Powered by Deep Web Technologies
Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

LLNL Energy Flow Charts | Open Energy Information  

Open Energy Info (EERE)

LLNL Energy Flow Charts LLNL Energy Flow Charts Jump to: navigation, search Tool Summary Name: LLNL Energy Flow Charts Agency/Company /Organization: Lawrence Livermore National Lab Sector: Energy Focus Area: Renewable Energy Topics: Pathways analysis References: LLNL Energy Flow Charts [1] Decision makers have long recognized the importance of visualizing energy and material flows in a way that distinguishes between resources, transformations and services. Research priorities can be defined in terms of changes to the flows, and the consequences of policy or technology shifts can be traced both upstream and downstream. The usefulness of this top-down view is limited by the level of detail that can be conveyed in a single image. We use two techniques to balance information content with readability. First we employe visualization

2

Energy Densities for LLNL EMB  

Summary of Projected Power and Energy Density Parameters for the “New Generation” LLNL Electromechanical Batteries R.F. Post June 24, 2013

3

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND...  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications...

4

Phase II Audit Report - Energy & Water Audits of LLNL Facilities  

SciTech Connect

This report describes Phase II of a project conducted for the Mechanical Utilities Division (UTel), Energy Management Program at Lawrence Livermore National Laboratory (LLNL) by Architectural Energy Corporation (AEC). The overall project covers energy efficiency and water conservation auditing services for 215 modular and prefabricated buildings at LLNL. The primary goal of this project is to demonstrate compliance with DOE Order 430.2A, Contractor Requirements Document section 2.d (2) Document, to demonstrate annual progress of at least 10 percent toward completing energy and water audits of all facilities. Although this project covers numerous buildings, they are all similar in design and use. The approach employed for completing audits for these facilities involves a ''model-similar building'' approach. In the model-similar building approach, similarities between groups of buildings are established and quantified. A model (or test case) building is selected and analyzed for each model-similar group using a detailed DOE-2 simulation. The results are extended to the group of similar buildings based on careful application of quantified similarities, or ''extension measures''. This approach leverages the relatively minor effort required to evaluate one building in some detail to a much larger population of similar buildings. The facility wide energy savings potential was calculated for a select set of measures that have reasonable payback based on the detailed building analysis and are otherwise desirable to the LLNL facilities staff. The selected measures are: (1) HVAC Tune-up. This is considered to be a ''core measure'', based on the energy savings opportunity and the impact on thermal comfort. All HVAC units in the study are assumed to be tuned up under this measure. See the Appendix for a detailed calculation by building and HVAC unit. (2) HVAC system scheduling. This is also considered to be a ''core measure'', based on the energy savings opportunity and ability to control units centrally during a shelter-in-place event. All HVAC units in the study are assumed to be controlled under this measure. See the Appendix for a detailed calculation by building and HVAC unit. (3) Cool roof. Savings estimates for the measure were applied to all roofs scheduled for replacement in the LLNL deficiency list. See the Appendix for a detailed calculation by building. (4) Window shading. Savings estimates for the measure were applied to all non-north facing windows. Although the simple payback is not a good for this measure, it should be considered for the associated benefits on thermal comfort and to alleviate some of the zoning and thermostat placement issues. (5) HVAC upgrade at normal replacement. Savings estimates for the measure were applied to all HVAC units scheduled for replacement on the LLNL deficiency list. A total of 642 units (about 55% of the total) are on the replacement list, so this represents a major opportunity. See the Appendix for a detailed calculation by building and HVAC unit. (6) Indirect/direct evaporative cooling. Savings estimates for the measure were applied to all HVAC units scheduled for replacement on the LLNL deficiency list. See the Appendix for a detailed calculation by building and HVAC unit. Due to the magnitude of the potential energy savings, this measure should be considered as the new generation IDEC systems become commercially available. (7) Super T-8's. Savings estimates for this measure were applied to all buildings in the study, assuming that the new generation lamps will be rotated in during normal lamp replacement operations. See the Appendix for a detailed calculation by building. (8) Occupancy sensors. Savings estimates for this measure were applied to buildings surveyed as candidates for occupancy sensors during the Level 1 audits. See the Appendix for a detailed calculation by building. (9) Remaining Lighting. Savings for this measure were calculated for each eligible fixture identified during the Lev

Horst, B I; Jacobs, P C; Pierce, S M

2005-08-03T23:59:59.000Z

5

Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL | U.S.  

Office of Science (SC) Website

Basic Research for an Era of Nuclear Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Basic Research for an Era of Nuclear Energy at LBNL, LLNL, AND LANL Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Basic Research for an Era of Nuclear Energy Developed at: Lawrence Berkeley National Laboratory, Lawrence Livermore National

6

LLNL-CONF-636436 Multi-Fluid Geothermal Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

36 Multi-Fluid Geothermal Energy Production and Storage in Stratigraphic Reservoirs T. A. Buscheck, M. Chen, Y. Hao, J. M. Bielicki, J. B. Randolph, Y. Sun, H. Choi May 13, 2013...

7

LLNL-PRES-463228 FUSION PERSPECTIVES*  

E-Print Network (OSTI)

LLNL-PRES-463228 FUSION PERSPECTIVES* LLNL Fusion Energy Sciences Program D.D. Ryutov Fusion, Novosibirsk, July 1988: working together with the LLNL team #12;Axisymmetric mirrors can serve as a basis

8

Lawrence Livermore National Laboratory (LLNL)  

NLE Websites -- All DOE Office Websites

Phonebook | Phonebook | Site Map | Contact Us Search LLNL Go KEY RESEARCH Ensuring the safety, reliability, and security of the U.S. nuclear stockpile and applying science and technology to anticipate, innovate and deliver solutions to global security needs. Weapons Program High Explosives Application Facility Site 300 Global Security Energy and Environmental Security Defense Intelligence Nonproliferation Advancing energy security in the United States through the discovery, development, production and deployment of cost-effective, sustainable systems while protecting the environment. Energy Technologies Carbon Capture and Storage Climate and Carbon U.S. Energy Flow Charts Hydrogen Fuel Geothermal Wind Forecasting Underground Coal Gasification Vehicle Aerodynamics Turning scientific and technological concepts into reality, whether

9

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL DIRECTOR SEARCH Home Lawrence Livermore National Laboratory LLNL DIRECTOR SEARCH Position Description About LLNL News Questions and Answers THE PROCESS Nomination and...

10

Lawrence Livermore National Laboratory (LLNL): News Releases...  

NLE Websites -- All DOE Office Websites (Extended Search)

Trek: Into Darkness" (5162013) Renewable energy demonstration project (5142013) LLNL announces voluntary separation program (582013) RFI released for Livermore Valley...

11

LLNL 1981: technical horizons  

Science Conference Proceedings (OSTI)

Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

Not Available

1981-07-01T23:59:59.000Z

12

LLNL-JRNL-417122 Compatible Relaxation and  

E-Print Network (OSTI)

LLNL-JRNL-417122 Compatible Relaxation and Coarsening in Algebraic Multigrid J. J. Brannick, R. D 94551 (rfalgout@llnl.gov). This work performed under the auspices of the U.S. Department of Energy

13

LLNL-TR-534931 Doppler Broadening Update  

E-Print Network (OSTI)

LLNL-TR-534931 Doppler Broadening Update: Broadening near the Unresolved Resonance Region.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. #12;3 LLNL version of this paper: John Scorby (LLNL), Robert MacFarlane (LANL), Maurice Greene (ORNL), S. Ganesan

Cullen, Red

14

2011 LLNL Template  

NLE Websites -- All DOE Office Websites (Extended Search)

PRES-555917 PRES-555917 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Roger D. Aines Lawrence Livermore National Laboratory Award: 09/CJ000/05/01 (LLNS) DE---AR0000099 (University of Illinois and Babcock & Wilcox) Lead Recipient: Lawrence Livermore National Security, LLC (LLNS) Project Title: Catalytic Improvement of Solvent Capture Systems Lawrence Livermore National Laboratory LLNL-555917 2 WHY?  Enable lower energy solvent systems WHAT?  Rugged synthetic catalysts  Surface area enhancement Lawrence Livermore National Laboratory LLNL-555917 3 We developed a family of catalysts that speed capture in hindered amines and carbonates

15

2011 LLNL Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43811 43811 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC NNSA IMC Conference April 19, 2012 Lawrence Livermore National Laboratory LLNL-PRES-543811 2  Background and Goals of the Checklist  Areas to Consider  Expansion of some topics * Device Management * Device Verification * Device Lifecycle * Policies * Risk Management  Base Security Settings  App provisioning  BYOD  App Development and Hacking Lawrence Livermore National Laboratory LLNL-PRES-543811 3  Mobility is now pervasive * Critical to attracting new talent * Critical to modern mission delivery * Opting out is not viable

16

Microsoft Word - LLNL PFD Final072307.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livermore National Laboratory" BACKGROUND The Lawrence Livermore National Laboratory (LLNL) is a research and development institution that supports the Department of Energy's...

17

LLNL Slide Master  

Science Conference Proceedings (OSTI)

... Collaborators: JN Glosli, RQ Hood, DA Orlikowski, P. Söderlind, M. Tang , C. Wu and LH Yang (LLNL) ... DE-AC52-07NA27344 LLNL-PRES-443673 ...

2010-08-05T23:59:59.000Z

18

2011 LLNL Template  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Livermore National Laboratory LLNL-555917 12 Mixed carbonatebicarbonate (Trona) Searles Lake Water is required as a flux - making a difficult crystal mush Rates of...

19

LLNL SF6 Program Update - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL-PRES-617973 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence...

20

Energy spectra of the pneumatically positioned neutron sources at LLNL's Hazards control standards and calibration facility  

Science Conference Proceedings (OSTI)

The Hazards Control Department of Lawrence Livermore National Laboratory maintains a Standards and Calibration Laboratory that includes three neutron sources (two /sup 252/Cf and one /sup 238/PuBe that can be positioned pneumatically for irradiations. Ten moderators exist to modify the neutron energy spectra produced by these sources. The thicknesses and materials of these moderators are: 25-cm water; 5-, 10-, 15-, and 25-cm heavy water; 20-cm aluminum; and 2-, 5-, 10-, and 15-cm polyethylene. We used a multisphere spectrometer to measure the neutron spectra at 2 m from both the PuBe source and the smaller Cf source, with the sources bare, and in all of the moderators. These data were reduced in 25 energy groups ranging from 0.25 eV to 16 MeV. Except for the 15-m polyethylene moderator, we also made measurements using a liquid-scintillator fast-neutron spectrometer. These data were reduced in 0.1-MeV increments from 0.5 to 12.5 MeV. Spectra from the measurements and from independent calculations are presented in tabular and graphic form. Dosimetric values, calculated from both the measured and calculated spectra, are also presented.

Thorngate, J.H.

1987-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

LLNL 2011 EStar Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinar M 8 2012 May 8, 2012 Heather Ottaway, Jennifer Doman Pollution PreventionSustainability (P2S) Program Pollution PreventionSustainability (P2S) Program LLNL-PRES-554271...

22

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Process As agreed among the LLNS partners, the University of California is responsible for leading the search for the next LLNL Director. UC-appointed Chairman of the LLNS...

23

LLNL Ready-to-Sign (RTS) Licensing Program  

City of Livermore. Community. Our Community. Discovery Center. Site Tours. LLNL Community News. ... LLC, for the Department of Energy's National Nucle ...

24

LLNL NESHAPs 2008 Annual Report  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Security, LLC operates facilities at Lawrence Livermore National Laboratory (LLNL) where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) National Emission Standards for Hazardous Air Pollutants (NESHAPs) in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H, which regulates radionuclide emissions to air from Department of Energy (DOE) facilities. Specifically, NESHAPs limits the emission of radionuclides to the ambient air to levels resulting in an annual effective dose equivalent of 10 mrem (100 {mu}Sv) to any member of the public. Using measured and calculated emissions, and building-specific and common parameters, LLNL personnel applied the EPA-approved computer code, CAP88-PC, Version 1.0, to calculate the dose to the maximally exposed individual for the Livermore site and Site 300. The dose for the LLNL site-wide maximally exposed members of the public from operations in 2008 are summarized here: {sm_bullet} Livermore site: 0.0013 mrem (0.013 {mu}Sv) (26% from point source emissions, 74% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by EPA Region IX; the resulting dose is used for compliance purposes. {sm_bullet} Site 300: 0.000000044 mrem (0.00000044 {mu}Sv) (100% from point source emissions).

Bertoldo, N; Gallegos, G; MacQueen, D; Wegrecki, A; Wilson, K

2009-06-25T23:59:59.000Z

25

US energy flow, 1991  

SciTech Connect

Trends in energy consumption and assessment of energy sources are discussed. Specific topics discussed include: energy flow charts; comparison of energy use with 1990 and earlier years; supply and demand of fossil fuels (oils, natural gas, coal); electrical supply and demand; and nuclear power.

Borg, I.Y.; Briggs, C.K.

1992-06-01T23:59:59.000Z

26

LLNL, LANL, Sandia directors visit Russian laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL Go Home > News > News Center > Around the Lab > 073012russian 07272012 LLNL, LANL, Sandia directors visit Russian laboratories Lauren Y Devore, LLNL, (925) 422-0855,...

27

Donald Frederick, LLNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Donald Donald Frederick, LLNL - Presented at Supercomputing '11 Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551! Case Study: Beyond Homogeneous Decomposition with Qbox Scaling Long-Range Forces on Massively Parallel Systems LLNL---PRES---508651 Case S tudy: O utline * Problem D escripBon * ComputaBonal A pproach * Changes f or S caling LLNL---PRES---508651 Computer s imulaBons o f m aterials Computer s imulaBons a re w idely used t o p redict t he p roperBes o f new m aterials o r u nderstand t he properBes o f e xisBng o nes LLNL---PRES---508651 SimulaBon o f M aterials f rom F irst--- Principles First---principles m ethods: Calculate p roperBes o f a g iven m aterial d irectly f rom fundamental p hysics e quaBons. * No e mpirical p arameters Can m ake p redic-ons a bout c

28

U.S. Energy Flow - 1999  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has prepared similar flow charts of U.S. energy consumption since 1972. The chart follows the flow of individual fuels and compares these on the basis of a common energy unit of quadrillion British thermal units (Btu). A quadrillion, or ''quad,'' is 10{sup 15}. One Btu is the quantity of heat needed to raise the temperature of 1 pound of water by 1 F at or near 39.2 F. The width of each colored line across this chart is in proportion to the amount of quads conveyed. (Exception: lines showing extremely small amounts have been made wide enough to be clearly visible.) In most cases, the numbers used in this chart have been rounded to the nearest tenth of a quad, although the original data was published in hundredths or thousandths of a quad. As a consequence of independent rounding, some of the summary numbers may not appear to be a precise total of their various components. The first chart in this document uses quadrillion Btu's to conform with data from the U.S. Department of Energy's Energy Information Administration (EIA). However, the second chart is expressed in exajoules. A joule is the metric unit for heat. One Btu equals 1,055.06 joules; and one quadrillion Btu's equals 1.055 exajoules (an exajoule is 10{sup 18} joules).

Kaiper, G V

2001-03-01T23:59:59.000Z

29

IGPP-LLNL 1998 annual report  

Science Conference Proceedings (OSTI)

The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in tectonics, geochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Kem Cook, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics Directorate's astrophysics efforts. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. Additional information regarding IGPP-LLNL projects and people may be found at http://wwwigpp.llnl.gov/. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $30,000. Funds are used for a variety of purposes, such as salary support for UC graduate students, postdoctoral fellows, and faculty; and costs for experimental facilities. A statistical overview of IGPP-LLNL's UCRP (colloquially known as the mini-grant program) is presented in Figures 1 and 2. Figure 1 shows the distribution of UCRP awards among the UC campuses, by total amount awarded and by number of proposals funded. Figure 2 shows the distribution of awards by center.

Ryerson, F J; Cook, K H; Tweed, J

1999-11-19T23:59:59.000Z

30

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry  

E-Print Network (OSTI)

Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I.Skillicorn 1 Azimuthal asymmetry using energy flow method Azimuthal angle distribution at Q2 >100 GeV2 Energy flow method.Ukleja on behalf of the ZEUS Collaboration #12; Energy Flow Energy Flow Energy Flow A.Ukleja, T.Tymieniecka, I

31

LLNL Section I Clauses/Prescriptions  

National Nuclear Security Administration (NNSA)

AC52-06NA27344 LLNL AC52-06NA27344 LLNL Section I, Page 56 Part II - Contract Clauses Section I I-1 CONTRACT CLAUSES Unless conditionally "Noted", all contract clauses are hereby incorporated by full text. The references cited herein are from the Federal Acquisition Regulation (FAR) (48 CFR Chapter 1) and the Department of Energy Acquisition Regulation (DEAR) (48 CFR Chapter 9). Note: The titles and page locations of the clauses are as follows: CLAUSE TITLE PAGE I001 FAR 52.202-1 DEFINITIONS (JUL 2004) (DEVIATION) ..............................62 I002 FAR 52.203-3 GRATUTIES (APR 1984) ..........................................................63

32

Radioactive ion beam research at LLNL  

DOE Green Energy (OSTI)

In this paper we discuss efforts underway at LLNL to develop the technology for the measurement of proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. 16 refs., 5 figs.

Mathews, G.J.; Bauer, R.W.; Haight, R.C.; Sale, K.E.

1985-08-01T23:59:59.000Z

33

Lawrence Livermore National Laboratory (LLNL):  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) works with other national laboratories to coordinate and integrate programmatic...

34

final UFD M2 LLNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radionuclide Radionuclide Interaction and Transport in Representative Geologic Media Prepared for U.S. Department of Energy Used Fuel Disposition Program Annie Kersting, Mavrik Zavarin, Pihong Zhao, Zurong Dai, and Susan Carroll (LLNL) Yifeng Wang, Andrew Miller, Scott James, (SNL) Paul Reimus (LANL) Liange Zheng, Lianchong Li, Jonny Rutqvist, Huihai Liu and Jens Birkholzer (LBNL) June 20, 2012 FCRD-UFD-2012-000154 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus,

35

LLNL's Saturday lectures explore cutting edge science  

NLE Websites -- All DOE Office Websites (Extended Search)

| NR-13-01-02 LLNL's Saturday lectures explore cutting edge science Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov Printer-friendly Lawrence Livermore National...

36

Lawrence Livermore National Laboratory (LLNL): Photography Restriction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photography About LLNL About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National Ignition...

37

Lawrence Livermore National Laboratory (LLNL): Prohibited and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Controlled Items About LLNL About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National Ignition...

38

Gap Analysis Comparing LLNL ISMS and ISO 14001  

SciTech Connect

A gap analysis was conducted comparing the Lawrence Livermore National Laboratory (LLNL) Integrated Safety Management System (ISMS) with the international standard ISO 14001 Environmental Management System and with Department of Energy (DOE) Order 450.1. This analysis was accomplished as part of LLNL's assessment of the impacts of adopting DOE Order 450.1 and comprises a portion of its continuous improvement efforts under ISMS.

Doerr, T B

2004-08-09T23:59:59.000Z

39

LLNL Program for Climate Model Diagnosis and Intercomparison (PCMDI) | Open  

Open Energy Info (EERE)

LLNL Program for Climate Model Diagnosis and Intercomparison (PCMDI) LLNL Program for Climate Model Diagnosis and Intercomparison (PCMDI) Jump to: navigation, search Name LLNL Program for Climate Model Diagnosis and Intercomparison (PCMDI) Agency/Company /Organization Lawrence Livermore National Laboratory Sector Energy, Land Topics Pathways analysis References LLNL Program for Climate Model Diagnosis and Intercomparison (PCMDI)[1] Abstract Established in 1989, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) is an International focal point for understanding climate change and analyzing and diagnosing the performance of the world's climate models; the PCMDI is a DOE program located at Lawrence Livermore National Laboratory. The PCMDI mission is to develop improved methods and tools for the diagnosis ...

40

Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks  

SciTech Connect

This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still offering the desired low temperature coefficient of resistance compared to sodium thiosulfate. The characterization experiments and comparison with the sodium thiosulfate liquid resistors will be fully discussed and the final design described.

Kreitzer, B R; Houck, T L; Luchterhand, O C

2011-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2007 Estimated International Energy Flows  

Science Conference Proceedings (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

42

Analysis of market penetration scenarios of clean coal technologies in China using the LLNL China Energy Model  

SciTech Connect

This paper presents the results of an analysis of the market penetration of Clean Coal Technologies in the electric utility market in China. The analysis is based on a model of the Chinese energy system developed at Lawrence Livermore National Laboratory. Under this model, the market penetration of a technology depends on the relative prices of all technologies in a market. The model assumes that for each technology there is a distribution of effective prices to the consumers in the market place. The prices for each technology computed in the model are assumed to be the means of these distributions: sometime the effective price is greater than this and sometimes it is less. Thus even a relatively expensive technology may cost less than its competitors in a fraction of the transactions. Using several scenarios about the possible dispersion of prices, we estimate the market share of CCTs over the next 50 years. We find that some CCTs penetrate under all scenarios, but the more expensive ones only show significant penetration when larger values of price dispersion are assumed. Generally the penetration of the CCTs is 15% or less of the market by 2020. However, advanced pulverized coal does exceed 15% in some cases.

Lamont, A

1998-08-17T23:59:59.000Z

43

Lawrence Livermore National Laboratory (LLNL): What we do  

NLE Websites -- All DOE Office Websites (Extended Search)

About LLNL > What we do About LLNL About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National...

44

LLNL sustainability efforts recognized by NNSA  

NLE Websites -- All DOE Office Websites (Extended Search)

in consumables and 40,000 person-hours per year of time spent managing NIF hazards. LLNL sustainability efforts recognized by NNSA Breanna Bishop, LLNL, (925) 423-9802,...

45

LLNL-ABS-499158  

National Nuclear Security Administration (NNSA)

we are able to capture the energy-bearing scales of the turbulence on the computational grid-the so called iLES approach first proposed by J. Boris in 1990. The Model was used to...

46

LLNL-PRES-407935 Mirror Status Workshop  

E-Print Network (OSTI)

LLNL-PRES-407935 Mirror Status Workshop September 8-9, 2008 Lawrence Berkeley National Laboratory; #12; #12; #12;LLNL-PRES-406923 Comments-9 September 2008 R. F. Post, LLNL MW08-01 #12;The Kinetic Stabilizer concept allows the use of axisymmetric

47

LLNL receives accolades from EPA's Federal Green Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

713green 05172013 LLNL receives accolades from EPA's Federal Green Challenge Jennie L Doman, LLNL, (925) 423-2216, doman3@llnl.gov Printer-friendly LLNL has received accolades...

48

ew LLNL detection technology identifies bacteria, viruses, other...  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal of Virology U.S. Food and Drug Administration Social Media Logos Follow LLNL on YouTube Subscribe to LLNL's RSS feed Follow LLNL on Facebook Follow LLNL on Twitter...

49

LLNL-ABS-499831  

National Nuclear Security Administration (NNSA)

831 831 Page 1 Session 1b: Techniques for Dynamic Experiments New Regimes for Supernova-Relevant Laboratory Astrophysics Experiments at the National Ignition Facility A.R. Miles*, H.-S. Park, B.A. Remington, W. Hsing, C.J. Keane, D.H. Kalantar, B. Maddox, B. Young, R.J. Wallace Lawrence Livermore National Laboratory F.W. Doss, R.P. Drake, M.J. Grosskopf, E.C. Harding, C.M. Huntington, C.M. Krauland, C.C. Kuranz, D.C. Marion, E. Myra University of Michigan J.D. Kilkenny, E. Giraldez, General Atomics; N. Hearn University of Chicago; T. Plewa Florida State University; J.C. Wheeler, University of Texas; W.D. Arnett, University of Arizona The National Ignition Facility (NIF) offers far more energy than has previously been available for experiments on high-energy-density (HED) laser platforms. An effort is currently underway to extend

50

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A  

E-Print Network (OSTI)

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror of Magnetic Mirror Status #12;Berkeley Workshop Participants Others Interested David Baldwin, LLNL/GA Rick, LLNL George Miley, U. Illinois Ron Cohen, LLNL Gary Porter, LLNL Don Correll, LLNL John Santarius, U

51

LLNL Chemical Kinetics Modeling Group  

DOE Green Energy (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

52

US energy flow, 1983  

Science Conference Proceedings (OSTI)

Energy use in 1983 closely paralleled 1982 consumption of 70 quads (70 x 10/sup 15/ Btu) although industrial production and GNP were up 6.5% and 3.3% respectively in 1983 and 1982 was clearly a recession year. Domestic oil production as well as crude imports closely resembled those of 1982. The ratio between energy use (in quads) and GNP (in 1972 dollars) also declined suggesting the continuing importance of conservation. Coal production fell slightly reflecting loss of exports due to strong foreign competition as well as smaller foreign markets. Natural gas sales fell substantially (approx. = 10%) across all end-use sectors. Price increases to residential, commercial and industrial consumers on the order of 15% were recorded and influenced fuel-switching although on a Btu basis only high sulfur residual oil is cost competitive with natural gas and then only for large industrial and utility users. 13 references, 5 figures.

Briggs, C.K.; Borg, I.Y.

1984-07-02T23:59:59.000Z

53

LLNL-PRES-421079 NIF-1109-17901  

E-Print Network (OSTI)

LLNL-PRES-421079 #12;NIF-1109-17901 Lasers Moses, Fusion Power Associates 2 #12;NIF-1109-17901 NIF concentrates all 192 beam energy in a football stadium-sized fac. Moses, Fusion Power Associates 3 #12;NIF-1109-17901 Moses, Fusion Power Associates 4 NIF Missions #12;NIF-1109-17901 Moses, Fusion Power Associates 5 #12

54

RussiaLLNL2-web.indd  

National Nuclear Security Administration (NNSA)

Right: Simulated evolution of the Rayleigh-Taylor instability. Modified for the Web Several dynamic strength models have been implemented in LLNL hydrocodes, including the...

55

LLNL's NeMS: Network Mapping System  

High Performance Computing Innovation Center (Building 6475)located in LLNL's Livermore Valley Open Campus (LVOC) Seating is limited, Pre-registration ...

56

LLNL Supercomputing Facility Achieves LEED Gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Alison Terrill, ArchitectLEED AP Jennifer Doman, Pollution PreventionSustainability Program LLNL Supercomputing Facility Achieves LEED Gold This work performed under...

57

Lawrence Livermore National Laboratory (LLNL): Business Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

IPO Fact Sheet Strategic Diversity Program Lawrence Livermore National Laboratory (LLNL) spends approximately 650,000,000 annually through procurements to a diverse group of...

58

LLNL Chronic Beryllium Disease Protection Program Effectiveness...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLNL-2011-03-25 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report...

59

LLNL scientists contributed to the latest Higgs Boson results...  

NLE Websites -- All DOE Office Websites (Extended Search)

32113boson 03212013 LLNL scientists contributed to the latest Higgs Boson results announced by CERN Donald B Johnston, LLNL, (925) 423-4902, johnston19@llnl.gov Printer-friendly...

60

LLNL garners two top physics stories of 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

stories 02212013 LLNL garners two top physics stories of 2012 Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Lawrence Livermore National Laboratory garnered...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LLNL'S Yuan Ping receives DOE Early Career Research Program Award  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL'S Yuan Ping receives DOE Early Career Research Program Award Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov Printer-friendly Yuan Ping stands next to the target...

62

Retinal prosthesis LLNL helped develop is approved by the FDA  

NLE Websites -- All DOE Office Websites (Extended Search)

6 For immediate release: 02152013 | NR-13-02-06 Retinal prosthesis LLNL helped develop is approved by the FDA Donald B Johnston, LLNL, (925) 423-4902, johnston19@llnl.gov...

63

100th shot for LLNL's 'gun in the desert'  

NLE Websites -- All DOE Office Websites (Extended Search)

09262012 | NR-12-09-04 100th shot for LLNL's 'gun in the desert' Robert H Hirschfeld, LLNL, (925) 422-2379, hirschfeld2@llnl.gov Printer-friendly The JASPER two-stage gas gun, as...

64

LLNL researchers develop first kinetic model of plasma focus...  

NLE Websites -- All DOE Office Websites (Extended Search)

13013device 01302013 LLNL researchers develop first kinetic model of plasma focus device Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly Deuterium ion...

65

LLNL Scientist Named NNSA Science and Technology Excellence Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LLNL Scientist Named NNSA Science and Technology ... LLNL Scientist Named NNSA Science and...

66

California energy flow in 1989  

DOE Green Energy (OSTI)

California's energy use showed a modest increase (2.2%) in 1989 over 1988 which was in keeping with the steady increase in population that the state has experienced annually during the decade. All end-use sectors (residential, commercial, industrial, transportation, etc.) contributed to the growth. The larger demand was met by increased imports of all major fuels. Only electrical imports remained close to 1988 levels, in part due to increased output from Diablo Canyon nuclear plant whose performance exceeded expectations. California's per capita energy consumption has traditionally been below the national average due to the relatively benign climate associated with its centers of population. The largest single use for energy in the state was for transportation which overtook industrial usage in the 60's. Use of highway fuels continued to grow and reached all time highs in 1989. Highway congestion, a major problem and concern in the state, is anticipated to grow as the number of licensed drivers increases; in 1989 the increase was 3.4%. Output from the The Geysers Geothermal fields, the largest in the world, continued to falter as the steam output fell. Nonetheless new resources at the Coso Geothermal Resource Area and at the Wendel Geothermal field came on line during the year, and other geothermal areas were under active development. Novel sources of renewable energy (solar, wind, etc.) grew; however, collectively they made only a small contribution to the overall energy supply. Cogenerated electricity sold to the utilities by small power producers inexplicably fell in 1989 although estimates of the total capacity available rose. Energy flow diagrams illustrate energy sources and energy consumption.

Borg, I.Y.; Briggs, C.K.

1991-02-06T23:59:59.000Z

67

LLNL engineer spends time building affordable homes  

NLE Websites -- All DOE Office Websites (Extended Search)

atl_0103_williams atl_0103_williams 01/03/2014 LLNL engineer Alicia Williams, who volunteers for Habitat for Humanity, installs wood framing. LLNL engineer spends time building affordable homes Kenneth K Ma, LLNL, (925) 423-7602, ma28@llnl.gov Alicia Williams inspects roofing trusses at a construction site. Alicia Williams is developing technology to strengthen America's security and building homes to provide low-income families with affordable housing. The Lawrence Livermore National Laboratory mechanical engineer in the Defense Technologies Engineering Division (DTED) is working on a weapons certification plan to support stockpile stewardship. But what she does on her free time is equally impressive. Williams is a Habitat for Humanity volunteer who spends her Saturdays laboring on rooftops, where she installs siding, nails in frames and puts

68

LLNL hosts plasma physics summer school  

NLE Websites -- All DOE Office Websites (Extended Search)

(925) 423-9802, bishop33@llnl.gov L-R: Jerry Clark (Florida A&M), Professor Charles Weatherford (Florida A&M), Staci Brown (Florida A&M) and Sajan Shresthra (Benedict College)...

69

Fire science at LLNL: A review  

SciTech Connect

This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

Hasegawa, H.K. (ed.)

1990-03-01T23:59:59.000Z

70

LLNL woman pioneer Cecilia Larsen dies  

NLE Websites -- All DOE Office Websites (Extended Search)

10252013 Inset: Cecilia Larsen, holding a magnetic tape for the Univac computer at LLNL in 1960. She was 43 years old. Blue dress: Larsen at her granddaughter's wedding in...

