Powered by Deep Web Technologies
Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LLNL Energy Flow Charts | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida:KenyonKosciuskoLCALEDSLLNL Energy

2

llnl  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding6/%2A en William

3

Basic Energy Sciences (BES) at LLNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasic Energy Sciences at

4

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear...

5

LLNL 1981: technical horizons  

SciTech Connect (OSTI)

Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

Not Available

1981-07-01T23:59:59.000Z

6

LLNL Update  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen IAjani Stewartand647055 High Performance

7

LLNL Update  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen IAjani Stewartand647055 High

8

Microsoft Word - Renewable Energy Project at LLNL_June 2011_jb...  

National Nuclear Security Administration (NNSA)

422-2567 NATIONAL NUCLEAR SECURITY ADMINISTRATION PURSUING DEVELOPMENT OF A RENEWABLE ENERGY PROJECT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Livermore, CA - The U.S....

9

Microsoft Word - Renewable Energy Project at LLNL_June 2011_jb _2_  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs Assessment March 2009 B O167January

10

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience(SC) AprilScienceReports » Basic

11

LLNL NESHAPs 2008 Annual Report  

SciTech Connect (OSTI)

Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 {mu}Sv) to any member of the public. Using measured and calculated emissions, and building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 1.0, to calculate the dose to the maximally exposed individual for the Livermore site and Site 300. The dose for the LLNL site-wide maximally exposed members of the public from operations in 2008 are summarized here: {sm_bullet} Livermore site: 0.0013 mrem (0.013 {mu}Sv) (26% from point source emissions, 74% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by EPA Region IX; the resulting dose is used for compliance purposes. {sm_bullet} Site 300: 0.000000044 mrem (0.00000044 {mu}Sv) (100% from point source emissions).

Bertoldo, N; Gallegos, G; MacQueen, D; Wegrecki, A; Wilson, K

2009-06-25T23:59:59.000Z

12

Productivity & Energy Flow  

E-Print Network [OSTI]

1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

Mitchell, Randall J.

13

ENERGY FLOWS CLIMATE CHANGE  

E-Print Network [OSTI]

ENERGY FLOWS FORCINGS CLIMATE CHANGE A REALLY TOUGH PROBLEM Stephen E. Schwartz, BNL, 7-20-11 www average temperature 15°C or 59°F #12;ATMOSPHERIC RADIATION Power per area Energy per time per area Unit" temperature to radiative flux. #12;GLOBAL ENERGY BALANCE Global and annual average energy fluxes in watts per

Schwartz, Stephen E.

14

Energy Flow: Flow Charts Illustrating United States Energy Resources and Usage, from Lawrence Livermore National Laboratory  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization techniques, such as those embodied in the energy Sankey diagram below (Figure 1), to display both qualitative (relative line weight) and quantitative (listed values) information in a reader-friendly package. The second method is to augment static images with dynamic, scalable digital content containing multiple layers (e.g. energy, carbon and economic data). This transitions the audience from that of a passive reader to an active user of the information. When used in conjunction these approaches enable relatively large, interconnected processes to be described and analyzed efficiently. [copied from the description at http://en.openei.org/wiki/LLNL_Energy_Flow_Charts#cite_note-1

15

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry  

E-Print Network [OSTI]

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

16

LLNL Section I Clauses/Prescriptions  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77NuclearSecurity CampusAC52-06NA27344 LLNL

17

Magnetic core studies at LBNL and LLNL  

E-Print Network [OSTI]

LLNL) and DE-AC03-76SF00098 (LBNL). References Wayne Meier,Magnetic Core Studies at LBNL and LLNL A. W. Molvik a,* , A.Livermore, CA 94550, USA LBNL, Berkeley, CA 94720, USA c

Molvik, A.W.

2008-01-01T23:59:59.000Z

18

Field Flows of Dark Energy  

E-Print Network [OSTI]

Field Flows of Dark Energy Robert N. Cahn, Roland de Putter,July 8, 2008) Scalar ?eld dark energy evolving from a longthe key aspects of the dark energy evolution during much of

Cahn, Robert N.

2010-01-01T23:59:59.000Z

19

Donald Frederick, LLNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocumentsDon Harward

20

LLNL-POST-411531  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

LLNL-PRES-655826  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/5826 This work was

22

2011 LLNL Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, 11/28/2011 - 2:00pm Jefferson1 2011 Call14341

23

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

24

LLNL NESHAPs project 1997 annual report  

SciTech Connect (OSTI)

NESHAP`s limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 ({mu}Sv) to any member of the public The EDEs for the Lawrence Livermore National Laboratory (LLNL) site- wide maximally exposed members of the public from 1997 operations were Livermore site. 0 097 mrem (0 97 {mu}Sv) (80% from point-source emissions), 20% from diffuse-source emissions), Site 300 0 014 mrem (O 14 {mu}Sv) (38% from point-source emissions, 62% from diffuse-source emissions) The EDEs were generally calculated using the EPA-approved CAP88-PC air- dispersion/dose-assessment model Site-specific meteorological data, stack flow data, and emissions estimates based on radionuclide inventory data or continuous-monitoring systems data were the specific input to CAP88-PC for each modeled source.

Gallegos, G.M.

1998-06-01T23:59:59.000Z

25

2007 Estimated International Energy Flows  

SciTech Connect (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

26

LLNL-PRES-421079 NIF-1109-17901  

E-Print Network [OSTI]

LLNL-PRES-421079 #12;NIF-1109-17901 Lasers Moses, Fusion Power Associates 2 #12;NIF-1109-17901 NIF concentrates all 192 beam energy in a football stadium-sized fac. Moses, Fusion Power Associates 3 #12;NIF-1109-17901 Moses, Fusion Power Associates 4 NIF Missions #12;NIF-1109-17901 Moses, Fusion Power Associates 5 #12

27

E-Print Network 3.0 - affairs division llnl Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.wikipedia.orgwikiFile:NOVAlaser.jpg (LLNL) Figure 2: lasers.llnl.govaboutnifabout.php (LLNL) Figure 3: lasers.llnl... .govprogramsscienceattheextremesplasmaphysics...

28

Fire science at LLNL: A review  

SciTech Connect (OSTI)

This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

Hasegawa, H.K. (ed.)

1990-03-01T23:59:59.000Z

29

Managing talent flow. 2006 Energy and Resources  

E-Print Network [OSTI]

Managing talent flow. 2006 Energy and Resources Talent Pulse Survey Report Consulting #12;Executive ................................................................ 13 Contents #12;1 Managing talent flow 2006 Energy and Resources Talent Pulse Survey Report 2006 strategy. 1 #12;2 Managing talent flow 2006 Energy and Resources Talent Pulse Survey Report Key findings

30

Environmental Protection Department LLNL NESHAPs 2007 Annual Report  

SciTech Connect (OSTI)

This annual report is prepared pursuant to the National Emission Standards for Hazardous Air Pollutants (NESHAPs; Title 40 Code of Federal Regulations [CFR] Part 61, Subpart H). Subpart H governs radionuclide emissions to air from U.S. Department of Energy (DOE) facilities. NESHAPs limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 {micro}Sv) to any member of the public. The EDEs for the Lawrence Livermore National Laboratory (LLNL) site-wide maximally exposed members of the public from operations in 2007 are summarized here. Livermore site: 0.0031 mrem (0.031 {micro}Sv) (42% from point source emissions, 58% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by the U.S. Environmental Protection Agency (EPA) Region IX; the resulting dose is used for compliance purposes. Site 300: 0.0035 mrem (0.035 {micro}Sv) (90% from point source emissions, 10% from diffuse source emissions). The EDEs were calculated using the U.S. EPA-approved CAP88-PC air dispersion/dose-assessment model, except for doses for two diffuse sources that were estimated using measured radionuclide concentrations and dose calculations. Specific inputs to CAP88-PC for the modeled sources included site-specific meteorological data and source emissions data, the latter variously based on continuous stack effluent monitoring data, stack flow or other release-rate information, ambient air monitoring data, and facility knowledge.

Bertoldo, N A; Larson, J M; Wilson, K R

2008-06-25T23:59:59.000Z

31

LANL, LLNL researchers among Early Career Research Program award...  

National Nuclear Security Administration (NNSA)

Urban Right photo: LLNL's Yuan Ping stands next to the target chamber in the Europa laser bay, part of the Jupiter Laser Facility. LANL, LLNL researchers among Early Career...

32

llnl | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration goSecuritycdns ||fors |hrpleadership |

33

Excess Property LLNL.PDF  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOE Hydrogen andProgramEnergy1]2-01 I N

34

LLNL-TR-411568 Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/5826 This work was072

35

Former Tribal Energy Program Intern Guides Tribes Toward a More Sustainable Path  

Broader source: Energy.gov [DOE]

Suzanne Singer is working at the Lawrence Livermore National Laboratory (LLNL) as an Energy and Thermal Fluids Analyst where she has an ongoing project to produce Sankey diagrams to analyze energy data and life cycle flows on tribal lands. Applying the knowledge and insights she gained from her work at LLNL, her internship, and her science, technology, engineering, and math (STEM) education, Singer is educating Tribes on how to use their own resources and land to live a more sustainable lifestyle.

36

Status of gadolinium enrichment technology at LLNL  

SciTech Connect (OSTI)

A method based on,polarization selectivity and three step laser photoionization is presented for separation of the odd isotopes of gadolinium. Measurements of the spectroscopic parameters needed to quantify the excitation pathway are discussed. Model results are presented for the efficiency of photoionization. The vapor properties of electron beam vaporized gadolinium are presented which show dramatic cooling during the expansion of the hot dense vapor into a vacuum. This results in a significant increase in the efficiency of conversion of natural feed into enriched product in the AVLIS process. Production of enriched gadolinium for use in commercial power reactors appears to be economically viable using technology in use at LLNL.

Haynam, C.; Comaskey, B.; Conway, J.; Eggert, J.; Glaser, J.; Ng, E.; Paisner, J.; Solarz, R.; Worden, E.

1993-01-01T23:59:59.000Z

37

Dissipation flow-frames: particle, energy, thermometer  

E-Print Network [OSTI]

We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-Lifshitz: energy flow, iii) J\\"uttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a "J\\"uttner frame" is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

Vn, P

2013-01-01T23:59:59.000Z

38

Dissipation flow-frames: particle, energy, thermometer  

E-Print Network [OSTI]

We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-Lifshitz: energy flow, iii) J\\"uttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a "J\\"uttner frame" is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

P. Vn; T. S. Bir

2013-05-14T23:59:59.000Z

39

Energy flow observables in hadronic collisions  

E-Print Network [OSTI]

We present recent QCD calculations of energy flow distributions associated with the production of jets at wide rapidity separations in high-energy hadron collisions, and discuss the role of these observables to analyze contributions from parton showering and from multiple parton collisions.

F. Hautmann

2012-05-24T23:59:59.000Z

40

Energy Flow Models for the Steel Industry  

E-Print Network [OSTI]

each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated...

Hyman, B.; Andersen, J. P.

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy flows : empowering New Orleans  

E-Print Network [OSTI]

This thesis claims to develop alternative energy-harvesting systems by looking at their implementation at the residential scale in order to facilitate the economical autonomy of a community and thus improve its living ...

Guiraud, Florence Nathalie

2012-01-01T23:59:59.000Z

42

High energy density redox flow device  

DOE Patents [OSTI]

Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

2014-05-13T23:59:59.000Z

43

California energy flow in 1991  

SciTech Connect (OSTI)

Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

Borg, I.Y.; Briggs, C.K.

1993-04-01T23:59:59.000Z

44

California energy flow in 1993  

SciTech Connect (OSTI)

Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.

Borg, I.Y.; Briggs, C.K.

1995-04-01T23:59:59.000Z

45

California energy flow in 1994  

SciTech Connect (OSTI)

California energy consumption increased in 1994 in keeping with a recovery from the previous mild recession years. Although unemployment remained above the national average, other indicators pointed to improved economic health. Increased energy use was registered principally in the residential/commercial and transportation end-use sectors. A cooler-than-usual winter and spring was reflected in increased consumption of natural gas, the principal space-heating fuel in the state. Because of low water levels behind state dams, utilities turned to natural gas for electrical generation and to increased imports from out-of- state sources to meet demand. Other factors, such as smaller output from geothermal, biomass, and cogenerators, contributed to the need for the large increase in electrical supply from these two sources. Nonetheless, petroleum dominated the supply side of the energy equation of the state in which transportation requirements comprise more than one-third of total energy demand. About half of the oil consumed derived from California production. Onshore production has been in slow decline; however, in 1994 the decrease was compensated for by increases from federal offshore fields. Until 1994 production had been limited by regulatory restrictions relating to the movement of the crude oil to onshore refineries. State natural gas production remained at 1993 levels. The increased demand was met by larger imports from Canada through the recent expansion of Pacific Transmission Company`s 804 mile pipeline. Deregulation of the state`s utilities moved ahead in 1994 when the California Public Utilities Commission issued its proposal on how to restructure the industry. Public hearings were conducted in which the chief issues were recovery of the utilities` capital investments, conflicts with the Public Utilities Policies Act, management of power transactions between new suppliers and former utility customers, and preservation of energy conservation programs currently sponsored by the utilities. The issues were not resolved at year-end, but the state`s public utilities began to take steps to improve their positions in a future competitive market by cutting costs, improving efficiencies operating plants, and enlarging their nonutility interests.

Borg, I.Y.; Mui, N.

1996-09-01T23:59:59.000Z

46

Nuclear physics and heavy element research at LLNL  

SciTech Connect (OSTI)

This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

2009-05-11T23:59:59.000Z

47

Quantum Processes and Energy-Momentum Flow  

E-Print Network [OSTI]

In this paper we focus on energy flows in simple quantum systems. This is achieved by concentrating on the quantum Hamilton-Jacobi equation. We show how this equation appears in the standard quantum formalism in essentially three different but related ways, from the standard Schr\\"{o}dingier equation, from Lagrangian field theory and from the von Neumann-Moyal algebra. This equation allows us to track the energy flow using the energy-momentum tensor, the components of which are related to weak values of the four-momentum operator. This opens up a new way to explore these components empirically. The algebraic approach enables us to discuss the physical significance of the underlying non-commutative symplectic geometry, raising questions as to the structure of particles in quantum systems.

B. J. Hiley; D. Robson

2014-11-28T23:59:59.000Z

48

Observing and modeling Earths energy flows  

SciTech Connect (OSTI)

This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

Stevens B.; Schwartz S.

2012-05-11T23:59:59.000Z

49

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

50

LLNL Contribution to LLE FY09 Annual Report: NIC and HED Results  

SciTech Connect (OSTI)

In FY09, LLNL led 238 target shots on the OMEGA Laser System. Approximately half of these LLNL-led shots supported the National Ignition Campaign (NIC). The remainder was dedicated to experiments for the high-energy-density stewardship experiments (HEDSE). Objectives of the LLNL led NIC campaigns at OMEGA included: (1) Laser-plasma interaction studies in physical conditions relevant for the NIF ignition targets; (2) Demonstration of Tr = 100 eV foot symmetry tuning using a reemission sphere; (3) X-ray scattering in support of conductivity measurements of solid density Be plasmas; (4) Experiments to study the physical properties (thermal conductivity) of shocked fusion fuels; (5) High-resolution measurements of velocity nonuniformities created by microscopic perturbations in NIF ablator materials; (6) Development of a novel Compton Radiography diagnostic platform for ICF experiments; and (7) Precision validation of the equation of state for quartz. The LLNL HEDSE campaigns included the following experiments: (1) Quasi-isentropic (ICE) drive used to study material properties such as strength, equation of state, phase, and phase-transition kinetics under high pressure; (2) Development of a high-energy backlighter for radiography in support of material strength experiments using Omega EP and the joint OMEGA-OMEGA-EP configuration; (3) Debris characterization from long-duration, point-apertured, point-projection x-ray backlighters for NIF radiation transport experiments; (4) Demonstration of ultrafast temperature and density measurements with x-ray Thomson scattering from short-pulse laser-heated matter; (5) The development of an experimental platform to study nonlocal thermodynamic equilibrium (NLTE) physics using direct-drive implosions; (6) Opacity studies of high-temperature plasmas under LTE conditions; and (7) Characterization of copper (Cu) foams for HEDSE experiments.

Heeter, R F; Landen, O L; Hsing, W W; Fournier, K B

2009-10-01T23:59:59.000Z

51

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect (OSTI)

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

52

High heat flux testing of a two-tube copper panel specimen for LLNL at ASURF  

SciTech Connect (OSTI)

This letter documents the results of the test program conducted for Lawrence Livermore National Laboratory (LLNL) by Westinghouse Advanced Energy Systems Division (AESD) in fulfillment of the Third Amendment to Subcontract 9125401. The original test matrix of 20,000 heating cycles on two test articles called for in the contract was not technically feasible due to the inability of the test articles supplied by LLNL to perform successfully at the required test conditions. Burnout occurred in one of the tubes of a two-tube target during the first series of tests. As a result, the work scope was changed by LLNL such that the tests on the milled copper plate panel specimen were replaced by a second set of heating tests on the second tube of the two-tube copper panel specimen to confirm the conditions for burnout failure. The testing requirements were completed following failure of the second tube at nominally identical conditions under which the first tube failed, and verification of these conditions. This letter completes all contractual obligations by serving as the final report on the test program.

Easoz, J.R.; Sink, D.A.

1984-12-01T23:59:59.000Z

53

Category:Flow Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAdd a new Federal Oil andFlow Test

54

Instream Flow Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummaryInstallingInstream Flow

55

June 20-21, 2005 HAPL Program Workshop, LLNL 1  

E-Print Network [OSTI]

with adequate margin State of the target before injection Model thermal behavior during injection Analyze LANLJune 20-21, 2005 HAPL Program Workshop, LLNL 1 Modeling Target Behavior During Injection Presented''rad on target Target Injection Target Implosion Point · Predict survival of target during injection in chamber

Raffray, A. René

56

Proceedings of the LLNL Technical Women`s Symposium  

SciTech Connect (OSTI)

This report documents events of the LLNL Technical Women`s Symposium. Topics include; future of computer systems, environmental technology, defense and space, Nova Inertial Confinement Fusion Target Physics, technical communication, tools and techniques for biology in the 1990s, automation and robotics, software applications, materials science, atomic vapor laser isotope separation, technical communication, technology transfer, and professional development workshops.

von Holtz, E. [ed.

1993-12-31T23:59:59.000Z

57

Proceedings of the LLNL technical women`s symposium  

SciTech Connect (OSTI)

Women from institutions such as LLNL, LBL, Sandia, and SLAC presented papers at this conference. The papers deal with many aspects of global security, global ecology, and bioscience; they also reflect the challenges faced in improving business practices, communicating effectively, and expanding collaborations in the industrial world. Approximately 87 ``abstracts`` are included in six sessions; more are included in the addendum.

von Holtz, E. [ed.

1994-12-31T23:59:59.000Z

58

2004 LLNL ES&H.pmd  

Broader source: Energy.gov (indexed) [DOE]

Assurance Office of the Secretary of Energy December 2004 ISM Volume I Summary Report OVERSIGHT Table of Contents 1.0 INTRODUCTION ......

59

Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization  

SciTech Connect (OSTI)

A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiation Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site wide ALARA Committee and administrative control levels would focus attention on improved processes. Currently LLNL issues dosimeters to a large number of employees and visitors that do not enter areas requiring dosimetry. This includes 25,000 visitor TLDs per year. Dosimeters should be issued to only those personnel who enter areas where dosimetry is required.

Sygitowicz, L S

2008-03-20T23:59:59.000Z

60

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Deuterons and flow: At intermediate AGS energies  

SciTech Connect (OSTI)

A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density ({rho}{sub 0}) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 {rho}{sub 0} is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered.

Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States); Pang, Y. [Brookhaven National Lab., Upton, NY (United States)]|[Columbia Univ., New York, NY (United States); Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States)

1996-06-01T23:59:59.000Z

62

LLNL-TR-400563 Seismic Data  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACMEFUTURE MOBILITYMarchUnitedr LA-UR-

63

LLNL: Science in the National Interest  

ScienceCinema (OSTI)

This is Lawrence Livermore National Laboratory. located in the Livermore Valley about 50 miles east of San Francisco, the Lab is where the nations topmost science, engineering and technology come together. National security, counter-terrorism, medical technologies, energy, climate change our researchers are working to develop solutions to these challenges. For more than 50 years, we have been keeping America strong.

George Miller

2010-09-01T23:59:59.000Z

64

Flow Cells for Energy Storage Workshop Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells for Energy Storage

65

Flow Cells for Energy Storage Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdf Flash2008-50.pdf5.pdfTechnologiesFlow Cells for Energy Storage

66

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

67

LLNL-TR-411072 A Predictive Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/5826 This work was072 A

68

LLNL Distinguished Members of Technical Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &JeffIntensitySurface Los5NewLEDLIMIT

69

Elliptic flow in heavy ion collisions near the balance energy  

E-Print Network [OSTI]

The proton elliptic flow in collisions of Ca on Ca at energies from 30 to 100 MeV/nucleon is studied in an isospin-dependent transport model. With increasing incident energy, the elliptic flow shows a transition from positive to negative flow. Its magnitude depends on both the nuclear equation of state (EOS) and the nucleon-nucleon scattering cross section. Different elliptic flows are obtained for a stiff EOS with free nucleon-nucleon cross sections and a soft EOS with reduced nucleon-nucleon cross sections, although both lead to vanishing in-plane transverse flow at the same balance energy. The study of both in-plane and elliptic flows at intermediate energies thus provides a means to extract simultaneously the information on the nuclear equation of state and the nucleon-nucleon scattering cross section in medium.

Yu-Ming Zheng; C. M. Ko; Bao-An Li; Bin Zhang

1999-06-24T23:59:59.000Z

70

Directed and elliptic flow in Au + Au at intermediate energies  

E-Print Network [OSTI]

Directed and elliptic flow for the Au + Au system at incident energies between 40 and 150 MeV per nucleon has been measured using the INDRA 4 pi multi-detector. For semi-central collisions, the elliptic flow of Z <= 2 particles switches from in-plane to out-of-plane enhancement at around 100 MeV per nucleon, in good agreement with the result reported by the FOPI Collaboration. The directed flow changes sign at a bombarding energy between 50 and 60 MeV per nucleon and remains negative at lower energies. The conditions for the appearance and possible origins of negative flow are discussed.

Lukasik, J; Begemann-Blaich, M L; Bellaize, N; Bittiger, R; Bocage, F; Borderie, B; Bougault, R; Bouriquet, B; Charvet, J L; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Galchet, E; Gourio, D; Guinet, D; Hudan, S; Lautesse, P; Lavaud, F; Lefvre, A; Legrain, R; Lpez, O; Lynen, U; Mller, W F J; Nalpas, L; Orth, H; Plagnol, E; Rosato, E; Saija, A; Schwarz, C; Sfienti, C; Tamain, B; Trautmann, W; Trzcinski, A; Turz, K; Vient, E; Vigilante, M; Volant, C; Zwieglinski, B

2004-01-01T23:59:59.000Z

71

Radiant energy receiver having improved coolant flow control means  

DOE Patents [OSTI]

An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

Hinterberger, H.

1980-10-29T23:59:59.000Z

72

Competitive Non-migratory Scheduling for Flow Time and Energy  

E-Print Network [OSTI]

@liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re- search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Non-migratory Scheduling for Flow Time and Energy Tak-Wah Lam Department of Computer

Wong, Prudence W.H.

