Powered by Deep Web Technologies
Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Broader source: Energy.gov (indexed) [DOE]

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

2

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Broader source: Energy.gov (indexed) [DOE]

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

3

Gasification world database 2007. Current industry status  

SciTech Connect (OSTI)

Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

NONE

2007-10-15T23:59:59.000Z

4

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

5

Preliminary Notice of Violation, RTS Wright Industries, LLC ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RTS Wright Industries, LLC - EA-2003-08 Preliminary Notice of Violation, RTS Wright Industries, LLC - EA-2003-08 October 23, 2003 Issued to RTS Wright Industries, LLC, related to...

6

NETL: Gasification Systems and Industry Analyses Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analyses Studies Analyses Studies Gasification Systems Reference Shelf – Systems and Industry Analyses Studies Table of Contents Cost and Performance Baseline for Fossil Energy Power Plants Studies Gasification Systems Program's Systems and Industry Analyses Studies DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Gasification Systems Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. Cost and Performance Baseline for Fossil Energy Power Plants Studies The Cost and Performance Baseline for Fossil Energy Power Plants studies establish up-to-date estimates for the cost and performance of combustion and gasification based power plants as well as options for co-generating synthetic natural gas and fuels, all with and without carbon dioxide capture and storage. Several ranks of coal are being assessed in process configurations that are based on technology that could be constructed today such that the plant could be operational in the 2010 - 2015 timeframe. The analyses were performed on a consistent technical and economic basis that accurately reflects current market conditions.

7

Solar Energy LLC Industrial Investors Group | Open Energy Information  

Open Energy Info (EERE)

LLC Industrial Investors Group LLC Industrial Investors Group Jump to: navigation, search Name Solar Energy LLC - Industrial Investors Group Place Moscow, Russian Federation Zip 119017 Sector Solar Product The company Solar Energy plans to use turnkey equipment from GT Solar and others to make silicon, ingots, wafers and cells in Russia. References Solar Energy LLC - Industrial Investors Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy LLC - Industrial Investors Group is a company located in Moscow, Russian Federation . References ↑ "Solar Energy LLC - Industrial Investors Group" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Energy_LLC_Industrial_Investors_Group&oldid=351271

8

New York Industrial Energy Buyers, LLC | Open Energy Information  

Open Energy Info (EERE)

Buyers, LLC Jump to: navigation, search Name: New York Industrial Energy Buyers, LLC Place: New York References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861...

9

NETL: Gasification - Systems and Industry Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

E&P Technologies Gas Hydrates T&D and Refining Contacts E&P Technologies Gas Hydrates T&D and Refining Contacts Coal & Power Systems Major Demonstrations Innovations for Existing Plants Gasification Turbines Fuel Cells FutureGen Advanced Research Contacts Industrial Capture & Storage Carbon Sequestration Program Overview Core R&D Infrastructure Global Collaborations FAQs Reference Shelf Contacts Hydrogen & Clean Fuels Hydrogen-from-Coal RD&D Contacts ENERGY ANALYSIS About Us Search Products Contacts SMART GRID ANALYSIS BASELINE STUDIES NETL-RUA About NETL-RUA Research Technology Transfer Business Development Education News & Events Contacts Members Only Access TECHNOLOGY TRANSFER Available Technologies How to Partner Outreach Contacts SOLICITATIONS & BUSINESS Solicitations & Funding Opps. Related Links & Forms CDP/Financial Asst. Resources Unsolicited Proposals Available NETL Property Business Alert Notification IRS Tax Credit Program NETL Business Contacts

10

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

11

EDF Industrial Power Services (TX), LLC | Open Energy Information  

Open Energy Info (EERE)

Power Services (TX), LLC Power Services (TX), LLC Jump to: navigation, search Name EDF Industrial Power Services (TX), LLC Place Texas Utility Id 56315 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.0394/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EDF_Industrial_Power_Services_(TX),_LLC&oldid=410609" Categories: EIA Utility Companies and Aliases

12

Alkaline subcritical water gasification of dairy industry waste (Whey)  

Science Journals Connector (OSTI)

The near-critical water gasification of dairy industry waste in the form of Whey, a product composed of mixtures of carbohydrates (mainly lactose) and amino acids such as glycine and glutamic acid, has been studied. The gasification process involved partial oxidation with hydrogen peroxide in the presence of NaOH. The reactions were studied over the temperature range from 300C to 390C, corresponding pressures of 9.524.5MPa and reaction times from 0min to 120min. Hydrogen production was affected by the presence of NaOH, the concentration of H2O2, temperature, reaction time and feed concentration. Up to 40% of the theoretical hydrogen gas production was achieved at 390C. Over 80% of the Whey nitrogen content was found as ammonia, mainly in the liquid effluent.

Rattana Muangrat; Jude A. Onwudili; Paul T. Williams

2011-01-01T23:59:59.000Z

13

Semiconductor Components Industries, LLC, 2004 July, 2004 -Rev. 13  

E-Print Network [OSTI]

© Semiconductor Components Industries, LLC, 2004 July, 2004 - Rev. 13 Publication Order Number: LM339/D 1 LM339, LM239, LM2901, LM2901V, NCV2901, MC3302 Single Supply Quad Comparators://onsemi.com TSSOP-14 DTB SUFFIX CASE 948G 1 14 #12;LM339, LM239, LM2901, LM2901V, NCV2901, MC3302 http

Ravikumar, B.

14

Preliminary Notice of Violation, RTS Wright Industries, LLC - EA-2003-08 |  

Broader source: Energy.gov (indexed) [DOE]

RTS Wright Industries, LLC - RTS Wright Industries, LLC - EA-2003-08 Preliminary Notice of Violation, RTS Wright Industries, LLC - EA-2003-08 October 23, 2003 Preliminary Notice of Violation issued to RTS Wright Industries, LLC, related to Falsification of Records and Work Performance Issues at the Advanced Mixed Waste Treatment Project at the Idaho National Engineering and Environmental Laboratory This letter refers to the investigation conducted by the Department of Energy (DOE) into allegations from a concerned individual that RTS Wright Industries, LLC, (RTS) falsified quality control inspection records. These records pertained to Glove Box Systems procured by the Washington Group International for installation at DOE's Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho National Engineering and Environmental

15

Preliminary Notice of Violation, RTS Wright Industries, LLC - EA-2003-08 |  

Broader source: Energy.gov (indexed) [DOE]

RTS Wright Industries, LLC - RTS Wright Industries, LLC - EA-2003-08 Preliminary Notice of Violation, RTS Wright Industries, LLC - EA-2003-08 October 23, 2003 Preliminary Notice of Violation issued to RTS Wright Industries, LLC, related to Falsification of Records and Work Performance Issues at the Advanced Mixed Waste Treatment Project at the Idaho National Engineering and Environmental Laboratory This letter refers to the investigation conducted by the Department of Energy (DOE) into allegations from a concerned individual that RTS Wright Industries, LLC, (RTS) falsified quality control inspection records. These records pertained to Glove Box Systems procured by the Washington Group International for installation at DOE's Advanced Mixed Waste Treatment Project (AMWTP) at the Idaho National Engineering and Environmental

16

2007 gasification technologies conference papers  

SciTech Connect (OSTI)

Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

NONE

2007-07-01T23:59:59.000Z

17

Fixed bed downdraft gasification of paper industry wastes  

Science Journals Connector (OSTI)

The two main wastes generated from secondary fibre paper mills are rejects (composed mainly of plastics and fibres) and de-inking sludge, both of which are evolved from the pulping process during paper manufacture. The current practice for the disposal of these wastes is either by land-spreading or land-filling. This work explores the gasification of blends of pre-conditioned rejects and de-inking sludge pellets with mixed wood chips in an Imbert type fixed bed downdraft gasifier with a maximum feeding capacity of 10kg/h. The producer gases evolved would generate combined heat and power (CHP) in an internal combustion engine. The results show that as much as 80wt.% of a brown paper mills rejects (consisting of 20wt.% mixed plastics and 80wt.% paper fibres) could be successfully gasified in a blend with 20wt.% mixed wood chips. The producer gas composition was 16.24% H2, 23.34% CO, 12.71% CO2 5.21% CH4 and 42.49% N2 (v/v%) with a higher heating value of 7.3MJ/Nm3. After the removal of tar and water condensate the producer gas was of sufficient calorific value and flow rate to power a 10kWe gas engine. Some blends using rejects from other mill types were not successful, and the limiting factor was usually the agglomeration of plastics present within the fuel.

M. Ouadi; J.G. Brammer; M. Kay; A. Hornung

2013-01-01T23:59:59.000Z

18

Waste to energy by industrially integrated supercritical water gasification Effects of alkali salts in residual by-products from the pulp and paper industry  

Science Journals Connector (OSTI)

Supercritical water gasification (SCWG) is a method by which biomass can be converted intoa hydrogen-rich gas product. Wet industrial waste streams, which contain both organic and inorganic material, are well suited for treatment by SCWG. In this study, the gasification of two streams of biomass resulting from the pulp and paper industry, black liquor and paper sludge, has been investigated. The purpose is to convert these to useful products, both gaseous and solids, which can be used either in the papermaking process or in external applications. Simple compounds, such as glucose, have been fully gasified in SCWG, but gasification of more complex compounds, such as biomass and waste, have not reached as high conversions. The investigated paper sludge was not easily gasified. Improving gasification results with catalysts is an option and the use of alkali salts for this purpose was studied. The relationship between alkali concentration, temperature, and gasification yields was studied with the addition of KOH, K2CO3, NaOH and black liquor to the paper sludge. Addition of black liquor to the paper sludge resulted in similarly enhancing effects as when the alkali salts were added, which made it possible to raise the dry matter content and gasification yield without expensive additives.

I. Rnnlund; L. Myren; K. Lundqvist; J. Ahlbeck; T. Westerlund

2011-01-01T23:59:59.000Z

19

2006 gasification technologies conference papers  

SciTech Connect (OSTI)

Sessions covered: business overview, industry trends and new developments; gasification projects progress reports; industrial applications and opportunities; Canadian oil sands; China/Asia gasification markets - status and projects; carbon management with gasification technologies; gasification economics and performance issues addressed; and research and development, and new technologies initiatives.

NONE

2006-07-01T23:59:59.000Z

20

Phoenix Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Sector: Biomass Product: California-based distributor and installer of biomass gasification systems. References: Phoenix Energy LLC1 This article is a stub. You can help...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2010 Worldwide Gasification Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

22

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal: Alternatives/Supplements to Coal - Feedstock Flexibility Coal: Alternatives/Supplements to Coal - Feedstock Flexibility As important as coal is as a primary gasification feedstock, gasification technology offers the important ability to take a wide range of feedstocks and process them into syngas, from which a similarly diverse number of end products are possible. Gasifiers have been developed to suit all different ranks of coal, and other fossil fuels, petcoke and refinery streams, biomass including agricultural waste, and industrial and municipal waste. The flexibility stems from the ability of gasification to take any carbon and hydrogen containing feedstock and then thermochemically break down the feedstock to a gas containing simple compounds which are easy to process into several marketable products.

23

Application of Gasification to the Conversion of Wood, Urban and Industrial Wastes  

Science Journals Connector (OSTI)

Gasification is widely accepted as a technological option for the production of synthesis gas (SG) via partial oxidation of heterogeneous organic matter such as, residual biomass, classified urban wastes (RDF)...

N. Abatzoglou; J.-C. Fernandez; L. Larame

1997-01-01T23:59:59.000Z

24

NETL: Gasification Systems Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shelf Shelf Gasification Systems Reference Shelf TABLE OF CONTENTS Brochures Conferences and Workshops Gasification Systems Projects National Map Gasification Systems Projects and Performers Gasification Systems Project Portfolio Gasifipedia Multi-phase Flow with Interphase eXchange (MFIX) Patents Program Presentations Project Information Projects Summary Table by State Solicitations Systems and Industry Analyses Studies Technical Presentations & Papers Technology Readiness Assessment (Comprehensive Report | Overview Report) Video, Images & Photos Gasification Plant Databases CD Icon Request Gasification Technologies Information on a CD. Gasification RSS Feed Subscribe to the Gasification RSS Feed to follow website updates. LinkedIn DOE Gasification Program Group Subscribe to the LinkedIn DOE Gasification Program group for more information and discussion.

25

Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment  

SciTech Connect (OSTI)

The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that droplets on the order 200-300 microns can be expected, and that higher liquor flow will result in be

Kevin Whitty

2008-06-30T23:59:59.000Z

26

Fluidised bed co-gasification of coal and olive oil industry wastes  

Science Journals Connector (OSTI)

Co-gasification of bagasse wastes mixed with coal is technically feasible, without major installation changes. The effect of experimental conditions on co-gasification process was analysed, to enhance gas production and improve its composition and energetic content. The rise of bagasse content increased tars and gaseous hydrocarbons contents, which can be reduced by increasing gasification temperature and/or air flow rate. The rise of temperature till 890C favoured hydrocarbons further reactions and allowed an increase of 45% in hydrogen release and a decrease in gaseous hydrocarbons of 55%. A reduction of around 30% in gaseous hydrocarbons was also achieved by rising O2/fuel ratio till 0.6g/g daf, which decreased gas heating value, due to nitrogen diluting effect. Though no significant changes in gaseous hydrocarbons composition were obtained, the presence of dolomite in the fluidised bed had the benefit of decreasing tars content and rising gas yield, being the gas richer in hydrogen content.

Rui Neto Andr; Filomena Pinto; Carlos Franco; M. Dias; I. Gulyurtlu; M.A.A. Matos; I. Cabrita

2005-01-01T23:59:59.000Z

27

Small-scale biomass gasification CHP utilisation in industry: Energy and environmental evaluation  

Science Journals Connector (OSTI)

Abstract Biomass gasification is regarded as a sustainable energy technology used for waste management and producing renewable fuel. Using the techniques of life cycle assessment (LCA) and net energy analysis this study quantifies the energy, resource, and emission flows. The purpose of the research is to assess the net energy produced and potential environmental effects of biomass gasification using wood waste. This paper outlines a case study that uses waste wood from a factory for use in an entrained flow gasification CHP plant. Results show that environmental impacts may arise from toxicity, particulates, and resource depletion. Toxicity is a potential issue through the disposal of ash. Particulate matter arises from the combustion of syngas therefore effective gas cleaning and emission control is required. Assessment of resource depletion shows natural gas, electricity, fossil fuels, metals, and water are all crucial components of the system. The energy gain ratio is 4.71MJdelivered/MJprimary when only electricity is considered, this increases to 13.94MJdelivered/MJprimary if 100% of the available heat is utilised. Greenhouse gas emissions are very low (715gCO2-e/kWhe) although this would increase if the biomass feedstock was not a waste and needed to be cultivated and transported. Overall small-scale biomass gasification is an attractive technology if the high capital costs and operational difficulties can be overcome, and a consistent feedstock source is available.

P.W.R. Adams; M.C. McManus

2014-01-01T23:59:59.000Z

28

NETL: 2010 World Gasification Database Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Home > Technologies > Coal & Power Systems > Gasification Systems > 2010 World Gasification Database Gasification Systems 2010 Worldwide Gasification Database Archive DOE/NETL 2010 Worldwide Gasification Database Worldwide Gasification Database Analysis The 2010 Worldwide Gasification Database describes the current world gasification industry and identifies near-term planned capacity additions. The database lists gasification projects and includes information (e.g., plant location, number and type of gasifiers, syngas capacity, feedstock, and products). The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas output at 144 operating plants with a total of 412 gasifiers.

29

Incentives boost coal gasification  

SciTech Connect (OSTI)

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

30

An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling  

Science Journals Connector (OSTI)

Abstract This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

Atakan Ongen; H. Kurtulus Ozcan; Semiha Aray?c?

2013-01-01T23:59:59.000Z

31

Dissolution of refractories for gasification process of petroleum coke for the steel industry  

Science Journals Connector (OSTI)

The production of energizing gases such as H2 and CO by gasification process of solid fuels is a technology that has increased in recent years since it is an efficient and clean process. To enable the production of gases, it is necessary to use refractory materials capable of withstanding high temperatures, thermal shock and contact with aggressive media. Nowadays, there is not published literature on refractory materials used for furnaces lining for petroleum coke gasification at high temperatures (?1900C). Therefore, this paper deals with the study of alumina and magnesium aluminate/alumina-based refractories as candidates for the furnace lining used in the petroleum coke gasification for steel production. Refractory samples were made with some designed formulations which were subjected to chemical interactions with pellets made of petroleum coke and petroleum coke ash at 1650C for 4h. After completing the tests, the formulations were cut transversely and were characterized by SEM-EDS and XRD to evaluate the resistance to slag penetration and formation of low melting point phases. The results show that slag penetration and corrosion in the refractory formulations occur due to the formation of hibonite, spinels (Ni2+, Fe2+, Mg2+)(Al, Fe)2O4 and gehlenite phases. However, these phases together stop the molten slag penetration.

R. Puente-Ornelas; C.J. Lizcano-Zulaica; A.M. Guzmn; P.C. Zambrano; T.K. Das-Roy

2012-01-01T23:59:59.000Z

32

Catalytic gasification of tars from a dumping site  

Science Journals Connector (OSTI)

The work deals with catalytic gasification, pyrolysis and non-catalytic gasification of tar from an industrial dumping site. ... were carried out in a vertical stainless steel gasification reactor at 800C. Crus...

Luk Gaparovi?; Luk ugr

2013-10-01T23:59:59.000Z

33

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

34

Sun Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

in New Orleans to produce electricity from trash via plasma gasification. References: Sun Energy Group LLC1 This article is a stub. You can help OpenEI by expanding it. Sun...

35

Industrial market assessment of the products of mild gasification: Final report  

SciTech Connect (OSTI)

The goal of this study is to determine the best available conditions, in terms of market volumes and prices, for the products from a mild gasification facility. A process feasibility study will then have to determine the cost of building and operating a facility to make those products. The study is presented as a summary of the options available to a coal producer for creating added product value. For this reason, three specific coal mines owned by AMAX Inc. were chosen, and the options were analyzed from the viewpoint of increasing the total revenue derived from those coals. No specific mild gasification, or mild devolatilization technology was assumed during the assessment. The analysis considers only product prices, volumes, and specifications. It does not assign any intangible value or national benefit to substituting coal for oil or to producing a cleaner fuel. Although it would be desirable to conceive of a product slate which would be immune from energy price fluctuations, such a goal is probably unattainable and no particular emphasis was placed on it. 76 figs., 75 tabs.

Sinor, J.E.

1988-01-01T23:59:59.000Z

36

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Background Gasification Background Challenges for Gasification The widespread market penetration of gasification continues to face some challenges. Over the years, gasification challenges related to gasifier and supporting unit availability, operability, and maintainability have been addressed with substantial success, and new implementations of gasification will continue to improve in this area. At present, perhaps the most significant remaining challenge is the relatively high capital costs of gasification plants, particularly given the low capital investment required for NGCC-based power production combined with low natural gas prices currently being experienced in the domestic market. Accordingly, technology that can decrease capital costs of gasification systems and plant supporting systems will be most important towards further deployment of gasification.

37

Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations, October 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORP-2011-10-26 ORP-2011-10-26 Site: Hanford (Office of River Protection) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations Dates of Activity : 08/16-25/2011 (Field) Final Report 10/26/2011 Report Preparer: Jim Lockridge, Certified Industrial Hygienist Activity Description/Purpose: Staff from the U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), in coordination with the Office of River Protection (ORP), reviewed the status and programmatic health

38

Demonstration of Black Liquor Gasification at Big Island  

SciTech Connect (OSTI)

This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

Robert DeCarrera

2007-04-14T23:59:59.000Z

39

Experimental and economic study of a gasification plant fuelled with olive industry wastes  

Science Journals Connector (OSTI)

Abstract Spain is the first olive oil maker worldwide. Yearly, the olive oil industry generates large amounts of by-products: olive pomace, tree pruning, pits, leaves and branches. This work presents the experimental and feasibility study of a pilot plant for the conversion of olive tree pruning and olive pits into electrical and thermal power. The pilot plant is composed of a downdraft gasifier, gas cooling-cleaning stage and spark ignition engine with a modified carburetor. The experimental results showed satisfactory cold gas efficiency (in the range of 70.775.5%) and good lower calorific value of the producer gas for both raw materials (4.8 and 5.4MJkg?1). Moreover, the plant achieved acceptable values for the electric and CHP efficiency: 15% and almost 50%, respectively. Finally, the investment achieved reasonable profitability index with a payback period of 56years. As a result, the energy recovery potential from the olive industry wastes may represent a good opportunity to promote distributed generation systems.

David Vera; Francisco Jurado; Nikolaos K. Margaritis; Panagiotis Grammelis

2014-01-01T23:59:59.000Z

40

Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications  

SciTech Connect (OSTI)

Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications. The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

Armstrong, Phillip

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal Gasification  

Broader source: Energy.gov [DOE]

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

42

Coal gasification 2006: roadmap to commercialization  

SciTech Connect (OSTI)

Surging oil and gas prices, combined with supply security and environmental concerns, are prompting power generators and industrial firms to further develop coal gasification technologies. Coal gasification, the process of breaking down coal into its constituent chemical components prior to combustion, will permit the US to more effectively utilize its enormous, low cost coal reserves. The process facilitates lower environmental impact power generation and is becoming an increasingly attractive alternative to traditional generation techniques. The study is designed to inform the reader as to this rapidly evolving technology, its market penetration prospects and likely development. Contents include: Clear explanations of different coal gasification technologies; Emissions and efficiency comparisons with other fuels and technologies; Examples of US and global gasification projects - successes and failures; Commercial development and forecast data; Gasification projects by syngas output; Recommendations for greater market penetration and commercialization; Current and projected gasification technology market shares; and Recent developments including proposals for underground gasification process. 1 app.

NONE

2006-05-15T23:59:59.000Z

43

Comparative Study of Gasification Performance between Bituminous Coal and Petroleum Coke in the Industrial Opposed Multiburner Entrained Flow Gasifier  

Science Journals Connector (OSTI)

SUMMARY : Co-gasification performance of coal and petroleum coke (petcoke) blends in a pilot-scale pressurized entrained-flow gasifier was studied exptl. ... Two different coals, including a subbituminous coal (Coal A) and a bituminous coal (Coal B), individually blended with a petcoke in the gasifier were considered. ... results suggested that, when the petcoke was mixed with Coal A over 70%, the slagging problem, which could shorten the operational period due to high ash content in the coal, was improved. ...

Zhonghua Sun; Zhenghua Dai; Zhijie Zhou; Jianliang Xu; Guangsuo Yu

2012-09-27T23:59:59.000Z

44

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifier: Commercial Gasifiers Gasifier: Commercial Gasifiers Gasifiers and Impact of Coal Rank and Coal Properties The available commercial gasification technologies are often optimized for a particular rank of coal or coal properties, and in some cases, certain ranks of coal might be unsuitable for utilization in a given gasification technology. On the other hand, there is considerable flexibility in most of the common gasifiers; this is highlighted by the following table, which provides an overview of the level of experience for the various commercially available gasifiers by manufacturer for each coal type. This experience will only continue to expand as more gasification facilities come online and more demonstrations are completed. SOLID FUEL GASIFICATION EXPERIENCE1 High Ash Coals

45

Gasification Plant Databases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal gasification projects throughout the world. These databases track proposed gasification projects with approximate outputs greater than 100 megawatts electricity...

46

Gasification Plant Databases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

47

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

48

Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2014 Gasification Systems Project Portfolio News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International...

49

Textile Drying Via Wood Gasification  

E-Print Network [OSTI]

TEXTILE DRYING VIA WOOD GASIFICATION Thomas F. ;McGowan, Anthony D. Jape Georgia Institute of Technology Atlanta, Georgia ABSTRACT This project was carried out to investigate the possibility of using wood gas as a direct replacement... for dryers. In addition to the experimental program described above, the DOE grant covered two other major areas. A survey of the textile industry was made to assess the market for gasification equip ment. The major findings were that a large amount...

McGowan, T. F.; Jape, A. D.

1983-01-01T23:59:59.000Z

50

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

51

Biomass Gasification Combined Cycle  

SciTech Connect (OSTI)

Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.

Judith A. Kieffer

2000-07-01T23:59:59.000Z

52

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Oxygen Commercial Technologies for Oxygen Production Gasification processes require an oxidant, most commonly oxygen; less frequently air or just steam may suffice as the gasification agent depending on the process. Oxygen-blown systems have the advantage of minimizing the size of the gasification reactor and its auxiliary process systems. However, the oxygen for the process must be separated from the atmosphere. Commercial large-scale air separation plants are based on cryogenic distillation technology, capable of supplying oxygen at high purity1 and pressure. This technology is well understood, having been in practice for over 75 years. Cryogenic air separation is recognized for its reliability, and it can be designed for high capacity (up to 5,000 tons per day).