71

Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Flow Test Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Flow Test Details Activities (38) Areas (33) Regions (1) NEPA(3) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Flow tests provide information on permeability, recharge rates, reservoir pressures, fluid chemistry, and scaling. Thermal: Flow tests can measure temperature variations with time to estimate characteristics about the heat source. Dictionary.png Flow Test: Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened and fluids are released, the

72

LLNL-TR-446331 ENDF Cross Sections are not  

E-Print Network (OSTI)

LLNL-TR-446331 ENDF Cross Sections are not Uniquely Defined by Dermott E. Cullen Lawrence Livermore Technical Information Department's Digital Library http://www.llnl.gov/tid/Library.html #12;1 LLNL-TR-446331/NEA Data Bank), Pavel Oblozinsky (BNL, Retired), Ernest Plechaty (LLNL, retired), Andrej Trkov (IJS). Last

Cullen, Red

73

California energy flow in 1992  

DOE Green Energy (OSTI)

For the past 16 years energy flow diagrams for the State of California have been prepared from available data by members of the Lawrence Livermore National Laboratory. They have proven to be useful tools in graphically expressing energy supply and use in the State as well as illustrating the difference between particular years and between the State and the US as a whole. As far as is possible, similar data sources have been used to prepare the diagrams from year to year and identical assumptions{sup la-le} concerning conversion efficiencies have been made in order to minimize inconsistencies in the data and analyses. Sources of data used in this report are given in Appendix B and C; unavoidably the sources used over the 1976--1993 period have varied as some data bases are no longer available. In addition, we continue to see differences in specific data reported by different agencies for a given year. In particular, reported data on supply and usage in industrial/commercial/residential end-use categories have shown variability amongst the data gathering agencies, which bars detailed comparisons from year to year. Nonetheless, taken overall, valid generalizations can be made concerning gross trends and changes.

Borg, I.Y.; Briggs, C.K.

1994-04-01T23:59:59.000Z

74

LLNL Engineering Micro- and Nanotechnologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Lasers to Universal Gates for Photonic FPGAs Read more... Fabrication of High Resolution CZT Detectors Read more... Flow Programmed Mesoscale Assembly of Nanoengineered Materials...

75

Environmental Protection Department LLNL NESHAPs 2007 Annual Report  

Science Conference Proceedings (OSTI)

This annual report is prepared pursuant to the National Emission Standards for Hazardous Air Pollutants (NESHAPs; Title 40 Code of Federal Regulations [CFR] Part 61, Subpart H). Subpart H governs radionuclide emissions to air from U.S. Department of Energy (DOE) facilities. NESHAPs limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 {micro}Sv) to any member of the public. The EDEs for the Lawrence Livermore National Laboratory (LLNL) site-wide maximally exposed members of the public from operations in 2007 are summarized here. Livermore site: 0.0031 mrem (0.031 {micro}Sv) (42% from point source emissions, 58% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by the U.S. Environmental Protection Agency (EPA) Region IX; the resulting dose is used for compliance purposes. Site 300: 0.0035 mrem (0.035 {micro}Sv) (90% from point source emissions, 10% from diffuse source emissions). The EDEs were calculated using the U.S. EPA-approved CAP88-PC air dispersion/dose-assessment model, except for doses for two diffuse sources that were estimated using measured radionuclide concentrations and dose calculations. Specific inputs to CAP88-PC for the modeled sources included site-specific meteorological data and source emissions data, the latter variously based on continuous stack effluent monitoring data, stack flow or other release-rate information, ambient air monitoring data, and facility knowledge.

Bertoldo, N A; Larson, J M; Wilson, K R

2008-06-25T23:59:59.000Z

76

LLNL scientists find precipitation, global warming link  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 11/11/2013 | NR-13-11-04 Lawrence Livermore scientists have found that observed changes in global precipitation are directly affected by human activities. LLNL scientists find precipitation, global warming link Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov LIVERMORE, Calif. -- The rain in Spain may lie mainly on the plain, but the location and intensity of that rain is changing not only in Spain but around the globe. A new study by Lawrence Livermore National Laboratory scientists shows that observed changes in global (ocean and land) precipitation are directly affected by human activities and cannot be explained by natural variability alone. The research appears in the Nov. 11 online edition of the Proceedings of the National Academy of Sciences.

77

Feasibility Study: Potential Enhancements for the LLNL Renewables Website  

DOE Green Energy (OSTI)

This feasibility study investigates additional improvements/extensions to the LLNL Renewables Website. Currently, the Renewables Website focuses on wind energy in California. Future enhancements will include other renewable energy sources. The extensions described below are focused along two separate yet related avenues: (1) Forecasting wildfire risk in the regions of California where new development may occur, as a part of the 'Million Solar Roofs' program. (2) Gaining a better understanding of the ecological components and potential of biofuels from forests in California. These two avenues are further described in the report. Following is a technical description of the Center for Fire Research and Outreach computing and web service capabilities.

Kearns, F; Krawchuk, M; Moritz, M; Stephens, S; Goldstein, N

2008-01-25T23:59:59.000Z

78

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Though considered a promising large-scale energy storage device, the real-world deployment of redox flow batteries has been limited by their inability ...

79

Energy flow in acoustic black holes  

SciTech Connect

We present the results of an analysis of superradiant energy flow due to scalar fields incident on an acoustic black hole. In addition to providing independent confirmation of the recent results in [E. Berti, V. Cardoso, and J. P. S. Lemos, Phys. Rev. D 70, 124006 (2004).], we determine in detail the profile of energy flow everywhere outside the horizon. We confirm explicitly that in a suitable frame the energy flow is inward at the horizon and outward at infinity, as expected on physical grounds.

Choy, K.; Kruk, T.; Carrington, M.E.; Fugleberg, T.; Zahn, J.; Kobes, R.; Kunstatter, G.; Pickering, D. [Department of Physics, Brandon University, Brandon, Manitoba, R7A 6A9 (Canada) and Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada); Department of Physics, University of Winnipeg, Winnipeg, Manitoba, R7A 6A9 (Canada) and Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada); Department of Mathematics, Brandon University, Brandon, Manitoba, R7A 6A9 (Canada)

2006-05-15T23:59:59.000Z

80

State energy flow patterns. [All 50 states  

SciTech Connect

Highly visual and self-explanatory 1975 energy flow diagrams are presented for each of the 50 states and for the entire United States. Each diagram illustrates the energy produced and how it is consumed or lost. The diagrams are meant to serve as a convenient and useful reference (or starting point) for consideration of energy-related problems.

Kidman, R.B.; Barrett, R.J.

1977-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Flow Models for the Steel Industry  

E-Print Network (OSTI)

Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated against both our energy end use and material flow models. These models can serve as the base case for simulating changes in energy utilization and waste streams for steelmaking spurred by economic or regulatory conditions or technology innovations.

Hyman, B.; Andersen, J. P.

1998-04-01T23:59:59.000Z

82

Local Energy Generation in Barotropic Flows  

Science Conference Proceedings (OSTI)

The local growth of disturbances to a steady, nondivergent shear flow is investigated in the context of the barotropic vorticity equation (BVE). A new expression for the instantaneous energy generation rate is derived by using a local coordinate ...

R. Iacono

2002-07-01T23:59:59.000Z

83

LLNL/Las Positas College 'Science and Engineering Seminar Series...  

NLE Websites -- All DOE Office Websites (Extended Search)

313seminar 10032013 LLNLLas Positas College 'Science and Engineering Seminar Series' launches new season Carenda L Martin, LLNL, (925) 424-4175, martin59@llnl.gov Nick Be...

84

LLNL-JRNL-407238 A Model for Stimulated Brillouin  

E-Print Network (OSTI)

LLNL-JRNL-407238 A Model for Stimulated Brillouin Backscattering and Ion Acoustic Wave Secondary in the primary SBS IAW which affects Landau damping and the IAW frequency. PACS: 52.38.-r 52.38.Bv LLNL

85

LLNL scientist finds topography of Eastern Seaboard muddles ancient...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 For immediate release: 05162013 | NR-13-05-04 LLNL scientist finds topography of Eastern Seaboard muddles ancient sea level changes Anne M Stark, LLNL, (925) 422-9799,...

86

LLNL scientists pioneer the use of established technology for...  

NLE Websites -- All DOE Office Websites (Extended Search)

concentrate sample with the aid of a near-infrared spectrometer. Photo by Steve WamplerLLNL LLNL scientists pioneer the use of established technology for analyzing uranium ore...

87

Assessing the Economic Impact of LLNL’s Additive Manufacturing ...  

Assessing the Economic Impact of LLNL’s Additive Manufacturing Technology Danny Katz / Hannah Farqquar Market Intelligence Industrial Partnerships Office

88

LLNL-CONF-400422 Tracking Non-rigid Structures in  

E-Print Network (OSTI)

LLNL-CONF-400422 Tracking Non-rigid Structures in Computer Simulations A. Gezahegne, C. Kamath. Rep. UCRL-TR- 223676, Lawrence Livermore National Laboratory, 2006, http://www.llnl National Labora- tory, 2007, http://www.llnl.gov/casc/sapphire/pubs/TR- 236111-Rev-1.pdf. #12;

Kamath, Chandrika

89

LLNL-JRNL-417371 On Long Range Interpolation  

E-Print Network (OSTI)

LLNL-JRNL-417371 On Long Range Interpolation Operators for Aggressive Coarsening Ulrike Meier Yang-CG applying various interpolation operators to Problem 4 (LLNL) with 500Ã?500 grid points per processor using H times for Problem 4 (LLNL) with approximately 86,000 grid points per processor using H1 coarsening No

90

LLNL-JRNL-409341 A New Approach for Solving Stokes  

E-Print Network (OSTI)

LLNL-JRNL-409341 A New Approach for Solving Stokes Systems Arising From a Distributive Relaxation. The work of the first author was partially supported by LLNL and by NSF grant DMS-0713125. 1 #12, Livermore, CA 94550, U.S.A. E-mail address: panayot@llnl.gov Department of Mathematical Sciences, University

Zhang, Shangyou

91

Energy flows : empowering New Orleans  

E-Print Network (OSTI)

This thesis claims to develop alternative energy-harvesting systems by looking at their implementation at the residential scale in order to facilitate the economical autonomy of a community and thus improve its living ...

Guiraud, Florence Nathalie

2012-01-01T23:59:59.000Z

92

LLNL Chronic Beryllium Disease Protection Program Effectiveness Review, March 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLNL-2011-03-25 LLNL-2011-03-25 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review Dates of Activity : 03/14/2011 - 03/25/2011 Report Preparer: Marvin Mielke Activity Description/Purpose: The Lawrence Livermore National Laboratory (LLNL) and the Livermore Site Office (LSO) chartered a team to conduct an effectiveness review of the issues identified with the LLNL Chronic Beryllium Disease Prevention Program (CBDPP). The team included members and observers from LLNL, LSO, the National Nuclear Security Administration (NNSA), and the

93

LLNL Chronic Beryllium Disease Protection Program Effectiveness Review, March 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL-2011-03-25 LLNL-2011-03-25 Site: Lawrence Livermore National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review Dates of Activity : 03/14/2011 - 03/25/2011 Report Preparer: Marvin Mielke Activity Description/Purpose: The Lawrence Livermore National Laboratory (LLNL) and the Livermore Site Office (LSO) chartered a team to conduct an effectiveness review of the issues identified with the LLNL Chronic Beryllium Disease Prevention Program (CBDPP). The team included members and observers from LLNL, LSO, the National Nuclear Security Administration (NNSA), and the

94

California energy flow in 1987  

Science Conference Proceedings (OSTI)

California is noteworthy because of its diversity of energy supply and its proclivity to change and experiment in all matters relating to energy use and development. Overall energy use in the state increased 6% spread over almost all end-use sectors. The increase reflected a colder year than 1986 and a large population increase. On the supply side, the most impressive change in meeting demand was a substantial (23%) increase in the use of natural gas, particularly for power production and in the industrial sector. The increase was fostered by drought conditions that limited hydropower, by the increased availability of out-of-state supplies, and by changes in regulations governing gas transmissions. The number of cogenerators and self-generators grew faster than in the nation as a whole. The amount of power sold to the utilities by this group was double the amount sold in 1985, posing problems to utilities and regulatory agencies alike. Alternate sources of energy continued to grow. The state's windfarms and geothermal installations are the largest in the world. The state sponsored methanol program moved ahead with the introduction of flexible fueled automobiles into the state's fleet and installation of a large number of service stations selling the fuel. Nonetheless, California's energy picture is dominated by the use of petroleum and natural gas, the bulk of which are imported. 31 refs., 3 figs., 7 tabs.

Borg, I.Y.; Briggs, C.K.

1989-01-13T23:59:59.000Z

95

Excess Property LLNL.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-01 2-01 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS INSPECTION ON THE MANAGEMENT OF EXCESS PERSONAL PROPERTY AT LAWRENCE LIVERMORE NATIONAL LABORATORY NOVEMBER 2001 November 8, 2001 MEMORANDUM FOR THE MANAGER, OAKLAND OPERATIONS OFFICE FROM: Sandra L. Schneider /s/ Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Report of "Inspection on the Management of Excess Personal Property at Lawrence Livermore National Laboratory" BACKGROUND Lawrence Livermore National Laboratory (Livermore) has a personal property inventory of over 53,500 line items with an acquisition value of over $823 million. It generates thousands of excess personal property items each year. In FY 2000, for example, Livermore excessed over

96

LLNL Success Stories - Energy Innovation Portal  

1 Success Stories; Category Title and Abstract Company / Laboratories Date; Vehicles and Fuels Improved Engine Design Through More Efficient Combustio ...

97

California energy flow in 1991  

SciTech Connect

Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

Borg, I.Y.; Briggs, C.K.

1993-04-01T23:59:59.000Z

98

California energy flow in 1980  

Science Conference Proceedings (OSTI)

Energy consumption fell slightly in California during 1980. In view of an increase in population on the order of 375,000 the per capita consumption fell even more, but less than 4%. Transmitted electric power remained near 1979 levels, but oil as an electrical generating fuel declined dramatically (40%). In its stead natural gas and hydropower were used to generate electricity. Mild winters in 1979-80 and 1980-81 made unusual amounts of natural gas available for that purpose. Both California and out-of-state sources of hydropower increased during 1980. Electricity from out-of-state coal fired plants also increased slightly. Problems at San Onofre nuclear plant resulted in a 47% decrease in electricity from one of the two commercial nuclear plants operating in California in 1980. Decreased oil use also had a clear expression in the transportation end use sector. Gasoline consumption dropped 4% as it had in 1979 as well. Sales of vessel bunkering fuels increased as part of a trend related to larger amounts of heavy oils from local and Alaskan sources being refined in the state and decreased use of lighter Indonesian oils. Residential/commercial usage dropped 5% during 1980 as a consequence of price driven conservation and mild weather. By contrast, the industrial sector increased its energy consumption by 6%. California's overall energy use pattern continues to differ substantially from that of the US as a whole. The dedication of large amounts of fossil fuels to transportation, the total absence of coal-fired plants for power production in the state, and the larger share of oil and natural gas used for electrical power generation are among California's energy situation's distinguishing features. In 1980, combined use of oil and gas declined for the first time in some years by 4%. The national average decline for 1980 was 7%.

Briggs, C.K.; Borg, I.Y.

1982-05-12T23:59:59.000Z

99

California energy flow in 1993  

SciTech Connect

Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.

Borg, I.Y.; Briggs, C.K.

1995-04-01T23:59:59.000Z

100

California energy flow in 1994  

SciTech Connect

California energy consumption increased in 1994 in keeping with a recovery from the previous mild recession years. Although unemployment remained above the national average, other indicators pointed to improved economic health. Increased energy use was registered principally in the residential/commercial and transportation end-use sectors. A cooler-than-usual winter and spring was reflected in increased consumption of natural gas, the principal space-heating fuel in the state. Because of low water levels behind state dams, utilities turned to natural gas for electrical generation and to increased imports from out-of- state sources to meet demand. Other factors, such as smaller output from geothermal, biomass, and cogenerators, contributed to the need for the large increase in electrical supply from these two sources. Nonetheless, petroleum dominated the supply side of the energy equation of the state in which transportation requirements comprise more than one-third of total energy demand. About half of the oil consumed derived from California production. Onshore production has been in slow decline; however, in 1994 the decrease was compensated for by increases from federal offshore fields. Until 1994 production had been limited by regulatory restrictions relating to the movement of the crude oil to onshore refineries. State natural gas production remained at 1993 levels. The increased demand was met by larger imports from Canada through the recent expansion of Pacific Transmission Company`s 804 mile pipeline. Deregulation of the state`s utilities moved ahead in 1994 when the California Public Utilities Commission issued its proposal on how to restructure the industry. Public hearings were conducted in which the chief issues were recovery of the utilities` capital investments, conflicts with the Public Utilities Policies Act, management of power transactions between new suppliers and former utility customers, and preservation of energy conservation programs currently sponsored by the utilities. The issues were not resolved at year-end, but the state`s public utilities began to take steps to improve their positions in a future competitive market by cutting costs, improving efficiencies operating plants, and enlarging their nonutility interests.

Borg, I.Y.; Mui, N.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Keeping the Nation's Energy Flowing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Keeping the Nation's Energy Flowing Keeping the Nation's Energy Flowing Keeping the Nation's Energy Flowing March 29, 2013 - 10:58am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability What does this mean for me? The Department's priority is reflected in its investment in cybersecurity for energy delivery systems and energy reliability modernization. We closely collaborate with Federal, State and local governments, and industry. Our lives are constantly being intertwined with the digital world, making cyber security a critical component of daily life. And this is especially true when it comes to protecting the nation's critical infrastructure, which delivers services that are vital to U.S. security, economic prosperity and the safety and well being of Americans.

102

Flow Cells for Energy Storage Workshop Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

103

Lab sustainability efforts move toward solar energy: DOE issues...  

NLE Websites -- All DOE Office Websites (Extended Search)

110112solar 11012012 Lab sustainability efforts move toward solar energy: DOE issues call for proposals Linda A Lucchetti, LLNL, (925) 422-5815, lucchetti1@llnl.gov...

104

Fuel Cell Technologies Office: Flow Cells for Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Cells for Energy Storage Workshop The U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (LBNL) held a Flow Cells for Energy Storage Workshop on March...

105

Modular High Current Test Facility at LLNL  

SciTech Connect

This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

2008-05-20T23:59:59.000Z

106

Observing and modeling Earths energy flows  

SciTech Connect

This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

Stevens B.; Schwartz S.

2012-05-11T23:59:59.000Z

107

LLNL-TR-548633 ENDF/B-VII.1  

E-Print Network (OSTI)

LLNL-TR-548633 ENDF/B-VII.1 versus ENDFB/-VII.0: What's Different? by Dermott E. Cullen Lawrence by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. #12;3 LLNL-TR-548633 ENDF/B-VII.1 that has been incorporated in the final version of this paper: John Scorby (LLNL), Maurice Greene (ORNL), S

Cullen, Red

108

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

109

FY 2006 University of California (LLNL), PER Summary | National...  

National Nuclear Security Administration (NNSA)

Employment Apply for Our Jobs Our Jobs Working at NNSA Blog FY 2006 University of California (LLNL), PER Summary Home > About Us > Our Operations > Acquisition and Project...

110

Use of LLNL-developed laser peening spreads  

Use of LLNL-developed laser peening spreads When it made its maiden flight on December 15, the Boeing 787 Dreamliner was powered

111

LANL, LLNL researchers among Early Career Research Program award...  

NLE Websites -- All DOE Office Websites (Extended Search)

Follow this link to skip to the main content Facebook Flickr RSS Twitter YouTube LANL, LLNL researchers among Early Career Research Program award recipients | National Nuclear...

112

Final LLNL Volume 1 - ES&H 2002.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 years) in non-optimal storage conditions (many drums are stored outside, exposed to weather). The disposition of legacy wastes, and other waste management activities, at LLNL...

113

LLNL Ready-to-Sign (RTS) Licensing Program  

Director search process gets under way. November 26, 2013. LLNL Home. Latest News Headlines. Change in Pacific nitrogen content tied to climate chan. ...

114

Aerosol Simulations by LLNL IMPACT and Comparisons with Field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulations by LLNL IMPACT and Comparisons with Field Measurements C. C. Chuang, D. Bergman, J. Dignon, and P. Connell Lawrence Livermore National Laboratory Livermore, California...

115

LLNL-TR-632239 Modeling Thermally Induced Failure  

NLE Websites -- All DOE Office Websites (Extended Search)

IM Release Number: LLNL-TR-632239 1 1 Introduction Wells for Engineered Geothermal Systems (EGS) occur in conditions that present significant challenges for...

116

LLNL Capabilities in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

Friedmann, S J; Burton, E; Upadhye, R

2006-06-07T23:59:59.000Z

117

Free Flow Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Flow Power Corporation Flow Power Corporation Jump to: navigation, search Name Free Flow Power Corporation Address 239 Causeway St Suite 300 Place Gloucester, Massachusetts Zip 1930 Sector Marine and Hydrokinetic, Ocean Product Massachusetts-based company that has developed a turbine generator designed to extract energy from tides, ocean currents, rivers, streams, canals and conduits. Free Flow has raised some initial funding and is prototype testing in rivers and tanks. Year founded 2007 Number of employees 28 Phone number 978-232-3536 Website http://www.free-flow-power.com Coordinates 37.413962°, -76.526305° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.413962,"lon":-76.526305,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Aerosol Modeling at LLNL - Our capability, results, and perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

119

Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Cells for Energy Flow Cells for Energy Storage Workshop to someone by E-mail Share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Facebook Tweet about Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Twitter Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Google Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Delicious Rank Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Digg Find More places to share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

120

Water Cerenkov-based Neutron and High Energy Gamma-Ray Detector  

LLNL Home. Latest News Headlines. LLNL, Intel, Cray produce big data machine. November 4, 2013. ... for the Department of Energy's National Nuclear Security ...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Network flow model for multi-energy systems  

Science Conference Proceedings (OSTI)

This paper describes a novel approach to model networks with multiple energy carrier. The proposed nodal matrix establishes a link between an optimization of enclosed areas and their interconnections via networks. In the envisioned network flow model ... Keywords: energy conversion, energy hubs, grids, line losses, network flow, optimal power flow

Matthias Schulze; Goran Gašparovi?

2010-02-01T23:59:59.000Z

122

LLNL-CONF-409744 An Experiment to Tame the  

E-Print Network (OSTI)

LLNL-CONF-409744 An Experiment to Tame the Plasma Material Interface R. J. Goldston, J. E. Menard supported in part by U.S. DOE Contract # DE-AC02-76CH03073 Prepared by LLNL under Contract DE-AC52-07NA27344

Harilal, S. S.

123

Career development for engineers at the LLNL  

SciTech Connect

The career development program for engineers at the Lawrence Livermore National Laboratory (LLNL) results from a conductive atmosphere rather than a structured program approach. Although the concern for careers first emerged about twenty years ago, in the past decade the Laboratory management has set out to create a favorable climate for its employees to retain their vitality and enhance their creativity. The goal was twofold: to strengthen the Laboratory and to provide more satisfying careers for its employees. How that climate has evolved is the subject of this discussion. What has been done at Livermore may not work at another place. Each organization's make-up, mission, and needs are different, with a unique staff of employees and managers who influence the creation of the organizational climate.

Decker, W.D.

1982-01-01T23:59:59.000Z

124

Ltr._to_Gottlieb_-_Response_from_LLNL_75_FR_72036_3-23-09.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ltr.toGottlieb-ResponsefromLLNL75FR720363-23-09.pdf Ltr.toGottlieb-ResponsefromLLNL75FR720363-23-09.pdf Ltr.toGottlieb-ResponsefromLLNL75FR720363-23-0...

125

LLNL-TR-479947, rev. 1 POINT 2011: ENDF/B-VII.1 Beta3  

E-Print Network (OSTI)

LLNL-TR-479947, rev. 1 POINT 2011: ENDF/B-VII.1 Beta3 Temperature Dependent Cross Section Library Technical Information Department's Digital Library http://www.llnl.gov/tid/Library.html #12;LLNL-TR-479947

Cullen, Red

126

New LLNL research shows the moon's core was active later than...  

NLE Websites -- All DOE Office Websites (Extended Search)

013moon 05102013 New LLNL research shows the moon's core was active later than original estimates Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly East limb...

127

Monitoring of energy flows and optimization of energy efficiency in a production facility  

Science Conference Proceedings (OSTI)

The present paper reports the findings of an assessment of the energy flows of a building equipped with machine tools and discusses options to optimize its energy efficiency. The energy flows in the buildings are recorded based on collected data and ... Keywords: building simulation, energy consumption, energy efficiency in production, energy flow analysis

I. Leobner; K. Ponweiser; C. Dorn; F. Bleicher

2011-07-01T23:59:59.000Z

128

Directed and elliptic flow in Au + Au at intermediate energies  

E-Print Network (OSTI)

Directed and elliptic flow for the Au + Au system at incident energies between 40 and 150 MeV per nucleon has been measured using the INDRA 4 pi multi-detector. For semi-central collisions, the elliptic flow of Z directed flow changes sign at a bombarding energy between 50 and 60 MeV per nucleon and remains negative at lower energies. The conditions for the appearance and possible origins of negative flow are discussed.

J. Lukasik; G. Auger; M. L. Begemann-Blaich; N. Bellaize; R. Bittiger; F. Bocage; B. Borderie; R. Bougault; B. Bouriquet; J. L. Charvet; A. Chbihi; R. Dayras; D. Durand; J. D. Frankland; E. Galichet; D. Gourio; D. Guinet; S. Hudan; P. Lautesse; F. Lavaud; A. Le Fevre; R. Legrain; O. Lopez; U. Lynen; W. F. J. Mueller; L. Nalpas; H. Orth; E. Plagnol; E. Rosato; A. Saija; C. Schwarz; C. Sfienti; B. Tamain; W. Trautmann; A. Trzcinski; K. Turzo; E. Vient; M. Vigilante; C. Volant; B. Zwieglinski

2004-10-20T23:59:59.000Z

129

Flow-Through Electrode Capacitive Desalination  

LLNL has developed an innovative technology known as flow-through electrode capacitive desalination (FTE-CD) that promises to unlock an almost ...

130

Power flow analysis for amplifier design and energy harvesting  

E-Print Network (OSTI)

Power flow analysis for amplifier design and energy harvesting Nikola Vujica, Donald J. Leoa strategies which will provide an electrical energy regeneration. In this case, the power is flowing from to the electrical side which may have the ability to store (regenerate) this energy. The ability of energy storage

Lindner, Douglas K.

131

Historical summary and recommendations on Melanoma in the LLNL workforce  

SciTech Connect

This document provides a historical summary and recommendations on melanoma in the Lawrence Livermore National Laboratory (LLNL) workforce. Melanoma of the skin comprises about 3.5% of the incidence (38,000 new cases in 1991) and 1.7% of the mortality (8500 deaths in 1991) of all cancer in the U.S. However, for several decades it has shown the fastest rate of increase of any cancer site. The following areas are discussed: background and recognition of increased melanoma at LLNL, history of melanoma studies at LLNL, results from occupational factors study, overall conclusion on increased melanoma incidence, and recommendations for future management.

Moore, D.H. II; Hatch, F.

1994-12-01T23:59:59.000Z

132

Calculated photon KERMA factors based on the LLNL EGDL (Evaluated Gamma-Ray Data Library) data file  

DOE Green Energy (OSTI)

Photon (Gamma-Ray) KERMA factors calculated from the LLNL EGDL (Evaluated Gamma-Ray Data Library) file are tabulated for the elements from Z=1 to Z=30 and for 15 composite materials. The KERMA factors are presented for 191 energy groups over the incident photon energy range from 100 eV to 100 MeV. 3 refs.

Howerton, R.J.

1986-10-10T23:59:59.000Z

133

Definition: Flow Test | Open Energy Information  

Open Energy Info (EERE)

Flow Test Jump to: navigation, search Dictionary.png Flow Test Flow tests are typically conducted shortly after a well has been drilled to test its productivity. The well is opened...

134

Photoelectron Spectroscopy of U Oxide at LLNL  

Science Conference Proceedings (OSTI)

In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.

Tobin, J G; Yu, S; Chung, B W; Waddill, G D

2010-03-02T23:59:59.000Z

135

LANL, LLNL researchers among Early Career Research Program award recipients  

National Nuclear Security Administration (NNSA)

LANL, LLNL researchers among Early Career Research Program award recipients LANL, LLNL researchers among Early Career Research Program award recipients | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL, LLNL researchers among Early Career Research ... LANL, LLNL researchers among Early Career Research Program award recipients Posted By Office of Public Affairs

136

Science at LLNL with IBM Blue Gene/Q  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) has a long history of working with IBM on Blue Gene® supercomputers. Beginning in November 2001 with the joint announcement of a partnership to expand the Blue Gene research project (including Blue Gene®/L ...

B. Carnes, B. Chan, E. W. Draeger, J.-L. Fattebert, L. Fried, J. Glosli, W. D. Krauss, S. H. Langer, R. McCallen, A. A. Mirin, F. Najjar, A. L. Nichols, T. Oppelstrup, J. A. Rathkopf, D. Richards, F. Streitz, P. M. Vranas, J. J. Rice, J. A. Gunnels, V. Gurev, C. Kim, J. Magerlein, M. Reumann, H.-F. Wen

2013-01-01T23:59:59.000Z

137

LLNL's High Performance Computing Innovation Center marks second...  

NLE Websites -- All DOE Office Websites (Extended Search)

Open Campus. Read more about the center: 1.usa.gov12um9FP About the photo: A team of LLNL scientists, in partnership with engineers from Navistar, NASA, the U.S. Air Force and...

138

Fossil Fuel Emission Verification Modeling at LLNL  

SciTech Connect

We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and Gaussianity of errors, or one of several statistical sampling techniques, which are computationally slower but do not require either linearity or Gaussianity (Chow, et al., 2008; Delle Monache, et al., 2008). The emission regions we are using are based on the air-basins defined by the California Air Resources Board (CARB), see Figure 3. The only difference is that we have joined some of the smaller air basins together. The results of a test using 4 days of simulated observations using our ensemble retrieval system are shown in Figure 3 (right). The main source of the variation between the different model configurations arises from the uncertainty in the atmospheric boundary layer parameterization in the WRF model. We are currently developing a capability to constrain the boundary layer height in our carbon-14 work either by weighting the ensemble member results by the accuracy of their boundary layer height (using commercial aircraft observations), or as part of the retrieval process using an ensemble Kalman filter (EnKF) capability.

Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

2009-08-06T23:59:59.000Z

139

The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Facility Data Requirements Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager Streaked x-ray detector VISAR Velocity Measurements Static x-ray imager FFLEX Hard x-ray spectrometer Near Backscatter Imager DANTE Soft x-ray temperature Diagnostic Alignment System Cross Timing System Each Diagnostic Produces Data that Requires Analysis 6 Tools are being built to manage and integrate:

140

LLNL Contribution to LLE FY09 Annual Report: NIC and HED Results  

Science Conference Proceedings (OSTI)

In FY09, LLNL led 238 target shots on the OMEGA Laser System. Approximately half of these LLNL-led shots supported the National Ignition Campaign (NIC). The remainder was dedicated to experiments for the high-energy-density stewardship experiments (HEDSE). Objectives of the LLNL led NIC campaigns at OMEGA included: (1) Laser-plasma interaction studies in physical conditions relevant for the NIF ignition targets; (2) Demonstration of Tr = 100 eV foot symmetry tuning using a reemission sphere; (3) X-ray scattering in support of conductivity measurements of solid density Be plasmas; (4) Experiments to study the physical properties (thermal conductivity) of shocked fusion fuels; (5) High-resolution measurements of velocity nonuniformities created by microscopic perturbations in NIF ablator materials; (6) Development of a novel Compton Radiography diagnostic platform for ICF experiments; and (7) Precision validation of the equation of state for quartz. The LLNL HEDSE campaigns included the following experiments: (1) Quasi-isentropic (ICE) drive used to study material properties such as strength, equation of state, phase, and phase-transition kinetics under high pressure; (2) Development of a high-energy backlighter for radiography in support of material strength experiments using Omega EP and the joint OMEGA-OMEGA-EP configuration; (3) Debris characterization from long-duration, point-apertured, point-projection x-ray backlighters for NIF radiation transport experiments; (4) Demonstration of ultrafast temperature and density measurements with x-ray Thomson scattering from short-pulse laser-heated matter; (5) The development of an experimental platform to study nonlocal thermodynamic equilibrium (NLTE) physics using direct-drive implosions; (6) Opacity studies of high-temperature plasmas under LTE conditions; and (7) Characterization of copper (Cu) foams for HEDSE experiments.

Heeter, R F; Landen, O L; Hsing, W W; Fournier, K B

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Portable Liquid Flow Metering for Energy Conservation Programs  

E-Print Network (OSTI)

Flow metering is absolutely required for evaluation of energy usage. In fact, determining usages and heat balances without metering are simply educated guesses. Recent technological innovations in flow metering have produced clamp-on, portable flow meters to measure liquids. This paper reviews the principles of ultrasonic flow meters. Applications and costs of ultrasonic versus orifice flow meters are important to consider in energy audits. A discussion follows on 'how' and 'where' to use ultrasonic flowmeters. Estimated costs contained in this paper encompass equipment costs as well as installation costs associated with both ultrasonic and orifice meters.

Miles, F. J.

1982-01-01T23:59:59.000Z

142

RussiaLLNL2-web.indd  

National Nuclear Security Administration (NNSA)

the number of zones is 3500, compared to 125 zones initially. Modified for the Web The accurate simulation of hydrodynamic and heat conducting flows requires significant...

143

Status of LLNL Hot-Recycled-Solid oil shale retort  

SciTech Connect

We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day, HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. Over the last three years, from June 1991 to June 1993, we completed a series of runs (H10--H27) using the 4-TPD pilot plant to demonstrate the technical feasibility of the HRS process and answer key scale-up questions. With our CRADA partners, we seek to further develop the HRS technology, maintain and enhance the knowledge base gained over the past two decades through research and development by Government and industry and determine the follow on steps needed to advance the technology towards commercialization. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

144

Electromagnetic energy flow lines as possible paths of photons  

E-Print Network (OSTI)

Motivated by recent experiments where interference patterns behind a grating are obtained by accumulating single photon events, here we provide an electromagnetic energy flow-line description to explain the emergence of such patterns. We find and discuss an analogy between the equation describing these energy flow lines and the equation of Bohmian trajectories used to describe the motion of massive particles.

M. Davidovic; A. S. Sanz; D. Arsenovic; M. Bozic; S. Miret-Artes

2008-05-21T23:59:59.000Z

145

LLNL Scientist Named NNSA Science and Technology Excellence Award Winner |  

National Nuclear Security Administration (NNSA)

NNSA Blog > LLNL Scientist Named NNSA Science and Technology ... NNSA Blog > LLNL Scientist Named NNSA Science and Technology ... LLNL Scientist Named NNSA Science and Technology Excellence Award Winner Posted By Office of Public Affairs NNSA Administrator Thomas D'Agostino yesterday awarded the first ever NNSA Science and Technology Excellence Award to Dr. Michel McCoy from Lawrence Livermore National Laboratory for his groundbreaking computer science research and leadership with the Advanced Simulation and Computing program. The newly-established NNSA Science and Technology Excellence Award is the highest level of recognition for science and technology achievement in NNSA. It recognizes accomplishment that can include vision, leadership, innovation and intellectual contributions. The award is intended to draw attention to the remarkable scientific and technological successes that are

146

Category:Flow Data | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Wiki Browse Latinoamrica Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy...

147

Free Flow 69 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Free Flow 69 Address Unit 9 Windmill Ind Est Windmill Place Fowey Zip PL23 1HB Sector Marine and Hydrokinetic Phone number 01726 833337 Website...

148

Radiant energy receiver having improved coolant flow control means  

DOE Patents (OSTI)

An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

Hinterberger, H.

1980-10-29T23:59:59.000Z

149

The Energy Transformation Limit Theorem for Gas Flow Systems  

E-Print Network (OSTI)

The limit energy theorem which determines the possibility of transformation the energy flow in power systems in the absence of technical work is investigated and proved for such systems as gas lasers and plasmatrons, chemical gas reactors, vortex tubes, gas-acoustic and other systems, as well as a system of close stars. In the case of the same name ideal gas in the system the maximum ratio of energy conversion effectiveness is linked to the Carnot theorem, which in its turn is connected with the Nernst theorem. However, numerical analyses show that the class of flow energy systems is non-carnot one. The ratio of energy conversion effectiveness depends on the properties of the working medium; a conventional cycle in open-circuit is essentially irreversible. The proved theorem gives a more strongly worded II law of thermodynamics for the selected class of flow energy systems. Implications for astrophysical thermodynamic systems and the theory of a strong shock wave are discussed.

Volov, V T

2011-01-01T23:59:59.000Z

150

Energy flow analysis for curved beams  

Science Conference Proceedings (OSTI)

This paper presents an energy model for the medium- and high-frequency analysis of Love–Kirchhoff curved beams. This model introduced by Nefske and Sung [Statistical Energy Analysis NCA 3

A. Le Bot; M. N. Ichchou; L. Jezequel

1997-01-01T23:59:59.000Z

151

Precision Flow Technologies | Open Energy Information  

Open Energy Info (EERE)

Precision Flow Technologies Precision Flow Technologies Jump to: navigation, search Name Precision Flow Technologies Place Saugerties, New York Zip 12477 Product New York-based, firm focused on the design and manufacture of ultra high purity gas and control systems. Coordinates 42.07778°, -73.952459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.07778,"lon":-73.952459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

Table Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flow Table Length(m) 2.4 Beam(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent Test Experience Users are District Engineers, Planners, and Engineering Consultants

153

Proceedings of the LLNL Technical Women`s Symposium  

SciTech Connect

This report documents events of the LLNL Technical Women`s Symposium. Topics include; future of computer systems, environmental technology, defense and space, Nova Inertial Confinement Fusion Target Physics, technical communication, tools and techniques for biology in the 1990s, automation and robotics, software applications, materials science, atomic vapor laser isotope separation, technical communication, technology transfer, and professional development workshops.

von Holtz, E. [ed.

1993-12-31T23:59:59.000Z

154

Spill exercise 1980: an LLNL emergency training exercise  

Science Conference Proceedings (OSTI)

An emergency training exercise at Lawrence Livermore National Laboratory (LLNL) demonstrated that off-hours emergency personnel can respond promptly and effecively to an emergency situation involving radiation, hazardous chemicals, and injured persons. The exercise simulated an explosion in a chemistry laboratory and a subsequent toxic-gas release.

Morse, J.L.; Gibson, T.A.; Vance, W.F.

1981-04-01T23:59:59.000Z

155

RussiaLLNL2-web.indd  

National Nuclear Security Administration (NNSA)

for solving radiation transport equations using adaptivity in energy. Because the computational cost of a transport solution is roughly proportional to the number of energy groups used, minimizing the number of groups is desirable. However, energy discretizations of the transport equation necessarily approximate both material properties (opacities) and radiation spectra, so that the solution depends on the energy discretization. In addition, the solution may be sensitive to diff erent spectral ranges in diff erent regions of the domain. Adaptive techniques have the potential to address this issue, as well as to increase the accuracy and/or decrease the cost of a solution. This study addressed the need for increased effi ciency by developing a numerical method using energy adaptivity.

156

Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization  

SciTech Connect

A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiation Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site wide ALARA Committee and administrative control levels would focus attention on improved processes. Currently LLNL issues dosimeters to a large number of employees and visitors that do not enter areas requiring dosimetry. This includes 25,000 visitor TLDs per year. Dosimeters should be issued to only those personnel who enter areas where dosimetry is required.

Sygitowicz, L S

2008-03-20T23:59:59.000Z

157

Introduction to the Cash Flow Opportunity Calculator Spreadsheet | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

the Cash Flow Opportunity Calculator Spreadsheet the Cash Flow Opportunity Calculator Spreadsheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

158

2007 LLNL ES&H.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

CFR Code of Federal Regulations DOE U.S. Department of Energy EMS Environmental Management System ES&H Environment, Safety, and Health HEPA High Effi ciency Particulate Air...

159

2004 LLNL ES&H.pmd  

NLE Websites -- All DOE Office Websites (Extended Search)

Used in This Report DOE U.S. Department of Energy EM Office of Environmental Management ES&H Environment, Safety, and Health FY Fiscal Year ISM Integrated Safety Management...

160

2007 LLNL ES&H.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Code of Federal Regulations DOE U.S. Department of Energy EMS Environmental Management System ES&H Environment, Safety, and Health HEPA High Effi ciency Particulate Air ISM...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

LLNL-JRNL-402318 Hyperfine quenching of the 2s2p 3  

E-Print Network (OSTI)

LLNL-JRNL-402318 Hyperfine quenching of the 2s2p 3 P0 state of berylliumlike ions K. T. Cheng, the measured value. PACS numbers: 31.30.Gs, 32.10.Fn, 31.15.aj, 31.15.am ktcheng@llnl.gov chen7@llnl

Johnson, Walter R.

162

LLNL-JRNL-410333 The Role of the n=1 Column  

E-Print Network (OSTI)

LLNL-JRNL-410333 The Role of the n=1 Column Mode in Spheromak Formation Bruce Cohen, Carlos Romero Livermore National Laboratory under contracts DE-AC52-07NA27344. LLNL-JRNL-410333 #12;2 I. INTRODUCTION to interface NIMROD with VisIt and W. H. Meyer for assistance implementing the Python script at LLNL

163

LLNL-TR-461199 A Short History of ENDF/B  

E-Print Network (OSTI)

LLNL-TR-461199 A Short History of ENDF/B Unresolved Resonance Parameters by Dermott E. Cullen://www.ntis.gov/ OR Lawrence Livermore National Laboratory Technical Information Department's Digital Library http://www.llnl.gov/tid/Library.html #12;3 LLNL-TR-461199 A Short History of ENDF/B Unresolved Resonance Parameters by Dermott E. Cullen

Cullen, Red

164

Redox Flow Batteries for Grid-scale Energy Storage - Energy ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Startup America Industrial Technologies Energy Storage Redox ...

165

Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms  

E-Print Network (OSTI)

As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.

Meyers, Johan

2012-01-01T23:59:59.000Z

166

Energy momentum flows for the massive vector field  

E-Print Network (OSTI)

We present a causal trajectory interpretation for the massive vector field, based on the flows of rest energy and a conserved density defined using the time-like eigenvectors and eigenvalues of the stress-energy-momentum tensor. This work extends our previous work which used a similar procedure for the scalar field. The massive, spin-one, complex vector field is discussed in detail and solutions are classified using the Pauli-Lubanski spin vector. The flows of energy-momentum are illustrated in a simple example of standing waves in a plane.

George Horton; Chris Dewdney

2006-09-26T23:59:59.000Z

167

U.S. energy flow, 1992  

Science Conference Proceedings (OSTI)

This report discusses energy consumption in the United States which rose slightly in 1992, reflecting partial recovery from the economic recession that prevailed during the previous year. Increases were registered in all major end use sectors with the largest occurring in the industrial sector. Energy consumed for transportation, which reflects improved passenger fleet efficiencies and a growing population as well as economic activity, returned to 1989--1990 levels. The United States depended on petroleum for 41 % of its energy supply. Imports of crude oil and petroleum products increased to compensate for decline in domestic production. Imports rose to 44% of supply. Because domestic production of natural gas was close to 1991`s, increased demand was accommodated by larger (16%) imports from Canada. Coal production was virtually unchanged from 1991 and thus well below 1990 production. Nonetheless coal supplied about one quarter of US energy needs, primarily for electrical generation. For the third year electricity transmitted by utilities departed from historic growth trends; it remained at 1991 levels. The Energy Policy Act of 1992 was signed into law in October. Among its many provisions, this act encourages independent power producers to compete with the utilities in wholesale production of electricity, streamlines the licensing of nuclear power plants, promotes the development of renewable energy sources through tax incentives, imposes efficiency standards on many manufacturing items, requires federal and private fleets to buy vehicles that run on alternative fuels, and requires the Secretary of Energy to develop a plan to decrease oil consumption, increase the use of renewable energy, improve conversion efficiencies, and limit the emission of greenhouse gases.

Borg, I.Y.; Briggs, C.K.

1993-10-01T23:59:59.000Z

168

RussiaLLNL2-web.indd  

National Nuclear Security Administration (NNSA)

perform numerical quantum mechanical studies of perform numerical quantum mechanical studies of material properties of selected actinides at or near ambient pressure (~1 atmosphere) and with temperatures in the range of T = 0 K to near room temperature (T = 300 K) to better understand the nature of highly correlated electron systems. This project included a study of Np, including equilibrium geometry, total and partial density of states, magnetic moments, and diff erential with respect to energy magnetic moments. In addition, it provided comparison of the magnetic and electronic properties in the row U-Np-Pu-Am-Cm. Calculations of the total and partial density of states, and of the magnetic structure for Pu 3 Al, Pu 3 Ga and Pu 3 In were performed. In addition, the formation energies for non-spin-polarized and spin-polarized cases were evaluated.

169

Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage  

SciTech Connect

GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

2010-10-01T23:59:59.000Z

170

2005 LLNL EM Report.pmd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 4.0 RATINGS ................................................................................................ 7 APPENDIX A - SUPPLEMENTAL INFORMATION .............................. 9 APPENDIX B - SITE-SPECIFIC FINDINGS ......................................... 10 APPENDIX C - HAZARDS SURVEY AND HAZARDS ASSESSMENTS ............................................................. 11 APPENDIX D - EMERGENCY PREPAREDNESS ............................... 15 APPENDIX E - READINESS ASSURANCE ......................................... 27 Abbreviations Used in This Report CFR Code of Federal Regulations DOE U.S. Department of Energy EAL Emergency Action Level EOC Emergency Operations Center EPHA Emergency Planning Hazards Assessment EPI Emergency Public Information EPIP Emergency Plan Implementing Procedure

171

2004 LLNL ES&H.pmd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Health Management at the Lawrence Livermore National Laboratory Office of Independent Oversight and Performance Assurance Office of Security and Safety Performance Assurance Office of the Secretary of Energy December 2004 ISM Volume I Summary Report OVERSIGHT Table of Contents 1.0 INTRODUCTION ........................................................................1 2.0 POSITIVE ATTRIBUTES .............................................................3 3.0 WEAKNESSES ............................................................................5 4.0 SUMMARY ASSESSMENT .........................................................8 5.0 CONCLUSIONS ........................................................................ 12 6.0 RATINGS ...................................................................................

172

Energy Flow Diagram | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Science for Energy Flow » Energy Flow Diagram Science for Energy Flow » Energy Flow Diagram Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Science for Energy Flow Energy Flow Diagram Print Text Size: A A A RSS Feeds FeedbackShare Page This diagram shows 2010 energy flow from primary sources (oil, natural gas,

173

Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing  

Science Conference Proceedings (OSTI)

GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

None

2012-04-24T23:59:59.000Z

174

Hazardous-waste analysis plan for LLNL operations  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

175

U.S. Energy Flow -- 1995  

SciTech Connect

Energy consumption in 1995 increased slightly for the fifth year in a row (from 89 to 91 quadrillion [1015Btu). U.S. economic activity slowed from the fast-paced recovery of 1994, even with the continued low unemployment rates and low inflation rates. The annual increase in U.S. real GDP dropped to 4.6% from 1994?s increase of 5.8%. Energy consumption in all major end-use sectors surpassed the record-breaking highs achieved in 1994, with the largest gains (2.5%) occurring in the residential/commercial sector. Crude oil imports decreased for the first time this decade. There was also a decline in domestic oil production. Venezuela replaced Saudi Arabia as the principal supplier of imported oil. Imports of natural gas, mainly from Canada, continued to increase. The demand for natural gas reached a level not seen since the peak levels of the early 1970s and the demand was met by a slight increase in both natural gas production and imports. Electric utilities had the largest percentage increase of n.atural gas consumption, a climb of 7% above 1994 levels. Although coal production decreased, coal exports continued to make a comeback after 3 years of decline. Coal once again become the primary U.S. energy export. Title IV of the Clean Air Act Amendments of 1990 (CAAA90) consists of two phases. Phase I (in effect as of January 1, 1995) set emission restrictions on 110 mostly coal-burning plants in the eastern and midwestem United States. Phase II, planned to begin in the year 2000, places additional emission restrictions on about 1,000 electric plants. As of January 1, 1995, the reformulated gasoline program, also part of the CAAA90, was finally initiated. As a result, this cleaner-burning fuel was made available in areas of the United States that failed to meet the Environmental Protection Agency? s (EPA?s) ozone standards. In 1995, reformulated gasoline represented around 28% of total gasoline sales in the United States. The last commercial nuclear power plant under construction in the United States came on line in 1995. The Tennessee Valley Authority? s (TVA) Watts Bar-l received a low-power operating license from the U.S. Nuclear Regulatory Commission (NRC). The construction permit was granted in 1972. Also, TVA canceled plans to complete construction of three other nuclear plants. In 1995, federal and state governments took steps to deregulate and restructure the electric power industry. The Federal Energy Regulatory Commission (FERC) unanimously approved a proposal to require utilities to open their electric transmission system to competition from wholesale electricity suppliers. California has been at the forefront in the restructuring of the electric utility industry. Plans authorized by the California Public Utility Commission prepare for a free market in electricity to be established by 1998. In 1990, the U.S. Department of Energy (DOE) began reporting statistics on renewable energy consumption. The types and amounts of renewable energy consumed vary by end-use sector, electric utilities and the industrial sector being the primary consumers since 1990. Renewable energy provided 6.83 quads (7.6I) of the total energy consumed in the United States in 1995, compared to 7.1% in 1994. Increasing concern over the emission of greenhouse gases has resulted in exhaustive analysis of U.S. carbon emissions from energy use. Emissions in the early 1990s have already exceeded those projected by the Clinton Administration? s Climate Change Action Plan (CCAP) released in 1994 that was developed to stabilize U.S. greenhouse gas emissions by the year 2000.

Miller, H.; Mui, N.; Pasternak, A.

1997-12-01T23:59:59.000Z

176

Recent Changes to the Criticality Safety Program at LLNL  

SciTech Connect

During the 1996 audit, a corrective action program was developed and implemented to enhance the Criticality Safety Program at Lawrence Livermore National Laboratory. The Criticality Safety Program at LLNL has been rebuilt to combine a strong core criticality safety program with direct field support to floor operations. Field staff are integrated into the supported facility and program efforts. This method of operation effects all aspects of the criticality safety program including, as examples, development of criticality safety controls and training.

Pearson, J.S.; Burch, J.G.; Huang, S.T.

2001-08-22T23:59:59.000Z

177

GAMA-LLNL Alpine Basin Special Study: Scope of Work  

SciTech Connect

For this task LLNL will examine the vulnerability of drinking water supplies in foothills and higher elevation areas to climate change impacts on recharge. Recharge locations and vulnerability will be determined through examination of groundwater ages and noble gas recharge temperatures in high elevation basins. LLNL will determine whether short residence times are common in one or more subalpine basin. LLNL will measure groundwater ages, recharge temperatures, hydrogen and oxygen isotopes, major anions and carbon isotope compositions on up to 60 samples from monitoring wells and production wells in these basins. In addition, a small number of carbon isotope analyses will be performed on surface water samples. The deliverable for this task will be a technical report that provides the measured data and an interpretation of the data from one or more subalpine basins. Data interpretation will: (1) Consider climate change impacts to recharge and its impact on water quality; (2) Determine primary recharge locations and their vulnerability to climate change; and (3) Delineate the most vulnerable areas and describe the likely impacts to recharge.

Singleton, M J; Visser, A; Esser, B K; Moran, J E

2011-12-12T23:59:59.000Z

178

U.S. energy flow - 1993  

SciTech Connect

With continued improvement in the economic health of the nation, energy consumption in 1993 increased by almost 2.5%. Use of energy in all major end-use sectors increased, with the largest gains registered in the residential/commercial sector. In this sector, substantial increase in the use of natural gas reflected a harsh 1993-1994 winter as well as broader availability of the fuel for space heating. Crude oil imports rose 8% but stood below the all-time high set in 1977. About half of the increase reflected declining domestic oil production. Imports of natural gas, principally from Canada, increased as they have every year since 1986. They comprise 11% of supply and supplement domestic production, which has similarly risen over the same time span. Increased demand for natural gas is evident in most sectors but especially in the industrial sector, where a growing number of cogenerators of electricity burn natural gas. Although coal consumption in the United States rose 3% in 1993, domestic coal production declined by a greater margin due to a coal strike. Because of increased international competition, exports fell 27%. Electricity transmitted by the utilities again increased, following a decade-long trend interrupted only in 1992 by the national economic recession. The provisions of the Energy Policy Act of 1992 dealing with transport of nonutility-generated electricity by the public utilities began to be implemented in 1993. The provisions of the Energy Policy Act as well as those of the Public Utility Regulatory Policies Act of 1978 are setting the stage for increased competition for customers and for what promises to be a restructuring of the historically monopolistic industry. Nuclear power from the United States`s 109 operable reactors constituted 21% of utility-generated electricity. With the continued retirement of outmoded and flawed reactors, nuclear capacity factors attained 71 in 1993, up from 56% a decade earlier.

Borg, I.Y.; Briggs, C.K.

1994-10-01T23:59:59.000Z

179

Women @ Energy: Wende Wiles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

@ Energy: Rea Simpson Robin Goldstone is a computer scientist working in the High Performance Computing (HPC) division at Lawrence Livermore National Laboratory (LLNL). Women @...

180

Women @ Energy: Karen Schuchardt | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy: Carrie Milton Robin Goldstone is a computer scientist working in the High Performance Computing (HPC) division at Lawrence Livermore National Laboratory (LLNL). Women @...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Computational Advances in Applied Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advances in Applied Energy Computational Advances in Applied Energy Friedmann-LLNL-SEAB.10.11.pdf More Documents & Publications Director's Perspective by George Miller...

182

U.S. energy flow -- 1994  

Science Conference Proceedings (OSTI)

Energy consumption in 1994 increased for the fourth year in a row, reaching an all-time high. It was associated with a robust economy, low inflation, and low unemployment rates. Of the populous states, California lagged substantially behind the national recovery. Consumption in all major end-use sectors reached historic highs. Transmission of electrical power by the utilities increased almost 3%. However, this understates the increase of the total amount of electricity used in the nation because the amount of electricity used ``in-house`` by a growing number of self-generators is unrecorded. Imports of both fossil fuels and electricity increased. About half of the total oil consumed was imported, with Saudi Arabia being the principal supplier. Domestic oil production continued to decline; however, the sharp decline in Alaskan production was slowed. The increase in the demand for natural gas was met by both a modest increase in domestic production and imports from Canada, which comprised 10% of supply. The residential/commercial sector is the largest single consumer of natural gas; however, use by electric generators has increased annually for the past decade. The regulated utilities increased their consumption 11% in 1994. The year was noteworthy for the US nuclear power industry. Work was halted on the last nuclear power plant under construction in the country. Because of the retirement of aged and poorly performing nuclear plants and because of improved efficiencies, the capacity factor for the remaining 109 operable plants reached a record 74%.

Borg, I.Y.; Briggs, C.K.

1995-12-01T23:59:59.000Z

183

Semester Project FS 2014 Focus on Energy, Flow  

E-Print Network (OSTI)

to the chamber for liquefied Xe. Liquid nitrogen will be used as a coolant. The major challenge with this projectSemester Project ­ FS 2014 Focus on Energy, Flow and Processes Cryogenic Feed System for liquefied temperatures to keep the fuel in a liquefied state (

Daraio, Chiara

184

Fuel cell with metal screen flow-field - Energy Innovation Portal  

Building Energy Efficiency ... Solar Thermal; ... and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat ...

185

Non-invasive energy meter for fixed and variable flow systems ...  

An energy metering method and apparatus for liquid flow systems comprising first and second segments of one or more conduits through which a liquid flows, comprising ...

186

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered ...

187

Energy harvesting efficiency of piezoelectric flags in axial flows  

E-Print Network (OSTI)

Self-sustained oscillations resulting from fluid-solid instabilities, such as the flutter of a flexible flag in axial flow, can be used to harvest energy if one is able to convert the solid energy into electricity. Here, this is achieved using piezoelectric patches attached to the surface of the flag that convert the solid deformation into an electric current powering purely resistive output circuits. Nonlinear numerical simulations in the slender-body limit, based on an explicit description of the coupling between the fluid-solid and electric systems, are used to determine the harvesting efficiency of the system, namely the fraction of the flow kinetic energy flux effectively used to power the output circuit, and its evolution with the system's parameters. The role of the tuning between the characteristic frequencies of the fluid-solid and electric systems is emphasized, as well as the critical impact of the piezoelectric coupling intensity. High fluid loading, classically associated with destabilization by ...

Michelin, Sebastien

2012-01-01T23:59:59.000Z

188

Systematic Study of Directed Flow at RHIC Energies  

E-Print Network (OSTI)

Directed flow, v1, of charged hardons has been measured in Au-Au collisions at RHIC for center-of-mass energies sqrt(sNN) = 19.6, 130, 62.4, and 200 GeV using the PHOBOS detector. The large acceptance of PHOBOS for charged particles allows measurements over the full range of pseudorapidity |eta| <5.4. The results for a symmetric subevent method are shown at all four energies. Comparison is made to a mixed harmonic method for the highest energy, and compared to similar results from the STAR collaboration.

Alice C. Mignerey; for the Phobos Collaboration

2005-10-10T23:59:59.000Z

189

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Routine Releases from LLNL  

DOE Green Energy (OSTI)

DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95% confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Groups of the International Atomic Energy Agency's programs, Biosphere Modeling and Assessment and Environmental Modeling for Radiation Safety. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

Peterson, S R

2006-09-27T23:59:59.000Z

190

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Relesed to the Atmosphere from Lawrence Livermore National Laboratory (LLNL) Part 1. Description of Tritium Dose Model (DCART) for Chronic Releases from LLNL  

DOE Green Energy (OSTI)

DCART (Doses from Chronic Atmospheric Releases of Tritium) is a spreadsheet model developed at Lawrence Livermore National Laboratory (LLNL) that calculates doses from inhalation of tritiated hydrogen gas (HT), inhalation and skin absorption of tritiated water (HTO), and ingestion of HTO and organically bound tritium (OBT) to adult, child (age 10), and infant (age 6 months to 1 year) from routine atmospheric releases of HT and HTO. DCART is a deterministic model that, when coupled to the risk assessment software Crystal Ball{reg_sign}, predicts doses with a 95th percentile confidence interval. The equations used by DCART are described and all distributions on parameter values are presented. DCART has been tested against the results of other models and several sets of observations in the Tritium Working Group of the International Atomic Energy Agency's Biosphere Modeling and Assessment Programme. The version of DCART described here has been modified to include parameter values and distributions specific to conditions at LLNL. In future work, DCART will be used to reconstruct dose to the hypothetical maximally exposed individual from annual routine releases of HTO and HT from all LLNL facilities and from the Sandia National Laboratory's Tritium Research Laboratory over the last fifty years.

Peterson, S

2004-06-30T23:59:59.000Z

191

NUCLEAR FLUID DYNAMICS VERSUS INTRANUCLEAR CASCADE--POSSIBLE EVIDENCE FOR COLLECTIVE FLOW IN CENTRAL HIGH ENERGY NUCLEAR COLLISIONS  

E-Print Network (OSTI)

Flow in Central High Energy Nuclear Collisions H. Stockera,under Contract High energy nuclear collisions offer a uniquesidewards flow·in high-energy nuclear collisions. The

Stocker, H.

2012-01-01T23:59:59.000Z

192

Non-Compliance Tracking and Trending at LLNL  

SciTech Connect

The Criticality Safety Section at LLNL has a formal set of procedures to guide the administrative and technical work of the section. Two of these procedures, ''Response to a Criticality Safety Infraction'' and ''CSG Criticality Safety Non-Compliance and Audit Tracking System,'' provide combined guidance for response, tracking, and trending for procedural non-compliances. Combined with a database, this system provides a framework to systematically respond to, document, track and trend criticality safety non-compliances, as well as audit findings.

Huang, S T; Pearson, J S

2001-08-22T23:59:59.000Z

193

97 percent of special nuclear material de-inventoried from LLNL...  

NLE Websites -- All DOE Office Websites (Extended Search)

97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

194

Energy flows are shown in energy units as well as dollar values...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

flows are shown in energy units as well as dollar values. Financial and technical management can now communicate by looking at data that is meaningful to both- One of the...

195

Minimum Stream Flow Standards (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Stream Flow Standards (Connecticut) Minimum Stream Flow Standards (Connecticut) Minimum Stream Flow Standards (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations apply to all dams and structures which impound or divert waters on rivers or their tributaries, with some exceptions. The

196

LLNL demonstration of liquid gun propellant destruction in a 0.1 gallon per minute scale reactor  

SciTech Connect

The Lawrence Livermore National Laboratory (LLNL) has built and operated a pilot plant for processing oil shale using recirculating hot solids. This pilot plant, was adapted in 1993 to demonstrate the feasibility of decomposing a liquid gun propellant (LGP), LP XM46, a mixture of 76% HAN (NH{sub 3}OHNO{sub 3}) and 24% TEAN (HOCH{sub 2}CH{sub 2}){sub 3} NHNO{sub 3} diluted 1:3 in water. In the Livermore process, the LPG is thermally treated in a moving packed bed of ceramic spheres, where TEAN and HAN decompose, forming a suite of gases including: methane, carbon monoxide, oxygen, nitrogen oxides, ammonia and molecular nitrogen. The ceramic spheres are circulated and heated, providing the energy required for thermal decomposition. The authors performed an extended one day (8 hour) test of the solids recirculation system, with continuous injection of approximately 0.1 gal/min of LGP, diluted 1:3 in water, for a period of eight hours. The apparatus operated smoothly over the course of the eight hour run during which 144 kg of solution was processed, containing 36 kg of LGP. Continuous on-line gas analysis was invaluable in tracking the progress of the experiment and quantifying the decomposition products. The reactor was operated in two modes, a {open_quotes}Pyrolysis{close_quotes} mode, where decomposition products were removed from the moving bed reactor exit, passing through condensers to a flare, and in a {open_quotes}Combustion{close_quotes} mode, where the products were oxidized in air lift pipe prior to exiting the system. In the {open_quotes}Pyrolysis{close_quotes} mode, driver gases were recycled producing a small, concentrated stream of decomposition products. In the {open_quotes}Combustion mode{close_quotes}, the driver gases were not recycled, resulting in 40 times higher gas flow rates and correspondingly lower concentrations of nitrogen bearing gases.

Cena, R.J.; Thorsness, C.B.; Coburn, T.T.; Watkins, B.E.

