30  

E-Print Network [OSTI]

From 1933 to 1976, Professor Lawrence B. Anderson taught in the MIT Department of Architecture, and from 1947 to 1971, he served as its chairman and dean. Concurrently, from 1937 to 1972 , he was principal partner in the ...

Laguette, Victoria, 1953-

1998-01-01T23:59:59.000Z

484

Lady Chatterley's Lover as a rhetorical response: justification for D. H. Lawrence's mask of Oliver Mellors  

E-Print Network [OSTI]

of the novel. As a result, Lawrence rhetorically crafted his work's setting and characterization to motivate his readers toward modifying his situation's exigences. While canposing his three drafts, Lawrence was affected by his tuberculosis and by Frieda...'s egocentricity. Lingering Victorian morality, established English industrialism, and accepted Freudian psychology further constrained the production and the effectiveness of his last novel. B th gll~~Ch tt 1 ' I &, th 1 not a failure as a rhetorical response...

McCracken, David Scott

1988-01-01T23:59:59.000Z

485

Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC  

SciTech Connect (OSTI)

This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

Not Available

1991-02-01T23:59:59.000Z

486

Office of Enterprise Assessments Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National Laboratory, February 2015  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober Field ElementIdaho National

487

Foreign Travel Trip Report for LLNL travel with DOE FES funding,May 19th-30th, 2012  

SciTech Connect (OSTI)

I attended the 20th biannual International Conference on Plasma Surface Interaction (PSI) in Fusion Devices in Aachen, Germany, hosted this year by the Forschungszentrum Julich (FZJ) research center. The PSI conference is one of the main international forums for the presentation and discussion of results on plasma surface interactions and edge plasma physics relevant to magnetic confinement fusion devices. I disseminated the recent results of FESP/LLNL tokamak research by presenting three posters on: (i) understanding reconnection and controlling edge localized modes (ELMs) using the BOUT++ code, (ii) simulation of resistive ballooning mode turbulence, and (iii) innovative design of Snowflake divertors. I learned of many new and recent results from international tokamak facilities and had the opportunity for discussion of these topics with other scientists at the poster sessions, conference lunches/receptions, etc. Some of the major highlights of the PSI conference topics were: (1) Review of the progress in using metallic tungsten and beryllium (ITER-like) walls at international tokamak facilities: JET (Culham, UK), TEXTOR (FZJ, Germany) and Alcator CMOD (MIT, USA). Results included: effect of small and large-area melting on plasma impurity content and recovery, expected reduction in retention of hydrogenic species, increased heat load during disruptions and need for mitigation with massive gas injection. (2) A review of ELM control in general (T. Evans, GA) and recent results of ELM control using n=2 external magnetic perturbations on ASDEX-Upgrade (MPI-Garching, Germany). (3) General agreement among the international tokamak database that, along the outer midplane of a low collisionality tokamak, the SOL power width in current experiments varies inversely with respect to plasma current (Ip), roughly as 1/Ip, with little dependence on other plasma parameters. This would imply roughly a factor of 1/4 of the width that was assumed for the design of the ITER tokamak. The first studies of the implications for ITER (A. Kukushkin, ITER) have shown a great reduction in operational parameter space that, at present, can only be lifted by increasing target plate heat flux limits. During my visit to the CRPP at the EPFL, I delivered an invited talk in order to disseminate new results of the recent publication [1] on using non-axisymmetric perturbations of the SOL to control the edge plasma. I was given a tour of both the TCV tokamak and the TORPEX simple magnetized plasma device/divertor simulator. TORPEX is an excellent laboratory for exploring the physics of simple magnetized plasmas that are relevant to the scrape-off layer of a tokamak. Properly designed experiments on TORPEX can potentially be used to test the theory of controlling the edge plasma using non-axisymmetric potentials and currents in the SOL developed by LLNL described in [1].

Joseph, I

2012-07-05T23:59:59.000Z

488

Adapting to Climate Change and Variability in the Great Lakes-St. Lawrence Basin Great Lakes-St. Lawrence Basin Project  

E-Print Network [OSTI]

; this is the adaptation component. Communication of climate change information to various publicsAdapting to Climate Change and Variability in the Great Lakes-St. Lawrence Basin 52 Great Lakes in response to potential climate change and variability. When we were preparing for this talk on what we have

489

Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL  

SciTech Connect (OSTI)

Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable characterization method for quantification of tritium contaminated trash and debris. The characterization technique is applicable to surface and subsurface tritium contaminated materials with surfaces amenable to swiping. Some limitations of this characterization technique are identified.

Dominick, J L; Rasmussen, C L

2008-07-23T23:59:59.000Z

490

Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

Not Available

1993-07-01T23:59:59.000Z

491

Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998  

SciTech Connect (OSTI)

The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

Not Available

1992-10-01T23:59:59.000Z

492

Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998  

SciTech Connect (OSTI)

The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

Not Available

1992-10-01T23:59:59.000Z

493

Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999  

SciTech Connect (OSTI)

The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

Not Available

1993-09-01T23:59:59.000Z

494

10 CFR 850 Implementation of Requirements  

SciTech Connect (OSTI)

10 CFR 850 defines a contractor as any entity, including affiliated entities, such as a parent corporation, under contract with DOE, including a subcontractor at any tier, with responsibility for performing work at a DOE site in furtherance of a DOE mission. The Chronic Beryllium Disease Prevention Program (CBDPP) applies to beryllium-related activities that are performed at the Lawrence Livermore National Laboratory (LLNL). The CBDPP or Beryllium Safety Program is integrated into the LLNL Worker Safety and Health Program and, thus, implementation documents and responsibilities are integrated in various documents and organizational structures. Program development and management of the CBDPP is delegated to the Environment, Safety and Health (ES&H) Directorate, Worker Safety and Health Functional Area. As per 10 CFR 850, Lawrence Livermore National Security, LLC (LLNS) periodically submits a CBDPP to the National Nuclear Security Administration/Livermore Site Office (NNSA/LSO). The requirements of this plan are communicated to LLNS workers through ES&H Manual Document 14.4, 'Working Safely with Beryllium.' 10 CFR 850 is implemented by the LLNL CBDPP, which integrates the safety and health standards required by the regulation, components of the LLNL Integrated Safety Management System (ISMS), and incorporates other components of the LLNL ES&H Program. As described in the regulation, and to fully comply with the regulation, specific portions of existing programs and additional requirements are identified in the CBDPP. The CBDPP is implemented by documents that interface with the workers, principally through ES&H Manual Document 14.4. This document contains information on how the management practices prescribed by the LLNL ISMS are implemented, how beryllium hazards that are associated with LLNL work activities are controlled, and who is responsible for implementing the controls. Adherence to the requirements and processes described in the ES&H Manual ensures that ES&H practices across LLNL are developed in a consistent manner. Other implementing documents, such as the ES&H Manual, are integral in effectively implementing 10 CFR 850.

Lee, S

2012-01-05T23:59:59.000Z

495

Donald Frederick, LLNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocumentsDon Harward

496

LLNL-POST-411531  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/

497

LLNL-PRES-655826  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/5826 This work was

498

2011 LLNL Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, 11/28/2011 - 2:00pm Jefferson1 2011 Call14341

499

The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation  

SciTech Connect (OSTI)

More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

NONE

1994-12-01T23:59:59.000Z

500

Lawrence Berkeley National Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National11-12,JanuaryKentuckyLawrenceLawrence