53

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia > Feedstock Flexibility > Refinery Streams Gasifipedia Coal: Feedstock Flexibility Refinery Streams Gasification is a known method for converting petroleum coke (petcoke) and other refinery waste streams and residuals (vacuum residual, visbreaker tar, and deasphalter pitch) into power, steam and hydrogen for use in the production of cleaner transportation fuels. The main requirement for a gasification feedstock is that it contains both hydrogen and carbon. Below is a table that shows the specifications for a typical refinery feedstock. Specifications for a typical refinery feedstock A number of factors have increased the interest in gasification applications in petroleum refinery operations: Coking capacity has increased with the shift to heavier, more sour crude oils being supplied to the refiners.

54

Systems and Industry Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems and industry analyses News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program...

55

Geoplasma LLC | Open Energy Information  

Open Energy Info (EERE)

Geoplasma LLC Geoplasma LLC Jump to: navigation, search Name Geoplasma LLC Place Atlanta, Georgia Zip 30363 Product Geoplasma is developing plasma gasification technology. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

DKRW Advanced Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

DKRW Advanced Fuels LLC DKRW Advanced Fuels LLC Jump to: navigation, search Name DKRW Advanced Fuels LLC Place Houston, Texas Zip 77056 Product Focues on projects that utilise coal gasification technology, including coal-to-liquids, methanation, and integrated coal gasification combined cycle power projects. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Taylor Biomass Energy LLC TBE | Open Energy Information  

Open Energy Info (EERE)

Biomass Energy LLC TBE Biomass Energy LLC TBE Jump to: navigation, search Name Taylor Biomass Energy, LLC (TBE) Place Montgomery, New York Zip 12549-9900 Sector Biomass Product Montgomery-based municipal-solid-waste (MSW) recovery and recycling firm providing biomass gasification units in addition to operating its own gasifier plants. References Taylor Biomass Energy, LLC (TBE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Taylor Biomass Energy, LLC (TBE) is a company located in Montgomery, New York . References ↑ "Taylor Biomass Energy, LLC (TBE)" Retrieved from "http://en.openei.org/w/index.php?title=Taylor_Biomass_Energy_LLC_TBE&oldid=352048" Categories:

58

Catalytic Coal Gasification Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalytic Coal Gasification Process Catalytic Coal Gasification Process for the Production of Methane-Rich Syngas Opportunity Research is active on the patent pending technology, titled "Production of Methane-Rich Syngas from Fuels Using Multi-functional Catalyst/Capture Agent." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Reducing pollution emitted by coal and waste power plants in an economically viable manner and building power plants that co-generate fuels and chemicals during times of low electricity demand are pressing goals for the energy industry. One way to achieve these goals in an economically viable manner is through the use of a catalytic gasifier that

59

NETL: Gasification Project Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Information Project Information Gasification Systems Reference Shelf - Project Information Active Projects | Archived Projects | All NETL Fact Sheets Feed Systems A Cost-Effective Oxygen Separation System Based on Open Gradient Magnetic Field by Polymer Beads [SC0010151] Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications [FE0012065] Dry Solids Pump Coal Feed Technology [FE0012062] Coal-CO2 Slurry Feeding System for Pressurized Gasifiers [FE0012500] National Carbon Capture Center at the Power Systems Development Facility [FE0000749] Modification of the Developmental Pressure Decoupled Advanced Coal (PDAC) Feeder [NT0000749] Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems [DE-FC26-98FT40343]

60

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

62

EIS-0431: Hydrogen Energy California's Integrated Gasification Combined  

Broader source: Energy.gov (indexed) [DOE]

1: Hydrogen Energy California's Integrated Gasification 1: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California EIS-0431: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California Summary This EIS evaluates the potential environmental impacts of a proposal to provide financial assistance for the construction and operation of Hydrogen Energy California LLC (HECA's) project, which would produce and sell electricity, carbon dioxide and fertilizer. DOE selected this project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative program. Public Comment Opportunities None available at this time. Documents Available for Download September 5, 2013

63

The Ashlawn Group LLC | Open Energy Information  

Open Energy Info (EERE)

Ashlawn Group LLC Ashlawn Group LLC Jump to: navigation, search Name The Ashlawn Group LLC Place Alexandria, Virginia Zip 22304 Sector Services Product Provides management and technical consulting services, sales representations, product development, design and manufacturing process engineering solutions for industrial applications for the Department of Defense and energy-related industries. References The Ashlawn Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Ashlawn Group LLC is a company located in Alexandria, Virginia . References ↑ "The Ashlawn Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=The_Ashlawn_Group_LLC&oldid=352164"

64

Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GASIFICATION SYSTEMS GASIFICATION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

65

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Usage in Coal to Electrical Applications Usage in Coal to Electrical Applications The Integrated Gasification Combined Cycle (IGCC) application of gasification offers some water-saving advantages over other technologies for producing electricity from coal. Regions with limited water resources, typical of many parts of the western United States, could conserve resources by meeting increasing electricity demand with IGCC generation. Many of these areas have good coal resources and a need for new generating capacity. Water use in a thermoelectric power plant is described by two separate terms: water withdrawal and water consumption. Water withdrawal is the amount of water taken into the plant from an outside source. Water consumption refers to the portion of the withdrawn water that is not returned directly to the outside source - for example, water lost to evaporative cooling.

66

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2: CO2 Capture: Impacts on IGCC Plant Designs CO2: CO2 Capture: Impacts on IGCC Plant Designs Specific Impacts on IGCC Plant Designs from CO2 Capture In foregoing discussion, results of NETL's comprehensive study comparing the performance and cost of various fossil fuel-based power generation technologies with and without CO2 capture were reviewed. Of particular interest in that study was the companion set of integrated gasification combined cycle (IGCC) designs, using GE's gasification technology, which can be used to illustrate the design changes needed for CO2 capture. Current Technology - IGCC Plant Design Figure 1 shows a simplified block flow diagram (BFD) of a market-ready IGCC design without CO2 capture. As shown, the IGCC plant consists of the following processing islands, of which a more detailed description of each can be found in the cited NETL referenced report: 1

67

World Gasification Database Now Available from DOE | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

World Gasification Database Now Available from DOE World Gasification Database Now Available from DOE World Gasification Database Now Available from DOE November 9, 2010 - 12:00pm Addthis Washington, DC - A database just released by the U.S. Department of Energy (DOE) documents the worldwide growth of gasification, the expected technology of choice for future coal-based plants that produce power, fuels, and/or chemicals with near-zero emissions. The 2010 Worldwide Gasification Database, a comprehensive collection of gasification plant data, describes the current world gasification industry and identifies near-term planned capacity additions. The database reveals that the worldwide gasification capacity has continued to grow for the past several decades and is now at 70,817 megawatts thermal (MWth) of syngas

68

Gasification system  

DOE Patents [OSTI]

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1985-01-01T23:59:59.000Z

69

Gasification system  

DOE Patents [OSTI]

A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

Haldipur, Gaurang B. (Hempfield, PA); Anderson, Richard G. (Penn Hills, PA); Cherish, Peter (Bethel Park, PA)

1983-01-01T23:59:59.000Z

70

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conditioning Conditioning Sulfur Recovery and Tail Gas Treating Sulfur is a component of coal and other gasification feed stocks. Sulfur compounds need to be removed in most gasification applications due to environmental regulations or to avoid catalyst poisoning. Whether it is electricity, liquid fuels, or some other product being output, sulfur emissions are regulated, and sulfur removal is important for this reason, along with the prevention of downstream component fouling. In addition to these constraints, recovering saleable sulfur is an important economic benefit for a gasification plant. To illustrate the previous point, in 2011 8.1 million tons of elemental sulfur was produced, with the majority of this coming from petroleum refining, natural gas processing and coking plants. Total shipments were valued at $1.6 billion, with the average mine or plant price of $200 per ton, up from $70.48 in 2010. The United States currently imports sulfur (36% of consumption, mostly from Canada), meaning the market can support more domestic sulfur production.

71

Mont Vista Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Vista Capital LLC Vista Capital LLC Jump to: navigation, search Name Mont Vista Capital LLC Place New York, New York Zip 10167 Sector Services Product Mont Vista Capital is a leading global provider of services to clients in the alternative energy industry. Mont Vista also seeks proprietary trading and growth equity opportunities in alternative energy markets which add value for our stakeholders. References Mont Vista Capital LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mont Vista Capital LLC is a company located in New York, New York . References ↑ "Mont Vista Capital LLC" Retrieved from "http://en.openei.org/w/index.php?title=Mont_Vista_Capital_LLC&oldid=348916"

72

Environmental Capital Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Partners LLC Partners LLC Jump to: navigation, search Name Environmental Capital Partners LLC Place New York, New York Zip 10017 Sector Services Product Private equity firm funded with USD 100m for investment in middle-market companies specialising in green consumer products, building materials, alternative energy, and industrial environmental services. References Environmental Capital Partners LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Partners LLC is a company located in New York, New York . References ↑ "Environmental Capital Partners LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Partners_LLC&oldid=345026"

73

EMERY BIOMASS GASIFICATION POWER SYSTEM  

SciTech Connect (OSTI)

Emery Recycling Corporation (now Emery Energy Company, LLC) evaluated the technical and economical feasibility of the Emery Biomass Gasification Power System (EBGPS). The gasifier technology is owned and being developed by Emery. The Emery Gasifier for this project was an oxygen-blown, pressurized, non-slagging gasification process that novelly integrates both fixed-bed and entrained-flow gasification processes into a single vessel. This unique internal geometry of the gasifier vessel will allow for tar and oil destruction within the gasifier. Additionally, the use of novel syngas cleaning processes using sorbents is proposed with the potential to displace traditional amine-based and other syngas cleaning processes. The work scope within this project included: one-dimensional gasifier modeling, overall plant process modeling (ASPEN), feedstock assessment, additional analyses on the proposed syngas cleaning process, plant cost estimating, and, market analysis to determine overall feasibility and applicability of the technology for further development and commercial deployment opportunities. Additionally, the project included the development of a detailed technology development roadmap necessary to commercialize the Emery Gasification technology. Process modeling was used to evaluate both combined cycle and solid oxide fuel cell power configurations. Ten (10) cases were evaluated in an ASPEN model wherein nine (9) cases were IGCC configurations with fuel-to-electricity efficiencies ranging from 38-42% and one (1) case was an IGFC solid oxide case where 53.5% overall plant efficiency was projected. The cost of electricity was determined to be very competitive at scales from 35-71 MWe. Market analysis of feedstock availability showed numerous market opportunities for commercial deployment of the technology with modular capabilities for various plant sizes based on feedstock availability and power demand.

Benjamin Phillips; Scott Hassett; Harry Gatley

2002-11-27T23:59:59.000Z

74

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Syngas Cleanup: Syngas Contaminant Removal and Conditioning Syngas Cleanup: Syngas Contaminant Removal and Conditioning Acid Gas Removal (AGR) Acid gases produced in gasification processes mainly consist of hydrogen sulfide (H2S), carbonyl sulfide (COS), and carbon dioxide (CO2). Syngas exiting the particulate removal and gas conditioning systems, typically near ambient temperature at 100°F, needs to be cleaned of the sulfur-bearing acid gases to meet either environmental emissions regulations, or to protect downstream catalysts for chemical processing applications. For integrated gasification combined cycle (IGCC) applications, environmental regulations require that the sulfur content of the product syngas be reduced to less than 30 parts per million by volume (ppmv) in order to meet the stack gas emission target of less than 4 ppmv sulfur dioxide (SO2)1. In IGCC applications, where selective catalytic reduction (SCR) is required to lower NOx emissions to less than 10 ppmv, syngas sulfur content may have to be lowered to 10 to 20 ppmv in order to prevent ammonium bisulfate fouling of the heat recovery steam generator's (HRSG) cold end tubes. For fuels production or chemical production, the downstream synthesis catalyst sulfur tolerance dictates the sulfur removal level, which can be less than 0.1 ppmv.

75

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power: Typical IGCC Configuration Power: Typical IGCC Configuration Major Commercial Examples of IGCC Plants While there are many coal gasification plants in the world co-producing electricity, chemicals and/or steam, the following are four notable, commercial-size IGCC plants currently in operation solely for producing electricity from coal and/or coke. Tampa Electric, Polk County 250 MW GE Gasifier Wabash, West Terre Haute 265 MW CoP E-Gas(tm) Gasifier Nuon, Buggenum 250 MW Shell Gasifier Elcogas, Puertollano 300 MW Prenflo Gasifier All of the plants began operation prior to 2000 and employ high temperature entrained-flow gasification technology. GE (formerly Texaco-Chevron) and ConocoPhillips (CoP) are slurry feed gasifiers, while Shell and Prenflo are dry feed gasifiers. None of these plants currently capture carbon dioxide (CO2). A simplified process flow diagram of the 250-MW Tampa Electric IGCC plant is shown in Figure 1 to illustrate the overall arrangement of an operating commercial scale IGCC plant. The Tampa Electric plant is equipped with both radiant and convective coolers for heat recovery, generating high pressure (HP) steam.

76

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Major Partner Test Sites Major Partner Test Sites Gasification Systems Technologies - Major Partner Test Sites Major Partner Test Sites Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding provided for any one project. It then becomes critical to test the technology at a pre-existing facility willing to test experimental technologies. Not surprisingly, most commercial facilities are hesitant to interfere with their operations to experiment, but others, with a view towards the future, welcome promising technologies. Below is a list of major partner test sites that actively host DOE supported research activities. Many of the test sites were built with DOE support, but many were not. Some are commercial, and were designed to perform experimental work. All play an important role in developing technologies with minimal expense to the project, and to the U.S. taxpayer.

77

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture R&D Capture R&D DOE/NETL's pre-combustion CO2 control technology portfolio of R&D projects is examining various CO2 capture technologies, and supports identification of developmental pathways linking advanced fossil fuel conversion and CO2 capture. The Program's CO2 capture activity is being conducted in close coordination with that of advanced, higher-efficiency power generation and fossil fuel conversion technologies such as gasification. Links to the projects can be found here. Finally, an exhaustive and periodically updated report on CO2 capture R&D sponsored by NETL is available: DOE/NETL Advanced CO2 Capture R&D Program: Technology Update (also referred to as the CO2 Handbook). Carbon Dioxide CO2 Capture Commercial CO2 Uses & Carbon Dioxide Enhanced Oil Recovery

78

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...  

Open Energy Info (EERE)

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

79

Gasification Research BIOENERGY PROGRAM  

E-Print Network [OSTI]

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

80

Gasification: redefining clean energy  

SciTech Connect (OSTI)

This booklet gives a comprehensive overview of how gasification is redefining clean energy, now and in the future. It informs the general public about gasification in a straight-forward, non-technical manner.

NONE

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Current Gasification Research  

Broader source: Energy.gov [DOE]

With coal gasification now in modern commercial-scale applications, the U.S. Department of Energy's (DOE) Office of Fossil Energy has turned its attention to future gasification concepts that offer...

82

Gasification | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification Gasification Gasification The Wabash River Clean Coal Power Plant The Wabash River Clean Coal Power Plant Gasification Technology R&D Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products. Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean coal technology plants. Rather than burning coal directly, gasification (a thermo-chemical process) breaks down coal - or virtually any carbon-based feedstock - into its basic chemical constituents. In a modern gasifier, coal is typically exposed to steam and carefully controlled amounts of air or oxygen under high

83

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

84

Gasification Systems Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan Project Portfolio Project...

85

Gasification Systems Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan Project...

86

Kinetics Of Carbon Gasification  

Science Journals Connector (OSTI)

Kinetics Of Carbon Gasification ... The steamcarbon reaction, which is the essential reaction of the gasification processes of carbon-based feed stocks (e.g., coal and biomass), produces synthesis gas (H2 + CO), a synthetically flexible, environmentally benign energy source. ... Coal Gasification in CO2 and Steam:? Development of a Steam Injection Facility for High-Pressure Wire-Mesh Reactors ...

C. W. Zielke; Everett. Gorin

1957-03-01T23:59:59.000Z

87

Independent Activity Report, Washington River Protection Solutions, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Solutions, Solutions, LLC - October 2011 Independent Activity Report, Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations [HIAR-ORP-2011-10-26] Staff from the U.S. Department of Energy's (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), in coordination with the Office of River Protection (ORP), reviewed the status and programmatic health of the Washington River Protection Solutions, LLC (WRPS) industrial hygiene program relative to the Hanford Concerns Council (HCC) Independent Review Panel (IRP) report on Chemical Vapors Industrial

88

Stability of Supported Ruthenium Catalysts for Lignin Gasification in Supercritical Water  

Science Journals Connector (OSTI)

However, low-temperature methods for lignin gasification are desirable, because waste heat available from high-temperature processes in industry can be utilized for energy generation.1 ... The gasification of lignin proceeded in supercritical water, and all lignin was gasified completely over Ru/TiO2 after 180 min during the first use. ... water for gasification technique of wastes. ...

Mitsumasa Osada; Osamu Sato; Kunio Arai; Masayuki Shirai

2006-09-29T23:59:59.000Z

89

NETL: Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen: SNG from Coal: Process & Commercialization Hydrogen: SNG from Coal: Process & Commercialization Weyburn Project The Great Plains Synfuels Plant (GPSP) has had the ability to capture CO2 through the Rectisol process for sequestration or sale as a byproduct. However, no viable market was found for the CO2 in the early years of operation, and the captured CO2 was simply discharged to the atmosphere. This changed in 2000, when the GPSP began selling CO2 emissions, becoming one of the first commercial coal facilities to have its CO2 sequestered. The program had begun in 1997, when EnCana (formerly PanCanadian Resources) sought a solution to declining production in their Weyburn Oil Fields. Dakota Gasification Company, owners of the GPSP, and EnCana made an agreement to sell CO2 for use in Enhanced Oil Recovery (EOR). DGC installed two large CO2 compressors and began shipping 105 million standard cubic feet per day of compressed CO2 (60% of the total CO2 produced at the plant) through a 205 mile pipeline from Beulah, North Dakota, to the Weyburn Oil Fields, located in Saskatchewan, Canada, for EOR. The pipeline was constructed and operated by a BEPC subsidiary. The CO2, about 95.5% pure and very dry, is injected into the mature fields where it has doubled the oil recovery rate of the field. In 2006, a third compressor was installed and an additional agreement was reached with Apache Canada Ltd. to supply CO2 for EOR to their nearby oilfields. The three compressors increased CO2 delivery to 160 million standard cubic feet (MMSCF; or 8,000 tonnes) per day. Through 2007, over 12 million tons of CO2 had been sold, and over the current expected lifetime of the program, an anticipated 20 million tons of CO2 will be stored.

90

Luminate LLC | Open Energy Information  

Open Energy Info (EERE)

Luminate LLC Luminate LLC Jump to: navigation, search Name Luminate, LLC Place Denver, Colorado Zip 80202 Sector Services Product Denver-based consultancy providing technical and management advisory services to companies active in the energy industry. They have specialist expertises in the biofuel industry. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Seneca Creek Associates, LLC Wood Resources International, LLC "Illegal" Logging and Global Wood Markets  

E-Print Network [OSTI]

Seneca Creek Associates, LLC Wood Resources International, LLC SUMMARY "Illegal" Logging and Global Wood Markets: The Competitive Impacts on the U.S. Wood Products Industry Prepared for: American Forest Phone: 1-202-463-2713 Fax: 1-202- 463-4703 E-mail: agoetzl@sencreek.com Wood Resources International

92

Integration Strategy of Gasification Technology:? A Gateway to Future Refining  

Science Journals Connector (OSTI)

The historical evidence of the operation of a coal gasification plant goes as far back in time as 1878.1 The United State's first power plant based on coal gasification technology was installed in 1980.2 The concept of gasification has begun to attract much attention from the refining industry because of stringent environmental regulations on transportation fuel, slashing demands for fuel oils, and uncertainty in the availability of good crude oils. ... Therefore, it is a challenging task for refining industries to economically integrate gasification technology, and this is the major theme of the paper. ... Gasification is superior to many of the available power production and waste disposal technologies by addressing various issues together regarding environmental emissions, maintaining quality of refining products, and waste management. ...

Jhuma Sadhukhan; X. X. Zhu

2002-02-09T23:59:59.000Z

93

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... SteamCoal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

94

Indicator-based economic, environmental, and social sustainability assessment of a small gasification bioenergy system fuelled with food processing residues from the Mediterranean agro-industrial sector  

Science Journals Connector (OSTI)

Abstract Small-scale gasification systems coupled with internal combustion engines could be innovative alternatives for combined heat and power production when fuelled with agricultural residues, providing benefits related to both food processing waste management and sustainable agriculture. In the present study, an indicator-based estimation of sustainability was performed for a gasification-based bioenergy system considering not only economic but also environmental and social issues. The analysed scenario consisted of an installed capacity of 40kWel, with an investment cost estimated to be approximately 1520/kWhel and a net profit up to 20,000/year. However, commercial success depends on instruments of reducing capital investment, such as subsidies, electricity feed-in tariffs, and biomass prices. Additional benefits such as low- or zero-cost feedstock and zero-cost biomass logistics suggest that small-scale gasification systems based on agricultural residues are likely to play an important role in future energy supplies for Mediterranean countries.

P. Manara; A. Zabaniotou

2014-01-01T23:59:59.000Z

95

NETL: Gasification Archived Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Home > Technologies > Coal & Power Systems > Gasification Systems > Reference Shelf > Archived Projects Gasification Systems Reference Shelf - Archived Projects Archived Projects | Active Projects | All NETL Fact Sheets Feed Systems Reaction-Driven Ion Transport Membranes Gasifier Optimization and Plant Supporting Systems Coal/Biomass Gasification at Colorado School of Mines Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst Co-Production of Substitute Natural Gas/Electricity via Catalytic Coal Gasification Development of a Hydrogasification Process for Co-Production of Substitute Natural Gas (SNG) and Electric Power from Western Coals Hybrid Combustion-Gasification Chemical Looping Coal Power Technology Development

96

Gasification and combustion modeling for porous char particles  

E-Print Network [OSTI]

Gasification and combustion of porous char particles occurs in many industrial applications. Reactor-scale outputs of importance depend critically on processes that occur at the particle-scale. Because char particles often ...

Singer, Simcha Lev

2012-01-01T23:59:59.000Z

97

2007 gasification technologies workshop papers  

SciTech Connect (OSTI)

Topics covered in this workshop are fundamentals of gasification, carbon capture, reviews of financial and regulatory incentives, coal to liquids, and focus on gasification in the Western US.

NONE

2007-03-15T23:59:59.000Z

98

Downdraft gasification of biomass.  

E-Print Network [OSTI]

??The objectives of this research were to investigate the parameters affecting the gasification process within downdraft gasifiers using biomass feedstocks. In addition to investigations with (more)

Milligan, Jimmy B.

1994-01-01T23:59:59.000Z

99

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

100

Energy Matters LLC | Open Energy Information  

Open Energy Info (EERE)

Matters LLC Matters LLC Jump to: navigation, search Name Energy Matters LLC Place Santa Rosa, California Zip 95402 Sector Renewable Energy Product Energy Matters specialises in software tools for the renewable energy industries. References Energy Matters LLC[1] Solar-Estimate.org[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Energy Matters LLC is a company located in Santa Rosa, California . Solarestimate.gif Solar-Estimate.org Energy Matters created the solar estimator, a useful tool to analyze the benefits of a solar or wind system installation in your home or business. The estimator takes into account your region, average utility bills, and the system you are installing, and calculates a 25-year timeline for you to analyze the potential cost savings on energy.

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

102

Gasification: A Cornerstone Technology  

ScienceCinema (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2010-01-08T23:59:59.000Z

103

Gasification: A Cornerstone Technology  

SciTech Connect (OSTI)

NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

Gary Stiegel

2008-03-26T23:59:59.000Z

104

Eden Cryogenics LLC formerly Brehon Cryogenics | Open Energy Information  

Open Energy Info (EERE)

Cryogenics LLC formerly Brehon Cryogenics Cryogenics LLC formerly Brehon Cryogenics Jump to: navigation, search Name Eden Cryogenics, LLC. (formerly Brehon Cryogenics) Place Plain City, Ohio Zip 43064 Sector Vehicles Product Will fabricate cryogenic hardware for use in alternative fueled vehicles, fueling stations, aerospace, energy, and industrial applications. References Eden Cryogenics, LLC. (formerly Brehon Cryogenics)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Eden Cryogenics, LLC. (formerly Brehon Cryogenics) is a company located in Plain City, Ohio . References ↑ "[ Eden Cryogenics, LLC. (formerly Brehon Cryogenics)]" Retrieved from "http://en.openei.org/w/index.php?title=Eden_Cryogenics_LLC_formerly_Brehon_Cryogenics&oldid=344531

105

Development of an advanced, continuous mild gasification process for the production of co-products: Topical report  

SciTech Connect (OSTI)

Research on mild gasification is discussed. The report is divided into three sections: literature survey of mild gasification processes; literature survey of char, condensibles, and gas upgrading and utilization methods; and industrial market assessment of products of mild gasification. Recommendations are included in each section. (CBS) 248 refs., 58 figs., 62 tabs.

Cha, C.Y.; Merriam, N.W.; Jha, M.C.; Breault, R.W.