1994-06-01T23:59:59.000Z

197

Flow Cells for Energy Storage Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Summary Report Workshop Summary Report Prepared for: U. S. Department of Energy Prepared by: Dr. Adam Z. Weber Lawrence Berkeley National Laboratory Organizing Committee: Michael Perry, UTRC Tom Zawodzinski, UTK and ORNL Ned Stetson, DOE EERE Mark Johnson, DOE ARPA-E Imre Gyuk, DOE OEDER i Executive Summary An essentially identical technology to a reversible fuel cell is that of a redox flow cell (RFC) or redox flow battery (RFB), where a RFC can be seen as merging the concepts of RFBs with recent improvements in fuel cells. To investigate how a RFC can be a grid-scale electrical- energy-storage (EES) system and the associated technological needs, this workshop was held. The specific objectives of the workshop were to understand the needs for applied research in RFCs; identify the grand challenges and prioritize R&D needs; and gather input for future

198

Flowing Wells, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arizona: Energy Resources Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2939638°, -111.0098178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2939638,"lon":-111.0098178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Energy-efficient algorithms for flow time minimization  

E-Print Network (OSTI)

We study scheduling problems in battery-operated computing devices, aiming at schedules with low total energy consumption. While most of the previous work has focused on finding feasible schedules in deadline-based settings, in this paper we are interested in schedules that guarantee good response times. More specifically, our goal is to schedule a sequence of jobs on a variable speed processor so as to minimize the total cost consisting of the energy consumption and the total flow time of all the jobs.

Susanne Albers

2006-01-01T23:59:59.000Z

200

Advanced Redox Flow Batteries for Stationary Electrical Energy Storage  

SciTech Connect

This report describes the status of the advanced redox flow battery research being performed at Pacific Northwest National Laboratories for the U.S. Department of Energy’s Energy Storage Systems Program. The Quarter 1 of FY2012 Milestone was completed on time. The milestone entails completion of evaluation and optimization of single cell components for the two advanced redox flow battery electrolyte chemistries recently developed at the lab, the all vanadium (V) mixed acid and V-Fe mixed acid solutions. All the single cell components to be used in future kW-scale stacks have been identified and optimized in this quarter, which include solution electrolyte, membrane or separator; carbon felt electrode and bi-polar plate. Varied electrochemical, chemical and physical evaluations were carried out to assist the component screening and optimization. The mechanisms of the battery capacity fading behavior for the all vanadium redox flow and the Fe/V battery were discovered, which allowed us to optimize the related cell operation parameters and continuously operate the system for more than three months without any capacity decay.

Li, Liyu; Kim, Soowhan; Xia, Guanguang; Wang, Wei; Yang, Zhenguo

2012-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

LLNL 10(a)(1)(A) Annual Report (TE-053672-2)--2005  

SciTech Connect

This report summarizes research related to Lawrence Livermore National Laboratory's (LLNL) Experimental Test Site, Site 300 (S300), located within Alameda and San Joaquin Counties (Figure 1) and conducted under the 10(a)(1)(A) (Recovery) permit TE-053672-2. This property is held in ownership by the U.S. Department of Energy/National Nuclear Security Administration (NNSA). The 2005 Recovery research at S300 involved fieldwork associated with only two species: Alameda whipsnake (Masticophis lateralis euryxanthus) and the California red-legged frog (Rana aurora draytonii) (RLF). Note: the whipsnake subspecies existing at S300 shows taxonomic variation (generally 50% chaparral whipsnake [Masticophis lateralis] traits) when compared to the Alameda whipsnake (Riemer 1954) and therefore it will be referred to as ''California whipsnake (Masticophis lateralis)'' (CWS) for classification purposes in this report (Swaim 2004).

Woollett, J

2006-01-26T23:59:59.000Z

202

Diagnostic of charge balance in high-temperature tungsten plasmas using LLNL EBIT  

Science Conference Proceedings (OSTI)

Diagnostic of high-temperature M-shell W plasmas is challenging because of contribution of numerous ionization stages in a relatively narrow x-ray spectral region. A method using LLNL EBIT data generated at different electron beam energies has been established for the identification of prominent spectral features and for the determination of charge balance in x-ray M-shell W spectra between 3.5 and 8.5 A . It extends previous work [A. S. Safronova et al., Can. J. Phys. 86, 267 (2008)] which used only Ni-like lines to include the neighboring ionization stages. This diagnostic procedure was tested with results from Z-pinch plasmas produced on the 1 MA pulse power generator Zebra at UNR. These results are of particular importance for fusion research.

Osborne, G. C.; Safronova, A. S.; Kantsyrev, V. L.; Safronova, U. I.; Yilmaz, M. F.; Williamson, K. M.; Shrestha, I. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Beiersdorfer, P. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2008-10-15T23:59:59.000Z

203

LLNL Scientists Use NERSC to Advance Global Aerosol Simulations  

Science Conference Proceedings (OSTI)

While ''greenhouse gases'' have been the focus of climate change research for a number of years, DOE's ''Aerosol Initiative'' is now examining how aerosols (small particles of approximately micron size) affect the climate on both a global and regional scale. Scientists in the Atmospheric Science Division at Lawrence Livermore National Laboratory (LLNL) are using NERSC's IBM supercomputer and LLNL's IMPACT (atmospheric chemistry) model to perform simulations showing the historic effects of sulfur aerosols at a finer spatial resolution than ever done before. Simulations were carried out for five decades, from the 1950s through the 1990s. The results clearly show the effects of the changing global pattern of sulfur emissions. Whereas in 1950 the United States emitted 41 percent of the world's sulfur aerosols, this figure had dropped to 15 percent by 1990, due to conservation and anti-pollution policies. By contrast, the fraction of total sulfur emissions of European origin has only dropped by a factor of 2 and the Asian emission fraction jumped six fold during the same time, from 7 percent in 1950 to 44 percent in 1990. Under a special allocation of computing time provided by the Office of Science INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, Dan Bergmann, working with a team of LLNL scientists including Cathy Chuang, Philip Cameron-Smith, and Bala Govindasamy, was able to carry out a large number of calculations during the past month, making the aerosol project one of the largest users of NERSC resources. The applications ran on 128 and 256 processors. The objective was to assess the effects of anthropogenic (man-made) sulfate aerosols. The IMPACT model calculates the rate at which SO{sub 2} (a gas emitted by industrial activity) is oxidized and forms particles known as sulfate aerosols. These particles have a short lifespan in the atmosphere, often washing out in about a week. This means that their effects on climate tend to be more regional, occurring near the area where the SO{sub 2} is emitted. To accurately study these regional effects, Bergmann needed to run the simulations at a finer horizontal resolution, as the coarser resolution (typically 300km by 300km) of other climate models are insufficient for studying changes on a regional scale. Livermore's use of CAM3, the Community Atmospheric Model which is a high-resolution climate model developed at NCAR (with collaboration from DOE), allows a 100km by 100km grid to be applied. NERSC's terascale computing capability provided the needed computational horsepower to run the application at the finer level.

Bergmann, D J; Chuang, C; Rotman, D

2004-10-13T23:59:59.000Z

204

LLNL-TR-534938 POINT 2012: ENDF/B-VII.1 Final  

E-Print Network (OSTI)

LLNL-TR-534938 POINT 2012: ENDF/B-VII.1 Final Temperature Dependent Cross Section Library A Brief-07NA27344. #12;2 LLNL-TR-534938 POINT 2012: ENDF/B-VII.1 Final Temperature Dependent Cross Section

Cullen, Red

205

Science for Energy Flow | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Science for Energy Flow Science for Energy Flow Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Program Summaries Brochures Reports Accomplishments Presentations BES and Congress Science for Energy Flow Energy Flow Diagram Seeing Matter Scale of Things Chart Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » News & Resources Science for Energy Flow Print Text Size: A A A RSS Feeds FeedbackShare Page Powering the Future with a New Era of Science Click to enlarge photo. Enlarge Photo Energy Flow 2010

206

An Energy Principle for Ideal MHD Equilibria with Flows  

SciTech Connect

In the standard ideal MHD energy principle for equilibria with no flows, the stability criterion, which is the defi niteness of the perturbed potential energy, is usually constructed from the linearized equation of motion. Equivalently while more straightforwardly, it can also be obtained from the second variation of the Hamiltonian calculated with proper constraints. For equilibria with flows, a stability criterion was proposed from the linearized equation of motion, but not explained as an energy principle1. In this paper, the second variation of the Hamiltonian is found to provide a stability criterion equivalent to, while more straightforward than, what was constructed from the linearized equation of motion. To calculate the variations of the Hamiltonian, a complete set of constraints on the dynamics of the perturbations is derived from the Euler-Poincare structure of the ideal MHD. In addition, a previous calculation of the second variation of the Hamiltonian was claimed to give a different stability criterion2, and in this paper we argue such a claim is incorrect.

Yao Zhou and Hong Qin

2013-03-11T23:59:59.000Z

207

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network (OSTI)

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

208

Summary Statistics for Fun Dough Data Acquired at LLNL  

SciTech Connect

Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a Play Dough{trademark}-like product, Fun Dough{trademark}, designated as PD. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2100 LMHU{sub D} at 100kVp to a low of about 1100 LMHU{sub D} at 300kVp. The standard deviation of each measurement is around 1% of the mean. The entropy covers the range from 3.9 to 4.6. Ordinarily, we would model the LAC of the material and compare the modeled values to the measured values. In this case, however, we did not have the composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 8.5. LLNL prepared about 50mL of the Fun Dough{trademark} in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. Still, layers can plainly be seen in the reconstructed images, indicating that the bulk density of the material in the container is affected by voids and bubbles. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and for (b) their digital gradient images. (A digital gradient image of a given image was obtained by taking the absolute value of the difference between the initial image and that same image offset by one voxel horizontally, parallel to the rows of the x-ray detector array.) The statistics of the initial image of LAC values are called 'first order statistics;' those of the gradient image, 'second order statistics.'

Kallman, J S; Morales, K E; Whipple, R E; Huber, R D; Brown, W D; Smith, J A; Schneberk, D J; Martz, Jr., H E; White, III, W T

2010-03-11T23:59:59.000Z

209

Summary Statistics for Homemade ?Play Dough? -- Data Acquired at LLNL  

SciTech Connect

Using x-ray computerized tomography (CT), we have characterized the x-ray linear attenuation coefficients (LAC) of a homemade Play Dough{trademark}-like material, designated as PDA. Table 1 gives the first-order statistics for each of four CT measurements, estimated with a Gaussian kernel density estimator (KDE) analysis. The mean values of the LAC range from a high of about 2700 LMHU{sub D} 100kVp to a low of about 1200 LMHUD at 300kVp. The standard deviation of each measurement is around 10% to 15% of the mean. The entropy covers the range from 6.0 to 7.4. Ordinarily, we would model the LAC of the material and compare the modeled values to the measured values. In this case, however, we did not have the detailed chemical composition of the material and therefore did not model the LAC. Using a method recently proposed by Lawrence Livermore National Laboratory (LLNL), we estimate the value of the effective atomic number, Z{sub eff}, to be near 10. LLNL prepared about 50mL of the homemade 'Play Dough' in a polypropylene vial and firmly compressed it immediately prior to the x-ray measurements. We used the computer program IMGREC to reconstruct the CT images. The values of the key parameters used in the data capture and image reconstruction are given in this report. Additional details may be found in the experimental SOP and a separate document. To characterize the statistical distribution of LAC values in each CT image, we first isolated an 80% central-core segment of volume elements ('voxels') lying completely within the specimen, away from the walls of the polypropylene vial. All of the voxels within this central core, including those comprised of voids and inclusions, are included in the statistics. We then calculated the mean value, standard deviation and entropy for (a) the four image segments and for (b) their digital gradient images. (A digital gradient image of a given image was obtained by taking the absolute value of the difference between the initial image and that same image offset by one voxel horizontally, parallel to the rows of the x-ray detector array.) The statistics of the initial image of LAC values are called 'first order statistics;' those of the gradient image, 'second order statistics.'

Kallman, J S; Morales, K E; Whipple, R E; Huber, R D; Martz, A; Brown, W D; Smith, J A; Schneberk, D J; Martz, Jr., H E; White, III, W T

2010-03-11T23:59:59.000Z

210

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Colrado Area (DOE GTP) Exploration Activity Details Location Colado Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

211

Java Performance for Scientific Applications on LLNL Computer Systems  

Science Conference Proceedings (OSTI)

Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part of the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.

Kapfer, C; Wissink, A

2002-05-10T23:59:59.000Z

212

Information flow analysis of energy management in a smart grid  

Science Conference Proceedings (OSTI)

Information flow security within the context of multilevel security deals with ways to avoid unwanted information flow from a high level domain to a low level domain. Several confidentiality and information flow properties have been formalized in literature. ... Keywords: bisimulation based non-deducibility on compositions, confidentiality, cyber-physical system, information flow, non-inference, security

Ravi Akella; Bruce M. McMillin

2010-09-01T23:59:59.000Z

213

LLNL Compliance Plan for TRUPACT-2 Authorized Methods for Payload Control  

SciTech Connect

This document describes payload control at LLNL to ensure that all shipments of CH-TRU waste in the TRUPACT-II (Transuranic Package Transporter-II) meet the requirements of the TRUPACT-II SARP (safety report for packaging). This document also provides specific instructions for the selection of authorized payloads once individual payload containers are qualified for transport. The physical assembly of the qualified payload and operating procedures for the use of the TRUPACT-II, including loading and unloading operations, are described in HWM Procedure No. 204, based on the information in the TRUPACT-II SARP. The LLNL TRAMPAC, along with the TRUPACT-II operating procedures contained in HWM Procedure No. 204, meet the documentation needs for the use of the TRUPACT-II at LLNL. Table 14-1 provides a summary of the LLNL waste generation and certification procedures as they relate to TRUPACT-II payload compliance.

NONE

1995-03-01T23:59:59.000Z

214

A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus  

SciTech Connect

This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.

Raustad, Richard A. [Florida Solar Energy Center

2013-01-01T23:59:59.000Z

215

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

comparison of VAV and VRF air conditioning systems in anThe variable refrigerant flow (VRF) and ground source heatthe energy efficiency of VRF systems compared with GSHP

Hong, Tainzhen

2010-01-01T23:59:59.000Z

216

Computational Fluid Dynamics Modeling of Atmospheric Flow Applied to Wind Energy Research.  

E-Print Network (OSTI)

??High resolution atmospheric flow modeling using computational fluid dynamics (CFD) has many applications in the wind energy industry. A well designed model can accurately calculate… (more)

Russell, Alan

2009-01-01T23:59:59.000Z

217

Money versus Time: Evaluation of Flow Control in Terms of Energy Consumption and Convenience  

E-Print Network (OSTI)

Flow control with the goal of reducing the skin friction drag on the fluid-solid interface is an active fundamental research area, motivated by its potential for significant energy savings and reduced emissions in the transport sector. Customarily, the performance of drag reduction techniques in internal flows is evaluated under two alternative flow conditions, i.e. at constant mass flow rate or constant pressure gradient. Successful control leads to reduction of drag and pumping power within the former approach, whereas the latter leads to an increase of the mass flow rate and pumping power. In practical applications, however, money and time define the flow control challenge: a compromise between the energy expenditure (money) and the corresponding convenience (flow rate) achieved with that amount of energy has to be reached so as to accomplish a goal which in general depends on the specific application. Based on this idea, we derive two dimensionless parameters which quantify the total energy consumption an...

Frohnapfel, Bettina; Quadrio, Maurizio

2012-01-01T23:59:59.000Z

218

No-thermal plasma processing of VOCs and NO{sub x} at LLNL  

Science Conference Proceedings (OSTI)

For the past few years, Lawrence Livermore National Laboratory has been conducting a comprehensive research program on the application of non-thermal plasmas for air pollution control and abatement. This program combines an extensive modeling effort with an experimental facility and test program. We believe that there are two major issues to be addressed in order to apply non-thermal plasma processing to air pollution control; these are electrical energy consumption and byproduct identification. The thrust of our work has been to understand the scalability of the non-thermal process by focusing on the energy efficiency of the non-thermal process and to identify the byproducts to ensure that effluent gases from a non-thermal processor are benign. We have compared different types of electrical discharge reactors both theoretically and experimentally. Our interests in the application of non-thermal plasmas vary from the destruction of volatile organic compounds (VOCs) to NO{sub x} reduction for mobile applications. This paper will discuss the processing of both NO{sub x} and VOCs by non-thermal plasmas at LLNL.

Merritt, B.T.; Hsiao, M.C.; Penetrante, B.M.; Vogtlin, G.E.; Wallman, P.H.

1995-02-15T23:59:59.000Z

219

The Harold Brown view: LLNL then and now  

Science Conference Proceedings (OSTI)

Harold Brown was the Laboratory's third Director, serving from 1960 to 1961. He joined the Livermore laboratory in 1952. At Livermore, Brown worked on the Polaris warhead and on Project Plowshare, program designed to apply nuclear explosives to peaceful uses (such as excavating harbors). Brown succeeded Edward Teller as Director of the Livermore Laboratory in July 1960. His tenure as Director was particularly challenging as these were the years of the moratorium on nuclear testing. He was the driving force in expanding the Laboratory's capabilities for simulating nuclear explosions with computers. As part of LLNL's 40th anniversary observances, Brown was invited to lecture on his views of the changing world and the role of the Laboratory. He reminisced about events that occurred in the Laboratory's early years, with an eye to finding lessons for the future. In particular, he cited Project Plowshare and the MX ICBM as examples of projects that were technologically and economically feasible but unacceptable in terms of public perception. Brown also discussed the international security environment and the Laboratory's role in support of the national security goals of the United States. He defined U.S. security as protecting America against external threats to its physical survival, to its democratic form of government, or to the well-being of the people of the United States. By this definition, issues of international trade and market access have a strong bearing on national security. Thus the Laboratory can find much important and interesting work to do under the heading of national security and economic competitiveness. Brown also pointed out, however, that working effectively with the private sector will take a change in culture since the private-sector market is very different from and more competitive than the nuclear weapons world or the government's nondefense market.

Brown, H. (Center for Strategic and International Studies, Washington, DC (United States))

1993-08-01T23:59:59.000Z

220

Property:FirstWellFlowComments | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Property Name FirstWellFlowComments Property Type String Pages using the property "FirstWellFlowComments" Showing 1 page using this property. C...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Status of LLNL Hot-Recycled-Solid oil shale retort, January 1991--September 30, 1993  

Science Conference Proceedings (OSTI)

Our objective, together with our CRADA partners, is to demonstrate advanced technology that could lead to an economic and environmentally acceptable commercialization of oil shale. We have investigated the technical and economic barriers facing the introduction of an oil shale industry and we have chosen Hot-Recycled-Solid (HRS) oil shale retorting as the primary advanced technology of interest. We are investigating this approach through fundamental research, operation of a 4 tonne-per-day HRS pilot plant and development of an Oil Shale Process (OSP) mathematical model. The LLNL Hot-Recycled-Solid process has the potential to improve existing oil shale technology. It processes oil shale in minutes instead of hours, reducing plant size. It processes all oil shale, including fines rejected by other processes. It provides controls to optimize product quality for different applications. It co-generates electricity to maximize useful energy output. And, it produces negligible SO{sub 2} and NO{sub x} emissions, a non-hazardous waste shale and uses minimal water.

Cena, R.J.

1993-11-01T23:59:59.000Z

222

Estimating The Reliability of the Lawrence Livermore National Laboratory (LLNL) Flash X-ray (FXR) Machine  

Science Conference Proceedings (OSTI)

At Lawrence Livermore National Laboratory (LLNL), our flash X-ray accelerator (FXR) is used on multi-million dollar hydrodynamic experiments. Because of the importance of the radiographs, FXR must be ultra-reliable. Flash linear accelerators that can generate a 3 kA beam at 18 MeV are very complex. They have thousands, if not millions, of critical components that could prevent the machine from performing correctly. For the last five years, we have quantified and are tracking component failures. From this data, we have determined that the reliability of the high-voltage gas-switches that initiate the pulses, which drive the accelerator cells, dominates the statistics. The failure mode is a single-switch pre-fire that reduces the energy of the beam and degrades the X-ray spot-size. The unfortunate result is a lower resolution radiograph. FXR is a production machine that allows only a modest number of pulses for testing. Therefore, reliability switch testing that requires thousands of shots is performed on our test stand. Study of representative switches has produced pre-fire statistical information and probability distribution curves. This information is applied to FXR to develop test procedures and determine individual switch reliability using a minimal number of accelerator pulses.

Ong, M M; Kihara, R; Zentler, J M; Kreitzer, B R; DeHope, W J

2007-06-27T23:59:59.000Z

223

CoreFlow Scientific Solutions Ltd | Open Energy Information  

Open Energy Info (EERE)

CoreFlow Scientific Solutions Ltd CoreFlow Scientific Solutions Ltd Jump to: navigation, search Name CoreFlow Scientific Solutions Ltd Place Yoqneam, Israel Zip 20692 Sector Solar Product Israel-based manufacturer of non-contact substrate processing, handling, and testing equipments for Flat Panel Display (FPD), semiconductor, and solar industries. References CoreFlow Scientific Solutions Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoreFlow Scientific Solutions Ltd is a company located in Yoqneam, Israel . References ↑ "CoreFlow Scientific Solutions Ltd" Retrieved from "http://en.openei.org/w/index.php?title=CoreFlow_Scientific_Solutions_Ltd&oldid=343913" Categories:

224

Dixie Valley Six Well Flow Test | Open Energy Information  

Open Energy Info (EERE)

Six Well Flow Test Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted during 1986 at the Dixie Valley geothermal field. Flow duration lasted from 40 to 74 days with a maximum rate of 5.9 million pounds/hour. During the test, downhole pressures were monitored in eight surrounding wells. Downhole pressure and temperature surveys were run in each of the flowing wells,usually in conjunction with productivity tests. Results from the flow test and earlier interference tests indicate that six wells are capable of providing in excess of the 4.5 million pounds/hour required for a 62 mw (gross) power plant. Author William L. Desormier Published Journal Geothermal Resources Council, TRANSACTIONS, 1987

225

Energy Absorbing Material  

To overcome limitations with cellular silicone foams, LLNL innovators have developed a new 3D energy absorbing material with tailored/engineered bulk-scale properties. The energy absorbing material has 3D patterned architectures specially designed for ...

226

MHK Technologies/GreenFlow Turbines | Open Energy Information  

Open Energy Info (EERE)

GreenFlow Turbines GreenFlow Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GreenFlow Turbines.jpg Technology Profile Primary Organization Gulfstream Technologies Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Targeted at commercial sites with large water flow volume These hydro turbines range in size from 50kW to 750kW with many sites able to house multiple units Technology Dimensions Device Testing Date Submitted 55:53.9 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/GreenFlow_Turbines&oldid=681584

227

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1978) Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Flow tests of well CGEH No. 1 were conducted. LBL performed eight temperature surveys after completion of the well to estimate equilibrium reservoir temperatures. Downhole fluid samples were obtained by the U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory (LBL), and a static pressure profile was obtained. The first test began September 5, 1978 using nitrogen stimulation to initiate flow; this procedure resulted in small flow and subsequent filling of the bottom hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole,

228

The International Heat Flow Commission | Open Energy Information  

Open Energy Info (EERE)

The International Heat Flow Commission The International Heat Flow Commission Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The International Heat Flow Commission Details Activities (1) Areas (1) Regions (0) Abstract: Unavailable Author(s): A. E. Beck, V. Cermak Published: Geothermics, 1989 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Data Acquisition-Manipulation (Beck & Cermak, 1989) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=The_International_Heat_Flow_Commission&oldid=387748" Category: Reference Materials What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863774514

229

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration...

230

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal...

231

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area Exploration...

232

MHK Technologies/Cross Flow Turbine | Open Energy Information  

Open Energy Info (EERE)

Flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Marine Renewable Technologies Technology...

233

Director's Perspective by George Miller | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Perspective by George Miller Director's Perspective by George Miller Miller-LLNL-SEAB.10.11.pdf More Documents & Publications Computational Advances in Applied Energy...

234

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

235

Energy of eigen-modes in magnetohydrodynamic flows of ideal fluids  

E-Print Network (OSTI)

Analytical expression for energy of eigen-modes in magnetohydrodynamic flows of ideal fluids is obtained. It is shown that the energy of unstable modes is zero, while the energy of stable oscillatory modes (waves) can assume both positive and negative values. Negative energy waves always correspond to non-symmetric eigen-modes -- modes that have a component of wave-vector along the equilibrium velocity. These results suggest that all non-symmetric instabilities in ideal MHD systems with flows are associated with coupling of positive and negative energy waves. As an example the energy of eigen-modes is calculated for incompressible conducting fluid rotating in axial magnetic field.

I. V. Khalzov; A. I. Smolyakov; V. I. Ilgisonis

2007-12-11T23:59:59.000Z

236

Solyndra Facts vs. Fiction: Cash Flow Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Solyndra Facts vs. Fiction: Cash Flow Modeling Solyndra Facts vs. Fiction: Cash Flow Modeling September 23, 2011 - 5:25pm Addthis Questions have been raised about a quote selectively pulled from an Aug. 20, 2009 email to make it look like Solyndra would run out of cash by Sept. 2011. To be clear, the analysis addressed in that email did not refer to Solyndra's corporate cash flow, but rather the cash flow for a subsidiary of Solyndra - the "Fab 2 Project Company." The cash flow models never said that Solyndra (the parent company) would run short of cash in September 2011. The email noted that the subsidiary was projected to have relatively low levels of cash in one particular month, and that the parent company would need to make up any potential shortfall.

237

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

238

Evaluation of LLNL's Nuclear Accident Dosimeters at the CALIBAN Reactor September 2010  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory uses neutron activation elements in a Panasonic TLD holder as a personnel nuclear accident dosimeter (PNAD). The LLNL PNAD has periodically been tested using a Cf-252 neutron source, however until 2009, it was more than 25 years since the PNAD has been tested against a source of neutrons that arise from a reactor generated neutron spectrum that simulates a criticality. In October 2009, LLNL participated in an intercomparison of nuclear accident dosimeters at the CEA Valduc Silene reactor (Hickman, et.al. 2010). In September 2010, LLNL participated in a second intercomparison of nuclear accident dosimeters at CEA Valduc. The reactor generated neutron irradiations for the 2010 exercise were performed at the Caliban reactor. The Caliban results are described in this report. The procedure for measuring the nuclear accident dosimeters in the event of an accident has a solid foundation based on many experimental results and comparisons. The entire process, from receiving the activated NADs to collecting and storing them after counting was executed successfully in a field based operation. Under normal conditions at LLNL, detectors are ready and available 24/7 to perform the necessary measurement of nuclear accident components. Likewise LLNL maintains processing laboratories that are separated from the areas where measurements occur, but contained within the same facility for easy movement from processing area to measurement area. In the event of a loss of LLNL permanent facilities, the Caliban and previous Silene exercises have demonstrated that LLNL can establish field operations that will very good nuclear accident dosimetry results. There are still several aspects of LLNL's nuclear accident dosimetry program that have not been tested or confirmed. For instance, LLNL's method for using of biological samples (blood and hair) has not been verified since the method was first developed in the 1980's. Because LLNL and the other DOE participants were limited in what they were allowed to do at the Caliban and Silene exercises and testing of various elements of the nuclear accident dosimetry programs cannot always be performed as guests at other sites, it has become evident that DOE needs its own capability to test nuclear accident dosimeters. Angular dependence determination and correction factors for NADs desperately need testing as well as more evaluation regarding the correct determination of gamma doses. It will be critical to properly design any testing facility so that the necessary experiments can be performed by DOE laboratories as well as guest laboratories. Alternate methods of dose assessment such as using various metals commonly found in pockets and clothing have yet to be evaluated. The DOE is planning to utilize the Godiva or Flattop reactor for testing nuclear accident dosimeters. LLNL has been assigned the primary operational authority for such testing. Proper testing of nuclear accident dosimeters will require highly specific characterization of the pulse fields. Just as important as the characterization of the pulsed fields will be the design of facilities used to process the NADs. Appropriate facilities will be needed to allow for early access to dosimeters to test and develop quick sorting techniques. These facilities will need appropriate laboratory preparation space and an area for measurements. Finally, such a facility will allow greater numbers of LLNL and DOE laboratory personnel to train on the processing and interpretation of nuclear accident dosimeters and results. Until this facility is fully operational for test purposes, DOE laboratories may need to continue periodic testing as guests of other reactor facilities such as Silene and Caliban.

Hickman, D P; Wysong, A R; Heinrichs, D P; Wong, C T; Merritt, M J; Topper, J D; Gressmann, F A; Madden, D J

2011-06-21T23:59:59.000Z

239

97 percent of special nuclear material de-inventoried from LLNL | National  

National Nuclear Security Administration (NNSA)

97 percent of special nuclear material de-inventoried from LLNL | National 97 percent of special nuclear material de-inventoried from LLNL | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > 97 percent of special nuclear material de-inventoried ... 97 percent of special nuclear material de-inventoried from LLNL Posted By Office of Public Affairs

240

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl  

E-Print Network (OSTI)

Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li

Zhou, Yaoqi

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Diversification and strategic management of LLNL`s R&D portfolio  

SciTech Connect

Strategic management of LLNL`s research effort is addressed. A general framework is established by presenting the McKinsey/BCG Matrix Analysis as it applies to the research portfolio. The framework is used to establish the need for the diversification into new attractive areas of research and for the improvement of the market position of existing research in those attractive areas. With the need for such diversification established, attention is turned to optimizing it. There are limited resources available. It is concluded that LLNL should diversify into only a few areas and try to obtain full market share as soon as possible.

Glinsky, M.E.

1994-12-01T23:59:59.000Z

242

A Modeling and Optimization Approach for Multiple Energy Carrier Power Flow  

E-Print Network (OSTI)

Abstract — This paper presents a general power flow and optimization approach for power systems including multiple energy carriers, such as electricity, natural gas, and district heat. The model is based on a conceptual approach for the inclusion of distributed resources. Couplings between the different energy carriers are regarded explicitly, enabling investigations in power flow and marginal price interactions. Optimal demand, conversion, and transmission of multiple energy carriers within a system is formulated as a combined optimal power flow problem. A numerical example demonstrates how the method can be used for different system studies. I.

Martin Geidl; Göran Andersson

2005-01-01T23:59:59.000Z

243

Heat Flow At Standard Depth | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat Flow At Standard Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow At Standard Depth Details Activities (2) Areas (1) Regions (0) Abstract: Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which

244

Flow near the outlet of a geothermal energy reservoir  

DOE Green Energy (OSTI)

Steady, incompressible flow converging radially between two stationary, parallel plates was investigated both numerically and experimentally. Flow ranges investigated were laminar, turbulent, and transitional. For laminar flows at dimensionless radii (2r..sqrt pi nu../Qt) much greater than one the velocity profile becomes parabolic and invariant. At radii less than one a boundary layer character evolves with an approximately uniform core region and the boundary layer thickness decreases from one-half the disk spacing to values proportional to the local radii as the flow accelerates towards the center. At large radii the friction factor approaches the classic value obtained for fully developed rectilinear flow between infinite plated, 6..nu../Vt, but at small radii it approaches the constant 2.17/..sqrt..R/sub 0/, where R/sub 0/ is an overall Reynolds number based on the volumetric flow rate and the disk spacing and is independent of radius. Tabular and graphical results are provided for the intermediate range of radii, where both viscous and inertial effects are important, and exact analyses were not available.

Murphy, H.D.