73

Competitive Nonmigratory Scheduling for Flow Time and Energy  

E-Print Network [OSTI]

@liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Nonmigratory Scheduling for Flow Time and Energy TakWah Lam Department of Computer

Lam, Tak-Wah

74

Improved Multi-processor Scheduling for Flow Time and Energy  

E-Print Network [OSTI]

. To Prudence W. H. Wong October 29, 2009 Abstract Energy usage has been an important concern in recent research energy usage is dynamic speed scaling (see, e.g., [8, 14, 24, 28]) where the processor can vary its speedImproved Multi-processor Scheduling for Flow Time and Energy Tak-Wah Lam Lap-Kei Lee Isaac K. K

Wong, Prudence W.H.

75

Energy-Efficient Flow Time Scheduling: An Experimental Study  

E-Print Network [OSTI]

] and Intel's Speedstep [6]. Running a job at a slower speed saves energy, yet it takes longer time and may and energy. An algorithm called AJC (active job count) has been proposed [3, 7], in which the speedEnergy-Efficient Flow Time Scheduling: An Experimental Study Jude-Thaddeus Ojiaku (speaker) Daniel

Wong, Prudence W.H.

76

Description and application of the AERIN Code at LLNL  

SciTech Connect (OSTI)

The AERIN code was written at the Lawrence Livermore National Laboratory in 1976 to compute the organ burdens and absorbed dose resulting from a chronic or acute inhalation of transuranic isotopes. The code was revised in 1982 to reflect the concepts of ICRP-30. This paper will describe the AERIN code and how it has been used at LLNL to study more than 80 cases of internal deposition and obtain estimates of internal dose. A comparison with the computed values of the committed organ dose is made with ICRP-30 values. The benefits of using the code are described. 3 refs., 3 figs., 6 tabs.

King, W.C.

1986-01-02T23:59:59.000Z

77

Flow Effects on Jet Energy Loss with Detailed Balance  

E-Print Network [OSTI]

In the presence of collective flow a new model potential describing the interaction of the hard jet with scattering centers is derived based on the static color-screened Yukawa potential. The flow effect on jet quenching with detailed balance is investigated in pQCD. It turns out, considering the collective flow with velocity $v_z$ along the jet direction, the collective flow decreases the LPM destructive interference comparing to that in the static medium. The gluon absorption plays a more important role in the moving medium. The collective flow increases the energy gain from gluon absorption, however, decreases the energy loss from gluon radiation, which is $(1 - v_z )$ times as that in the static medium to the first order of opacity. In the presence of collective flow, the second order in opacity correction is relatively small compared to the first order. So that the total effective energy loss is decreased. The flow dependence of the energy loss will affect the suppression of high $p_T$ hadron spectrum and anisotropy parameter $v_2$ in high-energy heavy-ion collisions.

Luan Cheng; Jia Liu; Enke Wang

2014-06-03T23:59:59.000Z

78

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network [OSTI]

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

79

Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms  

E-Print Network [OSTI]

As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.

Meyers, Johan

2012-01-01T23:59:59.000Z

80

Sleep Management on Multiple Machines for Energy and Flow Time  

E-Print Network [OSTI]

too many machines would waste energy, while using too few would affect the performance. This paper than 1.5% of the total electricity usage of United States [21]. When a machine (or server) is onSleep Management on Multiple Machines for Energy and Flow Time Sze-Hang Chan Tak-Wah Lam Lap

Lam, Tak-Wah

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy momentum flows for the massive vector field  

E-Print Network [OSTI]

We present a causal trajectory interpretation for the massive vector field, based on the flows of rest energy and a conserved density defined using the time-like eigenvectors and eigenvalues of the stress-energy-momentum tensor. This work extends our previous work which used a similar procedure for the scalar field. The massive, spin-one, complex vector field is discussed in detail and solutions are classified using the Pauli-Lubanski spin vector. The flows of energy-momentum are illustrated in a simple example of standing waves in a plane.

George Horton; Chris Dewdney

2006-09-26T23:59:59.000Z

82

A Stable Vanadium Redox-Flow Battery with High Energy Density...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage. A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy...

83

Complex Flow Workshop Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 DocumentationA variety of hybrid andDisplaysWorkshopETRAAAsA

84

HELM(tm) Flow - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meeting was called toEnergy Analysis Energy Analysis

85

Energy flow and ecosystem dynamics and wood energy in forest ecosystems  

E-Print Network [OSTI]

Energy flow and ecosystem dynamics and wood energy in forest ecosystems S.M.C.U.P. Subasinghe respectively. The forests are the most important ecosystems in wood energy aspect. Other than the energy all Originally published in the Proceedings of Workshop of Training of Trainers in Wood Energy Aspects in Sri

86

Free Flow 69 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia, Arizona: Energy Resources

87

Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing  

SciTech Connect (OSTI)

GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grids devices clamp onto existing transmission lines and control the flow of power withinmuch like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grids inability to effectively store intermittent energy from renewables for later use.

None

2012-04-24T23:59:59.000Z

88

Device for deriving energy from a flow of fluid  

SciTech Connect (OSTI)

Improved process and device for extracting energy present in a flowing fluid medium wherein a supported hub with propellers or blades is placed in said medium and the blades are provided with a wing or vane at the tip. The wing is of such a form that it generates a ''venturi effect'' in the flowing medium by which a part of the fluid which should normally pass outside the propeller disc area, is drawn into the propeller. The improvement consists of mixing of fluid which normally should pass outside the venturi with fluid which has flowed through the blades by provisions on blades and/or wing or vanes.

van Holten, T.

1982-12-07T23:59:59.000Z

89

High energy density redox flow device  

DOE Patents [OSTI]

Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.

Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa

2014-05-13T23:59:59.000Z

90

Keeping the Power Flowing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers AboutEnergyKansas| Department

91

Energy flow lines as light paths a didactical analysis  

E-Print Network [OSTI]

Analyses of interviews with secondary school students about their conceptions of light at the University of Potsdam indicate that numerous students have a deterministic view of light. With regard to these results the model of energy flow lines, which has been discussed recently in the didactical literature, is of special interest. Following this model, light is presumed to move along energy flow lines as trajectories. In an analysis of the model of energy flow lines four didactical dimensions (didactical content, internal structure, present-day relevance and future significance) are investigated. It can be shown that a discussion of this model in physics at school can increase the meta-conceptional knowledge of the students about the models of light. On the other hand, this can promote deterministic conceptions and the Bohm interpretation of quantum mechanics. But the question remains: Should the nature of light really be described as deterministic?

Horn, M E

2006-01-01T23:59:59.000Z

92

U.S. Energy Flow -- 1995  

SciTech Connect (OSTI)

Energy consumption in 1995 increased slightly for the fifth year in a row (from 89 to 91 quadrillion [1015Btu). U.S. economic activity slowed from the fast-paced recovery of 1994, even with the continued low unemployment rates and low inflation rates. The annual increase in U.S. real GDP dropped to 4.6% from 1994?s increase of 5.8%. Energy consumption in all major end-use sectors surpassed the record-breaking highs achieved in 1994, with the largest gains (2.5%) occurring in the residential/commercial sector. Crude oil imports decreased for the first time this decade. There was also a decline in domestic oil production. Venezuela replaced Saudi Arabia as the principal supplier of imported oil. Imports of natural gas, mainly from Canada, continued to increase. The demand for natural gas reached a level not seen since the peak levels of the early 1970s and the demand was met by a slight increase in both natural gas production and imports. Electric utilities had the largest percentage increase of n.atural gas consumption, a climb of 7% above 1994 levels. Although coal production decreased, coal exports continued to make a comeback after 3 years of decline. Coal once again become the primary U.S. energy export. Title IV of the Clean Air Act Amendments of 1990 (CAAA90) consists of two phases. Phase I (in effect as of January 1, 1995) set emission restrictions on 110 mostly coal-burning plants in the eastern and midwestem United States. Phase II, planned to begin in the year 2000, places additional emission restrictions on about 1,000 electric plants. As of January 1, 1995, the reformulated gasoline program, also part of the CAAA90, was finally initiated. As a result, this cleaner-burning fuel was made available in areas of the United States that failed to meet the Environmental Protection Agency? s (EPA?s) ozone standards. In 1995, reformulated gasoline represented around 28% of total gasoline sales in the United States. The last commercial nuclear power plant under construction in the United States came on line in 1995. The Tennessee Valley Authority? s (TVA) Watts Bar-l received a low-power operating license from the U.S. Nuclear Regulatory Commission (NRC). The construction permit was granted in 1972. Also, TVA canceled plans to complete construction of three other nuclear plants. In 1995, federal and state governments took steps to deregulate and restructure the electric power industry. The Federal Energy Regulatory Commission (FERC) unanimously approved a proposal to require utilities to open their electric transmission system to competition from wholesale electricity suppliers. California has been at the forefront in the restructuring of the electric utility industry. Plans authorized by the California Public Utility Commission prepare for a free market in electricity to be established by 1998. In 1990, the U.S. Department of Energy (DOE) began reporting statistics on renewable energy consumption. The types and amounts of renewable energy consumed vary by end-use sector, electric utilities and the industrial sector being the primary consumers since 1990. Renewable energy provided 6.83 quads (7.6I) of the total energy consumed in the United States in 1995, compared to 7.1% in 1994. Increasing concern over the emission of greenhouse gases has resulted in exhaustive analysis of U.S. carbon emissions from energy use. Emissions in the early 1990s have already exceeded those projected by the Clinton Administration? s Climate Change Action Plan (CCAP) released in 1994 that was developed to stabilize U.S. greenhouse gas emissions by the year 2000.

Miller, H.; Mui, N.; Pasternak, A.

1997-12-01T23:59:59.000Z

93

Elliptic flow and system size dependence of transition energies at intermediate energies  

E-Print Network [OSTI]

The elliptic flow for $Z\\le2$ particles in heavy ion collisions at energies from several tens to several hundreds MeV per nucleon is investigated by means of transport model,i.e. a new version of the Improved Quantum Molecular Dynamics model (ImQMD05). In this model, a complete Skyrme potential energy density functional is employed. The influence of different effective interactions and medium corrections of nucleon-nucleon cross sections on the elliptic flow are studied. Our results show that a soft nuclear equation of state and incident energy dependent in-medium nucleon-nucleon cross sections are required for describing the excitation function of the elliptic flow at intermediate energies. The size dependence of transition energies for the elliptic flow at intermediate energies is also studied. The system size dependence of transition energies fits a power of system size with a exponent of 0.223.

Yingxun Zhang; Zhuxia Li

2006-06-02T23:59:59.000Z

94

Enviro Hurdles: Instream Flow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials |Review of the

95

Redox Flow Batteries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivision andIon Soft Landing.

96

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:PrebleTable Jump to:

97

Precision Flow Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder RiverPratt, Kansas:PrebleTable Jump

98

U.S. energy flow -- 1994  

SciTech Connect (OSTI)

Energy consumption in 1994 increased for the fourth year in a row, reaching an all-time high. It was associated with a robust economy, low inflation, and low unemployment rates. Of the populous states, California lagged substantially behind the national recovery. Consumption in all major end-use sectors reached historic highs. Transmission of electrical power by the utilities increased almost 3%. However, this understates the increase of the total amount of electricity used in the nation because the amount of electricity used ``in-house`` by a growing number of self-generators is unrecorded. Imports of both fossil fuels and electricity increased. About half of the total oil consumed was imported, with Saudi Arabia being the principal supplier. Domestic oil production continued to decline; however, the sharp decline in Alaskan production was slowed. The increase in the demand for natural gas was met by both a modest increase in domestic production and imports from Canada, which comprised 10% of supply. The residential/commercial sector is the largest single consumer of natural gas; however, use by electric generators has increased annually for the past decade. The regulated utilities increased their consumption 11% in 1994. The year was noteworthy for the US nuclear power industry. Work was halted on the last nuclear power plant under construction in the country. Because of the retirement of aged and poorly performing nuclear plants and because of improved efficiencies, the capacity factor for the remaining 109 operable plants reached a record 74%.

Borg, I.Y.; Briggs, C.K.

1995-12-01T23:59:59.000Z

99

Keeping the Nation's Energy Flowing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - Project Leader atDepartmentKate|Patricia A.

100

Former Tribal Energy Program Intern Guides Tribes Toward a More...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

working at the Lawrence Livermore National Laboratory (LLNL) as an Energy and Thermal Fluids Analyst where she has an ongoing project to produce Sankey diagrams to analyze energy...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Property:Geothermal/FlowGpm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormatGeothermal/Contact"FlowGpm Jump

102

Property:Geothermal/FlowLmin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormatGeothermal/Contact"FlowGpm

103

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect (OSTI)

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energys Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

104

File:0 - OverallFlow-1.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg| Open EnergyFifeOverallFlow-1.pdf Jump to:

105

Wave turbulence revisited: Where does the energy flow?  

E-Print Network [OSTI]

Turbulence in a system of nonlinearly interacting waves is referred to as wave turbulence. It has been known since seminal work by Kolmogorov, that turbulent dynamics is controlled by a directional energy flux through the wavelength scales. We demonstrate that an energy cascade in wave turbulence can be bi-directional, that is, can simultaneously flow towards large and small wavelength scales from the pumping scales at which it is injected. This observation is in sharp contrast to existing experiments and wave turbulence theory where the energy flux only flows in one direction. We demonstrate that the bi-directional energy cascade changes the energy budget in the system and leads to formation of large-scale, large-amplitude waves similar to oceanic rogue waves. To study surface wave turbulence, we took advantage of capillary waves on a free, weakly charged surface of superfluid helium He-II at temperature 1.7K. Although He-II demonstrates non-classical thermomechanical effects and quantized vorticity, waves on its surface are identical to those on a classical Newtonian fluid with extremely low viscosity. The possibility of directly driving a charged surface by an oscillating electric field and the low viscosity of He-II have allowed us to isolate the surface dynamics and study nonlinear surface waves in a range of frequencies much wider than in experiments with classical fluids.

L. V. Abdurakhimov; I. A. Remizov; A. A. Levchenko; G. V. Kolmakov; Y. V. Lvov

2014-04-03T23:59:59.000Z

106

Measurements of sideward flow around the balance energy  

E-Print Network [OSTI]

Sideward flow values have been determined with the INDRA multidetector for Ar+Ni, Ni+Ni and Xe+Sn systems studied at GANIL in the 30 to 100 A.MeV incident energy range. The balance energies found for Ar+Ni and Ni+Ni systems are in agreement with previous experimental results and theoretical calculations. Negative sideward flow values have been measured. The possible origins of such negative values are discussed. They could result from a more important contribution of evaporated particles with respect to the contribution of promptly emitted particles at mid-rapidity. But effects induced by the methods used to reconstruct the reaction plane cannot be totally excluded. Complete tests of these methods are presented and the origins of the ``auto-correlation'' effect have been traced back. For heavy fragments, the observed negative flow values seem to be mainly due to the reaction plane reconstruction methods. For light charged particles, these negative values could result from the dynamics of the collisions and from the reaction plane reconstruction methods as well. These effects have to be taken into account when comparisons with theoretical calculations are done.

INDRA collaboration; D. Cussol; T. Lefort; J. Pter

2001-11-13T23:59:59.000Z

107

Table-top transient collisional excitation x-ray laser research at LLNL: Status June 1997  

SciTech Connect (OSTI)

This is a status report of transient collisional excitation x-ray laser experiments at LLNL during June 1997 that have the advantage of being conducted on a table-top. Two laser drivers with modest energy {approximately}6 J are used in the scheme: a long {approximately}1 ns pulse to preform and ionize the plasma followed by a short {approximately}1 ps pulse to produce the excitation and population inversion. The beams are co-propagated and focused using a combination of a cylindrical lens and paraboloid to a line of {approximately}70 {micro}m x 12.5 mm dimensions. High repetition rates approaching 1 shot/3 min. allow typically in excess of 50 target shots in a day. Various slab targets have been irradiated and we report preliminary results for x-ray laser gain in 3p-3s J=0-1 Ne-like Ti and Fe transitions where gains as high as 24 cm{sup -1} and gL products of {approximately}15 have been observed.

Dunn, J., LLNL

1997-07-01T23:59:59.000Z

108

Status of LLNL Hot-Recycled-Solid oil shale retort, January 1991--September 30, 1993  

SciTech Connect (OSTI)

Our objective, together with our CRADA partners, is to demonstrate advanced technology that could lead to an economic and environmentally acceptable commercialization of oil shale. We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Cena, R.J.

1993-11-01T23:59:59.000Z

109

Flow Cells for Energy Storage Workshop Summary Report | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells for Energy

110

Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermal Heat Flow

111

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network [OSTI]

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

112

Energy flow along the medium-induced parton cascade  

E-Print Network [OSTI]

We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller e...

Blaizot, Jean-Paul

2015-01-01T23:59:59.000Z

113

Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE participants were limited in what they were allowed to do at the Caliban and Silene exercises and testing of various elements of the nuclear accident dosimetry programs cannot always be performed as guests at other sites, it has become evident that DOE needs its own capability to test nuclear accident dosimeters. Angular dependence determination and correction factors for NADs desperately need testing as well as more evaluation regarding the correct determination of gamma doses. It will be critical to properly design any testing facility so that the necessary experiments can be performed by DOE laboratories as well as guest laboratories. Alternate methods of dose assessment such as using various metals commonly found in pockets and clothing have yet to be evaluated. The DOE is planning to utilize the Godiva or Flattop reactor for testing nuclear accident dosimeters. LLNL has been assigned the primary operational authority for such testing. Proper testing of nuclear accident dosimeters will require highly specific characterization of the pulse fields. Just as important as the characterization of the pulsed fields will be the design of facilities used to process the NADs. Appropriate facilities will be needed to allow for early access to dosimeters to test and develop quick sorting techniques. These facilities will need appropriate laboratory preparation space and an area for measurements. Finally, such a facility will allow greater numbers of LLNL and DOE laboratory personnel to train on the processing and interpretation of nuclear accident dosimeters and results. Until this facility is fully operational for test purposes, DOE laboratories may need to continue periodic testing as guests of other reactor facilities such as Silene and Caliban.

Hickman, D P; Wysong, A R; Heinrichs, D P; Wong, C T; Merritt, M J; Topper, J D; Gressmann, F A; Madden, D J

2011-06-21T23:59:59.000Z

114

The Impact of Neighbourhood Density on the Energy Demand of Passive Houses and on Potential Energy Sources from the Waste Flows and Solar Energy.  

E-Print Network [OSTI]

??This study demonstrates how the density of a neighbourhood affects its energy demand, metabolism (energy and material flows) and its ability to produce its own (more)

Stupka, Robert

2011-01-01T23:59:59.000Z

115

ENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS  

E-Print Network [OSTI]

flows. Adapting Struwe's energy method we first establish a finite bubble tree result with a discrete, energy method, energy quanta, bubble tree, bubbling off, single bubble, intersection-comparison. AMSENERGY CONCENTRATION FOR 2-DIMENSIONAL RADIALLY SYMMETRIC EQUIVARIANT HARMONIC MAP HEAT FLOWS

Hulshof, Joost

116

Energy-Efficient Variable-Flow Liquid Cooling in 3D Stacked Architectures  

E-Print Network [OSTI]

1 Energy-Efficient Variable-Flow Liquid Cooling in 3D Stacked Architectures Ayse K. Coskun , David not fully utilized. Thus, it is not energy-efficient to adjust the coolant flow rate based on the worst-case conditions, as this would cause an excess in pump power. For energy-efficient cooling, we propose a novel

Simunic, Tajana

117

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy  

E-Print Network [OSTI]

Online Speed Scaling Based on Active Job Count to Minimize Flow plus Energy Tak-Wah Lam Lap-Kei Lee research on online job scheduling has gradually taken speed scaling and energy usage into consideration algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two

Wong, Prudence W.H.

118

Sleep with Guilt and Work Faster to Minimize Flow plus Energy  

E-Print Network [OSTI]

to reduce energy usage. Re- cently there is a lot of theory research on online job scheduling taking speedSleep with Guilt and Work Faster to Minimize Flow plus Energy Tak-Wah Lam1, , Lap-Kei Lee1 , Hing. {isaacto, pwong}@liverpool.ac.uk Abstract. In this paper we extend the study of flow-energy scheduling

Wong, Prudence W.H.

119

Energy flow of moving dissipative topological solitons A. V. Gorbach, S. Denisov, and S. Flach  

E-Print Network [OSTI]

. For the case of an external ac force the moving soliton (ratchet effect) trans- ports energy exclusively viaEnergy flow of moving dissipative topological solitons A. V. Gorbach, S. Denisov, and S. Flach Max; accepted 2 May 2006; published online 23 June 2006 We study the energy flow due to the motion

Flach, Sergej

120

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect (OSTI)

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect (OSTI)

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

122

Money versus Time: Evaluation of Flow Control in Terms of Energy Consumption and Convenience  

E-Print Network [OSTI]

Flow control with the goal of reducing the skin friction drag on the fluid-solid interface is an active fundamental research area, motivated by its potential for significant energy savings and reduced emissions in the transport sector. Customarily, the performance of drag reduction techniques in internal flows is evaluated under two alternative flow conditions, i.e. at constant mass flow rate or constant pressure gradient. Successful control leads to reduction of drag and pumping power within the former approach, whereas the latter leads to an increase of the mass flow rate and pumping power. In practical applications, however, money and time define the flow control challenge: a compromise between the energy expenditure (money) and the corresponding convenience (flow rate) achieved with that amount of energy has to be reached so as to accomplish a goal which in general depends on the specific application. Based on this idea, we derive two dimensionless parameters which quantify the total energy consumption an...

Frohnapfel, Bettina; Quadrio, Maurizio

2012-01-01T23:59:59.000Z

123

Hybrid Recursive Energy-based Method for Robust Optical Flow on Large Motion Fields  

E-Print Network [OSTI]

Hybrid Recursive Energy-based Method for Robust Optical Flow on Large Motion Fields Jangheon Kim for optical flow estimation. The method efficiently combines the advantage of discrete motion estimation and optical flow estimation in a recursive block-to-pixel estimation scheme. Integrated local and global

Wichmann, Felix

124

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network [OSTI]

Flow in Central High Energy Nuclear Collisions H. Stockera,theoretical models of high energy nuclear collisions andunder Contract High energy nuclear collisions offer a unique

Stocker, H.

2012-01-01T23:59:59.000Z

125

A coupled BEM and energy flow method for mid-high frequency internal acoustic  

E-Print Network [OSTI]

formalism whereas the SEA formalism is based on global energies of finite subsystems. This model has been using four energy variables: the total energy as well as the Lagrangian energy density, the activeA coupled BEM and energy flow method for mid-high frequency internal acoustic Sbastien BESSET, M

Paris-Sud XI, Université de

126

Effect of local energy supply to a hypersonic flow on the drag of bodies with different nose bluntness  

SciTech Connect (OSTI)

Parameters of the axisymmetric flow around bodies with different bluntness are compared in the case of constant energy supply to the main hypersonic flow. Flow structures, drag coefficients, and expenditure of energy on overcoming drag are analyzed with the effect of thermal energy on the flow taken into account for different bodies with equal volume.

Borzov, V.Yu.; Rybka, I.V.; Yur`ev, A.S. [A.F. Mozhaisky Military Space Engineering Academy, St. Petersburg (Russian Federation)

1995-06-01T23:59:59.000Z

127

The material and energy flow through the abrasive waterjet machining and recycling processes  

E-Print Network [OSTI]

The purpose of this thesis was to investigate the material and energy flow through the abrasive waterjet machine and the WARD recycling machine. The goal was to track all of the material, water, abrasive, energy, air, and ...