1988-06-01T23:59:59.000Z

106

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

107

Coal gasification for power generation. 2nd ed.  

SciTech Connect (OSTI)

The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

NONE

2006-10-15T23:59:59.000Z

108

Gasification Technologie: Opportunities & Challenges  

SciTech Connect (OSTI)

This course has been put together to provide a single source document that not only reviews the historical development of gasification but also compares the process to combustion. It also provides a short discussion on integrated gasification and combined cycle processes. The major focus of the course is to describe the twelve major gasifiers being developed today. The hydrodynamics and kinetics of each are reviewed along with the most likely gas composition from each of the technologies when using a variety of fuels under different conditions from air blown to oxygen blown and atmospheric pressure to several atmospheres. If time permits, a more detailed discussion of low temperature gasification will be included.

Breault, R.

2012-01-01T23:59:59.000Z

109

Gasification … Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clearwater Clean Coal Conference, Clearwater, Florida, June 5 to 9, 2011 Clearwater Clean Coal Conference, Clearwater, Florida, June 5 to 9, 2011 Gasification Technologies Advances for Future Energy Plants Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 Oxygen Membrane - APCI - 25% capital cost reduction - 5.0% COE reduction Warm Gas Cleaning - RTI in combination with H 2 /CO 2 Membrane - Eltron - 2.9 % pt efficiency increase - 12% COE decrease Oxygen CO 2 H 2 rich stream Water Gas Shift*

110

NETL: Gasification Systems - Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shelf > Solicitations Shelf > Solicitations Gasification Systems Solicitations All NETL Solicitations / Funding Opportunity Announcements (FOA) Gasification RSS Feed NETL RSS Feeds: List of available NETL RSS feeds. Business & Solicitations RSS: Subscribe to this to be notified of all NETL solicitations or FOA postings. Gasification RSS: Subscribe to this to be notified of Gasification news, solicitations and FOA postings. Business Alert Notification System Official notification is available through the Business Alert Notification System. *These notifications are provided as a courtesy and there may be a delay between the opportunity announcement and the arrival of the alert. SOLICITATION TITLE / AWARDS ANNOUNCEMENT PROJECT PAGE(S) 12.11.13: Fossil Energy's Request for Information DE-FOA-0001054; titled "Novel Crosscutting Research and Development to Support Advanced Energy Systems." Application due date is January 15, 2014. Applications and/or instructions can be found with this Funding Opportunity Announcement on FedConnect.

111

Gasification … Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

th th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Costa Mesa, CA, February 7, 2012 An Overview of U.S. DOE's Gasification Systems Program Jenny B. Tennant Technology Manager - Gasification 2 Gasification Program Goal "Federal support of scientific R&D is critical to our economic competitiveness" Dr. Steven Chu, Secretary of Energy November 2010 The goal of the Gasification Program is to reduce the cost of electricity, while increasing power plant availability and efficiency, and maintaining the highest environmental standards 3 U.S. Coal Resources Low rank: lignite and sub-bituminous coal - About 50% of the U.S. coal reserves - Nearly 50% of U.S. coal production - Lower sulfur Bituminous coal

112

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

113

DPC Juniper, LLC | Open Energy Information  

Open Energy Info (EERE)

DPC Juniper, LLC DPC Juniper, LLC Jump to: navigation, search Name DPC Juniper, LLC Place California Utility Id 56466 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.2190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=DPC_Juniper,_LLC&oldid=412509" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

114

Gasification of Canola Meal and Factors Affecting Gasification Process  

Science Journals Connector (OSTI)

Non-catalytic gasification of canola meal for the production of ... in order to study the effects of different gasification parameters on gas composition, H2/CO ratio, gas yield, syngas yield, lower heating value...

Ashwini Tilay; Ramin Azargohar; Regan Gerspacher; Ajay Dalai

2014-03-01T23:59:59.000Z

115

Status of Coal Gasification: 1977  

Science Journals Connector (OSTI)

High-pressure technology is important to coal gasification for several reasons. When the end product ... of high pressures in all types of coal gasification reduces the pressure drop throughout the equipment,...

F. C. Schora; W. G. Bair

1979-01-01T23:59:59.000Z

116

Gasification of selected woody plants  

Science Journals Connector (OSTI)

The article contains laboratory data comparing the rate of gasification of five types of woody plantsbeech, ... oak, willow, poplar and rose. The gasification rate was determined thermogravimetrically. Carbon di...

Buryan Petr

2014-07-01T23:59:59.000Z

117

Frontline BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Frontline BioEnergy LLC Frontline BioEnergy LLC Jump to: navigation, search Name Frontline BioEnergy LLC Place Ames, Iowa Zip 50010 Sector Bioenergy, Biomass Product Frontline BioEnergy Inc develops and installs gasification systems and individual equipment to convert biomass into valuable products. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

EIS-0429: Amended Notice of Intent To Prepare the Environmental...  

Broader source: Energy.gov (indexed) [DOE]

Involvement Department of Energy Proposed Federal Loan Guarantee for the Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN, and CO2 Pipeline DOE...

119

EIS-0429: Scoping Meeting Transcript, 12/3/2009 | Department...  

Broader source: Energy.gov (indexed) [DOE]

1232009 EIS-0429: Scoping Meeting Transcript, 1232009 Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Public Scoping Meeting - 12...

120

EIS-0428: Notice of Intent to Prepare an Environmental Impact...  

Energy Savers [EERE]

an Environmental Impact Statement Construction and Startup of the Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, Mississippi Notice of Intent...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIS-0429: Notice of Intent to Prepare an Environmental Impact...  

Energy Savers [EERE]

Prepare an Environmental Impact Statement Construction and Startup of the Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, Indiana Federal Loan Guarantee...

122

Chapter 5 - Gasification Processes  

Science Journals Connector (OSTI)

Publisher Summary There is a broad range of reactor types that are used in the practical realization of the gasification process. For most purposes, these reactor types can be grouped into one of three categories: moving-bed gasifiers, fluid-bed gasifiers, and entrained-flow gasifiers. Moving-bed processes are the oldest processes, and two processes in particular, the producer gas process and the water gas process, have played an important role in the production of synthesis gas from coal and coke. In moving bed processes, there are the sasol-lurgi dry bottom process, British Gas/Lurgi (BGL) slagging gasifier, that are detailed in the chapter along with their applications. Following this, fluid-bed processes are discussed in which the blast has two functions: that of blast as a reactant and that of the fluidizing medium for the bed. The best known fluid-bed gasifiers that have no tar problem are regenerators of catalytic cracking units that often operate under reducing, that is, gasification conditions that can be found in many refineries. HRL process, BHEL gasifier, circulating fluidized-bed (CFB) processes, the KBR transport gasifier, agglomerating fluid-bed processes, the Pratt & Whitney Rocketdyne (PWR) gasifier, the GEE gasification process, the Shell Gasification Process (SGP), Lurgi s Multi-Purpose Gasification process (MPG), etc. are the various processes discussed in the chapter.

Christopher Higman; Maarten van der Burgt

2008-01-01T23:59:59.000Z

123

Coal Gasification Report.indb  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Coal Integrated Coal Gasification Combined Cycle: Market Penetration Recommendations and Strategies Produced for the Department of Energy (DOE)/ National Energy Technology Laboratory (NETL) and the Gasification Technologies Council (GTC) September 2004 Coal-Based Integrated Gasification Combined Cycle: Market Penetration Strategies and Recommendations Final Report Study Performed by:

124

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

125

Techno-Economic Analysis of Biofuels Production Based on Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biofuels Production Based on Biofuels Production Based on Gasification Ryan M. Swanson, Justinus A. Satrio, and Robert C. Brown Iowa State University Alexandru Platon ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46587 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biofuels Production Based on Gasification Ryan M. Swanson, Justinus A. Satrio, and Robert C. Brown Iowa State University Alexandru Platon

126

Benchmarking Biomass Gasification Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

127

Underground coal gasification: a brief review of current status  

SciTech Connect (OSTI)

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

128

Silicon Border Development LLC | Open Energy Information  

Open Energy Info (EERE)

Silicon Border Development LLC Silicon Border Development LLC Jump to: navigation, search Name Silicon Border Development LLC Place Poway, California Zip 92064 Sector Solar Product US-based developer of industrial parks with a focus on high-technology industry such as semiconductors and solar. Coordinates 32.95459°, -117.041984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.95459,"lon":-117.041984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Enviva Materials LLC | Open Energy Information  

Open Energy Info (EERE)

Enviva Materials LLC Enviva Materials LLC Jump to: navigation, search Name Enviva Materials LLC Place Richmond, Virginia Zip 23219 Sector Biomass Product Recovering of agricultural, forestry and industrial byproducts in order to supply the biomass power industry. Coordinates 37.5407°, -77.433654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5407,"lon":-77.433654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Reaction Pathway for Catalytic Gasification of Lignin in Presence of Sulfur in Supercritical Water  

Science Journals Connector (OSTI)

Generally, very high temperatures of over 1073 K are needed for steam reformation of the lignin in the gasification process.1 Hence, low-temperature methods for lignin gasification are the most desirable, so that the waste heat from high-temperature processes in industry can be utilized for energy generation. ... While in the presence of the Ru/TiO2 catalyst, formaldehyde was completely gasified in supercritical water, similar to the gasification of lignin and 4-propylphenol. ... water for gasification technique of wastes. ...

Mitsumasa Osada; Norihito Hiyoshi; Osamu Sato; Kunio Arai; Masayuki Shirai

2007-06-13T23:59:59.000Z

131

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

132

Industry  

E-Print Network [OSTI]

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

133

Gasification of black liquor  

DOE Patents [OSTI]

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

Kohl, Arthur L. (Woodland Hills, CA)

1987-07-28T23:59:59.000Z

134

Fortistar LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: New York, New York Zip: 10650 Product: Fortistar is a privately owned US power generation company largely based on landfill gas. References: Fortistar LLC1 This...

135

EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification  

Broader source: Energy.gov (indexed) [DOE]

2: Department of Energy Loan Guarantee for Medicine Bow 2: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming EIS-0432: Department of Energy Loan Guarantee for Medicine Bow Gasification and Liquefaction Coal-to-Liquids, Carbon County, Wyoming Summary DOE is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to Medicine Bow Fuel & Power LLC (MBFP), a wholly-owned subsidiary of DKRW Advanced Fuels LLC. MBFP submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 to support the construction and startup of the MBFP coal-to-liquids facility, a coal mine and associated coal handling facilities. Public Comment Opportunities No public comment opportunities available at this time.

136

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

137

NETL: Gasifipedia - Gasification in Detail  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fundamentals Fundamentals Gasification is a partial oxidation process. The term partial oxidation is a relative term which simply means that less oxygen is used in gasification than would be required for combustion (i.e., burning or complete oxidation) of the same amount of fuel. Gasification typically uses only 25 to 40 percent of the theoretical oxidant (either pure oxygen or air) to generate enough heat to gasify the remaining unoxidized fuel, producing syngas. The major combustible products of gasification are carbon monoxide (CO) and hydrogen (H2), with only a minor amount of the carbon completely oxidized to carbon dioxide (CO2) and water. The heat released by partial oxidation provides most of the energy needed to break up the chemical bonds in the feedstock, to drive the other endothermic gasification reactions, and to increase the temperature of the final gasification products.

138

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network [OSTI]

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

139

Gasification of Coffee Grounds in Dual Fluidized Bed:? Performance Evaluation and Parametric Investigation  

Science Journals Connector (OSTI)

Gasification of Coffee Grounds in Dual Fluidized Bed:? Performance Evaluation and Parametric Investigation ... Ishikawajima-Harima Heavy Industries Co., Ltd. ... With a national technical program, we recently worked on converting this biomass waste into middle-caloric product gas. ...

Guangwen Xu; Takahiro Murakami; Toshiyuki Suda; Yoshiaki Matsuzawa; Hidehisa Tani

2006-10-28T23:59:59.000Z

140

Fixed-bed gasification research using US coals. Volume 16. Gasification of 2-inch Minnesota peat sods  

SciTech Connect (OSTI)

A single, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scubber used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the sixteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific test report describes the gasification of two-inch Minnesota peat sods, which began on June 24, 1985 and was completed on June 27, 1985. 4 refs., 18 figs., 14 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pioneering Gasification Plants | Department of Energy  

Energy Savers [EERE]

lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the...

142

The Complete Gasification of Coal  

Science Journals Connector (OSTI)

... plant designed by C. B. Tully, and operated at Bedford, for the complete gasification of coal. Altogether, since 1919, about two hundred such plants have been erected ...

J. S. G. THOMAS

1923-06-09T23:59:59.000Z

143

FAS Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

FAS Technologies LLC FAS Technologies LLC Jump to: navigation, search Name FAS Technologies LLC Place Dallas, Texas Zip 75238 Sector Solar Product US-based manufacturer of meterology and automation systems for semiconductor, flat panel display, medical and solar industries. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Energetx Composites LLC | Open Energy Information  

Open Energy Info (EERE)

Energetx Composites LLC Energetx Composites LLC Jump to: navigation, search Name Energetx Composites LLC Place Holland, Michigan Zip 49423 Sector Wind energy Product Michigan-based manufacturer of fibre-reinforced composites used in wind and other industries. Coordinates 42.7875235°, -86.1089301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7875235,"lon":-86.1089301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

146

Solar Panels Plus LLC | Open Energy Information  

Open Energy Info (EERE)

Panels Plus LLC Jump to: navigation, search Name: Solar Panels Plus LLC Place: Chesapeake, Virginia Zip: 23320 Sector: Solar Product: Solar Panels Plus LLC distributes solar energy...

147

Enforcement Letter, Battelle Energy Alliance, LLC - September...  

Broader source: Energy.gov (indexed) [DOE]

Energy Alliance, LLC - September 14, 2009 Enforcement Letter, Battelle Energy Alliance, LLC - September 14, 2009 September 14, 2009 Issued to Battelle Energy Alliance, LLC related...

148

Status of health and environmental research relative to coal gasification 1976 to the present  

SciTech Connect (OSTI)

Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

Wilzbach, K.E.; Reilly, C.A. Jr. (comps.)

1982-10-01T23:59:59.000Z

149

Gasification Characteristics of Coal/Biomass Blend in a Dual Circulating Fluidized Bed Reactor  

Science Journals Connector (OSTI)

circulating flow/forestry, agricultural waste, industry wastes + coalcoke ... Whereas, a dual fluidized bed gasification technology enables production of the medium calorific value gas (12?18 MJ/Nm3) by separating the combustion and gasification zones in which steam is used as a gasifying agent. ... Since Quercus acutissima is widely used in building, pulp, and shipping industries, its demand and supply in Korea is high. ...

Myung Won Seo; Jeong Hoi Goo; Sang Done Kim; See Hoon Lee; Young Chan Choi

2010-04-23T23:59:59.000Z

150

NETL: Gasification - Request Gasification Systems Information on a CD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Systems Gasification Systems Request Gasification Systems Information on a CD Please fill in the form below to receive the CDs of your choice. * Denotes required field Requestor Contact Information Requested By (Agency/Company): First Name: * Last Name: * Address: * PO Box: City: * State: * Zip: * Country: Email: * Phone: CD Request Select CD(s):* Gasification Systems Project Portfolio Gasification Technologies Training Course Special Instructions: Submit Request Reset Contacts Program Contact: Jenny Tennant (304) 285-4830 jenny.tennant@netl.doe.gov Close Contacts Disclaimer Disclaimer of Liability: This system is made available by an agency of the United States Government. Neither the United States Government, the Department of Energy, the National Energy Technology Laboratory, nor any of

151

NETL: Gasification Systems - Gasifier Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Systems Program Gasification Systems Program Gasification is used to convert a solid feedstock, such as coal, petcoke, or biomass, into a gaseous form, referred to as synthesis gas or syngas, which is primarily hydrogen and carbon monoxide. Pollutants can be captured and disposed of or converted to useful products more easily with gasification-based technologies compared to conventional combustion of solid feedstocks. Gasification can generate clean power, and by adding steam to the syngas and performing water-gas-shift to convert the carbon monoxide to carbon dioxide (CO2), additional hydrogen can be produced. The hydrogen and CO2 are separated-the hydrogen is used to make power and the CO2 is sent to storage, converted to useful products or used for enhanced oil recovery (see Gasification Systems Program Research and Development Areas figure). In addition to efficiently producing electric power, a wide range of transportation fuels and chemicals can be produced from the cleaned syngas, thereby providing the flexibility needed to capitalize on the changing economic market. As a result, gasification provides a flexible technology option for using domestically available resources while meeting future environmental emission standards. Furthermore, polygeneration plants that produce multiple products are uniquely possible with gasification technologies.

152

Gasification of Coal and Oil  

Science Journals Connector (OSTI)

... , said the Gas Council is spending 120,000 this year on research into coal gasification, and the National Coal Board and the Central Electricity Generating Board 680,000 and ... coal utilization. The Gas Council is spending about 230,000 on research into the gasification of oil under a programme intended to contribute also to the improvement of the economics ...

1960-02-13T23:59:59.000Z

153

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

154

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

155

PNNL Coal Gasification Research  

SciTech Connect (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

156

Using gasification as a reliable source of fuel  

SciTech Connect (OSTI)

The low cost and ready availability of coal has brought about a renewed interest in the gasification process. A new two-stage fixed-bed gasifier is presented as a reliable and economical source of industrial fuels. The relative heating value of low-Btu gas is compared with other fuels, and applications in the pulp and paper industry are discussed, along with a cash flow analysis of a sample installation.

Coffeen, W.G.

1983-02-01T23:59:59.000Z

157

Chapter 2 - Black Liquor Gasification  

Science Journals Connector (OSTI)

Black liquor gasification (BLG) is being considered primarily as an option for production of biofuels in recent years due to the focus on the transport sectors high oil dependence and climate impact. BLG may be performed either at low temperatures or at high temperatures, based on whether the process is conducted above or below the melting temperature range of the spent pulping chemicals. The development of various BLG technologiesSCA-Billerud process, the Copeland recovery process, Weyerhaeusers process, the St. Regis hydropyrolysis process, the Texaco process, VTTs circulating fluidized bed BLG process, Babcock and Wilcoxs bubbling fluidized bed gasification process, NSP process (Ny Sodahus Process), DARS (Direct Alkali Recovery System) process, BLG with direct causticization, Manufacturing and Technology Conversion International fluidized bed gasification, Chemrec gasification, catalytic hydrothermal gasification of black liquoris discussed in this chapter. The two main technologies under development are pressurized gasification and atmospheric gasification, being commercialized by Chemrec AB and ThermoChem Recovery International, respectively.

Pratima Bajpai

2014-01-01T23:59:59.000Z

158

Carbon2Algae, LLC | Open Energy Information  

Open Energy Info (EERE)

Carbon2Algae, LLC Carbon2Algae, LLC Jump to: navigation, search Logo: Solutions4CO2 Name Solutions4CO2 Address 2855 Bloor St W., Suite 616 Place Toronto, ON Zip M8X 3A1 Sector Bioenergy, Biofuels, Biomass, Carbon, Renewable energy, Carbon Capture Product Flue Gas CO2 Capture & mass transfer technology Year founded 2007 Number of employees 1-10 Phone number 416-803-9435 Website http://s4co2.com Region Ontario References Solutios4CO2 is an algae-based CO2 solutions companies. Our focus is to Build, Train and Transfer the operation of industrial size algae facilities that will divert large streams of CO2 gas emissions at the stack. Our goal is to be the leading designer of industrial scale high lipid content algae production facilities through the utilization of captured CO2 emissions to produce high quality bio-fuel in all climatic conditions.

159

Pyrolytic Gasification | Open Energy Information  

Open Energy Info (EERE)

Pyrolytic Gasification Pyrolytic Gasification Jump to: navigation, search Name Pyrolytic Gasification Sector Biomass References Balboa Pacific Corp[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal19712004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

162

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner  

Science Journals Connector (OSTI)

A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner ... Furthermore, the experiences of the waste incineration industry driven in the past by regulatory as well as technical issues may facilitate their commercial potentials outside the common market, especially in highly populated developing countries such as Korea with scarce landfill sites. ... Recently, several new technologies that involve gasification or combinations of pyrolysis, combustion, and gasification processes are currently being brought into the market for energy-efficient, environmentally friendly and economically sound methods of thermal processing of wastes. ...

Tae-Heon Kwak; Seungmoon Lee; Sanjeev Maken; Ho-Chul Shin; Jin-Won Park; Young Done Yoo

2005-08-24T23:59:59.000Z

163

Duke Energy Retail Sales, LLC | Open Energy Information  

Open Energy Info (EERE)

Retail Sales, LLC Retail Sales, LLC Jump to: navigation, search Name Duke Energy Retail Sales, LLC Place Ohio Utility Id 56502 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.0600/kWh Industrial: $0.0515/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Duke_Energy_Retail_Sales,_LLC&oldid=410603" Categories: EIA Utility Companies and Aliases

164

MC Squared Energy Services, LLC | Open Energy Information  

Open Energy Info (EERE)

MC Squared Energy Services, LLC MC Squared Energy Services, LLC Jump to: navigation, search Name MC Squared Energy Services, LLC Place Illinois Utility Id 56379 Utility Location Yes Ownership R RTO PJM Yes Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0700/kWh Industrial: $0.0747/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=MC_Squared_Energy_Services,_LLC&oldid=411021"

165

NETL: Gasification Systems Program Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Systems Program Contacts Gasification Systems Program Contacts Jenny Tennant Gasification Technology Manager U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 Phone: (304) 285-4830 Email: Jenny.Tennant@netl.doe.gov Pete Rozelle Division of Advanced Energy System - Program Manager, Office of Fossil Energy U.S. Department of Energy FE-221/Germantown Building 1000 Independence Avenue, S.W. Washington, DC 20585-1209 Phone: (301) 903-2338 Email: Peter.Rozelle@hq.doe.gov Heather Quedenfeld Gasification Division Director U.S. Department of Energy National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 Phone: (412) 386-5781 Email: Heather.Quedenfeld@netl.doe.gov Kristin Gerdes Performance Division

166

AVESTAR® - Training - Gasification Process Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Process Operations Gasification Process Operations This course is designed as a familiarization course to increase understanding of the gasification with CO2 capture process. During the training, participants will startup and shutdown the simulated unit in an integrated manner and will be exposed to simple and complex unit malfunctions in the control room and in the field. Course objectives are as follows: Introduce trainees to gasification and CO2 capture process systems and major components and how they dynamically interact Familiarize trainees with the Human Machine Interface (HMI) and plant control and how safe and efficient operation of the unit can be affected by plant problems Provide the trainees with hands-on operating experiences in plant operations using the HMI

167

Catalytic Hydrothermal Gasification of Biomass  

SciTech Connect (OSTI)

A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

Elliott, Douglas C.

2008-05-06T23:59:59.000Z

168

Gasification Systems 2013 Project Selections  

Broader source: Energy.gov [DOE]

The Department of Energy in 2013 selected ten projects that will focus on reducing the cost of gasification with carbon capture for producing electric power, fuels, and chemicals. The projects will...

169

Coal gasification vessel  

DOE Patents [OSTI]

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

170

Materials of Gasification  

SciTech Connect (OSTI)

The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

None

2005-09-15T23:59:59.000Z

171

NETL: Gasifipedia - What is Gasification?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Background Gasification Background Drivers for Gasification Technology The need for low-cost power produced in an environmentally sound way is certain, even if the future of regulations limiting the emission and/or encouraging the capture of CO2, and the price and availability of natural gas and oil are not. Gasification is not only capable of efficiently producing electric power, but a wide range of liquids and/or high-value chemicals (including diesel and gasoline for transportation) can be produced from cleaned syngas, providing the flexibility to capitalize on a range of dynamic changes to either domestic energy markets or global economic conditions. Polygeneration-plants that produce multiple products-is uniquely possible with gasification technologies. Continued advances in gasification-based technology will enable the conversion of our nation's abundant coal reserves into energy resources (power and liquid fuels), chemicals, and fertilizers needed to displace the use of imported oil and, thereby, help mitigate its high price and security supply concerns and to support U.S. economic competitiveness with unprecedented environmental performance.