1979-07-01T23:59:59.000Z

245

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE)  

E-Print Network (OSTI)

Wind resource evaluation at the Caltech Field Laboratory for Optimized Wind Energy (FLOWE) Quinn;Caltech Field Laboratory for Optimized Wind Energy (reduced visual signature) #12;Field Study Results 6 continuous hours existing wind farms Planform Kinetic Energy Flux = U (W m-2) mean power above cut

246

Women @ Energy: Debra Callahan | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Debra Callahan Debra Callahan Women @ Energy: Debra Callahan March 11, 2013 - 5:28pm Addthis Women @ Energy: Debra Callahan Debbie Callahan is a group leader for Inertial Confinement Fusion Target Design at Lawrence Livermore National Lab (LLNL). Debbie Callahan is a group leader for Inertial Confinement Fusion Target Design at Lawrence Livermore National Lab (LLNL). Women @ Energy: Debra Callahan Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Debbie Callahan is a group leader for Inertial Confinement Fusion Target Design at Lawrence Livermore National Lab (LLNL). She came to LLNL as a graduate student and received her PhD from University of California, Davis in 1993. Debbie has been part of the team working on the National

247

Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya  

E-Print Network (OSTI)

Analysis Water flows, energy demand, and market analysis of the informal water sector in Kisumu Available online xxxx Keywords: Informal water sector Water flows Developing countries Water market analysis to cope with popu- lation growth. Informal water businesses fulfill unmet water supply needs, yet little

Elimelech, Menachem

248

B-Spline Image Model for Energy Minimization-Based Optical Flow Estimation  

Science Conference Proceedings (OSTI)

Robust estimation of the optical flow is addressed through a multiresolution energy minimization. It involves repeated evaluation of spatial and temporal gradients of image intensity which rely usually on bilinear interpolation and image filtering. We ... Keywords: Optical flow (OF), robust estimation, splines

G. Le Besnerais; F. Champagnat

2006-10-01T23:59:59.000Z

249

An energy preserving formulation for the simulation of multiphase turbulent flows  

Science Conference Proceedings (OSTI)

In this manuscript we propose an energy preserving formulation for the simulation of multiphase flows. The new formulation reduces the numerical diffusion with respect to previous formulations dealing with multiple phases, which makes this method to ... Keywords: Advection scheme, Multiphase flows, Turbulence

D. Fuster

2013-02-01T23:59:59.000Z

250

Simulation and visualization of fields and energy flows in electric circuits with idealized geometries  

E-Print Network (OSTI)

This thesis develops a method to simulate and visualize the fields and energy flows in electric circuits, using a simplified physical model based on an idealized geometry. The physical models combine and extend previously ...

Ohannessian, Mesrob I., 1981-

2005-01-01T23:59:59.000Z

251

A Cascade-Type Global Energy Conversion Diagram Based on Wave–Mean Flow Interactions  

Science Conference Proceedings (OSTI)

A cascade-type energy conversion diagram is proposed for the purpose of diagnosing the atmospheric general circulation based on wave–mean flow interactions. Mass-weighted isentropic zonal means facilitate the expression of nongeostrophic wave ...

Sachiyo Uno; Toshiki Iwasaki

2006-12-01T23:59:59.000Z

252

R&D Activities of Redox Flow Battery for Energy Storage at DICP  

Science Conference Proceedings (OSTI)

Presentation Title, R&D Activities of Redox Flow Battery for Energy Storage at DICP ... Optimization of Na0.44MnO2 Cathode Material for Use in Aqueous ...

253

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) |  

Open Energy Info (EERE)

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson 2007) Home > Groups > Energy Systems Integration Qinsun's picture Submitted by Qinsun(35) Member 15 November, 2012 - 13:04 Literature Review The author proposed a linear static state model for multiple energy carriers. The optimal power flow and economic dispatch was determined. The method is a simple method of integrated system planning The methods used in the paper are linear deterministic system without control signal, optimal power flow and economic dispatch The proposed method stabilized the power grid, reduced the marginal cost of electricity, and increased the marginal cost of natural gas. The strength of the proposed method is following: 1. it is integrated; 2. it secures to converge;

254

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

255

Microsoft Word - LLNL 2011 CRD_8_1.docx  

National Nuclear Security Administration (NNSA)

it is non- volatile, it is not easily made airborne. The NIF does not have a residual thermal energy source that would mobilize less volatile species. Therefore, negligible...

256

LAWRENCE LIVERMORE NATIONAL LABORATORY OVERVIEW OF LLNL LICENSE ...  

one or more fields of use. ... c. Security and energy conservation; d. ... Number of Licenses Total Cost for All Licenses 1 $100,000

257

Property:FirstWellFlowRate | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:FirstWellFlowRate Jump to: navigation, search Property Name FirstWellFlowRate Property Type Quantity Use this type to express a quantity of flow rate by mass. The default unit is kilogram per second (kg/s). Acceptable units (and their conversions) are: Kilogram per second - 1 kg/s,kilogram per second Kilogram per minute - 60 kg/min,kilogram per minute Kilogram per hour - 3600 kg/hour,kilogram per hour,kg/h Kilogram per day - 86400 kg/day,kilogram per day Liter per second - 1.0000000001 L/s,l/s,liters per second,l/sec,L/sec,liters/sec,Liters/sec Gallon per minute - 15.85032 gal/min,gallons per minute,gpm,gallons/min,Gallons/min Barrel per minute - 0.00839 bar/min,barrels per minute,barrel/min,barrels/min,Barrels/min

258

Property:Geothermal/FlowLmin | Open Energy Information  

Open Energy Info (EERE)

FlowLmin FlowLmin Jump to: navigation, search This is a property of type Number. Subproperties This property has the following 117 subproperties: A Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility B Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility

259

Property:Geothermal/FlowGpm | Open Energy Information  

Open Energy Info (EERE)

FlowGpm FlowGpm Jump to: navigation, search This is a property of type Number. Subproperties This property has the following 115 subproperties: A Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility B Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Baker's Bar M Pool & Spa Low Temperature Geothermal Facility Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Baranof Pool & Spa Low Temperature Geothermal Facility Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility

260

Property of Zero-Energy Flows and Creations and Annihilations of Vortices in Quantum Mechanics  

E-Print Network (OSTI)

Time-dependent processes accompanied by vortex creations and annihilations are investigated in terms of the eigenstates in conjugate spaces of Gel'fand triplets in 2-dimensions. Creations and annihilations of vortices are described by the insertions of unstable eigenstates with complex-energy eigenvalues into stable states written by the superposition of eigenstates with zero-energy eigenvalues. Some concrete examples are presented in terms of the eigenfunctions of the 2-dimensional parabolic potential barrier, i.e., $-m \\gamma^2 (x^2+y^2)/2$. We show that the processes accompanied by vortex creations and annihilations can be analyzed in terms of the eigenfunctions in the conjugate spaces of Gel'fand triplets. Throughout these examinations we point out three interesting properties of the zero-energy flows. (i) Mechanisms using the zero-energy flows are absolutely economical from the viewpoint of energy consumption. (ii) An enormous amount of informations can be discriminated in terms of the infinite variety of the zero-energy flows. (iii) The zero-energy flow patterns are absolutely stable in any disturbance by inserting arbitrary decaying flows with complex-energy eigenvalues.

Tsunehiro Kobayashi

2002-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Addressing transportation energy and environmental impacts: technical and policy research directions  

DOE Green Energy (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

1995-08-01T23:59:59.000Z

262

LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition  

SciTech Connect

The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

Bronson, M.C.

1997-10-01T23:59:59.000Z

263

Renormalization Group Flow and the Dark Energy Problem  

E-Print Network (OSTI)

Casimir energy is calculated for 5D scalar theory in the {\\it warped} geometry. A new regularization, called {\\it sphere lattice regularization}, is taken. The regularized configuration is {\\it closed-string like}. We numerically evaluate $\\La$(4D UV-cutoff), $\\om$(5D bulk curvature, extra space UV-boundary parameter) and $T$(extra space IR-boundary parameter) dependence of Casimir energy. 5D Casimir energy is {\\it finitely} obtained after the {\\it proper renormalization procedure.} The {\\it warp parameter} $\\om$ suffers from the {\\it renormalization effect}. Regarding Casimir energy as the main contribution to the cosmological term, we examine the dark energy problem.

Ichinose, Shoichi

2011-01-01T23:59:59.000Z

264

Microsoft Word - LLNL Security Clearances Final 121108a _2_.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security Clearances at Lawrence Livermore National Laboratory and Sandia National Laboratory-California INS-O-09-01 December 2008 U.S. Department of Energy Office of Inspector General Office of Inspections and Special Inquiries Inspection Report Department of Energy Washington, DC 2 0 5 8 5 December 11, 2008 MEMORAliDUM FOR ADMINISTRATQR, NATIONAL NUCLEAR SECURITY ADMINISTRATION CHIEF HEALTH: SAFETY AbD, SECURITY OFFICER FROM: Christopher R. Sharpley . Deputy hlspector General for investigations and h~spections - , . - " SUBJECT: INFORMATION: inspection Report on "Security Clearances at Lawrence Livemore National Laboratory and Sandia National Laboratory-California" BACKGROUND Department of Energy facilities, including those managed by the National Nuclear Security

265

NETL: Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System Novel Flow Sheet for Low Energy CO2 Capture Enabled by Biocatalyst Delivery System Project No.: DE-FE0012862 Akermin is conducting laboratory and integrated bench-scale pilot testing to validate the performance of their next generation Biocatalyst Delivery System (BDS). This effort builds upon work conducted under a previous project. The novel system enables on-stream replacement of the catalyst and enables integration with an advanced process flow scheme. Akermin is exploring an enzyme-enabled advanced process flow scheme with non-volatile capture solutions, AKM-24 and potassium carbonate. The advanced process flow scheme is projected to have lower parasitic energy requirements and lower capital costs resulting in greater than 30 percent reduction in the cost of capture. The novel flow sheet enabled by the biocatalyst permits regeneration at lower temperatures allowing heat integration with the lowest grade steam from the power plant and minimizing water consumption. The existing 500 standard liters per minute (SLPM) bench unit will be modified to incorporate the next-generation BDS, accommodate the new process flow scheme, and reduce heat loss for better quantification of energy performance. The modified bench unit will be operated at the National Carbon Capture Center on actual flue gas.

266

The Electrochemical Flow Capacitor for Efficient Grid-Scale Energy ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Rapid energy recovery is important to enable better utilization of fluctuating renewable sources, as well as to increase the efficiency of the grid.

267

Flow Test At Coso Geothermal Area (1985-1986) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1985-1986) Flow Test At Coso Geothermal Area (1985-1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Coso Geothermal Area (1985-1986) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1985 - 1986 Usefulness not indicated DOE-funding Unknown Exploration Basis Understand the connectivity of the production and injection wells. Notes A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). The flow test included a well production metering system and a water injection metering system. References Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.; Gentner, R.

268

File:0 - OverallFlow-1.pdf | Open Energy Information  

Open Energy Info (EERE)

OverallFlow-1.pdf OverallFlow-1.pdf Jump to: navigation, search File File history File usage File:0 - OverallFlow-1.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 32 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:48, 11 September 2012 Thumbnail for version as of 14:48, 11 September 2012 1,275 × 1,650 (32 KB) Djenne (Talk | contribs) 09:08, 7 June 2012 Thumbnail for version as of 09:08, 7 June 2012 1,275 × 1,650 (16 KB) Dklein2012 (Talk | contribs) 11:26, 4 May 2012 Thumbnail for version as of 11:26, 4 May 2012 1,275 × 1,650 (16 KB) Kyoung (Talk | contribs) You cannot overwrite this file.

269

Energy and materials flows in the iron and steel industry  

SciTech Connect

Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

Sparrow, F.T.

1983-06-01T23:59:59.000Z

270

Microsoft Word - Blue Cover Report - Beryllium Controls at LLNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementation of Beryllium Controls Implementation of Beryllium Controls at Lawrence Livermore National Laboratory DOE/IG-0851 June 2011 Department of Energy Washington, DC 20585 June 17, 2011 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on the "Implementation of Beryllium Controls at Lawrence Livermore National Laboratory" BACKGROUND The Department of Energy has a long history of using beryllium - a metal essential for nuclear operations and other processes. Exposure to beryllium can cause beryllium sensitization or even Chronic Beryllium Disease, an often debilitating, and sometimes fatal, lung condition. In December 1999, the Department established a Chronic Beryllium Disease Prevention Program

271

Understanding quantum polarized-light interference experiments through electromagnetic energy flow lines  

E-Print Network (OSTI)

General expressions to obtain the electromagnetic energy flow lines behind interference gratings are derived in the case where the incident light consists of a polarized monochromatic plane wave. These flow lines show how the electromagnetic energy redistributes in space (behind the grating) until the Fraunhofer regime is reached, thus providing an interpretation based on photon paths for the physics underlying interference phenomena with light. Within this interpretation, one finds that the outcome from a Young's experiment is related in a simple manner to how the electromagnetic energy flux is influenced by the experimental setup, specifically, how the presence of polarizers on each slit and the boundaries imposed by having one or both slits open affect at each time the electromagnetic energy flow, which is directly linked to the Arago-Fresnel laws.

Sanz, A S; Bozic, M; Miret-Artés, S

2009-01-01T23:59:59.000Z

272

UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY  

SciTech Connect

It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

2013-07-01T23:59:59.000Z

273

Final LLNL Volume 1 - ES&H 2002.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore Lawrence Livermore National Laboratory Office of Independent Oversight and Performance Assurance Office of the Secretary of Energy July 2002 ISM Volume I INDEPENDENT OVERSIGHT INSPECTION OF ENVIRONMENT, SAFETY, AND HEALTH MANAGEMENT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Volume I July 2002 i INDEPENDENT OVERSIGHT INSPECTION OF ENVIRONMENT, SAFETY, AND HEALTH MANAGEMENT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Volume I Table Of Contents Acronyms .........................................................................................................................................iii 1.0 Introduction ................................................................................................................................1

274

Women @ Energy: Robin Goldstone | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Robin Goldstone Robin Goldstone Women @ Energy: Robin Goldstone March 19, 2013 - 4:03pm Addthis Robin Goldstone is a computer scientist working in the High Performance Computing (HPC) division at Lawrence Livermore National Laboratory (LLNL). Robin Goldstone is a computer scientist working in the High Performance Computing (HPC) division at Lawrence Livermore National Laboratory (LLNL). Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Robin Goldstone is a computer scientist working in the High Performance Computing (HPC) division at Lawrence Livermore National Laboratory (LLNL). Robin is a member of LLNL's HPC Advanced Technologies Office where she is involved in technology evaluation and planning for next generation HPC systems, as well as developing novel architectures for Data Intensive

275

Energy Principles for Self-Gravitating Barotropic Flows: I. General Theory  

E-Print Network (OSTI)

The following principle of minimum energy may be a powerful substitute to the dynamical perturbation method, when the latter is hard to apply. Fluid elements of self-gravitating barotropic flows, whose vortex lines extend to the boundary of the fluid, are labelled in such a way that any change of trial configurations automatically preserves mass and circulation. The velocity field is given by a mass conserving Clebsch representation. With three independent Lagrangian functions, the total energy is stationary for all small variations about a flow with fixed linear and angular momenta provided Euler's equations for steady motion are satisfied. Thus, steady flows are stable if their energy is minimum. Since energy is here minimized subject to having local and global contants of the motion fixed, stability limits obtained that way are expected to be close to limits given by dynamical perturbation methods. Moreover, the stability limits are with respect to arbitrary, not necessary small, perturbations. A weaker form of the energy principle is also given which may be easier to apply. The Lagrangian functional, with the same three Lagrange variables is stationary for the fully time dependent Euler equations. It follows that the principle of minimum energy gives stability conditions that are both necessary and sufficient if terms linear in time derivatives (gyroscopic terms) are absent from the Lagrangian. The gyroscopic term for small deviations around steady flows is given explicitly. Key words: Energy variational principle; Self-gravitating systems; Stability of fluids.

Joseph Katz; Shogo Inagaki; Asher Yahalom

1995-01-15T23:59:59.000Z

276

SULTAN measurement and qualification: ITER-US-LLNL-NMARTOVETSKY- 092008  

SciTech Connect

Measuring the characteristics of full scale ITER CICC at SULTAN is the critical qualification test. If volt-ampere characteristic (VAC) or volt-temperature characteristic (VTC) are distorted, the criterion of 10 uV/m may not be a valid criterion to judge the conductor performance. Only measurements with a clear absence or low signals from the current distribution should be considered as quantitatively representative, although in some obvious circumstances one can judge if a conductor will meet or fail ITER requirements. SULTAN full scale ITER CICC testing should be done with all measures taken to ensure uniform current redistribution. A full removal of Cr plating in the joint area and complete solder filling of the joints (with provision of the central channel for helium flow) should be mandatory for DC qualification samples for ITER. Also, T and I should be increased slowly that an equilibrium could be established for accurate measurement of Tcs, Ic and N. It is also desirable to go up in down in current and/or temperature (within stable range) to make sure that the equilibrium is reached.

Martovetsky, N N

2006-09-21T23:59:59.000Z

277

Microsoft Word - Buff Cover Report - LLNL Classified IT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security Planning for National Security Planning for National Security Information Systems at Lawrence Livermore National Laboratory OAS-M-11-03 April 2011 Department of Energy Washington, DC 20585 April 15, 2011 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Security Planning for National Security Information Systems at Lawrence Livermore National Laboratory" BACKGROUND The National Nuclear Security Administration (NNSA) is responsible for the maintenance and security of the Nation's nuclear stockpile, management of nuclear nonproliferation activities, and operation of the naval reactor programs. A significant amount of the information related to these

278

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Title High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage Publication Type Journal Article Year of Publication 2012 Authors Cho, Kyu Taek, Paul L. Ridgway, Adam Z. Weber, Sophia Haussener, Vincent S. Battaglia, and Venkat Srinivasan Journal Journal of the Electrochemical Society Volume 159 Issue 11 Pagination A1806 - A1815 Date Published 01/2012 ISSN 0013-4651 Keywords hydrogen/bromine, redox flow battery Abstract The electrochemical behavior of a promising hydrogen/bromine redox flow battery is investigated for grid-scale energy-storage application with some of the best redox-flow-battery performance results to date, including a peak power of 1.4 W/cm(2) and a 91% voltaic efficiency at 0.4 W/cm(2) constant-power operation. The kinetics of bromine on various materials is discussed, with both rotating-disk-electrode and cell studies demonstrating that a carbon porous electrode for the bromine reaction can conduct platinum-comparable performance as long as sufficient surface area is realized. The effect of flow-cell designs and operating temperature is examined, and ohmic and mass-transfer losses are decreased by utilizing a flow-through electrode design and increasing cell temperature. Charge/discharge and discharge-rate tests also reveal that this system has highly reversible behavior and good rate capability.

279

Incident-energy and system-size dependence of directed flow  

E-Print Network (OSTI)

We present STAR's measurements of directed flow for charged hadrons in Au+Au and Cu+Cu collisions at $\\sqrt{s_\\mathrm{NN}} = 200$ GeV and 62.4 GeV, as a function of pseudorapidity, transverse momentum and centrality. We find that directed flow depends on the incident energy, but not on the system size. We extend the validity of limiting fragmentation hypothesis to different collision systems.

Gang Wang

2007-01-23T23:59:59.000Z

280

Development of Compton gamma-ray sources at LLNL  

SciTech Connect

Compact Compton scattering gamma-ray sources offer the potential of studying nuclear photonics with new tools. The optimization of such sources depends on the final application, but generally requires maximizing the spectral density (photons/eV) of the gamma-ray beam while simultaneously reducing the overall bandwidth on target to minimize noise. We have developed an advanced design for one such system, comprising the RF drive, photoinjector, accelerator, and electron-generating and electron-scattering laser systems. This system uses a 120 Hz, 250 pC, 2 ps, 0.35 mm mrad electron beam with 250 MeV maximum energy in an X-band accelerator scattering off a 150 mJ, 10 ps, 532 nm laser to generate 5 Multiplication-Sign 10{sup 10} photons/eV/s/Sr at 0.5 MeV with an overall bandwidth of less than 1%. The source will be able to produce photons up to energies of 2.5 MeV. We also discuss Compton scattering gamma-ray source predictions given by numerical codes.

Albert, F.; Anderson, S. G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Marsh, R. A.; Messerly, M. J.; Prantil, M. A.; Wu, S.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East avenue, Livermore, CA 94550 (United States)

2012-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun | National  

National Nuclear Security Administration (NNSA)

Conducts First Plutonium Shot Using the JASPER Gas Gun | National Conducts First Plutonium Shot Using the JASPER Gas Gun | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > LLNL Conducts First Plutonium Shot Using the ... LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun July 08, 2003 Nevada Test Site, NV

282

Plutonium Decontamination Using CBI Decon Gel 1101 in Highly Contaminated and Unique Areas at LLNL  

SciTech Connect

A highly contaminated glove-box at LLNL containing plutonium was decontaminated using a strippable decontamination gel. 6 x 12 inch quadrants were mapped out on each of the surfaces. The gel was applied to various surfaces inside the glove-box and was allowed to cure. The radioactivity in each quadrant was measured using a LLNL Blue Alpha meter with a 1.5 inch standoff distance. The results showed decontamination factors of 130 and 210 on cast steel and Lexan{reg_sign} surfaces respectively after several applications. The gel also absorbed more than 91% of the radiation emitted from the surfaces during gel curing. The removed strippable film was analyzed by neutron multiplicity counting and gamma spectroscopy, yielding relative mass information and radioisotopic composition respectively.

Sutton, M; Fischer, R P; Thoet, M M; O'Neill, M; Edgington, G

2008-06-09T23:59:59.000Z

283

Ferrenberg Swendsen Analysis of LLNL and NYBlue BG/L p4rhms Data  

SciTech Connect

These results are from the continuing Lattice Quantum Chromodynamics runs on BG/L. These results are from the Ferrenberg-Swendsen analysis [?] of the combined data from LLNL and NYBlue BG/L runs for 32{sup 3} x 8 runs with the p4rhmc v2.0 QMP-MPI.X (semi-optimized p4 code using qmp over mpi). The jobs include beta values ranging from 3.525 to 3.535 with an alternate analysis extending to 3.540. The NYBlue data sets are from 9k trajectories from Oct 2007, and the LLNL data are from two independent streams of {approx}5k each, taking from the July 2007 runs. The following outputs are produced by the fs-2+1-chiub.c program. All outputs have had checksums produced by addCks.pl and checked by the checkCks.pl perl script after scanning.

Soltz, R

2007-12-05T23:59:59.000Z

284

ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL  

Science Conference Proceedings (OSTI)

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen

2004-04-01T23:59:59.000Z

285

Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control  

SciTech Connect

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

2006-04-01T23:59:59.000Z

286

Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control  

SciTech Connect

The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

2005-04-01T23:59:59.000Z

287

LLNL Fire Protection Engineering Standard 5.8 Facility Survey Program  

SciTech Connect

This standard describes the LLNL Fire Protection Facility Survey Program. The purpose of this standard is to describe the type of facility surveys required to fulfill the requirements of DOE Order 420.1B, Facility Safety. Nothing in this standard is intended to prevent the development of a FHA using alternative approaches. Alternate approaches, including formatting, will be by exception only, and approved by the Fire Marshal/Fire Protection Engineering Subject Matter Expert in advance of their use.

Sharry, J A

2012-01-04T23:59:59.000Z

288

A probabilistic risk assessment of the LLNL Plutonium facility`s evaluation basis fire operational accident  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility.

Brumburgh, G.

1994-08-31T23:59:59.000Z

289

Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model  

Science Conference Proceedings (OSTI)

We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions.

Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J. [Lawrence Livermore National Lab., CA (United States); Burley, J.D.; Johnston, H.S. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1992-07-05T23:59:59.000Z

290

Superconducting magnet development capability of the LLNL (Lawrence Livermore National Laboratory) High Field Test Facility  

SciTech Connect

This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility.

Miller, J.R.; Shen, S.; Summers, L.T.

1990-02-01T23:59:59.000Z

291

Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL  

Science Conference Proceedings (OSTI)

Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.

Soufli, R; Robinson, J C; Spiller, E; Baker, S L; Dollar, F J; Gullikson, E M

2006-02-22T23:59:59.000Z

292

Comparison of CAISO-run Plexos output with LLNL-run Plexos output  

SciTech Connect

In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

Schmidt, A; Meyers, C; Smith, S

2011-12-20T23:59:59.000Z

293

Summary of Current LLNL Projects with the Russian Federation  

SciTech Connect

Developing a sophisticated theory to understand the electronic structure of 5f-metals is a great challenge to solid state physics. Complicated electronic structures of 5f-metals make their properties strongly sensitive to small energy changes produced by the addition of a small amount of alloy, impurities, or crystal structure defects caused by irradiation. A theoretical material science technique applicable to investigate these effects is atomistic simulation using Classical Molecular Dynamics (CMD). In contrast to ab initio techniques, CMD may include several million particles, so that there is a possibility of direct simulation of very low concentration impurities and defects (as well as phenomena such as plasticity and polymorphous transitions) under given conditions. The goal is to develop theoretical models to understand and predict changes in materials properties of actinides caused by self-irradiation.

Schilling, O

2012-04-02T23:59:59.000Z

294

Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL  

Science Conference Proceedings (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

Ahlstrom, H.G.

1982-01-01T23:59:59.000Z

295

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-scale Energy Storage  

SciTech Connect

Low cost, high performance redox flow batteries are highly demanded for up to multi-megawatt levels of renewable and grid energy storage. Here, we report a new vanadium redox flow battery with a significant improvement over the current technologies. This new battery utilizes a sulfate-chloride mixed solution, which is capable of dissolving more than 2.5 M vanadium or about a 70% increase in the energy storage capacity over the current vanadium sulfate system. More importantly, the new electrolyte remains stable over a wide temperature range of -5 to 60oC, potentially eliminating the need of active heat management. Its high energy density, broad operational temperature window, and excellent electrochemical performance would lead to a significant reduction in the cost of energy storage, thus accelerating its market penetration.

Li, Liyu; Kim, Soowhan; Wang, Wei; Vijayakumar, M.; Nie, Zimin; Chen, Baowei; Zhang, Jianlu; Xia, Guanguang; Hu, Jian Z.; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo

2011-05-01T23:59:59.000Z

296

Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996  

Science Conference Proceedings (OSTI)

This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

Tweed, J.

1996-10-01T23:59:59.000Z

297

Quantum energy flow in atomic ions moving in magnetic fields  

E-Print Network (OSTI)

Using a combination of semiclassical and recently developed wave packet propagation techniques we find the quantum self-ionization process of highly excited ions moving in magnetic fields which has its origin in the energy transfer from the center of mass to the electronic motion. It obeys a time scale by orders of magnitude larger than the corresponding classical process. Importantly a quantum coherence phenomenon leading to the intermittent behaviour of the ionization signal is found and analyzed. Universal properties of the ionization process are established.

Vladimir Melezhik; Peter Schmelcher

2000-06-07T23:59:59.000Z

298

Energy flux fluctuations in a finite volume of turbulent flow  

E-Print Network (OSTI)

The flux of turbulent kinetic energy from large to small spatial scales is measured in a small domain B of varying size R. The probability distribution function of the flux is obtained using a time-local version of Kolmogorov's four-fifths law. The measurements, made at a moderate Reynolds number, show frequent events where the flux is backscattered from small to large scales, their frequency increasing as R is decreased. The observations are corroborated by a numerical simulation based on the motion of many particles and on an explicit form of the eddy damping.

Mahesh Bandi; Walter Goldburg; John Cressman Jr.; Alain Pumir

2006-07-19T23:59:59.000Z

299

Study of nuclear dynamics of neutron-rich colliding pair at energy of vanishing flow  

E-Print Network (OSTI)

We study nuclear dynamics at the energy of vanishing flow of neutron-rich systems having N/Z ratio 1.0, 1.6 and 2.0 throughout the mass range at semi central colliding geometry. In particular we study the behavior of average and maximum density with N/Z dependence of the system.

Sakshi Gautam

2011-07-28T23:59:59.000Z

300

TWO-PHASE FLOW IN GEOTHERMAL ENERGY SOURCES Annual Report Laurence...  

NLE Websites -- All DOE Office Websites (Extended Search)

TWO-PHASE FLOW IN GEOTHERMAL ENERGY SOURCES Annual Report Laurence W. Ross Denver Research I n s t i t u t e U n i v e r s i t y o f Denver Denver, Colorado 80210 June 1 , 1975 -...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radial flow has little effect on clusterization at intermediate energies in the framework of the Lattice Gas Model  

E-Print Network (OSTI)

The Lattice Gas Model was extended to incorporate the effect of radial flow. Contrary to popular belief, radial flow has little effect on the clusterization process in intermediate energy heavy-ion collisions except adding an ordered motion to the particles in the fragmentation source. We compared the results from the lattice gas model with and without radial flow to experimental data. We found that charge yields from central collisions are not significantly affected by inclusion of any reasonable radial flow.

C. B. Das; L. Shi; S. Das Gupta

2004-07-20T23:59:59.000Z

302

Coupling Air Flow Models to Load/Energy Models and Implications for  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupling Air Flow Models to Load/Energy Models and Implications for Coupling Air Flow Models to Load/Energy Models and Implications for Envelope Component Testing and Modeling Speaker(s): Brent Griffith Date: July 30, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Dariush Arasteh Air models allow accounting for air temperature variations within a thermal zone or along the surface of an envelope component. A recently completed ASHRAE research project (RP-1222) produced a source code toolkit focused on coupling airflow models to load routines typical of whole building energy simulation. The two modeling domains are computed separately (and iteratively) with relevant temperature boundary conditions passed back and forth. One of the air models in the toolkit is a new contribution to crude/fast airflow modeling that is based on solving the Euler equation

303

[Utilizing the ultraintense JanUSP laser at LLNL]. 99-ERD-049 Final LDRD Report  

Science Conference Proceedings (OSTI)

Recent advances in laser and optical technologies have now enabled the current generation of high intensity, ultrashort-pulse lasers to achieve focal intensities of 10{sup 20}-10{sup 21} W/cm{sup 2} in pulse durations of 100-500fs. These ultraintense laser pulses are capable of producing highly relativistic plasma states with densities, temperatures, and pressures rivaling those found in the interiors of stars and nuclear weapons. Utilizing the ultraintense 100TW JanUSP laser at LLNL we have explored the possibility of ion shock heating small micron-sized plasmas to extremely high energy densities approaching 1GJ/g on timescales of a few hundred femtoseconds. The JanUSP laser delivers 10 Joules of energy in a 100fs pulse in a near diffraction-limited beam, producing intensities on target of up to 10{sup 21}W/cm{sup 2}. The electric field of the laser at this intensity ionizes and accelerates electrons to relativistic MeV energies. The sudden ejection of electrons from the focal region produces tremendous electrostatic forces which in turn accelerate heavier ions to MeV energies. The predicted ion flux of 1 MJ/cm{sup 2} is sufficient to achieve thermal equilibrium conditions at high temperature in solid density targets. Our initial experiments were carried out at the available laser contrast of 10{sup -7} (i.e. the contrast of the amplified spontaneous emission (ASE), and of the pre-pules produced in the regenerative amplifier). We used the nuclear photoactivation of Au-197 samples to measure the gamma production above 12MeV-corresponding to the threshold for the Au-197(y,n) reaction. Since the predominant mechanism for gamma production is through the bremsstrahlung emission of energetic electrons as they pass through the solid target we were able to infer a conversion yield of several percent of the incident laser energy into electrons with energies >12MeV. This result is consistent with the interaction of the main pulse with a large pre-formed plasma. The contrast of the laser was improved to the 10{sup -10} level by the insertion of two additional pockel cells to reduce the pre-pulse intensities, and by the implementation of a pulse clean up technique based on adding an additional pre-amplifier and saturable absorber which resulted in a reduction in the ASE level by a factor of approximately 1000. In FY00/01 we performed a series of experiments to investigate the mechanisms for ion generation and acceleration in thin foil targets irradiated at incident laser intensities above 10{sup 20} W/cm{sup 2}, and with the laser contrast at 10{sup -10}. Full details of this work can be found in the two accompanying papers: Energy spectrum and angular distribution of multi-MeV protons produced from ultraintense laser interactions, UCRL-JC-143112, P.K. Pate1 et al., and Enhancement of proton acceleration by hot electron re-circulation in thin foils irradiated by ultra-intense laser pulses, A.J. Mackinnon et al. UCRL-JC-145540. To obtain a more complete picture of the ion emission a range of detectors were developed and fielded including radiachromic films (measuring ion, electron, and x-ray dose), nuclear activation detectors (high energy protons), and single particle nuclear track detectors (protons and heavy ions). Significantly we found that a large fraction of the incident laser energy (greater than 1%) is coupled to highly energetic protons forming a well-collimated beam. The proton spectrum can be fit by an exponential distribution containing 10{sup 11} particles with a mean energy of 3 MeV and a high energy cutoff of 25 MeV. However, these particles appear to originate not from the interaction region at the front of the target but rather from a thin adsorption layer on the rear surface.