Kurd, Michael Omar, 1982-

2004-01-01T23:59:59.000Z

128

Addressing transportation energy and environmental impacts: technical and policy research directions  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

1995-08-01T23:59:59.000Z

129

LLNL Scientist Named NNSA Science and Technology Excellence Award Winner |  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77NuclearSecurity Campus

130

Microsoft Word - LLNL 2011 CRD_8_1.docx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0 National Nuclear Security2 Issue

131

Microsoft Word - LLNL 2011 SA_8_1.docx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0 National Nuclear Security2 Issue National

132

William H. Goldstein named director of LLNL | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL toRockyDECEMBER 1of|

133

An Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing  

E-Print Network [OSTI]

, Design, Measurement, Performance, Reliability Keywords Energy efficiency, Rural wireless networks, EnergyAn Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing Veljko Internet access in many rural areas of the developed and, especially, the developing world. The quality

Belding-Royer, Elizabeth M.

134

Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows  

E-Print Network [OSTI]

Optimal mixing and optimal stirring for fixed energy, fixed power or fixed palenstrophy flows-time perfect mixing with a finite energy constraint on the stirring flow. On the other hand, using techniques, University of Michigan, Ann Arbor, MI 48109 (Dated: 31 March 2012) We consider passive scalar mixing

Novikov, Alexei

135

Optical Flow Estimation using Laplacian Mesh Energy Wenbin Li Darren Cosker Matthew Brown Rui Tang  

E-Print Network [OSTI]

Optical Flow Estimation using Laplacian Mesh Energy Wenbin Li Darren Cosker Matthew Brown Rui Tang.p.cosker,m.brown,r.tang}@bath.ac.uk Abstract In this paper we present a novel non-rigid optical flow algorithm for dense image correspondence and non-rigid registration. The algorithm uses a unique Laplacian Mesh Energy term to encourage local

Martin, Ralph R.

136

LLNL Program for Climate Model Diagnosis and Intercomparison (PCMDI) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 ThrottledInformationparticipants < LEDSGP‎ |featuresLEEDLFGLG

137

LLNL Underground Coal Gasification Project annual report - fiscal year 1984  

SciTech Connect (OSTI)

The Laboratory has been conducting an interdisciplinary underground coal gasification program since 1974 under the sponsorship of DOE and its predecessors. We completed three UCG tests at the Hoe Creek site near Gillette, Wyoming, during the period 1975 to 1979. Five small field experiments, the large-block tests, were completed from 1981 to 1982 at the exposed coal face in the WIDCO coal mine near Centralia, Washington. A larger test at the same location, the partial-seam CRIP test, was completed during fiscal year 1984. In conjunction with the DOE and an industrial group lead by the Gas Research Institute, we have prepared a preliminary design for a large-scale test at the WIDCO site. The planned test features dual injection and production wells, module interaction, and consumption of 20,000 tons of coal during a hundred-day steam-oxygen gasification. During fiscal year 1984, we documented the large-block excavations. The cavities were elongated, the cavity cross sections were elliptical, and the cavities contained ash and slag at the bottom, char and dried coal above that, and a void at the top. The results from the large-block tests provided enough data to allow us to construct a composite model, CAVSM. Preliminary results from the model agree well with the product-gas chemistry and cavity shape observed in the large-block tests. Other models and techniques developed during the year include a transient, moving-front code, a two-dimensional, reactive-flow code using the method of lines, and a wall-recession-rate model. In addition, we measured the rate of methane decomposition in the hot char bed and developed an engineering rate expression to estimate the magnitude of the methane-decomposition reaction. 16 refs., 30 figs., 1 tab.

Stephens, D.R.; O'Neal, E.M. (eds.)

1985-06-15T23:59:59.000Z

138

LANL, LLNL researchers among Early Career Research Program award recipients  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery ActNuclearSecurityLANL's|

139

LLNL scientist receives NNSA award for developing uncrackable code for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/ The

140

LLNL to deliver next-generation supercomputer | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/ TheAdministration

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FY 2006 University of California (LLNL), PER Summary | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 Performance and Accountability ReportSecurity

142

Microsoft Word - HPCOR-LLNL-TR-648169.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWER MEETINGR&DHigh Performance

143

Aerosol Modeling at LLNL - Our capability, results, and perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation Studies ofBusiness Forum

144

Aerosol Simulations by LLNL IMPACT and Comparisons with Field Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation StudiesAerosol Remote

145

An Integral Flow-Based Energy-Efficient Routing Algorithm for Wireless Sensor Networks  

E-Print Network [OSTI]

An Integral Flow-Based Energy-Efficient Routing Algorithm for Wireless Sensor Networks Shashidhar. As sensor nodes are energy-constrained, energy-efficient routing is essential for increasing the lifetime. In this paper, we consider static base stations and propose an algorithmic approach to obtain integral energy-efficient

Prakash, Ravi

146

Comparison of CAISO-run Plexos output with LLNL-run Plexos output  

SciTech Connect (OSTI)

In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

Schmidt, A; Meyers, C; Smith, S

2011-12-20T23:59:59.000Z

147

Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL  

SciTech Connect (OSTI)

Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

Soufli, R; Robinson, J C; Spiller, E; Baker, S L; Dollar, F J; Gullikson, E M

2006-02-22T23:59:59.000Z

148

Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids  

E-Print Network [OSTI]

Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.

I. V. Khalzov; A. I. Smolyakov; V. I. Ilgisonis

2007-12-11T23:59:59.000Z

149

Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL  

SciTech Connect (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1982-01-01T23:59:59.000Z

150

Investigation of Turbulent transition in plane Couette flows Using Energy Gradient Method  

E-Print Network [OSTI]

The energy gradient method has been proposed with the aim of better understanding the mechanism of flow transition from laminar flow to turbulent flow. In this method, it is demonstrated that the transition to turbulence depends on the relative magnitudes of the transverse gradient of the total mechanical energy which amplifies the disturbance and the energy loss from viscous friction which damps the disturbance, for given imposed disturbance. For a given flow geometry and fluid properties, when the maximum of the function K (a function standing for the ratio of the gradient of total mechanical energy in the transverse direction to the rate of energy loss due to viscous friction in the streamwise direction) in the flow field is larger than a certain critical value, it is expected that instability would occur for some initial disturbances. In this paper, using the energy gradient analysis, the equation for calculating the energy gradient function K for plane Couette flow is derived. The result indicates that K reaches the maximum at the moving walls. Thus, the fluid layer near the moving wall is the most dangerous position to generate initial oscillation at sufficient high Re for given same level of normalized perturbation in the domain. The critical value of K at turbulent transition, which is observed from experiments, is about 370 for plane Couette flow when two walls move in opposite directions (anti-symmetry). This value is about the same as that for plane Poiseuille flow and pipe Poiseuille flow (385-389). Therefore, it is concluded that the critical value of K at turbulent transition is about 370-389 for wall-bounded parallel shear flows which include both pressure (symmetrical case) and shear driven flows (anti-symmetrical case).

Hua-Shu Dou; Boo Cheong Khoo

2010-06-07T23:59:59.000Z

151

Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996  

SciTech Connect (OSTI)

This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

Tweed, J.

1996-10-01T23:59:59.000Z

152

A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy equations  

E-Print Network [OSTI]

A conservative Lagrangian scheme for solving compressible fluid flows with multiple internal energy. In some of these ap- plications, multiple internal energy equations such as those for electron, ion developed which are designed to solve the internal energy equation directly. These schemes can be easily

Shu, Chi-Wang

153

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses  

E-Print Network [OSTI]

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses KEVIN E energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate

Fasullo, John

154

APS/123-QED Energy Dissipation in Fractal-Forced Flow  

E-Print Network [OSTI]

University of Oklahoma, Norman, OK 73019 (Dated: July 29, 2006) Abstract The rate of energy dissipation as Kolmogorov scaling of the energy dissipation, namely U3 = O(Re0 ) as Re (1) where is the total energy of turbulence requires that energy be predominantly injected in a relatively narrow range of spatial scales

155

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

156

Simulation and visualization of fields and energy flows in electric circuits with idealized geometries  

E-Print Network [OSTI]

This thesis develops a method to simulate and visualize the fields and energy flows in electric circuits, using a simplified physical model based on an idealized geometry. The physical models combine and extend previously ...

Ohannessian, Mesrob I., 1981-

2005-01-01T23:59:59.000Z

157

Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean  

E-Print Network [OSTI]

A global estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean is presented. The estimate is based on a linear theory applied to bottom topography at O(110) km scales obtained ...

Nikurashin, Maxim

158

Persistent energy flow for a stochastic wave equation model in nonequilibrium statistical mechanics  

E-Print Network [OSTI]

We consider a one-dimensional partial differential equation system modeling heat flow around a ring. The system includes a Klein-Gordon wave equation for a field satisfying spatial periodic boundary conditions, as well as Ornstein-Uhlenbeck stochastic differential equations with finite rank dissipation and stochastic driving terms modeling heat baths. There is an energy flow around the ring. In the case of a linear field with different (fixed) bath temperatures, the energy flow can persist even when the interaction with the baths is turned off. A simple example is given.

Lawrence E. Thomas

2012-04-29T23:59:59.000Z

159

LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility  

SciTech Connect (OSTI)

This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

Candy, J V

1999-10-31T23:59:59.000Z

160

The Electrochemical Flow Capacitor: A New Concept for Rapid Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the widespread implementation of intermittent renewable energy sources such as wind and solar. Viable EES technologies are also essential for increasing grid effi ciency through...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy and materials flows in the iron and steel industry  

SciTech Connect (OSTI)

Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

Sparrow, F.T.

1983-06-01T23:59:59.000Z

162

Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows  

E-Print Network [OSTI]

Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows Ruba T storage capacitor by 2­5 V. We provide estimates of power density, energy density, and scavenging. When the gas phase around the plant is at a lower water potential than the saturated soil, water

Maharbiz, Michel

163

Energy extremals and nonlinear stability in a variational theory of a coupled barotropic flow -Rotating solid  

E-Print Network [OSTI]

-body flow state is a constrained energy minimum provided the relative enstrophy is small enough, otherwise maximizers. Unlike the standard barotropic vorticity model which conserves angular momentum of the fluid. The coupled system is a conservative or nondissipative model in the sense that the energy and angular momentum

Lim, Chjan C.

164

Non-invasive energy meter for fixed and variable flow systems  

DOE Patents [OSTI]

An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising: attaching a first temperature sensor for connection to an outside of the first conduit segment; attaching a second temperature sensor for connection to an outside of the second conduit segment; via a programmable control unit, receiving data from the sensors and calculating energy data therefrom; and communicating energy data from the meter; whereby the method and apparatus operate without need to temporarily disconnect or alter the first or second conduit segments. The invention operates with both variable and fixed flow systems, and is especially useful for both active and passive solar energy systems.

Menicucci, David F.; Black, Billy D.

2005-11-01T23:59:59.000Z

165

Progress in Grid Scale Flow Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-CommitteeItems at6A photoEnergy OnandImre

166

Dixie Valley Six Well Flow Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area JumpSix Well Flow Test

167

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP)Flow

168

UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY  

SciTech Connect (OSTI)

It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the buildings effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

2013-07-01T23:59:59.000Z

169

Radial Flow Bearing Heat Exchanger | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil'sofAppendixEnergyR&DELECTRIC8Department ofRadial

170

Smoothing the Flow of Renewable Solar Energy in California's Central  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)Smart ManufacturingDepartmentValley |

171

Microfluidic Flow Assay for Measuring Hemostatic Phenotypes - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovationMichael M.StructuralStartup

172

File:0 - Overall Flow (Solar).pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg| Open EnergyFife Lake,31112)Energysource

173

File:0 - Overall Flow - Transmission.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg| Open EnergyFife

174

Numerical simulation of material and energy flow in an e-beam melt furnace  

SciTech Connect (OSTI)

A numerical analysis is made of the material and energy flow in an electron-beam furnace. Energy from an electron beam vaporizes metal confined in a water-cooled crucible. At the beam impact site a. recirculating liquid metal pool is surrounded by a shell of its own solid. A Galerkin finite element method is modified to solve for the flow and temperature fields along with interface locations. The deforming mesh is parameterized using spines that pivot and stretch as the interfaces move. Results are given for an aluminum vaporizer in which parametric variations are made in the e-beam power and liquid viscosity. The calculations reveal the importance of the coupling between the free boundaries and the flow and energy fields.

Westerberg, K.W.; McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Washington Univ., Seattle, WA (United States). Dept. of Chemical Engineering

1993-12-01T23:59:59.000Z

175

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl  

E-Print Network [OSTI]

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li* and Nina MahootcheianAsl Richard Lugar Center for Renewable Energy, Department of Mechanical Engineering

Zhou, Yaoqi

176

Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: The model  

E-Print Network [OSTI]

Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1 size-structured mathematical model of the energy flow through marine ecosystems, based on established-dependent. The physiological bases of the model are derived from the dynamic energy budget theory. The model outputs

Poggiale, Jean-Christophe

177

Mapping Geothermal Heat Flow and Existing Plants | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitorsfor ShadeProject Manhattan Project

178

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPart A Permit ApplicationHeartlandHeartland

179

Interpretive geothermal heat flow map of Colorado | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International AssociationServicesfor

180

Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows With Diffusion  

E-Print Network [OSTI]

In this paper we have extended our previous modeling of energy balance in the chromosphere-corona transition region to cases with particle and mass flows. The cases considered here are quasi-steady, and satisfy the momentum and energy balance equations in the transition region. We include in all equations the flow velocity terms and neglect the partial derivatives with respect to time. We present a complete and physically consistent formulation and method for solving the non-LTE and energy balance equations in these situations, including both particle diffusion and flows of H and He. Our results show quantitatively how mass flows affect the ionization and radiative losses of H and He, thereby affecting the structure and extent of the transition region. Also, our computations show that the H and He line profiles are greatly affected by flows. We find that line shifts are much less important than the changes in line intensity and central reversal due to the effects of flows. In this paper we use fixed conditions at the base of the transition region and in the chromosphere because our intent is to show the physical effects of flows and not to match any particular observations. However, we note that the profiles we compute can explain the range of observed high spectral and spatial resolution Lyman alpha profiles from the quiet Sun. We suggest that dedicated modeling of specific sequences of observations based on physically consistent methods like those presented here will substantially improve our understanding of the energy balance in the chromosphere and corona.

J. M. Fontenla; E. H. Avrett; R. Loeser

2001-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)  

SciTech Connect (OSTI)

Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

Heinrichs, D P

2006-06-26T23:59:59.000Z

182

Portable Liquid Flow Metering for Energy Conservation Programs  

E-Print Network [OSTI]

.c. jJ = 0.5 3. PERMANENT PRESSURE LOSS: PPL o = 72" w.c. See Table 3 4. HORSEPOWER REQUIRED TO MAKE UP PERMANENT PRESSURE LOSS: HP o = GPM x PPLo x SP. Gr. 38,000* (600) (72 )(1. 0) 38,000 HP o = 1.14 HP * Constant corrects for units...-7, 1982 TABLE 3 PERMANENT PRESSURE LOSS (PPL o ) FOR ORIFICE METERS 140 120 100 80 60 40 20 0 00?? '0 0.2 0.3 0.4 0.5 0.6 07 Beta ratio (d/Dl CONCLUSIONS Ultrasonic flowmetering offers an effec tive way to measure liquids in energy...

Miles, F. J.

1982-01-01T23:59:59.000Z

183

Energy flux fluctuations in a finite volume of turbulent flow  

E-Print Network [OSTI]

The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

2006-07-19T23:59:59.000Z

184

Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 A

185

CoreFlow Scientific Solutions Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, IncKilauea Volcano,2A, New

186

Vehicle and Infrastructure Cash-Flow Evaluation (VICE) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy InformationVashon,VectronInformation

187

Flow-Through Electrode Capacitive Desalination - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | NationalFlipping theWellhead NA

188

Excitation Energy Flow in Photosynthesis | MIT-Harvard Center for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRDEvan FelixExperimentsExample

189

Property:GeofluidGeosteamFlowRate | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMroURL. Pages using

190

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open Energy

191

L. John Perkins LLNL 5/8/01 Ignition/Burn is a Done Deal Or is It?  

E-Print Network [OSTI]

There is No Fusion Analogy (Unfortunately!) 4m ~4.5m CP-1 FIRE #12;L. John Perkins LLNL 5/8/01 The Hanford Pile B-100's sub-critical experiments (No parallel) Fermi's CP-1 zero power pile ITER / FIRE / Ignitor.... Hanford critical at Hanford (fission's "ignition/burn" experiment) 1945 The rest is history! #12;L. John Perkins

192

LLNL-PRES-662854 This work was performed under the auspices of the U.S. Department  

E-Print Network [OSTI]

Convergence ratio of ~ 35 Lawrence Livermore National Laboratory Ignition on NIF requires compress pressures-ray: Produced by NIF laser at LLNL with an Internt'l team Lawrence Livermore National Laboratory A hohlraum indirectly d 1.8 MJ National Ignition inners outers at NIF #12;Lawrence Livermore National Laboratory 4 Rosen

193

Impeded inverse energy transfer in the Charney--Hasegawa--Mima model of quasi-geostrophic flows  

E-Print Network [OSTI]

The behaviour of turbulent flows within the single-layer quasi-geostrophic (Charney--Hasegawa--Mima) model is shown to be strongly dependent on the Rossby deformation wavenumber $\\lambda$ (or free-surface elasticity). Herein, we derive a bound on the inverse energy transfer, specifically on the growth rate $\\d\\ell/\\dt$ of the characteristic length scale $\\ell$ representing the energy centroid. It is found that $\\d\\ell/\\dt\\le2\

Chuong V. Tran; David G. Dritschel

2005-12-02T23:59:59.000Z

194

Study of nuclear dynamics of neutron-rich colliding pair at energy of vanishing flow  

E-Print Network [OSTI]

We study nuclear dynamics at the energy of vanishing flow of neutron-rich systems having N/Z ratio 1.0, 1.6 and 2.0 throughout the mass range at semi central colliding geometry. In particular we study the behavior of average and maximum density with N/Z dependence of the system.

Sakshi Gautam

2011-07-28T23:59:59.000Z

195

Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model  

E-Print Network [OSTI]

The Lattice Gas Model was extended to incorporate the effect of radial flow. Contrary to popular belief, radial flow has little effect on the clusterization process in intermediate energy heavy-ion collisions except adding an ordered motion to the particles in the fragmentation source. We compared the results from the lattice gas model with and without radial flow to experimental data. We found that charge yields from central collisions are not significantly affected by inclusion of any reasonable radial flow.

C. B. Das; L. Shi; S. Das Gupta

2004-07-20T23:59:59.000Z

196

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON AND WILLIAM R. YOUNG  

E-Print Network [OSTI]

Two-Layer Baroclinic Eddy Heat Fluxes: Zonal Flows and Energy Balance ANDREW F. THOMPSON of these drag- less heat-flux parameterizations relies on the ability of to direct energy into zonal flows, California (Manuscript received 27 September 2006, in final form 13 December 2006) ABSTRACT The eddy heat

Young, William R.

197

Drag Reduction by Laser-Plasma Energy Addition in Hypersonic Flow  

SciTech Connect (OSTI)

An experimental study was conducted to investigate the drag reduction by laser-plasma energy addition in a low density Mach 7 hypersonic flow. The experiments were conducted in a shock tunnel and the optical beam of a high power pulsed CO{sub 2} TEA laser operating with 7 J of energy and 30 MW peak power was focused to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The non-intrusive schlieren optical technique was used to visualize the effects of the energy addition to hypersonic flow, from the plasma generation until the mitigation of the shock wave profile over the model surface. Aside the optical technique, a piezoelectric pressure transducer was used to measure the impact pressure at stagnation point of the hemispherical model and the pressure reduction could be observed.

Oliveira, A. C. [Instituto Nacional de Pesquisas Espaciais, 12630-000 Cachoeira Paulista (Brazil); Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr [Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Myrabo, L. N. [Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States)

2008-04-28T23:59:59.000Z

198

Measurements of continuous mix evolution in a high energy density shear flow  

SciTech Connect (OSTI)

We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

Loomis, E., E-mail: loomis@lanl.gov; Doss, F.; Flippo, K.; Fincke, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2014-04-15T23:59:59.000Z

199

Collective flow properties of intermediate mass fragments and isospin effects in fragmentation at Fermi energies  

SciTech Connect (OSTI)

Within a microscopic transport model (Stochastic Mean Field) we analyze the collective flow properties associated to the intermediate mass fragments produced in nuclear fragmentation. We study the transverse and elliptic flow parameters for each rank in mass hierarchy. The results are plotted for {sup 124}Sn + {sup 124}Sn systems at an energy of 50AMeV and for an impact parameter b=4fm. The correlation with the dynamics of the isospin degree of freedom is also discussed and the results are presented for the same systems.

Baran, V.; Zus, R. [University of Bucharest, Faculty of Physics, P.O. Box MG-11, RO - 077125 Bucharest-Magurele (Romania); Colonna, M. [Laboratori Nazionali del Sud INFN, Catania (Italy); Di Toro, M. [Laboratori Nazionali del Sud INFN, Catania, Italy and Physics and Astronomy Department, University of Catania (Italy)

2013-11-13T23:59:59.000Z

200

CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Theory Guide  

SciTech Connect (OSTI)

This document presents the mathematical theory implemented in the CFEST (Coupled Flow, Energy, and Solute Transport) simulator. The simulator is a three-dimensional finite element model that can be used for evaluating flow and solute mass transport. Although the theory for thermal transport is presented in this guide, it has not yet been fully implemented in the simulator. The flow module is capable of simulating both confined and unconfined aquifer systems, as well as constant and variable density fluid flows. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. Mesh construction employs collapsible, hexahedral finite elements in a three-dimensional coordinate system. CFEST uses the Galerkin finite element method to convert the partial differential equations to algebraic form. To solve the coupled equations for momentum, solute and heat transport, either Picard or Newton-Raphson iterative schemes are used to treat nonlinearities. An upstream weighted residual finite-element method is used to solve the advective-dispersive transport and energy transfer equations, which circumvents problems of numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers available in ITPACK and PETSc, solvers that are available in the public domain. These solvers are based on the preconditioned conjugate gradient and ORTHOMIN methods for symmetric and a nonsymmetric matrices, respectively.

Freedman, Vicky L.; Chen, Yousu; Gupta, Sumant K.

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling of material and energy flow in an EBCHR casting system  

SciTech Connect (OSTI)

A numerical and experimental analysis is made of fluid flow and heat transfer in a continuous casting system with an electron-beam energy source. For a cylindrical ingot confined in a water-cooled crucible, a two-dimensional, steady-state model is developed which includes the effects of free convection in the pool and conduction in the two-phase and solid regions. A modified Galerkin finite element method is used to solve for the flow and temperature fields simultaneously with the upper and lower boundaries of the pool. The calculation grid deforms along vertical spines as these phase boundaries move. Heat flows are measured in a steady-state experiment involving a short ingot and no pouring. Heat transfer coefficients representing contact resistance are determined, and measured heat flows are compared with model values. Flow and temperature fields along with solidification-zone boundaries are calculated for the experimental case and a case in which the ingot cooling is improved.

Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States)

1994-11-01T23:59:59.000Z

202

Modeling of material and energy flow in an EBCHR casting system  

SciTech Connect (OSTI)

A numerical and experimental analysis is made of fluid flow and heat transfer in a continuous casting system with an electron-beam energy source. For a cylindrical ingot confined in a water-cooled crucible, a two-dimensional, steady-state model is developed which includes the effects of free convection in the pool and conduction in the two-phase and solid regions. A modified Galerkin finite element method is used to solve for the flow and temperature fields simultaneously with the upper and lower boundaries of the pool. The calculation grid deforms along vertical spines as these phase boundaries move. Heat flows are measured in a steady-state experiment involving a short ingot and no pouring. Heat transfer coefficients representing contact resistance are determined, and measured heat flows are compared with model values. Flow and temperature fields along with solidification-zone boundaries are calculated for the experimental case and a case in which the ingot cooling is improved.

Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States)

1994-12-31T23:59:59.000Z

203

The formation of reverse shocks in magnetized high energy density supersonic plasma flows  

SciTech Connect (OSTI)

A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M}???50, M{sub S}???5, M{sub A}???8, V{sub flow}???100?km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ?c/?{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Burgess, D.; Clemens, A. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)] [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Ciardi, A. [LERMA, Observatoire de Paris and cole Normale Suprieure Universit Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France)] [LERMA, Observatoire de Paris and cole Normale Suprieure Universit Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France); Sheng, L. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Yuan, J. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); and others

2014-05-15T23:59:59.000Z

204

In-medium NN cross sections determined from stopping and collective flow in intermediate-energy heavy-ion collisions  

E-Print Network [OSTI]

In-medium nucleon-nucleon scattering cross sections are explored by comparing results of quantum molecular dynamics simulations to data on stopping and on elliptic and directed flow in intermediate-energy heavy-ion collisions. The comparison points to in-medium cross sections which are suppressed at low energies but not at higher energies. Positive correlations are found between the degree of stopping and the magnitudes of elliptic and directed flows.

Zhang, Y; Li, Z; Danielewicz, Pawel; Li, Zhuxia; Zhang, Yingxun

2007-01-01T23:59:59.000Z

205

In-medium NN cross sections determined from stopping and collective flow in intermediate-energy heavy-ion collisions  

E-Print Network [OSTI]

In-medium nucleon-nucleon scattering cross sections are explored by comparing results of quantum molecular dynamics simulations to data on stopping and on elliptic and directed flow in intermediate-energy heavy-ion collisions. The comparison points to in-medium cross sections which are suppressed at low energies but not at higher energies. Positive correlations are found between the degree of stopping and the magnitudes of elliptic and directed flows.

Yingxun Zhang; Zhuxia Li; Pawel Danielewicz

2007-03-14T23:59:59.000Z

206

Empirical validation of the conceptual design of the LLNL 60-kg contained-firing facility  

SciTech Connect (OSTI)

In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) is proposing to modify an existing facility to add a 60-kg firing chamber and related support areas. This modification will provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the hazardous waste generated. The major design consideration of such a chamber is its overall structural dynamic response in terms of its long-term ability to contain all blast effects from repeated internal detonations of high explosives. Another concern is how much other portions of the facility outside the firing chamber must be hardened to ensure personnel protection in the event of an accidental detonation while the chamber door is open. To assess these concerns, a 1/4-scale replica model of the planned contained firing chamber was engineered, constructed, and tested with scaled explosive charges ranging from 25 to 125% of the operational explosives limit of 60 kg. From 16 detonations of high explosives, 880 resulting strains, blast pressures, and temperatures within the model were measured to provide information for the final design.

Pastrnak, J.W.; Baker, C.F.; Simmons, L.F.

1995-02-24T23:59:59.000Z

207

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect (OSTI)

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09T23:59:59.000Z

208

LLNL underground-coal-gasification project. Quarterly progress report, April-June 1982  

SciTech Connect (OSTI)

Cavity mapping has been completed for the large block experiments, which were done near Centralia, Washington, in the winter of 1981-1982. Postburn excavations into the experimental sites show all the cavities to be largely filled with rubble consisting of dried coal, char, ash, and slag. None of the five injection holes remained completely open through its associated cavity. Temperature histories for all the in situ thermocouples in the large block experiments have been analyzed. The interpretation of most of this temperature data is straightforward and consistent with other observations. As a further refinement in our underground coal gasification (UCG) modeling effort, transient temperature profiles have been calculated for open borehole gasification in wet coal by the isotherm migration method, using the LSODE computer code developed at LLNL. The next logical step in this calculation would be to make the rate of combustion surface movement a function of the rate of steam generation at the vaporization interface. Follow-up observations have continued at the Hoe Creek UCG experiment sites in Wyoming. Phenols have been detected at very low but significant levels in groundwater 400 ft from the Hoe Creek 2 experiment, which was done in 1977. It appears important to continue this investigation of phenol transport at Hoe Creek, and to extend it by drilling and sampling additional wells. The controlled retracting injection point (CRIP) technique, which was devised for UCG application, may also have applications in enhanced recovery of crude oil.

Not Available

1982-08-06T23:59:59.000Z

209

Energy policy act transportation study: Interim report on natural gas flows and rates  

SciTech Connect (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

210

Science for Energy Flow | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2Science for Energy Flow

211

The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development  

SciTech Connect (OSTI)

The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

1987-09-17T23:59:59.000Z

212

LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake  

SciTech Connect (OSTI)

The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hosts over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.

Rodgers, A J; Petersson, N A; Morency, C E; Simmons, N A; Sjogreen, B

2012-01-23T23:59:59.000Z

213

www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO PASCUCCI (LLNL),  

E-Print Network [OSTI]

www.vacet.org E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL (LLNL) E. WES BETHEL (LBNL), CHRIS JOHNSON (UTAH), KEN JOY (UC DAVIS), SEAN AHERN (ORNL), VALERIO

Utah, University of

214

Model for the spatio-temporal intermittency of the energy dissipation in turbulent flows  

E-Print Network [OSTI]

Modeling the intermittent behavior of turbulent energy dissipation processes both in space and time is often a relevant problem when dealing with phenomena occurring in high Reynolds number flows, especially in astrophysical and space fluids. In this paper, a dynamical model is proposed to describe the spatio-temporal intermittency of energy dissipation rate in a turbulent system. This is done by using a shell model to simulate the turbulent cascade and introducing some heuristic rules, partly inspired by the well known $p$-model, to construct a spatial structure of the energy dissipation rate. In order to validate the model and to study its spatially intermittency properties, a series of numerical simulations have been performed. These show that the level of spatial intermittency of the system can be simply tuned by varying a single parameter of the model and that scaling laws in agreement with those obtained from experiments on fully turbulent hydrodynamic flows can be recovered. It is finally suggested that the model could represent a useful tool to simulate the spatio-temporal intermittency of turbulent energy dissipation in those high Reynolds number astrophysical fluids where impulsive energy release processes can be associated to the dynamics of the turbulent cascade.

Fabio Lepreti; Vincenzo Carbone; Pierluigi Veltri

2007-02-08T23:59:59.000Z

215

Tech Transfer Webinar: Energy Absorbing Materials  

ScienceCinema (OSTI)

A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-07-15T23:59:59.000Z

216

Tech Transfer Webinar: Energy Absorbing Materials  

SciTech Connect (OSTI)

A new material has been designed and manufactured at LLNL that can absorb mechanical energy--a cushion--while also providing protection against sheering. This ordered cellular material is 3D printed using direct ink writing techniques under development at LLNL. It is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-06-17T23:59:59.000Z

217

Grid Applications for Energy Storage Flow Cells for Energy Storage Workshop  

E-Print Network [OSTI]

Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost;Anatomy of a Time of Use Rate GenerationRate(C$/kWh) 0.14 Peak Periods 0.12 $0.099$0.099 0.10 0.08 $0-20 TOU Tariff Charge Type power energy Summer Max Peak Part-Peak Off-Peak Maximum $11.04 $2.59 - $7

218

NIF Presentation by Ed Moses | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Presentation by Ed Moses NIF Presentation by Ed Moses Moses-LLNL-SEAB-10.11.pdf More Documents & Publications Summary Minutes of the Secretary of Energy Advisory Board Public...

219

Constraining the high-density nuclear symmetry energy with the transverse-momentum dependent elliptic flow  

E-Print Network [OSTI]

Within the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the transverse-velocity dependence of the elliptic flow of free nucleons from $^{197}$Au+$^{197}$Au collisions at the incident energy 400 MeV$/$nucleon is studied within different windows of the normalized c.m. rapidity $y_0$. It is found that the elliptic flow difference $v_{2}^{n}$-$v_{2}^{p}$ and ratio $v_{2}^{n}$/$v_{2}^{p}$ of neutrons versus protons are sensitive to the density dependence of the symmetry energy, especially the ratio $v_{2}^{n}$/$v_{2}^{p}$ at small transverse velocity in the intermediate rapidity intervals $0.4hydrogen isotopes with calculations using various Skyrme interactions, all exhibiting similar values of isoscalar incompressibility but very different density dependences of the symmetry energy, a moderately soft to linear symmetry energy is extracted, in good agreement with previous UrQMD or T\\"{u}bingen QMD model calculations but contrasting results obtained with $\\pi^-/\\pi^+$ yield ratios available in the literature.

Yongjia Wang; Chenchen Guo; Qingfeng Li; Hongfei Zhang; Y. Leifels; W. Trautmann

2014-03-27T23:59:59.000Z

220

Large elliptic flow in low multiplicity pp collisions at LHC energy $\\sqrt{s}$=14 TeV  

E-Print Network [OSTI]

We explore the possibility of observing elliptic flow in low multiplicity events in central pp collisions at LHC energy, $\\sqrt{s}$=14 TeV. It is assumed that the initial interactions produces a number of hot spots. Hydrodynamical evolution of two or more hot spots can generate sufficiently large elliptic flow to be accessible experimentally in 4-th order cumulant analysis.

A. K. Chaudhuri

2010-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Collaborative Research: Barotropic Radiation Experiment (BARX) The question of how energy flows through the oceans, especially how energy is lost from the currents  

E-Print Network [OSTI]

flows through the oceans, especially how energy is lost from the currents comprising the general and vorticity. Intellectual Merit. A fundamental process by which ocean currents lose the energy acquired from Variability in the Central North Atlantic Ocean 1. Motivations and Objectives The paths along which energy

Dushaw, Brian

222

Scaling of Anisotropic Flows in Intermediate Energy and Ultra-relativistic Heavy Ion Collisions  

E-Print Network [OSTI]

Anisotropic flows ($v_2$ and $v_4$) of hadrons and light nuclear clusters are studied by a partonic transport model and nucleonic transport model, respectively, in ultra-relativistic and intermediate energy heavy ion collisions. Both number-of-constituent-quark scaling of hadrons, especially for $\\phi$ meson which is composed of strange quarks, and number-of-nucleon scaling of light nuclear clusters are discussed and explored for the elliptic flow ($v_2$). The ratios of $v_4/v_2^2$ of hadrons and nuclear clusters are, respectively, calculated and they show different constant values which are independent of transverse momentum. The above phenomena can be understood, respectively, by the coalescence mechanism in quark-level or nucleon-level.

Y. G. Ma

2006-11-30T23:59:59.000Z

223

Heavy flavours in high-energy nuclear collisions: quenching, flow and correlations  

E-Print Network [OSTI]

We present results for the quenching, elliptic flow and azimuthal correlations of heavy flavour particles in high-energy nucleus-nucleus collisions obtained through the POWLANG transport setup, developed in the past to study the propagation of heavy quarks in the Quark-Gluon Plasma and here extended to include a modeling of their hadronization in the presence of a medium. Hadronization is described as occurring via the fragmentation of strings with endpoints given by the heavy (anti-)quark Q(Qbar) and a thermal parton $qbar(q)$ from the medium. The flow of the light quarks is shown to affect significantly the R_AA} and v_2 of the final D mesons, leading to a better agreement with the experimental data.

A. Beraudo; A. De Pace; M. Monteno; M. Nardi; F. Prino

2014-12-01T23:59:59.000Z

224

The beam energy dependence of collective flow in heavy ion collisions  

E-Print Network [OSTI]

The major goals of heavy ion research are to explore the phase diagram of quantum chromodynamics (QCD) and to investigate the properties of the quark gluon plasma (QGP), a new state of matter created at high temperatures and/or densities. Collective anisotropic flow is one of the most promising observables to gain insights about the properties of the system created in relativistic heavy ion reactions. The current status of the beam energy dependence of the first three Fourier coefficients of the azimuthal distribution of the produced particles $v_1$ to $v_3$ within hybrid transport plus hydrodynamics approaches are summarized.

Petersen, Hannah; Auvinen, Jussi; Bleicher, Marcus

2015-01-01T23:59:59.000Z

225

The beam energy dependence of collective flow in heavy ion collisions  

E-Print Network [OSTI]

The major goals of heavy ion research are to explore the phase diagram of quantum chromodynamics (QCD) and to investigate the properties of the quark gluon plasma (QGP), a new state of matter created at high temperatures and/or densities. Collective anisotropic flow is one of the most promising observables to gain insights about the properties of the system created in relativistic heavy ion reactions. The current status of the beam energy dependence of the first three Fourier coefficients of the azimuthal distribution of the produced particles $v_1$ to $v_3$ within hybrid transport plus hydrodynamics approaches are summarized.

Hannah Petersen; Jan Steinheimer; Jussi Auvinen; Marcus Bleicher

2015-03-11T23:59:59.000Z

226

Energy flow between two hydrodynamically coupled particles kept at different effective temperatures  

E-Print Network [OSTI]

We measure the energy exchanged between two hydrodynamically coupled micron-sized Brownian particles trapped in water by two optical tweezers. The system is driven out of equilibrium by random forcing the position of one of the two particles. The forced particle behaves as it has an "effective temperature" higher than that of the other bead. This driving modifies the equilibrium variances and cross-correlation functions of the bead positions: we measure an energy flow between the particles and an instantaneous cross-correlation, proportional to the effective temperature difference between the two particles. A model of the interaction which is based on classical hydrodynamic coupling tensors is proposed. The theoretical and experimental results are in excellent agreement.

Antoine Brut; Artyom Petrosyan; Sergio Ciliberto

2015-02-06T23:59:59.000Z

227

IMPROVING ENERGY EFFICIENCY VIA OPTIMIZED CHARGE MOTION AND SLURRY FLOW IN PLANT SCALE SAG MILLS  

SciTech Connect (OSTI)

The U.S. mining industry operates approximately 80 semi-autogenesis grinding mills (SAG) throughout the United States. Depending on the mill size the SAG mills draws between 2 MW and 17 MW. The product from the SAG mill is further reduced in size using pebble crushers and ball mills. Hence, typical gold or copper ore requires between 2.0 and 7.5 kWh per ton of energy to reduce the particle size. Considering a typical mining operation processes 10,000 to 100,000 tons per day the energy expenditure in grinding is 50 percent of the cost of production of the metal. A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Kennecott Utah Copper Corporation, Process Engineering Resources Inc. and others. In the current project, Cortez Gold Mines played a key role in facilitating the 26-ft SAG mill at Cortez as a test mill for this study. According to plant personnel, there were a number of unscheduled shut downs to repair broken liners and the mill throughput fluctuated depending on ore type. The University team had two softwares, Millsoft and FlowMod to tackle the problem. Millsoft is capable of simulating the motion of charge in the mill. FlowMod calculates the slurry flow through the grate and pulp lifters. Based on this data the two models were fine-tuned to fit the Cortez SAG will. In the summer of 2004 a new design of shell lifters were presented to Cortez and in September 2004 these lifters were installed in the SAG mill. By December 2004 Cortez Mines realized that the SAG mill is drawing approximately 236-kW less power than before while maintaining the same level of production. In the first month there was extreme cycling and operators had to learn more. Now the power consumption is 0.3-1.3 kWh/ton lower than before. The actual SAG mill power draw is 230-370 kW lower. Mill runs 1 rpm lesser in speed on the average. The re-circulation to the cone crusher is reduced by 1-10%, which means more efficient grinding of critical size material is taking place in the mill. All of the savings have resulted in reduction of operating cost be about $0.023-$0.048/ ton.

Raj K. Rajamani; Sanjeeva Latchireddi; Sravan K. Prathy; Trilokyanath Patra

2005-12-01T23:59:59.000Z

228

Energy and technology review  

SciTech Connect (OSTI)

The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P. (eds.)

1982-07-01T23:59:59.000Z

229

Redox Flow Batteries for Grid-scale Energy Storage - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 RevisionDivision andIon Soft

230

Sankey Diagram of Energy Flow in U.S. Manufacturing | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsis aSecurity AdministrationSanket A.

231

Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow  

SciTech Connect (OSTI)

The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO{sub 2} TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 {mu}s and 80 {mu}s are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay.

Oliveira, A. C. [Instituto Nacional de Pesquisas Espaciais, 12630-000 Cachoeira Paulista (Brazil); Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr [Instituto de Estudos Avancados, 12228-001 Sao Jose dos Campos (Brazil); Myrabo, L. N. [Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States)

2008-04-28T23:59:59.000Z

232

5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, China, 36 July 2005  

E-Print Network [OSTI]

5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xian, such as hemangiomas and port wine stain (PWS) birthmarks, are congenital and pro- gressive vascular malformations of the dermis. To remove them, laser energy is irradiated at appropriate wavelengths inducing permanent thermal

Aguilar, Guillermo

233

LLNL in situ coal gasification project. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

We have continued our laboratory work on forward gasification through drilled holes in blocks of coal. These tests have produced some insight into cavity growth mechanisms and particulate production in Wyodak coal. The results will be presented at the Sixth Underground Coal Conversion Symposium in July. The data from the Hanna 4B experiment have been incorporated into the UCC Data Base and have been analyzed in the same way as the Hoe Creek data. Eventually, all of the Department of Energy (DOE) test data will be included in this continuing program. Site-restoration work has been started at the Hoe Creek site. This work includes the sealing of abandoned wells, some grading and reseeding of the ground surface, and general cleanup. A search for a site for underground coal-gasification (UCG) testing and possible commercial development has been carried out in Washington. The Tono basin was chosen as a tentative UCG test site, and a preliminary investigation of the site has been accomplished. Although the Tono basin appears suitable for UCG testing, additional geohydrologic investigation is needed. Our effort to survey the Soviet literature is continuing; in particular, experiments that yielded results similar to those obtained at Hoe Creek have been analyzed carefully. The Soviets conducted a series of directed-flow experiments in 1955 and 1956. In each experiment, both those in which the roof subsided and those in which it did not, the product-gas heating value was quite stable throughout the gasification period and there was no general decline in heating value, as is customarily observed.

Olness, D.U. (ed.)

1980-07-25T23:59:59.000Z

234

Energy states and energy flow near the transition states of unimolecular reactions  

SciTech Connect (OSTI)

The use of lasers with jet-cooled samples has improved energy and angular momentum resolution for the reactant and time resolution for the rate constant by orders of magnitude. The resolution of product quantum states has added a new dimension to unimolecular dynamics. In the past, the geometry, barrier height and vibrational frequencies of the transition state in RRKM theory were adjusted to fit thermal unimolecular reaction rate data. There have been successful quantitative tests of the ability of ab initio theory to calculate transition state geometries accurately and barrier heights to a few kJ/mol for simple molecules. Predicted frequencies tend to be somewhat too high for the softest modes which are of most importance in determining rates; however, the basic normal modes and sequence of frequencies seem to be correctly predicted. RRKM theory can be used with ab initio results to predict rate constants to within a factor of two or three and may be used for quantitative extrapolation to conditions not accessible in the laboratory but important in practical situations. Experiments on single molecular eigenstates have revealed quantum statistical fluctuations in rates which are predicted quantitatively in the appropriate extension of RRKM theory. Many experiments seeking to demonstrate non-statistical or non-RRKM dynamics have demonstrated the very wide range of applicability of the RRKM model. A few such experiments have demonstrated a lack of complete vibrational energy randomization in a reactant molecule. Dynamical theory has provided an exact quantum analog to RRKM theory which will combine with future experiments to define the extent to which quantized motion along the reaction coordinate and coupling between the reaction coordinate and vibrational degrees of freedom at the transition state are important. 42 refs., 11 figs.

Moore, C.B. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Chemical Sciences Div.

1994-10-01T23:59:59.000Z

235

DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE  

SciTech Connect (OSTI)

In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

2005-05-01T23:59:59.000Z

236

Modeling complex biological flows in multi-scale systems using the APDEC framework  

E-Print Network [OSTI]

Modeling complex biological flows in multi-scale systems using the APDEC framework David Trebotich methods are based on higher-order finite difference methods in complex geometry with adaptivity-mail: trebotich1@llnl.gov Abstract. We have developed advanced numerical algorithms to model biological fluids

237

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

238

Problems in resumming interjet energy flows with k_t clustering  

E-Print Network [OSTI]

We consider the energy flow into gaps between hard jets. It was previously believed that the accuracy of resummed predictions for such observables can be improved by employing the $k_t$ clustering procedure to define the gap energy in terms of a sum of energies of soft jets (rather than individual hadrons) in the gap. This significantly reduces the sensitivity to correlated soft large-angle radiation (non-global leading logs), numerically calculable only in the large $N_c$ limit. While this is the case, as we demonstrate here, the use of $k_t$ clustering spoils the straightforward single-gluon Sudakov exponentiation that multiplies the non-global resummation. We carry out an ${\\mathcal{O}}(\\alpha_s^2)$ calculation of the leading single-logarithmic terms and identify the piece that is omitted by straightforward exponentiation. We compare our results with the full ${\\mathcal{O}} (\\alpha_s^2)$ result from the program EVENT2 to confirm our conclusions. For $e^{+}e^{-} \\to 2$ jets and DIS (1+1) jets one can numerically resum these additional contributions as we show, but for dijet photoproduction and hadron-hadron processes further studies are needed.

A. Banfi; M. Dasgupta

2005-08-13T23:59:59.000Z

239

Universal formula for the energy--momentum tensor via a flow equation in the Gross--Neveu model  

E-Print Network [OSTI]

For the fermion field in the two-dimensional Gross--Neveu model, we introduce a flow equation that allows a simple $1/N$ expansion. By employing the $1/N$ expansion, we examine the validity of a universal formula for the energy--momentum tensor which is based on the small flow-time expansion. We confirm that the formula reproduces a correct normalization and the conservation law of the energy--momentum tensor by computing the translation Ward--Takahashi relation in the leading non-trivial order in the $1/N$ expansion. Also we confirm that the expectation value at finite temperature correctly reproduces thermodynamic quantities. These observations support the validity of a similar construction of the energy--momentum tensor via the gradient/Wilson flow in lattice gauge theory.

Suzuki, Hiroshi

2015-01-01T23:59:59.000Z

240

An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements  

SciTech Connect (OSTI)

The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Lake, Joe E [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exciton-phonon information flow in the energy transfer process of photosynthetic complexes  

E-Print Network [OSTI]

Non-Markovian and non-equilibrium phonon effects are believed to be key ingredients in the energy transfer in photosynthetic complexes, especially in complexes which exhibit a regime of intermediate exciton-phonon coupling. In this work, we harness a recently developed measure for non-Markovianity to elucidate the information flow between electronic and vibrational degrees of freedom. We study the measure in the hierarchical equation of motion approach which captures strong system-bath coupling effects and non-equilibrium molecular reorganization. We find that, for a model dimer system and the Fenna-Matthews-Olson complex, non-Markovianity is significant under realistic physiological conditions. A first step towards experimental quantification is provided by the study of four-wave mixing initial states.

Rebentrost, Patrick

2010-01-01T23:59:59.000Z

242

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects  

SciTech Connect (OSTI)

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

Spane, Frank A.