172

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

173

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

174

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

175

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

176

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Cost Estimate Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-51726 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

177

Alliance Laundry Systems LLC  

Broader source: Energy.gov (indexed) [DOE]

Alliance Laundry Systems LLC Alliance Laundry Systems LLC Shepard Street, P.O. Box 990 Ripon, WI 54971-0990 Tel 920.748.3121 Fax 920.748.4429 www.comlaundry.com Via E-Mail - GC_comments@hq.doe.gov December 7, 2010 Mr. Scott Blake Harris General Counsel U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Subject: Your Request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers Dear Mr. Harris: Thank you for asking for our comments. Alliance Laundry Systems LLC (ALS) is knowledgeable of the multiple petitions for waiver to the Department's Clothes Washer Test Procedure, regarding the need for an expanded "test load size" table to account for clothes container capacities beyond the existing test procedure Table 5.1 maximum capacity of 3.5 cubic feet. While we do not manufacture clothes washers

178

CE North America, LLC  

Broader source: Energy.gov (indexed) [DOE]

CE North America, LLC CE North America, LLC (freezers) BEFORE THE. U.S. DEPAR'tMENT OJT ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2013-SE-1429 COMPROMISE AGREEMENT The U.S. Department of Energy ("DOE 1 » Office of the General Counsel, Office of Enforcement, initiated this action against CE North America, LLC ("CE" or "Respondent") pursuant to 10 C.F~9.122 by Notice of Proposed Civil Penalty. DOE alleged thatllll freezer basic model - , which Respondent imported and distributed in commerce in the United States as models CE64731 and PS72731, failed to meet the applicable standard for maxinrnm energy use. See 10 C.F.R. § 430.32(a). Respondent, on behalf of itself and any parent, subsidiary, division or other related entity, and DOE, by their authorized representatives, hereby enter into this

179

Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parametric Gasification of Oak Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Jason Hrdlicka, Calvin Feik, Danny Carpenter, and Marc Pomeroy Technical Report NREL/TP-510-44557 December 2008 Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis Jason Hrdlicka, Calvin Feik, Danny Carpenter, and Marc Pomeroy Prepared under Task No. H2713B13 Technical Report NREL/TP-510-44557 December 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

180

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Magwind LLC | Open Energy Information  

Open Energy Info (EERE)

Magwind LLC Magwind LLC Jump to: navigation, search Name Magwind LLC Place Texas Sector Wind energy Product Inventor of the Mag-Wind vertical axis wind turbine (VAWT) for building installations. The turbines are manufactured under contract at the facilities of Vector Systems, Inc. References Magwind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Magwind LLC is a company located in Texas . References ↑ "Magwind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Magwind_LLC&oldid=348589" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

182

Natsource LLC | Open Energy Information  

Open Energy Info (EERE)

Natsource LLC Natsource LLC Jump to: navigation, search Name Natsource LLC Place New York, New York Zip NY 10038 Sector Services Product Natsource provides brokerage and advisory services for natural gas, coal, and electricity, as well as weather hedging and environmental issues. References Natsource LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Natsource LLC is a company located in New York, New York . References ↑ "Natsource LLC" Retrieved from "http://en.openei.org/w/index.php?title=Natsource_LLC&oldid=349086" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

183

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

184

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

185

June 2007 gasification technologies workshop papers  

SciTech Connect (OSTI)

Topics covered in this workshop are fundamentals of gasification, carbon capture and sequestration, reviews of financial and regulatory incentives, co-production, and focus on gasification in the Western US.

NONE

2007-06-15T23:59:59.000Z

186

Transport and Other Effects in Coal Gasification  

Science Journals Connector (OSTI)

The paper summarizes the kinetics of coal char gasification excepted surface reactions (mechanisms). The following subjects controlling coal char gasification are treated: Coal as the raw material ... of particle...

K. J. Httinger

1988-01-01T23:59:59.000Z

187

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

188

NETL: Gasification: Arrowhead Center to Promote Prosperity and Public  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Systems - Systems and Industry Analyses Gasification Systems - Systems and Industry Analyses Arrowhead Center to Promote Prosperity and Public Welfare Project Number: DE-FC26-08NT0004397 New Mexico State University The Arrowhead Center to Promote Prosperity and Public Welfare (PROSPER) of the New Mexico State University (NMSU) is conducting research analyzing the relationships between the fossil fuel energy sector and economic development issues in New Mexico. The project is a policy research and economic modeling initiative to enhance fossil fuel energy production and use in New Mexico in an environmentally progressive manner that contributes to the economic development of the state and creates a strong, vibrant economy that better serves the citizens of New Mexico. The project is engaging stakeholders in the research process and assessing (1) the impact

189

Beluga Coal Gasification - ISER  

SciTech Connect (OSTI)

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

190

Biothermal gasification of biomass  

SciTech Connect (OSTI)

The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

1980-01-01T23:59:59.000Z

191

Use of Biomass Gasification Fly Ash in Lightweight Plasterboard  

Science Journals Connector (OSTI)

In addition, the overall environmental benefit of waste gasification plus ash utilization of a difficult fly ash makes the overall process attractive. ... Only the Autonomous Government of Catalonia has established regional regulations for waste management, including limited recycling for some wastes considered as byproducts. ... viability of gasifying untreated olive stone, also called "orujillo", a byproduct of the olive oil industry that comprises both olive stone and pulp. ...

C. Leiva; A. Gmez-Barea; L. F. Vilches; P. Ollero; J. Vale; C. Fernndez-Pereira

2006-11-24T23:59:59.000Z

192

Gasification of Model Compounds and Wood in Hot Compressed Water  

Science Journals Connector (OSTI)

Examples of wet waste streams include the following:? vegetable, fruit and garden waste; waste streams from agricultural, food and beverage industries; manure; sewage sludge; and some household wastes. ... Lignin itself is difficult to gasify and it has been observed that lignin blocks the conversion of wood's other constituents:? cellulose and hemi-cellulose. ... The raw biomass feedstock of sawdust with some CMC was also gasified in this system, the gasification efficiency in excess of 95% was reached. ...

Sascha R. A. Kersten; Biljana Potic; Wolter Prins; Wim P. M. Van Swaaij

2006-05-12T23:59:59.000Z

193

Staged Catalytic Gasification/Steam Reforming of Pyrolysis Oil  

Science Journals Connector (OSTI)

While the slag can be used in the current industry infrastructure as a construction material, up-scaling of biomass utilization will lead to land depletion because the mineral and metal balances are not closed. ... Table 4 shows gasification results at similar temperatures for two different types of pyrolysis oil (pine and beech) and of another liquid biomass stream, a light and a heavy sugar waste stream. ... The sugar waste streams that were gasified are a side product from lactic acid production. ...

Guus van Rossum; Sascha R. A. Kersten; Wim P. M. van Swaaij

2009-05-21T23:59:59.000Z

194

Gasification of Glucose in Supercritical Water  

Science Journals Connector (OSTI)

Gasification of Glucose in Supercritical Water ... Gasification of 0.6 M glucose in supercritical water was investigated at a temperature range from 480 to 750 C and 28 MPa with a reactor residence time of 10?50 s. ... Carbon gasification efficiency reached 100% at 700 C. ...

In-Gu Lee; Mi-Sun Kim; Son-Ki Ihm

2002-01-31T23:59:59.000Z

195

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

196

Fulcrum Biofuels LLc  

Broader source: Energy.gov (indexed) [DOE]

- 1848 - 1848 Environmental Assessment DOE/EA - 1848 FINAL ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO FULCRUM SIERRA BIOFUELS, LLC FOR A WASTE-TO-ETHANOL FACILITY IN MCCARRAN, STOREY COUNTY, NEVADA U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 June 2011 Table of Contents Environmental Assessment DOE/EA - 1848 i

197

Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

190 190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-46190 July 2009 Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications David Peterson and Scott Haase Prepared under Task No. IGST.9034 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

198

Thermochemical Ethanol via Direct Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermochemical Ethanol via Thermochemical Ethanol via Direct Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass A. Dutta and S.D. Phillips Technical Report NREL/TP-510-45913 July 2009 Technical Report Thermochemical Ethanol via NREL/TP-510-45913 Direct Gasification and Mixed July 2009 Alcohol Synthesis of Lignocellulosic Biomass A. Dutta and S.D. Phillips Prepared under Task No. BB07.3710 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

199

NETL: Gasification Systems - Gas Separation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Separation Separation Ion-Transport Membrane Oxygen Separation Modules Ion-Transport Membrane Oxygen Separation Modules Gas separation unit operations represent major cost elements in gasification plants. The gas separation technology being supported in the DOE program promises significant reduction in cost of electricity, improved thermal efficiency, and superior environmental performance. Gasification-based energy conversion systems rely on two gas separation processes: (1) separation of oxygen from air for feed to oxygen-blown gasifiers; and (2) post-gasification separation of hydrogen from carbon dioxide following (or along with) the shifting of gas composition when carbon dioxide capture is required or hydrogen is the desired product. Research efforts include development of advanced gas separation

200

Carib Energy LLC Order | Department of Energy  

Energy Savers [EERE]

Carib Energy LLC Order Carib Energy LLC Order FE Dkt. No. 11-141-LNG - Order 3487 The Final Order Granting Long-term Multi-contract Authorization for Carib Energy LLC to Export...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Current Gasification Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification » Current Gasification » Current Gasification Research Current Gasification Research Sponsored by the U.S. Department of Energy, the National Carbon Capture Center provides first-class facilities to test carbon capture technologies. Sponsored by the U.S. Department of Energy, the National Carbon Capture Center provides first-class facilities to test carbon capture technologies. With coal gasification now in modern commercial-scale applications, the U.S. Department of Energy's (DOE) Office of Fossil Energy has turned its attention to future gasification concepts that offer significant improvements in efficiency, fuel flexibility, economics and environmental sustainability. Fuel flexibility is especially important. Tomorrow's gasification plants conceivably could process a wide variety of low-cost feedstocks, handling

202

Coal Gasification for Power Generation, 3. edition  

SciTech Connect (OSTI)

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

203

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

204

Central Indiana Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Central Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in...

205

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Sioux River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol...

206

Aeronautica Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

Aeronautica Windpower LLC Jump to: navigation, search Name: Aeronautica Windpower LLC Place: Plymouth, Massachusetts Zip: 23600 Sector: Services, Wind energy Product: String...

207

Aerogel Composite LLC | Open Energy Information  

Open Energy Info (EERE)

Aerogel Composite LLC Jump to: navigation, search Name: Aerogel Composite LLC Place: Storrs, Connecticut Zip: 6269 Product: Developer of aerogel based composite materials for a...

208

Millennium Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Millennium Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900...

209

FT Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

FT Solutions LLC Jump to: navigation, search Name: FT Solutions LLC Place: South Jordan, Utah Zip: 84095 Product: JV between Headwaters Technology Innovation Group and Rentech to...

210

Western Plains Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Western Plains Energy LLC Jump to: navigation, search Name: Western Plains Energy LLC Place: Oakley, Kansas Zip: 67748 Product: Bioethanol producer using corn as feedstock...

211

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a stub....

212

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

213

Sundance Power LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: Golden, Colorado Zip: 80401 Sector: Solar Product: Sundance provides turnkey solar PV installations. References: Sundance Power LLC1 This article is a stub. You can...

214

Smiling Earth Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Smiling Earth Energy LLC Jump to: navigation, search Name: Smiling Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and...

215

Prometheus Energy Services LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Services LLC Place: California Sector: Wind energy Product: Wind project developer, working on the Pine Tree project. References: Prometheus Energy Services LLC1 This...

216

Encap Development LLC | Open Energy Information  

Open Energy Info (EERE)

Encap Development LLC Jump to: navigation, search Name: Encap Development LLC Place: Massachusetts Zip: 17200 Sector: Efficiency, Renewable Energy, Services, Solar Product: String...

217

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm focused on carbon trading References: Equinox Carbon Equities, LLC1 This...

218

Chevron Hydrogen Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

219

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

220

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name: Lousiana Green Fuels LLC Place: Louisiana Sector: Biomass Product: Developing a cellulosic biomass-to-ethanol plant in...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Draft Powerpoint: Toward Energy Efficient Municipalities, LLC...  

Broader source: Energy.gov (indexed) [DOE]

Powerpoint: Toward Energy Efficient Municipalities, LLC comment Draft Powerpoint: Toward Energy Efficient Municipalities, LLC comment Green Grid Gateway @ North Coast Oregon....

222

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

223

FRONIUS USA LLC | Open Energy Information  

Open Energy Info (EERE)

FRONIUS USA LLC Jump to: navigation, search Name: FRONIUS USA LLC Place: Brighton, Michigan 48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar...

224

Digital Power Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Power Capital LLC Jump to: navigation, search Name: Digital Power Capital LLC Place: Greenwich, Connecticut Zip: 6830 Product: A private equity firm focused on new technologies...

225

Altamount Power LLC | Open Energy Information  

Open Energy Info (EERE)

Altamount Power LLC Jump to: navigation, search Name: Altamount Power LLC Place: California Sector: Wind energy Product: JV between FPL Energy and GREP to own and operate wind...

226

Geysers Power Co LLC | Open Energy Information  

Open Energy Info (EERE)

Power Co LLC Jump to: navigation, search Name: Geysers Power Co LLC Place: Middletown, California Product: Geysers Power is working with the US Department of Energy's Lawrence...

227

Scandia Wind Southwest LLC | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Scandia Wind Southwest LLC Place: Bovina, Texas Sector: Wind energy Product: Scandia Wind Southwest, LLC is based in Parmer County, Bovina, Texas....

228

MCF Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

MCF Advisors LLC MCF Advisors LLC Jump to: navigation, search Name MCF Advisors LLC Place Charlotte, North Carolina Zip 28202 Sector Biomass, Renewable Energy, Services, Solar, Wind energy Product Provide investment banking services to privately-held small to middle market businesses, with sector focus on traditional and renewable energy industries. Emphasis on solar, wind, biomass and biodiesel feedstock and refining. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Capital Equity Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Partners LLC Partners LLC Jump to: navigation, search Name Capital Equity Partners LLC Address 410 Park Avenue Place New York, New York Zip 10022 Region Northeast - NY NJ CT PA Area Product Structures transactions and raises capital for companies pursuing business opportunities in developing and industrialized nations worldwide Year founded 1995 Website http://www.capitalequitypartne Coordinates 40.76048°, -73.972256° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.76048,"lon":-73.972256,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Energetic Drives LLC | Open Energy Information  

Open Energy Info (EERE)

Energetic Drives LLC Energetic Drives LLC Jump to: navigation, search Name Energetic Drives LLC Place Gresham, Oregon Zip 97030 Sector Efficiency, Wind energy Product Oregon-based engineering firm that conducts industrial efficiency improvements, as well as repair and maintenance work for grid-tie inverters and wind turbines ranging from 10kW to 1.2MW. Coordinates 44.84866°, -88.786959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.84866,"lon":-88.786959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

PaceControls LLC | Open Energy Information  

Open Energy Info (EERE)

PaceControls LLC PaceControls LLC Jump to: navigation, search Name PaceControls LLC Place York, Pennsylvania Zip 17401 Product York-based, developer and manufacturer of eco-smart, easy-to-install energy-saving HVACR solutions for a wide variety of commercial, industrial and residential heating, cooling and refrigeration equipment. Coordinates 43.246195°, -89.088024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.246195,"lon":-89.088024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Blendstar LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: The Woodlands, Texas Zip: 77380 Product: Houston-based operator of ethanol blending and terminal facilities in Tennessee, Kentucky, Oklahoma, Arkansas, Alabama,...

233

GELcore LLC | Open Energy Information  

Open Energy Info (EERE)

Name: GELcore LLC Place: Valley View, Ohio Zip: 44125-4635 Product: Manufacturer of LED lighting for signage and architecture, transportation and display lighting. GELcore was...

234

Genesys LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Genesys LLC Place: Palo Alto, California Zip: 94306 Sector: Hydro, Hydrogen Product: Focused on RET (Radiant Energy Transfer) technology for the production of...

235

Gasdynamic lasers utilizing carbon gasification  

Science Journals Connector (OSTI)

A theoretical investigation was made of the influence of the processes of carbon gasification by combustion products and oxidants on the chemical composition of the active medium and the energy characteristics of a gasdynamic CO2 laser. Conditions were found under which the stored energy of the active medium was greater than 100 J/g.

A S Biryukov; V M Marchenko; A M Prokhorov

1985-01-01T23:59:59.000Z

236

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...been operated as a "pure" gasifier but to supply power gas for...was the air-blown Winkler gasifier pro-ducing power gas at Leuna...fines, additional gasification medium (air or oxygen-steam) is...partial pressure of steam in a gasifier blown with oxygen and steam...

Arthur M. Squires

1974-04-19T23:59:59.000Z

237

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...appreciably larger sizes than coal to other...they grew to a size to fall upon an...air-blown Winkler gasifier pro-ducing power...additional gasification medium (air or oxygen-steam...provide "pure" gasifier Test revamp Develop larger sizes Develop pressure...

Arthur M. Squires

1974-04-19T23:59:59.000Z

238

GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION  

SciTech Connect (OSTI)

The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the coal plant and 1,260 $/kW for the coke plant). Therefore, in the near term, a coke IGCC power plant could penetrate the market and provide a foundation for future coal-fueled facilities. Subtask 1.6 generated a design, cost estimate and economics for a multiple train coal-fueled IGCC powerplant, also based on the Subtaks 1.3 cases. The Subtask 1.6 four gasification train plant has a thermal efficiency of 40.6% (HHV) and cost 1,066 $/kW. The single-train advanced Subtask 1.4 plant, which uses an advanced ''G/H-class'' combustion turbine, can have a thermal efficiency of 45.4% (HHV) and a plant cost of 1,096 $/kW. Multi-train plants will further reduce the cost. Again, all these plants have superior emissions performance. Subtask 1.7 developed an optimized design for a coal to hydrogen plant. At current natural gas prices, this facility is not competitive with hydrogen produced from natural gas. The preferred scenario is to coproduce hydrogen in a plant similar to Subtask 1.3, as described above. Subtask 1.8 evaluated the potential merits of warm gas cleanup technology. This study showed that selective catalytic oxidation of hydrogen sulfide (SCOHS) is promising. As gasification technology matures, SCOHS and other improvements identified in this study will lead to further cost reductions and efficiency improvements.

Samuel S. Tam

2002-05-01T23:59:59.000Z

239

Gasification and co-gasification of biomass wastes: Effect of the biomass origin and the gasifier operating conditions  

Science Journals Connector (OSTI)

Air gasification of different biomass fuels, including forestry (pinus pinaster pruning) and agricultural (grapevine and olive tree pruning) wastes as well as industry wastes (sawdust and marc of grape), has been carried out in a circulating flow gasifier in order to evaluate the potential of using these types of biomass in the same equipment, thus providing higher operation flexibility and minimizing the effect of seasonal fuel supply variations. The potential of using biomass as an additional supporting fuel in coal fuelled power plants has also been evaluated through tests involving mixtures of biomass and coalcoke, the coke being a typical waste of oil companies. The effect of the main gasifier operating conditions, such as the relative biomass/air ratio and the reaction temperature, has been analysed to establish the conditions allowing higher gasification efficiency, carbon conversion and/or fuel constituents (CO, H2 and CH4) concentration and production. Results of the work encourage the combined use of the different biomass fuels without significant modifications in the installation, although agricultural wastes (grapevine and olive pruning) could to lead to more efficient gasification processes. These latter wastes appear as interesting fuels to generate a producer gas to be used in internal combustion engines or gas turbines (high gasification efficiency and gas yield), while sawdust could be a very adequate fuel to produce a H2-rich gas (with interest for fuel cells) due to its highest reactivity. The influence of the reaction temperature on the gasification characteristics was not as significant as that of the biomass/air ratio, although the H2 concentration increased with increasing temperature.

Magn Lapuerta; Juan J. Hernndez; Amparo Pazo; Julio Lpez

2008-01-01T23:59:59.000Z

240

Washington Closure Hanford, LLC  

Broader source: Energy.gov (indexed) [DOE]

August 19,2010 August 19,2010 CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by Washington Closure Hanford, LLC (WCH) occurred. Accordingly, DOE is issuing the enclosed Preliminary Notice of

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

242

Review of China's Low-Carbon City Initiative and Developments in the Coal Industry  

E-Print Network [OSTI]

N. 2010. Development of Coal Gasification & PolygenerationChina: 11 June 2010. China Coal Information ResearchInstitute (CIRI). N.d. China Coal Industry Yearbook (in

Fridley, David

2014-01-01T23:59:59.000Z

243

Mississippi Ethanol Gasification Project, Final Scientific / Technical Report  

SciTech Connect (OSTI)

The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with much progress. However, the current state of biological technology is not deemed to be ready commercially. A preliminary estimate of capital and operating costs of a 12000 gallon per day gasification/biological facility was developed for comparison purposes. In addition, during the biological organism screening and testing, some possible alternative products were identified. One such possibility is the biological production of bio-diesel. Additional research is necessary for further evaluation of all of the biological concepts.

Pearson, Larry, E.

2007-04-30T23:59:59.000Z

244

Pilot-Plant Gasification of Olive Stone: a Technical Assessment  

Science Journals Connector (OSTI)

This paper presents the results of pilot-plant gasification tests carried out at atmospheric pressure and temperatures within the range of 700?820 C in order to assess the technical viability of gasifying untreated olive stone, also called orujillo, a byproduct of the olive oil industry that comprises both olive stone and pulp. ... Atmospheric air gasification of biomass/waste in a bubbling-fluidized-bed (BFB) reactor is an attractive simple process to convert a solid material to a gaseous fuel. ... Their different characteristics (mainly volatile and ash content) affect the plant operation because of the energy content and the ash fusibility, but both types were gasified efficiently and the problems found were similar. ...

A. Gmez-Barea; R. Arjona; P. Ollero

2004-12-31T23:59:59.000Z

245

Recovery of carbon fibres by the thermolysis and gasification of waste prepreg  

Science Journals Connector (OSTI)

Abstract This paper examines the recovery of carbon fibres from a composite used in the aeronautical industry, via a combined process of thermolysis and gasification in an air atmosphere. The waste was thermolysed at 500C, 600C or 700C in a pilot plant to determine the optimum thermolysis temperature. The solid residues produced char covered carbon fibres were characterized by SEM and XPS. The optimum time for the gasification of the char covering the fibres was determined in a combined thermolysis/gasification assay. After thermolysis at the optimum temperature (500C), 12 l/h of pure air were injected into the reactor and char gasification performed at 500C for 30180min. The optimum gasification time was 30min. Longer gasification times led to the production of fibres of smaller diameter with oxidized surfaces and reduced tensile strength. The optimally recovered fibres showed about 70% of the tensile strength of virgin fibres and some 9096% of their elasticity.

Flix A. Lpez; Olga Rodrguez; Francisco Jos Alguacil; Irene Garca-Daz; Teresa A. Centeno; Jos Luis Garca-Fierro; Carlos Gonzlez

2013-01-01T23:59:59.000Z

246

A study on ultra heavy oil gasification technology  

SciTech Connect (OSTI)

Raising the thermal efficiency of a thermal power plant is an important issue from viewpoints of effective energy utilization and environmental protection. In view of raising the thermal efficiency, a gas turbine combined cycle power generation is considered to be very effective. The thermal efficiency of the latest LNG combined cycle power plant has been raised by more than 50%. On the other hand, the diversification of fuels to ensure supply stability is also an important issue, particularly in Japan where natural resources are scarce. Because of excellent handling characteristics petroleum and LNG which produces clean combustion are used in many sectors, and so the demand for such fuels is expected to grow. However, the availability of such fuels is limited, and supplies will be exhausted in the near future. The development of a highly efficient and environment-friendly gas turbine combined cycle using ultra heavy oil such as Orimulsion{trademark} (trademark of BITOR) is thus a significant step towards resolving these two issues. Chubu Electric Power Co, Inc., the Central Research Institute of Electric Power Industry (CRIEPI), and Mitsubishi Heavy Industries, Ltd. (MHI) conducted a collaboration from 1994 to 1998 with the objective of developing an ultra heavy oil integrated gasification combined cycle (IGCC). Construction of the ultra heavy oil gasification testing facility (fuel capacity:2.4t/d) was completed in 1995, and Orimulsion{trademark} gasification tests were carried out in 1995 and 1996. In 1997, the hot dedusting facility with ceramic filter and the water scrubber used as a preprocessor of a wet desulfurization process were installed. Gasification and clean up the syngs tests were carried out on Orimulsion{trademark}, Asmulsion{trademark} (trademark of Nisseki Mitsubishi K.K.), and residue oil in 1997 and 1998. The results of the collaboration effort are described below.

Kidoguchi, Kazuhiro; Ashizawa, Masami; Taki, Masato; Ishimura, Masato; Takeno, Keiji

2000-07-01T23:59:59.000Z

247

Supercritical Water Biomass Gasification Process As a Successful Solution to Valorize Wine Distillery Wastewaters  

Science Journals Connector (OSTI)

There are many gasification technologies that could potentially be part of the future energy industry. ... scale continuous-flow system with 2 different industrial wastewaters that contain a high concn. of orgs., with both wastes having a high energy potential: cutting oil wastes, oleaginous wastewater from metalworking industries, and vinasses, alc. ... Biomass feedstocks, including lignocellulosic materials (cotton stalk and corncob) and the tannery waste, were gasified in supercrit. ...

Anne Loppinet-Serani; Cdric Reverte; Franois Cansell; Cyril Aymonier

2012-11-12T23:59:59.000Z

248

West Central Biodiesel Investors LLC | Open Energy Information  

Open Energy Info (EERE)

Investors LLC Investors LLC Jump to: navigation, search Name West Central Biodiesel Investors, LLC Place Ralston, Iowa Zip 51459 Product Iowa-based body raising capital to support the American biofuel industry. Coordinates 44.71762°, -108.864694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.71762,"lon":-108.864694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Reliant Energy Retail Services LLC | Open Energy Information  

Open Energy Info (EERE)

Services LLC Services LLC Jump to: navigation, search Name Reliant Energy Retail Services LLC Place Texas Utility Id 15847 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 12 (e-sense Time-Of with 20% Wind) Residential Basic Power Plan - 12 (Commercial Service) Commercial One Rate For Business Commercial POLR (Residential Service) Residential Average Rates Residential: $0.1360/kWh Commercial: $0.1370/kWh Industrial: $0.0680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

250

Noble Americas Energy Solutions LLC (Maryland) | Open Energy Information  

Open Energy Info (EERE)

Noble Americas Energy Solutions LLC Noble Americas Energy Solutions LLC Place Maryland Utility Id 16840 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0658/kWh Industrial: $0.0686/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Noble_Americas_Energy_Solutions_LLC_(Maryland)&oldid=412718" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

251

Advanced Gasification By-Product Utilization  

SciTech Connect (OSTI)

With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The objectives of this collaborative effort between the University of Kentucky Center for Applied Energy Research (CAER), The Pennsylvania State University Energy Institute, and industry collaborators supplying gasifier char samples were to investigate the potential use of gasifier slag carbons as a source of low cost sorbent for Hg and NOX capture from combustion flue gas, concrete applications, polymer fillers and as a source of activated carbons. Primary objectives were to determine the relationship of surface area, pore size, pore size distribution, and mineral content on Hg storage of gasifier carbons and to define the site of Hg capture. The ability of gasifier slag carbon to capture NOX and the effect of NOX on Hg adsorption were goals. Secondary goals were the determination of the potential for use of the slags for cement and filler applications. Since gasifier chars have already gone through a devolatilization process in a reducing atmosphere in the gasifier, they only required to be activated to be used as activated carbons. Therefore, the principal objective of the work at PSU was to characterize and utilize gasification slag carbons for the production of activated carbons and other carbon fillers. Tests for the Hg and NOX adsorption potential of these activated gasifier carbons were performed at the CAER. During the course of this project, gasifier slag samples chemically and physically characterized at UK were supplied to PSU who also characterized the samples for sorption characteristics and independently tested for Hg-capture. At the CAER as-received slags were tested for Hg and NOX adsorption. The most promising of these were activated chemically. The PSU group applied thermal and steam activation to a representative group of the gasifier slag samples separated by particle sizes. The activated samples were tested at UK for Hg-sorption and NOX capture and the most promising Hg adsorbers were tested for Hg capture in a simulated flue gas. Both UK and PSU tested the use of the gasifier slag samples as fillers. The CAER analyzed the slags for possible use in cement applications

Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

2006-08-31T23:59:59.000Z

252

Economic Analysis of a 3MW Biomass Gasification Power Plant  

E-Print Network [OSTI]

Collaborative, Biomass gasification / power generationANALYSIS OF A 3MW BIOMASS GASIFICATION POWER PLANT R obert Cas a feedstock for gasification for a 3 MW power plant was

Cattolica, Robert; Lin, Kathy

2009-01-01T23:59:59.000Z

253

October 2005 Gasification-Based Fuels and Electricity Production from  

E-Print Network [OSTI]

October 2005 Gasification-Based Fuels and Electricity Production from Biomass, without......................................................................... 9 3.1.1 Biomass Gasification, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer

254

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect (OSTI)

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

255

NextEra Energy Resources, LLC (Genesis Solar) | Department of...  

Energy Savers [EERE]

NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) Location: Riverside County, CA...

256

Comments of Oncor Electric Delivery Company LLC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC on Implementing the National...

257

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

258

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is a...

259

EA-249 Exelon Generation Company LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exelon Generation Company LLC EA-249 Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249 Exelon Generation...

260

Pioneering Gasification Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification » Pioneering Gasification » Pioneering Gasification Plants Pioneering Gasification Plants In the 1800s, lamplighters made their rounds in the streets of many of America's largest cities lighting street lights fueled by "town gas," frequently the product of early forms of coal gasification. Gasification of fuel also provided fuel for steel mills, and toward the end of the 19th Century, electric power. These early gasifiers were called "gas producers," and the gas that they generated was called "producer gas." During the early 20th Century, improvements in the availability of petroleum and natural gas products, along with the extension of the infrastructure associated with these products, led to their widespread use, which replaced coal-based producer gas in the energy market.

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: Coal/Biomass Feed and Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal/Biomass Feed & Gasification Coal/Biomass Feed & Gasification Coal and Coal/Biomass to Liquids Coal/Biomass Feed and Gasification The Coal/Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal and/or coal-biomass mixtures. Activities support research for handling and processing of coal/biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on downstream components, catalyst and reactor optimization, and characterizing the range of products and product quality. Active projects within the program portfolio include the following: Coal-biomass fuel preparation Development of Biomass-Infused Coal Briquettes for Co-Gasification Coal-biomass gasification modeling

262

NETL: Gasification Systems Video, Images & Photos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video, Images, Photos Video, Images, Photos Gasification Systems Reference Shelf - Video, Images & Photos The following was established to show a variety of Gasification Technologies: Gasfication powerplant photo Gasification: A Cornerstone Technology (Mar 2008) Movie Icon Windows Media Video (WMV-26MB) [ view | download ] NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants. Proposed APS Advanced Hydrogasification Process Proposed APS Advanced Hydrogasification Process* TRDU and Hot-Gas Vessel in the EERC Gasification Tower Transport reactor development unit

263

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion...

264

Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol...  

Energy Savers [EERE]

Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of...

265

NETL: Gasification Systems - Gas Cleaning  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cleaning Cleaning Chemicals from Coal Complex Chemicals from Coal Complex (Eastman Company) Novel gas cleaning and conditioning are crucial technologies for achieving near-zero emissions, while meeting gasification system performance and cost targets. DOE's Gasification Systems program supports technology development in the area of gas cleaning and conditioning, including advanced sorbents and solvents, particulate filters, and other novel gas-cleaning approaches that remove and convert gas contaminants into benign and marketable by-products. To avoid the cost and efficiency penalties associated with cooling the gas stream to temperatures at which conventional gas clean-up systems operate, novel processes are being developed that operate at mild to high temperatures and incorporate multi-contaminant control to

266

Underground coal gasification using oxygen and steam  

SciTech Connect (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

267

Chapter 2 - Chemistry of Gasification  

Science Journals Connector (OSTI)

The gasification of any carbonaceous or hydrocarbonaceous material is, essentially, the conversion of the carbon constituents by any one of a variety of chemical processes to produce combustible gases. The process includes a series of reaction steps that convert the feedstock into synthesis gas (syngas, carbon monoxide, CO, plus hydrogen, H2) and other gaseous products. This conversion is generally accomplished by introducing a gasifying agent (air, oxygen, and/or steam) into a reactor vessel containing the feedstock where the temperature, pressure, and flow pattern (moving bed, fluidized, or entrained bed) are controlled. The gaseous products other than carbon monoxide and hydrogen and the proportions of these product gases (such as carbon dioxide, CO2, methane, CH4, water vapor, H2O, hydrogen sulfide, H2S, and sulfur dioxide, SO2) depends on the: (1) type of feedstock, (2) the chemical composition of the feedstock, (3) the gasifying agent or gasifying medium, as well as (4) the thermodynamics and chemistry of the gasification reactions as controlled by the process operating parameters. In addition, the kinetic rates and extents of conversion for the several chemical reactions that are a part of the gasification process are variable and are typically functions of: (1) temperature, (2) pressure, and (3) reactor configuration, and (4) the gas composition of the product gases and whether or not these gases influence the outcome of the reaction. It is the purpose of this chapter to present descriptions of the various reactions involved in gasification of carbonaceous and hydrocarbonaceous feedstocks as well as the various thermodynamic aspects of these reactions which dictate the process parameters used to produce the various gases.

James G. Speight

2014-01-01T23:59:59.000Z

268

NETL: Gasifipedia - Gasification in Detail  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Gasifiers Commercial Gasifiers Types of Gasifiers Although there are various types of gasifers (gasification reactors), different in design and operational characteristics, there are three main gasifier classifications into which most of the commercially available gasifiers fall. These categories are as follows: Fixed-bed gasifiers (also referred as moving-bed gasifiers) Entrained-flow gasifiers Fluidized-bed gasifiers Commercial gasifiers of GE Energy, ConocoPhillips E-Gas(tm) and Shell SCGP are examples of entrained-flow types. Fixed-or moving-bed gasifiers include that of Lurgi and British Gas Lurgi (BGL). Fluidized-bed gasifiers include the catalytic gasifier technology being commercialized by Great Point Energy, the Winkler gasifier, and the KBR transport gasifiers. For more specific information on these gasifiers, follow the links for the bulleted gasifier types above. NOTE: Although specific gasifiers named above are described in detail throughout this website, it is realized that other gasification technologies exist. The gasifiers discussed herein were not preferentially chosen by NETL.

269

Application of Nanotechnology for Heavy Oil Upgrading: Catalytic Steam Gasification/Cracking of Asphaltenes  

Science Journals Connector (OSTI)

It is well-known that oilsands processing and production faces several challenges that need to be surmounted to make it an environmentally sound and economically feasible industry. ... In this work, we are exploring a novel method for the elimination of asphaltenes, waste hydrocarbons, by adsorption on nanoparticles and, subsequent, catalytic steam gasification of the adsorbed asphaltenes for synthesis gas production. ...

Nashaat N. Nassar; Azfar Hassan; Pedro Pereira-Almao

2011-03-21T23:59:59.000Z

270

EA-209-B Cargill Power Markets, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets, LLC EA-209-B Cargill Power Markets, LLC Order authorizing Cargill Power Markets, LLC to export electric energy to Canada. EA-209-B Cargill Power Markets, LLC More...

271

EA-220 NRG Power Marketing LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 NRG Power Marketing LLC EA-220 NRG Power Marketing LLC Order authorizing NRG Power Marketing LLC to export electric energy to Canada. EA-220-NRG Power Marketing LLC More...

272

EIS-0412: Notice of Intent to Prepare an Environmental Impact...  

Broader source: Energy.gov (indexed) [DOE]

an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas Notice of Intent to Prepare an Environmental Impact...

273

Improved catalysts for carbon and coal gasification  

DOE Patents [OSTI]

This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

McKee, D.W.; Spiro, C.L.; Kosky, P.G.

1984-05-25T23:59:59.000Z

274

Innovative Systems Engineering Solar LLC ISE Solar LLC | Open Energy  

Open Energy Info (EERE)

Solar LLC ISE Solar LLC Solar LLC ISE Solar LLC Jump to: navigation, search Name Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place Warminster, Pennsylvania Zip 18974-1454 Sector Solar Product US-based manufacturer of vacuum deposition equipment for thin-film amorphous silicon products; offers management and operation of thin-film solar plants. Coordinates 40.205459°, -75.100077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.205459,"lon":-75.100077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

275

Gasification of New Zealand Coals: A Comparative Simulation Study  

Science Journals Connector (OSTI)

The aim of this study was to conduct a preliminary feasibility assessment of gasification of New Zealand (NZ) lignite and sub-bituminous coals, using a commercial simulation tool. ... Coal is a nonrenewable resource; however, the worlds coal reserves amount to twice the combined oil and gas reserves. ... The reasons for the entrained flow gasifier selection include its high suitability to low rank coals (lignites) and the use of entrained flow gasifiers for an IGCC as the industrially preferred choice dictated through experience. ...

Smitha V. Nathen; Robert D. Kirkpatrick; Brent R. Young

2008-06-10T23:59:59.000Z

276

DOE Hydrogen Analysis Repository: Biomass Integrated Gasification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Integrated Gasification Combined-Cycle Power Systems Biomass Integrated Gasification Combined-Cycle Power Systems Project Summary Full Title: Cost and Performance Analysis of Biomass-Based Integrated Gasification Combined-Cycle (BIGCC) Power Systems Project ID: 106 Principal Investigator: Margaret Mann Brief Description: This project examines the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems--high-pressure air blown, low-pressure air blown, and low-pressure indirectly heated. Purpose Examine the cost and performance potential of three biomass-based integrated gasification combined cycle (IGCC) systems - a high pressure air-blown, a low pressure indirectly heated, and a low pressure air-blown. Performer Principal Investigator: Margaret Mann

277

Fibrominn LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrominn LLC Fibrominn LLC Jump to: navigation, search Name Fibrominn LLC Place Yardley, Pennsylvania Zip 19067 Product Fibrominn LLC is a JV between project developers Fibrowatt and Contour Global. Coordinates 40.241337°, -74.83738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.241337,"lon":-74.83738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

GWE LLC | Open Energy Information  

Open Energy Info (EERE)

GWE LLC GWE LLC Jump to: navigation, search Name GWE LLC Facility GWE LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Goodwind Energy Inc Developer Goodwind Energy Inc Energy Purchaser Central Iowa Power Cooperative Coordinates 42.00274891°, -93.48017693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.00274891,"lon":-93.48017693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Airius LLC | Open Energy Information  

Open Energy Info (EERE)

Airius LLC Airius LLC Jump to: navigation, search Logo: Airius LLC Name Airius LLC Address 811 South Sherman Street Place Longmont, Colorado Zip 80501 Sector Efficiency Product Develops "thermal equalizers" for use withing buildings Website http://www.airius.us/indexAIRI Coordinates 40.149489°, -105.116403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.149489,"lon":-105.116403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Epuron LLC | Open Energy Information  

Open Energy Info (EERE)

Epuron LLC Epuron LLC Jump to: navigation, search Name Epuron LLC Place Philadelphia, Pennsylvania Zip 19103 Sector Solar Product Epuron LLC is the US subsidiary of Germany solar developer Conergy. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Liqcrytech LLC | Open Energy Information  

Open Energy Info (EERE)

Liqcrytech LLC Liqcrytech LLC Jump to: navigation, search Logo: Liqcrytech LLC Name Liqcrytech LLC Address 30800 1st Avenue Place La Junta, Colorado Zip 81050 Sector Efficiency Product Developer of energy efficient glass windows Website http://www.liqcrytech.com/ Coordinates 38.0443719°, -103.5124651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0443719,"lon":-103.5124651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Techsolas LLC | Open Energy Information  

Open Energy Info (EERE)

Techsolas LLC Techsolas LLC Jump to: navigation, search Logo: Techsolas LLC Name Techsolas LLC Address 10955 Westmoor Drive Place Westminster, Colorado Zip 80021 Sector Solar Product Project developer targeting businesses, government agencies for implementation of power stations Website http://www.techsolas.com/ Coordinates 39.8999643°, -105.1241243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8999643,"lon":-105.1241243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Fibrowatt LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrowatt LLC Fibrowatt LLC Jump to: navigation, search Name Fibrowatt LLC Place Langhorne, Pennsylvania Zip 19047 Product Fibrowatt LLC is a developer, builder, owner and operator of electricity power plants fueled by poultry litter. Coordinates 40.176396°, -74.918884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.176396,"lon":-74.918884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Encorp LLC | Open Energy Information  

Open Energy Info (EERE)

Encorp LLC Encorp LLC Jump to: navigation, search Logo: Encorp LLC Name Encorp LLC Address 1825 Sharp Point Drive Place Fort Collins, Colorado Zip 80525 Sector Efficiency Product Develops, markets and delivers integrated hardware and software solutions for our distributed energy customers Website http://www.encorp.com/ Coordinates 40.562637°, -105.02884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.562637,"lon":-105.02884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Agenera, LLC | Open Energy Information  

Open Energy Info (EERE)

Agenera, LLC Agenera, LLC Jump to: navigation, search Logo: Agenera, LLC Name Agenera, LLC Address P.O. Box 15544 Place Phoenix, Arizona Zip 85060 Sector Solar Product Solar energy systems Number of employees 11-50 Phone number 602-445-6498 Website http://www.agenera.com/ Coordinates 33.4486°, -112.0733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4486,"lon":-112.0733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

TIAX LLC | Open Energy Information  

Open Energy Info (EERE)

TIAX LLC TIAX LLC Jump to: navigation, search Logo: TIAX LLC Name TIAX LLC Address 15 Acorn Park Place Cambridge, Massachusetts Zip 02140-2390 Sector Efficiency Year founded 2002 Phone number 617-498-5000 Website http://www.tiaxllc.com Coordinates 42.397934°, -71.147783° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.397934,"lon":-71.147783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

NETL: Gasification Systems - Gasifier Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifier Opt & Plant Supporting Systems Gasifier Opt & Plant Supporting Systems Gasification Systems Gasifier Optimization and Plant Supporting Systems The gasifier is the core system component in the gasification process. It determines both the primary requirements for raw material inputs and the product gas composition. The gasifier is generally a high temperature/pressure vessel where oxygen (or air) and steam are directly contacted with a fuel, such as coal, causing a series of chemical reactions to occur that result in production of a fuel gas. This fuel gas (also referred to either as synthesis gas or syngas) consists primarily of hydrogen, carbon monoxide, and carbon dioxide. Minor constituents present in the feedstock are converted to such products as hydrogen sulfide, ammonia, and ash/slag (mineral residues from coal). These products can be separated and captured for use or safe disposal. After cleaning to remove contaminants, the syngas consists mainly of carbon monoxide and hydrogen. According to the Department of Energy's vision for coal gasification, at this point steam may be added and the syngas sent through a water-gas shift (WGS) reactor to convert the carbon monoxide to nothing but carbon dioxide and additional hydrogen. After a gas separation process, the carbon dioxide is ready for utilization (such as for Enhanced Oil Recovery) or safe storage, and the hydrogen can be fired in a gas-turbine/steam-turbine generator set to produce electricity with stack emissions containing no greenhouse gases. Alternately, syngas or hydrogen can be used to produce highly-valued fuels and chemicals. Co-production of combinations of these products and electricity is also possible.

288

A Generalized Pyrolysis Model for Simulating Charring, Intumescent, Smoldering, and Noncharring Gasification  

E-Print Network [OSTI]

on Nonflaming Transient Gasification of PMMA and PE duringT. , & Werner, K. , Wood Gasification at Fire Level HeatConcentration on Nonflaming Gasification Rates and Evolved

Lautenberger, Chris; Fernandez-Pello, Carlos

2006-01-01T23:59:59.000Z

289

The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology  

E-Print Network [OSTI]

Higman, C. and M. Burgt, Gasification . 2003: Elsevier/Gulfand N.P. Cheremisinoff, Gasification technologies: a primerbiomass (part 3): gasification technologies. Bioresource

He, Wei

2011-01-01T23:59:59.000Z

290

E-Print Network 3.0 - advanced coal-gasification technical Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification to Produce SNG (Beulah, North Dakota, USA) (Source:DakotaGasification Petcoke... Source: NETL, 2009 12;12 Dakota Coal Gasification ... Source: Center for...

291

Characterization of Filter Elements for Service in a Coal Gasification Environment  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a joint Department of Energy/Industry sponsored engineering-scale facility for testing advanced coal-based power generation technologies. High temperature, high pressure gas cleaning is critical to many of these advanced technologies. Barrier filter elements that can operate continuously for nearly 9000 hours are required for a successful gas cleaning system for use in commercial power generation. Since late 1999, the Kellogg Brown & Root Transport reactor at the PSDF has been operated in gasification mode. This paper describes the test results for filter elements operating in the Siemens-Westinghouse particle collection device (PCD) with the Transport reactor in gasification mode. Operating conditions in the PCD have varied during gasification operation as described elsewhere in these proceedings (Martin et al, 2002).

Spain, J.D.

2002-09-19T23:59:59.000Z

292

Catalytic Air Gasification of Plastic Waste (Polypropylene) in a Fluidized Bed. Part II: Effects of Some Operating Variables on the Quality of the Raw Gas Produced Using Olivine as the In-Bed Material  

Science Journals Connector (OSTI)

Catalytic Air Gasification of Plastic Waste (Polypropylene) in a Fluidized Bed. ... Wu et al.(11) reported a process involving pyrolysis combined with catalytic steam gasification for postconsumer plastic wastes, mixed plastics, and real-world plastic wastes. ... In this case, the plastic waste was composed of a mixture of PE and PP (50 wt %) from the car industry. ...

Jos M. Toledo; Mara P. Aznar; Jess A. Sancho

2011-09-26T23:59:59.000Z

293

Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants  

SciTech Connect (OSTI)

ITN Energy Systems, Inc. (ITN) and its partners, the Idaho National Engineering and Environmental Laboratory, Argonne National Laboratory, Nexant Consulting, LLC and Praxair, Inc. are developing composite membranes for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The ITN team is pursuing a novel approach to hydrogen separation membrane technology where fundamental engineering material development is fully integrated into module fabrication designs; combining functionally-graded materials, monolithic module concept and thermal spray manufacturing techniques. The technology is based on the use of Ion Conducting Ceramic Membranes (ICCM) for the selective transport of hydrogen. The membranes are comprised of composites consisting of a proton conducting ceramic and a second metallic phase to promote electrical conductivity. Functional grading of the membrane components allows for the fabrication of individual membrane layers of different materials, microstructures and functions directly into a monolithic module. Plasma spray techniques, common in industrial manufacturing, are well suited for fabricating ICCM hydrogen separation modules inexpensively, yielding compact membrane modules that are amenable to large scale, continuous manufacturing techniques with low costs. The engineering and economic characteristics of the proposed ICCM approach, including system integration issues, are being assessed. This will result in an evaluation of the technical and economic feasibility of the proposed ICCM hydrogen separation approach for implementation within the ''Vision 21'' fossil fuel plant. The ICCM hydrogen separation technology is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of such plants. Of particular importance is that the proposed technology also results in a stream of pure carbon dioxide. This allows for the facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner.

Schwartz, Michael

2001-11-06T23:59:59.000Z

294

Blue Hill Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Logo: Blue Hill Partners LLC Name Blue Hill Partners LLC Address 40 W. Evergreen Ave. Place Philadelphia, Pennsylvania Zip 19118 Region Northeast - NY NJ CT PA Area Product Invests equity capital in venture-stage companies in the advanced industrial technology sector Phone number (215) 247-2400 Website http://www.bluehillpartners.co Coordinates 40.075493°, -75.208266° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.075493,"lon":-75.208266,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Texas Retail Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Energy, LLC Jump to: navigation, search Name: Texas Retail Energy, LLC Place: Arkansas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

296

Tharaldson Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tharaldson Ethanol LLC Jump to: navigation, search Name: Tharaldson Ethanol LLC Place: Casselton, North Dakota Zip: 58012 Product: Owner of a USD 200m 120m-gallon ethanol plant in...

297

Northern Lights Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Northern Lights Ethanol LLC Jump to: navigation, search Name: Northern Lights Ethanol LLC Place: Big Stone City, South Dakota Zip: 57216 Product: 75mmgy (283.9m litresy) ethanol...

298

Golden Grain Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Golden Grain Energy LLC Place: Mason City, Iowa Zip: 50401 Product: Ethanol producer. References: Golden Grain Energy LLC1 This article is a stub. You can help...

299

True Electric LLC | Open Energy Information  

Open Energy Info (EERE)

True Electric LLC Jump to: navigation, search Name: True Electric LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id...

300

Nth Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Place: San Francisco, California Zip: CA 94111 Product: Early stage investor in a broad array of energy technologies. References: Nth Power LLC1 This article is a stub....

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Universal Entech LLC | Open Energy Information  

Open Energy Info (EERE)

Entech, LLC Place: Phoenix, Arizona Zip: 85041 Product: Project developer focused on waste-to-energy References: Universal Entech, LLC1 This article is a stub. You can help...

302

DOE Cites Battelle Energy Alliance, LLC for Price-Anderson Violations |  

Broader source: Energy.gov (indexed) [DOE]

Cites Battelle Energy Alliance, LLC for Price-Anderson Cites Battelle Energy Alliance, LLC for Price-Anderson Violations DOE Cites Battelle Energy Alliance, LLC for Price-Anderson Violations December 3, 2007 - 4:44pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today notified Battelle Energy Alliance, LLC (BEA) that it will fine the company $123,750 for violations of the Department's nuclear safety requirements. BEA is the DOE Idaho Operations Office prime contractor for the operation of the Neutron Radiography (NRAD) reactor. The Neutron Radiography Reactor is used to non-destructively examine irradiated materials; the imaging technique utilizes thermal neutrons and is used for quality control purposes in industries which require precision machining. The Preliminary Notice of Violation (PNOV) issued today cited a series of

303

Fluidized bed catalytic coal gasification process  

DOE Patents [OSTI]

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

304

Strategic Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania Pennsylvania Utility Id 18193 Utility Location Yes Ownership R NERC Location RFC NERC NPCC Yes NERC RFC Yes NERC SERC Yes NERC WECC Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0845/kWh Commercial: $0.0845/kWh Industrial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Strategic_Energy_LLC&oldid=411611

305

GSH Group Inc. and Meritage Properties, LLC: SPP Success Story | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GSH Group Inc. and Meritage Properties, LLC: SPP Success Story GSH Group Inc. and Meritage Properties, LLC: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

306

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 1  

SciTech Connect (OSTI)

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster displays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume I covers information presented at sessions 1 through 4 on systems for the production of Co-products and industrial fuel gas, environmental projects, and components and materials. Individual papers have been processed for the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

307

The Gasification of Ponderosa Pine Charcoal  

Science Journals Connector (OSTI)

The gasification of wood chars with CO2 and steam is an important process step in the conversion of biomass to fuel and synthesis gases. Wood fuels can be gasified in a wide variety of sizes, shapes and densities...