Patel, P K; Price, D F; Mackinnon, A J; Springer, P T

2002-04-17T23:59:59.000Z

304

Energy and Buildings, 8 (1985) 105 -122 105 Temperature-and Wind-induced Air Flow Patterns  

E-Print Network (OSTI)

Energy and Buildings, 8 (1985) 105 - 122 105 Temperature- and Wind-induced Air Flow Patterns measurements, wind pressure data and air infiltration calculation. INTRODUCTION Studies on the energy,B. DICKINSON,D. GRIMSRUDand R. LIPSCHUTZ Energy Performance of Buildings Group, Energy and Environment Division

305

Flow Test At Chena Area (Benoit, Et Al., 2007) | Open Energy Information  

Open Energy Info (EERE)

Chena Area (Benoit, Et Al., 2007) Chena Area (Benoit, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Chena Area (Benoit, Et Al., 2007) Exploration Activity Details Location Chena Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Dick Benoit, Gwen Holdmann, David Blackwell (2007) Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Chena_Area_(Benoit,_Et_Al.,_2007)&oldid=387083" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

306

A TECHNOLOGY ASSESSMENT AND FEASIBILITY EVALUATION OF NATURAL GAS ENERGY FLOW MEASUREMENT ALTERNATIVES  

Science Conference Proceedings (OSTI)

Deregulation and open access in the natural gas pipeline industry has changed the gas business environment towards greater reliance on local energy flow rate measurement. What was once a large, stable, and well-defined source of natural gas is now a composite from many small suppliers with greatly varying gas compositions. Unfortunately, the traditional approach to energy flow measurement [using a gas chromatograph (GC) for composition assay in conjunction with a flow meter] is only cost effective for large capacity supplies (typically greater than 1 to 30 million scfd). A less costly approach will encourage more widespread use of energy measurement technology. In turn, the US will benefit from tighter gas inventory control, more efficient pipeline and industrial plant operations, and ultimately lower costs to the consumer. An assessment of the state and direction of technology for natural gas energy flow rate measurement is presented. The alternative technologies were ranked according to their potential to dramatically reduce capital and operating and maintenance (O and M) costs, while improving reliability and accuracy. The top-ranked technologies take an unconventional inference approach to the energy measurement problem. Because of that approach, they will not satisfy the fundamental need for composition assay, but have great potential to reduce industry reliance on the GC. Technological feasibility of the inference approach was demonstrated through the successful development of data correlations that relate energy measurement properties (molecular weight, mass-based heating value, standard density, molar ideal gross heating value, standard volumetric heating value, density, and volume-based heating value) to three inferential properties: standard sound speed, carbon dioxide concentration, and nitrogen concentration (temperature and pressure are also required for the last two). The key advantage of this approach is that inexpensive on-line sensors may be used to measure the inferential variables, which can then be applied (through the data correlations) to convert existing flow meters (ultrasonic, orifice, turbine, rotary, Coriolis, diaphragm, etc.) for on-line energy measurement. The practical issues for field development were evaluated using two transducers extracted from a $100 ultrasonic domestic gas meter, and a $400 infrared sensor.

Kendricks A. Behring II; Eric Kelner; Ali Minachi; Cecil R. Sparks; Thomas B. Morrow; Steven J. Svedeman

1999-01-01T23:59:59.000Z

307

Ricci dynamo stretch-shear plasma flows and magnetic energy bounds  

E-Print Network (OSTI)

Geometrical tools, used in Einstein's general relativity (GR), are applied to dynamo theory, in order to obtain fast dynamo action bounds to magnetic energy, from Killing symmetries in Ricci flows. Magnetic field is shown to be the shear flow tensor eigendirection, in the case of marginal dynamos. Killing symmetries of the Riemann metric, bounded by Einstein space, allows us to reduce the computations. Techniques used are similar to those strain decomposition of the flow in Sobolev space, recently used by Nu\\~nez [JMP \\textbf{43} (2002)] to place bounds in the magnetic energy in the case of hydromagnetic dynamos with plasma resistivity. Contrary to Nu\\~nez case, we assume that the dynamos are kinematic, and the velocity flow gradient is decomposed into expansion, shear and twist. The effective twist vanishes by considering that the frame vorticity coincides with Ricci rotation coefficients. Eigenvalues are here Lyapunov exponents. In analogy to GR, where curvature plays the role of gravity, here Ricci curvature seems to play the role of diffusion.

Garcia de Andrade

2009-05-10T23:59:59.000Z

308

Application Study of the Pump Water Flow Station for Building Energy Consumption Monitoring and Control Optimization  

E-Print Network (OSTI)

This paper presents a new building energy monitoring and pump speed control method. The pump speed is controlled to maintain the system resistance at an optimized value to approach the best pump efficiency and save pump power. The system resistance can be obtained by the pump head and the water flow rate calculated by the pump water-flow station (PWS), which was recently developed. The PWS measures the water flow rate using the pump head, pump speed, and pump performance curve. This method has been experimentally proved in real HVAC systems. A case study was demonstrated in this paper for application of this new method in a Continuous Commissioning (CC) practice. The case study shows that the PWS can control the pump speed to maintain the optimized system operating point. It can also measure the water flow rate and monitor energy consumption continuously with low installation and almost no maintenance cost. The results show that the new technology can save pump power and increase pump efficiency significantly.

Liu, G.; Liu, M.

2006-01-01T23:59:59.000Z

309

Collective flows of light particles in the Au+Au collision at intermediate energies  

E-Print Network (OSTI)

The Skyrme potential energy density functional is introduced into the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model and the updated version is applied to studying the directed and elliptic flows of light particles (protons, neutrons, deuterons, tritons, $^3$He and $^4$He) in $^{197}$Au+$^{197}$Au collisions at beam energies 150, 250 and 400 MeV/nucleon. The results are compared with the recent FOPI experimental data. It is found that the yields and collective flows of light particles can be described quite well. The influence of the equation of state (EoS), medium-modified nucleon-nucleon elastic cross sections (NNECS) and cluster recognition criteria on the directed and elliptic flows is studied in detail. It is found that the flows of light particles are sensitive to the medium-modified NNECS, but not sensitive to the isospin dependent cluster recognition criteria. It seems difficult, however, even with the new data and calculations, to obtain a more accurate constraint on the nuclear incompressibility $K_0$ than the interval 200-260 MeV.

Yongjia Wang; Chenchen Guo; Qingfeng Li; Hongfei Zhang; Zhuxia Li; W. Trautmann

2013-05-21T23:59:59.000Z

310

Modeling of material and energy flow in an EBCHR casting system  

Science Conference Proceedings (OSTI)

A numerical and experimental analysis is made of fluid flow and heat transfer in a continuous casting system with an electron-beam energy source. For a cylindrical ingot confined in a water-cooled crucible, a two-dimensional, steady-state model is developed which includes the effects of free convection in the pool and conduction in the two-phase and solid regions. A modified Galerkin finite element method is used to solve for the flow and temperature fields simultaneously with the upper and lower boundaries of the pool. The calculation grid deforms along vertical spines as these phase boundaries move. Heat flows are measured in a steady-state experiment involving a short ingot and no pouring. Heat transfer coefficients representing contact resistance are determined, and measured heat flows are compared with model values. Flow and temperature fields along with solidification-zone boundaries are calculated for the experimental case and a case in which the ingot cooling is improved.

Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States)

1994-11-01T23:59:59.000Z

311

Photo Gallery from LLNL's High Explosives Applications Facility (HEAF)  

DOE Data Explorer (OSTI)

DOE/NNSA has identified LLNL's High Explosives Applications Facility (HEAF) as the complex-wide "Center of Excellence" for High-Explosives Research and Development. In this capacity HEAF is a source of subject matter expertise for high explosives and other energetic materials. Its mission is to provide this expertise to serve multiple government agencies including DOE, DoD, TSA, Homeland Security, the FBI and other law enforcement and government intelligence organizations. From its conception, HEAF was designed to integrate the operations of synthesis, formulation, and explosives testing in a single synergistic facility. Today, the nationally recognized team of approximately 120 chemists, physicists, engineers, and technicians contribute to the nation's understanding of explosives by developing new explosives in the synthesis and formulation laboratories, conducting explosives properties testing, developing experimental diagnostics, designing and executing diamond-anvil-cell experiments for basic explosives properties research, studying explosives at the micron scale in its microdetonics laboratory, and utilizing multiple firing tanks for larger scale explosives experiments. No other facility in the world supports such a multidisciplinary mission under one roof. (Extracted from text found at https://wci.llnl.gov/fac/heaf/mission_statement.html).

312

Ultrabroadband nonreciprocal transverse energy flow of light in linear passive photonic circuits  

E-Print Network (OSTI)

Using a technique, analogous to coherent population trapping in an atomic system, we propose schemes to create transverse light propagation violating left-right symmetry in a photonic circuit consisting of three coupled waveguides. The frequency windows for the symmetry breaking of the left-right energy flow span over 80 nm. Our proposed system only uses linear passive optical materials and is easy to integrate on a chip.

Keyu Xia; M. Alamri; M. Suhail Zubairy

2013-03-25T23:59:59.000Z

313

Energy policy act transportation study: Interim report on natural gas flows and rates  

Science Conference Proceedings (OSTI)

This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

NONE

1995-11-17T23:59:59.000Z

314

Addressing the efficiency of the energy transfer to the water flow by underwater electrical wire explosion  

SciTech Connect

Experimental and hydrodynamic simulation results of submicrosecond time scale underwater electrical explosions of planar Cu and Al wire arrays are presented. A pulsed low-inductance generator having a current amplitude of up to 380 kA was used. The maximum current rise rate and maximum power achieved during wire array explosions were dI/dt<=830 A/ns and approx10 GW, respectively. Interaction of the water flow generated during wire array explosion with the target was used to estimate the efficiency of the transfer of the energy initially stored in the generator energy to the water flow. It was shown that efficiency is in the range of 18%-24%. In addition, it was revealed that electrical explosion of the Al wire array allows almost double the energy to be transferred to the water flow due to efficient combustion of the Al wires. The latter allows one to expect a significant increase in the pressure at the front of converging strong shock waves in the case of cylindrical Al wire array underwater explosion.

Efimov, S.; Gurovich, V. Tz.; Bazalitski, G.; Fedotov, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

2009-10-01T23:59:59.000Z

315

Disk Accretion Flow Driven by Large-Scale Magnetic Fields: Solutions with Constant Specific Energy  

E-Print Network (OSTI)

(Abridged) We study the dynamical evolution of a stationary, axisymmetric, and perfectly conducting cold accretion disk containing a large-scale magnetic field around a Kerr black hole, trying to understand the relation between accretion and the transportation of angular momentum and energy. We solve the radial momentum equation for solutions corresponding to an accretion flow that starts from a subsonic state at infinity, smoothly passes the fast critical point, then supersonically falls into the horizon of the black hole. The solutions always have the following features: 1) The specific energy of fluid particles remains constant but the specific angular momentum is effectively removed by the magnetic field. 2) At large radii, where the disk motion is dominantly rotational, the energy density of the magnetic field is equipartitioned with the rotational energy density of the disk. 3) Inside the fast critical point, where radial motion becomes important, the ratio of the electromagnetic energy density to the kinetic energy density drops quickly. The results indicate that: 1) Disk accretion does not necessarily imply energy dissipation since magnetic fields do not have to transport or dissipate a lot of energy as they effectively transport angular momentum. 2) When resistivity is small, the large-scale magnetic field is amplified by the shearing rotation of the disk until the magnetic energy density is equipartitioned with the rotational energy density, ending up with a geometrically thick disk. This is in contrast with the evolution of small-scale magnetic fields where if the resistivity is nonzero the magnetic energy density is likely to be equipartitioned with the kinetic energy density associated with local random motions (e.g., turbulence), making a thin Keplerian disk possible.

Li-Xin Li

2002-12-20T23:59:59.000Z

316

Problem Set # 5 1. In a stratified flow the energy containing eddies have a time scale of N-1  

E-Print Network (OSTI)

Problem Set # 5 1. In a stratified flow the energy containing eddies have a time scale of N-1 . (a , .1 o T C z m , (b) calculate the characteristic velocity of the energy containing eddies. (c is the turbulent kinetic energy per unit mass 23 2 E u , u, the characteristic turbulent velocity, the turbulent

Goodman, Louis

317

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 11060 of 31,917 results. 51 - 11060 of 31,917 results. Article Taking a Look at 4.57 Billion Year Old Space Objects Researchers at the Energy Department's Lawrence Livermore National Laboratory and NASA's Johnson Space Center are investigating objects some 4.57 billion years old in order to better understand how our solar system developed. http://energy.gov/articles/taking-look-457-billion-year-old-space-objects Article Forceful Fluid: Scientists Discover a Starchy Substance with Oily Applications Researchers at the Energy Department's Lawrence Livermore National Laboratory (LLNL) set out to find the proper mix of fluids needed to cap the powerful flow of oil that can occur during a spill, an objective that was principally driven by the failure of the top-kill method during last

318

Common Patterns of Energy Flow and Biomass Distribution on Weighted Food Webs  

E-Print Network (OSTI)

Weights of edges and nodes on food webs which are available from the empirical data hide much information about energy flows and biomass distributions in ecosystem. We define a set of variables related to weights for each species $i$, including the throughflow $T_i$, the total biomass $X_i$, and the dissipated flow $D_i$ (output to the environment) to uncover the following common patterns in 19 empirical weighted food webs: (1) DGBD distributions (Discrete version of a Generalized Beta Distribution), a kind of deformed Zipf's law, of energy flow and storage biomass; (2) The allometric scaling law $T_i\\propto X_i^{\\alpha}$, which can be viewed as the counterpart of the Kleiber's 3/4 law at the population level; (3) The dissipation law $D_i\\propto T_i^{\\beta}$; and (4) The gravity law, including univariate version $f_{ij}\\propto (T_iT_j)^{\\gamma}$ and bivariate approvement $f_{ij}\\propto T_i^{\\gamma_1}T_j^{\\gamma_2}$. These patterns are very common and significant in all collected webs, as a result, some remark...

Zhang, Jiang

2012-01-01T23:59:59.000Z

319

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Amarnath, M. Blatt, Variable refrigerant flow: where, why,simulation in the variable refrigerant flow air-conditioningsimulation of the variable refrigerant flow air conditioning

Hong, Tainzhen

2010-01-01T23:59:59.000Z

320

Effect of Electro-Osmotic Flow on Energy Conversion on Superhydrophobic Surfaces  

E-Print Network (OSTI)

It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so ...

Seshadri, Gowrishankar

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility  

SciTech Connect

In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

Radev, R

2009-09-04T23:59:59.000Z

322

An Analysis of the Kinetic Energy Budget for Two Extratropical Cyclones: The Vertically Averaged Flow and the Vertical Shear Flow  

Science Conference Proceedings (OSTI)

An analysis of the kinetic energy budget is made for two intensely developing cyclones over North America. The principal kinetic energy source for the first cyclone is the net horizontal transport of kinetic energy across the boundaries of the ...

Jordan C. Alpert

1981-06-01T23:59:59.000Z

323

LLNL compiled first pages ordered by ascending B&R code  

Science Conference Proceedings (OSTI)

We aim to develop a fundamental understanding of materials dynamics (from {micro}s to ns) in systems where the required combination of spatial and temporal resolution can only be reached by the dynamic transmission electron microscope (DTEM). In this regime, the DTEM is capable of studying complex transient phenomena with several orders of magnitude time resolution advantage over any existing in-situ TEM. Using the unique in situ capabilities and the nanosecond time resolution of the DTEM, we seek to study complex transient phenomena associated with rapid processes in materials, such as active sites on nanoscale catalysts and the atomic level mechanisms and microstructural features for nucleation and growth associated with phase transformations in materials, specifically in martensite formation and crystallization reactions from the amorphous phase. We also will study the transient phase evolution in rapid solid-state reactions, such as those occurring in reactive multilayer foils (RMLF). Program Impact: The LLNL DTEM possesses unique capabilities for capturing time resolved images and diffraction patterns of rapidly evolving materials microstructure under strongly driven conditions. No other instrument in the world can capture images with <10 nm spatial resolution of interesting irreversible materials processes such as phase transformations, plasticity, or morphology changes with 15 ns time resolution. The development of this innovative capability requires the continuing collaboration of laser scientists, electron microscopists, and materials scientists experienced in time resolved observations of materials that exist with particularly relevant backgrounds at LLNL. The research team has made observations of materials processes that are possible by no other method, such as the rapid crystallization of thin film NiTi that identified a change in mechanism at high heating rates as compared to isothermal anneals through changes in nucleation and growth rates of the crystalline phase. The project is designed to reveal these fundamental processes and mechanisms in rapid microstructure evolution that form the foundation of understanding that is an integral part of the DOE-BES mission.

Campbell, G; Kumar, M; Tobin, J; Noy, A; Browning, N

2010-01-26T23:59:59.000Z

324

L. John Perkins LLNL 5/8/01 Ignition/Burn is a Done Deal Or is It?  

E-Print Network (OSTI)

critical at Hanford (fission's "ignition/burn" experiment) 1945 The rest is history! #12;L. John Perkins There is No Fusion Analogy (Unfortunately!) 4m ~4.5m CP-1 FIRE #12;L. John Perkins LLNL 5/8/01 The Hanford Pile B-100's sub-critical experiments (No parallel) Fermi's CP-1 zero power pile ITER / FIRE / Ignitor.... Hanford

325

Energy Simulation of Integrated Multiple-Zone Variable Refrigerant Flow System  

Science Conference Proceedings (OSTI)

We developed a detailed steady-state system model, to simulate the performance of an integrated five-zone variable refrigerant flow (VRF)heat pump system. The system is multi-functional, capable of space cooling, space heating, combined space cooling and water heating, and dedicated water heating. Methods were developed to map the VRF performance in each mode, based on the abundant data produced by the equipment system model. The performance maps were used in TRNSYS annual energy simulations. Using TRNSYS, we have successfully setup and run cases for a multiple-split, VRF heat pump and dehumidifier combination in 5-zone houses in 5 climates that control indoor dry-bulb temperature and relative humidity. We compared the calculated energy consumptions for the VRF heat pump against that of a baseline central air source heat pump, coupled with electric water heating and the standalone dehumidifiers. In addition, we investigated multiple control scenarios for the VRF heat pump, i.e. on/off control, variable indoor air flow rate, and using different zone temperature setting schedules, etc. The energy savings for the multiple scenarios were assessed.

Shen, Bo [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

2013-01-01T23:59:59.000Z

326

Lawrence Livermore National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of weapons of mass destruction and strengthen homeland security. Other areas include advanced defense technologies, energy, environment, biosciences, and basic science. Enforcement July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic

327

Supercomputing Our Way to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

328

Supercomputing Our Way to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs

329

Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL  

SciTech Connect

In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) to be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The health physicists should consider this increase for any areas that have dose rates near a posting limit, such as near the 100 mrem/hr for a high radiation area, as this increase in measured dose rate may result in some changes to postings and consequent radiological controls.

Radev, R

2009-01-13T23:59:59.000Z

330

Criticality Safety Support to a Project Addressing SNM Legacy Items at LLNL  

SciTech Connect

The programmatic, facility and criticality safety support staffs at the LLNL Plutonium Facility worked together to successfully develop and implement a project to process legacy (DNFSB Recommendation 94-1 and non-Environmental, Safety, and Health (ES&H) labeled) materials in storage. Over many years, material had accumulated in storage that lacked information to adequately characterize the material for current criticality safety controls used in the facility. Generally, the fissionable material mass information was well known, but other information such as form, impurities, internal packaging, and presence of internal moderating or reflecting materials were not well documented. In many cases, the material was excess to programmatic need, but such a determination was difficult with the little information given on MC&A labels and in the MC&A database. The material was not packaged as efficiently as possible, so it also occupied much more valuable storage space than was necessary. Although safe as stored, the inadequately characterized material posed a risk for criticality safety noncompliances if moved within the facility under current criticality safety controls. A Legacy Item Implementation Plan was developed and implemented to deal with this problem. Reasonable bounding conditions were determined for the material involved, and criticality safety evaluations were completed. Two appropriately designated glove boxes were identified and criticality safety controls were developed to safely inspect the material. Inspecting the material involved identifying containers of legacy material, followed by opening, evaluating, processing if necessary, characterizing and repackaging the material. Material from multiple containers was consolidated more efficiently thus decreasing the total number of stored items to about one half of the highest count. Current packaging requirements were implemented. Detailed characterization of the material was captured in databases and new ES&H container labels applied. In many cases, legacy material that was inspected was determined to be excess to programmatic needs and it was then either processed to meet the DOE-3013-STD or designated as TRU waste and disposed of accordingly. During FY2003 through FY2004 approximately 1600 items were opened and the items processed if necessary, repackaged and newly labeled with ES&H labels. As of April, 2005, there are only 32 non-ES&H labeled items in existence within the Plutonium Facility. Due to a consolidated effort in dealing with the legacy items, the problems associated with storage of these items at LLNL has been substantially abated. The paper will discuss the background, implementation, and results of the SNM Legacy Items Implementation Project. Benefits and Lessons Learned will be identified.

Pearson, J S; Burch, J G; Dodson, K E; Huang, S T

2005-03-29T23:59:59.000Z

331

NIF Presentation by Ed Moses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIF Presentation by Ed Moses NIF Presentation by Ed Moses Moses-LLNL-SEAB-10.11.pdf More Documents & Publications Summary Minutes of the Secretary of Energy Advisory Board Public...

332

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Flow Test At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Flow Test Activity Date Usefulness...

333

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

334

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

335

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

336

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated...

337

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Exploration Activity Details Location Gabbs Valley Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

338

Compare Energy Use in Variable Refrigerant Flow Heat Pumps Field Demonstration and Computer Model  

SciTech Connect

Variable Refrigerant Flow (VRF) heat pumps are often regarded as energy efficient air-conditioning systems which offer electricity savings as well as reduction in peak electric demand while providing improved individual zone setpoint control. One of the key advantages of VRF systems is minimal duct losses which provide significant reduction in energy use and duct space. However, there is limited data available to show their actual performance in the field. Since VRF systems are increasingly gaining market share in the US, it is highly desirable to have more actual field performance data of these systems. An effort was made in this direction to monitor VRF system performance over an extended period of time in a US national lab test facility. Due to increasing demand by the energy modeling community, an empirical model to simulate VRF systems was implemented in the building simulation program EnergyPlus. This paper presents the comparison of energy consumption as measured in the national lab and as predicted by the program. For increased accuracy in the comparison, a customized weather file was created by using measured outdoor temperature and relative humidity at the test facility. Other inputs to the model included building construction, VRF system model based on lab measured performance, occupancy of the building, lighting/plug loads, and thermostat set-points etc. Infiltration model inputs were adjusted in the beginning to tune the computer model and then subsequent field measurements were compared to the simulation results. Differences between the computer model results and actual field measurements are discussed. The computer generated VRF performance closely resembled the field measurements.

Sharma, Chandan; Raustad, Richard

2013-06-01T23:59:59.000Z

339

LLNL (Lawrence Livermore National Laboratory) Oil Shale Pilot Plant status report  

SciTech Connect

The authors are studying aboveground oil shale retorting and have developed the LLNL Hot-Recycled-Solid (HRS) process as a generic, second-generation, rapid pyrolysis retorting system in which recycled shale is the solid heat carrier. In 1984-87, they operated a 1 ton-per-day HRS pilot plant to study retorting chemistry in an actual recirculation loop, Cena (1986). In 1989 they upgraded their laboratory pilot plant to process 4 ton-per-day of commercially sized shale, which will allow them, for the first time, to study pyrolysis and combustion chemistry using the full particle size, to produce enough oil for detailed characterization studies, to study environmental consequences, and to begin answering the many bulk solid handling questions concerning scale-up of the HRS process. In this paper the authors report on the status of their pilot plant operations. They have operated the facility circulating raw shale at ambient temperature and dolomite at elevated temperature. They plan the first hot shale run in November 1990. 5 refs., 16 figs., 4 tabs.

Cena, R.J.; Thorsness, C.B.

1990-10-26T23:59:59.000Z

340

Criticality Safety Evaluation of a LLNL Training Assembly for Criticality Safety (TACS)  

SciTech Connect

Hands-on experimental training in the physical behavior of multiplying systems is one of ten key areas of training required for practitioners to become qualified in the discipline of criticality safety as identified in DOE-STD-1135-99, ''Guidance for Nuclear Criticality Safety Engineer Training and Qualification''. This document is a criticality safety evaluation of the training activities (or operations) associated with HS-3200, ''Laboratory Class for Criticality Safety''. These activities utilize the Training Assembly for Criticality Safety (TACS). The original intent of HS-3200 was to provide LLNL fissile material handlers with a practical hands-on experience as a supplement to the academic training they receive biennially in HS-3100, ''Fundamentals of Criticality Safety'', as required by ANSI/ANS-8.20-1991, ''Nuclear Criticality Safety Training''. HS-3200 is to be enhanced to also address the training needs of nuclear criticality safety professionals under the auspices of the NNSA Nuclear Criticality Safety Program.

Heinrichs, D P

2006-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements  

SciTech Connect

The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Lake, Joe E [ORNL

2012-01-01T23:59:59.000Z

342

Women @ Energy: Maya Gokhale | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maya Gokhale Maya Gokhale Women @ Energy: Maya Gokhale March 13, 2013 - 9:20am Addthis Maya Gokhale has been a Computer Scientist at the Lawrence Livermore National Laboratory (LLNL) since 2007. Her career spans research conducted in academia, industry, and National Labs, most recently Los Alamos National Laboratory. Maya Gokhale has been a Computer Scientist at the Lawrence Livermore National Laboratory (LLNL) since 2007. Her career spans research conducted in academia, industry, and National Labs, most recently Los Alamos National Laboratory. Maya Gokhale has been a Computer Scientist at the Lawrence Livermore National Laboratory (LLNL) since 2007. Her career spans research conducted in academia, industry, and National Labs, most recently Los Alamos National Laboratory. Maya received a Ph.D. in Computer Science from University of

343

Urban Sewage Delivery Heat Transfer System (1): Flow Resistance and Energy Analysis  

E-Print Network (OSTI)

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Given the schematic diagram of TDHT system, introducing the definition of equivalent fouling roughness height, and using the Niklaus semi-rational resistance coefficient formula in rough region, the calculation methods of the sewage flow resistance are explained. Through the resistance contrastive analysis of sewage and pure mediate water, the results indicate that the mediate water sub-system is the primary design point of the TDHT system. The economical ratio of flux and velocity is determined by optimization analysis of investment and operating cost in the technical feasible range. The paper will provide reference for pipe design and pump selection of urban sewage cool or heat source applied delivery heat transfer methods.

Zhang, C.; Wu, R.; Li, G.; Li, X.; Huang, L.; Sun, D.

2006-01-01T23:59:59.000Z

344

LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake  

SciTech Connect

The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hosts over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.

Rodgers, A J; Petersson, N A; Morency, C E; Simmons, N A; Sjogreen, B

2012-01-23T23:59:59.000Z

345

LLNL-Generated Content for the California Academy of Sciences, Morrison Planetarium Full-Dome Show: Earthquake  

SciTech Connect

The California Academy of Sciences (CAS) Morrison Planetarium is producing a 'full-dome' planetarium show on earthquakes and asked LLNL to produce content for the show. Specifically the show features numerical ground motion simulations of the M 7.9 1906 San Francisco and a possible future M 7.05 Hayward fault scenario earthquake. The show also features concepts of plate tectonics and mantle convection using images from LLNL's G3D global seismic tomography. This document describes the data that was provided to the CAS in support of production of the 'Earthquake' show. The CAS is located in Golden Gate Park, San Francisco and hosts over 1.6 million visitors. The Morrison Planetarium, within the CAS, is the largest all digital planetarium in the world. It features a 75-foot diameter spherical section projection screen tilted at a 30-degree angle. Six projectors cover the entire field of view and give a three-dimensional immersive experience. CAS shows strive to use scientifically accurate digital data in their productions. The show, entitled simply 'Earthquake', will debut on 26 May 2012. They are working on graphics and animations based on the same data sets for display on LLNL powerwalls and flat-screens as well as for public release.

Rodgers, A J; Petersson, N A; Morency, C E; Simmons, N A; Sjogreen, B

2012-01-23T23:59:59.000Z

346

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Vincent Battaglia, LBNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H H 2 /Br 2 Flow Battery for Grid-Scale Energy Storage Venkat Srinivasan, Adam Weber, & Vince Battaglia Lawrence Berkeley National Laboratory * DOE ESS Review * Washington, DC * September 26, 2012 vsbattaglia@lbl.gov Purpose Develop a low-cost, energy-storage system with high power density at 80% efficiency Use H 2 and Br 2 in a flow battery Future Plans Modeling Funding from ARPA-E GRIDS, USDOE LBNL: Kyu Taek Cho (Cell studies); Paul Ridgway (Catalysis studies); Sophia Haussener (Transport modeling) Bosch: Paul Albertus (Cost Modeling); Roel Sanchez-Carrera and Boris Kozinsky (Catalyst theory)

347

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects  

SciTech Connect

Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

Spane, Frank A.

2013-04-29T23:59:59.000Z

348

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

DOE Green Energy (OSTI)

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

349

Semi-Solid Flowable Battery Electrodes: Semi-Solid Flow Cells for Automotive and Grid-Level Energy Storage  

SciTech Connect

BEEST Project: Scientists at 24M are crossing a Li-Ion battery with a fuel cell to develop a semi-solid flow battery. This system relies on some of the same basic chemistry as a standard Li-Ion battery, but in a flow battery the energy storage material is held in external tanks, so storage capacity is not limited by the size of the battery itself. The design makes it easier to add storage capacity by simply increasing the size of the tanks and adding more paste. In addition, 24M's design also is able to extract more energy from the semi-solid paste than conventional Li-Ion batteries. This creates a cost-effective, energy-dense battery that can improve the driving range of EVs or be used to store energy on the electric grid.