2013-04-29T23:59:59.000Z

243

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network [OSTI]

. For example, the Venturi meter is commonly used for steam flow measurement, but it is less commonly used for water flow measurement because of the poor accuracy at low flow rates and high installation cost. 2) Displacement flow meter: The meter works... by using the fluid to rotate or displace a device inserted into the flow stream, e.g., a turbine flow meter, tangential paddlewheel meter, etc. It causes extra pressure drop. The bearing wears out and calibration is often needed to ensure accuracy...

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

244

Classical noise assists the flow of quantum energy by `momentum rejuvenation'  

E-Print Network [OSTI]

An important challenge in quantum science is to fully understand the efficiency of energy flow in networks. Here we present a simple and intuitive explanation for the intriguing observation that optimally efficient networks are not purely quantum, but are assisted by some interaction with a `noisy' classical environment. By considering the system's dynamics in both the site-basis and the momentum-basis, we show that the effect of classical noise is to sustain a broad momentum distribution, countering the depletion of high mobility terms which occurs as energy exits from the network. This picture predicts that the optimal level of classical noise is reciprocally related to the linear dimension of the lattice; our numerical simulations verify this prediction to high accuracy for regular 1D and 2D networks over a range of sizes up to thousands of sites. This insight leads to the discovery that dramatic further improvements in performance occur when a driving field targets noise at the low mobility components.

Ying Li; Filippo Caruso; Erik Gauger; Simon C. Benjamin

2014-06-13T23:59:59.000Z

245

Laser Fusion Energy The High Average Power  

E-Print Network [OSTI]

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

246

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

SciTech Connect (OSTI)

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

247

Variational bounds on the energy dissipation rate in body-forced shear flow  

E-Print Network [OSTI]

, the bulk (space and time averaged) dissipation rate per unit mass is proportional to the power required applied to many flows driven by boundary conditions, including shear flows and a variety of thermal

Petrov, Nikola

248

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network [OSTI]

temperature and decreased combustion gas mass flow rate. The method for calculating savings from preheating flow include minimizing combustion air, preheating combustion air, minimizing ventilation air from minimizing combustion air accounts for improvement in efficiency from increased combustion

Kissock, Kelly

249

LLNL MSP-GSS-001 PIA, Office of the Chief Information Officer | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared Temanson - ProjectUnlike incandescent andof Energy

250

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect (OSTI)

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

251

Energy Dependence of Directed Flow in Au+Au Collisions from a Multi-phase Transport Model  

E-Print Network [OSTI]

The directed flow of charged hadron and identified particles has been studied in the framework of a multi-phase transport (AMPT) model, for $^{197}$Au+$^{197}$Au collisions at $\\sqrt{s_{NN}}=$200, 130, 62.4, 39, 17.2 and 9.2 GeV. The rapidity, centrality and energy dependence of directed flow for charged particles over a wide rapidity range are presented. AMPT model gives the correct $v_1(y)$ slope, as well as its trend as a function of energy, while it underestimates the magnitude. Within the AMPT model, the proton $v_1$ slope is found to change its sign when the energy increases to 130 GeV - a feature that is consistent with ``anti-flow''. Hadronic re-scattering is found having little effect on $v_1$ at top RHIC energies. These studies can help us to understand the collective dynamics at early times in relativistic heavy-ion collisions, and they can also be served as references for the RHIC Beam Energy Scan program.

J. Y. Chen; J. X. Zuo; X. Z. Cai; F. Liu; Y. G. Ma; A. H. Tang

2009-12-09T23:59:59.000Z

252

Gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts  

E-Print Network [OSTI]

We investigate the gravitational collapse of a spherically symmetric, inhomogeneous star, which is described by a perfect fluid with heat flow and satisfies the equation of state $p=\\rho/3$ at its center. In the process of the gravitational collapsing, the energy of the whole star is emitted into space. And the remaining spacetime is a Minkowski one without a remnant at the end of the process. For a star with a solar mass and solar radius, the total energy emitted is at the order of $10^{54}$ {\\rm erg}, and the time-scale of the process is about $8s$. These are in the typical values for a gamma-ray burst. Thus, we suggest the gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts.

Zhe Chang; Cheng-Bo Guan; Chao-Guang Huang; Xin Li

2008-03-26T23:59:59.000Z

253

Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives  

SciTech Connect (OSTI)

This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

Jager, Yetta [ORNL

2010-10-01T23:59:59.000Z

254

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

Hong, Tainzhen

2010-01-01T23:59:59.000Z

255

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect (OSTI)

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

256

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network [OSTI]

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II structures that dominate wave momentum and energy transport. When the interior of a typical midlatitude jet and energy at jet interior critical levels. Longer waves transport momentum and energy away from the jet

Farrell, Brian F.

257

LLNL-TM-411345 HotSpot Health Physics Codes Version  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACMEFUTURE MOBILITYMarchUnitedr LA-UR- a

258

DOE's NREL and LLNL team with NOAA and University of Colorado to Study Wind  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAllianceDepartmentServices LLC Loan ApplicationInflow

259

Microsoft Word - Environmental Document for Continued Operation of LLNL August 2011.docx  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining theMembershipFiscalMarch 28,

260

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

the current movement toward net zero energy buildings, manyThe movement towards net zero energy buildings brings

Hong, Tainzhen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

262

In-medium NN cross sections determined from the nuclear stopping and collective flow in heavy-ion collisions at intermediate energies  

SciTech Connect (OSTI)

In-medium nucleon-nucleon scattering cross sections are explored by comparing results of quantum molecular dynamics simulations to data on stopping and on elliptic and directed flow in intermediate-energy heavy-ion collisions. The comparison points to in-medium cross sections which are suppressed at low energies but not at higher energies. Positive correlations are found between the degree of stopping and the magnitudes of elliptic and directed flows.

Zhang Yingxun [China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, P.O. Box 275 (18), Beijing 102413 (China); Center of Theoretical Nuclear Physics, National Laboratory of Lanzhou Heavy Ion Accelerator, Lanzhou 730000 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Danielewicz, Pawel [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

2007-03-15T23:59:59.000Z

263

Effect of initial fluctuations on the collective flow in intermediate-energy heavy ion collisions  

E-Print Network [OSTI]

A systemical analysis of the initial fluctuation effect on the collective flows for Au+Au at 1$A$ GeV has been presented in the framework of Isospin-dependent Quantum Molecular Dynamics model (IQMD), and a special focus on the initial fluctuation effect on the squeeze-out is emphasized. The flows calculated by the participant plane reconstructedby the initial geometry in coordinate space are compared with those calculated by both the ideal reaction plane and event plane methods. It is found that initial fluctuation weakens squeeze-out effect, and somediscrepancies between the flows extracted by the above different plane methods appearwhich indicate that the flows are affected by the evolution of dynamics. In addition, we found that the squeeze-out flow is also proportional to initial eccentricity. Our calculations also qualitatively give the similar trend for the excitation function of the elliptic flow of the FOPI experimental data. Finally we address the nucleon number scaling of the flows for light particles. Even though initial fluctuation decreases the ratio of $v_4/v_2^2$ as well as $v_3/(v_1v_2$) a lot, all fragments to mass number 4 keep the same curve and shows independent of transverse momentum.

Jia Wang; Yu-Gang Ma; Guo-Qiang Zhang; Wen-Qing Shen

2014-11-07T23:59:59.000Z

264

The technical basis for air pathway assessment of resuspended radioactive aerosols: LLNL experiences at seven sites around the world  

SciTech Connect (OSTI)

There is a large uncertainty in quantifying the inhalation pathway and the aerosol emission rate in human health assessments of radioactive-contamination sites. The need for site-specific assessments led to formation of our team of specialists at LLNL, who have participated in numerous field campaigns around the world. Our goal was to obtain all the information necessary for determining potential human exposures and to estimate source terms for turbulent transport of the emissions during both normal and disturbed soil conditions. That is, measurements were made of the key variables to quantify the suspended aerosols at the actual contamination sites, but different scenarios for habitation, site management, and site cleanup were included. The most notable locations of these site-investigations were the Marshall Islands (Bikini, Enewetak, and Rongelap), Nevada Test Site (GMX, Little Feller, Palanquin, and Plutonium Valley), Tonopah (Nevada--site of Roller Coaster), Savannah River Lab (South Carolina--H-Area site), Johnston Island (cleanup of rocket-impact site), Chernobyl (Ukraine--grass field end sandy beach sites near Nuclear Power Plant Unit 4), and Palomares (Spain--site of aircraft accident). This discussion will review the variables quantified, methods developed, general results, uncertainty of estimations, and recommendations for future research that are a result of our experience in these field studies.

Shinn, J.H.

1993-09-01T23:59:59.000Z

265

Red Cross honors LLNL as biggest blood donor west of Mississippi | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising ScienceRecent SRELRecycling Programs RecyclingNuclear

266

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample Environment: Magnet and6ledp/ The LINELiquidsNuclear

267

The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe Molecular Bond:Environmental Serving anIgnition

268

UCRL-ID-119665 LLNL Small-Scale Drop-Hammer Impact Sensitivity Test  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794 PREPRINT A Comparison of Riskf^17240,.

269

UCRL-ID-124563 LLNL Small-scale Friction Sensitivity (BAM) Test  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite JC-118794 PREPRINT A Comparison of

270

Membraneless hydrogen bromine laminar flow battery for large-scale energy storage  

E-Print Network [OSTI]

Electrochemical energy storage systems have been considered for a range of potential large-scale energy storage applications. These applications vary widely, both in the order of magnitude of energy storage that is required ...

Braff, William Allan

2014-01-01T23:59:59.000Z

271

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries  

SciTech Connect (OSTI)

We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

2014-12-03T23:59:59.000Z

272

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson...  

Open Energy Info (EERE)

do not have control signal or no loop in the system It only used deterministic optimization The power flow was static state. Question: Did they simulate the case or they have...

273

Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow  

SciTech Connect (OSTI)

In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ?50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description.

Di Stefano, C. A., E-mail: carlosds@umich.edu; Kuranz, C. C.; Klein, S. R.; Drake, R. P. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Malamud, G. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States) [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel); Henry de Frahan, M. T.; Johnsen, E. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Shimony, A.; Shvarts, D. [Department of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel) [Department of Physics, Nuclear Research Center-Negev, Beer-Sheva (Israel); Department of Physics, Ben-Gurion University, Beer-Sheva (Israel); Smalyuk, V. A.; Martinez, D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-05-15T23:59:59.000Z

274

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi'an, China, 11-15 July 2009  

E-Print Network [OSTI]

6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi in pipeline transportation, where it is important to identify and control bottlenecks influence on production be viewed as the hydrodynamic equivalent of the Mach number for gas flows. Simplified hydraulic theories

Al Hanbali, Ahmad

275

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

276

LLNL`s partnership with selected US mines, for CTBT verification: A pictorial and some reflections  

SciTech Connect (OSTI)

The verification of an upcoming Comprehensive Test Ban Treaty (CTBT) will involve seismic monitoring and will provide for on-site inspections which may include drilling. Because of the fact that mining operations can send out strong seismic signals, many mining districts in the US and abroad may come under special scrutiny. The seismic signals can be generated by the use of large quantities of conventional explosives, by the collapse of underground workings, or by sudden energy release in the ground such as in rock bursts and coal bumps. These mining activities may be the cause of false alarms, but may also offer opportunities for evasive nuclear testing. So in preparing for future verification of a CTBT it becomes important to address the mining-related questions. For the United States, these are questions to be answered with respect to foreign mines. But there is a good amount of commonality in mining methods worldwide. Studies conducted at US mine sites can provide good analogs of activities that may be carried out for overseas CTBT verification, save for the expected logistical impediments.

Heuze, F.E.

1996-01-01T23:59:59.000Z

277

Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows  

SciTech Connect (OSTI)

A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic OscillatorFree Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes.

Adamovich, Igor V. [Nonequilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)] [Nonequilibrium Thermodynamics Laboratory, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

2014-04-15T23:59:59.000Z

278

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlow

279

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlowHot

280

Foreign Travel Trip Report for LLNL travel with DOE FES funding,May 19th-30th, 2012  

SciTech Connect (OSTI)

I attended the 20th biannual International Conference on Plasma Surface Interaction (PSI) in Fusion Devices in Aachen, Germany, hosted this year by the Forschungszentrum Julich (FZJ) research center. The PSI conference is one of the main international forums for the presentation and discussion of results on plasma surface interactions and edge plasma physics relevant to magnetic confinement fusion devices. I disseminated the recent results of FESP/LLNL tokamak research by presenting three posters on: (i) understanding reconnection and controlling edge localized modes (ELMs) using the BOUT++ code, (ii) simulation of resistive ballooning mode turbulence, and (iii) innovative design of Snowflake divertors. I learned of many new and recent results from international tokamak facilities and had the opportunity for discussion of these topics with other scientists at the poster sessions, conference lunches/receptions, etc. Some of the major highlights of the PSI conference topics were: (1) Review of the progress in using metallic tungsten and beryllium (ITER-like) walls at international tokamak facilities: JET (Culham, UK), TEXTOR (FZJ, Germany) and Alcator CMOD (MIT, USA). Results included: effect of small and large-area melting on plasma impurity content and recovery, expected reduction in retention of hydrogenic species, increased heat load during disruptions and need for mitigation with massive gas injection. (2) A review of ELM control in general (T. Evans, GA) and recent results of ELM control using n=2 external magnetic perturbations on ASDEX-Upgrade (MPI-Garching, Germany). (3) General agreement among the international tokamak database that, along the outer midplane of a low collisionality tokamak, the SOL power width in current experiments varies inversely with respect to plasma current (Ip), roughly as 1/Ip, with little dependence on other plasma parameters. This would imply roughly a factor of 1/4 of the width that was assumed for the design of the ITER tokamak. The first studies of the implications for ITER (A. Kukushkin, ITER) have shown a great reduction in operational parameter space that, at present, can only be lifted by increasing target plate heat flux limits. During my visit to the CRPP at the EPFL, I delivered an invited talk in order to disseminate new results of the recent publication [1] on using non-axisymmetric perturbations of the SOL to control the edge plasma. I was given a tour of both the TCV tokamak and the TORPEX simple magnetized plasma device/divertor simulator. TORPEX is an excellent laboratory for exploring the physics of simple magnetized plasmas that are relevant to the scrape-off layer of a tokamak. Properly designed experiments on TORPEX can potentially be used to test the theory of controlling the edge plasma using non-axisymmetric potentials and currents in the SOL developed by LLNL described in [1].

Joseph, I

2012-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL  

SciTech Connect (OSTI)

Several facilities and many projects at LLNL work exclusively with tritium. These operations have the potential to generate large quantities of Low-Level Radioactive Waste (LLW) with the same or similar radiological characteristics. A standardized documented approach to characterizing these waste materials for disposal as radioactive waste will enhance the ability of the Laboratory to manage them in an efficient and timely manner while ensuring compliance with all applicable regulatory requirements. This standardized characterization approach couples documented process knowledge with analytical verification and is very conservative, overestimating the radioactivity concentration of the waste. The characterization approach documented here is the Normalized Tritium Quantification Approach (NoTQA). This document will serve as a Technical Basis Document which can be referenced in radioactive waste characterization documentation packages such as the Information Gathering Document. In general, radiological characterization of waste consists of both developing an isotopic breakdown (distribution) of radionuclides contaminating the waste and using an appropriate method to quantify the radionuclides in the waste. Characterization approaches require varying degrees of rigor depending upon the radionuclides contaminating the waste and the concentration of the radionuclide contaminants as related to regulatory thresholds. Generally, as activity levels in the waste approach a regulatory or disposal facility threshold the degree of required precision and accuracy, and therefore the level of rigor, increases. In the case of tritium, thresholds of concern for control, contamination, transportation, and waste acceptance are relatively high. Due to the benign nature of tritium and the resulting higher regulatory thresholds, this less rigorous yet conservative characterization approach is appropriate. The scope of this document is to define an appropriate and acceptable characterization method for quantification of tritium contaminated trash and debris. The characterization technique is applicable to surface and subsurface tritium contaminated materials with surfaces amenable to swiping. Some limitations of this characterization technique are identified.

Dominick, J L; Rasmussen, C L

2008-07-23T23:59:59.000Z

282

Multi Agent System to Optimize Comfort and Energy Flows in the Built Environment  

E-Print Network [OSTI]

This paper discusses the control of building energy comfort management systems led by the economic movement within the energy market resulting in different prices. This new generation of building management systems focuses on the application...

Pennings, L. W.; Houten, M. A.; Boxem, G.; Zeiler, W.

2010-01-01T23:59:59.000Z

283

ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts  

SciTech Connect (OSTI)

This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

Tetreault, T.; Regenthal, S.

2011-05-01T23:59:59.000Z

284

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

simulation with credible software programs is a proven feasible way to get quantitative comparison of the energy

Hong, Tainzhen

2010-01-01T23:59:59.000Z

285

Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves  

E-Print Network [OSTI]

We advance our prior energy- and flux-budget turbulence closure model (Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows and extend it accounting for additional vertical flux of momentum and additional productions of turbulent kinetic energy, turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). Main effects of IGW are following: the maximal value of the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. In the heterogeneous stratification, when IGW propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. IGW also reduce anisotropy of turbulence and increase the share of TPE in the turbulent total energy. Depending on the direction (downward or upward), IGW either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.

S. S. Zilitinkevich; T. Elperin; N. Kleeorin; V. L'vov; I. Rogachevskii

2009-08-18T23:59:59.000Z

286

Fictitious domain methods for two-phase flow energy balance computations in nuclear  

E-Print Network [OSTI]

is a software platform dedicated to the thermal- hydraulic numerical simulation of nuclear power plants from the local scale to the system scale through the component scale. The thermal-hydraulic simulation of nuclear power plants consists in modeling two-phase flow (wa- ter/steam) passing into obstacles: we are hence

Boyer, Edmond

287

Title: Scalable Low-Head Axial-Type Venturi-Flow Energy Principal Investigator: Nadipuram Prasad  

E-Print Network [OSTI]

a basis to design and develop a novel, scalable, low cost, easy to manufacture and assemble, modular and developed. Based upon the harvester specifications derived, NMSU will fabricate a 10kW hydropower harvester-of-river type water-flow mechanisms. Achieving this goal paves the way towards rapid commercialization

Johnson, Eric E.

288

Energy and materials flows in the production of olefins and their derivatives  

SciTech Connect (OSTI)

Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

Gaines, L.L.; Shen, S.Y.

1980-08-01T23:59:59.000Z

289

Preliminary analysis of the possibility of making use of part of the energy flow of zero-point radiation  

E-Print Network [OSTI]

The energy flow of zero-point radiation is very great, but difficult to put to use. However, the observations made by Sparnaay in 1958 and by Lamoureux in 1997 reveal the possibility of making use of a very small fraction of that immense amount. This possibility is big enough for such a minute fraction to have significant importance, but such a possibility requires miniaturisation to a degree which may be unattainable. It is worth trying to achieve it, since it would open the way to interstellar travel.

R. Alvargonzalez; L. S. Soto

2008-03-07T23:59:59.000Z

290

Evidence for radial flow of thermal dileptons in high-energy nuclear collisions  

E-Print Network [OSTI]

The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

NA60 Collaboration; R. Arnaldi

2007-11-12T23:59:59.000Z

291

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network [OSTI]

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

292

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network [OSTI]

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z

293

Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications.  

E-Print Network [OSTI]

??As wind energy penetration levels increase, there is a growing interest in using storage devices to aid in managing the fluctuations in wind turbine output (more)

Chahwan, John A.

2007-01-01T23:59:59.000Z

294

Two-phase flow in geothermal energy sources. Final technical report  

SciTech Connect (OSTI)

A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.

Not Available

1981-07-01T23:59:59.000Z

295

LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow  

SciTech Connect (OSTI)

An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the 'fuel from waste' in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.

Tunesi, Simonetta, E-mail: s.tunesi@ucl.ac.uk [Environment Institute, University College London, Pearson Building, Gower Street, WC1E 6BT London (United Kingdom)

2011-03-15T23:59:59.000Z

296

Energy flows in a secondary city: a case study of Nakuru, Kenya  

SciTech Connect (OSTI)

Secondary cities are currently seen as an important focus for promoting a more spatially-equitable pattern of economic infrastructure in developing countries, but their energy needs have not been considered. To test the thesis of this work - that the present pattern of energy demand in secondary cities differs, in important ways, from that of primary cities - a case study was conducted in the East African city of Nakuru, Kenya. Energy supplies used in Nakuru fall into two categories: industrial sources (electricity and petroleum) and traditional sources (wood, charcoal, and agricultural residues). This analysis of Nakuru's use of industrial sources is introduced by a historical discussion of nationwide patterns of distribution, use, and pricing of electricity and petroleum products, and is followed by data gathered from Nakuru's suppliers of these energy sources. The portrait of energy use in Nakuru is completed with an analysis of the demand for traditional energy sources. Surveys were conducted to estimate the total quantities of charcoal, wood, and agricultural resides used in Nakuru. The cornerstone of this effort was a residential energy survey stratified according to income. Nakuru is shown to rely on biomass fuels (charcoal) to a much greater degree than Nairobi, thereby proving the thesis.

Milukas, M.V.

1987-01-01T23:59:59.000Z

297

Transitioning from Fuel Cells to Redox Flow Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor for

298

Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy  

SciTech Connect (OSTI)

This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.

Andrea Prosperetti

2004-12-21T23:59:59.000Z

299

Complex Flow Workshop Assesses Future R&D Needs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment14,Complex Flow Workshop

300

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At Fort

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At

302

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test

303

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow TestPilgrim

304

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow

305

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowArea (DOE GTP)

306

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow Test

307

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow

308

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNewFlow6

309

Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis  

E-Print Network [OSTI]

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus...

Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

2006-01-01T23:59:59.000Z

310

ARM 36-21-671 - Abandonment of Flowing Wells | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind Energy JumpEnergyApplicationWater7Open

311

Energy Flow Diagram | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane S LessnerDrTimEarth

312

Scrape-Off-Layer Flow Studies in Tokamaks: Final Report of LDRD Project 09-ERD-025  

SciTech Connect (OSTI)

A summary is given of the work carried out under the LDRD project 09-ERD-025 entitled Scrape-Off-Layer Flow Studies in Tokamaks. This project has lead to implementation of the new prototype Fourier Transform Spectrometer edge plasma flow diagnostic on the DIII-D National Fusion Facility at General Atomics, acquisition of carbon impurity concentration and flow data, and demonstration that the resulting data compare reasonably well with LLNL's edge plasma transport code UEDGE. Details of the work are contained in attached published papers, while the most recent results that are being written-up for publication are summarized in the report. Boundary plasma flows in tokamak fusion devices are key in determining the distribution of fuel and impurity ions, with tritium build-up in the walls an especially critical operational issue. The intrusion of impurity ions to the hot plasma core region can result in serious energy-loss owing to line radiation. However, flow diagnostic capability has been severely limited in fusion-relevant hot edge plasmas where Langmuir-type probes cannot withstand the high heat flux and traditional Doppler spectroscopy has limited resolution and signal strength. Thus, new edge plasma flow diagnostic capabilities need to be developed that can be used in existing and future devices such as ITER. The understanding of such flows requires simulation with 2-dimensional transport codes owing to the geometrical complexity of the edge region in contact with material surfaces and the large number of interaction physical processes including plasma flow along and across the magnetic field, and coupling between impurity and neutral species. The characteristics of edge plasma flows are substantially affected by cross-magnetic-field drifts (ExB/B{sup 2} and BxVB/B{sup 2}), which are known to introduce substantial convergence difficulty for some cases. It is important that these difficulties be overcome so that drifts can be included in transport models, both for validation with existing data and for projection to future devices.

Rognlien, T D; Allen, S L; Ellis, R M; Porter, G D; Nam, S K; Weber, T R; Umansky, M V; Howard, J

2011-11-21T23:59:59.000Z

313

Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy flows  

E-Print Network [OSTI]

Neuroimaging and neuroenergetics: Brain activations as information-driven reorganization of energy 25 January 2010 Keywords: Neuroimaging Neuroenergetics Brain activation Cortical response Deviance detection a b s t r a c t There is increasing focus on the neurophysiological underpinnings of brain

314

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

SciTech Connect (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

315

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary  

SciTech Connect (OSTI)

Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

Peterson, S

2007-09-05T23:59:59.000Z

316

Beam energy dependence of Elliptic and Triangular flow with the AMPT model  

E-Print Network [OSTI]

A beam energy scan has been carried out at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory to search for the onset of deconfinement and a possible critical point where the transition from a Quark Gluon Plasma to a hadronic phase changes from a rapid cross-over to a first order phase transition. Anisotropy in the azimuthal distribution of produced particles such as the second and third harmonics $v_2$ and $v_3$ are expected to be sensitive to the existence of a Quark Gluon Plasma phase and the Equation of State of the system. For this reason, they are of great experimental interests. In this Letter we report on calculations of $v_2$ and $v_3$ from the AMPT model in the Default(Def.) and String Melting(SM) mode to provide a reference for the energy dependence of $v_2$ and $v_3$ for $\\sqrt{s_{_{NN}}}$ from 7.7 GeV to 2.76 TeV. We expect that in the case that collisions cease to produce QGP at lower colliding energies, data will deviate from the AMPT String Melting calculations and come in better agreement with the Default calculations.

Dronika Solanki; Paul Sorensen; Sumit Basu; Rashmi Raniwala; Tapan Kumar Nayak

2013-01-10T23:59:59.000Z

317

BREATH Version 1.1, Coupled flow and energy transport in porous media: Simulator description and user guide  

SciTech Connect (OSTI)

This document describes the BREATH computer code, including the mathematical and numerical formulation for the simulator, usage description, and sample input files with corresponding output files. The BREATH computer code is designed to simulate one-dimensional flow of a liquid phase and dispersive transport of the corresponding vapor species, coupled with energy transfer, in a heterogeneous porous medium. The BREATH simulator has been developed for use in auxiliary analyses which are a part of the Nuclear Regulatory Commission Iterative Performance Assessment program. The simulator was developed in response to the observation from Total System Performance Assessments by both the Nuclear Regulatory Commission and the US Department of Energy that total-system performance at the Yucca Mountain site in Nevada is highly sensitive to the infiltration rate. Accordingly, this first version of the code is primarily intended to simulate processes important to infiltration and evaporation in climatic and hydrologic near-surface environments representative of the Yucca Mountain site. The simulation model assumes that there is an immobile solid phase, a mobile liquid phase, and an optional infinitely mobile gas phase. The liquid may have an associated vapor species, assumed to be in equilibrium with the liquid phase. The vapor phase may only move via diffusion within the gas phase. Energy may be transported in the form of enthalpy, thermal conduction, and latent heat. The temperature range is assumed to be between 0 and 100{degree}C. Available boundary conditions include six liquid-phase conditions, four vapor-species conditions, and three energy conditions, all of which may be applied independently to either end of the domain. Meteorological conditions may also be input, thereby providing additional control over boundary fluxes. Boundary conditions may be updated as often as desired.

Stothoff, S.A.

1995-07-01T23:59:59.000Z

318

Fuel Cell with Metal Screen Flow-Field - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015 7:00FuelFuel

319

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS1 | E nergy EBatteries.

320

A Stable Vanadium Redox-Flow Battery with High Energy Density for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSL Shell

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open EnergyMcgee

322

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE GTP,

323

Flow Test At San Emidio Desert Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE

324

Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE

325

Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOESoda

326

KIVA--Hydrodynamics Model for Chemically Reacting Flow with Spray - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates 18-ton machine | Nationalm

327

Thermal Energy Measurement with Tangential Paddlewheel Flow Meters: Summary of Experimental Results and in-situ Diagnostics  

E-Print Network [OSTI]

paddlewheel flow meters, and several new methods for in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing fluctuating flow conditions or if a flow meter is suffering a degraded signal due to shaft wear. INTRODUCTION Flow... section where it passes across the candidate sensor that is placed in the inter-changeable test section, through the orifice plate and finally into the is combined with Btu meter the threshold can be much higher than the published threshold of the flow...

Haberl, J. S.; Watt, J. B.

1994-01-01T23:59:59.000Z

328

Energy Lossand Flow of Heavy Quarks in Au+Au Collisions at root-s=200GeV  

SciTech Connect (OSTI)

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p{sub rmT} < 9 GeV/c at midrapidity (|y| < 0.35) from heavy flavor (charm and bottom) decays in Au+Au collisions at {radical}s{sub NN} = 200 GeV. The nuclear modification factor R{sub AA} relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy, v{sub 2}, with respect to the reaction plane is observed for 0.5 < p{sub rmT} < 5 GeV/c indicating non-zero heavy flavor elliptic flow. A simultaneous description of R{sub AA}(p{sub rmT}) and v{sub 2}(p{sub rmT}) constrains the existing models of heavy-quark rescattering in strongly interacting matter and provides information on the transport properties of the produced medium. In particular, a viscosity to entropy density ratio close to the conjectured quantum lower bound, i.e. near a perfect fluid, is suggested.

Soltz, R; Klay, J; Enokizono, A; Newby, J; Heffner, M; Hartouni, E

2007-02-26T23:59:59.000Z

329

Meteorological Observations for Renewable Energy Applications at Site 300  

SciTech Connect (OSTI)

In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

Wharton, S; Alai, M; Myers, K

2011-10-26T23:59:59.000Z

330

Summary of photochemical and radiative data used in the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1982  

SciTech Connect (OSTI)

This report summarizes the contents and sources of the photochemical and radiative segment of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere. Data include the solar flux incident at the top of the atmosphere, absorption spectra for O/sub 2/, O/sub 3/ and NO/sub 2/, and effective absorption coefficients for about 40 photolytic processes as functions of wavelength and, in a few cases, temperature and pressure. The current data set represents understanding of atmospheric photochemical processes as of late 1982 and relies largely on NASA Evaluation Number 5 of Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, JPL Publication 82-57 (DeMore et al., 1982). Implementation in the model, including the treatment of multiple scattering and cloud cover, is discussed in Wuebbles (1981).

Connell, P.S.; Wuebbles, D.J.

1983-01-01T23:59:59.000Z

331

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

SciTech Connect (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

332

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

SciTech Connect (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

Peterson, S

2007-08-15T23:59:59.000Z

333

Flow shop scheduling with peak power consumption constraints  

E-Print Network [OSTI]

Mar 29, 2012 ... Flow shop scheduling with peak power consumption constraints ... Keywords: scheduling, flow shop, energy, peak power consumption, integer...

K. Fang

2012-03-29T23:59:59.000Z

334

Flow Distances on Open Flow Networks  

E-Print Network [OSTI]

Open flow network is a weighted directed graph with a source and a sink, depicting flux distributions on networks in the steady state of an open flow system. Energetic food webs, economic input-output networks, and international trade networks, are open flow network models of energy flows between species, money or value flows between industrial sectors, and goods flows between countries, respectively. Flow distances (first-passage or total) between any given two nodes $i$ and $j$ are defined as the average number of transition steps of a random walker along the network from $i$ to $j$ under some conditions. They apparently deviate from the conventional random walk distance on a closed directed graph because they consider the openness of the flow network. Flow distances are explicitly expressed by underlying Markov matrix of a flow system in this paper. With this novel theoretical conception, we can visualize open flow networks, calculating centrality of each node, and clustering nodes into groups. We apply fl...

Guo, Liangzhu; Shi, Peiteng; Wang, Jun; Huang, Xiaohan; Zhang, Jiang

2015-01-01T23:59:59.000Z

335

National Ignition Facility LLNL-AR-585912_NIF-0135637-AA_2012-040468_NIF_UserGuide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33997000 East

336

Microsoft Word - Environmental Review of B832 Canyon at LLNL Site 300 2.24.11.doc  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining theMembershipFiscalMarch

337

Design and Manufacture of Energy Absorbing Materials  

SciTech Connect (OSTI)

Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-05-28T23:59:59.000Z

338

Design and Manufacture of Energy Absorbing Materials  

ScienceCinema (OSTI)

Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

Duoss, Eric

2014-05-30T23:59:59.000Z

339

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

340

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from geostrophic flows into  

E-Print Network [OSTI]

, and to bottom velocity obtained from a global ocean model. The total energy flux into internal lee wavesGEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from distribution of the energy flux is largest in the Southern Ocean which accounts for half of the total energy

Ferrari, Raffaele

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fire-protection research for energy technology: FY 80 year-end report. [For fusion energy experiments and other energy research  

SciTech Connect (OSTI)

This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

1981-05-26T23:59:59.000Z

342

LLNL underground coal gasification project. Quarterly progress report, July-Sep 1980. [Hoe Creek and Gorgas, Alabama tests  

SciTech Connect (OSTI)

Laboratory studies of forward gasification through drilled holes in blocks of coal have continued. Such studies give insight into cavity growth mechanisms and particulate production. In addition to obtaining a qualitative comparison of the forward burn characteristics of two coals, we obtained information on the influence of bedding plane/cleat structure orientation on the early-time shape of the burn cavity in the Roland coal. We have improved our model of the coal drying rate during underground coal gasification (UCG) by adding refinements to the model. To aid in analyzing and predicting the performance of UCG tests, we have developed a simple gas-compositional model. When the model was tested against experimental data from the three Hoe Creek experiments, it was able to match very closely the observed gas compositions, energy fractions, and water influxes. This model can be used to make performance predictions consistent with the material and energy balance constraints of the underground system. A postburn coring and wireline-logging study is under way at the Hoe Creek No. 3 site to investigate the overall effect of the directionally-drilled, horizontal linking hole to better estimate the amount of coal gasified and the shape of the combustion front, and to provide additional information on subsurface deformation and thermal effects. The site reclamation work was completed, including the dismantling of all surface equipment and piping and the plugging and sealing of process and diagnostics wells. Final grading of the reclaimed land has been completed, and the area is ready for disk-seeding. Our survey of the UCG literature has continued with a review of the extensive tests at Gorgas, Alabama, carried on by the US Bureau of Mines from 1947 to 1959.

Olness, D.U. (ed.)

1980-10-14T23:59:59.000Z

343

Transverse Collective Flow and Emission Order of Mid-Rapidity Fragments in Fermi Energy Heavy Ion Collisions  

E-Print Network [OSTI]

. The distributions are shown for using 3 (Top), 4 (Middle), and 5 (Bottom) total bins. . . . . . . . 100 42 Same as Figure 41, except results are from the CoMD simulation. . . 101 43 Average in-plane momentum, ?Px/A?, for protons as a function of the reduced... was applied (stars). The CoMD 600 fm/c + Gemini results are shown as solid squares on the right side of the plot for comparison. . 143 66 Flow parameter for protons and alpha particles is shown as a func- tion of time from the AMD simulation. The flow...

Kohley, Zachary Wayne

2011-10-21T23:59:59.000Z

344

Cotton flow  

E-Print Network [OSTI]

Using the conformally invariant Cotton tensor, we define a geometric flow, the "Cotton flow", which is exclusive to three dimensions. This flow tends to evolve the initial metrics into conformally flat ones, and is somewhat orthogonal to the Yamabe flow, the latter being a flow within a conformal class. We define an entropy functional, and study the flow of nine homogeneous spaces both numerically and analytically. In particular, we show that the arbitrarily deformed homogeneous 3-sphere flows into the round 3-sphere. Two of the nine homogeneous geometries, which are degenerated by the Ricci flow, are left intact by the Cotton flow.

Ali Ulas Ozgur Kisisel; Ozgur Sarioglu; Bayram Tekin

2008-06-17T23:59:59.000Z

345

Women @ Energy: Hye-Sook Park | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

doc position at the University of California, Berkeley, and then one at the Lawrence Livermore National Laboratory (LLNL) in 1987. She has been a staff scientist at LLNL since...

346

Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report  

SciTech Connect (OSTI)

An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

Celik, I.; Chattree, M.

1988-07-01T23:59:59.000Z

347

arXiv:physics/0607280v130Jul2006 APS/123-QED Energy Dissipation in Fractal-Forced Flow  

E-Print Network [OSTI]

48109 Nikola P. Petrov Department of Mathematics University of Oklahoma, Norman, OK 73019 (Dated: July ) as Re (1) where is the total energy dissipation rate per unit mass, is an integral (large) length the cascade picture of turbulence requires that energy be predominantly injected in a relatively narrow range

Cheskidov, Alexey

348

Piezoelectric Artificial Kelp: Experimentally Validated Parameter Optimization of a Quasi-Static, Flow-Driven Energy Harvester  

E-Print Network [OSTI]

Energy Harvesting Circuit..................................................... 25 Figure 11: Assumed Equivalent Circuit ........................................................................ 26 Figure 12: Charge Displaced Versus Time... piezoelectric element which develops stresses as a result of the vibrations. The changing stresses induce a current in the circuit via the electromechanical coupling in the material, demonstrating a novel means to recover waste vibration energy [4-6]. In a...

Pankonien, Alexander Morgan

2011-10-21T23:59:59.000Z

349

LLNL-CONF-523577 Using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test bed to study reservoir stimulation with low hydraulic pressure P. Fu, S. M. Johnson, C. R. Carrigan January 20, 2012 37th Stanford Geothermal Workshop Stanford, CA,...

350

LLNL Summer 2007 Internship Experience  

SciTech Connect (OSTI)

Since the 2001 anthrax attacks involving the US postal service, there have been increased efforts to study more advanced methods of decontamination and detection of viable Bacillus anthracis before and after decontamination efforts. Current methods for sample processing and viability analysis are low throughput ({approx}30-40 per day) requiring several manual steps, with confirmed results obtained days later. The group I am working with has developed more rapid, high throughput methods using automation to process surface samples combined with a time-course real-time Polymerase Chain Reaction (PCR) approach to determine the presence of viable B. anthracis spores. This process is referred to as Rapid Viability (RV)-PCR. These methods based on an observable change in PCR response during culturing showed detection of low numbers of bacterial pathogens in hours compared to days required for conventional culture analysis. In this project, we are studying detection limits, growth inhibition and PCR inhibition of a modified real-time PCR-based automated method of detecting B. anthracis Sterne (non-infectious variant) in various environmental samples containing levels of background debris expected during sampling. In order to decrease the detection limit, additional clean-up steps are employed. Since B. anthracis spores are very resilient to solvents, ethanol treatment can also be used to kill other bacteria (vegetative cells) in the sample. Finally, dilution of the sample may be useful to dilute out contaminants. Using commercially available robotics (Figure 1), each of these treatment steps can be automated, allowing processing of 100-200 swabs per day, with quantitative results obtained within 24 hours. Automation also reduces the risk of pathogens since no manual liquid handling steps and no plating or centrifugation is required. Traditional viability analysis uses manual steps for sample processing including performing dilutions, plating onto solid media, counting colonies and confirming the presence of B. anthracis using biochemical tests. The RV-PCR approach uses specific detection via real-time PCR so that additional verification of the pathogen is unnecessary. The RV-PCR method is based on a significant shift in real-time PCR response curve over time ({Delta}Ct), but also is dependent on Ct{sub 0} and Ct{sub final} (Figure 2). Criteria were developed to accurately distinguish live cells from dead spores by testing with thousands of samples containing low levels (1-10) of live spores in background of 106 dead spores and/or background debris and high populations of non-target bacteria. Finally, a Most Probable Number (MPN) method was combined with the RV-PCR approach to yield a quantitative method to estimate the number of spores in the sample. In this study, the automated MPN RV-PCR method has been optimized to accommodate high amounts of debris from real-world samples.

New, A A

2007-08-21T23:59:59.000Z

351

High energy laser optics manufacturing: a preliminary study  

SciTech Connect (OSTI)

This report presents concepts and methods, major conclusions, and major recommendations concerning the fabrication of high energy laser optics (HELO) that are to be machined by the Large Optics Diamond Turning Machine (LODTM) at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of concepts and methods proposed for metrological operations, polishing of reflective surfaces, mounting of optical components, construction of mirror substrates, and applications of coatings are included.

Baird, E.D.

1980-07-01T23:59:59.000Z

352

Evaluation of flow hood measurements for residential register flows  

SciTech Connect (OSTI)

Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large--on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue.

Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

2001-09-01T23:59:59.000Z

353

Network Flow Optimization under Uncertainty  

E-Print Network [OSTI]

Network model in words Minimize the cost of satisfying demands for electric energy By: imports, exports and electricity Subject to: conservation of energy flows (net after losses), lower and upper bounds on flows is a reactive approach: how would the optimal solution have changed if I'd only known? · Proactive approaches

Tesfatsion, Leigh

354

Assessment of reaction-rate predictions of a collision-energy approach for chemical reactions in atmospheric flows.  

SciTech Connect (OSTI)

A recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates is assessed for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary non-equilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological nonequilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, significant differences can be found. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

2010-06-01T23:59:59.000Z

355

Beam-Energy Dependence of Directed Flow of Protons, Antiprotons and Pions in Au+Au Collisions  

E-Print Network [OSTI]

Rapidity-odd directed flow($v_1$) measurements for charged pions, protons and antiprotons near mid-rapidity ($y=0$) are reported in $\\sqrt{s_{NN}} =$ 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV Au + Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). At intermediate impact parameters, the proton and net-proton slope parameter $dv_1/dy|_{y=0}$ shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton $dv_1/dy|_{y=0}$ changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

STAR Collaboration; L. Adamczyk; J. K. Adkins; G. Agakishiev; M. M. Aggarwal; Z. Ahammed; I. Alekseev; J. Alford; C. D. Anson; A. Aparin; D. Arkhipkin; E. C. Aschenauer; G. S. Averichev; A. Banerjee; D. R. Beavis; R. Bellwied; A. Bhasin; A. K. Bhati; P. Bhattarai; H. Bichsel; J. Bielcik; J. Bielcikova; L. C. Bland; I. G. Bordyuzhin; W. Borowski; J. Bouchet; A. V. Brandin; S. G. Brovko; S. Bltmann; I. Bunzarov; T. P. Burton; J. Butterworth; H. Caines; M. Caldern de la Barca Snchez; D. Cebra; R. Cendejas; M. C. Cervantes; P. Chaloupka; Z. Chang; S. Chattopadhyay; H. F. Chen; J. H. Chen; L. Chen; J. Cheng; M. Cherney; A. Chikanian; W. Christie; J. Chwastowski; M. J. M. Codrington; G. Contin; J. G. Cramer; H. J. Crawford; X. Cui; S. Das; A. Davila Leyva; L. C. De Silva; R. R. Debbe; T. G. Dedovich; J. Deng; A. A. Derevschikov; R. Derradi de Souza; S. Dhamija; B. di Ruzza; L. Didenko; C. Dilks; F. Ding; P. Djawotho; X. Dong; J. L. Drachenberg; J. E. Draper; C. M. Du; L. E. Dunkelberger; J. C. Dunlop; L. G. Efimov; J. Engelage; K. S. Engle; G. Eppley; L. Eun; O. Evdokimov; O. Eyser; R. Fatemi; S. Fazio; J. Fedorisin; P. Filip; E. Finch; Y. Fisyak; C. E. Flores; C. A. Gagliardi; D. R. Gangadharan; D. Garand; F. Geurts; A. Gibson; M. Girard; S. Gliske; L. Greiner; D. Grosnick; D. S. Gunarathne; Y. Guo; A. Gupta; S. Gupta; W. Guryn; B. Haag; A. Hamed; L-X. Han; R. Haque; J. W. Harris; S. Heppelmann; A. Hirsch; G. W. Hoffmann; D. J. Hofman; S. Horvat; B. Huang; H. Z. Huang; X. Huang; P. Huck; T. J. Humanic; G. Igo; W. W. Jacobs; H. Jang; E. G. Judd; S. Kabana; D. Kalinkin; K. Kang; K. Kauder; H. W. Ke; D. Keane; A. Kechechyan; A. Kesich; Z. H. Khan; D. P. Kikola; I. Kisel; A. Kisiel; D. D. Koetke; T. Kollegger; J. Konzer; I. Koralt; L. Kotchenda; A. F. Kraishan; P. Kravtsov; K. Krueger; I. Kulakov; L. Kumar; R. A. Kycia; M. A. C. Lamont; J. M. Landgraf; K. D. Landry; J. Lauret; A. Lebedev; R. Lednicky; J. H. Lee; M. J. LeVine; C. Li; W. Li; X. Li; X. Li; Y. Li; Z. M. Li; M. A. Lisa; F. Liu; T. Ljubicic; W. J. Llope; M. Lomnitz; R. S. Longacre; X. Luo; G. L. Ma; Y. G. Ma; D. M. M. D. Madagodagettige Don; D. P. Mahapatra; R. Majka; S. Margetis; C. Markert; H. Masui; H. S. Matis; D. McDonald; T. S. McShane; N. G. Minaev; S. Mioduszewski; B. Mohanty; M. M. Mondal; D. A. Morozov; M. K. Mustafa; B. K. Nandi; Md. Nasim; T. K. Nayak; J. M. Nelson; G. Nigmatkulov; L. V. Nogach; S. Y. Noh; J. Novak; S. B. Nurushev; G. Odyniec; A. Ogawa; K. Oh; A. Ohlson; V. Okorokov; E. W. Oldag; D. L. Olvitt Jr.; M. Pachr; B. S. Page; S. K. Pal; Y. X. Pan; Y. Pandit; Y. Panebratsev; T. Pawlak; B. Pawlik; H. Pei; C. Perkins; W. Peryt; P. Pile; M. Planinic; J. Pluta; N. Poljak; J. Porter; A. M. Poskanzer; N. K. Pruthi; M. Przybycien; P. R. Pujahari; J. Putschke; H. Qiu; A. Quintero; S. Ramachandran; R. Raniwala; S. Raniwala; R. L. Ray; C. K. Riley; H. G. Ritter; J. B. Roberts; O. V. Rogachevskiy; J. L. Romero; J. F. Ross; A. Roy; L. Ruan; J. Rusnak; O. Rusnakova; N. R. Sahoo; P. K. Sahu; I. Sakrejda; S. Salur; J. Sandweiss; E. Sangaline; A. Sarkar; J. Schambach; R. P. Scharenberg; A. M. Schmah; W. B. Schmidke; N. Schmitz; J. Seger; P. Seyboth; N. Shah; E. Shahaliev; P. V. Shanmuganathan; M. Shao; B. Sharma; W. Q. Shen; S. S. Shi; Q. Y. Shou; E. P. Sichtermann; R. N. Singaraju; M. J. Skoby; D. Smirnov; N. Smirnov; D. Solanki; P. Sorensen; H. M. Spinka; B. Srivastava; T. D. S. Stanislaus; J. R. Stevens; R. Stock; M. Strikhanov; B. Stringfellow; M. Sumbera; X. Sun; X. M. Sun; Y. Sun; Z. Sun; B. Surrow; D. N. Svirida; T. J. M. Symons; M. A. Szelezniak; J. Takahashi; A. H. Tang; Z. Tang; T. Tarnowsky; J. H. Thomas; A. R. Timmins; D. Tlusty; M. Tokarev; S. Trentalange; R. E. Tribble; P. Tribedy; B. A. Trzeciak; O. D. Tsai; J. Turnau; T. Ullrich; D. G. Underwood; G. Van Buren; G. van Nieuwenhuizen; M. Vandenbroucke; J. A. Vanfossen, Jr.; R. Varma; G. M. S. Vasconcelos; A. N. Vasiliev; R. Vertesi; F. Videbk; Y. P. Viyogi; S. Vokal; A. Vossen; M. Wada; F. Wang; G. Wang; H. Wang; J. S. Wang; X. L. Wang; Y. Wang; Y. Wang; G. Webb; J. C. Webb; G. D. Westfall; H. Wieman; S. W. Wissink; R. Witt; Y. F. Wu; Z. Xiao; W. Xie; K. Xin; H. Xu; J. Xu; N. Xu; Q. H. Xu; Y. Xu; Z. Xu; W. Yan; C. Yang; Y. Yang; Y. Yang; Z. Ye; P. Yepes; L. Yi; K. Yip; I-K. Yoo; N. Yu; Y. Zawisza; H. Zbroszczyk; W. Zha; J. B. Zhang; J. L. Zhang; S. Zhang; X. P. Zhang; Y. Zhang; Z. P. Zhang; F. Zhao; J. Zhao; C. Zhong; X. Zhu; Y. H. Zhu; Y. Zoulkarneeva; M. Zyzak

2014-04-04T23:59:59.000Z

356

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

357

Women @ Energy: Maya Gokhale | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maya Gokhale has been a Computer Scientist at the Lawrence Livermore National Laboratory (LLNL) since 2007. Her career spans research conducted in academia, industry, and National...