Richard Edrich; Timothy Bradley

1985-01-01T23:59:59.000Z

308

Catalysts for carbon and coal gasification  

DOE Patents [OSTI]

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

309

A New Approach to Carbon Gasification  

Science Journals Connector (OSTI)

... carbon monoxide plus hydrogen respectively, under the usual conditions of temperature and pressure applying in gasification practice, the rates of reaction measured by the number of gm. moles of product ...

J. D. BLACKWOOD; F. K. McTAGGART

1959-08-08T23:59:59.000Z

310

Biomass Gasification in Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

The dual fluidized bed gasification technology is prospective because it produces high...2...dilution even when air is used to generate the required endothermic heat via in situ combustion. This study is devoted ...

Toshiyuki Suda; Takahiro Murakami

2007-01-01T23:59:59.000Z

311

Underground Coal Gasification at Tennessee Colony  

E-Print Network [OSTI]

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01T23:59:59.000Z

312

The Role of Oxygen in Coal Gasification  

E-Print Network [OSTI]

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

Klosek, J.; Smith, A. R.; Solomon, J.

313

Partial Gasification for CO2Emissions Reduction  

Science Journals Connector (OSTI)

The chemical reaction during partial gasification of coal follows the form (Nag and Raha, 1994) which is based on the Amagat model for ideal gas mixtures: (9.1) ...

Nirmal V. Gnanapragasam; Bale V. Reddy; Marc A. Rosen

2010-01-01T23:59:59.000Z

314

An Assessment of Industrial Cogeneration Potential in Pennsylvania  

E-Print Network [OSTI]

such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

1983-01-01T23:59:59.000Z

315

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

316

Potassium Retention in Updraft Gasification of Wood  

Science Journals Connector (OSTI)

Wood gasifiers are equipment used for a controlled combustion of wood in limited supply of air as the oxidizing medium to generate a combustible product gas. ... Other oxidizing media, such as oxygen and steam, or a combination of any two media can be used in the gasification process. ... The zone where high rates of char combustion and gasification occur is about 15 mm wide above the grate, as determined in a similar-sized gasifier by Di Blasi. ...

Joseph Olwa; Marcus hman; Pettersson Esbjrn; Dan Bostrm; Mackay Okure; Bjrn Kjellstrm

2013-10-14T23:59:59.000Z

317

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC- 14-005-CIC  

Broader source: Energy.gov [DOE]

Application of Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade...

318

Avalence LLC | Open Energy Information  

Open Energy Info (EERE)

Avalence LLC Avalence LLC Jump to: navigation, search Name Avalence LLC Address 1240 Oronoque Road Place Milford, Connecticut Zip 06460 Sector Hydrogen Product Hydrogen generating equipment Website http://www.avalence.com/ Coordinates 41.2230689°, -73.1027179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2230689,"lon":-73.1027179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Deltak LLC | Open Energy Information  

Open Energy Info (EERE)

Deltak LLC Deltak LLC Jump to: navigation, search Name Deltak LLC Place Minneapolis, Minnesota Zip 55441 Product Supplier of custom designed heat recovery steam generators (HRSGs) for gas turbine combined-cycle power generation and specialty boilers for waste heat recovery applications Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

HCE LLC | Open Energy Information  

Open Energy Info (EERE)

HCE LLC HCE LLC Jump to: navigation, search Name HCE LLC Place Oakton, Virginia Zip 22124-1530 Sector Hydro, Hydrogen Product Has developed a new device and method for hydrogen storage. Coordinates 38.880787°, -77.301381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.880787,"lon":-77.301381,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Phycal LLC | Open Energy Information  

Open Energy Info (EERE)

Phycal LLC Phycal LLC Jump to: navigation, search Name Phycal LLC Address 51 Alpha Park Place Highland Heights, Ohio Zip 44143 Sector Biofuels, Biomass Product Agriculture; Raw materials/extraction; Research and development Phone number 440-460-2477 Website http://www.phycal.com Coordinates 41.5533226°, -81.451283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5533226,"lon":-81.451283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

MILACRON, LLC | Open Energy Information  

Open Energy Info (EERE)

MILACRON, LLC MILACRON, LLC Jump to: navigation, search Name MILACRON, LLC Address 418 W MAIN ST Place Mt. Orab, Ohio Zip 45154 Sector Services, Wind energy Product Manufacturing Phone number 513-536-2800 Website http://MilacronMachining.com Coordinates 39.0323997°, -83.9284878° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0323997,"lon":-83.9284878,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Segway LLC | Open Energy Information  

Open Energy Info (EERE)

Segway LLC Segway LLC Jump to: navigation, search Name Segway LLC Place Bedford, New Hampshire Zip 3110 Product Focused on development of zero-emission personal transportation using alternative-power systems. Coordinates 42.897515°, -110.935047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.897515,"lon":-110.935047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Fiberight LLC | Open Energy Information  

Open Energy Info (EERE)

Fiberight LLC Fiberight LLC Jump to: navigation, search Name Fiberight LLC Place Lawrenceville, Virginia Zip 23868 Product Virginia-based waste-to-ethanol producer. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

USGlobal LLC | Open Energy Information  

Open Energy Info (EERE)

USGlobal LLC USGlobal LLC Jump to: navigation, search Name USGlobal LLC Address 1451 W. Cypress Creek Road, Suite 307 Place Fort Lauderdale, Florida Zip 33309 Product Investment and development firm. Phone number (954) 784-6442 Website http://www.usgloballlc.com/ Coordinates 26.203089°, -80.1627965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.203089,"lon":-80.1627965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Smallfoot, LLC | Open Energy Information  

Open Energy Info (EERE)

Smallfoot, LLC Smallfoot, LLC Jump to: navigation, search Name Smallfoot, LLC Place Boulder, Colorado Coordinates 40.0149856°, -105.2705456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0149856,"lon":-105.2705456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Hythane LLC | Open Energy Information  

Open Energy Info (EERE)

Hythane LLC Hythane LLC Jump to: navigation, search Name Hythane LLC Place Denver, Colorado Sector Hydro, Hydrogen Product Produces a fuel system which runs on 'Hythane' - a 50:50 blend of natural gas and hydrogen. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

BSST LLC | Open Energy Information  

Open Energy Info (EERE)

BSST LLC BSST LLC Jump to: navigation, search Name BSST LLC Place Irwindale, California Zip 91706 Product Their core-competency is thermo-electrics (heat to electricity), using alternate thermodynamic cycles. Coordinates 34.105143°, -117.933771° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.105143,"lon":-117.933771,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

330

Environmental Enterprise: Carbon Sequestration using Texaco Gasification Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Enterprise: Carbon Sequestration using Texaco Carbon Sequestration using Texaco Gasification Process Gasification Process First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration May 16, 2001 May 16, 2001 Jeff Seabright Jeff Seabright Texaco Inc. Texaco Inc. Presentation Highlights Presentation Highlights * * Texaco and climate change Texaco and climate change * * Introduction to gasification Introduction to gasification * * Environmental benefits of gasification Environmental benefits of gasification * * CO CO 2 2 capture & sequestration capture & sequestration * * Challenges going forward Challenges going forward Texaco's Climate Change Policy Texaco's Climate Change Policy * * Know enough to take action now Know enough to take action now

331

RLR Consultants LLC | Open Energy Information  

Open Energy Info (EERE)

RLR Consultants LLC RLR Consultants LLC Jump to: navigation, search Name RLR Consultants, LLC Place Englewood Cliffs, New Jersey Zip 7632 Sector Renewable Energy Product String representation "RLR Consultants ... or our clients." is too long. References RLR Consultants, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. RLR Consultants, LLC is a company located in Englewood Cliffs, New Jersey . References ↑ "RLR Consultants, LLC" Retrieved from "http://en.openei.org/w/index.php?title=RLR_Consultants_LLC&oldid=350449" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

332

Catalytic Device International LLC | Open Energy Information  

Open Energy Info (EERE)

Catalytic Device International LLC Catalytic Device International LLC Jump to: navigation, search Name Catalytic Device International LLC Place Pleasanton, California Product California-based, firm focused on portable, heat-on-demand products. References Catalytic Device International LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Catalytic Device International LLC is a company located in Pleasanton, California . References ↑ "Catalytic Device International LLC" Retrieved from "http://en.openei.org/w/index.php?title=Catalytic_Device_International_LLC&oldid=343285" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

333

Central Texas Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Central Texas Biofuels LLC Place Giddings, Texas Zip 78942 Product Biodiesel producer in Giddings, Texas. References Central Texas Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Texas Biofuels LLC is a company located in Giddings, Texas . References ↑ "Central Texas Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Central_Texas_Biofuels_LLC&oldid=343385" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

334

CPV Wind Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

CPV Wind Ventures LLC CPV Wind Ventures LLC Jump to: navigation, search Name CPV Wind Ventures LLC Place Silver Spring, Maryland Zip 20910 Sector Wind energy Product Wind power project developer. References CPV Wind Ventures LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CPV Wind Ventures LLC is a company located in Silver Spring, Maryland . References ↑ "CPV Wind Ventures LLC" Retrieved from "http://en.openei.org/w/index.php?title=CPV_Wind_Ventures_LLC&oldid=343959" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

335

Clark Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Clark Energy Group LLC Clark Energy Group LLC Jump to: navigation, search Name Clark Energy Group LLC Place Arlington, Virginia Zip 22203 Sector Efficiency, Renewable Energy Product Virginia-based energy efficiency and renewable energy project developer. References Clark Energy Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clark Energy Group LLC is a company located in Arlington, Virginia . References ↑ "Clark Energy Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Clark_Energy_Group_LLC&oldid=343635" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

336

Cambrian Energy Development LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Development LLC Energy Development LLC Jump to: navigation, search Name Cambrian Energy Development LLC Place Los Angeles, California Zip 90017 Sector Biomass Product Los Angeles-based developer of landfill gas-to-energy projects, in addition to other biomass/fuel activities. References Cambrian Energy Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cambrian Energy Development LLC is a company located in Los Angeles, California . References ↑ "Cambrian Energy Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Cambrian_Energy_Development_LLC&oldid=343171" Categories: Clean Energy Organizations Companies Organizations Stubs

337

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Best Biofuels LLC Place Austin, Texas Zip 78746 Sector Biofuels Product Best Biofuels is developing and commercialising vegetable oils and ethanol as fuel. References Best Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Best Biofuels LLC is a company located in Austin, Texas . References ↑ "Best Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Best_Biofuels_LLC&oldid=342683" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

338

Environmental Capital Group LLC | Open Energy Information  

Open Energy Info (EERE)

Group LLC Group LLC Jump to: navigation, search Name Environmental Capital Group LLC Place Grass Valley, California Zip 95945 Product String representation "Environmental C ... tartup forward." is too long. References Environmental Capital Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Group LLC is a company located in Grass Valley, California . References ↑ "Environmental Capital Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Group_LLC&oldid=345025" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

339

SOFCo EFS Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

SOFCo EFS Holdings LLC SOFCo EFS Holdings LLC Jump to: navigation, search Name SOFCo-EFS Holdings LLC Place Alliance, Ohio Zip 44601 Product SOFCo-EFS has developed a proprietary planar SOFC design and a low cost approach to manufacturing that is expected to lead to commercially viable SOFC power systems. References SOFCo-EFS Holdings LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SOFCo-EFS Holdings LLC is a company located in Alliance, Ohio . References ↑ "SOFCo-EFS Holdings LLC" Retrieved from "http://en.openei.org/w/index.php?title=SOFCo_EFS_Holdings_LLC&oldid=351221" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

340

Psomas FMG LLC | Open Energy Information  

Open Energy Info (EERE)

Psomas FMG LLC Psomas FMG LLC Jump to: navigation, search Name Psomas FMG, LLC Place Los Angeles, California Zip 90071 Sector Solar Product String representation "At virtually no ... after 20 years" is too long. References Psomas FMG, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Psomas FMG, LLC is a company located in Los Angeles, California . References ↑ "Psomas FMG, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Psomas_FMG_LLC&oldid=350035" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Renewable Spirits LLC | Open Energy Information  

Open Energy Info (EERE)

Spirits LLC Spirits LLC Jump to: navigation, search Name Renewable Spirits LLC Place Delray Beach, Florida Zip 33446 Product Focused on developing citrus waste into ethanol. References Renewable Spirits LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Spirits LLC is a company located in Delray Beach, Florida . References ↑ "Renewable Spirits LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Spirits_LLC&oldid=350353" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

342

Renewegy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewegy Systems LLC Renewegy Systems LLC Jump to: navigation, search Name Renewegy Systems, LLC Place Oshkosh, Wisconsin Zip 54901-1216 Sector Wind energy Product Wisconsin-based mechatronics engineering firm specializing in strategic product development and planning. Renewegyâ€(tm)s line of light commercial wind turbines targets farms, schools, and commercial businesses to enable them to harness wind energy. References Renewegy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewegy Systems, LLC is a company located in Oshkosh, Wisconsin . References ↑ "Renewegy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewegy_Systems_LLC&oldid=350362

343

SolarAMP LLC | Open Energy Information  

Open Energy Info (EERE)

SolarAMP LLC SolarAMP LLC Jump to: navigation, search Name SolarAMP LLC Place Raleigh, North Carolina Zip 27615 Product Developing a PV cell using nanostructured light absorption rods of organic material, and SnO2 (tin oxide) as the semiconductor. References SolarAMP LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarAMP LLC is a company located in Raleigh, North Carolina . References ↑ "SolarAMP LLC" Retrieved from "http://en.openei.org/w/index.php?title=SolarAMP_LLC&oldid=351354" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us

344

Bluewater Wind LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Bluewater Wind LLC Place New York, New York Zip 10018 Sector Wind energy Product New York-based offshore wind farm developer and operator. References Bluewater Wind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bluewater Wind LLC is a company located in New York, New York . References ↑ "Bluewater Wind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Bluewater_Wind_LLC&oldid=342944" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

345

New Bio LLC | Open Energy Information  

Open Energy Info (EERE)

New Bio LLC New Bio LLC Jump to: navigation, search Name New Bio LLC Place Eden Prarie, Minnesota Zip MN 55344-3446 Sector Biomass Product Working on the development and commercialization of an Integrated Biomass to Electricity System (IBES) References New Bio LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Bio LLC is a company located in Eden Prarie, Minnesota . References ↑ "New Bio LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Bio_LLC&oldid=349152" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

346

S W Energy LLC | Open Energy Information  

Open Energy Info (EERE)

W Energy LLC W Energy LLC Jump to: navigation, search Name S.W. Energy, LLC Place Elk River, Minnesota Zip 55330 Product Minnesota-based ethanol project developer. References S.W. Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. S.W. Energy, LLC is a company located in Elk River, Minnesota . References ↑ "S.W. Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=S_W_Energy_LLC&oldid=350546" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

347

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

348

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

349

Capitaline Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

Capitaline Advisors LLC Capitaline Advisors LLC Jump to: navigation, search Name Capitaline Advisors LLC Place Sioux Falls, South Dakota Sector Renewable Energy Product Private equity firm based in Sioux Falls, focusing on bioethanol and renewable energy investments. References Capitaline Advisors LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Capitaline Advisors LLC is a company located in Sioux Falls, South Dakota . References ↑ "Capitaline Advisors LLC" Retrieved from "http://en.openei.org/w/index.php?title=Capitaline_Advisors_LLC&oldid=343219" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

350

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels LLC Ag Fuels LLC Jump to: navigation, search Name American Ag Fuels LLC Place Defiance, Ohio Zip 43512 Product Biodiesel producer in Defiance, Ohio. References American Ag Fuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Ag Fuels LLC is a company located in Defiance, Ohio . References ↑ "American Ag Fuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Ag_Fuels_LLC&oldid=342105" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

351

Eco Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Capital LLC Capital LLC Jump to: navigation, search Name Eco Capital LLC Place New York, New York Zip 10166 Sector Carbon, Renewable Energy Product New York-based advisory and investment firm prioritizing activity in renewable energy, clean technology and carbon finance. References Eco Capital LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Eco Capital LLC is a company located in New York, New York . References ↑ "Eco Capital LLC" Retrieved from "http://en.openei.org/w/index.php?title=Eco_Capital_LLC&oldid=344441" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

352

Global Power Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Power Solutions LLC Power Solutions LLC Jump to: navigation, search Name Global Power Solutions LLC Place Colorado Zip CO 80401 Sector Geothermal energy Product String representation "Global Power So ... sition support." is too long. References Global Power Solutions LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Power Solutions LLC is a company located in Colorado . References ↑ "Global Power Solutions LLC" Retrieved from "http://en.openei.org/w/index.php?title=Global_Power_Solutions_LLC&oldid=345917" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

353

Solstice Solar Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Solstice Solar Systems LLC Solstice Solar Systems LLC Jump to: navigation, search Name Solstice Solar Systems LLC Place Campbell, California Zip 95008-6906 Sector Solar Product US-based manufacturer of PV inverters and wires to connect solar panels. References Solstice Solar Systems LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solstice Solar Systems LLC is a company located in Campbell, California . References ↑ "Solstice Solar Systems LLC" Retrieved from "http://en.openei.org/w/index.php?title=Solstice_Solar_Systems_LLC&oldid=351510" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

354

New Planet Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name New Planet Energy LLC Place League City, Texas Sector Renewable Energy Product Texas-based firm that specialises in commercializing technologies that utilize waste materials and other sustainable resources in the production of renewable energy and related products. References New Planet Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Planet Energy LLC is a company located in League City, Texas . References ↑ "New Planet Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Planet_Energy_LLC&oldid=349175" Categories: Clean Energy Organizations Companies Organizations Stubs

355

Atlanta Chemical Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name Atlanta Chemical Engineering LLC Place Marietta, Georgia Zip 30064 Country United States Sector Biomass Year founded 2008 Company Type For Profit Company Ownership Private Small Business Yes References Atlanta Chemical Engineering LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Atlanta Chemical Engineering LLC is a company based in Marietta, Georgia. References ↑ "Atlanta Chemical Engineering LLC" Retrieved from "http://en.openei.org/w/index.php?title=Atlanta_Chemical_Engineering_LLC&oldid=699086"

356

Resource Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Systems LLC Energy Systems LLC Jump to: navigation, search Name Resource Energy Systems, LLC Place Rochelle Park, New Jersey Zip 7662 Sector Services, Solar Product Resource Energy Systems (RES) provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References Resource Energy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Resource Energy Systems, LLC is a company located in Rochelle Park, New Jersey . References ↑ "Resource Energy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Resource_Energy_Systems_LLC&oldid=350391" Categories: Clean Energy Organizations

357

Padoma Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Padoma Wind Power LLC Padoma Wind Power LLC Jump to: navigation, search Name Padoma Wind Power LLC Place La Jolla, California Zip 92037 Sector Wind energy Product A wind energy consulting and development company. References Padoma Wind Power LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Padoma Wind Power LLC is a company located in La Jolla, California . References ↑ "Padoma Wind Power LLC" Retrieved from "http://en.openei.org/w/index.php?title=Padoma_Wind_Power_LLC&oldid=349559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

358

808 Investments LLC | Open Energy Information  

Open Energy Info (EERE)

Investments LLC Investments LLC Jump to: navigation, search Name 808 Investments LLC Place Huntington Beach, California Zip 92649 Sector Solar Product California-based boutique investment banking firm focusing on solar and cogeneration project development or acquisition. References 808 Investments LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 808 Investments LLC is a company located in Huntington Beach, California . References ↑ "808 Investments LLC" Retrieved from "http://en.openei.org/w/index.php?title=808_Investments_LLC&oldid=341642" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

359

AeroCity LLC | Open Energy Information  

Open Energy Info (EERE)

AeroCity LLC AeroCity LLC Jump to: navigation, search Name AeroCity LLC Place Lake Katrine, New York Sector Wind energy Product Micro urban wind turbine maker based in New York State. References AeroCity LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AeroCity LLC is a company located in Lake Katrine, New York . References ↑ "AeroCity LLC" Retrieved from "http://en.openei.org/w/index.php?title=AeroCity_LLC&oldid=341825" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

360

Caithness Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Caithness Energy LLC Caithness Energy LLC Jump to: navigation, search Name Caithness Energy LLC Place New York, New York Zip 10017 Sector Geothermal energy, Renewable Energy, Solar, Wind energy Product Caithness Energy is a renewable energy project developer, plant owner and investor focusing on geothermal, wind and solar power. References Caithness Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Caithness Energy LLC is a company located in New York, New York . References ↑ "Caithness Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Caithness_Energy_LLC&oldid=343142" Categories: Clean Energy Organizations Companies Organizations

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Higher Power Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Higher Power Energy LLC Higher Power Energy LLC Jump to: navigation, search Name Higher Power Energy, LLC Place Flower Mound, Texas Zip 78028 Sector Renewable Energy, Wind energy Product Higher Power Energy is focused on the development and management of renewable wind energy across North America. References Higher Power Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Higher Power Energy, LLC is a company located in Flower Mound, Texas . References ↑ "Higher Power Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Higher_Power_Energy_LLC&oldid=346535" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

362

Effect of Microstructural Changes on Gasification Reactivity of Coal Chars during Low Temperature Gasification  

Science Journals Connector (OSTI)

Effect of Microstructural Changes on Gasification Reactivity of Coal Chars during Low Temperature Gasification ... Pocahontas No. 3, Illinois No. 6, and Beulah-Zap coal char samples were gasified in 1% O2 at 500 C or 600 C up to 90% (daf) conversion, and their structure were observed under a high-resolution transmission electron microscope (HRTEM). ...

Atul Sharma; Hayato Kadooka; Takashi Kyotani; Akira Tomita

2001-11-28T23:59:59.000Z

363

Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification  

Science Journals Connector (OSTI)

Abstract The kinetics of steam gasification was examined for bituminous coals of a low coal rank. The examined coals can be the raw material for underground coal gasification. Measurements were carried out under isothermal conditions at a high pressure of 4MPa and temperatures of 800, 900, 950, and 1000C. Yields of gasification products such as carbon monoxide and carbon dioxide, hydrogen and methane were calculated based on the kinetic curves of formation reactions of these products. Also carbon conversion degrees are presented. Moreover, calculations were made of the kinetic parameters of carbon monoxide and hydrogen formation reaction in the coal gasification process. The parameters obtained during the examinations enable a preliminary assessment of coal for the process of underground coal gasification.

Stanis?aw Porada; Grzegorz Czerski; Tadeusz Dziok; Przemys?aw Grzywacz; Dorota Makowska

2015-01-01T23:59:59.000Z

364

Noble Americas Energy Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Sempra Energy Solutions) Sempra Energy Solutions) Jump to: navigation, search Name Noble Americas Energy Solutions LLC Place California Utility Id 16840 Utility Location Yes Ownership R NERC Location WECC Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0764/kWh Industrial: $0.0725/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Noble_Americas_Energy_Solutions_LLC&oldid=412275" Categories: EIA Utility Companies and Aliases

365

Prospero LLC | Open Energy Information  

Open Energy Info (EERE)

Prospero LLC Prospero LLC Jump to: navigation, search Logo: Prospero LLC Name Prospero LLC Address 20 Marshall Street, Suite 300 Place Norwalk, Connecticut Zip 06854 Region Northeast - NY NJ CT PA Area Product Merchant bank providing financial services and capital to companies in the technology and energy sectors Year founded 1998 Phone number (203) 354-1529 Website http://www.prosperollc.net/ Coordinates 41.100803°, -73.4174967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.100803,"lon":-73.4174967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Gentivity, LLC | Open Energy Information  

Open Energy Info (EERE)

Gentivity, LLC Gentivity, LLC Jump to: navigation, search Logo: Gentivity, LLC Name Gentivity, LLC Address 9314 Knoll Crest Loop Place Austin, Texas Zip 78759 Sector Renewable energy Product Consulting - Origination, Market Structure & Entry Year founded 2004 Number of employees 1-10 Phone number 512-814-7149 Website http://www.gentivity.com Coordinates 30.394897°, -97.7604719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.394897,"lon":-97.7604719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Eric Heinicke Energy Elements LLC  

E-Print Network [OSTI]

and East CTA Snapshots; Cost Effective Energy Saving Measures And Supplemental Issues Benchmarking and FineEric Heinicke Energy Elements LLC 702-683-5067 eric@energyelements.net NW CTA, Burkholder MS Tuning High Performance HYBRID GX Systems Cary Smith Sound Geothermal Corporation 801-942-6100 dcsmith

368

Utilization of char from biomass gasification in catalytic applications  

E-Print Network [OSTI]

Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Submitted Utilization of char from biomass gasification in catalytic applications Naomi Klinghoffer Utilization takes place during catalytic decomposition. This thesis focuses on the utilization of char as a catalyst

369

Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1-September 30, 2002 time period.