2010-09-01T23:59:59.000Z

350

Lawrence Livermore Laboratory geothermal energy program. A status report on the development of the Total-Flow concept  

DOE Green Energy (OSTI)

The technology development activities of the Geothermal Energy Program at the Lawrence Livermore Laboratory are summarized. Significant progress toward development of the Total-Flow concept was made during FY 1978. The results show that the original goal of 70% engine efficiency for the Total-Flow impulse turbine is achievable, that a Total-Flow system is competitive economically with conventional systems, and that the Total-Flow concept offers the benefit of more efficient utilization of geothermal resources for electric power production. The evaluation of several liquid expanders designed for low-temperature (including geopressured) resources suggests that if development were continued, these expanders could be used in combination with conventional systems to increase overall system efficiency. Although the program was terminated before complete field testing of prototype systems could be carried out, the concepts have been adopted in other countries (Japan and Mexico), where development is continuing.

Austin, A.L.; Lundberg, A.W.

1978-10-02T23:59:59.000Z

351

Relics of Minijets amid Anisotropic Flows in High-energy Heavy-ion Collisions  

E-Print Network (OSTI)

Two dimensional low-$p_T$ dihadron correlations in azimuthal angle $\\phi$ and pseudo-rapidity $\\eta$ in high-energy heavy-ion collisions are investigated within both the HIJING Monte Carlo model and an event-by-event (3+1)D ideal hydrodynamic model. Without final-state interaction and collective expansion, dihadron correlations from HIJING simulations have a typical structure from minijets that contains a near-side two-dimensional peak and an away-side ridge along the $\\eta$-direction. In contrast, event-by-event (3+1)D ideal hydrodynamic simulations with fluctuating initial conditions from the HIJING+AMPT model produce a strong dihadron correlation that has an away-side as well as a near-side ridge. Relics of intrinsic dihadron correlation from minijets in the initial conditions still remain as superimposed on the two ridges. By varying initial conditions from HIJING+AMPT, we study effects of minijets, non-vanishing initial flow and longitudinal fluctuation on the final state dihadron correlations. With a large rapidity gap, one can exclude near-side correlations from minijet relics and dihadron correlations can be described by the superposition of harmonic flows up to the 6th order. When long-range correlations with a large rapidity gap are subtracted from short-range correlations with a small rapidity gap, the remaining near-side dihadron correlations result solely from relics of minijets. Low transverse momentum hadron yields per trigger ($p_T^{\\rm trig} <4$ GeV/$c$, $p_T^{\\rm asso}<2$ GeV/$c$) in central heavy-ion collisions are significantly enhanced over that in p+p collisions while widths in azimuthal angle remain the same, in qualitative agreement with experimental data.

Longgang Pang; Qun Wang; Xin-Nian Wang

2013-09-26T23:59:59.000Z

352

Energy and technology review  

SciTech Connect

The state of the laboratory address by LLNL Director Roger Batzel is summarized, and a breakdown of the laboratory funding is given. The Livermore defense-related committment is described, including the design and development of advanced nuclear weapons as well as research in inertial confinement fusion, nonnuclear ordnance, and particle beam technology. LLNL is also applying its scientific and engineering resources to the dual challenge of meeting future energy needs without degrading the quality of the biosphere. Some representative examples are given of the supporting groups vital for providing the specialized expertise and new technologies required by the laboratory's major research programs. (GHT)

Stowers, I.F.; Crawford, R.B.; Esser, M.A.; Lien, P.L.; O'Neal, E.; Van Dyke, P. (eds.)

1982-07-01T23:59:59.000Z

353

Fuel Cell with Metal Screen Flow-Field - Energy Innovation Portal  

The invention provides a simpler and more effective reactant and cooling flow distribution in biopolar plate fuel cells.

354

Simulating atmosphere flow for wind energy applications with WRF-LES  

SciTech Connect

Forecasts of available wind energy resources at high spatial resolution enable users to site wind turbines in optimal locations, to forecast available resources for integration into power grids, to schedule maintenance on wind energy facilities, and to define design criteria for next-generation turbines. This array of research needs implies that an appropriate forecasting tool must be able to account for mesoscale processes like frontal passages, surface-atmosphere interactions inducing local-scale circulations, and the microscale effects of atmospheric stability such as breaking Kelvin-Helmholtz billows. This range of scales and processes demands a mesoscale model with large-eddy simulation (LES) capabilities which can also account for varying atmospheric stability. Numerical weather prediction models, such as the Weather and Research Forecasting model (WRF), excel at predicting synoptic and mesoscale phenomena. With grid spacings of less than 1 km (as is often required for wind energy applications), however, the limits of WRF's subfilter scale (SFS) turbulence parameterizations are exposed, and fundamental problems arise, associated with modeling the scales of motion between those which LES can represent and those for which large-scale PBL parameterizations apply. To address these issues, we have implemented significant modifications to the ARW core of the Weather Research and Forecasting model, including the Nonlinear Backscatter model with Anisotropy (NBA) SFS model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005).We are also modifying WRF's terrain-following coordinate system by implementing an immersed boundary method (IBM) approach to account for the effects of complex terrain. Companion papers presenting idealized simulations with NBA-RSFS-WRF (Mirocha et al.) and IBM-WRF (K. A. Lundquist et al.) are also presented. Observations of flow through the Altamont Pass (Northern California) wind farm are available for validation of the WRF modeling tool for wind energy applications. In this presentation, we use these data to evaluate simulations using the NBA-RSFS-WRF tool in multiple configurations. We vary nesting capabilities, multiple levels of RSFS reconstruction, SFS turbulence models (the new NBA turbulence model versus existing WRF SFS turbulence models) to illustrate the capabilities of the modeling tool and to prioritize recommendations for operational uses. Nested simulations which capture both significant mesoscale processes as well as local-scale stable boundary layer effects are required to effectively predict available wind resources at turbine height.

Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

2008-01-14T23:59:59.000Z

355

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

356

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

357

Gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts  

E-Print Network (OSTI)

We investigate the gravitational collapse of a spherically symmetric, inhomogeneous star, which is described by a perfect fluid with heat flow and satisfies the equation of state $p=\\rho/3$ at its center. In the process of the gravitational collapsing, the energy of the whole star is emitted into space. And the remaining spacetime is a Minkowski one without a remnant at the end of the process. For a star with a solar mass and solar radius, the total energy emitted is at the order of $10^{54}$ {\\rm erg}, and the time-scale of the process is about $8s$. These are in the typical values for a gamma-ray burst. Thus, we suggest the gravitational collapse of a spherical star with heat flow as a possible energy mechanism of gamma-ray bursts.

Zhe Chang; Cheng-Bo Guan; Chao-Guang Huang; Xin Li

2008-03-26T23:59:59.000Z

358

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Supercomputing Our Way to a Clean Energy Future How advanced computing technology is helping major companies lower their R&D costs while developing more energy efficiency technologies. August 6, 2012 One of the first images taken by NASA's Curiosity rover was taken on the left-rear side of the rover looking directly into the sun. | Photo courtesy of NASA/JPL-Caltech. Powering Curiosity: Lab Tech Goes to Mars Today marks the beginning of Curiosity's two-year mission on the Martian

359

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

360

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Comparison of energy efficiency between variable refrigeranttheir superior energy efficiency. The variable refrigerantfew studies reporting the energy efficiency of VRF systems

Hong, Tainzhen

2010-01-01T23:59:59.000Z

362

Energy dependence of directed flow over a wide range of pseudorapidity in Au+Au collisions at RHIC  

E-Print Network (OSTI)

We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of $\\sqrt{s_{_{NN}}} =$ 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

B. B. Back; for the PHOBOS Collaboration

2005-11-22T23:59:59.000Z

363

LLNL's Response to 9/9/2009 Annual Inspection Report Comments B113 Issue #1 and B271 Issue #2  

SciTech Connect

This is LLNL's responses to comments in the 9/9/2009 Annual Inspection Report concerning Underground Storage Tank (UST) 113-D1U2 (Issue No.1) at Building 113 and UST 271-D2U1 (Issue No.2) at Building 271. Also provided is the required Application for Underground Storage Tank Modification for USTs 113-D1U2 and 271-D2U1 and the specification sheet for the Phil-Tite spill bucket that is proposed to be installed in the 271-D2U1 sump.

Schwartz, W W

2009-11-19T23:59:59.000Z

364

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes Core holes enabled injection and flow testing up to 70 gpm. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Lake_City_Hot_Springs_Area_(Benoit_Et_Al.,_2005)&oldid=386872" Category: Exploration Activities What links here Related changes

365

Beam Energy Dependence of Directed and Elliptic Flow Measurement from the STAR Experiment  

E-Print Network (OSTI)

Measurements of anisotropic flow in heavy-ion collisions provide insight into the early stage of the system's evolution. This proceedings presents directed and elliptic flow for Au+Au collisions at 39, 11.5 and 7.7 GeV, and for Cu+Cu at 22.4 GeV, measured in the STAR Experiment at RHIC. Differential measurements of directed and elliptic flow of charged particles as a function of centrality, transverse momentum and pseudorapidity are discussed.

Yadav Pandit

2011-09-13T23:59:59.000Z

366

Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives  

Science Conference Proceedings (OSTI)

This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

Jager, Yetta [ORNL

2010-10-01T23:59:59.000Z

367

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fish Lake Valley Area (DOE GTP) Exploration Activity...

368

Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Linked Data Page Edit History Share this page on Facebook icon Twitter icon Flow Test At Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

369

A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation  

SciTech Connect

The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

Dr. Adam London

2008-06-20T23:59:59.000Z

370

MATERIAL-FLOW DATA STRUCTURES AS A BASIS FOR ENERGY INFORMATION SYSTEM DESIGN  

E-Print Network (OSTI)

we have analyzed the U.S. petroleum supply and distributiongeneralizability. Quantized petroleum flows among restrictedan analysis of the U.S. petroleum supply and distr bution

Krishnan, V.V.

2013-01-01T23:59:59.000Z

371

Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates  

Reports and Publications (EIA)

This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

Information Center

1995-10-01T23:59:59.000Z

372

Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Flint Geothermal Area (DOE GTP) Exploration Activity Details Location Flint...

373

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration Activity Details Location Mcgee Mountain...

374

Flow Test At Rye Patch Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Rye Patch Area (DOE GTP) Exploration Activity Details Location Rye Patch Area...

375

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Jemez Pueblo Area (DOE GTP) Exploration Activity Details Location Jemez Pueblo Area...

376

Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area...

377

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details Location Crump's Hot...

378

Flow Test At San Emidio Desert Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At San Emidio Desert Area (DOE GTP) Exploration Activity Details Location San Emidio...

379

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity Details Location New River Area...

380

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry...

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Flow Test At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Soda Lake Area (DOE GTP) Exploration Activity Details Location Soda Lake...

382

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity Details Location Hot...

383

Sourcebook on the production of electricity from geothermal energy. Draft: Chapter 4, Section 4. 4. Status of the development of the total flow system for electric power production from geothermal energy. [Includes glossary  

DOE Green Energy (OSTI)

Discussion is presented under the following section headings: introduction; characteristics of wellhead fluid; energy conversion concepts (including subsections, the flashed steam system, the total flow concept, and comparison of total flow expanders); brine chemistry effects; a possible total flow system design; and references, bibliography, glossary, and figures. (JGB)

Austin, A.L.; Ryley, D.J.

1978-04-01T23:59:59.000Z

384

Heat flow in the northern Basin and Range province | Open Energy  

Open Energy Info (EERE)

in the northern Basin and Range province in the northern Basin and Range province Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat flow in the northern Basin and Range province Abstract The heat flow in the Basin and Range province of northern Nevada is extremely complex. It is a product of superposition of the regional effects of extension and volcanism /intrusion modified by the local conductive effects of thermal refraction (complicated structural settings),variations in radioactive heat production, erosion and sedimentation. In addition to these conductive effects,groundwater flow, both on a local and a regional basis,affects heat-flow measurements. Typical heat -flow values for the Basin and Range province average 85 +/- 10 mWm-2. The higher estimates are

385

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes After the Welaco temperature survey was completed for TG52-7, preparations were completed for a controlled airlift test. This test was completed in the period from 19-20 September 2003 for some 23 hours. The well produced steady state flow of about 320-325 gpm at a wellhead temperature of 126.7degrees C (260degreesF). This production rate is equivalent to about 162,000 pounds per hour, with the production temperature producing usable

386

Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes The pressure data collected during a 50-h-long flow test at LVEW in September 2001 are best matched using solutions for a flow system consisting of a steeply dipping fracture with infinite hydraulic conductivity, surrounded by a finite-conductivity rock matrix. At shallow

387

Secretary of Energy Advisory Board Lawrence Livermore Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lawrence Livermore Laboratory Lawrence Livermore Laboratory October 12, 2011 Agenda Open Plenary Meeting Session 9:30 AM-9:45 AM Welcome and Overview Secretary Steven Chu and Dr. William Perry 9:45 AM-10:00 AM Director's Perspective George Miller, LLNL Director 10:00 AM-10:40 AM LLNL Progress Towards Ignition and Weapons Physics Experiments on NIF Bruce Goodwin and Ed Moses 10:40 AM-11:00 AM LLNL Strategy for Improvements in Cyber Security Jim Brase 11:00 AM-11:20 AM LLNL Computational Advances in Applied Energy Julio Friedman 11:20 AM-12:00 PM DOE in the Innovation Chain Secretary Chu 12:00 PM-1:30 PM Lunch Break 1:30 PM-1:45 PM Subcommittee Updates 1:45 PM-2:30 PM Blue Ribbon Commission Update

388

Energy Efficient Process Heating: Managing Air Flow Kevin Carpenter and Kelly Kissock  

E-Print Network (OSTI)

(13) The equations are easily incorporated into spreadsheets or computer programs such as PHAST (US." Energy Matters. U.S. Department of Energy. Summer 2005. U.S. Department of Energy. 2003. "PHAST: Process

Kissock, Kelly

389

Optimal Power Flow of Multiple Energy Carriers(Geidl and Andersson...  

Open Energy Info (EERE)

topics related to ESI Prospects for Nuclear Power(Davis 2012) A Framework for the Optimization of Integrated Energy Systems(Jain and Alleyne 2012) Energy System...

390

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

391

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

392

MATERIAL-FLOW DATA STRUCTURES AS A BASIS FOR ENERGY INFORMATION SYSTEM DESIGN  

E-Print Network (OSTI)

K PIPELINE 121 W ~ GULF C " EXXON OF " 2/2/79 FIGURE 3.flows gasoline to and from Exxon facilities in New Jersey;of suppliers and customers for Exxon's New Jersey gasoline

Krishnan, V.V.

2013-01-01T23:59:59.000Z

393

MATERIAL-FLOW DATA STRUCTURES AS A BASIS FOR ENERGY INFORMATION SYSTEM DESIGN  

E-Print Network (OSTI)

flows among individual refineries we have only monthly datauntil its con(>umption at the refinery inlet, and the post-from their source at the refinery outlet. Imported oil is

Krishnan, V.V.

2013-01-01T23:59:59.000Z

394

Fictitious domain methods for two-phase flow energy balance computations in nuclear  

E-Print Network (OSTI)

. At lower heat fluxes the void fraction increase is insufficient to change the flow pattern to annular, and P. Mercier, "Experimental investigations on boiling of n-pentane across a horizontal tube bundle

Paris-Sud XI, Université de

395

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

396

Disaggregating regional energy supply/demand and flow data to 173 BEAs in support of export coal analysis. Final report  

SciTech Connect

This report documents the procedures and results of a study sponsored jointly by the US Department of Transportation and the US Department of Energy. The study was conducted to provide, Bureau of Economic Analysis (BEA)-level production/consumption data for energy materials for 1985 and 1990 in support of an analysis of transportation requirements for export coal. Base data for energy forecasts at the regional level were obtained from the Department of Energy, Energy Information Administration. The forecasts selected for this study are described in DOE/EIA's 1980 Annual Report to Congress, and are: 1985 Series, B, medium oil import price ($37.00/barrel); and 1990 Series B, medium oil import price ($41.00/barrel). Each forecast period is extensively described by approximately forty-three statistical tables prepared by EIA and made available to TERA for this study. This report provides sufficient information to enable the transportation analyst to appreciate the procedures employed by TERA to produce the BEA-level energy production/consumption data. The report presents the results of the procedures, abstracts of data tabulations, and various assumptions used for the preparation of the BEA-level data. The end-product of this effort was the BEA to BEA energy commodity flow data by more which serve as direct input to DOT's transportation network model being used for a detailed analysis of export coal transportation.

1981-06-01T23:59:59.000Z

397

Livermore energy policy model and projections of energy futures for the Gas Research Institute  

Science Conference Proceedings (OSTI)

The Energy and Resource Planning Group at the Lawrence Livermore National Laboratory (LLNL) was asked by the Gas Research Institute to evaluate ten of their research projects relative to proposed funding levels for 1982. These energy technology projects included gas from unconventional and synthetic sources as well as utilization technologies. The primary tool used in the evaluation was the LLNL Energy Policy Model (EPM). The report gives background information about the study, the basic assumptions used in the study, and some conclusions, and presents selected supporting results from the EPM runs.

Castleton, R.

1981-06-01T23:59:59.000Z

398

A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System  

Science Conference Proceedings (OSTI)

Understanding model error in state-of-the-art numerical weather prediction models and representing its impact on flow-dependent predictability remains a complex and mostly unsolved problem. Here, a spectral stochastic kinetic energy backscatter ...

J. Berner; G. J. Shutts; M. Leutbecher; T. N. Palmer

2009-03-01T23:59:59.000Z

399

Energy and Water Cycles in a High-Latitude, North-Flowing River System  

Science Conference Proceedings (OSTI)

The MacKenzie Global Energy and Water Cycle Experiment (GEWEX) Study, Phase 1, seeks to improve understanding of energy and water cycling in the Mackenzie River basin (MRB) and to initiate and test atmospheric, hydrologic, and coupled models that ...

W. R. Rouse; E. M. Blyth; R. W. Crawford; J. R. Gyakum; J. R. Janowicz; B. Kochtubajda; H. G. Leighton; P. Marsh; L. Martz; A. Pietroniro; H. Ritchie; W. M. Schertzer; E. D. Soulis; R. E. Stewart; G. S. Strong; M. K. Woo

2003-01-01T23:59:59.000Z

400

Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses  

Science Conference Proceedings (OSTI)

An assessment is made of the global energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate ...

Kevin E. Trenberth; John T. Fasullo; Jessica Mackaro

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ESPC Overview: Cash Flows, Scenarios, and Associated Diagrams for Energy Savings Performance Contracts  

Science Conference Proceedings (OSTI)

This document is meant to inform state and local decision makers about the process of energy savings performance contracts, and how projected savings and allocated energy-related budgets can be impacted by changes in utility prices.

Tetreault, T.; Regenthal, S.

2011-05-01T23:59:59.000Z

402

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Area (DOE GTP) Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Pilgrim_Hot_Springs_Area_(DOE_GTP)&oldid=402456" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863028959 Varnish cache server

403

Sun, wind and water flow as energy supply for small stationary data acquisition platforms  

Science Conference Proceedings (OSTI)

The deployment of large mesh-type wireless networks is a challenge due to the multitude of arising issues. Perpetual operation of a network node is undoubtedly one of the major goals of any energy-aware protocol or power-efficient hardware platform. ... Keywords: Acquisition station, Energy harvesting, Energy sources, Power management, Precision agriculture

Raul Morais; Samuel G. Matos; Miguel A. Fernandes; António L. G. Valente; Salviano F. S. P. Soares; P. J. S. G. Ferreira; M. J. C. S. Reis

2008-12-01T23:59:59.000Z

404

On Energy Flux and Group Velocity of Waves in Baroclinic Flows  

Science Conference Proceedings (OSTI)

A modified energy flux is defined by adding a nondivergent term that involves ? to the traditional energy flux. The resultant flux, when normalized by the total eddy energy, is exactly equal to the group velocity of Rossby waves on a ? plane with ...

Edmund K. M. Chang; Isidoro Orlanski

1994-12-01T23:59:59.000Z

405

LLNL-ABS-503471 Page 1 Opening Session Prospects for Fundamental...  

National Nuclear Security Administration (NNSA)

503471 Page 1 Opening Session Prospects for Fundamental High Energy Density Science Research at the National Ignition Facility W. H. Goldstein Associate Director for Physical and...

406

Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves  

E-Print Network (OSTI)

We advance our prior energy- and flux-budget turbulence closure model (Zilitinkevich et al., 2007, 2008) for the stably stratified atmospheric flows and extend it accounting for additional vertical flux of momentum and additional productions of turbulent kinetic energy, turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). Main effects of IGW are following: the maximal value of the flux Richardson number (universal constant 0.2-0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. In the heterogeneous stratification, when IGW propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. IGW also reduce anisotropy of turbulence and increase the share of TPE in the turbulent total energy. Depending on the direction (downward or upward), IGW either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.

S. S. Zilitinkevich; T. Elperin; N. Kleeorin; V. L'vov; I. Rogachevskii

2009-05-11T23:59:59.000Z

407

Numerical analysis of temperature and flow effects in a dry, one-dimensional aquifer used for compressed air energy storage  

DOE Green Energy (OSTI)

A detailed description of the method of analysis and the results obtained for an investigation of the hydrodynamic and thermodynamic response of a model of a dry porous media reservoir used for compressed air energy storage (CAES) is presented. Results were obtained from a one-dimensional simulation of the cycling of heated air to and from a radial flow field surrounding a single well in a porous rock. It was assumed that the performance of the bulk of the reservoir could be characterized by the performance of a single well.

Smith, G.C.; Wiles, L.E.; Loscutoff, W.V.

1979-02-01T23:59:59.000Z

408

Power Flow Management in a High Penetration Wind-Diesel Hybrid Power System with Short-Term Energy Storage  

Science Conference Proceedings (OSTI)

This paper is intended as an introduction to some of the control challenges faced by developers of high penetration wind-diesel systems, with a focus on the management of power flows in order to achieve precise regulation of frequency and voltage in the face of rapidly varying wind power input and load conditions. The control algorithms presented herein are being implemented in the National Renewable Energy Laboratory (NREL) high penetration wind-diesel system controller that will be installed in the village of Wales, Alaska, in early 2000.

Drouilhet, S. M.

1999-07-29T23:59:59.000Z

409

Adaptive and Efficient Computing for Subsurface Simulation within ParFlow  

SciTech Connect

This project is concerned with the PF.WRF model as a means to enable more accurate predictions of wind fluctuations and subsurface storage. As developed at LLNL, PF.WRF couples a groundwater (subsurface) and surface water flow model (ParFlow) to a mesoscale atmospheric model (WRF, Weather Research and Forecasting Model). It was developed as a unique tool to address coupled water balance and wind energy questions that occur across traditionally separated research regimes of the atmosphere, land surface, and subsurface. PF.WRF is capable of simulating fluid, mass, and energy transport processes in groundwater, vadose zone, root zone, and land surface systems, including overland flow, and allows for the WRF model to both directly drive and respond to surface and subsurface hydrologic processes and conditions. The current PF.WRF model is constrained to have uniform spatial gridding below the land surface and matching areal grids with the WRF model at the land surface. There are often cases where it is advantageous for land surface, overland flow and subsurface models to have finer gridding than their atmospheric counterparts. Finer vertical discretization is also advantageous near the land surface (to properly capture feedbacks) yet many applications have a large vertical extent. However, the surface flow is strongly dependent on topography leading to a need for greater lateral resolution in some regions and the subsurface flow is tightly coupled to the atmospheric model near the surface leading to a need for finer vertical resolution. In addition, the interactions (e.g. rain) will be highly variable in space and time across the problem domain so an adaptive scheme is preferred to a static strategy to efficiently use computing and memory resources. As a result, this project focussed on algorithmic research required for development of an adaptive simulation capability in the PF.WRF system and its subsequent use in an application problem in the Central Valley of California. This report documents schemes of use for a future implementation of an adaptive grid capability within the ParFlow subsurface flow simulator in PF.WRF. The methods describe specific handling of the coarse/fine boundaries within a cell-centered discretization of the nonlinear parabolic Richards equation model for variable saturated flow. In addition, we describe development of a spline fit and table lookup method implemented within ParFlow to enhance computational efficiency of variably saturated flow calculations.

Tiedeman, H; Woodward, C S

2010-11-16T23:59:59.000Z

410

Microsoft Word - S09IS004 _LLNL_PF_Authority_08262009a FINAL.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA U.S. Department of Energy Office of Inspector General Office of Inspections Inspection Report Lawrence Livermore National Laboratory Protective Force Authority DOE/IG-0820 September 2009 Department of Energy Washington, DC 20585 September 4, 2009 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Inspection Report on "Lawrence Livermore National Laboratory Protective Force Authority" BACKGROUND The Department of Energy's (Department) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution supporting the Department's scientific, engineering, environmental, and national security activities. Livermore is

411

Microsoft Word - LLNL Property Final 052809a Insp # S08IS011.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Inspector General Office of Inspections Inspection Report Personal Property Management at Lawrence Livermore National Laboratory INS-O-09-03 May 2009 Department of Energy Washington, DC 20585 May 28, 2009 MEMORANDUM FOR THE ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Elise M. Ennis Assistant Inspector General for Inspections SUBJECT: INFORMATION: Inspection Report on "Personal Property Management at Lawrence Livermore National Laboratory" BACKGROUND The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of

412

Energy studies on central and variable refrigerant flow air-conditioning systems  

Science Conference Proceedings (OSTI)

Air-conditioning is a major contributor to energy end-use in commercial buildings. Different types of airconditioning systems are installed in commercial buildings including packaged systems

2012-01-01T23:59:59.000Z

413

Impacts of increased outdoor air flow rates on annual HVAC energy costs in office environment.  

E-Print Network (OSTI)

??The use of different ventilation systems has an important impact on the energy cost of office buildings. This paper examines the relationship between heating and… (more)

Destrez, Adrien

2011-01-01T23:59:59.000Z

414

Vanadium-redox flow and lithium-ion battery modelling and performance in wind energy applications.  

E-Print Network (OSTI)

??As wind energy penetration levels increase, there is a growing interest in using storage devices to aid in managing the fluctuations in wind turbine output… (more)

Chahwan, John A.

2007-01-01T23:59:59.000Z

415

Wind flow modeling for wind energy analysis of the Nellis Dunes area in Nevada.  

E-Print Network (OSTI)

??A wind energy analysis of the Nellis Dunes area in Nevada was conducted. A DEM file which contains the elevation data was used to generate… (more)

Rangegowda, Upendra

2010-01-01T23:59:59.000Z

416

Isospin distillation with radial flow: A test of the nuclear symmetry energy  

Science Conference Proceedings (OSTI)

We discuss mechanisms related to isospin transport in central collisions between neutron-rich systems at Fermi energies to gain information on the nuclear symmetry energy at and below saturation. A fully consistent study of the isospin distillation and expansion dynamics in two-component systems is presented in the framework of a stochastic transport theory. We analyze correlations between fragment observables, focusing on the study of the fragment asymmetry N/Z as a function of their kinetic energy. We find that the relation between these observables allows us to better characterize the fragmentation path and to access new information on the low-density behavior of the symmetry energy.

Colonna, M. [LNS-INFN, I-95123 Catania (Italy); Baran, V. [NIPNE-HH, Bucharest, and Bucharest University, Bucharest (Romania); Toro, M. Di [LNS-INFN, I-95123 Catania (Italy); Department of Physics and Astronomy, University of Catania, Catania (Italy); Wolter, H. H. [LNS-INFN, I-95123 Catania (Italy); Fakultaet fuer Physik, University of Munich, Garching (Germany)

2008-12-15T23:59:59.000Z

417

Flow Patterns Around a Complex Building  

DOE Green Energy (OSTI)

The authors compare the results of a computer simulated flow field around building 170 (B170) at Lawrence Livermore National Laboratory (LLNL) with field measurements. In order to aid in the setup of the field experiments, the simulations were performed first. B170 was chosen because of its architectural complexity and because a relatively simple fetch exists upwind (a field lies southwest of the site). Figure 1 shows a computational model of the building which retains the major architectural features of the real building (e.g., courtyard, alcoves, and a multi-level roof). Several important characteristics of the cases presented here are: (1) the flow was assumed neutral and no heat flux was imposed at the ground, representing cloudy or morning conditions, (2) a simple canopy parameterization was used to model the effect of a large row of eucalyptus trees which is located to the northeast of the building, (3) the wind directions studied were 200, 225, 250 degrees measured clockwise from true north (the prevailing winds at LLNL are from the southwest in the summer), (4) the incoming wind profile was modeled as logarithmic with a maximum of about 3 meters per second. In addition, note that the building is rotated counterclockwise by 25 degrees with respect to the east/west axis. For convenience, the flow is modeled in a coordinate system that has been rotated with the building.

Calhoun, R; Chan, S; Lee, R; Leone, J, Shinn, J; Stevens, D

1999-09-24T23:59:59.000Z

418

Directed flow of Identified Charged Particles from the RHIC Beam Energy Scan  

E-Print Network (OSTI)

We present the STAR measurements of directed flow, v1, for {\\pi}{\\pm}, K{\\pm}, protons and antiprotons, as well as for all detected charged particles in Au + Au collisions at {\\surd}sNN = 7.7, 11.5 and 39 GeV as a function of transverse momentum, rapidity and centrality. Results are compared to the predictions from transport models.

Yadav Pandit; for the STAR Collaboration

2011-12-05T23:59:59.000Z

419

Two-phase flow in geothermal energy sources. Final technical report  

DOE Green Energy (OSTI)

A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.

Not Available

1981-07-01T23:59:59.000Z

420

VWA-0044 - In the Matter of Janet K. Benson | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

VWA-0044 - In the Matter of Janet K. Benson VWA-0044 - In the Matter of Janet K. Benson VWA-0044 - In the Matter of Janet K. Benson This Initial Agency Decision concerns a whistleblower complaint filed in 1994 by Janet K. Benson (the Complainant) against Lawrence Livermore National Laboratory (LLNL) and the Regents of the University of California (UC) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708 (Part 708). At all times relevant to this proceeding, UC managed and operated LLNL for the United States government under a contract between the Regents of UC and the DOE. It is the Complainant's contention that during her employment with LLNL she engaged in activity protected by Part 708 and, as a consequence, suffered repeated reprisals by LLNL. (1) As discussed below, I have determined that

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow  

Science Conference Proceedings (OSTI)

An intense waste management (WM) planning activity is currently undergoing in England to build the infrastructure necessary to treat residual wastes, increase recycling levels and the recovery of energy from waste. From the analyses of local WM strategic and planning documents we have identified the emerging of three different energy recovery strategies: established combustion of residual waste; pre-treatment of residual waste and energy recovery from Solid Recovered Fuel in a dedicated plant, usually assumed to be a gasifier; pre-treatment of residual waste and reliance on the market to accept the 'fuel from waste' so produced. Each energy recovery strategy will result in a different solution in terms of the technology selected; moreover, on the basis of the favoured solution, the total number, scale and location of thermal treatment plants built in England will dramatically change. To support the evaluation and comparison of these three WM strategy in terms of global environmental impacts, energy recovery possibilities and performance with respect to changing 'fuel from waste' market conditions, the LCA comparison of eight alternative WM scenarios for a real case study dealing with a large flow of municipal wastes was performed with the modelling tool WRATE. The large flow of waste modelled allowed to formulate and assess realistic alternative WM scenarios and to design infrastructural systems which are likely to correspond to those submitted for approval to the local authorities. The results show that all alternative scenarios contribute to saving abiotic resources and reducing global warming potential. Particularly relevant to the current English debate, the performance of a scenario was shown to depend not from the thermal treatment technology but from a combination of parameters, among which most relevant are the efficiency of energy recovery processes (both electricity and heat) and the calorific value of residual waste and pre-treated material. The contribution and relative importance of recycling and treatment/recovery processes change with the impact category. The lack of reprocessing plants in the area of the case study has shown the relevance of transport distances for recyclate material in reducing the efficiency of a WM system. Highly relevant to the current English WM infrastructural debate, these results for the first time highlight the risk of a significant reduction in the energy that could be recovered by local WM strategies relying only on the market to dispose of the 'fuel from waste' in a non dedicated plant in the case that the SRF had to be sent to landfill for lack of treatment capacity.