358

Forward energy flow, central charged-particle multiplicities, and pseudorapidity gaps in W and Z boson events from pp collisions at $\\sqrt{s}= 7$ TeV  

SciTech Connect (OSTI)

A study of forward energy flow and central charged-particle multiplicity in events with W and Z bosons decaying into leptons is presented. The analysis uses a sample of 7 TeV pp collisions, corresponding to an integrated luminosity of 36 inverse picobarns, recorded by the CMS experiment at the LHC. The observed forward energy depositions, their correlations, and the central charged-particle multiplicities are not well described by the available non-diffractive soft-hadron production models. A study of about 300 events with no significant energy deposited in one of the forward calorimeters, corresponding to a pseudorapidity gap of at least 1.9 units, is also presented. An indication for a diffractive component in these events comes from the observation that the majority of the charged leptons from the (W/Z) decays are found in the hemisphere opposite to the gap. When fitting the signed lepton pseudorapidity distribution of these events with predicted distributions from an admixture of diffractive (POMPYT) and non-diffractive (PYTHIA) Monte Carlo simulations, the diffractive component is determined to be (50.0 +/- 9.3 (stat.) +/- 5.2 (syst.))%.

Chatrchyan, Serguei; et al.

2012-01-01T23:59:59.000Z

359

Energy and technology review, January--February 1995. State of the laboratory  

SciTech Connect (OSTI)

This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A. [eds.

1995-02-01T23:59:59.000Z

360

A Simple Optimal Power Flow Model with Energy Storage K. Mani Chandy, Steven H. Low, Ufuk Topcu and Huan Xu  

E-Print Network [OSTI]

is motivated by the intensifying trend to deploy renewable energy such as wind or solar power. In the state of California, peak demand for power in 2003 reached 52 GW, with projections for the year 2030 exceeding 80 GW% reserve margin, an additional 60 GW of new generation capacity will be needed by 2030 [9]. In 2006

Xu , Huan

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Study of Power Converter Topologies with Energy Recovery and grid power flow control. Part A: 2-quadrant converter with energy storage.  

E-Print Network [OSTI]

In the framework of a Transfer line (TT2) Consolidation Programme, a number of studies on Energy cycling have been commissioned. Part of this work involves the study of different power electronic system topologies for magnet energy recovery [1{5]. In this report, the use of a two-quadrant (2Q) regulator connected to the DC link of a 4-quadrant magnet supply is analysed. The key objective of the study is to find control strategies that result in the control of the peak power required from the power network as well as to recover the magnet energy into capacitor banks with controlled voltage fluctuation. The study comprises the modelling of the system by means of the method of state averaging and the development of regulation strategies to energy management. The proposed control strategies can be divided in two groups: in the first group, the magnet current is used to dene the reference for the control system, while in the second group this current is considered as a perturbation and some strategies are devised ...

Maestri, S; Uicich, G; Benedetti, M; Le Godec, G; Papastergiou, K

2015-01-01T23:59:59.000Z

362

Quasi-isentropic and shock compression of FCC and BCC metals : effects of grain size and stacking-fault energy  

E-Print Network [OSTI]

1 Figure 1.2: (a) Schematic of the NIF facility at LLNL (courtesy of: www.llnl.gov/nif); (b) Schematic of thethat takes place within the target chamber (from LLNL NIF

Jarmakani, Hussam N.

2008-01-01T23:59:59.000Z

363

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344  

E-Print Network [OSTI]

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL Vulcan TAW Helen Trident Texas Vulcan PW LULI 2000 TITAN Gekko XII FIREX I NIF ARC Quad OMEGA EP PETAL

364

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344  

E-Print Network [OSTI]

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL States of Matter ­ FI Advanced Concepts Exploration ­ Virtual Lab for Technology ITER NIF Burning Plasma

365

Future Technologies to Enhance Geothermal Energy Recovery  

SciTech Connect (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

366

The Advanced Research Projects Agency-Energy (ARPA-E) has awarded engineers at Case Western Reserve University $1,508,000 in a second round of funding to continue the development of their iron flow  

E-Print Network [OSTI]

efficiency and reliability with storage increases, while decreasing hazardous effects of energy generation University $1,508,000 in a second round of funding to continue the development of their iron flow battery which drives down costs and expands battery applications. ARPA-E is a division of the U.S. Department

Rollins, Andrew M.

367

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

368

Geological flows  

E-Print Network [OSTI]

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov

2008-11-19T23:59:59.000Z

369

Measurement of thermodynamics using gradient flow  

E-Print Network [OSTI]

We analyze bulk thermodynamics and correlation functions of the energy-momentum tensor in pure Yang-Mills gauge theory using the energy-momentum tensor defined by the gradient flow and small flow time expansion. Our results on thermodynamic observables are consistent with those obtained by the conventional integral method. The analysis of the correlation function of total energy supports the energy conservation. It is also addressed that these analyses with gradient flow require less statistics compared with the previous methods. All these results suggest that the energy-momentum tensor can be successfully defined and observed on the lattice with moderate numerical costs with the gradient flow.

Masakiyo Kitazawa; Masayuki Asakawa; Tetsuo Hatsuda; Takumi Iritani; Etsuko Itou; Hiroshi Suzuki

2014-12-15T23:59:59.000Z

370

Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

1997-01-01T23:59:59.000Z

371

Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

Davis, G.; Mansur, D.L.; Ruhter, W.D.; Steele, E.; Strait, R.S.

1994-01-01T23:59:59.000Z

372

Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

1993-10-01T23:59:59.000Z

373

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

374

QED corrections to the 4p -4d transition energies of copperlike W. R. Johnson  

E-Print Network [OSTI]

QED corrections to the 4p - 4d transition energies of copperlike heavy ions W. R. Johnson and J: 31.30.Jv, 32.30.Rj, 31.25.-v, 31.15.Ar johnson@nd.edu jsapirst@nd.edu chen7@llnl.gov § ktcheng were carried out by Johnson et al. [8] with RMBPT to the third order in both the Coulomb and Breit

Johnson, Walter R.

375

Ignition on the National Ignition Facility: A Path Towards Inertial Fusion Energy  

E-Print Network [OSTI]

to Arial 18 pt bold Name here Title or division here Date 00, 2008 LLNL-PRES-407907 #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 2 Two major possibilities for fusion energy #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 3 The NIF is nearing completion and will be conducting

376

Renewables for Energy Conservation  

E-Print Network [OSTI]

;Renewable Energy Options Wind Solar Small Hydro Biomass Tidal Energy Wave Energy Ocean Thermal Energy SolarRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

Banerjee, Rangan

377

Department of Chemical Engineering Thermal and Flow Engineering Laboratory  

E-Print Network [OSTI]

Aug.2013 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven.1 Fluid statics 6.2 Fluid dynamics: viscosity, laminar / turbulent flow, boundary layer 6.3 Fluid dynamics: internal flows / tube flows 6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems 6.5 Flow

Zevenhoven, Ron

378

Department of Chemical Engineering Thermal and Flow Engineering Laboratory  

E-Print Network [OSTI]

August 12 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron Zevenhoven.1 Fluid statics 6.2 Fluid dynamics: viscosity, laminar / turbulent flow, boundary layer 6.3 Fluid dynamics: internal flows / tube flows 6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems 6.5 Flow

Zevenhoven, Ron

379

Cooling Flows or Heating Flows?  

E-Print Network [OSTI]

It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

James Binney

2003-10-08T23:59:59.000Z

380

Flow Test | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlint

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy 101: Hydropower  

SciTech Connect (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-01T23:59:59.000Z

382

Energy 101: Hydropower  

ScienceCinema (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-24T23:59:59.000Z

383

E-Print Network 3.0 - air flow fields Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Technologies Division, Lawrence Berkeley National Laboratory Collection: Energy Storage, Conversion and Utilization 4 Accuracy of Flow Hoods in Residential...

384

Progress in Grid Scale Flow Batteries  

E-Print Network [OSTI]

Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow;LogMW Renewables (not capacity factor adjusted) 9 8 7 6 5 4 3 Wind Wind (proj) Solar PV Solar PV 2011Year #12;Flow Battery Research at PNNL and Sandia #12

385

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

386

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

387

Flow cytometer  

DOE Patents [OSTI]

A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

Van den Engh, G.

1995-11-07T23:59:59.000Z

388

ELECTR-5744; No of Pages 26 Please cite this article in press as: Bazilian M, have surnames. Informing the Financing of Universal Energy Access: An Assessment of Current Financial FlowsElectr. J. (2011), doi:10.1016/j.tej.2011.07.006  

E-Print Network [OSTI]

). Their appreciation also goes to colleagues who provided crucial input and critical reviews of earlier drafts poverty (see IEA, 2010; Bazilian et al., 2010a,b). We find that the financial flows related to the energy

Kammen, Daniel M.

389

Energy  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGY MEASUREMENTS;/:4,4 (; . 1.;Suire

390

Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)  

SciTech Connect (OSTI)

A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 714 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.; Patankar, S.; Stewart, N. H.; Smith, R. A.; Burdiak, G. C.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Suzuki-Vidal, F.; Bland, S. N.; Kwek, K. H.; Pickworth, L.; Bennett, M.; Hare, J. D. [Plasma Physics Group, Imperial College, London SW6 7LZ (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratory, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

2014-11-15T23:59:59.000Z

391

SFTEL: Flow Cell | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Cell EMSL's Subsurface Flow and Transport Experimental Laboratory offers several meter-scale flow cells and columns for research in saturated and unsaturated porous media....

392

E-Print Network 3.0 - atomizer air flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the air flow but without conductive heat losses... not cooled, the electric discharge energy was transferred totally to the air plasma flow. We applied... strictly between the...

393

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

energy flows in the building electrical load tree. . . . . . . . . . . . . . . . . . . . . . . .intrinsic property of energy load trees is additivity - thevisualization of energy flows in the load tree, as shown in

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

394

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries. Abstract: We will...

395

Constraints on flow regimes in wide-aperture fractures  

SciTech Connect (OSTI)

In recent years, significant advances have been made in our understanding of the complex flow processes in individual fractures, aided by flow visualization experiments and conceptual modeling efforts. These advances have led to the recognition of several flow regimes in individual fractures subjected to different initial and boundary conditions. Of these, the most important regimes are film flow, rivulet flow, and sliding of droplets. The existence of such significantly dissimilar flow regimes has been a major hindrance in the development of self-consistent conceptual models of flow for single fractures that encompass all the flow regimes. The objective of this study is to delineate the existence of the different flow regimes in individual fractures. For steady-state flow conditions, we developed physical constraints on the different flow regimes that satisfy minimum energy configurations, which enabled us to segregate the wide range of fracture transmissivity (volumetric flow rate per fracture width) into several flow regimes. These are, in increasing order of flow rate, flow of adsorbed films, flow of sliding drops, rivulet flow, stable film flow, and unstable (turbulent) film flow. The scope of this study is limited to wide-aperture fractures with the flow on the opposing sides of fracture being independent.

Ghezzehei, Teamrat A.

2004-02-28T23:59:59.000Z

396

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect (OSTI)

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than todays lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

397

PHYSICAL REVIEW E 86, 056403 (2012) Energy transport in a shear flow of particles in a two-dimensional dusty plasma  

E-Print Network [OSTI]

of dust particles is still very soft, as characterized by a sound speed on the order of 1 cm/s [18.056403 PACS number(s): 52.27.Lw, 52.27.Gr, 44.10.+i, 83.50.Ax I. INTRODUCTION Flows of most liquid substances are usually studied by modeling the liquid as a continuum, but there are some substances that allow the study

Goree, John

398

AOI 1 COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems  

SciTech Connect (OSTI)

The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the optically thin approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di#14;fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gasparticulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

Modest, Michael

2013-11-15T23:59:59.000Z

399

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

link to today, so I thought I would share a few things I've heard people say about saving energy. February 6, 2012 Free Flow System turbine being installed in East River, New York,...

400

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37 East and WestLydiaEnabling timeEnergeticsEnergy

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the|ResourcesCareersEmploymentEnergy

402

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

403

Abstract--The inherent many-to-one flow of traffic in Wireless Sensor Networks produces a skewed distribution of energy  

E-Print Network [OSTI]

approaches aimed at balancing the consumption of energy in wireless networks are based on a linear distribution of energy consumption rates leading to the early demise of those sensors that are critical) it puts forward a new understanding of sensor network lifetime based on statistical measures, mean

Radha, Hayder

404

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

energy.goveerevideosenergy-101-wind-turbines-2014-update Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

405

Low volume flow meter  

DOE Patents [OSTI]

The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

Meixler, Lewis D. (East Windsor, NJ)

1993-01-01T23:59:59.000Z

406

Energy Harvesting Communications with Continuous Energy Arrivals  

E-Print Network [OSTI]

Energy Harvesting Communications with Continuous Energy Arrivals Burak Varan Kaya Tutuncuoglu Aylin--This work considers an energy harvesting transmit- ter that gathers a continuous flow of energy from intermittent sources, thus relaxing the modeling assumption of discrete amounts of harvested energy present

Yener, Aylin

407

Scaling bounds on dissipation in turbulent flows  

E-Print Network [OSTI]

We present a new rigorous method for estimating statistical quantities in fluid dynamics such as the (average) energy dissipation rate directly from the equations of motion. The method is tested on shear flow, channel flow, Rayleigh--B\\'enard convection and porous medium convection.

Seis, Christian

2015-01-01T23:59:59.000Z

408

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

409

Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industry forEmergingM

410

ENERGY  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||More EmphasisofEMABTank WasteEnvironmental

411

Propeller Flow Meter  

E-Print Network [OSTI]

Propeller flow meters are commonly used to measure water flow rate. They can also be used to estimate irrigation water use. This publication explains how to select, install, read and maintain propeller flow meters....

Enciso, Juan; Santistevan, Dean; Hla, Aung K.

2007-10-01T23:59:59.000Z

412

Dispersed flow film boiling  

E-Print Network [OSTI]

Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

Yoder, Graydon L.

1980-01-01T23:59:59.000Z

413

Bacteria in shear flow  

E-Print Network [OSTI]

Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

Marcos, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

414

2005 LLNL EM Report.pmd  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Training Records and Information Network MOA Memorandum of Agreement NA-40 NNSA Office of Emergency Operations NA-41 NNSA Office of Emergency Management NA-43 NNSA...

415

LLNL/LANS mission committee meeting  

SciTech Connect (OSTI)

Recent events continue to show the national security imperative of the global security mission: (1) Fighting Proliferation - (a) At Yongbyon, 'a modern, industrial-scale U-enrichment facility w/2000 centrifuges' seen Nov. 2010, (b) In Iran, fueling began at Bushehr while P5+1/lran talks delayed to Dec. 2010; (2) Continuing need to support the warfighter and IC - (a) tensions on the Korean peninsula, (b) primitative IEDs a challenge in Afghanistan, (c) cyber command, (d)another Georgian smuggling event; and (3) Countering terrorisms on US soil - (a) toner cartridge bomb, (b) times square bomb, (c) christmas tree bomb. Joint Technical Operations Team (JTOT) and Accident Response Group (ARG) elements deployed to two East Coast locations in November to work a multi-weapon scenario. LANL provided 70% of on-duty field and reconstitution teams for both Marble Challenge 11-01 and JD 11-01. There were a total of 14 deployments in FY10.

Burns, Michael J [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

416

LLNL-CONF-554011 Modeling Responses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine...

417

Lawrence Livermore National Laboratory (LLNL): Hydrogen Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated at Mt.LAWRENCE BERKELEY63725

418

Estimating the Annual Water and Energy Savings in Texas A & M University Cafeterias using Low Flow Pre-Rinse Spray Valves  

E-Print Network [OSTI]

equal to 100,000 British thermal units (BTU).1 Therm is equal to 29.3 kWh Temperature rise through Heater The difference in the water temperature supplied to the water heater, and the water exiting the water heater. This is typically 70*F, which... assumes a water line temperature of 75*F and a water heater setting of 145*F Water Heater Efficiency The percentage of energy delivered to the water divided by the amount of energy consumed by the water heater viii TABLE OF CONTENTS...

Rebello, Harsh Varun

2011-08-08T23:59:59.000Z

419

E-Print Network 3.0 - axial kinetic energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

axial flow fan systems. Despite... -vortex-driven flow structures to increase the energy efficiency of axial flow fan systems to provide high quality... the mean kinetic...

420

Technology application analyses at five Department of Energy Sites  

SciTech Connect (OSTI)

The Hazardous Waste Remedial Actions Program (HAZWRAP), a division of Lockheed Martin Energy Systems, Inc., managing contractor for the Department of Energy (DOE) facilities in Oak Ridge, Tennessee, was tasked by the United States Air Force (USAF) through an Interagency Agreement between DOE and the USAF, to provide five Technology Application Analysis Reports to the USAF. These reports were to provide information about DOE sites that have volatile organic compounds contaminating soil or ground water and how the sites have been remediated. The sites were using either a pump-and-treat technology or an alternative to pump-and-treat. The USAF was looking at the DOE sites for lessons learned that could be applied to Department of Defense (DoD) problems in an effort to communicate throughout the government system. The five reports were part of a larger project undertaken by the USAF to look at over 30 sites. Many of the sites were DoD sites, but some were in the private sector. The five DOE projects selected to be reviewed came from three sites: the Savannah River Site (SRS), the Kansas City Site, and Lawrence Livermore National Laboratory (LLNL). SRS and LLNL provided two projects each. Both provided a standard pump-and-treat application as well as an innovative technology that is an alternative to pump-and-treat. The five reports on these sites have previously been published separately. This volume combines them to give the reader an overview of the whole project.

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy 101: Hydroelectric Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

422

second-order convex splitting schemes for gradient flows with ...  

E-Print Network [OSTI]

Abstract. We construct unconditionally stable, unconditionally uniquely solvable, and second-order accurate (in time) schemes for gradient flows with energy of...

2011-11-08T23:59:59.000Z

423

Fracture Network and Fluid Flow Imaging for EGS Applications...  

Broader source: Energy.gov (indexed) [DOE]

Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Principal Investigator: Philip E. Wannamaker University of Utah Energy &...

424

ash flow temperature: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

load has been... Hart, M. N.; Bond, S. K. 1980-01-01 120 Temperature-Gated Thermal Rectifier for Active Heat Flow Control Kedar Hippalgaonkar,, Renewable Energy...

425

Multiphase flow calculation software  

DOE Patents [OSTI]

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

426

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery would enhance energy and economic security  

E-Print Network [OSTI]

technologies ­ two of ARPA-E's goals. The key is a new battery architecture that enables greater energy storage and compressed air systems, which require large water supplies and land with mixed elevations, or access downhill through turbines that produce electricity. Compressed air stations pump air into caverns when

Rollins, Andrew M.

427

Air Flow North America Corp. FE Dkt. No. 14-53-LNG (Re-export)  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy (FE) of the Department of Energy (DOE) gives notice of receipt of an application filed on March 25, 2014, by Air Flow North America Corp. (AIR FLOW) requesting short...

428

E-Print Network 3.0 - air flow maldistribution Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Nuclear Engineering, Electrochemical Engine Center Collection: Engineering ; Energy Storage, Conversion and Utilization 3 Measurement of flow maldistribution in...

429

Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes  

E-Print Network [OSTI]

We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model grants the existence of turbulence at any gradient Richardson number, Ri. Instead of its critical value separating - as usually assumed - the turbulent and the laminar regimes, it reveals a transition interval, 0.11. Predictions from this model are consistent with available data from atmospheric and lab experiments, direct numerical simulation (DNS) and large-eddy simulation (LES).

S. S. Zilitinkevich; T. Elperin; N. Kleeorin; I. Rogachevskii

2007-02-19T23:59:59.000Z

430

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

431

TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL,  

E-Print Network [OSTI]

TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL, SOLAR AND OTHER APPLICATIONS Prepared For REPORT (FAR) TWO-PHASE FLOW TURBINE FOR COGENERATION, GEOTHERMAL, SOLAR AND OTHER APPLICATIONS EISG://www.energy.ca.gov/research/index.html. #12;Page 1 Two-Phase Flow Turbine For Cogeneration, Geothermal, Solar And Other Applications EISG

432

Radial flow heat exchanger  

DOE Patents [OSTI]

A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

Valenzuela, Javier (Hanover, NH)

2001-01-01T23:59:59.000Z

433

Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)  

SciTech Connect (OSTI)

GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than todays flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRCs flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

None

2010-09-09T23:59:59.000Z

434

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1999-02-02T23:59:59.000Z

435

Portable wastewater flow meter  

DOE Patents [OSTI]

A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

1990-01-01T23:59:59.000Z

436

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

437

Energy and Technology Review, August--September  

SciTech Connect (OSTI)

This issue of Energy and Technology Review focuses on cooperative research and development agreements (CRADAs)-one of the Laboratory's most effective means of technology transfer. The first article chronicles the legislative evolution of these agreements. The second article examines the potential beneficial effects of CRADAs on the national economy and discusses their role in the development and marketing of Laboratory technologies. The third article provides information on how to initiate and develop CRADAs at LLNL, and the fourth and fifth articles describe the Laboratory's two most prominent technology transfer projects. One is a 30-month CRADA with General Motors to develop advanced lasers for cutting, welding, and heat-treating operations. The cover photograph shows this laser cutting through a piece of steel 1/16 of an inch thick. The other project is a three-year CRADA with Amoco, Chevron-Conoco, and Unocal to refine our oil shale retorting process.

Sefcik, J A [ed.

1992-01-01T23:59:59.000Z

438

The Dept. of Energy Artificial Retina project  

ScienceCinema (OSTI)

LLNL has assisted in the development of the first long-term retinal prosthesis - called an artificial retina - that can function for years inside the harsh biological environment of the eye. This work has been done in collaboration with four national laboratories (Argonne, Los Alamos, Oak Ridge and Sandia), four universities (the California Institute of Technology, the Doheny Eye Institute at USC, North Carolina State University and the University of California, Santa Cruz), an industrial partner (Second Sight Medical Products Inc. of Sylmar, Calif.) and the U.S. Department of Energy. With this device, application-specific integrated circuits transform digital images from a camera into electric signals in the eye that the brain uses to create a visual image. In clinical trials, patients with vision loss were able to successfully identify objects, increase mobility and detect movement using the artificial retina.

None

2010-09-01T23:59:59.000Z

439

CALIFORNIA ENERGY Appendices  

E-Print Network [OSTI]

design, construction, and operation of building systems. The Integrated Energy Systems: Productivity Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air Flow Systems of a larger research effort called Integrated Energy Systems: Productivity and Building Science Program

440

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect (OSTI)

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - air conditioning energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences 3 Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock Summary: Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter...

442

Jet quenching and elliptic flow  

E-Print Network [OSTI]

In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-$p_T$ hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. Explicit simulation of Au+Au collision with and without a quenching jet indicate that elliptic flow is greatly reduced in a jet event. The result can be used to identify the jet events in heavy ion collisions.

A. K. Chaudhuri

2007-08-29T23:59:59.000Z

443

CERN-PS Main Power Converter Renovation How to Provide and Control the Large Flow of Energy for a Rapid Cyclic Machine?  

E-Print Network [OSTI]

The PS accelerator (Proton-Synchrotron) at CERN, which is part of the LHC injector chain, is composed of one hundred magnets connected in series. During a typical acceleration cycle (taking 2.4 seconds), the active power at the magnet terminals varies from plus to minus 40 MW. As this large active power variation was not acceptable to the electrical network, a motor-generator set (M-G) was inserted between the grid and the load. The M-G set (of 1968) acts as a fly-wheel with a stored kinetic energy of 233 MJ and the magnets are fed via two 12-pulse thyristor rectifiers. A renovation or replacement of the installation is planned in the near future as part of the consolidation of the LHC injectors to avoid any major breakdown, to improve overall availability and to reduce operation and maintenance costs. This paper presents a first comparison of technical solutions available to build such a power system and the strategy that will be applied for the up-grade of the system.

Bordry, Frederick; Vlker, F V

2005-01-01T23:59:59.000Z

444

Value Capture in the Global Wind Energy Industry  

E-Print Network [OSTI]

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

445

Education Toolbox Search | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

terms Search Retain current filters Showing 1 - 10 of 10 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

446

Education Toolbox Search | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

terms Search Retain current filters Showing 1 - 2 of 2 results. Video Energy 101: Hydroelectric Power Learn how hydropower captures the kinetic energy of flowing water and turns...

447

Ultrasonic flow metering system  

DOE Patents [OSTI]

A system for determining the density, flow velocity, and mass flow of a fluid comprising at least one sing-around circuit that determines the velocity of a signal in the fluid and that is correlatable to a database for the fluid. A system for determining flow velocity uses two of the inventive circuits with directional transmitters and receivers, one of which is set at an angle to the direction of flow that is different from the others.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Mauseth, Jason A. (Pocatello, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

448

Elbow mass flow meter  

DOE Patents [OSTI]

Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

McFarland, Andrew R. (College Station, TX); Rodgers, John C. (Santa Fe, NM); Ortiz, Carlos A. (Bryan, TX); Nelson, David C. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

449

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance two-way power flow with communication and control. Renewable Energy Grid Integration As the market

450

Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network  

E-Print Network [OSTI]

R. Satake, Prediction of energy demands using neural networkof Building Heating Energy Demand Using Artificial Neuralknow energy flows and energy demand of the buildings for the

Paudel, Subodh; Elmtiri, Mohamed; Kling, Wil L; Corre, Olivier Le; Lacarriere, Bruno

2014-01-01T23:59:59.000Z

451

Structural stability of cooling flows  

E-Print Network [OSTI]

Three-dimensional hydrodynamical simulations are used to investigate the structural stability of cooling flows that are episodically heated by jets from a central AGN. The radial profile of energy deposition is controlled by (a) the power of the jets, and (b) the pre-outburst density profile. A delay in the ignition of the jets causes more powerful jets to impact on a more centrally concentrated medium. The net effect is a sufficient increase in the central concentration of energy deposition to cause the post-outburst density profile to be less centrally concentrated than that of an identical cluster in which the outburst happened earlier and was weaker. These results suggest that the density profiles of cooling flows oscillate around an attracting profile, thus explaining why cooling flows are observed to have similar density profiles. The possibility is raised that powerful FR II systems are ones in which this feedback mechanism has broken down and a runaway growth of the source parameters has occurred.

Henrik Omma; James Binney

2003-12-31T23:59:59.000Z

452

PARFLOW  

Energy Science and Technology Software Center (OSTI)

002322MLTPL00 Simulation of water flow in terrestrial systems https://computation.llnl.gov/CASC/parflow

453

A New Approach to Computing Max Flows using Electrical Flows  

E-Print Network [OSTI]

A New Approach to Computing Max Flows using Electrical Flows Yin Tat Lee (MIT) Satish Rao (UC-Kelner-Madry-Spielman-Teng'11]: approximate flow in time Uses electrical flows. 7 #12;Electrical Flows 3 1 S t 8 #12;Electrical Flows Identify Graph with Resistor Network R(e)=1/w(e) 1/3 S t 1 9 #12;Electrical Flows Electrical flow

Rajamani, Sriram K.

454

2002 Federal Energy and Water Management Award Winners | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

payback period of just three months, LLNL's project effectively conserves water, prevents pollution, and reduces maintenance costs. Photo of Goodfellow Air Force Base Team (l to...

455

Low flow fume hood  

DOE Patents [OSTI]

A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

Bell, Geoffrey C. (Pleasant Hill, CA); Feustel, Helmut E. (Albany, CA); Dickerhoff, Darryl J. (Berkeley, CA)

2002-01-01T23:59:59.000Z

456

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

457

Optimizing performance of energy systems  

SciTech Connect (OSTI)

This book discusses optimizing performance of energy systems. Topics covered include a test station, heat flow integrator, microcomputer control of MIMIC operation, and microcomputer control of simulation operation.

Stricker, S.

1985-01-01T23:59:59.000Z

458

Multi-Megajoule NIF: Ushering In a New Era in High Energy Density Science  

SciTech Connect (OSTI)

This paper describes the status of the stadium-sized National Ignition Facility (NIF), the world's largest laser system and first operational multi-megajoule laser. The 192-beam NIF, located at Lawrence Livermore National Laboratory (LLNL), is 96% complete and scheduled for completion in March 2009. The NIF laser will produce nanosecond laser pulses with energies up to approximately 4 MJ in the infrared (laser wavelength = 1.053-{micro}m) and 2MJ in the ultraviolet (laser wavelength = 0.35-{micro}m). With these energies NIF will access conditions of pressure and temperature not previously available on earth, allowing it to conduct experiments in support of the nation's national security, energy, and fundamental science goals. First ignition experiments at NIF are scheduled for FY2010. This paper will provide an overview of the NIF laser and the ignition, energy, and fundamental science activities at NIF.

Keane, C; Moses, E I

2008-04-30T23:59:59.000Z

459

High energy density capacitors for power electronic applications using nano-structure multilayer technology  

SciTech Connect (OSTI)

Power electronics applications are currently limited by capacitor size and performance. Only incremental improvements are anticipated in existing capacitor technologies, while significant performance advances are required in energy density and overall performance to meet the technical needs of the applications which are important for U.S. economic competitiveness. One application, the Power Electronic Building Block (PEBB), promises a second electronics revolution in power electronic design. High energy density capacitors with excellent electrical thermal and mechanical performance represent an enabling technology in the PEBB concept. We propose a continuing program to research and develop LLNL`s nano-structure multilayer technologies for making high voltage, high energy density capacitors. Our controlled deposition techniques are capable of synthesizing extraordinarily smooth sub-micron thick layers of dielectric and conductor materials. We have demonstrated that, with this technology, high voltage capacitors with an order of magnitude improvement in energy density are achievable.

Barbee, T.W. Jr.; Johnson, G.W.

1995-09-01T23:59:59.000Z

460

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInputDam PoolCounty, Maryland:Power

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Turbulent flow in graphene  

E-Print Network [OSTI]

We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.

Kumar S. Gupta; Siddhartha Sen

2010-06-05T23:59:59.000Z

462

Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100  

SciTech Connect (OSTI)

Energy-dependent evaluated electron interaction cross sections and related parameters are presented for elements H through Fm (Z = 1 to 100). Data are given over the energy range from 10 eV to 100 GeV. Cross sections and average energy deposits are presented in tabulated and graphic form. In addition, ionization cross sections and average energy deposits for each shell are presented in graphic form. This information is derived from the Livermore Evaluated Electron Data Library (EEDL) as of July, 1991.

Perkins, S.T.; Cullen, D.E. (Lawrence Livermore National Lab., CA (United States)); Seltzer, S.M. (National Inst. of Standards and Technology (NML), Gaithersburg, MD (United States). Center for Radiation Research)

1991-11-12T23:59:59.000Z

463

E-Print Network 3.0 - axial-flow gas turbine-propeller Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for a substantial portion of aerodynamic losses in axial flow fans... of the major energy loss sources for axial flow fan systems. Despite the close relation between the tip...

464

E-Print Network 3.0 - active power flow Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 8 IEEE INFOCOM 2000 1 Effortlimited Fair (ELF) Scheduling for Wireless Summary: on each flow using a per-flow power factor setting. The...

465

E-Print Network 3.0 - acoustic-to-structure power flow Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage, Conversion and Utilization 4 IEEE INFOCOM 2000 1 Effortlimited Fair (ELF) Scheduling for Wireless Summary: on each flow using a per-flow power factor setting. The...

466

Air Flow North America Corp.- Fe Dkt. No. 14-206-LNG  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy gives notice of receipt of an Application filed December 16, 2014, by Air Flow North America Corp. (Air Flow), seeking a long-term multi-contract authorization to export...

467

Development of Energy Balances for the State of California  

E-Print Network [OSTI]

Energy Agency, 2003a. Energy Balances of OECD Countries.Energy Agency, 2003b. Energy Balances of Non-OECD Countries.for constructing the energy balance flow chart (Figure 1).

Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

2005-01-01T23:59:59.000Z

468

MEANKINETIC ENERGY,EDDY ENERGY,AND KINETIC ENERGYEXCHANGEBETWEENFLUCTUATIONSAND MEAN  

E-Print Network [OSTI]

MEANKINETIC ENERGY,EDDY ENERGY,AND KINETIC ENERGYEXCHANGEBETWEENFLUCTUATIONSAND MEAN FLOWWITHIN by cornputing three quantities suggested by the theory of turbulence: the nean kinetic energy, the eddy energy, and the energy exchange between the nean and fluctuating portions of the flow field (ca11ed dE/dt). Contours

Luther, Douglas S.

469

Cyclotron resonance in plasma flow  

SciTech Connect (OSTI)

This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>?>kv{sub sw}??{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ? and ?{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V. [LPC2E/CNRS-University of Orleans, Orleans (France)] [LPC2E/CNRS-University of Orleans, Orleans (France)

2013-12-15T23:59:59.000Z

470

Facilities and techniques for x-ray diagnostic calibration in the 100-eV to 100-keV energy range  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

Gaines, J.L.; Wittmayer, F.J.

1986-06-01T23:59:59.000Z

471

A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site  

SciTech Connect (OSTI)

A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

2010-11-10T23:59:59.000Z

472

Proper Orthogonal Decomposition for Flow Calculations  

E-Print Network [OSTI]

with the energy and the species equa­ tions. In addition, we also examined the feasibility and efficiency of POD that POD can be used to efficiently approximate solutions to the compressible viscous flows coupled a chemical reaction in the gas phase above the surface of the film to deposit desired materials onto

473

Submarine landslide flows simulation through centrifuge modelling  

E-Print Network [OSTI]

) ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2.7: Failure at Helsinki Harbour , Finland in 1936 (after Andresen and Bjerrum, 1967... ) ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 2.18: Energy conversion for debris flows (modified after Iverson, 1997) .......................................................................................... 50 Figure 2.19: Schematic cross-section defini ng H...

Gue, Chang Shin

2012-05-08T23:59:59.000Z

474

Elbow mass flow meter  

DOE Patents [OSTI]

The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

1994-08-16T23:59:59.000Z

475

Microelectromechanical flow control apparatus  

DOE Patents [OSTI]

A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

Okandan, Murat (NE Albuquerque, NM)

2009-06-02T23:59:59.000Z

476

High energy electrons and nuclear phenomena in petawatt laser-solid experiments  

SciTech Connect (OSTI)

The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approx}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approx}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed.

Cowan, T. E.; Ditmire, T.; Hatchett, S.; Pennington, D. M.; Perry, M. D.; Phillips, T. W.; Wilks, S. C.; Young, P. E. [Lawrence Livermore National Laboratory, Livermore, California (United States); Dong, B.; Takahashi, Y. [University of Alabama, Huntsville, Alabama (United States); Fountain, W.; Parnell, T. [Marshall Space Flight Center, Huntsville, Alabama (United States); Hunt, A. W. [Harvard University, Cambridge, Massachusetts (United States); Johnson, J. [University Space Research Association, Huntsville, Alabama (United States); Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

1999-07-12T23:59:59.000Z

477

High energy electrons and nuclear phenomena in petawatt laser-solid experiments  

SciTech Connect (OSTI)

The Petawatt laser at LLNL has opened a new regime of laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have developed broad-band magnetic spectrometers to measure the spectrum of high-energy electrons produced in laser-solid target experiments at the Petawatt, and have found that in addition to the expected flux of {approximately}few MeV electrons characteristic of the ponderomotive potential, there is a high energy component extending to {approximately}100 MeV apparently from plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung, photo-nuclear reactions, and preliminary evidence for positron-electron pair production will be discussed. {copyright} {ital 1999 American Institute of Physics.}

Cowan, T.E.; Ditmire, T.; Hatchett, S.; Pennington, D.M.; Perry, M.D.; Phillips, T.W.; Wilks, S.C.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, California (United States)] Dong, B. [University of Alabama, Huntsville, Alabama (United States); Parnell, T.; Takahashi, Y. [Marshall Space Flight Center, Huntsville, Alabama (United States)] Hunt, A.W. [Harvard University, Cambridge, Massachusetts (United States)] Johnson, J. [University Space Research Association, Huntsville, Alabama (United States)] Kuehl, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

1999-07-01T23:59:59.000Z

478

CFD simulation of neutral ABL flows Xiaodong Zhang  

E-Print Network [OSTI]

Title: CFD simulation of neutral ABL flows Division: Aero-elastic Design ­ Wind Energy Division Risø flow field over different terrains employing Fluent 6.3 software. How accurate the simulation could.5 Comparison and conclusion 22 3.6 Closure 24 4 CFD Simulation of the Askervein Hill 24 4.1 Simulation

479

Elliptic flow phenomenon at ATLAS  

E-Print Network [OSTI]

We summarize measurements of elliptic flow and higher order flow harmonics performed by the ATLAS experiment at the LHC. Results on event-averaged flow measurements and event-plane correlations in Pb+Pb collisions are discussed along with the event-by-event flow measurements. Further, we summarize results on flow in p+Pb collisions.

Martin Spousta

2014-06-20T23:59:59.000Z

480

DOE standard guidelines for use of probabilistic seismic hazard curves at Department of Energy sites  

SciTech Connect (OSTI)

This Standard is intended to provide guidance in the use of the seismic hazard curves developed by the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI). Experience to-date has shown that application of these methodologies can yield significantly different results. In response to this issue, a Seismic Working Group (SWG) has been formed at the Department of Energy (DOE) Headquarters to coordinate the application of these methodologies within DOE in a consistent manner. The position developed by the SWG and contained in this Standard is intended for immediate use in developing seismic hazard estimates at DOE sites for the evaluation of new and existing, nuclear and non-nuclear DOE facilities. This Standard is needed not only to address the LLNL/EPRI issue but also to assure that state-of-the-art seismic hazard methods are incorporated into DOE standards as soon as possible. The DOE is currently involved in a joint program with the Nuclear Regulatory Commission and EPRI to evaluate these existing probabilistic seismic hazard methodologies and to develop recommendations for an improved methodology for the 1990`s. The final product of this effort is expected to result in more stable hazard estimates and will supersede this Standard in approximately two years.

Not Available

1992-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Application of Flow Battery in Marine Current Turbine System for Daily Power Management  

E-Print Network [OSTI]

focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage/energy sizing. In this paper, one grid-connected MCT generation system with battery energy storage system (BESSApplication of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou

Brest, Université de

482

Energy Return on Investment - Fuel Recycle  

SciTech Connect (OSTI)

This report provides a methodology and requisite data to assess the potential Energy Return On Investment (EROI) for nuclear fuel cycle alternatives, and applies that methodology to a limited set of used fuel recycle scenarios. This paper is based on a study by Lawrence Livermore National Laboratory and a parallel evaluation by AREVA Federal Services LLC, both of which were sponsored by the DOE Fuel Cycle Technologies (FCT) Program. The focus of the LLNL effort was to develop a methodology that can be used by the FCT program for such analysis that is consistent with the broader energy modeling community, and the focus of the AREVA effort was to bring industrial experience and operational data into the analysis. This cooperative effort successfully combined expertise from the energy modeling community with expertise from the nuclear industry. Energy Return on Investment is one of many figures of merit on which investment in a new energy facility or process may be judged. EROI is the ratio of the energy delivered by a facility divided by the energy used to construct, operate and decommission that facility. While EROI is not the only criterion used to make an investment decision, it has been shown that, in technologically advanced societies, energy supplies must exceed a minimum EROI. Furthermore, technological history shows a trend towards higher EROI energy supplies. EROI calculations have been performed for many components of energy technology: oil wells, wind turbines, photovoltaic modules, biofuels, and nuclear reactors. This report represents the first standalone EROI analysis of nuclear fuel reprocessing (or recycling) facilities.

Halsey, W; Simon, A J; Fratoni, M; Smith, C; Schwab, P; Murray, P

2012-06-06T23:59:59.000Z

483

Laminar Entrained Flow Reactor (Fact Sheet), National Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flow Reactor Investigating the core principles of in situ and ex situ catalytic fast pyrolysis of biomass NREL is a national laboratory of the U.S. Department of Energy,...

484

Renaissance in Flow-Cell Technologies: Recent Advancements and...  

Office of Environmental Management (EM)

Presentation by Mike Perry, United Technologies Research Center, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012perry.pdf...

485

Energy and Technology Review  

SciTech Connect (OSTI)

This is the first of two issues commemorating the 30th anniversary of the Lawrence Livermore National Laboratory. The early history of the laboratory is reviewed, including: the LLNL-Nevada organization; project Plowshare; the chemistry and materials science department; and development of computer systems. (GHT)

Not Available

1982-09-01T23:59:59.000Z

486

Energy footprint of Locally Produced Ethanol  

E-Print Network [OSTI]

The aim of this study was to conduct a lifecycle wide analysis of the direct and indirect energy inputs and outputs flowing through a bioethanol pathway in Kenya using the life cycle energy assessment technique and energy performance indicators...

Chiatula, Ebelechukwu

2011-11-24T23:59:59.000Z

487

Shroud leakage flow discouragers  

DOE Patents [OSTI]

A turbine assembly includes a plurality of rotor blades comprising a root portion, an airfoil having a pressure sidewall and a suction sidewall, and a top portion having a cap. An outer shroud is concentrically disposed about said rotor blades, said shroud in combination with said tip portions defining a clearance gap. At least one circumferential shroud leakage discourager is disposed within the shroud. The leakage discourager(s) increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the clearance gap to improve overall turbine efficiency.

Bailey, Jeremy Clyde (Middle Grove, NY); Bunker, Ronald Scott (Niskayuna, NY)

2002-01-01T23:59:59.000Z

488

Bypass Flow Study  

SciTech Connect (OSTI)

The purpose of the fluid dynamics experiments in the MIR (Matched Index of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for the flow ratios between coolant channels and bypass gaps in the interstitial regions of typical prismatic standard fuel element (SFE) or upper reflector block geometries of typical Modular High-temperature Gas-cooled Reactors (MHTGR) in the limiting case of negligible buoyancy and constant fluid properties. The experiments use Particle Image Velocimetry (PIV) to measure the velocity fields that will populate the bypass flow study database.

Richard Schultz

2011-09-01T23:59:59.000Z

489

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

490

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

491

E-Print Network 3.0 - applying dynamic flow-density Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Energy Storage, Conversion and Utilization 17 Dynamic Origin-Destination Demand Flow Estimation under Congested Traffic Conditions Xuesong Zhou Summary: for the...

492

Optical flow switching  

E-Print Network [OSTI]

Present-day networks are being challenged by dramatic increases in bandwidth demand of emerging applications. We will explore a new transport, ldquooptical flow switchingrdquo, that will enable significant growth and ...

Chan, Vincent W. S.

493

Olefin Autoxidation in Flow  

E-Print Network [OSTI]

Handling hazardous multiphase reactions in flow brings not only safety advantages but also significantly improved performance, due to better mass transfer characteristics. In this paper, we present a continuous microreactor ...

Neuenschwander, Ulrich

494

Parallel flow diffusion battery  

DOE Patents [OSTI]

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

495

Flowing Wells, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE

496

Energy and Technology Review, October 1990  

SciTech Connect (OSTI)

This report discuss the following topics: History of Cold Fusion Experiments; LLNL Experiments on Cold Fusion; Roundtable Discussion on Cold Fusion; and Using MeV Ions To Characterize and Modify Materials.

Johnson, K.C.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Sanford, N.M. (eds.)

1990-10-01T23:59:59.000Z

497

Department of Energy Awards $37 Million for Marine and Hydrokinetic...  

Office of Environmental Management (EM)

and free-flowing rivers represent a promising energy source located close to centers of electricity demand. The Department of Energy is working with industry, universities,...

498

Section 13: Flow control 1 Section 13: Flow control  

E-Print Network [OSTI]

Geometries for Energyefficient Flow Around Bodies Abstract 14:30 14:50: Elfriede Friedmann (Universitt

Kohlenbach, Ulrich

499

Energy Gradient Theory of Hydrodynamic Instability  

E-Print Network [OSTI]

A new universal theory for flow instability and turbulent transition is proposed in this study. Flow instability and turbulence transition have been challenging subjects for fluid dynamics for a century. The critical condition of turbulent transition from theory and experiments differs largely from each other for Poiseuille flows. In this paper, a new mechanism of flow instability and turbulence transition is presented for parallel shear flows and the energy gradient theory of hydrodynamic instability is proposed. It is stated that the total energy gradient in the transverse direction and that in the streamwise direction of the main flow dominate the disturbance amplification or decay. A new dimensionless parameter K for characterizing flow instability is proposed for wall bounded shear flows, which is expressed as the ratio of the energy gradients in the two directions. It is thought that flow instability should first occur at the position of Kmax which may be the most dangerous position. This speculation is confirmed by Nishioka et al's experimental data. Comparison with experimental data for plane Poiseuille flow and pipe Poiseuille flow indicates that the proposed idea is really valid. It is found that the turbulence transition takes place at a critical value of Kmax of about 385 for both plane Poiseuille flow and pipe Poiseuille flow, below which no turbulence will occur regardless the disturbance. More studies show that the theory is also valid for plane Couette flows and Taylor-Couette flows between concentric rotating cylinders.

Hua-Shu Dou

2005-01-28T23:59:59.000Z

500

health effects Flow cytometry  

E-Print Network [OSTI]

. Geothermal Energy Engineered Geothermal Systems Nonproliferation and Verificatio n Seismic Modeling