A. Robertson

2002-09-30T23:59:59.000Z

370

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

Unknown

2003-01-30T23:59:59.000Z

371

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

Archie Robertson

2003-07-23T23:59:59.000Z

372

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

Archie Robertson

2003-10-29T23:59:59.000Z

373

Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

A. Robertson

2003-12-31T23:59:59.000Z

374

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2002 time period.

Archie Robertson

2002-07-10T23:59:59.000Z

375

Development of Foster Wheeler's Vision 21 Partial Gasification Module  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has awarded Foster Wheeler Development Corporation a contract to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx} 2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This paper describes the test program and pilot plant that will be used to develop the PGM.

Robertson, A.

2001-11-06T23:59:59.000Z

376

Thermochemical Conversion Research and Development: Gasification and Pyrolysis (Fact Sheet)  

SciTech Connect (OSTI)

Biomass gasification and pyrolysis research and development activities at the National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

Not Available

2009-09-01T23:59:59.000Z

377

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

378

Annova LNG, LLC - 14-004-CIC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Annova LNG, LLC - 14-004-CIC Annova LNG, LLC - 14-004-CIC Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement...

379

Cameron LNG LLC - 14-001-CIC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cameron LNG LLC - 14-001-CIC Cameron LNG LLC - 14-001-CIC Application of Cameron LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement...

380

Enforcement Letter, Oak Ridge National Laboratory LLC- May 13...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Letter, Oak Ridge National Laboratory LLC- May 13, 2009 Enforcement Letter, Oak Ridge National Laboratory LLC- May 13, 2009 May 13, 2009 Issued to UT-Battelle, LLC related to a...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EA-250 PSEG Energy Resources & Trade LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 PSEG Energy Resources & Trade LLC EA-250 PSEG Energy Resources & Trade LLC Order authorizing PSEG Energy Resources & Trade LLC to export electric energy to Canada. EA-250 PSEG...

382

Enforcement Letter, On Computer Services, LLC - WEL-2012-03 ...  

Broader source: Energy.gov (indexed) [DOE]

On Computer Services, LLC - WEL-2012-03 Enforcement Letter, On Computer Services, LLC - WEL-2012-03 October 23, 2012 Issued to On Computer Services, LLC, related to an Employee...

383

EA-329 Sierra Power Asset Marketing, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9 Sierra Power Asset Marketing, LLC EA-329 Sierra Power Asset Marketing, LLC Order authorizing Sierra Power Asset Marketing, LLC to export electric energy to Canada EA-329 Sierra...

384

Consent Order, Battelle Energy Alliance, LLC - NCO-2010-04 |...  

Office of Environmental Management (EM)

Alliance, LLC - NCO-2010-04 Consent Order, Battelle Energy Alliance, LLC - NCO-2010-04 January 7, 2011 Issued to Battelle Energy Alliance, LLC related to an Unplanned Extremity...

385

Apparatus for fixed bed coal gasification  

DOE Patents [OSTI]

An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

386

Plasma Treatments and Biomass Gasification  

Science Journals Connector (OSTI)

Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

J Luche; Q Falcoz; T Bastien; J P Leninger; K Arabi; O Aubry; A Khacef; J M Cormier; J Ld

2012-01-01T23:59:59.000Z

387

Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment  

Science Journals Connector (OSTI)

Several scenarios are constructed for different Swiss biomass feedstocks and different scales depending on logistical choices: large-scale (155 MWSNG) and small-scale (5.2 MWSNG) scenarios for a manure feedstock and one scenario (35.6 MWSNG) for a wood feedstock. ... In conclusion, the simulation of the catalytic hydrothermal gasification of different biomass feedstocks allowed the design of industrial-scale process configurations. ...

Jeremy S. Luterbacher; Morgan Frling; Frdric Vogel; Franois Marchal; Jefferson W. Tester

2009-01-29T23:59:59.000Z

388

Exergy Analysis of the Process for Dimethyl Ether Production through Biomass Steam Gasification  

Science Journals Connector (OSTI)

About 6.37% of the total carbon is released to the environment in the form of wastewater and waste gas. ... If the heat for gasifying the biomass could be obtained from other energy resource, the carbon atom utilization could be increased greatly, and the CO2 emissions could be decreased considerably. ... A Cost?Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry: Volume 1 Main Report; Princeton University: Princeton, NJ, 2006. ...

Xiangping Zhang; Christian Solli; Edgar G. Hertwich; Xiao Tian; Suojiang Zhang

2009-11-09T23:59:59.000Z

389

Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel  

Science Journals Connector (OSTI)

Concentrating-Solar Biomass Gasification Process for a 3rd Generation Biofuel ... The first step was to develop process flow diagrams and to use these along with literature information and research results as well as the practical industry experience to build process simulation models. ... In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no C debt and can offer immediate, sustained GHG advantages. ...

Edgar G. Hertwich; Xiangping Zhang

2009-04-30T23:59:59.000Z

390

5 - Gasification reaction kinetics for synthetic liquid fuel production  

Science Journals Connector (OSTI)

Abstract The gasification process is a chemically and physically complex operation. This chapter presents a description of the chemistry of gasification reactions. It also discusses the assorted reactions involved in gasification and the various thermodynamic aspects of these reactions that dictate the process parameters used to produce the various gases.

J.G. Speight

2015-01-01T23:59:59.000Z

391

Short Communication Catalytic coal gasification: use of calcium versus potassium*  

E-Print Network [OSTI]

Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R on the gasification in air and 3.1 kPa steam of North Dakota lignitic chars prepared under slow and rapid pyrolysis of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis

392

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network [OSTI]

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

393

Gasification of woody biomass Tessa Jansen (s0140600)  

E-Print Network [OSTI]

1 Gasification of woody biomass Tessa Jansen (s0140600) University of Twente Internship at SINTEF costs. So I would be working on biomass gasification and perform thermo gravimetric analysis (TGA process and char reactivity has been investigated by performing multiple gasification, pyrolysis

Luding, Stefan

394

Proceedings of the seventh annual gasification and gas stream cleanup systems contractors review meeting: Volume 2  

SciTech Connect (OSTI)

On June 16 through 19, 1987, METC sponsored the Seventh Annual Gasification and Gas Stream Cleanup Systems Contractors Review Meeting which was held at the Sheraton Lakeview Conference Center in Morgantown, West Virginia. The primary purpose of the meeting was threefold: to review the technical progress and current status of the gasification and gas stream cleanup projects sponsored by the Department of Energy; to foster technology exchange among participating researchers and other technical communities; to facilitate interactive dialogues which would identify research needs that would make coal-based gasification systems more attractive economically and environmentally. More than 310 representatives of Government, academia, industry, and foreign energy research organizations attended the 4-day meeting. Fifty-three papers and thirty poster dsplays were presented summarizing recent developments in the gasification and gas stream cleanup programs. Volume II covers papers presented at sessions 5 and 6 on system for the production of synthesis gas, and on system for the production of power. All papers have been processed for inclusion in the Energy Data Base.

Ghate, M.R.; Markel, K.E. Jr.; Jarr, L.A.; Bossart, S.J. (eds.)

1987-08-01T23:59:59.000Z

395

Green Partners LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Green Partners LLC Jump to: navigation, search Name Green Partners LLC Place New York Zip NY 10022 Sector Efficiency, Renewable Energy Product US-based investment firm focused on investments in renewable energy, energy efficiency and climate change. References Green Partners LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Partners LLC is a company located in New York . References ↑ "Green Partners LLC" Retrieved from "http://en.openei.org/w/index.php?title=Green_Partners_LLC&oldid=346040"

396

Energy 5 0 LLC | Open Energy Information  

Open Energy Info (EERE)

Energy 5.0 LLC Energy 5.0 LLC Place West Palm Beach, Florida Zip FL 33401 Sector Renewable Energy Product String representation "Energy 5.0 deve ... ven technology." is too long. References Energy 5.0 LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy 5.0 LLC is a company located in West Palm Beach, Florida . References ↑ "Energy 5.0 LLC" Retrieved from "http://en.openei.org/w/index.php?title=Energy_5_0_LLC&oldid=344825" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

397

Biomass Gasification in Fluidized Bed:? Where To Locate the Dolomite To Improve Gasification?  

Science Journals Connector (OSTI)

Figure 5 Steam content in the flue gas vs relative amount of dolomite used for two different locations of the dolomite and for two gasifying agents; (a) gasification with H2O + O2 mixtures, GR = 0.86?1.16, ... Figure 6 Low heating value of the flue gas for two locations of the dolomite and for two gasifying agents; (a) gasification with H2O + O2 mixtures, GR = 0.86?1.16, ... Figure 7 Gas yield for two locations of the dolomite and for two gasifying agents; (a) gasification with H2O + O2 mixtures; GR = 0.86?1.16, ...

Jos Corella; Mara-Pilar Aznar; Javier Gil; Miguel A. Caballero

1999-10-28T23:59:59.000Z

398

Agri Ethanol Products LLC AEPNC | Open Energy Information  

Open Energy Info (EERE)

Agri Ethanol Products LLC AEPNC Jump to: navigation, search Name: Agri-Ethanol Products LLC (AEPNC) Place: Raleigh, North Carolina Zip: 27615 Product: Ethanol producer and project...

399

Pine Lake Corn Processors LLC | Open Energy Information  

Open Energy Info (EERE)

Processors LLC Jump to: navigation, search Name: Pine Lake Corn Processors LLC Place: Steamboat Rock, Iowa Zip: 50672 Product: Farmer owned investment and management team which...

400

EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida...  

Energy Savers [EERE]

1976: Emera CNG, LLC Compressed Natural Gas Project, Florida EA-1976: Emera CNG, LLC Compressed Natural Gas Project, Florida SUMMARY This EA will evaluate the potential...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EA-378 Cargill Power Markets LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets LLC EA-378 Cargill Power Markets LLC Order authorizing Cargill Power Markets to export electric energy to Mexico. EA-378 CPM MX.pdf More Documents &...

402

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

403

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

70: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project, offshore...

404

Department of Energy Cites Brookhaven Science Associates, LLC...  

Energy Savers [EERE]

Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

405

Energy Plus Holdings LLC (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Holdings LLC (Connecticut) Jump to: navigation, search Name: Energy Plus Holdings LLC Place: Connecticut References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA...

406

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

407

Preliminary Notice of Violation, Battelle Energy Alliance, LLC...  

Energy Savers [EERE]

Battelle Energy Alliance, LLC Preliminary Notice of Violation, Battelle Energy Alliance, LLC June 20, 2014 Worker Safety and Health Preliminary Notice of Violation issued to...

408

Consent Order, Washington River Protection Solutions, LLC - NCO...  

Office of Environmental Management (EM)

LLC - NCO-2011-01 More Documents & Publications Consent Order, Battelle Energy Alliance, LLC - NCO-2010-04 Consent Order, URS Energy & Construction, Inc. - NCO-2011-02...

409

Process for fixed bed coal gasification  

DOE Patents [OSTI]

The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

Sadowski, Richard S. (Greenville, SC)

1992-01-01T23:59:59.000Z

410

Duke Energy Carolinas, LLC (South Carolina) | Open Energy Information  

Open Energy Info (EERE)

Duke Energy Carolinas, LLC Duke Energy Carolinas, LLC Place South Carolina Utility Id 5416 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LGS (Large General Service) Commercial OPT-TOU (Optional Time-Of-Use) Commercial RS-TOU (Residential Service Time-Of-Use) Commercial Residential - RE Residential Residential - RS Residential SGS (Small General Service) Commercial Average Rates Residential: $0.0854/kWh Commercial: $0.0707/kWh Industrial: $0.0463/kWh The following table contains monthly sales and revenue data for Duke Energy Carolinas, LLC (South Carolina). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

411

Nextronex Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Systems LLC Address: 4400 Moline Martin Rd Place: Millbury, Ohio Zip: 43447-9401 Sector: Efficiency, Renewable Energy, Services, Solar Website: http:www.nextronex.comdefau...

412

Nimes Capital LLC | Open Energy Information  

Open Energy Info (EERE)

to companies focused on sustainable development, alternative energy, infrastructure, or clean technology. References: Nimes Capital LLC1 This article is a stub. You can help...

413

Cora Capital Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

investment bank and financial advisory firm focused on the renewable energy and clean technology sectors. References: Cora Capital Advisors LLC1 This article is a stub....

414

Renew Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wisconsin Zip: 53549 Product: Sister company of Utica Energy, operates a 130m gallon ethanol plant in Jefferson, Wisconsin. References: Renew Energy LLC1 This article is a...

415

Sandia National Laboratories: MOgene Green Chemicals LLC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MOgene Green Chemicals LLC Sandia to Partner with MOgene Green Chemicals on ARPA-E REMOTE Project On October 2, 2013, in Energy, News, News & Events, Partnership, Research &...

416

Cargill Power Markets LLC | Open Energy Information  

Open Energy Info (EERE)

for 2010 - File1a" Retrieved from "http:en.openei.orgwindex.php?titleCargillPowerMarketsLLC&oldid789308" Categories: EIA Utility Companies and Aliases Organizations...

417

Cp Holdings Llc | Open Energy Information  

Open Energy Info (EERE)

Llc Place: Stillwater, Minnesota Zip: 55082 Sector: Carbon Product: An external carbon advisor. Coordinates: 41.149773, -76.366482 Show Map Loading map... "minzoom":false,"map...

418

Alta Power Group LLC | Open Energy Information  

Open Energy Info (EERE)

Product: California-based firm specializing in advisory services for the renewable energy market. References: Alta Power Group LLC1 This article is a stub. You can help...

419

Luma Resources LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Luma Resources LLC Place: Rochester Hills, Michigan Zip: 48309 Sector: Solar Product: Michigan-based developer and installer of solar roof kits for the...

420

KGRA Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: KGRA Energy LLC Place: Short Hills, New Jersey Zip: 7078 Sector: Geothermal energy Product: New jersey-based firm systems developer to convert the geothermal...

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Abengoa Bioenergy Biomass of Kansas, LLC  

Broader source: Energy.gov (indexed) [DOE]

Abengoa Bioenergy Biomass of Kansas, LLC Corporate HQ: Chesterfield, Missouri Proposed Facility Location: Hugoton, Stevens County, Kansas Description: This project from a committed...

422

Annova LNG, LLC- 14-004-CIC  

Broader source: Energy.gov [DOE]

Application of Annova LNG, LLC to Transfer Control of Long-term Authorization to Export LNG to Free Trade Agreement Nations and Request for Expedited Treatment.

423

Renewable Energy Products LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Products, LLC Place: Santa Fe Springs, California Zip: 90670 Product: Own and operate a biodiesel production facility in California. References: Renewable Energy...

424

Enforcement Letter, National Security Technologies, LLC - May...  

Broader source: Energy.gov (indexed) [DOE]

Safety Analysis, as well as discussion with National Security Technologies, LLC. (NSTec) site personnel. Based on our evaluation, we have concluded that violations of 10 CFR...

425

Heritage Sustainable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Sustainable Energy LLC Place: Traverse City, Michigan Sector: Wind energy Product: Start up wind developer in Michigan and member of AWEA. References: Heritage Sustainable Energy...

426

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and construction services provider. References: Wave...

427

Bethel Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name: Bethel Energy LLC Place: Cardiff, California Zip: 92007 Sector: Solar Product: Solar thermal electricity generation (STEG) project developer, to use parabolic trough...

428

Bull Moose Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Place: San Diego, California Sector: Biomass Product: Focused on development of biomass waste energy projects. References: Bull Moose Energy LLC1 This article is a stub. You...

429

Bar Gadda LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: Palo Alto, California Zip: 94306 Sector: Geothermal energy, Hydro, Hydrogen Product: Has developed a new technology to produce hydrogen from water or geothermal...

430

Aquillian Investments LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: San Francisco, California Zip: 94111 Product: San Francisco-based consultant to institutional investors as well as a financial intermediary involved in raising...

431

Maple River Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy, LLC Place: Galva, Iowa Zip: 51020 Product: US-based company that produces biodiesel by processing soybeans at its plant situated in Galva, Iowa. Coordinates:...

432

Root River Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Root River Energy LLC Place: Minnesota Zip: 55961 Sector: Renewable Energy, Wind energy Product: Minesota-based wind development company tasked with developing...

433

Afterschool Alliance American College Marketing, LLC  

E-Print Network [OSTI]

Afterschool Alliance American College Marketing, LLC American Express PAC Match American Heart Lehigh Valley Dental Society MEPAC National Collegiate Inventors & Innovators Alliance New York Life

Napier, Terrence

434

Transportation Techniques LLC | Open Energy Information  

Open Energy Info (EERE)

Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

435

Proceedings of the ninth annual underground coal gasification symposium  

SciTech Connect (OSTI)

The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

1983-12-01T23:59:59.000Z

436

Production of Hydrogen from Underground Coal Gasification  

DOE Patents [OSTI]

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

437

Alliance for Sustainable Energy, LLC  

Broader source: Energy.gov (indexed) [DOE]

27, 2013 27, 2013 Dr. Dan Arvizu, President Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 WEL-2013-04 Dear Dr. Arvizu: The Office of Health, Safety and Security's Office of Enforcement and Oversight evaluated a drum rupture and flash event that occurred on February 8, 2013, at the National Renewable Energy Laboratory (NREL) Thermochemical User Facility (TCUF). Alliance for Sustainable Energy, LLC (Alliance) manages and operates NREL under a contract with the Department of Energy (DOE) and is subject to the provisions of DOE's Worker Safety and Health Program rule (10 C.F.R. Part 851). The Office of Enforcement and Oversight is issuing this enforcement

438

AXI LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » AXI LLC Jump to: navigation, search Name AXI LLC Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Aims to make commercially feasible strains of algae for fuel production Coordinates 42.2363996°, -71.0200613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2363996,"lon":-71.0200613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

The ENCOAL Mild Coal Gasification Project, A DOE Assessment  

SciTech Connect (OSTI)

This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective, the following goals were established for the ENCOAL{reg_sign} Project: Provide sufficient quantity of products for full-scale test burns; Develop data for the design of future commercial plants; Demonstrate plant and process performance; Provide capital and O&M cost data; and Support future LFC{trademark} technology licensing efforts. Each of these goals has been met and exceeded. The plant has been in operation for nearly 5 years, during which the LFC{trademark} process has been demonstrated and refined. Fuels were made, successfully burned, and a commercial-scale plant is now under contract for design and construction.

National Energy Technology Laboratory

2002-03-15T23:59:59.000Z

440

NETL: Gasification - Development of Ion-Transport Membrane Oxygen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feed Systems Feed Systems Recovery Act: Development of Ion-Transport Membrane Oxygen Technology for Integration in IGCC and Other Advanced Power Generation Systems Air Products and Chemicals, Inc. Project Number: FC26-98FT40343 Project Description Air Products and Chemicals, Inc. is developing, scaling-up, and demonstrating a novel air separation technology for large-scale production of oxygen (O2) at costs that are approximately one-third lower than conventional cryogenic plants. An Ion Transport Membrane (ITM) Oxygen plant co-produces power and oxygen. A phased technology RD&D effort is underway to demonstrate all necessary technical and economic requirements for scale-up and industrial commercialization. The ITM Oxygen production technology is a radically different approach to producing high-quality tonnage oxygen and to enhance the performance of integrated gasification combined cycle and other advanced power generation systems. Instead of cooling air to cryogenic temperatures, oxygen is extracted from air at temperatures synergistic with power production operations. Process engineering and economic evaluations of integrated gasification combined cycle (IGCC) power plants comparing ITM Oxygen with a state-of-the-art cryogenic air separation unit are aimed to show that the installed capital cost of the air separation unit and the installed capital of IGCC facility are significantly lower compared to conventional technologies, while improving power plant output and efficiency. The use of low-cost oxygen in combustion processes would provide cost-effective emission reduction and carbon management opportunities. ITM Oxygen is an enabling module for future plants for producing coal derived shifted synthesis gas (a mixture of hydrogen [H2] and carbon dioxide [CO2]) ultimately for producing clean energy and fuels. Oxygen-intensive industries such as steel, glass, non-ferrous metallurgy, refineries, and pulp and paper may also realize cost and productivity benefits as a result of employing ITM Oxygen.

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Selection of Coal Gasification Parameters for Injection of Gasification Products Into a Blast Furnace  

Science Journals Connector (OSTI)

An analytical study was performed on the influence of blast parameters on the course of the processes in the volume of a blast furnace and smelting rates by injection of low-grade coal gasification products. It w...

I. G. Tovarovsky; A. E. Merkulov

2014-01-01T23:59:59.000Z

442

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions,

443

Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process  

SciTech Connect (OSTI)

The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of the gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.

Rizzo, Jeffrey J. [Phillips66 Company, West Terre Haute, IN (United States)

2010-04-30T23:59:59.000Z

444

Heavy metals behaviour in a gasification reactor  

Science Journals Connector (OSTI)

Sludge coming from cleaning processes of wastewater, Municipal Solid Waste (MSW), and Refuse Derived Fuel (RDF) can be exploited for producing energy because of their heating value. Cleaning the produced syngas is important because of environmental troubles, ... Keywords: heavy metals, syngas, thermodynamic, waste gasification

Martino Paolucci; Carlo Borgianni; Paolo De Filippis

2011-07-01T23:59:59.000Z

445

Gasification characteristics of eastern oil shale  

SciTech Connect (OSTI)

The Institute of Gas Technology (IGT) is evaluating the gasification characteristics of Eastern oil shales as a part of a cooperative agreement between the US Department of Energy and HYCRUDE Corporation to expand the data base on moving-bed hydroretorting of Eastern oil shales. Gasification of shale fines will improve the overall resource utilization by producing synthesis gas or hydrogen needed for the hydroretorting of oil shale and the upgrading of shale oil. Gasification characteristics of an Indiana New Albany oil shale have been determined over temperature and pressure ranges of 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Carbon conversion of over 95% was achieved within 30 minutes at gasification conditions of 1800/sup 0/F and 15 psig in a hydrogen/steam gas mixture for the Indiana New Albany oil shale. This paper presents the results of the tests conducted in a laboratory-scale batch reactor to obtain reaction rate data and in a continuous mini-bench-scale unit to obtain product yield data. 2 refs., 7 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1986-11-01T23:59:59.000Z

446

Biomass Gasification at The Evergreen State College  

E-Print Network [OSTI]

Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

447

World Gasification Database Now Available from DOE  

Broader source: Energy.gov [DOE]

A database just released by the U.S. Department of Energy documents the worldwide growth of gasification, the expected technology of choice for future coal-based plants that produce power, fuels, and/or chemicals with near-zero emissions.

448

Optimum Design of Coal Gasification Plants  

E-Print Network [OSTI]

This paper deals with the optimum design of heat recovery systems using the Texaco Coal Gasification Process (TCGP). TCGP uses an entrained type gasifier and produces hot gases at approximately 2500oF with high heat flux. This heat is removed...

Pohani, B. P.; Ray, H. P.; Wen, H.

1982-01-01T23:59:59.000Z

449

STATEMENT OF CONSIDERATIONS REQUEST BY THE CARGILL DOW LLC FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

CARGILL DOW LLC FOR AN ADVANCE WAIVER OF CARGILL DOW LLC FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. 04-03-CA-70372; W(A)-03-029; CH-1154 The Petitioner, Cargill Dow LLC, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled "Making Industrial Biorefining Happen." The objective of the cooperative agreement is to develop and validate process technologies which will cost effectively produce sugars and chemicals such as lactic acid and ethanol from lignocellulosic biomass The total anticipated cost of the cooperative agreement is $52 million, with the Petitioner providing about fifty percent (50%) cost sharing. This waiver is contingent upon the Petitioner

450

Didion Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Didion Ethanol LLC Didion Ethanol LLC Jump to: navigation, search Name Didion Ethanol LLC Place Cambria, Wisconsin Zip 53923 Product Also Didion Milling LLC, Grand River Distribution LLC. Developing a 50m gallon ethanol facility in Cambria, Wisconsin. Coordinates 43.543205°, -89.108619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.543205,"lon":-89.108619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Renewable Alternatives LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Renewable Alternatives LLC Jump to: navigation, search Name Renewable Alternatives LLC Place Columbia, Missouri Zip 65211 Product Focused on the research, development and commercialization of products that are an alternative to petroleum-based feedstock materials. References Renewable Alternatives LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Alternatives LLC is a company located in Columbia, Missouri . References ↑ "Renewable Alternatives LLC"

452

Michael Andersen, LLC | Open Energy Information  

Open Energy Info (EERE)

Michael Andersen, LLC Michael Andersen, LLC Jump to: navigation, search Logo: Michael Andersen, LLC Name Michael Andersen, LLC Place Denver, Colorado Zip 80202 Sector Services Product Renewable Energy Artwork / Photography Number of employees 1-10 Website http://www.MichaelAndersenLLC. Coordinates 39.7541032°, -105.0002242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7541032,"lon":-105.0002242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

EMC3, llc | Open Energy Information  

Open Energy Info (EERE)

EMC3, llc EMC3, llc Jump to: navigation, search Logo: EMC3, llc Name EMC3, llc Address 5 Blue Anchor Street Place Marlton, New Jersey Zip 08053 Phone number 1-800-338-1005 Website http://www.emc3llc.com/ Coordinates 39.892°, -74.9228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.892,"lon":-74.9228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect (OSTI)

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

455

Black liquor gasification combined cycle with Co2 capture Technical and economic analysis  

Science Journals Connector (OSTI)

Abstract The pulp and paper sector is intensive in the use of energy, and presents a high participation in the industrial context, specially based in the black liquor, a renewable source generated in the pulp process. Black liquor gasification is not still completely dominated; however, it has the potential of becoming an important alternative for the pulp and paper sector. In this article, the traditional steam cycle based on chemical recovery and biomass boilers associated to backpressure/extraction turbine is compared to black liquor gasification combined cycle schemes, associated to biomass boiler, considering the technical and economic attractiveness of capturing and sequestering CO2. Results show that despite its interesting exergetic efficiency, the adoption CO2 capture system for BLGCC did not prove to be attractive under the prescribed conditions without major incentive.

Elzimar Tadeu de Freitas Ferreira; Jos Antonio Perrella Balestieri

2014-01-01T23:59:59.000Z

456

STATEMENT OF CONSIDERATIONS REQUEST BY GE ENERGY (USA) LLC, FOR AN ADVANCE WAIVER OF  

Broader source: Energy.gov (indexed) [DOE]

859; W(A)-2012-018 859; W(A)-2012-018 ; CH-1661 GE Energy (USA) LLC (GE), requests an advance waiver of domestic and foreign patent rights for all subject inventions made under the above cooperative agreement for work entitled , "Feasibility Studies to Improve Plant Availability and Reduce Total Installed Cost in IGCC Plants". Under this agreement, GE will evaluate several factors that make the cost of implementing integrated gasification combined cycle (IGCC) power production challenging . Specifically, GE will evaluate the effects on total installed cost and availability through deployment of a multi-faceted approach in three areas: Technology Evaluation ; Constructability; and , Design methodology. The end result is to reduce the time to technologica l maturity and enable plants to reach higher

457

Gasification of Organosolv-lignin Over Charcoal Supported Noble Metal Salt Catalysts in Supercritical Water  

Science Journals Connector (OSTI)

Charcoal supported metal salt catalysts showed activities for the lignin gasification at 673K, especially the catalysts without chloride anion showed the complete gasification. The order of activity for the gasification

Aritomo Yamaguchi; Norihito Hiyoshi; Osamu Sato; Masayuki Shirai

2012-08-01T23:59:59.000Z

458

Fixed Bed Counter Current Gasification of Mesquite and Juniper Biomass Using Air-steam as Oxidizer  

E-Print Network [OSTI]

Thermal gasification of biomass is being considered as one of the most promising technologies for converting biomass into gaseous fuel. Here we present results of gasification, using an adiabatic bed gasifier with air, steam as gasification medium...

Chen, Wei 1981-

2012-11-27T23:59:59.000Z

459

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

460

NETL: Gasification Systems - Evaluation of the Benefits of Advanced Dry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feed Systems Feed Systems Evaluation of the Benefits of Advanced Dry Feed System for Low Rank Coal Project Number: DE-FE0007902 General Electric Company (GE) is evaluating and demonstrating the benefits of novel dry feed technologies to effectively, reliably, and economically provide feeding of low-cost, low-rank coals into commercial Integrated Gasification Combined Cycle (IGCC) systems. GE is completing comparative techno-economic studies of two IGCC power plant cases, one without and one with advanced dry feed technologies. A common basis of design is being developed so that overall assumptions and methodologies are common in the two cases for both technical and economic areas. The baseline case, without advanced dry feed technologies, will use operational data from the Eastman Chemical Company Kingsport gasification facility in combination with DOE/NETL's Cost and Performance Baseline Low-Rank Coal to Electricity IGCC study for both cost and performance comparisons. Advanced dry feed technologies, based upon the Posimetric® pump currently under development by GE, will be developed to match the proposed plant conditions and configuration, and will be analyzed to provide comparative performance and cost information to the baseline plant case. The scope of this analysis will cover the feed system from the raw coal silo up to, and including, the gasifier injector. Test data from previous and current testing will be summarized in a report to support the assumptions used to evaluate the advanced technologies and the potential value for future applications. This study focuses primarily on IGCC systems with 90 percent carbon capture, utilization, and storage (CCUS), but the dry feed system will be applicable to all IGCC power generating plants, as well as other industries requiring pressurized syngas.

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Power Group, Inc. is working under US Department of Energy Contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. Under this contract a series of pilot plant tests are being conducted to ascertain PGM performance with a variety of fuels. The performance and economics of a PGM based plant designed for the co-production of hydrogen and electricity will also be determined. This report describes the work performed during the April-June 30, 2004 time period.

Archie Robertson

2004-07-01T23:59:59.000Z

462

Equity Industrial Partners | Open Energy Information  

Open Energy Info (EERE)

Equity Industrial Partners Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Equity Industrial Turbines LLC Developer Equity Industrial Turbines LLC Energy Purchaser City of Gloucester Location Gloucester MA Coordinates 42.625864°, -70.65621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.625864,"lon":-70.65621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Major Environmental Aspects of Gasification-Based Power Generation Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detailed Detailed Evaluation of the Environmental Performance of Gasification-Based Power Systems DECEMBER 2002 U.S. DOE/NETL 2-1 2. DETAILED EVALUATION OF THE ENVIRONMENTAL PERFORMANCE OF GASIFICATION-BASED POWER SYTEMS 2.1 Introduction and Summary of Information Presented The single most compelling reason for utilities to consider coal gasification for electric power generation is superior environmental performance. 1 As shown in Figure 2-1, gasification has fundamental environmental advantages over direct coal combustion. Commercial-scale plants for both integrated gasification combined cycle (IGCC) electric power generation and chemicals applications have already successfully demonstrated these advantages. The superior environmental capabilities of coal gasification apply to all three areas of concern: air emissions, water discharges, and solid

464

Advanced Biomass Gasification Technologies Inc ABGT | Open Energy  

Open Energy Info (EERE)

Gasification Technologies Inc ABGT Gasification Technologies Inc ABGT Jump to: navigation, search Name Advanced Biomass Gasification Technologies Inc. (ABGT) Place New York, New York Zip 10036 Product Company set up by UTEK specifically for its sale to Xethanol, holding the exclusive license for microgasification technology developed at the Energy and Environmental Research Center (EERC) at the University of North Dakota. References Advanced Biomass Gasification Technologies Inc. (ABGT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Advanced Biomass Gasification Technologies Inc. (ABGT) is a company located in New York, New York . References ↑ "Advanced Biomass Gasification Technologies Inc. (ABGT)"

465

How Coal Gasification Power Plants Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasification » How Coal Gasification » How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work How Coal Gasification Power Plants Work The heart of a gasification-based system is the gasifier. A gasifier converts hydrocarbon feedstock into gaseous components by applying heat under pressure in the presence of steam. A gasifier differs from a combustor in that the amount of air or oxygen available inside the gasifier is carefully controlled so that only a relatively small portion of the fuel burns completely. This "partial oxidation" process provides the heat. Rather than burning, most of the carbon-containing feedstock is chemically broken apart by the gasifier's heat and pressure, setting into motion chemical reactions that produce "syngas." Syngas is primarily hydrogen and carbon monoxide, but can include

466

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, Marvin W. (Fairview, WV)

1988-01-01T23:59:59.000Z

467

Method for increasing steam decomposition in a coal gasification process  

DOE Patents [OSTI]

The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

Wilson, M.W.

1987-03-23T23:59:59.000Z

468

E-Print Network 3.0 - adiabatic fixed-bed gasification Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State University ABSTRACT Gasification is a globally emerging technology in commercial markets... of the most developed and versatile gasification technologies is based upon...

469

NETL: 2013 Gasification Systems Project Portfolio  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf > Project Portfolio Reference Shelf > Project Portfolio Gasification Systems 2013 Gasification Systems Project Portfolio Gasifier Optimization Gas Separation Gas Separation Gasifier Optimization Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Cleaning Gas Separation U.S. Economic Competitiveness Gas Separation Gasifier Optimization U.S. Economic Competitiveness Gasifier Optimization U.S. Economic Competitiveness Gas Cleaning Gasifier Optimization Gas Cleaning Gasifier Optimization Gas Separation U.S. Economic Competitiveness Gas Separation U.S. Economic Competitiveness U.S. Economic Competitiveness Gas Cleaning Gas Cleaning Gas Separation Gas Cleaning Gas Separation Global Environmental Benefits Gas Separation Global Environmental Benefits Global Environmental Benefits Gas Cleaning Gas Separation Systems Analyses Global Environmental Benefits Gas Separation Systems Analyses Global Environmental Benefits Systems Analyses Global Environmental Benefits Gas Cleaning Systems Analyses Gas Cleaning Gas Separation Systems Analyses Systems Analyses Gas Cleaning Systems Analyses Systems Analyses Systems Analyses

470

Fluidized bed gasification of extracted coal  

DOE Patents [OSTI]

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

471

Gasification performance of switchgrass pretreated with torrefaction and densification  

SciTech Connect (OSTI)

The purpose of this study was to investigate gasification performance of four switchgrass pretreatments (torrefaction at 230 and 270 C, densification, and combined torrefaction and densification) and three gasification temperatures (700, 800 and 900 C). Gasification was performed in a fixed-bed externally heated reactor with air as an oxidizing agent. Switchgrass pretreatment and gasification temperature had significant effects on gasification performance such as gas yields, syngas lower heating value (LHV), and carbon conversion and cold gas efficiencies. With an increase in the gasification temperature, yields of H2 and CO, syngas LHV, and gasifier efficiencies increased whereas CH4, CO2 and N2 yields decreased. Among all switchgrass pretreatments, gasification performance of switchgrass with combined torrefaction and densification was the best followed by that of densified, raw and torrefied switchgrass. Gasification of combined torrefied and densified switchgrass resulted in the highest yields of H2 (0.03 kg/kg biomass) and CO (0.72 kg/kg biomass), highest syngas LHV (5.08 MJ m-3), CCE (92.53%), and CGE (68.40%) at the gasification temperature of 900 C.

Jaya Shankar Tumuluru; Various

2014-08-01T23:59:59.000Z

472

EIS-0383: Southern Company's Orlando Gasification Project, Orlando, FL  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide cost-shared funding for construction, design, and operation of a new gasification plant in Orlando, Florida.

473

Biomass Gasification and Methane Digester Property Tax Exemption  

Broader source: Energy.gov [DOE]

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

474

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal  

Science Journals Connector (OSTI)

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal ... Structural Characterization of Coal Tar Pitches Obtained by Heat Treatment under Different Conditions ...

Robert L. McCormick; Mahesh C. Jha

1994-03-01T23:59:59.000Z

475

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network [OSTI]

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

476

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefactio...  

Broader source: Energy.gov (indexed) [DOE]

Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG Liquefaction 2, LLC and FLNG Liquefaction 3, LLC - 14-005-CIC Freeport LNG Expansion, L.P., FLNG Liquefaction, LLC, FLNG...

477

Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of Lignocellulosic Conversion of Lignocellulosic Biomass to Ethanol Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis A. Dutta, M. Talmadge, and J. Hensley National Renewable Energy Laboratory Golden, Colorado M. Worley and D. Dudgeon Harris Group Inc. Atlanta, Georgia and Seattle, Washington D. Barton, P. Groenendijk, D. Ferrari, and B. Stears The Dow Chemical Company Midland, Michigan E.M. Searcy, C.T. Wright, and J.R. Hess Idaho National Laboratory Idaho Falls, Idaho Technical Report NREL/TP-5100-51400 May 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard

478

Industrial Carbon Capture Project Selections  

Broader source: Energy.gov (indexed) [DOE]

(Partner Organizations) Funding Lead Organization Location (City, State) Project Title - Project Description 1) Large Scale Testing of Advanced Gasification Technologies Air Products & Chemicals, Inc. $71,700,000 Allentown, PA Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems Air Products will accelerate commercial manufacture of ion transport membranes modules and initiate the development a 2,000 TPD pre- commercial scale facility ahead of schedule, enabling this technology

479

NorthStar Medical Technologies LLC  

National Nuclear Security Administration (NNSA)

Environmental Assessment for Environmental Assessment for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Molybdenum-99 (DOE/EA-1929) Prepared for U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation/ Global Threat Reduction Initiative August 2012 EA for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Mo-99 i COVER SHEET ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL DOMESTIC PRODUCTION OF THE MEDICAL ISOTOPE MOLYBDENUM-99 Proposed Action: The Department of Energy (DOE) National Nuclear Security Administration (NNSA) proposes to provide funding to NorthStar to accelerate the establishment of the commercial production of

480

Fluidized bed injection assembly for coal gasification  

DOE Patents [OSTI]

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc industrial gasification" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Coal Gasification in a Transport Reactor  

Science Journals Connector (OSTI)

These simulations were used to compare the response of coals gasified to those combusted substoichiometrically, to evaluate the optimum operating conditions and to predict the performance in larger-scale units with less heat loss. ... Entrained-flow gasifiers use high temperatures (1350?1550 C) and gasify coals in 2?3 s. ... Kinetic studies were carried out to elucidate the mechanisms of steam and CO2 gasification of char and the interactions of these gasifying agents. ...

Lawrence J. Shadle; Esmail R. Monazam; Michael L. Swanson

2001-05-25T23:59:59.000Z

482

Gasification Product Improvement Facility (GPIF). Final report  

SciTech Connect (OSTI)

The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunate that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.

NONE

1995-09-01T23:59:59.000Z

483

Black liquor gasification. Phase 2 final report  

SciTech Connect (OSTI)

The experimental work included 23 bench-scale tests in a 6-in.-diameter gasifier and two extended runs in a 33-in.-ID pilot-scale unit. The two pilot-scale runs included 26 test periods, each evaluated separately. The engineering analysis work consisted primarily of the correlation of test results and the development of a computer model describing the gasification process. 4 refs., 13 figs., 23 tabs.

Kohl, A.L.; Barclay, K.M.; Stewart, A.E.; Estes, G.R.

1984-11-28T23:59:59.000Z

484

Improved Refractory Materials for Slagging Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fac Fac ts Materials Science contact Bryan Morreale Focus Area Leader (Acting) Materials Science Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15326 412-386-5929 bryan.morreale@netl.doe.gov Partner Harbison-Walker Refractories Company Improved Refractory Materials for Slagging Gasification Systems Advances in technology are often directly linked to materials development. For

485

NETL: Gasification - Single-Crystal Sapphire Optical Fiber Sensor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasifier Optimization and Plant Supporting Systems Gasifier Optimization and Plant Supporting Systems Single-Crystal Sapphire Optical Fiber Sensor Instrumentation Virginia Polytechnic Institute and State University Center for Photonics Technology Project Number: DE-FC26-99FT40685 Project Description Phase I - The Photonics Laboratory at Virginia Tech has successfully developed a novel temperature sensor capable of operating at temperatures up to 1600 °C and in harsh conditions. The sensor uses single-crystal sapphire to make an optically-based measurement and will fulfill the need for the real-time monitoring of high temperatures created in gasification processes. Phase II - Based on a successful Phase I laboratory demonstration of a Broadband Polarimetric Differential Interferometric (BPDI) temperature sensor, Virginia Tech's Phase II development objective is to further the development of the sensor for industrial use in slagging coal gasifiers. This will include ruggedizing the design of the sensor and creation of a suitable protective housing such that it can be placed into existing ports of coal gasifiers. The potential industrial use of the sensor will be determined through full-scale testing and development. The sensor design and fabrication has been completed and is undergoing testing. Overall performance and survivability of the sensor will be determined.

486

Analysis of Biomass/Coal Co-Gasification for Integrated Gasification Combined Cycle (IGCC) Systems with Carbon Capture.  

E-Print Network [OSTI]

?? In recent years, Integrated Gasification Combined Cycle Technology (IGCC) has become more common in clean coal power operations with carbon capture and sequestration (CCS). (more)

Long, Henry A, III

2011-01-01T23:59:59.000Z

487

Co-gasification Reactivity of Coal and Woody Biomass in High-Temperature Gasification  

Science Journals Connector (OSTI)

(20) Although the total pressure was 0.5 MPa and lower than the usual conditions of the gasifier, it has been confirmed that the total pressure has little influence on the gasification rate of char when the partial pressure of the gasifying agent is the same and the total pressure is less than 2 MPa. ... While the pyrolysis and the char gasification were tested separately in the above experiments, raw samples of coals, cedar bark, and the mixtures were gasified with carbon dioxide at high temperature using the PDTF facility in this section, the same as the reductor in the air-blown two-stage entrained flow coal gasifier. ...

Shiro Kajitani; Yan Zhang; Satoshi Umemoto; Masami Ashizawa; Saburo Hara

2009-09-24T23:59:59.000Z

488

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect (OSTI)

Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

Unknown

2001-07-10T23:59:59.000Z

489

Biomass Gasification Research Facility Final Report  

SciTech Connect (OSTI)

While thermochemical syngas production facilities for biomass utilization are already employed worldwide, exploitation of their potential has been inhibited by technical limitations encountered when attempting to obtain real-time syngas compositional data required for process optimization, reliability, and syngas quality assurance. To address these limitations, the Gas Technology Institute (GTI) carried out two companion projects (under US DOE Cooperative Agreements DE-FC36-02GO12024 and DE-FC36-03GO13175) to develop and demonstrate the equipment and methods required to reliably and continuously obtain accurate and representative on-line syngas compositional data. These objectives were proven through a stepwise series of field tests of biomass and coal gasification process streams. GTI developed the methods and hardware for extractive syngas sample stream delivery and distribution, necessary to make use of state-of-the-art on-line analyzers to evaluate and optimize syngas cleanup and conditioning. The primary objectives of Cooperative Agreement DE-FC36-02GO12024 were the selection, acquisition, and application of a suite of gas analyzers capable of providing near real-time gas analyses to suitably conditioned syngas streams. A review was conducted of sampling options, available analysis technologies, and commercially available analyzers, that could be successfully applied to the challenging task of on-line syngas characterization. The majority of thermochemical process streams comprise multicomponent gas mixtures that, prior to crucial, sequential cleanup procedures, include high concentrations of condensable species, multiple contaminants, and are often produced at high temperatures and pressures. Consequently, GTI engaged in a concurrent effort under Cooperative Agreement DE-FC36-03GO13175 to develop the means to deliver suitably prepared, continuous streams of extracted syngas to a variety of on-line gas analyzers. The review of candidate analysis technology also addressed safety concerns associated with thermochemical process operation that constrain the location and configuration of potential gas analysis equipment. Initial analyzer costs, reliability, accuracy, and operating and maintenance costs were also considered prior to the assembly of suitable analyzers for this work. Initial tests at GTIs Flex-Fuel Test Facility (FFTF) in late 2004 and early 2005 successfully demonstrated the transport and subsequent analysis of a single depressurized, heat-traced syngas stream to a single analyzer (an Industrial Machine and Control Corporation (IMACC) Fourier-transform infrared spectrometer (FT-IR)) provided by GTI. In March 2005, our sampling approach was significantly expanded when this project participated in the U.S. DOEs Novel Gas Cleaning (NGC) project. Syngas sample streams from three process locations were transported to a distribution manifold for selectable analysis by the IMACC FT-IR, a Stanford Research Systems QMS300 Mass Spectrometer (SRS MS) obtained under this Cooperative Agreement, and a Varian micro gas chromatograph with thermal conductivity detector (?GC) provided by GTI. A syngas stream from a fourth process location was transported to an Agilent Model 5890 Series II gas chromatograph for highly sensitive gas analyses. The on-line analyses made possible by this sampling system verified the syngas cleaning achieved by the NGC process. In June 2005, GTI collaborated with Weyerhaeuser to characterize the ChemrecTM black liquor gasifier at Weyerhaeusers New Bern, North Carolina pulp mill. Over a ten-day period, a broad range of process operating conditions were characterized with the IMACC FT-IR, the SRS MS, the Varian ?GC, and an integrated Gas Chromatograph, Mass Selective Detector, Flame Ionization Detector and Sulfur Chemiluminescence Detector (GC/MSD/FID/SCD) system acquired under this Cooperative Agreement from Wasson-ECE. In this field application, a single sample stream was extracted from this low-pressure, low-temperature process and successfully analyzed by these devices. In late 2005,

Snyder, Todd R.; Bush, Vann; Felix, Larry G.; Farthing, William E.; Irvin, James H.

2007-09-30T23:59:59.000Z

490

Edgewood Carbon Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

Edgewood Carbon Holdings LLC Edgewood Carbon Holdings LLC Jump to: navigation, search Name Edgewood Carbon Holdings LLC Place Cornwall, Vermont Zip 57530 Sector Carbon Product Edgewood Carbon Holdings LLC is active worldwide in the evolving commercialization of carbon recovery. Coordinates 50.443321°, -4.93986° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.443321,"lon":-4.93986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Capitol Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Capitol Solar Energy LLC Capitol Solar Energy LLC Jump to: navigation, search Logo: Capitol Solar Energy LLC Name Capitol Solar Energy LLC Address 8243 N. Pinewood Drive Place Castle Rock, Colorado Zip 80108 Sector Solar Product PV system design, installation and maintenance Year founded 1982 Website http://capitolsolarenergy.com/ Coordinates 39.482348°, -104.891927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.482348,"lon":-104.891927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Nedak Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Nedak Ethanol LLC Nedak Ethanol LLC Jump to: navigation, search Name Nedak Ethanol LLC Place Atkinson, Nebraska Zip 68713 Product NEDAK Ethanol, LLC is a Nebraska limited liability company, which was formed on December 15, 2003 for the purpose of constructing and operating an ethanol plant near Atkinson, Nebraska. Coordinates 34.52909°, -78.168819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.52909,"lon":-78.168819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Hinson Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hinson Power Company LLC Hinson Power Company LLC Jump to: navigation, search Name Hinson Power Company LLC Place Connecticut Utility Id 8936 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hinson_Power_Company_LLC&oldid=410830"

494

New Hope Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Partners LLC Partners LLC Jump to: navigation, search Name New Hope Partners, LLC Place Newtown, Pennsylvania Sector Renewable Energy Product New Hope Partners LLC, is a business development, capitalization and advisory specialist with a current focus on value-added, agricultural and renewable energy based start-up ventures. Coordinates 37.91553°, -77.141525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.91553,"lon":-77.141525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

DPI Energy LLC | Open Energy Information  

Open Energy Info (EERE)

DPI Energy LLC DPI Energy LLC Jump to: navigation, search Name DPI Energy LLC Place Texas Utility Id 56326 Utility Location Yes Ownership R NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1740/kWh Commercial: $0.1370/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=DPI_Energy_LLC&oldid=410554" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs

496

Porous Power Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies LLC Porous Power Technologies LLC Jump to: navigation, search Logo: Porous Power Technologies LLC Name Porous Power Technologies LLC Address 2765 Dagny Way, Suite 200 Place Lafayette, Colorado Zip 80026 Sector Efficiency Product Laminable, porous, absorbent Li-ion batteries Website http://www.porouspower.com/ Coordinates 40.0130129°, -105.1327972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0130129,"lon":-105.1327972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Ecowatt Design LLC | Open Energy Information  

Open Energy Info (EERE)

Ecowatt Design LLC Ecowatt Design LLC Jump to: navigation, search Logo: Ecowatt Design LLC Name Ecowatt Design LLC Address 10900 Northwest Fwy Place Houston, Texas Zip 77092 Sector Solar Product Solar power system installation for residential & commercial customers Website http://www.ecowattdesign.com/ Coordinates 29.752554°, -95.3704009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.752554,"lon":-95.3704009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Inovateus Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Solar LLC Solar LLC Jump to: navigation, search Logo: Inovateus Solar LLC Name Inovateus Solar LLC Address 19890 State Line Rd. Place South Bend, Indiana Zip 46637 Sector Solar Year founded 2006 Number of employees 11-50 Phone number 574-485-1400 Website http://www.inovateussolar.com/ Coordinates 41.7605236°, -86.2531935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7605236,"lon":-86.2531935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

BekkTech LLC | Open Energy Information  

Open Energy Info (EERE)

BekkTech LLC BekkTech LLC Jump to: navigation, search Logo: BekkTech LLC Name BekkTech LLC Address 2367 West 8th Street Place Loveland, Colorado Zip 80537 Sector Hydrogen Product Fuel cell component testing Website http://www.bekktech.com/ Coordinates 40.403719°, -105.109978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.403719,"lon":-105.109978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

TDX Manley Generating LLC | Open Energy Information  

Open Energy Info (EERE)

TDX Manley Generating LLC TDX Manley Generating LLC Jump to: navigation, search Name TDX Manley Generating LLC Place Alaska Utility Id 56503 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6340/kWh Commercial: $0.6920/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=TDX_Manley_Generating_LLC&oldid=411634