Tunesi, Simonetta, E-mail: s.tunesi@ucl.ac.uk [Environment Institute, University College London, Pearson Building, Gower Street, WC1E 6BT London (United Kingdom)

2011-03-15T23:59:59.000Z

422

Energy flows in a secondary city: a case study of Nakuru, Kenya  

SciTech Connect

Secondary cities are currently seen as an important focus for promoting a more spatially-equitable pattern of economic infrastructure in developing countries, but their energy needs have not been considered. To test the thesis of this work - that the present pattern of energy demand in secondary cities differs, in important ways, from that of primary cities - a case study was conducted in the East African city of Nakuru, Kenya. Energy supplies used in Nakuru fall into two categories: industrial sources (electricity and petroleum) and traditional sources (wood, charcoal, and agricultural residues). This analysis of Nakuru's use of industrial sources is introduced by a historical discussion of nationwide patterns of distribution, use, and pricing of electricity and petroleum products, and is followed by data gathered from Nakuru's suppliers of these energy sources. The portrait of energy use in Nakuru is completed with an analysis of the demand for traditional energy sources. Surveys were conducted to estimate the total quantities of charcoal, wood, and agricultural resides used in Nakuru. The cornerstone of this effort was a residential energy survey stratified according to income. Nakuru is shown to rely on biomass fuels (charcoal) to a much greater degree than Nairobi, thereby proving the thesis.

Milukas, M.V.

1987-01-01T23:59:59.000Z

423

Isospin Distillation with Radial Flow: a Test of the Nuclear Symmetry Energy  

E-Print Network (OSTI)

We discuss mechanisms related to isospin transport in central collisions between neutron-rich systems at Fermi energies. A fully consistent study of the isospin distillation and expansion dynamics in two-component systems is presented in the framework of a stochastic transport theory. We analyze correlations between fragment observables, focusing on the study of the average N/Z of fragments, as a function of their kinetic energy. We identify an EOS-dependent relation between these observables, allowing to better characterize the fragmentation path and to access new information on the low density behavior of the symmetry energy.

M. Colonna; V. Baran; M. Di Toro; H. H. Wolter

2007-07-20T23:59:59.000Z

424

Energy and Enstrophy Spectra of Geostrophic Turbulent Flows Derived from a Maximum Entropy Principle  

Science Conference Proceedings (OSTI)

The principle of maximum entropy is used to obtain energy and enstrophy spectra as well as average relative vorticity fields in the context of geostrophic turbulence on a rotating sphere. In the unforced-undamped (inviscid) case, the maximization ...

W. T. M. Verkley; Peter Lynch

2009-08-01T23:59:59.000Z

425

Design of a cone-penetrometer-compatible probe and housing: The LLNL Raman probe  

E-Print Network (OSTI)

probe designed for cone penetrometer and hand-held use and constructed at Lawrence Livermore National There exist 177 underground storage tanks at the U.S. Department of Energy DOE Hanford site that have been in a few hours from surface to bottom. Applied Re- search Associates ARA was contracted by DOE Hanford

Myrick, Michael Lenn

426

Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy  

SciTech Connect

This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.

Andrea Prosperetti

2004-12-21T23:59:59.000Z

427

Two-phase flow in geothermal energy sources. Annual report, June 1, 1975--May 31, 1976  

DOE Green Energy (OSTI)

The purpose of this research program is to create a Design Manual for the design of geothermal production wells that operate in the two-phase flow regime. The team of the Denver Research Institute (contractor) and subcontractors Coury and Associates and the University of Houston are cooperating to achieve this purpose. The role of the Denver Research Institute has included overall administration of the contract, acquisition and handling of two-phase flow data, contacts with other organizations, and development of a probe to measure pressure and temperature in geothermal wells with a precision not previously available, and in real time. For performing the functions involved in placing the measuring probe in a well, the U.S. Geological Survey in Denver has agreed to employ the measuring probe in some of their geothermal test series. The necessity to develop this measuring probe has delayed other portions of the program, but the probe is now almost ready for use, and a calibrating system has been constructed for the probe.

Ross, L.W.

1976-01-01T23:59:59.000Z

428

Multi Agent System to Optimize Comfort and Energy Flows in the Built Environment  

E-Print Network (OSTI)

This paper discusses the control of building energy comfort management systems led by the economic movement within the energy market resulting in different prices. This new generation of building management systems focuses on the application of multi-agent systems for autonomous flexible operation of building services systems to obtain overall improvement energy efficiency and comfort. Multi-agent systems have proven to be successful in many applications to detach the timely interdependencies between systems and applications and come to a decentralize approach. In this study a multi-agent system (MAS) is developed to control and manage building services systems. A case study on an existing building system pointed out that energy consumption is reduced of a central air conditioning unit and local heating and cooling units with help of the proposed market driven multi-agent system, while maintaining comfort within the bands of user preferences. Furthermore it can be concluded that the system adapts to the dynamic changing situation and amount of momentary available resources.

Pennings, L. W.; Houten, M. A.; Boxem, G.; Zeiler, W.

2010-01-01T23:59:59.000Z

429

Elliptic Flow from a Beam Energy Scan: a signature of a phase transition to the Quark-Gluon Plasma  

E-Print Network (OSTI)

We employ a relativistic transport theory to describe the fireball expansion of the matter created in ultra-relativistic heavy-ion collisions (uRHICs). Developing an approach to fix locally the shear viscosity to entropy density $\\eta/s$, we study the impact of a temperature dependent $\\eta/s(T)$ on the build-up of the elliptic flow, $v_2$, a measure of the angular anisotropy in the particle production. Beam Energy Scan from $\\sqrt{s_{NN}}= \\rm 62.4 GeV$ at RHIC up to 2.76 TeV at LHC has shown that the $v_2(p_T)$ as a function of the transverse momentum $p_T$ appears to be nearly invariant with energy. We show that such a surprising behavior is determined by a rise and fall of $\\eta/s(T)$ with a minimum at $T\\sim T_c$, as one would expect if the matter undergoes a phase transition or a cross-over. This provides an evidence for phase transition occurring in the uRHIC's and a first constraint on the temperature dependence of $\\eta/s$. In particular, a constant $\\eta/s$ at all temperatures or a too strong T-dependence would cause a breaking of the scaling of $v_2(p_T)$ with the energy.

S. Plumari; V. Greco; L. P. Csernai

2013-04-24T23:59:59.000Z

430

Microsoft Word - IG-0742 LLNL ProForce Supply Room 101106.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection Report Protective Force Property Management at Lawrence Livermore National Laboratory DOE/IG-0742 October 2006 U.S. Department of Energy Office of Inspector General Office of Inspections and Special Inquiries PROTECTIVE FORCE PROPERTY MANAGEMENT AT LAWRENCE LIVERMORE NATIONAL LABORATORY TABLE OF CONTENTS OVERVIEW Introduction and Objective 1 Observations and Conclusions 2 DETAILS OF FINDINGS Mission Equipment Management 3 Mission Equipment Availability 6 Security Police Officer Badges 7 Written Guidance 7 RECOMMENDATIONS 8 MANAGEMENT COMMENTS 9 INSPECTOR COMMENTS 9 APPENDICES A. Scope and Methodology 10 B. Management Comments 11 Overview Page 1 Protective Force Property

431

A study of pumps for the Hot Dry Rock Geothermal Energy extraction experiment (LTFT (Long Term Flow Test))  

DOE Green Energy (OSTI)

A set of specifications for the hot dry rock (HDR) Phase II circulation pumping system is developed from a review of basic fluid pumping mechanics, a technical history of the HDR Phase I and Phase II pumping systems, a presentation of the results from experiment 2067 (the Initial Closed-Loop Flow Test or ICFT), and consideration of available on-site electrical power limitations at the experiment site. For the Phase II energy extraction experiment (the Long Term Flow Test or LTFT) it is necessary to provide a continuous, low maintenance, and highly efficient pumping capability for a period of twelve months at variable flowrates up to 420 gpm and at surface injection pressures up to 5000 psi. The pumping system must successfully withstand attacks by corrosive and embrittling gases, erosive chemicals and suspended solids, and fluid pressure and temperature fluctuations. In light of presently available pumping hardware and electric power supply limitations, it is recommended that positive displacement multiplex plunger pumps, driven by variable speed control electric motors, be used to provide the necessary continuous surface injection pressures and flowrates for LTFT. The decision of whether to purchase the required circulation pumping hardware or to obtain contractor provided pumping services has not been made.

Tatro, C.A.

1986-10-01T23:59:59.000Z

432

Elliptic flow ($v_2$) in pp collisions at energies available at the CERN Large Hadron Collider: A hydrodynamical approach  

E-Print Network (OSTI)

At Large Hadron Collider energy, the expected large multiplicities suggests the presence of collective behavior even in pp collisions. A hydrodynamical approach has been applied to estimate the expected elliptic flow measured by the azimuthal asymmetry parameter $v_2$, in pp collisions at $\\surd$s = 14 TeV. $v_2$ of $\\pi^-$ is found to be strongly dependent on the parton density profile inside a proton [e.g., surface diffuseness parameter ($\\xi$)]. For $\\xi$ = 0.105, $v_2$ is found to be positive while at $\\xi$ = 0.25, $v_2$ is close to zero and approaches negative values at large $p_t$. The impact parameter dependence of $v_2$ has also been studied.

S. K. Prasad; Victor Roy; S. Chattopadhyay; A. K. Chaudhuri

2009-10-26T23:59:59.000Z

433

Converting 15-Minute Interval Electricity Load Data into Reduced Demand, Energy Reduction and Cash Flow  

E-Print Network (OSTI)

Whole-building-electric (WBE) 15-minute interval data is an extremely low-cost, easy approach to reap an immediate reduction in energy consumption. With the advance of lower cost Internet based metering technology integrated with TCP/IP Internet communications, equipment costs and installation issues are not the issues as were in the past. The challenge is to be able to interpret the data and then implement actions to correct operational and equipment problems and anomalies. This paper will address the types of data acquisition equipment and systems available and the different components of a data. Lastly, actual graphs of data will be presented to demonstrate how to dissect and analyze a data set and then implement measures that will optimize operations and maintenance of which will effect a reduction in energy costs.

Herrin, D. G.

2007-12-01T23:59:59.000Z

434

California energy flow in 1978. [Comparison with Cal. , 1977 and US, 1978  

DOE Green Energy (OSTI)

In 1978 California's total energy use was very close to that of 1977. All forms of transportation consumed 40% of all energy used as contrasted to 26% for the nation as a whole for the same year. Compared to 1977, California's use of hydroelectric power increased three-fold as the direct result of the end of the 1976 to 1977 drought. Oil, gas, and electricity usage changed by small measure, +1.6%, -5.8% and +3.6%, respectively. Oil and gas freed by the increased hydroelectric potential was used by other end-use sectors in the state with transportation taking the largest share. Consumption in that sector increased by approximately 11%. A conspicuous change in 1978 was the new mix of crude oil sources. Domestic California production was essentially stable at 19% of the total; foreign imports chiefly from Indonesia fell 50%; interstate shipments chiefly from Alaskan North Slope more than doubled. Natural gas supply sources and uses were similar to those of 1977. Industrial use of natural gas appears to have fallen. There is some indication of fuel switching to fuel oils, relocation of industry to other states and conservation in response to escalated fuel prices. Coal continues to be an insignificant fuel in California. Geothermal contributed less than 2% to total transmitted electricity. The comparable figure for nuclear energy is 4% and for imported power from other states, 20%.

Briggs, C.; Borg, I.Y.

1980-08-01T23:59:59.000Z

435

Cryogenic detector development at LLNL: ultraviolet x-ray, gamma-ray and biomolecule spectroscopy  

SciTech Connect

We are developing low-temperature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present development work on these detectors and materials analysis and biomolecular mass spectrometry. We have measured thin-film Nb/Al/Al2O3/AlNb superconducting tunnel junction (STJ) X-ray detectors in the 0.2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution of 13 eV FWHM at 227 eV with an output count rate of 20,600 cts/s.

Labov, S.E.; Frank, M.; le Grand, J.B. [and others

1997-08-12T23:59:59.000Z

436

Women @ Energy: Trish Damkroger | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trish Damkroger Trish Damkroger Women @ Energy: Trish Damkroger March 14, 2013 - 11:30am Addthis Trish Damkroger is responsible for ensuring the day-to-day messaging, administration, and management of a 900-employee workforce in LLNL’s Computation Directorate. Trish Damkroger is responsible for ensuring the day-to-day messaging, administration, and management of a 900-employee workforce in LLNL's Computation Directorate. Trish Damkroger is responsible for ensuring the day-to-day messaging, administration, and management of a 900-employee workforce in LLNL's Computation Directorate. She establishes and oversees procedures and implementation plans to comply with external and Laboratory requirements as they relate to Computation. For the last year, Trish has been the acting

437

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Livermore Lab to Power Hawaiian Nonprofit LLNL's pilot electromechanical batteryflywheel and electrostatic (ES) generatormotor technologies will reduce the plant's...

438

Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges  

SciTech Connect

This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

Daily III, W D

2010-02-24T23:59:59.000Z

439

LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable  

SciTech Connect

Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. For on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007

Blink, J A

2011-03-23T23:59:59.000Z

440

Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations from Livermore Lab to Power Hawaiian Nonprofit Innovations from Livermore Lab to Power Hawaiian Nonprofit Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit February 28, 2011 - 11:31am Addthis Mike Gleason (second from left), president and CEO of The Arc of Hilo. Also shown, from left: Annemarie Meike, Mark Sueksdorf, Marjorie Gonzalez and Larry Ferderber | Photo Courtesy of LLNL Mike Gleason (second from left), president and CEO of The Arc of Hilo. Also shown, from left: Annemarie Meike, Mark Sueksdorf, Marjorie Gonzalez and Larry Ferderber | Photo Courtesy of LLNL April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What are the key facts? LLNL technologies will reduce the plant's electrical bills by 50 percent and provide sustainable and energy efficient solutions for the

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Foreign Travel Trip Report for LLNL travel with DOE FES funding,May 19th-30th, 2012  

Science Conference Proceedings (OSTI)

I attended the 20th biannual International Conference on Plasma Surface Interaction (PSI) in Fusion Devices in Aachen, Germany, hosted this year by the Forschungszentrum Julich (FZJ) research center. The PSI conference is one of the main international forums for the presentation and discussion of results on plasma surface interactions and edge plasma physics relevant to magnetic confinement fusion devices. I disseminated the recent results of FESP/LLNL tokamak research by presenting three posters on: (i) understanding reconnection and controlling edge localized modes (ELMs) using the BOUT++ code, (ii) simulation of resistive ballooning mode turbulence, and (iii) innovative design of Snowflake divertors. I learned of many new and recent results from international tokamak facilities and had the opportunity for discussion of these topics with other scientists at the poster sessions, conference lunches/receptions, etc. Some of the major highlights of the PSI conference topics were: (1) Review of the progress in using metallic tungsten and beryllium (ITER-like) walls at international tokamak facilities: JET (Culham, UK), TEXTOR (FZJ, Germany) and Alcator CMOD (MIT, USA). Results included: effect of small and large-area melting on plasma impurity content and recovery, expected reduction in retention of hydrogenic species, increased heat load during disruptions and need for mitigation with massive gas injection. (2) A review of ELM control in general (T. Evans, GA) and recent results of ELM control using n=2 external magnetic perturbations on ASDEX-Upgrade (MPI-Garching, Germany). (3) General agreement among the international tokamak database that, along the outer midplane of a low collisionality tokamak, the SOL power width in current experiments varies inversely with respect to plasma current (Ip), roughly as 1/Ip, with little dependence on other plasma parameters. This would imply roughly a factor of 1/4 of the width that was assumed for the design of the ITER tokamak. The first studies of the implications for ITER (A. Kukushkin, ITER) have shown a great reduction in operational parameter space that, at present, can only be lifted by increasing target plate heat flux limits. During my visit to the CRPP at the EPFL, I delivered an invited talk in order to disseminate new results of the recent publication [1] on using non-axisymmetric perturbations of the SOL to control the edge plasma. I was given a tour of both the TCV tokamak and the TORPEX simple magnetized plasma device/divertor simulator. TORPEX is an excellent laboratory for exploring the physics of simple magnetized plasmas that are relevant to the scrape-off layer of a tokamak. Properly designed experiments on TORPEX can potentially be used to test the theory of controlling the edge plasma using non-axisymmetric potentials and currents in the SOL developed by LLNL described in [1].

Joseph, I

2012-07-05T23:59:59.000Z

442

Energy Program annual report, 1988  

DOE Green Energy (OSTI)

This report is a summary of work done during FY 1988 (October 1, 1987--September 30, 1988) by the Energy Program of the Lawrence Livermore National Laboratory (LLNL). The program addresses problems relating to supply and utilization of energy in the US. Traditionally the focus of activities has been on long-range technical challenges that are unlikely to be pursued by the private sector. Individual projects making up the Energy Program are divided into three sections in this review: Nuclear Energy, Fossil Energy, and Nonfossil Energy. (Nonfossil Energy research includes work on geothermal resources and combustion chemistry.)

Borg, I.Y. (ed.)

1989-07-01T23:59:59.000Z

443

Scrape-Off-Layer Flow Studies in Tokamaks: Final Report of LDRD Project 09-ERD-025  

SciTech Connect

A summary is given of the work carried out under the LDRD project 09-ERD-025 entitled Scrape-Off-Layer Flow Studies in Tokamaks. This project has lead to implementation of the new prototype Fourier Transform Spectrometer edge plasma flow diagnostic on the DIII-D National Fusion Facility at General Atomics, acquisition of carbon impurity concentration and flow data, and demonstration that the resulting data compare reasonably well with LLNL's edge plasma transport code UEDGE. Details of the work are contained in attached published papers, while the most recent results that are being written-up for publication are summarized in the report. Boundary plasma flows in tokamak fusion devices are key in determining the distribution of fuel and impurity ions, with tritium build-up in the walls an especially critical operational issue. The intrusion of impurity ions to the hot plasma core region can result in serious energy-loss owing to line radiation. However, flow diagnostic capability has been severely limited in fusion-relevant hot edge plasmas where Langmuir-type probes cannot withstand the high heat flux and traditional Doppler spectroscopy has limited resolution and signal strength. Thus, new edge plasma flow diagnostic capabilities need to be developed that can be used in existing and future devices such as ITER. The understanding of such flows requires simulation with 2-dimensional transport codes owing to the geometrical complexity of the edge region in contact with material surfaces and the large number of interaction physical processes including plasma flow along and across the magnetic field, and coupling between impurity and neutral species. The characteristics of edge plasma flows are substantially affected by cross-magnetic-field drifts (ExB/B{sup 2} and BxVB/B{sup 2}), which are known to introduce substantial convergence difficulty for some cases. It is important that these difficulties be overcome so that drifts can be included in transport models, both for validation with existing data and for projection to future devices.

Rognlien, T D; Allen, S L; Ellis, R M; Porter, G D; Nam, S K; Weber, T R; Umansky, M V; Howard, J

2011-11-21T23:59:59.000Z

444

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet  

E-Print Network (OSTI)

Momentum and Energy Transport by Gravity Waves in Stochastically Driven Stratified Flows. Part II: Radiation of Gravity Waves from a Gaussian Jet NIKOLAOS A. BAKAS AND BRIAN F. FARRELL Harvard University Interaction between the midlatitude jet and gravity waves is examined, focusing on the nonnormality

Farrell, Brian F.

445

Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus  

Science Conference Proceedings (OSTI)

The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

2013-09-30T23:59:59.000Z

446

LLNL-ABS-499158  

National Nuclear Security Administration (NNSA)

158 158 Page 1 Session 10, Computational Physics-Computer Science and Methods Model of Turbulent Combustion of Al Particle Clouds in Explosions A. L. Kuhl * , J. B. Bell † , V. E. Beckner † and K. Balakrishnan † * Lawrence Livermore National Laboratory, Livermore, CA USA † Lawrence Berkeley Natonal Laboratory, Berkeley, CA USA We consider the problem of combustion in Shock-Dispersed-Fuel (SDF) explosions [1, 2]. The SDF charge consists of a spherical PETN booster (1/3 the mass), surrounded by flake Aluminum powder (2/3 the mass) with a bulk density of 0.6 g/cc. Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture-thereby forming a two-phase combustion cloud embedded in the explosion. We model this process with a two-

447

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Salary is commensurate with experience. Required clearance level: DOE Q and SCI access. Pre-Employment Drug Test The successful candidate will be required to complete a...

448

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

the core mission. Origins The Laboratory was established in 1952 at the height of the Cold War to meet urgent national security needs by advancing nuclear weapons science and...

449

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Directorate Lawrence Livermore National Laboratory John Edwards Associate NIF Director for ICF & HED NIF & Photon Science Directorate Lawrence Livermore National...

450

AWC-LLNL  

National Nuclear Security Administration (NNSA)

4 Hyperviscosity damps high wavenumbers. ( ) 4 width of filter Gaussian Increase r for higher formal accuracy. 2,4,6... r , ) 2 ( 0 " + + r r S C ( ) ( )...

451

LLNL SF6 Management  

NLE Websites -- All DOE Office Websites (Extended Search)

GHG emissions. Regulatory Change (cont.) In 2010, DOE prepared its "Strategic Sustainability Performance Plan" which identified targets (by 2020, DOE facilities will decrease...

452

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

News "Search process for Lawrence Livermore director, LLNS president gets under way," LLNS news release, Nov. 25, 2013. "Parney Albright steps down as Laboratory director, Bret...

453

LLNL-POST-411531  

NLE Websites -- All DOE Office Websites (Extended Search)

(CAM) are assessed with ARM and other observations. The CAM is integrated in weather-forecast or CAPT mode to facilitate comparison with observations. The focus is on the...

454

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

and Answers Q: I read the letter from Norman Pattiz and reviewed the members of the search committee. Why are there members from UC Davis, but no representation from UC Merced?...

455

LLNL Director Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Committee Search Committee for the selection of a director for Lawrence Livermore National Laboratory November 2013 * Additional members are under consideration. Norman...

456

Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles  

SciTech Connect

This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

Berry, G; Daily III, W

2004-06-03T23:59:59.000Z

457

Meteorological Observations for Renewable Energy Applications at Site 300  

DOE Green Energy (OSTI)

In early October 2010, two Laser and Detection Ranging (LIDAR) units (LIDAR-96 and LIDAR-97), a 3 m tall flux tower, and a 3 m tall meteorological tower were installed in the northern section of Site 300 (Figure 1) as a first step in development of a renewable energy testbed facility. This section of the SMS project is aimed at supporting that effort with continuous maintenance of atmospheric monitoring instruments capable of measuring vertical profiles of wind speed and wind direction at heights encountered by future wind power turbines. In addition, fluxes of energy are monitored to estimate atmospheric mixing and its effects on wind flow properties at turbine rotor disk heights. Together, these measurements are critical for providing an accurate wind resource characterization and for validating LLNL atmospheric prediction codes for future renewable energy projects at Site 300. Accurate, high-resolution meteorological measurements of wind flow in the planetary boundary layer (PBL) and surface-atmosphere energy exchange are required for understanding the properties and quality of available wind power at Site 300. Wind speeds at heights found in a typical wind turbine rotor disk ({approx} 40-140 m) are driven by the synergistic impacts of atmospheric stability, orography, and land-surface characteristics on the mean wind flow in the PBL and related turbulence structures. This section of the report details the maintenance and labor required in FY11 to optimize the meteorological instruments and ensure high accuracy of their measurements. A detailed look at the observations from FY11 is also presented. This portion of the project met the following milestones: Milestone 1: successful maintenance and data collection of LIDAR and flux tower instruments; Milestone 2: successful installation of solar power for the LIDAR units; and Milestone 3: successful implementation of remote data transmission for the LIDAR units.

Wharton, S; Alai, M; Myers, K

2011-10-26T23:59:59.000Z

458

DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Initial Agency Decision  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2002 2, 2002 DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Initial Agency Decision Name of Petitioner: Janet K. Benson Date of Filing: June 2, 1999 Case Number: VWA-0044 This Initial Agency Decision concerns a whistleblower complaint filed in 1994 by Janet K. Benson (the Complainant) against Lawrence Livermore National Laboratory (LLNL) and the Regents of the University of California (UC) under the Department of Energy's (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708 (Part 708). At all times relevant to this proceeding, UC managed and operated LLNL for the United States government under a contract between the Regents of UC and the DOE. It is the Complainant's contention that during her employment with LLNL she engaged in activity protected by

459

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2012 9, 2012 The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. Boosting America's Hydropower Output Learn about the Energy Department's effort to help optimize the performance of hydropower facilities across the United States. October 9, 2012 Science Alliance Third Annual Science Alliance Takes Place in Ohio Students from across Ohio joined Energy Department staff for a hands-on learning experience at the Portsmouth Gaseous Diffusion Plant. October 5, 2012 The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. NIF recently achieved a 500 terawatt shot - 1,000 times more power than the United States uses at any instant in time. | Photo by Damien Jemison/LLNL

460

Towards A Design Environment For Buildingintegrated Energy Systems: The Integration Of Electrical Power Flow Modelling With Building Simulation  

E-Print Network (OSTI)

.................................................................................................................................... xi Chapter 1 - Buildings Energy and Environment ..................................................................... 1 1.1 Energy Use within Buildings............................................................................................1 1.1.1 Environmental Implications.......................................................................................2 1.1.2 Economic Implications ..............................................................................................3 1.2 The Means of Reducing Energy Consumption..................................................................4 1.2.1 Energy End-Use Reduction........................................................................................4 1.2.2 Reducing High-Grade Energy Usage .........................................................................5 1.2.3 Electrical Energy Displa...

Nicolas James Kelly; Building Simulation; Nicolas James; Kelly B. Eng; M. Sc

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llnl energy flow" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary  

DOE Green Energy (OSTI)

Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

Peterson, S

2007-09-05T23:59:59.000Z

462

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

DOE Green Energy (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

463

A Dissection of Energetics of the Geostrophic Flow: Reconciliation of Rossby Wave Energy Flux and Group Velocity  

Science Conference Proceedings (OSTI)

It is shown in this paper that there is no ambiguity in the final form of the governing equations of a quasigeostrophic (QG) model after partitioning the total flow into the geostrophic, balanced ageostrophic, and unbalanced ageostrophic ...

Ming Cai; Bohua Huang

2013-07-01T23:59:59.000Z

464

Effects of Mean Flow Direction on Energy, Isotropy, and Coherence of Baroclinically Unstable Beta-Plane Geostrophic Turbulence  

Science Conference Proceedings (OSTI)

The effects of mean flow direction on statistically steady, baroclinically unstable, beta-plane quasigeostrophic (QG) turbulence are examined in a two-layer numerical model. The turbulence is forced by an imposed, horizontally homogeneous, ...

Brian K. Arbic; Glenn R. Flierl

2004-01-01T23:59:59.000Z

465

Categorical Exclusion Determinations: California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2010 11, 2010 CX-003364: Categorical Exclusion Determination Lawrence Livermore National Laboratory (LLNL) Mobile Hydrogen-Fueling Station and Use of Hydrogen Buses at LLNL CX(s) Applied: B5.1 Date: 08/11/2010 Location(s): Livermore, California Office(s): Lawrence Livermore Site Office August 11, 2010 CX-004958: Categorical Exclusion Determination University of Southern California-Iron-Air Rechargeable Battery for Grid-Scale Energy Storage CX(s) Applied: B3.6 Date: 08/11/2010 Location(s): Los Angeles, California Office(s): Advanced Research Projects Agency - Energy August 10, 2010 CX-003276: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A1, A9, A11 Date: 08/10/2010 Location(s): Berkeley, California

466

Detector of the flowing of a fluid in a pipe and energy saving device for a hot water system using this detector  

SciTech Connect

A fluid flow sensor, comprising a tubular element having a greater diameter than and vertically mounted on a pipe for serially interconnecting two portions of this pipe. One portion is connected to the upper end of the tubular element while the other portion is connected to its lower end. A magnetic piston is slidably mounted within the tubular element and is therefore free to move along it. A by-pass conduit interconnects the lower portion of the pipe with the upper portion of the pipe. The piston moves upwardly in the tubular element when the fluid flows. Fluid flows from the portion of the pipe connected at the lower end of the tubular element to the one connected at its upper end through the by-pass. The piston moves downwardly by gravity to the lower end of the tubular element when the fluid stops flowing. A coil wound around a portion of the tubular element produces in electrical signal when the piston moves in the tubular element. The piston has a frustroconical element on each end to absorb shocks which result when the piston seats in each position. This detecting device can be mounted on a hot water supply pipe and used in combination with an electronic circuit for saving energy in operating a hot water system. The electronic circuit allows or prevents the thermostat to control the water heating apparatus.

Lawless, J.

1985-02-05T23:59:59.000Z

467

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

468

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

the Cover the Cover Photo collage (from top to bottom, left to right): Development of nanosegregated cathode catalysts with ultra-low platinum loading at Argonne National Laboratory (ANL). Image courtesy of ANL. (NREL 27573) Bandgap tuning in copper chalcopyrite thin films for photoelectrochemical hydrogen production. Photo courtesy of the Hawai'i Natural Energy Institute. (NREL 27570) A diaphragm compressor by PDC Machines. Photo courtesy of PDC Machines. (NREL 27575) A Los Alamos National Laboratory (LANL)/Lawrence Livermore National Laboratory (LLNL)-developed hydrogen safety sensor operating in a convenient, easy-to-handle package. Photo courtesy of LLNL, LANL, and the National Renewable Energy Laboratory (NREL). (NREL 27571)

469

Inspection Report: INS-O-07-03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Inspection Report: INS-O-07-03 July 23, 2007 Protective Force Overtime Pay at Lawrence Livermore National Laboratory The Lawrence Livermore National Laboratory (LLNL) is a research and development institution that supports the Department of Energy's core national security mission. The University of California operates LLNL under a contract with the National Nuclear Security Administration. h May 2007, the Department selected Lawrence Livermore National Security, LLC, to be the new management and operating contractor for the site, and to take over mission activities starting October 1, 2007. In support of its mission, LLNL maintains a highly trained Protective Force Division (PFD) to secure its facilities and operations. Inspection Report: INS-O-07-03 More Documents & Publications

470

Inspection Report: INS-O-07-03 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inspection Report: INS-O-07-03 Inspection Report: INS-O-07-03 Inspection Report: INS-O-07-03 July 23, 2007 Protective Force Overtime Pay at Lawrence Livermore National Laboratory The Lawrence Livermore National Laboratory (LLNL) is a research and development institution that supports the Department of Energy's core national security mission. The University of California operates LLNL under a contract with the National Nuclear Security Administration. h May 2007, the Department selected Lawrence Livermore National Security, LLC, to be the new management and operating contractor for the site, and to take over mission activities starting October 1, 2007. In support of its mission, LLNL maintains a highly trained Protective Force Division (PFD) to secure its facilities and operations. Inspection Report: INS-O-07-03

471

Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases  

DOE Green Energy (OSTI)

Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique