Powered by Deep Web Technologies
Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AlGaN/GaN-based power semiconductor switches  

E-Print Network (OSTI)

AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

Lu, Bin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

2

Effect of dislocations on electron mobility in AlGaN/GaN and AlGaN/AlN/GaN heterostructures  

Science Conference Proceedings (OSTI)

Al{sub x}Ga{sub 1-x}N/GaN (x = 0.06, 0.12, 0.24) and AlGaN/AlN/GaN heterostructures were grown on 6 H-SiC, GaN-on-sapphire, and free-standing GaN, resulting in heterostructures with threading dislocation densities of {approx}2 Multiplication-Sign 10{sup 10}, {approx}5 Multiplication-Sign 10{sup 8}, and {approx}5 Multiplication-Sign 10{sup 7} cm{sup -2}, respectively. All growths were performed under Ga-rich conditions by plasma-assisted molecular beam epitaxy. Dominant scattering mechanisms with variations in threading dislocation density and sheet concentration were indicated through temperature-dependent Hall measurements. The inclusion of an AlN interlayer was also considered. Dislocation scattering contributed to reduced mobility in these heterostructures, especially when sheet concentration was low or when an AlN interlayer was present.

Kaun, Stephen W.; Burke, Peter G.; Kyle, Erin C. H.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wong, Man Hoi; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

2012-12-24T23:59:59.000Z

3

GA-AL-SC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GA-AL-SC GA-AL-SC GA-AL-SC October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System: Georgia-Alabama-South Carolina October 1, 2012 Duke-1-E Wholesale Power Rate Schedule Area: Duke On-System System: Georgia-Alabama-South Carolina October 1, 2012 Duke-2-E Wholesale Power Rate Schedule Area: Central System: Georgia-Alabama-South Carolina October 1, 2012 Duke-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina October 1, 2012 Duke-4-E Wholesale Power Rate Schedule Area: Duke Self-Schedulers System: Georgia-Alabama-South Carolina October 1, 2012 MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association System: Georgia-Alabama-South Carolina October 1, 2012 Pump-1-A Wholesale Power Rate Schedule

4

Ultraviolet electroabsorption modulator based on AlGaN/GaN multiple quantum wells  

E-Print Network (OSTI)

Ultraviolet electroabsorption modulator based on AlGaN/GaN multiple quantum wells I. Friel, C online 20 June 2005 An ultraviolet electroabsorption modulator based on AlGaN/GaN quantum wells is demonstrated. Enhanced excitonic absorption in the quantum wells at around 3.48 eV was achieved using

Moustakas, Theodore

5

Self-aligned AlGaN/GaN transistors for sub-mm wave applications  

E-Print Network (OSTI)

This thesis describes work done towards realizing self-aligned AlGaN/GaN high electron mobility transistors (HEMTs). Self-aligned transistors are important for improving the frequency of AlGaN/GaN HEMTs by reducing source ...

Saadat, Omair I

2010-01-01T23:59:59.000Z

6

Reactive codoping of GaAlInP compound semiconductors  

DOE Patents (OSTI)

A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

2008-02-12T23:59:59.000Z

7

Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT  

Science Conference Proceedings (OSTI)

Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.

Lenka, T. R., E-mail: trlenka@gmail.com; Panda, A. K., E-mail: akpanda62@hotmail.com [National Institute of Science and Technology, Palur Hills (India)

2011-05-15T23:59:59.000Z

8

Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability  

Science Conference Proceedings (OSTI)

AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

Liu, L. [University of Florida, Gainesville; Xi, Y. Y. [University of Florida, Gainesville; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Kravchenko, Ivan I [ORNL

2012-01-01T23:59:59.000Z

9

AlGaAsSb/GaSb Distributed Bragg Reflectors Grown by Organometallic Vapor Phase Epitaxy  

SciTech Connect

The first AlGaAsSb/GaSb quarter-wave distributed Bragg reflectors grown by metallic vapor phase epitaxy are reported. The peak reflectance is 96% for a 10-period structure.

C.A. Wang; C.J. Vineis; D.R. Calawa

2002-02-13T23:59:59.000Z

10

Molecular beam epitaxy growth of GaAsBi/GaAs/AlGaAs separate confinement heterostructures  

Science Conference Proceedings (OSTI)

GaAsBi/GaAs/AlGaAs separate confinement heterostructures are grown using an asymmetric temperature profile due to the low optimal growth temperature of GaAsBi; the bottom AlGaAs barrier is grown at 610 Degree-Sign C, while the GaAsBi quantum well and the top AlGaAs barrier are grown at 320 Degree-Sign C. Cross-sectional transmission electron microscopy and room temperature photoluminescence measurements indicate that this approach results in samples with excellent structural and optical properties. The high quality of the low temperature AlGaAs barrier is attributed to the presence of Bi on the surface as indicated by a (1 Multiplication-Sign 3) surface reconstruction persisting throughout the low temperature growth.

Fan Dongsheng; Yu Shuiqing [Department of Electrical Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Zeng Zhaoquan; Hu Xian; Dorogan, Vitaliy G.; Li Chen; Benamara, Mourad; Hawkridge, Michael E.; Mazur, Yuriy I.; Salamo, Gregory J. [Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Johnson, Shane R. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-6206 (United States); Wang, Zhiming M. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China)

2012-10-29T23:59:59.000Z

11

Radiation Hard AlGaN Detectors and Imager  

Science Conference Proceedings (OSTI)

Radiation hardness of AlGaN photodiodes was tested using a 65 MeV proton beam with a total proton fluence of 3x10{sup 12} protons/cm{sup 2}. AlGaN Deep UV Photodiode have extremely high radiation hardness. These new devices have mission critical applications in high energy density physics (HEDP) and space explorations. These new devices satisfy radiation hardness requirements by NIF. NSTec is developing next generation AlGaN optoelectronics and imagers.

None

2012-05-01T23:59:59.000Z

12

Pulsed optically detected NMR of single GaAs/AlGaAs quantum wells  

E-Print Network (OSTI)

Pulsed optically detected NMR of single GaAs/AlGaAs quantum wells Marcus Eickhoff* and Dieter Suter, nanometer-sized quantum wells possible with excellent sensitivity and selectivity while avoiding.60.-k; 78.55.Cr; 78.67.De Keywords: ODNMR; Pulsed excitation; Quantum well; GaAs 1. Introduction Nuclear

Suter, Dieter

13

STATEMENT OF CONSIDERATIONS REQUEST BY CLIPPER WINDPOWER LLC ET AL. FOR AN ADVANCE WAIVER OF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLIPPER WINDPOWER LLC ET AL. FOR AN ADVANCE WAIVER OF CLIPPER WINDPOWER LLC ET AL. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PA TENT RIGHTS UNDER DOE AW ARD NO . DE-EE0005 l 4 l ; W(A) 2012-020, AND AN IDENTIFIED WAIVER OF CERTAIN INVENTIONS ALREADY IDENTIFIED Clipper Windpower, LLC ("Clipper") has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced grant entitled "Novel Low Cost, High Reliability Wind Turbine Drivetrain." Clipper has further requested a waiver of domestic and foreign patents of the United States of America in all subject inventions arising from the participation of its subcontractors United Technologies Research Center ("UTRC") and Hamilton Sundstrand. Each of Clipper,

14

Optical injection and coherent control of a ballistic charge current in GaAsAlGaAs quantum wells  

E-Print Network (OSTI)

Optical injection and coherent control of a ballistic charge current in GaAs?AlGaAs quantum wells of Hache´ et al.,2,3 but in this article we report injection into the plane of GaAs/AlGaAs quantum wells specific to quantum wells. Although we expect the underlying physics of injection and control of currents

Sipe,J. E.

15

Free carrier accumulation at cubic AlGaN/GaN heterojunctions  

Science Conference Proceedings (OSTI)

Cubic Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructures were grown by plasma-assisted molecular beam epitaxy on 3C-SiC (001) substrates. A profile of the electrostatic potential across the cubic-AlGaN/GaN heterojunction was obtained using electron holography in the transmission electron microscope. The experimental potential profile indicates that the unintentionally doped layers show n-type behavior and accumulation of free electrons at the interface with a density of 5.1 x 10{sup 11}/cm{sup 2}, about one order of magnitude less than in wurtzite AlGaN/GaN junctions. A combination of electron holography and cathodoluminescence measurements yields a conduction-to-valence band offset ratio of 5:1 for the cubic AlGaN/GaN interface, which also promotes the electron accumulation. Band diagram simulations show that the donor states in the AlGaN layer provide the positive charges that to a great extent balance the two-dimensional electron gas.

Wei, Q. Y.; Li, T.; Huang, J. Y.; Ponce, F. A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States); Tschumak, E.; Zado, A.; As, D. J. [Department of Physics, Universitaet Paderborn, D-33098 Paderborn (Germany)

2012-04-02T23:59:59.000Z

16

Schottky-Drain Technology for AlGaN/GaN High-Electron Mobility Transistors  

E-Print Network (OSTI)

In this letter, we demonstrate 27% improvement in the buffer breakdown voltage of AlGaN/GaN high-electron mobility transistors (HEMTs) grown on Si substrate by using a new Schottky-drain contact technology. Schottky-drain ...

Lu, Bin

17

Phonon Knudsen flow in GaAs/AlAs superlattices  

DOE Green Energy (OSTI)

The measured in-plane thermal conductivity, {delta}{sub SL} of GaAs/AlAs superlattices with even moderate layer thicknesses are significantly smaller than the weighted average, {delta}{sub l} = 67 W/Km, of the bulk GaAs and AlAs conductivities. One expects a suppression of the thermal conductivity to that of an actual Al{sub 0.5}Ga{sub 0.5}As alloy when the thickness of the GaAs and AlAs layers approaches that of a single monolayer. However, the observed superlattice thermal conductivity remains suppressed even at layer thickness {approx_gt} 10 nm. The low thermal conductivities, and very high mobilities, make n-doped GaAs/AlAs superlattices attractive possibilities for thermoelectric devices. With Molecular-Beam-Epitaxial grown GaAs/AlAs superlattices one can expect the individual GaAs and AlAs layers to be extremely clean. Defect and/or alloy scattering is limited to be near the heterostructure interfaces. The authors estimate the room-temperature phonon mean-free-path to be 42 (22) nm for the longitudinal (transverse) mode and thus comparable to or smaller than the layer thicknesses. Thus they expect an important phonon scattering at the interfaces. They study this phonon scattering at the superlattice interfaces assuming a Knudsen flow characterized by diffusive scattering. The solid curve in the figure shows the Knudsen-flow theory estimated for the superlattice thermal conductivity which shows a significant reduction when the layer thickness is shorter than the estimated phonon mean free paths.

Hyldgaard, P.; Mahan, G.D. [Oak Ridge National Lab., TN (United States). Solid State Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy

1995-09-01T23:59:59.000Z

18

Two-dimensional electron gas in AlGaN/GaN heterostructures  

Science Conference Proceedings (OSTI)

The formation of a two-dimensional electron gas (2DEG) system by an AlGaN/GaN heterostructure has been further confirmed by measuring its electrical properties. The effect of persistent photoconductivity (PPC) has been observed and its unique features have been utilized to study the properties of 2DEG formed by the AlGaN/GaN heterointerface. Sharp electronic transitions from the first to the second subbands in the 2DEG channel have been observed by monitoring the 2DEG carrier mobility as a function of carrier concentration through the use of PPC. These results are expected to have significant implications on field-effect transistor and high electron mobility transistor applications based on the GaN system. {copyright} {ital 1997 American Vacuum Society.}

Li, J.Z.; Lin, J.Y.; Jiang, H.X. [Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601 (United States)] [Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601 (United States); Khan, M.A.; Chen, Q. [APA Optics, Inc., Blaine, Minnesota 55449 (United States)] [APA Optics, Inc., Blaine, Minnesota 55449 (United States)

1997-07-01T23:59:59.000Z

19

Charge Profiling of the p-AlGaN Electron Blocking Layer in AlGaInN Light Emitting Diode Structures  

E-Print Network (OSTI)

Charge Profiling of the p-AlGaN Electron Blocking Layer in AlGaInN Light Emitting Diode Structures, U.S.A. ABSTRACT Characterization of operational AlGaInN heterostructure light emitting diodes (LEDs the device lifetime in a non-destructive mode. INTRODUCTION Group ­ III nitride light emitting diodes (LEDs

Wetzel, Christian M.

20

Analysis of Schottky gate electron tunneling in polarization induced AlGaN/GaN high electron mobility transistors  

Science Conference Proceedings (OSTI)

( gate=nickel)/(barrier=GaN/Al (y) Ga (1?y) N)/(buffer=GaN)/(substrate=SiC ) polarizationinduced high electron mobility transistors (PI-HEMTs) show promise for ultrahigh power microwave amplification. The polarization fields in these Ga-face

Lester F. Eastman

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AlP/GaP distributed Bragg reflectors  

SciTech Connect

Distributed Bragg reflectors with high reflectivity bands centered at wavelengths from 530 to 690 nm (green to red) based on AlP/GaP quarter-wave stacks are prepared on (001)GaP using gas-source molecular-beam epitaxy. Additionally, the complex refractive index of AlP is measured using spectroscopic ellipsometry within the range of 330-850 nm in order to facilitate an accurate reflector design. Structures consisting of 15 quarter-wave stacks reach a peak reflectance between 95% and 98%, depending on the spectral position of the maximum.

Emberger, Valentin; Hatami, Fariba; Ted Masselink, W. [Department of Physics, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, D-12489 Berlin (Germany); Peters, Sven [Sentech Instruments GmbH, Schwarzschildstr. 2, 12489 Berlin (Germany)

2013-07-15T23:59:59.000Z

22

AlGaAs/GaAs nano-hetero-epitaxy on a patterned GaAs substrate by MBE  

SciTech Connect

An AlGaAs/GaAs resonant tunneling diode (RTD) with submicron size was fabricated on {l_brace}111{r_brace} oblique facets of GaAs with selective MBE. The method is based on the fact that a certain facet structure is formed on a patterned substrate in selective MBE because the growth rate depends strongly on the facet structure. The fabrication of a double-barrier structure was attempted on a {l_brace}111{r_brace}B facet. The current-voltage characteristics of the sample showed negative differential resistance at 77K demonstrating that we have achieved an RTD on a submicron facet.

Nishiwaki, T.; Yamaguchi, M.; Sawaki, N. [Department of Electronics, Nagoya University, Chikusa-ku, Nagoya, 464-8603 (Japan)

2007-04-10T23:59:59.000Z

23

Evolution of structural defects associated with electrical degradation in AlGaN/GaN high electron mobility transistors  

E-Print Network (OSTI)

We have investigated the surface morphology of electrically stressed AlGaN/GaN high electron mobility transistors using atomic force microscopy and scanning electron microscopy after removing the gate metallization by ...

Makaram, Prashanth

24

Enhancement-mode AlGaN/GaN HEMTs with high linearity fabricated by hydrogen plasma treatment  

E-Print Network (OSTI)

Enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs) are highly desirable for power and digital electronic circuits. Several technologies have been demonstrated in the last few years to fabricate ...

Palacios, Tomas

25

Advanced technologies for improving high frequency performance of AlGaN/GaN high electron mobility transistors  

E-Print Network (OSTI)

In this thesis, we have used a combination of physical analysis, numerical simulation and experimental work to identify and overcome some of the main challenges in AlGaN/GaN high electron mobility transistors (HEMTs) for ...

Chung, Jinwook W. (Jinwook Will)

2008-01-01T23:59:59.000Z

26

MBE growth of high electron mobility 2DEGs in AlGaN/GaN heterostructures controlled by RHEED  

Science Conference Proceedings (OSTI)

We have grown 2DEG AlGaN/GaN heterostructures by molecular beam epitaxy (MBE) with electron mobilities up to 21500 cm{sup 2}V{sup -1}s{sup -1} at 2 K. In-situ RHEED was applied to optimize different aspects of Ga-rich growth. This paper gives a compact overview of the experimental key aspects that significantly affect the low temperature electron mobility in AlGaN/GaN heterostructures. Growth at the transition towards Ga droplet formation produced the best results. A quantitative analysis of the magnetoresistance confirmes scattering at dislocations as the dominant scattering process at low temperature.

Broxtermann, D.; Sivis, M.; Malindretos, J.; Rizzi, A. [IV. physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

2012-03-15T23:59:59.000Z

27

Growth and Fabrication of GaN/AlGaN Heterojunction Bipolar Transistor  

SciTech Connect

A GaN/AlGaN heterojunction bipolar transistor structure with Mg doping in the base and Si Doping in the emitter and collector regions was grown by Metal Organic Chemical Vapor Deposition in c-axis Al(2)O(3). Secondary Ion Mass Spectrometry measurements showed no increase in the O concentration (2-3x10(18) cm(-3)) in the AlGaN emitter and fairly low levels of C (~4-5x10(17) cm (-3)) throughout the structure. Due to the non-ohmic behavior of the base contact at room temperature, the current gain of large area (~90 um diameter) devices was <3. Increasing the device operating temperature led to higher ionization fractions of the mg acceptors in the base, and current gains of ~10 were obtained at 300 degree C.

Abernathy, C.R.; Baca, A.G.; Cao, X.A.; Cho, H.; Dang, G.T.; Donovan, S.M.; Han, J.; Jung, K.B.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Wilson, R.G.; Zhang, A.P.; Zhang, L

1999-03-16T23:59:59.000Z

28

AlGaAs diode pumped tunable chromium lasers  

DOE Patents (OSTI)

An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

Krupke, William F. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

29

Evaluation of defects and degradation in GaAs-GaAlAs wafers using transmission cathodoluminescence  

Science Conference Proceedings (OSTI)

A large number of GaAs substrates GaAlAs double-heterostructure (DH) wafers, and high-radiance GaAlAs DH light-emitting diodes (LEDS) were evaluated using transmission cathodoluminescence (TCL). We show that only epitaxial wafers with a high defect density as revealed by TCL readily develop dark line defects (DLDs) with current injection, optical excitation, or electron beam excitation. Furthermore, in agreement with the previous work, the electron-beam-induced DLDs originate at dislocations and their growth requires minority-carrier injection. Based on these results, it is inferred that TCL can serve as a nondestructive screening technique for the selection of materials that produces a high yield of reliable LEDs.

Chin, A.K.; Keramidas, V.G.; Johnston, W.D. Jr.; Mahajan, S.; Roccasecca, D.D.

1980-02-01T23:59:59.000Z

30

Double pulse doped InGaAs/AlGaAs/GaAs pseudomorphic high-electron-mobility transistor heterostructures  

Science Conference Proceedings (OSTI)

Double pulse doped ({delta}-doped) InGaAs/AlGaAs/GaAs pseudomorphic high-electron-mobility transistor (HEMT) heterostructures were grown by molecular-beam epitaxy using a multiwafer technological system. The room-temperature electron mobility was determined by the Hall method as 6550 and 6000 cm{sup 2}/(V s) at sheet electron densities of 3.00 x 10{sup 12} and 3.36 x 10{sup 12} cm{sup -2}, respectively. HEMT heterostructures fabricated in a single process feature high uniformity of structural and electrical characteristics over the entire area of wafers 76.2 mm in diameter and high reproducibility of characteristics from process to process.

Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Gladyshev, A. G.; Nikitina, E. V.; Denisov, D. V.; Polyakov, N. K.; Pirogov, E. V.; Gorbazevich, A. A. [Russian Academy of Sciences, St. Petersburg Physics and Technology Center for Research and Education (Russian Federation)

2010-07-15T23:59:59.000Z

31

Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors: Electronic structure calculations  

E-Print Network (OSTI)

A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, GaP, or (Al,Ga)As, which opens a wide area of possibilities for optimizing the host composition towards higher ferromagnetic Curie temperatures. Here we explore theoretically hole-mediated ferromagnetism and Mn incorporation in Ga(As,P) and (Al,Ga)As ternary hosts. While alloying (Ga,Mn)As with Al has only a small effect on the Curie temperature we predict a sizable enhancement of Curie temperatures in the smaller lattice constant Ga(As,P) hosts. Mn-doped Ga(As,P) is also favorable, as compared to (Al,Ga)As, with respect to the formation of carrier and moment compensating interstitial Mn impurities. In (Ga,Mn) (As,P) we find a marked decrease of the partial concentration of these detrimental impurities with increasing P content.

Masek, J.; Kudrnovsky, J.; Maca, F.; Sinova, Jairo; MacDonald, A. H.; Campion, R. P.; Gallagher, B. L.; Jungwirth, T.

2007-01-01T23:59:59.000Z

32

An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell  

DOE Green Energy (OSTI)

This report describes work to develop inverted-grown Al[sub 0.34]Ga[sub 0.66]As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al[sub 0.34]Ga[sub 0.66]As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The cycled'' organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al[sub 0.34]Ga[sub 0.66]As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

Venkatasubramanian, R. (Research Triangle Inst., Research Triangle Park, NC (United States))

1993-01-01T23:59:59.000Z

33

High Breakdown ( > \\hbox {1500 V} ) AlGaN/GaN HEMTs by Substrate-Transfer Technology  

E-Print Network (OSTI)

In this letter, we present a new technology to increase the breakdown voltage of AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on Si substrates. This new technology is based on the removal of the original Si ...

Lu, Bin

34

Fine structure of AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering  

SciTech Connect

We report the detailed structure analysis of our AlN/AlGaN superlattice (SL) grown by pulsed atomic-layer epitaxy (PALE) for dislocation filtering. Due to the nature of PALE, the AlGaN well material itself in the SL was found to be composed actually of an Al{sub x}Ga{sub 1-x}N/Al{sub y}Ga{sub 1-y}N short-period superlattice (SPSL), with the periodicity of 15.5 A ({approx_equal}6 monolayer), determined consistently from high-resolution x-ray diffraction and high-resolution transmission electron microscopy measurements. The SPSL nature of the AlGaN layers is believed to benefit from the AlN/AlGaN SL's coherent growth, which is important in exerting compressive strain for the thick upper n-AlGaN film, which serves to eliminate cracks. Direct evidence is presented which indicates that this SL can dramatically reduce the screw-type threading dislocation density.

Sun, W.H.; Zhang, J.P.; Yang, J.W.; Maruska, H.P.; Khan, M. Asif; Liu, R.; Ponce, F.A. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287 (United States)

2005-11-21T23:59:59.000Z

35

M4, Semipolar AlGaN Buffers for Deep Ultraviolet Diode Lasers  

Science Conference Proceedings (OSTI)

On-axis reciprocal space mapping of the graded AlGaN showed tilt at each interface associated ..... New Concepts and Materials for Solar Power Conversion

36

Structure and Composition Peculiarities of GaN/AlN Multiple ...  

Science Conference Proceedings (OSTI)

Thickness of AlN and GaN layers in MQWs (multiple quantum wells) were ... InAs Quantum Dots by Ballistic Electron Emission Microscopy and Spectroscopy.

37

Plasma chemistries for dry etching GaN, AlN, InGaN and InAlN  

DOE Green Energy (OSTI)

Etch rates up to 7,000 {angstrom}/min. for GaN are obtained in Cl{sub 2}/H{sub 2}/Ar or BCl{sub 3}/Ar ECR discharges at 1--3mTorr and moderate dc biases. Typical rates with HI/H{sub 2} are about a factor of three lower under the same conditions, while CH{sub 4}/H{sub 2} produces maximum rates of only {approximately}2,000 {angstrom}/min. The role of additives such as SF{sub 6}, N{sub 2}, H{sub 2} or Ar to the basic chlorine, bromine, iodine or methane-hydrogen plasma chemistries are discussed. Their effect can be either chemical (in forming volatile products with N) or physical (in breaking bonds or enhancing desorption of the etch products). The nitrides differ from conventional III-V`s in that bond-breaking to allow formation of the etch products is a critical factor. Threshold ion energies for the onset of etching of GaN, InGaN and InAlN are {ge} 75 eV.

Pearton, S.J.; Vartuli, C.B.; Lee, J.W.; Donovan, S.M.; MacKenzie, J.D.; Abernathy, C.R. [Univ. of Florida, Gainesville, FL (United States); Shul, R.J. [Sandia National Labs., Albuquerque, NM (United States); McLane, G.F. [Army Research Lab., Fort Monmouth, NJ (United States); Ren, F. [AT and T Bell Labs., Murray Hill, NJ (United States)

1996-04-01T23:59:59.000Z

38

AlGaN/GaN high electron mobility transistors based on InGaN/GaN multi-quantum-well structures with photo-chemical vapor deposition of SiO2 dielectrics  

Science Conference Proceedings (OSTI)

AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) based on InGaN/GaN multi-quantum-well (MQW) structure has been fabricated with SiO"2 dielectric deposited via photo-chemical vapor deposition (PHCVD) using a deuterium lamp ... Keywords: GaN, HEMT, MQW, Photo-chemical vapor deposition, SiO 2

Kai-Hsuan Lee; Ping-Chuan Chang; Shoou-Jinn Chang

2013-04-01T23:59:59.000Z

39

Role of nanoscale AlN and InN for the microwave characteristics of AlGaN/(Al,In)N/GaN-based HEMT  

Science Conference Proceedings (OSTI)

A new AlGaN/GaN-based high electron mobility transistor (HEMT) is proposed and its micro-wave characteristics are discussed by introducing a nanoscale AlN or InN layer to study the potential improvement in their high frequency performance. The 2DEG transport mechanism including various sub-band calculations for both (Al,In) N-based HEMTs are also discussed in the paper. Apart from direct current characteristics of the proposed HEMT, various microwave parameters such as transconductance, unit current gain (h{sub 21} = 1) cut-off frequency (f{sub t}), high power-gain frequency (f{sub max}). Masons available/stable gain and masons unilateral gain are also discussed for both devices to understand its suitable deployment in microwave frequency range.

Lenka, T. R., E-mail: trlenka@gmail.com; Panda, A. K., E-mail: akpanda62@hotmail.com [National Institute of Science and Technology (India)

2011-09-15T23:59:59.000Z

40

GaSb/GaP compliant interface for high electron mobility AlSb/InAs heterostructures on (001) GaP  

Science Conference Proceedings (OSTI)

We report on the epitaxial growth of an AlSb/InAs heterostructure on a (001) GaP substrate. We investigate the conditions for the most efficient relaxation of GaSb islands on GaP. In particular, we show that the GaP surface treatment and the growth temperature are crucial for the formation of a two-dimensional periodic array of 90 deg. misfit dislocations at the episubstrate interface. With this relaxation process, an AlSb/InAs heterostructure exhibiting a room temperature mobility of 25 500 cm{sup 2} V{sup -1} s{sup -1} on GaP is demonstrated. This result paves the way to the integration of Sb-based devices on Si substrates through the use of GaP/Si templates.

El Kazzi, S.; Desplanque, L.; Coinon, C.; Wallart, X. [Institut d'Electronique, de Microelectronique, et de Nanotechnologie, UMR-CNRS 8520, BP 60069, 59652 Villeneuve d'Ascq Cedex (France); Wang, Y.; Ruterana, P. [CIMAP UMR 6252 CNRS-ENSICAEN-CEA-UCBN, 6, Boulevard du Marechal Juin, 14050 Caen Cedex (France)

2010-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CC2, Two-Dimensional Electron Gas in In X Al 1-X N/Aln/GaN ...  

Science Conference Proceedings (OSTI)

DD3, A New Approach to Make ZnO-Cu2O Heterojunctions for Solar Cells ... E2, AlGaAs/GaAs/GaN Wafer Fused HBTs with Ar Implanted Extrinsic Collectors.

42

Temperature-Dependence of Exciton Radiative Recombination in (Al,Ga)N/GaN Quantum Wells Grown on a-Plane GaN Substrates  

E-Print Network (OSTI)

5221, 34095 Montpellier, France E-mail: pmc53@cam.ac.uk Received October 12, 2012; accepted November 22, 2012; published online May 20, 2013 This article presents the dynamics of excitons in a-plane (Al,Ga)N/GaN single quantum wells of various...

Corfdir, Pierre; Dussaigne, Amlie; Teisseyre, Henryk; Suski, Tadeusz; Grzegory, Izabella; Lefebvre, Pierre; Giraud, Etienne; Shahmohammadi, Mehran; Phillips, Richard; Ganire, Jean-Daniel; Grandjean, Nicolas; Deveaud, Benot

43

K7, Self-Assembled GaN/AlN Nanowire Superlattices on Si toward ...  

Science Conference Proceedings (OSTI)

L6, PECVD-SiN, Si or Si/Al2O3-Capped ED-Mode AlN/GaN Inverters Hide details for [

44

Excitons in single and double GaAs/AlGaAs/ZnSe/Zn(Cd)MnSe heterovalent quantum wells  

Science Conference Proceedings (OSTI)

Exciton photoluminescence spectra, photoluminescence excitation spectra, and magnetophotoluminescence spectra of single (GaAs/AlGaAs/ZnMnSe) and double (GaAs/AlGaAs/ZnSe/ZnCdMnSe) heterovalent quantum wells formed by molecular beam epitaxy are studied. It is shown that the exciton absorption spectrum of such quantum wells mainly reproduces the resonant exciton spectrum expected for usual quantum wells with similar parameters, while the radiative exciton recombination have substantial distinctions, in particular the additional localization mechanism determined by defects generated by heterovalent interface exists. The nature of these localization centers is not currently clarified; their presence leads to broadening of photoluminescence lines and to an increase in the Stokes shift between the peaks of luminescence and absorption, as well as determining the variation in the magnetic g factor of bound exciton complexes.

Toropov, A. A., E-mail: toropov@beam.ioffe.ru; Kaibyshev, V. Kh.; Terent'ev, Ya. V.; Ivanov, S. V.; Kop'ev, P. S. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

2011-02-15T23:59:59.000Z

45

SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors  

Science Conference Proceedings (OSTI)

Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

Hung, S.T. [Feng Chia University, Taichung, Taiwan; Chung, Chi-Jung [Feng Chia University, Taichung, Taiwan; Chen, Chin Ching [University of Florida, Gainesville; Lo, C. F. [University of Florida; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Kravchenko, Ivan I [ORNL

2012-01-01T23:59:59.000Z

46

Identification of the Parasitic Chemical Reactions during AlGaN OMVPE  

NLE Websites -- All DOE Office Websites (Extended Search)

Identification of the Parasitic Chemical Reactions during AlGaN OMVPE Identification of the Parasitic Chemical Reactions during AlGaN OMVPE by J. R. Creighton, M. E. Coltrin, and W. G. Breiland Motivation-GaN and AlGaN alloys are ex- tremely important materials with widespread applications for optoelectronics (e.g. solid state lighting) and high power electronics. Or- ganometallic vapor phase epitaxy (OMVPE) is the primary deposition methodology, but it suf- fers from several growth chemistry anomalies. Growth rate and alloy composition are often a sensitive function of temperature and other reac- tor variables. These factors make the AlGaN OMVPE process difficult to control and in- crease the cost of the material. Conventional wisdom has been that the non-ideal OMVPE behavior is due to parasitic "pre-reactions" be-

47

Fabrication of Two-Dimensional Photonic Crystals in AlGaInP/GaInP Membranes by Inductively Coupled Plasma Etching  

E-Print Network (OSTI)

The fabrication process of two-dimensional photonic crystals in an AlGaInP/GaInP multi-quantum-well membrane structure is developed. The process includes high resolution electron-beam lithography, pattern transfer into ...

Chen, A.

48

Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN  

Science Conference Proceedings (OSTI)

We investigate, via time-resolved photoluminescence, the temperature-dependence of charge carrier recombination mechanisms in nonpolar (Al,Ga)N/GaN single quantum wells (QWs) grown via molecular beam epitaxy on the a-facet of bulk GaN crystals. We study the influence of both QW width and barrier Al content on the dynamics of excitons in the 10-320 K range. We first show that the effective lifetime of QW excitons {tau} increases with temperature, which is evidence that nonradiative mechanisms do not play any significant role in the low-temperature range. The temperature range for increasing {tau} depends on the QW width and Al content in the (Al,Ga)N barriers. For higher temperatures, we observe a reduction in the QW emission lifetime combined with an increase in the decay time for excitons in the barriers, until both exciton populations get fully thermalized. Based on analysis of the ratio between barrier and QW emission intensities, we demonstrate that the main mechanism limiting the radiative efficiency in our set of samples is related to nonradiative recombination in the (Al,Ga)N barriers of charge carriers that have been thermally emitted from the QWs.

Corfdir, P.; Dussaigne, A.; Giraud, E.; Ganiere, J.-D.; Grandjean, N.; Deveaud-Pledran, B. [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Teisseyre, H. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw (Poland); Suski, T.; Grzegory, I. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw (Poland); Lefebvre, P. [Laboratoire Charles Coulomb - UMR5221 - CNRS - Universite Montpellier 2, 34095 Montpellier (France)

2012-02-01T23:59:59.000Z

49

Strain relaxation in GaN/Al{sub x}Ga{sub 1-x}N superlattices grown by plasma-assisted molecular-beam epitaxy  

SciTech Connect

We have investigated the misfit relaxation process in GaN/Al{sub x}Ga{sub 1-x}N (x = 0.1, 0.3, 0.44) superlattices (SL) deposited by plasma-assisted molecular beam epitaxy. The SLs under consideration were designed to achieve intersubband absorption in the mid-infrared spectral range. We have considered the case of growth on GaN (tensile stress) and on AlGaN (compressive stress) buffer layers, both deposited on GaN-on-sapphire templates. Using GaN buffer layers, the SL remains almost pseudomorphic for x = 0.1, 0.3, with edge-type threading dislocation densities below 9 x 10{sup 8} cm{sup -2} to 2 x 10{sup 9} cm{sup -2}. Increasing the Al mole fraction to 0.44, we observe an enhancement of misfit relaxation resulting in dislocation densities above 10{sup 10} cm{sup -2}. In the case of growth on AlGaN, strain relaxation is systematically stronger, with the corresponding increase in the dislocation density. In addition to the average relaxation trend of the SL, in situ measurements indicate a periodic fluctuation of the in-plane lattice parameter, which is explained by the different elastic response of the GaN and AlGaN surfaces to the Ga excess at the growth front. The results are compared with GaN/AlN SLs designed for near-infrared intersubband absorption.

Kotsar, Y.; Bellet-Amalric, E.; Das, A.; Monroy, E. [CEA-Grenoble, INAC/SP2M/NPSC, 17 Rue des Martyrs, 38054 Grenoble cedex 9 (France); Doisneau, B. [SIMaP, Grenoble INP, Domaine Universitaire, BP 75, 38402 Saint Martin d'Heres (France); Sarigiannidou, E. [LMGP, Grenoble INP, 3 Parvis Louis Neel, BP 257, 38016 Grenoble cedex 1 (France)

2011-08-01T23:59:59.000Z

50

Mexico FL GA SC AL MS LA TX AR TN TN  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Hurricanes on the Natural Gas Industry in the Gulf of Mexico Region Mexico FL GA SC AL MS LA TX AR TN TN Katrina - Cumulative wind > 39 mph Katrina - Cumulative wind > 73 mph...

51

AlGaAsSb buffer/barrier on GaAs substrate for InAs channel devices with high electron mobility and practical reliability  

Science Conference Proceedings (OSTI)

Keywords: AlGaAsSb, Hall elements, InAs, Sb, buffer/barriers, deep quantum well, field effect transistors, reliability

S. Miya; S. Muramatsu; N. Kuze; K. Nagase; T. Iwabuchi; A. Ichii; M. Ozaki; I. Shibasaki

1996-03-01T23:59:59.000Z

52

L1, Formation of Structural Defects in AlGaN/GaN High Electron ...  

Science Conference Proceedings (OSTI)

Transmission electron microscope (TEM) cross sectional image has shown that electrical degradation is closely related to structural damage in the GaN cap and ...

53

Suppression of nuclear spin diffusion at a GaAs/AlGaAs interface measured with a single quantum dot nano-probe  

E-Print Network (OSTI)

Nuclear spin polarization dynamics are measured in optically pumped individual GaAs/AlGaAs interface quantum dots by detecting the time-dependence of the Overhauser shift in photoluminescence (PL) spectra. Long nuclear polarization decay times of ~ 1 minute have been found indicating inefficient nuclear spin diffusion from the GaAs dot into the surrounding AlGaAs matrix in externally applied magnetic field. A spin diffusion coefficient two orders lower than that previously found in bulk GaAs is deduced.

A. E. Nikolaenko; E. A. Chekhovich; M. N. Makhonin; I. W. Drouzas; A. B. Vankov; J. Skiba-Szymanska; M. S. Skolnick; P. Senellart; A. Lemaitre; A. I. Tartakovskii

2009-01-15T23:59:59.000Z

54

High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers  

Science Conference Proceedings (OSTI)

We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm{sup 2}/V s. The 2DEG density was tunable at 0.4-3.7x10{sup 13}/cm{sup 2} by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.

Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Indiana 46556 (United States)

2010-11-29T23:59:59.000Z

55

Metalorganic Vapor-Phase Epitaxial Growth and Characterization of Quaternary AlGaInN  

SciTech Connect

In this letter we report the growth (by MOVPE) and characterization of quaternary AlGaInN. A combination of PL, high-resolution XRD, and RBS characterizations enables us to explore and delineate the contours of equil-emission energy and lattice parameters as functions of the quaternary compositions. The observation of room temperature PL emission as short as 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GdnN MQW heterostructures have also been grown; both x-ray diffraction and PL measurement suggest the possibility of incorporating this quaternary into optoelectronic devices.

BANAS, MICHAEL ANTHONY; CRAWFORD, MARY H.; FIGIEL, JEFFREY J.; HAN, JUNG; LEE, STEPHEN R.; MYERS JR., SAMUEL M.; PETERSON, GARY D.

1999-09-27T23:59:59.000Z

56

Electroluminescence and Transmission Electron Microscopy Characterization of Reverse-Biased AlGaN/GaN Devices  

Science Conference Proceedings (OSTI)

Reverse-bias stress testing has been applied to a large set of more than 50 AlGaN/GaN high electron mobility transistors, which were fabricated using the same process but with different values of the AlN mole fraction and the AlGaN barrier-layer thickness, as well as different substrates (SiC and sapphire). Two sets of devices having different defect types and densities, related to the different growth conditions and the choice of nucleation layer, were also compared. When subjected to gate drain (or gate-to-drain and source short-circuited) reverse-bias testing, all devices presented the same time-dependent failure mode, consisting of a significant increase in the gate leakage current. This failure mechanism occurred abruptly during step-stress experiments when a certain negative gate voltage, or critical voltage, was exceeded or, during constant voltage tests, at a certain time, defined as time to breakdown. Electroluminescence (EL) microscopy was systematically used to identify localized damaged areas that induced an increase of gate reverse current. This current increase was correlated with the increase of EL intensity, and significant EL emission during tests occurred only when the critical voltage was exceeded. Focused-ion-beam milling produced cross-sectional samples suitable for electron microscopy observation at the sites of failure points previously identified by EL microscopy. In highdefectivity devices, V-defects were identified that were associated with initially high gate leakage current and corresponding to EL spots already present in untreated devices. Conversely, identification of defects induced by reverse-bias testing proved to be extremely difficult, and only nanometer-size cracks or defect chains, extending vertically from the gate edges through the AlGaN/GaN heterojunction, were found. No signs of metal/semiconductor interdiffusion or extended defective areas were visible.

Cullen, David A [ORNL; Smith, David J [Arizona State University; Passaseo, Adriana [Consiglio Nazionale delle Ricerche; Tasco, Vittorianna [Consiglio Nazionale delle Ricerche; Stocco, Antonio [Universita di Padova; Meneghini, Matteo [Universita di Padova; Meneghesso, Gaudenzio [Universita di Padova; Zanoni, Enrico [Universita di Padova

2013-01-01T23:59:59.000Z

57

GaAs/AlGaAs nanostructured composites for free-space and integrated optical devices  

E-Print Network (OSTI)

Fainman, "Influence of chlorine on etched sidewalls inFainman, Influence of chlorine on etched sidewalls inthe RIBE of GaAs with chlorine (Cl 2 ), ion beam sputtering

Tsai, Chia-Ho

2006-01-01T23:59:59.000Z

58

Dependence on proton energy of degradation of AlGaN/GaN high electron mobility transistors  

Science Conference Proceedings (OSTI)

The effects of proton irradiation energy on dc, small signal, and large signal rf characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) were investigated. AlGaN/GaN HEMTs were irradiated with protons at fixed fluence of 51015/cm2 and energies of 5, 10, and 15 MeV. Both dc and rf characteristics revealed more degradation at lower irradiation energy, with reductions of maximum transconductance of 11%, 22%, and 38%, and decreases in drain saturation current of 10%, 24%, and 46% for HEMTs exposed to 15, 10, and 5MeV protons, respectively. The increase in device degradation with decreasing proton energy is due to the increase in linear energy transfer and corresponding increase in nonionizing energy loss with decreasing proton energy in the active region of the HEMTs. After irradiation, both subthreshold drain leakage current and reverse gate current decreased more than 1 order of magnitude for all samples. The carrier removal rate was in the range 121 336 cm1 over the range of proton energies employed in this study

Liu, L. [University of Florida, Gainesville; Xi, Y. Y. [University of Florida, Gainesville; Wang, Y.l. [University of Florida; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Kim, H.-Y. [Korea University; Kim, J. [Korea University; Fitch, Robert C [Air Force Research Laboratory, Wright-Patterson AFB, OH; Walker, Dennis E [Air Force Research Laboratory, Wright-Patterson AFB, OH; Chabak, Kelson D [Air Force Research Laboratory, Wright-Patterson AFB, OH; Gillespie, James k [Air Force Research Laboratory, Wright-Patterson AFB, OH; Tetlak, Stephen E [Air Force Research Laboratory, Wright-Patterson AFB, OH; Via, Glen D [Air Force Research Laboratory, Wright-Patterson AFB, OH; Crespo, Antonio [Air Force Research Laboratory, Wright-Patterson AFB, OH; Kravchenko, Ivan I [ORNL

2013-01-01T23:59:59.000Z

59

Realization of compressively strained GaN films grown on Si(110) substrates by inserting a thin AlN/GaN superlattice interlayer  

Science Conference Proceedings (OSTI)

We investigate the strain properties of GaN films grown by plasma-assisted molecular beam epitaxy on Si(110) substrates. It is found that the strain of the GaN film can be converted from a tensile to a compressive state simply by inserting a thin AlN/GaN superlattice structure (SLs) within the GaN film. The GaN layers seperated by the SLs can have different strain states, which indicates that the SLs plays a key role in the strain modulation during the growth and the cooling down processes. Using this simple technique, we grow a crack-free GaN film exceeding 2-{mu}m-thick. The realization of the compressively strained GaN film makes it possible to grow thick GaN films without crack generation on Si substrates for optic and electronic device applications.

Shen, X. Q.; Takahashi, T.; Kawashima, H.; Ide, T.; Shimizu, M. [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Central 2, Tsukuba-shi, Ibaraki 305-8568 (Japan)

2012-07-16T23:59:59.000Z

60

Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures  

Science Conference Proceedings (OSTI)

An increase in the electron mobility and drift velocity in high electric fields in quantum wells of selectively doped InAlAs/InGaAs/InAsAs heterostructures is obtained experimentally via controlling the composition of semiconductors forming the interface. The electron mobility at the interface in the In{sub 0.8}Ga{sub 0.2}As/In{sub 0.7}Al{sub 0.3}As metamorphic structure with a high molar fraction of In (0.7-0.8) is as high as 12.3 Multiplication-Sign 10{sup 3} cm{sup 2} V{sup -1} s{sup -1} at room temperature. An increase in the electron mobility by a factor of 1.1-1.4 is attained upon the introduction of thin (1-3 nm) InAs layers into a quantum well of selectively doped In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As heterostructures. A maximal drift velocity attains 2.5 Multiplication-Sign 10{sup 7} cm/s in electric fields of 2-5 kV/cm. The threshold field F{sub th} for the intervalley {Gamma}-L electron transfer (the Gunn effect) in the InGaAs quantum well is higher than in the bulk material by a factor of 2.5-3. The effect of two- to threefold decrease in the threshold field F{sub th} in the InGaAs quantum well is established upon increasing the molar fraction of In in the InAlAs barrier, as well as upon the introduction of thin InAs inserts into the InGaAs quantum well.

Vasil'evskii, I. S., E-mail: pozela@pfi.lt; Galiev, G. B.; Klimov, E. A. [MEPHI National Nuclear Research University (Russian Federation); Pozela, K.; Pozela, J.; Juciene, V.; Suziedelis, A.; Zurauskiene, N.; Kersulis, S.; Stankevic, V. [Center for Physical Sciences and Technology, Semiconductor Physics Institute (Lithuania)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modification No. M081 BWXT Pantex, LLC Contract No. DE-AC04-00AL66620  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 BWXT Pantex, LLC Contract No. DE-AC04-00AL66620 Page 2 of 4 1. This modification deletes Appendix D entitled, "Key Personnel," dated August 23, 2004, that is currently in Section J of the Contract and replaces it with Attachment 1, Appendix D entitled, "Key Personnel," dated December 23, 2004, of this Modification. 2. This modification deletes Contract Clause I 63. entitled, "DEAR 952.204-2 Security (SEP 1997)(Modified)," and replaces it with Contract Clause I 63. entitled, "DEAR 952.204-2 Security (MAY 2002)(Modified). Contract Clause I 63. entitled, "DEAR 952.204-2 Security (MAY 2002)(Modified)," is stated below in its entirety. 63. DEAR 952.204-2 SECURITY (MAY 2002)(Modified) (a) Responsibility. It is the contractor's duty to safeguard all classified information, special

62

Attachment to Modification M125 BWXT Pantex, LLC Contract No. DE-AC04-00AL66620  

National Nuclear Security Administration (NNSA)

M125 M125 BWXT Pantex, LLC Contract No. DE-AC04-00AL66620 PX-SEC-J (01/16/07) J-App. E-1 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J - LIST OF ATTACHMENTS APPENDIX E - LIST OF APPLICABLE DIRECTIVES January 16, 2007 Pursuant to the contract clause entitled "Laws, Regulations, and DOE Directives," the following list of directives is applicable to this contract. Environmental, Safety, and Health (ES&H) requirements for work conducted under this contract have been incorporated into this Appendix using a DOE-approved tailored process, Contractor-prepared document entitled "Management Integration & Controls Document" (MIC), which is BWXT's Integrated Safety Management System Description Requirements.

63

Attachment to Modification M067 BWXT Pantex, LLC Contract No. DE-AC04-00AL66620  

NLE Websites -- All DOE Office Websites (Extended Search)

M067 M067 BWXT Pantex, LLC Contract No. DE-AC04-00AL66620 PX-SEC-J (6-24-04).doc J-App. E-1 PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J - LIST OF ATTACHMENTS APPENDIX E - LIST OF APPLICABLE DIRECTIVES June 24, 2004 Pursuant to the contract clause entitled "Laws, Regulations, and DOE Directives," the following list of Directives is applicable to this contract. Environmental, Safety, and Health (ES&H) requirements for work conducted under this contract have been incorporated into this Appendix using a DOE-approved tailored process, Contractor-prepared document entitled "Management Integration & Controls Document" (MIC), which is BWXT's Integrated Safety Management System Description.

64

Optical stability of shape-engineered InAs/InAlGaAs quantum dots  

SciTech Connect

The optical properties of shape-engineered InAs/InAlGaAs quantum dots (SEQDs) were investigated by temperature-dependent and excitation-power-dependent photoluminescence (PL) spectroscopy and compared with those of the conventionally grown InAs QDs (CQDs). The emission wavelength of the InAs/InAlGaAs SEQDs at 240 K was redshifted by 18 nm from that at 15 K, which was relatively smaller than that of the InAs CQDs (97 nm). The PL yield at 240 K was reduced to 1/86 and 1/65 of that measured at 15 K for the InAs CQDs and the InAs/InAlGaAs SEQDs, respectively. The emission wavelength for the InAs CQDs was blueshifted by 76 nm with increasing excitation power from 0.56 to 188 mW, compared to only by 7 nm for the InAs/InAlGaAs SEQDs. These results indicated that the InAs/InAlGaAs SEQDs were optically more stable than the InAs CQDs mainly due to the enhancement of the carrier confinement in the vertical direction and the improvement in the size uniformity.

Yang, Youngsin; Jo, Byounggu; Kim, Jaesu; Lee, Cheul-Ro; Kim, Jin Soo [Division of Advanced Materials Engineering, Research Center of Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju, Chonbuk 561-756 (Korea, Republic of); Oh, Dae Kon [Electronics and Telecommunication Research Institute (ETRI), Daejeon 305-350 (Korea, Republic of); Kim, Jong Su [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Leem, Jae-Young [School of Nano Engineering, Inje University, Gimhae 621-749 (Korea, Republic of)

2009-03-01T23:59:59.000Z

65

An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992  

DOE Green Energy (OSTI)

This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

Venkatasubramanian, R. [Research Triangle Inst., Research Triangle Park, NC (United States)

1993-01-01T23:59:59.000Z

66

Al composition dependence of breakdown voltage in Al{sub x}Ga{sub 1-x}N Schottky rectifiers  

SciTech Connect

Planar geometry, lateral Schottky rectifiers were fabricated on high resistivity Al{sub x}Ga{sub 1-x}N (x=0-0.25) epitaxial layers grown on sapphire substrates. The reverse breakdown voltages of unpassivated devices increased with Al composition, varying from 2.3 kV for GaN to 4.3 kV for Al{sub 0.25}Ga{sub 0.75}N. The reverse current-voltage (I-V) characteristics showed classical Shockley-Read-Hall recombination as the dominant mechanism, with I{proportional_to}V{sup 0.5}. The reverse current density in all diodes was in the range 5-10x10{sup -6} A cm{sup -2} at 2 kV. The use of p{sup +} guard rings was effective in preventing premature edge breakdown and with optimum ring width increased V{sub B} from 2.3 to 3.1 kV in GaN diodes. (c) 2000 American Institute of Physics.

Zhang, A. P. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Dang, G. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Ren, F. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Han, J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Polyakov, A. Y. [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation)] [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation); Smirnov, N. B. [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation)] [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation); Govorkov, A. V. [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation)] [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation); Redwing, J. M. [Epitronics, Phoenix, Arizona 85027 (United States)] [Epitronics, Phoenix, Arizona 85027 (United States); Cao, X. A. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Pearton, S. J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2000-03-27T23:59:59.000Z

67

Optical modulation at around 1550 nm in a InGaAlAs optical waveguide containing a InGaAs/AlAs resonant tunnelling diode  

E-Print Network (OSTI)

We report electro-absorption modulation of light at around 1550 nm in a unipolar InGaAlAs optical waveguide containing a InGaAs/AlAs double-barrier resonant tunneling diode (DB-RTD). The RTD peak-to-valley transition increases the electric field across the waveguide, which shifts the core material absorption band-edge to longer wavelengths via the Franz-Keldysh effect, thus changing the light-guiding characteristics of the waveguide. Low-frequency characterisation of a device shows modulation up to 28 dB at 1565 nm. When dc biased close to the negative differential conductance (NDC) region, the RTD optical waveguide behaves as an electro-absorption modulator integrated with a wide bandwidth electrical amplifier, offering a potential advantage over conventional pn modulators.

Figueiredo, J M L; Stanley, C R; Ironside, C N; McMeekin, S G; Leite, A M P

1999-01-01T23:59:59.000Z

68

THz laser based on quasi-periodic AlGaAs superlattices  

SciTech Connect

The use of quasi-periodic AlGaAs superlattices as an active element of a quantum cascade laser of terahertz range is proposed and theoretically investigated. A multi-colour emission, having from three to six peaks of optical gain, is found in Fibonacci, Thue-Morse, and figurate superlattices in electric fields of intensity F = 11 - 13 kV cm{sup -1} in the frequency range f = 2 - 4 THz. The peaks depend linearly on the electric field, retain the height of 20 cm{sup -1}, and strongly depend on the thickness of the AlGaAs-layers. (lasers)

Malyshev, K V [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

2013-06-30T23:59:59.000Z

69

Impact of proton irradiation on dc performance of AlGaN/GaN high electron mobility transistors  

Science Conference Proceedings (OSTI)

The effects of proton irradiation dose on dc characteristics and the reliability of AlGaN/GaN high electron mobility transistors (HEMTs) were investigated. The HEMTs were irradiated with protons at a fixed energy of 5 MeV and doses ranging from 109 to 2 1014 cm-2. For the dc characteristics, there was only minimal degradation of saturation drain current (IDSS), transconductance (gm), electron mobility and sheet carrier concentration at doses below 2 1013 cm-2, while the reduction of these parameters were 15%, 9%, 41% and 16.6%, respectively, at a dose of 2 1014 cm-2. At this same dose condition, increases of 37% in drain breakdown voltage (VBR) and of 45% in critical voltage (Vcri) were observed. The improvement of device reliability was attributed to the modification of the depletion region due to the introduction of a higher density of defects after irradiation at a higher dose.

Liu, L. [University of Florida, Gainesville; Cuervo, C.V. [University of Florida, Gainesville; Xi, Y. Y. [University of Florida, Gainesville; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Kim, H.-Y. [Korea University; Kim, J. [Korea University; Kravchenko, Ivan I [ORNL

2013-01-01T23:59:59.000Z

70

Harmonic Responses in 2DEG AlGaAs/GaAs HEMT Devices Due to Plasma Wave Interaction  

Science Conference Proceedings (OSTI)

Plasma waves are oscillations of electron density in time and space, and in deep submicron field effect transistors, typical plasma frequencies, omega{sub p}, lie in the terahertz range and do not involve any quantum transitions. Hence, using plasma wave excitation for detection and/or generation of THz oscillations is a very promising approach. In this paper, the investigation of plasma wave interaction between the plasma waves propagating in a short-channel High-Electron-Mobility Transistor (HEMT) and the radiated electromagnetic waves was carried out. Experimentally, we have demonstrated the detection of the terahertz (THz) radiation by an AlGaAs/GaAs HEMT up to third harmonic at room temperature and their resonant responses show very good agreement with the calculated results.

Hashim, A. M.; Alias, Q. I. [Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Kasai, S.; Hasegawa, H. [Research Center for Integrated Quantum Electronics, Hokkaido University North 12 West 8, Sapporo 060-8628 (Japan)

2010-03-11T23:59:59.000Z

71

Ultra-shallow quantum dots in an undoped GaAs/AlGaAs two-dimensional electron gas  

SciTech Connect

We report quantum dots fabricated on very shallow 2-dimensional electron gases, only 30 nm below the surface, in undoped GaAs/AlGaAs heterostructures grown by molecular beam epitaxy. Due to the absence of dopants, an improvement of more than one order of magnitude in mobility (at 2 Multiplication-Sign 10{sup 11} cm{sup -2}) with respect to doped heterostructures with similar depths is observed. These undoped wafers can easily be gated with surface metallic gates patterned by e-beam lithography, as demonstrated here from single-level transport through a quantum dot showing large charging energies (up to 1.75 meV) and excited state energies (up to 0.5 meV).

Mak, W. Y.; Sfigakis, F.; Beere, H. E.; Farrer, I.; Griffiths, J. P.; Jones, G. A. C.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom)] [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Das Gupta, K. [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom) [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Klochan, O.; Hamilton, A. R. [School of Physics, University of New South Wales, Sydney (Australia)] [School of Physics, University of New South Wales, Sydney (Australia)

2013-03-11T23:59:59.000Z

72

Temperature dependence and current transport mechanisms in Al{sub x}Ga{sub 1-x}N Schottky rectifiers  

SciTech Connect

GaN and Al{sub 0.25}Ga{sub 0.75}N lateral Schottky rectifiers were fabricated either with (GaN) or without (AlGaN) edge termination. The reverse breakdown voltage V{sub B} (3.1 kV for GaN; 4.3 kV for AlGaN) displayed a negative temperature coefficient of -6.0{+-}0.4 V K{sup -1} for both types of rectifiers. The reverse current originated from contact periphery leakage at moderate bias, while the forward turn-on voltage at a current density of 100 A cm-2 was {approx}5 V for GaN and {approx}7.5 V for AlGaN. The on-state resistances, R{sub ON}, were 50 m{omega} cm2 for GaN and 75 m{omega} cm2 for AlGaN, producing figures-of-merit (V{sub RB}){sup 2}/R{sub ON} of 192 and 246 MW cm-2, respectively. The activation energy of the reverse leakage was 0.13 eV at moderate bias. (c) 2000 American Institute of Physics.

Zhang, A. P. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Dang, G. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Ren, F. [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Han, J. [Sandia National Laboratories, Albuquerque, New Mexico 87195 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87195 (United States); Polyakov, A. Y. [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation)] [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation); Smirnov, N. B. [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation)] [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation); Govorkov, A. V. [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation)] [Institute of Rare Metals, Moscow 109017, Russia (Russian Federation); Redwing, J. M. [Epitronics, Phoenix, Arizona 85027 (United States)] [Epitronics, Phoenix, Arizona 85027 (United States); Cho, H. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Pearton, S. J. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2000-06-19T23:59:59.000Z

73

Two-color picosecond experiments on anti-Stokes photoluminescence in GaAs/AlGaAs asymmetric double quantum wells  

E-Print Network (OSTI)

quantum wells S. C. Hohng and D. S. Kima) Department of Physics and Condensed Matter Research Institute in GaAs/AlGaAs asymmetric double quantum wells. Direct evidence for forbidden absorption is shown heterojunctions and asymmetric double quan- tum wells was found and its origin is still being hotly de- bated

Hohng, Sung Chul

74

Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy  

Science Conference Proceedings (OSTI)

Quaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30-62% Al, 5-29% In, and 23-53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.

Reuters, Benjamin; Finken, M.; Wille, A.; Kalisch, H.; Vescan, A. [RWTH Aachen University, GaN Device Technology, Sommerfeldstrasse 24, 52074 Aachen (Germany); Juelich Aachen Research Alliance, JARA-FIT, Wilhelm-Johnen-Strasse, 52428 Juelich (Germany); Hollaender, B. [Juelich Aachen Research Alliance, JARA-FIT, Wilhelm-Johnen-Strasse, 52428 Juelich (Germany); Forschungszentrum Juelich GmbH, PGI9-IT, 52425 Juelich (Germany); Heuken, M. [RWTH Aachen University, GaN Device Technology, Sommerfeldstrasse 24, 52074 Aachen (Germany); AIXTRON SE, Kaiserstr. 98, 52134 Herzogenrath (Germany)

2012-11-01T23:59:59.000Z

75

Method of extracting thermally stable optical signals from a GaAlAs LED source  

SciTech Connect

A self-compensating scheme is described that eliminates the need for temperature control devices employed in many LED-based optical test and measurement instruments to ensure optical signal stability. Thermal behavior of GaAlAs LED sources is exploited to provide an optical wavelength band signal with 0.1%/C power level stability.

Murtaza, G.; Senior, J.M. [Manchester Metropolitan Univ. (United Kingdom). Faculty of Science and Engineering

1995-05-01T23:59:59.000Z

76

Effect of Mg ionization efficiency on performance of Npn AlGaN/GaN heterojunction bipolar transistors  

SciTech Connect

A drift-diffusion transport model has been used to examine the performance capabilities of AlGaN/GaN Npn heterojunction bipolar transistors (HBTs). The Gummel plot from the first GaN-based HBT structure recently demonstrated is adjusted with simulation by using experimental mobility and lifetime reported in the literature. Numerical results have been explored to study the effect of the p-type Mg doping and its incomplete ionization in the base. The high base resistance induced by the deep acceptor level is found to be the cause of limiting current gain values. Increasing the operating temperature of the device activates more carriers in the base. An improvement of the simulated current gain by a factor of 2 to 4 between 25 and 300 C agrees well with the reported experimental results. A preliminary analysis of high frequency characteristics indicates substantial progress of predicted rf performances by operating the device at higher temperature due to a reduced extrinsic base resistivity.

MONIER,C.; PEARTON,S.J.; CHANG,PING-CHIH; BACA,ALBERT G.

2000-03-10T23:59:59.000Z

77

L7, Reduced Self-Heating in AlGaN/GaN HEMTs Using ...  

Science Conference Proceedings (OSTI)

Conference Tools for 2010 Electronic Materials Conference ... Electr. Dev., vol. 48, no. 3, pp. 465, 2001. [2] H. I. Fujishiro et al., Phys. Stat. Sol. (c) 2, no.

78

Pulsed atomic layer epitaxy of quaternary AlInGaN layers  

Science Conference Proceedings (OSTI)

In this letter, we report on a material deposition scheme for quaternary Al{sub x}In{sub y}Ga{sub 1-x--y}N layers using a pulsed atomic layer epitaxy (PALE) technique. The PALE approach allows accurate control of the quaternary layer composition and thickness by simply changing the number of aluminum, indium, and gallium pulses in a unit cell and the number of unit cell repeats. Using PALE, AlInGaN layers with Al mole fractions in excess of 40% and strong room-temperature photoluminescence peaks at 280 nm can easily be grown even at temperatures lower than 800{sup o}C. {copyright} 2001 American Institute of Physics.

Zhang, J.; Kuokstis, E.; Fareed, Q.; Wang, H.; Yang, J.; Simin, G.; Asif Khan, M.; Gaska, R.; Shur, M.

2001-08-13T23:59:59.000Z

79

Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions  

Science Conference Proceedings (OSTI)

We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido [CNR-NANO S3, Istituto Nanoscienze, Via Campi 213/a, 41125 Modena (Italy); Department of Physics, University of Modena and Reggio Emilia and CNR-NANO S3, Istituto Nanoscienze, Via Campi 213/a, 41125 Modena (Italy)

2011-11-15T23:59:59.000Z

80

Gate-Recessed InAlN/GaN HEMTs on SiC Substrate With Al[subscript 2]O[subscript 3] Passivation  

E-Print Network (OSTI)

We studied submicrometer (L[subscript G] = 0.15-0.25 ¿m) gate-recessed InAlN/AlN/GaN high-electron mobility transistors (HEMTs) on SiC substrates with 25-nm Al[subscript 2]O[subscript 3] passivation. The combination of ...

Guo, Shiping

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mid-infrared InAs/AlGaSb superlattice quantum-cascade lasers  

SciTech Connect

We report on the demonstration of mid-infrared InAs/AlGaSb superlattice quantum-cascade lasers operating at 10 {mu}m. The laser structures are grown on n-InAs (100) substrate by solid-source molecular-beam epitaxy. An InAs/AlGaSb chirped superlattice structure providing a large oscillator strength and fast carrier depopulation is employed as the active part. The observed minimum threshold current density at 80 K is 0.7 kA/cm{sup 2}, and the maximum operation temperature in pulse mode is 270 K. The waveguide loss of an InAs plasmon waveguide is estimated, and the factors that determine the operation temperature are discussed.

Ohtani, K.; Fujita, K.; Ohno, H. [Laboratory for Nanoelectronics and Semiconductor Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai (Japan)

2005-11-21T23:59:59.000Z

82

Power Conversion Efficiency of AlGaAs/GaAs Schottky Diode for Low-Power On-Chip Rectenna Device Application  

Science Conference Proceedings (OSTI)

A Schottky diode has been designed and fabricated on n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences of Schottky barrier height from theoretical value are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are well rectified by the fabricated Schottky diodes and stable DC output voltage is obtained. Power conversion efficiency up to 50% is obtained at 1 GHz with series connection between diode and load. The fabricated the n-AlGaAs/GaAs Schottky diode provide conduit for breakthrough designs for ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai (Malaysia); Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 Skudai Johor Malaysia (Malaysia); Osman, Mohd Nizam [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

2011-05-25T23:59:59.000Z

83

Transmission electron microscopy characterization of electrically stressed AlGaN/GaN high electron mobility transistor devices  

Science Conference Proceedings (OSTI)

A set of AlGaN/GaN high electron mobility transistor devices has been investigated using step-stress testing, and representative samples of undegraded, source-side-degraded, and drain-side-degraded devices were examined using electron microscopy and microanalysis. An unstressed reference sample was also examined. All tested devices and their corresponding transmission electron microscopy samples originated from the same wafer and thus received nominally identical processing. Step-stressing was performed on each device and the corresponding current voltage characteristics were generated. Degradation in electrical performance, specifically greatly increased gate leakage current, was shown to be correlated with the presence of crystal defects near the gate edges. However, the drain-side-degraded device showed a surface pit on the source side, and another region of the same device showed no evidence of damage. Moreover, significant metal diffusion into the barrier layer from the gate contacts was also observed, as well as thin amorphous oxide layers below the gate metal contacts, even in the unstressed sample. Overall, these observations emphasize that gate-edge defects provide only a partial explanation for device failure.

Johnson, Michael [Arizona State University; Cullen, David A [ORNL; Liu, Lu [University of Florida; Kang, Tsung Sheng [University of Florida, Gainesville; Ren, F. [University of Florida; Chang, C. Y. [University of Florida; Pearton, S. J. [University of Florida; Jang, Soohwan [University of Florida, Gainesville; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Smith, David J [Arizona State University

2012-01-01T23:59:59.000Z

84

Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.  

Science Conference Proceedings (OSTI)

The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall; Allerman, Andrew Alan; Koleske, Daniel David; Lee, Stephen Roger; Coltrin, Michael Elliott

2005-03-01T23:59:59.000Z

85

Aluminum nitride transitional layer for reducing dislocation density and cracking of AlGaN epitaxial films  

DOE Patents (OSTI)

A denticulated Group III nitride structure that is useful for growing Al.sub.xGa.sub.1-xN to greater thicknesses without cracking and with a greatly reduced threading dislocation (TD) density.

Allerman, Andrew A.; Crawford, Mary H.; Lee, Stephen R.

2013-01-08T23:59:59.000Z

86

Thermal stability of the deep ultraviolet emission from AlGaN/AlN Stranski-Krastanov quantum dots  

Science Conference Proceedings (OSTI)

We report on the structural and optical properties of AlGaN/AlN quantum dot (QD) superlattices synthesized by plasma-assisted molecular-beam epitaxy. Modifying the composition and geometry of the QDs, the peak emission wavelength can be shifted from 320 nm to 235 nm while keeping the internal quantum efficiency larger than 30%. The efficient carrier confinement is confirmed by the stability of the photoluminescence (PL) intensity and decay time, from low temperature up to 100 K. Above this threshold, the PL intensity decreases and the radiative lifetime increases due to carrier thermalization. We also identified the intraband electronic transition between the ground level of the conduction band and the first excited state confined along the growth axis (s-p{sub z}).

Himwas, C.; Songmuang, R.; Le Si Dang [CEA-CNRS Group 'Nanophysique et Semiconducteurs,' Institut Neel-CNRS, 25 rue des Martyrs, 38042 Grenoble Cedex 9 (France); Bleuse, J.; Monroy, E. [CEA-CNRS Group 'Nanophysique et Semiconducteurs,' INAC-SP2M, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Rapenne, L.; Sarigiannidou, E. [INP-Grenoble/Minatec, 3 parvis Louis Neel BP257, 38016 Grenoble (France)

2012-12-10T23:59:59.000Z

87

Time-resolved resonance and linewidth of an ultrafast switched GaAs/AlAs microcavity  

E-Print Network (OSTI)

We explore a planar GaAs/AlAs photonic microcavity using pump-probe spectroscopy. Free carriers are excited in the GaAs with short pump pulses. The time-resolved reflectivity is spectrally resolved short probe pulses. We show experimentally that the cavity resonance and its width depend on the dynamic refractive index of both the lambda-slab and the lambda/4 GaAs mirrors. We clearly observe a double exponential relaxation of both the the cavity resonance and its width, which is due to the different recombination timescales in the lambda-slab and the mirrors. In particular, the relaxation time due to the GaAs mirrors approaches the photon storage time of the cavity, a regime for which nonlinear effects have been predicted. The strongly non-single exponential behavior of the resonance and the width is in excellent agreement to a transfer-matrix model taking into account two recombination times. The change in width leads to a change in reflectivity modulation depth. The model predicts an optimal cavity Q for any...

Harding, Philip J; Hartsuiker, Alex; Nowicki-Bringuier, Yoanna-Reine; Gerard, Jean-Michel; Vos, Willem L

2009-01-01T23:59:59.000Z

88

Atomic-layer-deposited Al2O3 and HfO2 on GaN: A comparative study on interfaces and electrical characteristics  

Science Conference Proceedings (OSTI)

Al"2O"3, HfO"2, and composite HfO"2/Al"2O"3 films were deposited on n-type GaN using atomic layer deposition (ALD). The interfacial layer of GaON and HfON was observed between HfO"2 and GaN, whereas the absence of an interfacial layer at Al"2O"3/GaN ... Keywords: Al2O3, Atomic-layer-deposition (ALD), GaN, HfO2, High k dielectric, MOS

Y. C. Chang; M. L. Huang; Y. H. Chang; Y. J. Lee; H. C. Chiu; J. Kwo; M. Hong

2011-07-01T23:59:59.000Z

89

Scattering and electron mobility in combination-doped HFET-structures AlGaAs/InGaAs/AlGaAs with high electron density  

Science Conference Proceedings (OSTI)

Molecular-beam epitaxy is used for growing structures differing in doping technique and doping level and having a high two-dimensional-electron concentration n{sub s} in the quantum well. The effect of doping combining uniform and {delta} doping on the electron-transport properties of heterostructures is investigated. A new type of structure with a two-sided silicon {delta} doping of GaAs transition layers located on the quantum-well boundaries is proposed. The largest value of electron mobility {mu}{sub H} = 1520 cm{sup 2}/(V s) is obtained simultaneously with a high electron density n{sub s} = 1.37 Multiplication-Sign 10{sup 13} cm{sup -2} at 300 K with such a doping. It is associated with decreasing electron scattering by an ionized impurity, which is confirmed by the carried out calculations.

Khabibullin, R. A., E-mail: khabibullin_r@mail.ru; Vasil'evskii, I. S. [MEPHI National Research Nuclear University (Russian Federation); Galiev, G. B.; Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Ponomarev, D. S. [MEPHI National Research Nuclear University (Russian Federation); Lunin, R. A.; Kulbachinskii, V. A. [Moscow State University (Russian Federation)

2011-10-15T23:59:59.000Z

90

Polarization-balanced design of AlN/GaN heterostructures: Application to double-barrier structures  

E-Print Network (OSTI)

Inversion- and depletion- regions generally form at the interfaces between doped leads (cladding layers) and the active region in wurtzite c-plane AlN/GaN heterostructures. The band bending in the depletion region can seriously impede perpendicular electronic transport. To counter the formation of these regions, we consider polarization-balanced designs of AlN/GaN heterostructures based on matching the applied bias to the internal voltage drop arising from spontaneous and piezeolectric fields. To retain freedom of design we use alloyed Al$_{\\tilde{x}}$Ga$_{1-\\tilde{x}}$N leads. Use of pure GaN leads requires huge voltage drops which severely restricts design. The alloy concentration $\\tilde{x}$ tunes the internal voltage drop over the structure. For short active regions comprised of AlN and GaN layers, we derive a simple relation between the applied bias, average alloy composition of the active region, and the alloy concentration of the leads. We study polarization-balanced designs for AlN barriers structures...

Berland, Kristian; Hyldgaard, Per

2011-01-01T23:59:59.000Z

91

Theoretical And Experimental Studies Of The Effects Of Rapid Thermal Annealing In GaAs/AlGaAs Quantum Dots Grown By Droplet Epitaxy  

Science Conference Proceedings (OSTI)

We fabricated low-density GaAs/AlGaAs quantum dots for single photon source by droplet epitaxy. We investigated the emission energies of the dots and underlying superlattice by using photoluminescence and cathodoluminescence measurements. By forming a mesa etched structure, we distinguished the transitions from the superlattice and the dots. And we calculated the diffusion length in this system from the peak shift of the superlattice, and applied the diffusion to the dots to investigate the emission energy shift of the QDs.z

Moon, P. [Nano Convergence Devices Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa (Japan); Ha, S.-K.; Song, J. D.; Lim, J. Y.; Choi, W. J.; Han, I. K.; Lee, J. I. [Nano Convergence Devices Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Bounouar, S.; Donatini, F.; Dang, L. S.; Poizat, J. P. [CEA/CNRS/UJF team 'Nanophysics and semiconductors', Institute Neel/CNRS-UJF, Grenoble (France); Kim, J. S. [Department of Physics, Yeungnam University, Gyeonsan (Korea, Republic of)

2011-12-23T23:59:59.000Z

92

Single photon emission from impurity centers in AlGaAs epilayers on Ge and Si substrates  

SciTech Connect

We show that the epitaxial growth of thin layers of AlGaAs on Ge and Si substrates allows to obtain single photon sources by exploiting the sparse and unintentional contamination with acceptors of the AlGaAs. Very bright and sharp single photoluminescence lines are observed in confocal microscopy. These lines behave very much as single excitons in quantum dots, but their implementation is by far much easier, since it does not require 3D nucleation. The photon antibunching is demonstrated by time resolved Hanbury Brown and Twiss measurements.

Minari, S.; Cavigli, L.; Sarti, F.; Abbarchi, M.; Accanto, N.; Munoz Matutano, G.; Vinattieri, A.; Gurioli, M. [Dipartimento di Fisica e Astronomia, LENS and CNISM, Universita di Firenze, Via Sansone 1, I-50019 Firenze (Italy); Bietti, S.; Sanguinetti, S. [Dipartimento di Scienza dei Materiali and L-NESS, Universita di Milano Bicocca, Via Cozzi 53, I-20125 Milano (Italy)

2012-10-22T23:59:59.000Z

93

Alliance Laundry Systems LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliance Laundry Systems LLC Alliance Laundry Systems LLC Shepard Street, P.O. Box 990 Ripon, WI 54971-0990 Tel 920.748.3121 Fax 920.748.4429 www.comlaundry.com Via E-Mail - GC_comments@hq.doe.gov December 7, 2010 Mr. Scott Blake Harris General Counsel U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Subject: Your Request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers Dear Mr. Harris: Thank you for asking for our comments. Alliance Laundry Systems LLC (ALS) is knowledgeable of the multiple petitions for waiver to the Department's Clothes Washer Test Procedure, regarding the need for an expanded "test load size" table to account for clothes container capacities beyond the existing test procedure Table 5.1 maximum capacity of 3.5 cubic feet. While we do not manufacture clothes washers

94

II3, 2?m Thick Device Quality GaN on Si(111) Using AlGaN Graded ...  

Science Conference Proceedings (OSTI)

I4, Electrical Spin Injection in a Hybrid Organic/Inorganic Spin-Polarized Light Emitting Diode (Spin-LED) I5, Properties of MnAs/GaMnAs/MnAs Magnetic...

95

Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector  

SciTech Connect

Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G. [Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH 45433 (United States)] [Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH 45433 (United States)

2013-02-11T23:59:59.000Z

96

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY...

97

Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations  

Science Conference Proceedings (OSTI)

Deep-UV optical gain has been demonstrated in Al{sub 0.7}Ga{sub 0.3}N/AlN multiple quantum wells under femtosecond optical pumping. Samples were grown by molecular beam epitaxy under a growth mode that introduces band structure potential fluctuations and high-density nanocluster-like features within the AlGaN wells. A maximum net modal gain value of 118 {+-} 9 cm{sup -1} has been measured and the transparency threshold of 5 {+-} 1 {mu}J/cm{sup 2} was experimentally determined, corresponding to 1.4 x 10{sup 17} cm{sup -3} excited carriers. These findings pave the way for the demonstration of solid-state lasers with sub-250 nm emission at room temperature.

Francesco Pecora, Emanuele; Zhang Wei; Nikiforov, A.Yu.; Yin Jian; Paiella, Roberto; Dal Negro, Luca; Moustakas, T. D. [Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215 (United States); Zhou Lin; Smith, David J. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)

2012-02-06T23:59:59.000Z

98

Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy  

SciTech Connect

Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

Brubaker, Matt D. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); DARPA Center for Integrated Micro/Nano-Electromechanical Transducers (iMINT), University of Colorado, Boulder, Colorado 80309 (United States); Levin, Igor; Davydov, Albert V. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Bright, Victor M. [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); DARPA Center for Integrated Micro/Nano-Electromechanical Transducers (iMINT), University of Colorado, Boulder, Colorado 80309 (United States)

2011-09-01T23:59:59.000Z

99

Activation energy of degradation in GaAlAs double heterostructure laser diodes  

SciTech Connect

Aging test of GaAlAs double heterostructure (DH) laser diodes is performed in the temperature range of 50--180 /sup 0/C. In samples for the aging test, AuSn-alloy bonding solder is used and the facet coating with Al/sub 2/O/sub 3/ film is performed. Samples are operated in the light emitting diode (LED) mode with the application of the constant current of 4 kA/cm/sup 2/ and 6 kA/cm/sup 2/ at temperatures above 80 /sup 0/C and in the automatic power control (APC) lasing mode with the constant optical power of 5 mW/facet at 50 and 70 /sup 0/C. The activation energy is 0.5 eV obtained from the results of the LED mode operation at 4 kA/cm/sup 2/. The parameter to evaluate the degradation is the current at which the optical power at 25 /sup 0/C is 5 mW/facet. This parameter includes the deterioration of the external differencial efficiency. It is shown that the increasing rates of this parameter are almost the same at the same temperature between the LED mode operation at 4 kA/cm/sup 2/ and 6 kA/cm/sup 2/. The increasing rate is almost the same when samples are operated in the APC lasing mode. Twenty-three samples operated at 70 /sup 0/C maintain the optical power of 5 mW/facet set initially over 5000 h. The averaged increasing rate of that parameter in these samples is 7.1 x 10/sup -6//h. The activation energy of 0.5 eV is almost the same as that of GaAlAs DH LED's which is 0.56 eV. It is presumed that point defects which disperse homogeneously cause the degradation of laser diodes and this degradation mode seemed to be the same as LED owing to the improvements against the facet degradation and the contact degradation.

Imai, H.; Hori, K.; Takusagawa, M.; Wakita, K.

1981-05-01T23:59:59.000Z

100

SF{sub 6}/O{sub 2} plasma effects on silicon nitride passivation of AlGaN/GaN high electron mobility transistors  

SciTech Connect

The effects of various plasma and wet chemical surface pretreatments on the electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) passivated with plasma-deposited silicon nitride were investigated. The results of pulsed IV measurements show that samples exposed to various SF{sub 6}/O{sub 2} plasma treatments have markedly better rf dispersion characteristics compared to samples that were either untreated or treated in wet buffered oxide etch prior to encapsulation. The improvement in these characteristics correlates with the reduction of carbon on the semiconductor surface as measured with x-ray photoelectron spectroscopy. HEMT channel sheet resistance was also affected by varying silicon nitride deposition parameters.

Meyer, David J.; Flemish, Joseph R.; Redwing, Joan M. [Materials Science and Engineering Department, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2006-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improvement of near-infrared absorption linewidth in AlGaN/GaN superlattices by optimization of delta-doping location  

Science Conference Proceedings (OSTI)

We report a systematic study of the near-infrared intersubband absorption in AlGaN/GaN superlattices grown by plasma-assisted molecular-beam epitaxy as a function of Si-doping profile with and without {delta}-doping. The transition energies are in agreement with theoretical calculations including many-body effects. A dramatic reduction of the intersubband absorption linewidth is observed when the {delta}-doping is placed at the end of the quantum well. This reduction is attributed to the improvement of interface roughness. The linewidth dependence on interface roughness is well reproduced by a model that considers the distribution of well widths measured with transmission electron microscopy.

Edmunds, C.; Cervantes, M.; Malis, O. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Tang, L.; Shao, J.; Li, D. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Gardner, G. [Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Zakharov, D. N. [Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); Manfra, M. J. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-09-03T23:59:59.000Z

102

Improved Off-State Stress Critical Voltage on AlGaN/GaN High Electron Mobility Transistors Utilizing Pt/Ti/Au Based Gate Metallization  

Science Conference Proceedings (OSTI)

The critical voltage for degradation of AlGaN/GaN high electron mobility transistors (HEMTs) employed with the Pt/Ti/Au gate metallization instead of the commonly used Ni/Au was significantly increased during the off-state stress. The typical critical voltage for HEMTs with Ni/Au gate metallization was around -60V. By sharp contrast, no critical voltage was observed for the HEMTs with Pt/Ti/Au gate metallization, even up to -100V, which was the instrumental limitation in this experiment. Both Schottky forward and reverse gate characteristics of the Ni/Au degraded once the gate voltage passed the critical voltage of around -60V. There was no degradation exhibited for the HEMTs with Pt-gated HEMTs.

Lo, C. F. [University of Florida; Liu, L. [University of Florida, Gainesville; Kang, Tsung Sheng [University of Florida, Gainesville; Davies, Ryan [University of Florida; Gila, Brent P. [University of Florida, Gainesville; Pearton, S. J. [University of Florida; Kravchenko, Ivan I [ORNL; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Ren, F. [University of Florida

2011-01-01T23:59:59.000Z

103

Real-time x-ray response of biocompatible solution gate AlGaN/GaN high electron mobility transistor devices  

Science Conference Proceedings (OSTI)

We present the real-time x-ray irradiation response of charge and pH sensitive solution gate AlGaN/GaN high electron mobility transistors. The devices show stable and reproducible behavior under and following x-ray radiation, including a linear integrated response with dose into the muGy range. Titration measurements of devices in solution reveal that the linear pH response and sensitivity are not only retained under x-ray irradiation, but an irradiation response could also be measured. Since the devices are biocompatible, and can be simultaneously operated in aggressive fluids and under hard radiation, they are well-suited for both medical radiation dosimetry and biosensing applications.

Hofstetter, Markus; Funk, Maren; Paretzke, Herwig G.; Thalhammer, Stefan [Helmholtz Zentrum Muenchen, Ingolstaedter Landstrasse 1, 85764 Neuherberg (Germany); Howgate, John; Sharp, Ian D.; Stutzmann, Martin [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

2010-03-01T23:59:59.000Z

104

Spire Semiconductor formerly Bandwidth Semiconductor LLC | Open Energy  

Open Energy Info (EERE)

Semiconductor formerly Bandwidth Semiconductor LLC Semiconductor formerly Bandwidth Semiconductor LLC Jump to: navigation, search Name Spire Semiconductor (formerly Bandwidth Semiconductor LLC) Place Hudson, New Hampshire Zip 3051 Product Spire-owned US-based manufacturer of gallium-arsenide (GaAs) cells; offers design and manufacturing capabilities of concentrator cells. References Spire Semiconductor (formerly Bandwidth Semiconductor LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spire Semiconductor (formerly Bandwidth Semiconductor LLC) is a company located in Hudson, New Hampshire . References ↑ "Spire Semiconductor (formerly Bandwidth Semiconductor LLC)" Retrieved from "http://en.openei.org/w/index.php?title=Spire_Semiconductor_formerly_Bandwidth_Semiconductor_LLC&oldid=351621"

105

High photo-excited carrier multiplication by charged InAs dots in AlAs/GaAs/AlAs resonant tunneling diode  

E-Print Network (OSTI)

We present an approach for the highly sensitive photon detection based on the quantum dots (QDs) operating at temperature of 77K. The detection structure is based on an AlAs/GaAs/AlAs double barrier resonant tunneling diode combined with a layer of self-assembled InAs QDs (QD-RTD). A photon rate of 115 photons per second had induced 10nA photocurrent in this structure, corresponding to the photo-excited carrier multiplication factor of 10^7. This high multiplication factor is achieved by the quantum dot induced memory effect and the resonant tunneling tuning effect of QD-RTD structure.

Wang, Wangping; Xiong, Dayuan; Li, Ning; Lu, Wei

2007-01-01T23:59:59.000Z

106

High photo-excited carrier multiplication by charged InAs dots in AlAs/GaAs/AlAs resonant tunneling diode  

E-Print Network (OSTI)

We present an approach for the highly sensitive photon detection based on the quantum dots (QDs) operating at temperature of 77K. The detection structure is based on an AlAs/GaAs/AlAs double barrier resonant tunneling diode combined with a layer of self-assembled InAs QDs (QD-RTD). A photon rate of 115 photons per second had induced 10nA photocurrent in this structure, corresponding to the photo-excited carrier multiplication factor of 10^7. This high multiplication factor is achieved by the quantum dot induced memory effect and the resonant tunneling tuning effect of QD-RTD structure.

Wangping Wang; Ying Hou; Dayuan Xiong; Ning Li; Wei Lu

2007-10-15T23:59:59.000Z

107

Drift velocity of electrons in quantum wells of selectively doped In{sub 0.5}Ga{sub 0.5}As/Al{sub x}In{sub 1-x}As and In{sub 0.2}Ga{sub 0.8}As/Al{sub x}Ga{sub 1-x}As heterostructures in high electric fields  

Science Conference Proceedings (OSTI)

The field dependence of drift velocity of electrons in quantum wells of selectively doped In{sub 0.5}Ga{sub 0.5}As/Al{sub x}In{sub 1-x}As and In{sub 0.2}Ga{sub 0.8}As/Al{sub x}Ga{sub 1-x}As heterostructures is calculated by the Monte Carlo method. The influence of varying the molar fraction of Al in the composition of the Al{sub x}Ga{sub 1-x}As and Al{sub x}In{sub 1-x}As barriers of the quantum well on the mobility and drift velocity of electrons in high electric fields is studied. It is shown that the electron mobility rises as the fraction x of Al in the barrier composition is decreased. The maximum mobility in the In{sub 0.5}Ga{sub 0.5}As/In{sub 0.8}Al{sub 0.2}As quantum wells exceeds the mobility in a bulk material by a factor of 3. An increase in fraction x of Al in the barrier leads to an increase in the threshold field E{sub th} of intervalley transfer (the Gunn effect). The threshold field is E{sub th} = 16 kV/cm in the In{sub 0.5}Ga{sub 0.5}As/Al{sub 0.5}In{sub 0.5}As heterostructures and E{sub th} = 10 kV/cm in the In{sub 0.2}Ga{sub 0.8}As/Al{sub 0.3}Ga{sub 0.7}As heterostructures. In the heterostructures with the lowest electron mobility, E{sub th} = 2-3 kV/cm, which is lower than E{sub th} = 4 kV/cm in bulk InGaAs.

Pozela, J., E-mail: pozela@pfi.lt; Pozela, K.; Raguotis, R.; Juciene, V. [Center for Physical Sciences and Technology, Semiconductor Physics Institute (Lithuania)

2011-06-15T23:59:59.000Z

108

Cl{sub 2}-based dry etching of the AlGaInN system in inductively coupled plasmas  

DOE Green Energy (OSTI)

Cl{sub 2}-based Inductively Coupled Plasmas with low additional dc self- biases(-100V) produce convenient etch rates(500-1500 A /min) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas(Ar, N{sub 2}, H{sub 2}), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl{sub 2} in the discharge for all three mixtures, and to have an increase(decrease) in etch rate with source power(pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.

Cho, Hyun; Vartuli, C.B.; Abernathy, C.R.; Donovan, S.M.; Pearton, S.J. [Florida Univ., Gainesville, FL (United States). Dept. of Materials Science and Engineering; Shul, R.J.; Han, J. [Sandia National Labs., NM (United States)

1997-12-01T23:59:59.000Z

109

Strain control of AlGaN/GaN high electron mobility transistor structures on silicon (111) by plasma assisted molecular beam epitaxy  

Science Conference Proceedings (OSTI)

This paper reports on the use of plasma assisted molecular beam epitaxy of AlGaN/GaN-based high electron mobility transistor structures grown on 4 in. Si (111) substrates. In situ measurements of wafer curvature during growth proved to be a very powerful method to analyze the buffer layer's thickness dependent strain. The Ga/N ratio at the beginning of growth of the GaN buffer layer is the critical parameter to control the compressive strain of the entire grown structure. An engineered amount of compressive strain must be designed into the structure to perfectly compensate for the tensile strain caused by differences in the thermal expansion coefficient between the epi-layer and substrate during sample cool down from growth temperatures. A maximum film thickness of 4.2 {mu}m was achieved without the formation of any cracks and a negligible bow of the wafers below 10 {mu}m. Measurement of the as-grown wafers revealed depth profiles of the charge carrier concentration comparable to values achieved on SiC substrates and mobility values of the two dimensional electron gas in the range 1230 to 1350 cm{sup 2}/Vs at a charge carrier concentration of 6.5-7 10{sup 12}/cm{sup 2}. First results on processed wafers with 2 {mu}m thick buffer layer indicate very promising results with a resistance of the buffer, measured on 200 {mu}m long contacts with 15 {mu}m pitch, in the range of R > 10{sup 9}{Omega} at 100 V and breakdown voltages up to 550 V.

Aidam, Rolf; Diwo, Elke; Rollbuehler, Nicola; Kirste, Lutz; Benkhelifa, Fouad [Fraunhofer-Institute for Applied Solid State Physics, Tullastrasse 72, 79108 Freiburg (Germany)

2012-06-01T23:59:59.000Z

110

Growth and properties of InGaAs/FeAl/InAlAs/InP heterostructures for buried reflector/interconnect applications in InGaAs thermophotovoltaic devices  

DOE Green Energy (OSTI)

Thermophotovoltaic cells consisting of InGaAs active layers are of extreme promise for high efficiency, low bandgap TPV conversion. In the monolithic interconnected module configuration, the presence of the InGaAs lateral conduction layer (LCL) necessary for the series connection between TPV cells results in undesirable free carrier absorption, causing a tradeoff between series resistance and optical absorption losses in the infrared. A potential alternative is to replace the LCL with an epitaxial metal layer that would provide a low-resistance interconnect while not suffering from free carrier absorption. The internal metal layer would also serve as an efficient, panchromatic back surface reflector, providing the additional advantage of increased effective optical thickness of the InGaAs cell. In this paper, the authors present the first results on the growth and development of buried epitaxial metal layers for TPV applications. High quality, single crystal, epitaxial Fe{sub x}Al{sub 1{minus}x} layers were grown on InAlAs/InP substrates, having compositions in the range x = 0.40--0.80. Epitaxial metal layers up to 1,000 {angstrom} in thickness were achieved, with excellent uniformity over large areas and atomically smooth surfaces. X-ray diffraction studies indicate that all FeAl layers are strained with respect to the substrate, for the entire composition range studied and for all thicknesses. The FeAl layers exhibit excellent resistance characteristics, with resistivities from 60 {micro}ohm-cm to 100 {micro}ohm-cm, indicating that interface scattering has a negligible effect on lateral conductivity. Reflectance measurements show that the FeAl thickness must be at least 1,000 {angstrom} to achieve > 90% reflection in the infrared.

Ringel, S.A.; Sacks, R.N.; Qin, L. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering; Clevenger, M.B.; Murray, C.S. [Bettis Atomic Power Lab., West Mifflin, PA (United States)

1998-11-01T23:59:59.000Z

111

Spin injection into semiconductors : the role of Fe/Al[sub x]Ga[sub 1-x]As interface  

SciTech Connect

The influence of the growth and post-growth annealing temperatures of Fe/Al{sub x}Ga{sub 1-x}As-based spin light-emitting diodes (LEDs) on the spin injection efficiency is discussed. The extent of interfacial reactions during molecular beam epitaxial growth of Fe on GaAs was determined from in-situ x-ray photoelectron spectroscopy studies. The Fe/GaAs interface results in {<=} 3 monolayers of reaction for Fe grown at -15 C. Intermediate growth temperatures (95 C) lead to {approx}5 monolayers of interfacial reactions, and high growth temperatures of 175 C lead to a {approx}9 monolayer thick reacted layer. Polarized neutron reflectivity was used to determine the interfacial magnetic properties of epitaxial Fe{sub 0.5}Co{sub 0.5}/GaAs heterostructures grown under identical conditions. No interfacial magnetic dead layer is detected at the interface for Fe{sub 0.5}Co{sub 0.5} films grown at -15 C, an {approx}6 {angstrom} thick nonmagnetic layer formed at the interface for 95 C growth and an {approx}5 {angstrom} thick magnetic interfacial reacted layer formed for growth at 175 C. Spin injection from Fe contacts into spin LEDs decreases sharply when reactions result in a nonmagnetic interfacial layer. Significant spin injection signals are obtained from Fe contacts grown between -5 C and 175 C, although the higher Fe growth temperatures resulted in a change in the sign of the spin polarization. Post-growth annealing of the spin LEDs is found to increase spin injection efficiency for low Fe growth temperatures and to a sign reversal of the spin polarization for high growth temperature (175 C). An effective Schottky barrier height increase indicates that post growth annealing modifies the Fe/Al{sub x}Ga{sub 1-x}As interface.

Fitzsimmons, M. R. (Michael R.); Park, S. (Sungkyun)

2004-01-01T23:59:59.000Z

112

Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film  

E-Print Network (OSTI)

The morphology evolution of high-temperature grown AlN nucleation layers on (111) silicon has been studied using atomic force microscopy (AFM). The structure and morphology of subsequently grown GaN film were characterized ...

Zang, Keyan

113

II2, GaN/AlN Heterostructures on Vertical {111} Fin Facets of Si (110)  

Science Conference Proceedings (OSTI)

I4, Electrical Spin Injection in a Hybrid Organic/Inorganic Spin-Polarized Light Emitting Diode (Spin-LED) I5, Properties of MnAs/GaMnAs/MnAs Magnetic...

114

Comparison of dc performance of Pt/Ti/Au- and Ni/Au-Gated AlGaN/GaN High Electron Mobility Transistors  

Science Conference Proceedings (OSTI)

We have demonstrated significant improvements of AlGaN/GaN High Electron Mobility Transistors (HEMTs) dc performance by employing Pt/Ti/Au instead of the conventional Ni/Au gate metallization. During off-state bias stressing, the typical critical voltage for HEMTs with Ni/Au gate metallization was ~ -45 to -65V. By sharp contrast, no critical voltage was observed for HEMTs with Pt/Ti/Au gate metallization, even up to -100V, which was the instrumental limitation in this experiment. After the off-state stressing, the drain current of Ni/Au gated-HEMTs decreased by~ 15%. For the Pt-gate HEMTs, no degradation of the drain current occurred and there were minimal changes in the Schottky gate characteristics for both forward and reverse bias conditions. The HEMTs with Pt/Ti/Au metallization showed an excellent drain on/off current ratio of 1.5 108. The on/off drain current ratio of Ni-gated HEMTs was dependent on the drain bias voltage and ranged from 1.2 107 at Vds=5V and 6 105

Liu, L. [University of Florida, Gainesville; Lo, C. F. [University of Florida; Kang, Tsung Sheng [University of Florida, Gainesville; Pearton, S. J. [University of Florida; Kravchenko, Ivan I [ORNL; Laboutin, O. [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Ren, F. [University of Florida

2011-01-01T23:59:59.000Z

115

Investigation of mechanisms of multimode emission from double-heterostructure AlGaAs injection lasers with narrow stripe contacts  

SciTech Connect

An investigation was made of the spectral characteristics of planar stripe (contact width 6--8 ..mu..) lasers made of AlGaAs heterostructures. The steady-state emission spectrum could be of multimode type because of the high level of spontaneous emission in the lasing mode. The spectrum then became narrower on increase in the power and in the limit changed to the single-mode form. However, in the presence of self-modulation processes the multimode nature of the emission spectrum could be explained by a theory of transient effects and in this case the width of the spectrum increased on increase in the power.

Bessonov, Y.L.; Kurlenkov, S.S.; Morozov, V.N.; Sapozhnikov, S.M.; Thai, C.t.; Shidlovskii, V.R.

1985-02-01T23:59:59.000Z

116

C-V characteristics of epitaxial germanium metal-oxide-semiconductor capacitor on GaAs substrate with ALD Al2O3 dielectric  

Science Conference Proceedings (OSTI)

Epitaxial germanium metal-oxide-semiconductor capacitors (MOSCAP) were fabricated on GaAs substrate using atomic layer deposited Al"2O"3 gate dielectric with surface treatments including pure HF and HF plus rapid thermal oxidation (RTO). The electrical ... Keywords: ALD Al2O3, CMOS integration, Ge MOSCAP, Ge epitaxial film, RTO

Shih Hsuan Tang; Chien I. Kuo; Hai Dang Trinh; Mantu Hudait; Edward Yi Chang; Ching Yi Hsu; Yung Hsuan Su; Guang-Li Luo; Hong Quan Nguyen

2012-09-01T23:59:59.000Z

117

Lattice constant grading in the Al.sub.y Ga.sub.1-y As.sub.1-x Sb.sub.x alloy system  

DOE Patents (OSTI)

Liquid phase epitaxy is employed to grow a lattice matched layer of GaAsSb on GaAs substrates through the compositional intermediary of the III-V alloy system AlGaAsSb which acts as a grading layer. The Al constituent reaches a peak atomic concentration of about 6% within the first 2.5 .mu.m of the transition layer, then decreases smoothly to about 1% to obtain a lattice constant of 5.74 A. In the same interval the equilibrium concentration of Sb smoothly increases from 0 to about 9 atomic percent to form a surface on which a GaAsSb layer having the desired energy bandgap of 1.1 ev for one junction of an optimized dual junction photolvoltaic device. The liquid phase epitaxy is accomplished with a step cooling procedure whereby dislocation defects are more uniformly distributed over the surface of growing layer.

Moon, Ronald L. (Palo Alto, CA)

1980-01-01T23:59:59.000Z

118

Effects of proton irradiation on dc characteristics of InAlN/GaN high electron mobility transistors  

Science Conference Proceedings (OSTI)

The effects of proton irradiation on the dc characteristics of InAlN/GaN high electron mobility transistors were investigated. In this study we used 5 MeV protons with doses varying from 21011 to 21015 cm2. The transfer resistance and contact resistivity suffered more degradation as compared to the sheet resistance. With irradiation at the highest dose of 21015 cm2, both forward- and reverse-bias gate currents were increased after proton irradiation. A negative threshold-shift and reduction of the saturation drain current were also observed as a result of radiation-induced carrier scattering and carrier removal. Devices irradiated with doses of 21011 to 21015 cm2 exhibited minimal degradation of the saturation drain current and extrinsic trans- conductance. These results show that InAlN/GaN high electron mobility transistors are attractive for space-based applications when high-energy proton fluxes are present. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3644480

Lo, C. F. [University of Florida; Liu, L. [University of Florida, Gainesville; Ren, F. [University of Florida; Kim, H.-Y. [Korea University; Kim, J. [Korea University; Pearton, S. J. [University of Florida; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Kravchenko, Ivan I [ORNL

2011-01-01T23:59:59.000Z

119

Molecular beam epitaxy of InAlN lattice-matched to GaN with homogeneous composition using ammonia as nitrogen source  

Science Conference Proceedings (OSTI)

InAlN lattice-matched to GaN was grown by molecular beam epitaxy (MBE) using ammonia as the nitrogen source. The alloy composition, growth conditions, and strain coherence of the InAlN were verified by high resolution x-ray diffraction {omega}-2{theta} scans and reciprocal space maps. Scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy of the InAlN revealed the absence of lateral composition modulation that was observed in the films grown by plasma-assisted MBE. InAlN/AlN/GaN high electron mobility transistors with smooth surfaces were fabricated with electron mobilities exceeding 1600 cm{sup 2}/Vs and sheet resistances below 244 {Omega}/sq.

Wong, Man Hoi; Wu Feng; Hurni, Christophe A.; Choi, Soojeong; Speck, James S.; Mishra, Umesh K. [Department of Electrical and Computer Engineering and Materials Department, University of California, Santa Barbara, California 93106 (United States)

2012-02-13T23:59:59.000Z

120

SOLID SOLUTION EFFECTS ON THE THERMAL PROPERTIES IN THE MgAl2O4-MgGa2O4  

Science Conference Proceedings (OSTI)

Solid solution eects on thermal conductivity within the MgO-Al2O3-Ga2O3 system were studied. Samples with systematically varied additions of MgGa2O4 to MgAl2O4 were prepared and the laser ash technique was used to determine thermal diusivity at temperatures between 200C and 1300C. Heat capacity as a function of temperature from room temperature to 800C was also determined using dierential scanning calorimetry. Solid solution in the MgAl2O4-MgGa2O4 system decreases the thermal conductivity up to 1000C. At 200C thermal conductivity decreased 24% with a 5 mol% addition of MgGa2O4 to the system. At 1000C the thermal conductivity decreased 13% with a 5 mol% addition. Steady state calculations showed a 12.5% decrease in heat ux with 5 mol% MgGa2O4 considered across a 12 inch thickness.

O'Hara, Kelley [University of Missouri, Rolla; Smith, Jeffrey D [ORNL; Sander, Todd P. [Missouri University of Science and Technology; Hemrick, James Gordon [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radio-frequency measurements of UNiX compounds (X= Al, Ga, Ge) in high magnetic fields  

SciTech Connect

We performed radio-frequency (RF) skin-depth measurements of antiferromagnetic UNiX compounds (X=Al, Ga, Ge) in magnetic fields up to 60 T and at temperatures between 1.4 to {approx}60 K. Magnetic fields are applied along different crystallographic directions and RF penetration-depth was measured using a tunnel-diode oscillator (TDO) circuit. The sample is coupled to the inductive element of a TDO resonant tank circuit, and the shift in the resonant frequency {Delta}f of the circuit is measured. The UNiX compounds exhibit field-induced magnetic transitions at low temperatures, and those transitions are accompanied by a drastic change in {Delta}f. The results of our skin-depth measurements were compared with previously published B-T phase diagrams for these three compounds.

Mielke, Charles H [Los Alamos National Laboratory; Mcdonald, David R [Los Alamos National Laboratory; Zapf, Vivien [Los Alamos National Laboratory; Altarawneh, Moaz M [Los Alamos National Laboratory; Lacerda, Alex H [Los Alamos National Laboratory; Adak, Sourav [Los Alamos National Laboratory; Karunakar, Kothapalli [Los Alamos National Laboratory; Nakotte, Heinrich [Los Alamos National Laboratory; Chang, S [NIST; Alsmadi, A M [HASHEMITE UNIV; Alyones, S [HASHEMIT UNIV

2009-01-01T23:59:59.000Z

122

The effects of proton irradiation on the reliability of InAlN/GaN high electron mobility transistors  

Science Conference Proceedings (OSTI)

We have investigated the effect of proton irradiation on reliability of InAlN/GaN high electron mobility transistors (HEMTs). Devices were subjected to 5-15 MeV proton irradiations with a fixed dose of 5 1015 cm-2, or to a different doses of 2 1011, 5 1013 or 2 1015 cm-2 of protons at a fixed energy of 5 MeV. During off-state electrical stressing, the typical critical voltage for un-irradiated devices was 45 to 55 V. By sharp contrast, no critical voltage was detected for proton irradiated HEMTs up to 100 V, which was instrument-limited. After electrical stressing, no degradation was observed for the drain or gate current-voltage characteristics of the proton-irradiated HEMTs. However, the drain current decreased ~12%, and the reverse bias gate leakage current increased more than two orders of magnitude for un-irradiated HEMTs as a result of electrical stressing.

Liu, L. [University of Florida, Gainesville; Lo, C. F. [University of Florida; Xi, Y. Y. [University of Florida, Gainesville; Wang, Y.l. [University of Florida; Kim, H.-Y. [Korea University; Kim, J. [Korea University; Pearton, S. J. [University of Florida; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Kravchenko, Ivan I [ORNL; Ren, F. [University of Florida

2012-01-01T23:59:59.000Z

123

Seattle Asbestos Test, LLC  

Science Conference Proceedings (OSTI)

Seattle Asbestos Test, LLC. NVLAP Lab Code: 200768-0. Address and Contact Information: 19701 Scriber Lake Road, Suite ...

2013-08-02T23:59:59.000Z

124

Atomic layer deposition of Al{sub 2}O{sub 3} on GaSb using in situ hydrogen plasma exposure  

SciTech Connect

In this report, we study the effectiveness of hydrogen plasma surface treatments for improving the electrical properties of GaSb/Al{sub 2}O{sub 3} interfaces. Prior to atomic layer deposition of an Al{sub 2}O{sub 3} dielectric, p-GaSb surfaces were exposed to hydrogen plasmas in situ, with varying plasma powers, exposure times, and substrate temperatures. Good electrical interfaces, as indicated by capacitance-voltage measurements, were obtained using higher plasma powers, longer exposure times, and increasing substrate temperatures up to 250 Degree-Sign C. X-ray photoelectron spectroscopy reveals that the most effective treatments result in decreased SbO{sub x}, decreased Sb, and increased GaO{sub x} content at the interface. This in situ hydrogen plasma surface preparation improves the semiconductor/insulator electrical interface without the use of wet chemical pretreatments and is a promising approach for enhancing the performance of Sb-based devices.

Ruppalt, Laura B.; Cleveland, Erin R.; Champlain, James G.; Prokes, Sharka M.; Brad Boos, J.; Park, Doewon; Bennett, Brian R. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2012-12-03T23:59:59.000Z

125

Molecular beam epitaxial growth of metamorphic AlInSb/GaInSb high-electron-mobility-transistor structures on GaAs substrates for low power and high frequency applications  

Science Conference Proceedings (OSTI)

We report on molecular beam epitaxial growth of AlInSb/GaInSb metamorphic high-electron-mobility-transistor structures for low power, high frequency applications on 4 in. GaAs substrates. The structures consist of a Ga{sub 0.4}In{sub 0.6}Sb channel embedded in Al{sub 0.4}In{sub 0.6}Sb barrier layers which are grown on top of an insulating metamorphic buffer, which is based on the linear exchange of Ga versus In and a subsequent exchange of As versus Sb. Precise control of group V fluxes and substrate temperature in the Al{sub 0.4}In{sub 0.6}As{sub 1-x}Sb{sub x} buffer is essential to achieve high quality device structures. Good morphological properties were achieved demonstrated by the appearance of crosshatching and root mean square roughness values of 2.0 nm. Buffer isolation is found to be >100 k{Omega}/{open_square} for optimized growth conditions. Hall measurements at room temperature reveal electron densities of 2.8x10{sup 12} cm{sup -2} in the channel at mobility values of 21.000 cm{sup 2}/V s for single-sided Te volume doping and 5.4x10{sup 12} cm{sup -2} and 17.000 cm{sup 2}/V s for double-sided Te {delta}-doping, respectively.

Loesch, R.; Aidam, R.; Kirste, L.; Leuther, A. [Fraunhofer Institute for Applied Solid-State Physics (IAF), Tullastrasse 72, 79108 Freiburg (Germany)

2011-02-01T23:59:59.000Z

126

Capped ED-Mode AlN/GaN Inverters - Programmaster.org  

Science Conference Proceedings (OSTI)

The demonstrated inverter is operating at VDD = 5 V and consists of an enhancement- and depletion-mode HEMT with 1.5 nm thin subcritical AlN...

127

Many-body effects in wide parabolic AlGaAs quantum wells A. Tabata, M. R. Martins, and J. B. B. Oliveira  

E-Print Network (OSTI)

Many-body effects in wide parabolic AlGaAs quantum wells A. Tabata, M. R. Martins, and J. B. B gas in n-type wide parabolic quantum wells. A series of samples with different well widths at the Fermi level at low temperature only in the thinnest parabolic quantum wells. The suppression of the many

Gusev, Guennady

128

Electrical properties and interfacial chemical environments of in situ atomic layer deposited Al2O3 on freshly molecular beam epitaxy grown GaAs  

Science Conference Proceedings (OSTI)

Interfacial chemical analyses and electrical characterization of in situ atomic layer deposited (ALD) Al"2O"3 on freshly molecular beam epitaxy (MBE) grown n- and p- GaAs (001) with a (4x6) surface reconstruction are performed. The capacitance-voltage ... Keywords: Atomic layer deposition, III-V compound semiconductor, Molecular beam epitaxy

Y. H. Chang; M. L. Huang; P. Chang; C. A. Lin; Y. J. Chu; B. R. Chen; C. L. Hsu; J. Kwo; T. W. Pi; M. Hong

2011-04-01T23:59:59.000Z

129

AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics  

Science Conference Proceedings (OSTI)

This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

Sun, K. X.

2011-05-31T23:59:59.000Z

130

Correlation between Ga-O signature and midgap states at the Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As interface  

SciTech Connect

Al{sub 2}O{sub 3}/In{sub 0.53}Ga{sub 0.47}As gate stacks were fabricated using different concentrations of NH{sub 4}OH as a pre-deposition treatment. Increased NH{sub 4}OH concentrations significantly reduced the C-V weak inversion hump and the measured near midgap interface states density (D{sub it}). X-ray photoelectron spectroscopy (XPS) studies revealed that these changes in the electrical properties were accompanied by a reduction in the amount of the Ga-O bonding while As-As dimers as well as other XPS detected InGaAs surface species did not correlate with the observed D{sub it} trend. Possible explanations for these findings are suggested.

Krylov, Igor [Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Gavrilov, Arkady [Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Eizenberg, Moshe [Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Department of Materials Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Ritter, Dan [Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel); Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

2012-08-06T23:59:59.000Z

131

Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE  

Science Conference Proceedings (OSTI)

GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar [Nano-Optoelectronics Research and Technology Laboratory School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia and Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia); Department of Applied Sciences Universiti Teknologi MARA (UiTM) 13500 Permatang Pauh, Penang (Malaysia)

2012-06-29T23:59:59.000Z

132

Reduction in interface state density of Al{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor interfaces by InGaAs surface nitridation  

Science Conference Proceedings (OSTI)

We report the decrease in interface trap density (D{sub it}) in Al{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors by using electron cyclotron resonance plasma nitridation of the InGaAs surfaces. The impact of the nitridation process on the MOS interface properties is quantitatively examined. The plasma nitridation process is observed to form a nitrided layer at the InGaAs surface. The nitridation using microwave power (P{sub microwave}) of 250 W and nitridation time (t{sub nitridation}) of 420 s can form Al{sub 2}O{sub 3}/InGaAs MOS interfaces with a minimum D{sub it} value of 2.0 Multiplication-Sign 10{sup 11} cm{sup -2} eV{sup -1}. On the other hand, the nitridation process parameters such as P{sub microwave} and t{sub nitridation} are found to strongly alter D{sub it} (both decrease and increase are observed) and capacitance equivalent thickness (CET). It is found that the nitridation with higher P{sub microwave} and shorter t{sub nitridation} can reduce D{sub it} with less CET increase. Also, it is observed that as t{sub nitridation} increases, D{sub it} decreases first and increases later. It is revealed from XPS analyses that minimum D{sub it} can be determined by the balance between the saturation of nitridation and the progress of oxidation. As a result, it is found that the superior MOS interface formed by the nitridation is attributable to the existence of oxide-less InGaN/InGaAs interfaces.

Hoshii, Takuya; Lee, Sunghoon; Suzuki, Rena; Taoka, Noriyuki; Yokoyama, Masafumi; Takenaka, Mitsuru; Takagi, Shinichi [Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamada, Hishashi; Hata, Masahiko [Sumitomo Chemical Co. Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294 (Japan); Yasuda, Tetsuji [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

2012-10-01T23:59:59.000Z

133

Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction  

Science Conference Proceedings (OSTI)

Al-doped ZnO (AZO) deposited by radio frequency co-sputtering is formed on epitaxial Mg-doped GaN template at room temperature to achieve n-AZO/p-GaN heterojunction. Alignment of AZO and GaN bands is investigated using synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy on the nonpolar side-facet of a vertically c-axis aligned heterostructure. It shows type-II band configuration with valence band offset of 1.63 {+-} 0.1 eV and conduction band offset of 1.61 {+-} 0.1 eV, respectively. Rectification behavior is clearly observed, with a ratio of forward-to-reverse current up to six orders of magnitude when the bias is applied across the p-n junction.

Lee, Kai-Hsuan; Chen, Chia-Hao [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China)] [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China); Chang, Ping-Chuan [Department of Electro-Optical Engineering, Kun Shan University, Dawan Rd. 949, 71003 Tainan, Taiwan (China)] [Department of Electro-Optical Engineering, Kun Shan University, Dawan Rd. 949, 71003 Tainan, Taiwan (China); Chen, Tse-Pu; Chang, Sheng-Po; Chang, Shoou-Jinn [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, University Rd. 1, 70101 Tainan, Taiwan (China)] [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, University Rd. 1, 70101 Tainan, Taiwan (China); Shiu, Hung-Wei; Chang, Lo-Yueh [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China) [Nano Science Group, National Synchrotron Radiation Research Center, Hsin-Ann Rd. 101, 30076 Hsinchu, Taiwan (China); Department of Physics, National Tsing Hua University, Kuang-Fu Rd. 101, 30013 Hsinchu, Taiwan (China)

2013-02-18T23:59:59.000Z

134

Voltaix LLC | Open Energy Information  

Open Energy Info (EERE)

Voltaix LLC Jump to: navigation, search Name Voltaix, LLC Place N. Branch, New Jersey Zip 8876 Sector Solar Product Voltaix is a manufacturer of specialty chemicals, particularly...

135

SiN{sub x}-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms  

Science Conference Proceedings (OSTI)

We analyze the composition profiles within intermixed and non-intermixed AlInGaAs-based multiple quantum wells structures by secondary ion mass spectrometry and observe that the band gap blue shift is mainly attributed to the interdiffusion of In and Ga atoms between the quantum wells and the barriers. Based on these results, several AlInGaAs-based single quantum well (SQW) structures with various compressive strain (CS) levels were grown and their photoluminescence spectra were investigated after the intermixing process involving the encapsulation of thin SiN{sub x} dielectric films on the surface followed by rapid thermal annealing. In addition to the annealing temperature, we report that the band gap shift can be also enhanced by increasing the CS level in the SQW. For instance, at an annealing temperature of 850 Degree-Sign C, the photoluminescence blue shift is found to reach more than 110 nm for the sample with 1.2%-CS SQW, but only 35 nm with 0.4%-CS SQW. We expect that this relatively larger atomic compositional gradient of In (and Ga) between the compressively strained quantum well and the barrier can facilitate the atomic interdiffusion and it thus leads to the larger band gap shift.

Lee, Ko-Hsin; Thomas, Kevin; Gocalinska, Agnieszka; Manganaro, Marina; Corbett, Brian [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland); Pelucchi, Emanuele; Peters, Frank H. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland)

2012-11-01T23:59:59.000Z

136

Lateral Al{sub x}Ga{sub 1-x}N power rectifiers with 9.7 kV reverse breakdown voltage  

SciTech Connect

Al{sub x}Ga{sub 1-x}N (x=0--0.25) Schottky rectifiers were fabricated in a lateral geometry employing p{sup +}-implanted guard rings and rectifying contact overlap onto an SiO{sub 2} passivation layer. The reverse breakdown voltage (V{sub B}) increased with the spacing between Schottky and ohmic metal contacts, reaching 9700 V for Al{sub 0.25}Ga{sub 0.75}N and 6350 V for GaN, respectively, for 100 {mu}m gap spacing. Assuming lateral depletion, these values correspond to breakdown field strengths of {<=}9.67x10{sup 5}Vcm{sup -1}, which is roughly a factor of 20 lower than the theoretical maximum in bulk GaN. The figure of merit (V{sub B}){sup 2}/R{sub ON}, where R{sub ON} is the on-state resistance, was in the range 94--268 MWcm-2 for all the devices.

Zhang, A. P.; Johnson, J. W.; Ren, F.; Han, J.; Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Redwing, J. M.; Lee, K. P.; Pearton, S. J.

2001-02-05T23:59:59.000Z

137

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

138

Proton irradiation energy dependence of dc and rf characteristics on InAlN/GaN high electron mobility transistors  

Science Conference Proceedings (OSTI)

The effects of proton irradiation energy on dc and rf characteristics of InAlN/GaN high electron mobility transistors (HEMTs) were investigated. A fixed proton dose of 51015 cm2 with 5, 10, and 15 MeV irradiation energies was used in this study. For the dc characteristics, degradation was observed for sheet resistance, transfer resistance, contact resistivity, saturation drain current, maximum transconductance, reverse-bias gate leakage current, and sub-threshold drain leakage current for all the irradiated HEMTs; however, the degree of the degradation was decreased as the irradiation energy increased. Similar trends were obtained for the rf performance of the devices, with 10% degradation of the unity gain cut-off frequency (fT) and maximum oscillation frequency ( fmax) for the HEMTs irradiated with 15 MeV protons but 30% for 5 MeV proton irradiation. The carrier removal rate was in the range 0.66 1.24 cm1 over the range of proton energies investigated

Lo, C. F. [University of Florida; Liu, L. [University of Florida, Gainesville; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Gila, Brent P. [University of Florida, Gainesville; Kim, H.-Y. [Korea University; Kim, J. [Korea University; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Kravchenko, Ivan I [ORNL

2012-01-01T23:59:59.000Z

139

Washington Closure Hanford, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This...

140

Above room-temperature operation of InAs/AlGaSb superlattice quantum cascade lasers emitting at 12 {mu}m  

SciTech Connect

The authors report on above-room-temperature operation of InAs/AlGaSb quantum cascade lasers emitting at 12 {mu}m. The laser structures are grown on a n-InAs (100) substrate using solid-source molecular beam epitaxy. An InAs/AlGaSb superlattice is used as an active part and an InAs double plasmon waveguide is used for optical confinement. Results show that increased doping concentration in the injection part of the active region expands the current operation range of the devices, allowing laser operation at and above room temperature. The observed threshold current density is 4.0 kA/cm{sup 2} at 300 K; the maximum operation temperature is 340 K.

Ohtani, K.; Moriyasu, Y.; Ohnishi, H.; Ohno, H. [Laboratory for Nanoelectronics and Semiconductor Spintronics, Research Institute of Electrical Communication, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan)

2007-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density  

SciTech Connect

The study is devoted to theoretical explanation of a decrease in the electroluminescence efficiency as the pump current increases, which is characteristic of light-emitting-diode (LED) heterostructures based on AlInGaN. Numerical simulation shows that the increase in the external quantum efficiency at low current densities J {approx} 1 A/cm{sup 2} is caused by the competition between radiative and nonradiative recombination. The decrease in the quantum efficiency at current densities J > 1 A/cm{sup 2} is caused by a decrease in the efficiency of hole injection into the active region. It is shown that the depth of the acceptor energy level in the AlGaN emitter, as well as low electron and hole mobilities in the p-type region, plays an important role in this effect. A modified LED heterostructure is suggested in which the efficiency decrease with the pump current should not occur.

Rozhansky, I. V., E-mail: igor@quantum.ioffe.ru; Zakheim, D. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

2006-07-15T23:59:59.000Z

142

GaN High Power Devices  

SciTech Connect

A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

2000-07-17T23:59:59.000Z

143

Accelerated Publication: Ge metal-oxide-semiconductor devices with Al2O3/Ga2O3(Gd2O3) as gate dielectric  

Science Conference Proceedings (OSTI)

Ga"2O"3(Gd"2O"3) [GGO] 3.5nm-thick, with an in situ Al"2O"3 cap 1.5nm thick, has been directly deposited on Ge substrate without employing interfacial passivation layers. The equivalent oxide thickness (EOT) of the gate stack is 1.38-nm. The metal-oxide-semiconductor ... Keywords: EOT, Germanium, High-? dielectric, MOS

L. K. Chu; T. H. Chiang; T. D. Lin; Y. J. Lee; R. L. Chu; J. Kwo; M. Hong

2012-03-01T23:59:59.000Z

144

Well-defined excited states of self-assembled InAs/InAlGaAs quantum dots on InP (001)  

SciTech Connect

Self-assembled InAs/InAlGaAs quantum dots (QDs) in an InAlGaAs matrix on InP (001) substrates were grown by the alternate growth method (AGQD), where an InAs layer with a thickness of 1 monolayer (ML) and an InAlGaAs layer with a thickness of 1 ML were alternately deposited. Cross-sectional transmission electron microscopy images indicated that the aspect ratio (height/width) for the AGQDs was {approx}0.25, which was higher than {approx}0.10 of conventionally grown InAs QDs. The photoluminescence (PL) peak position for the ground states of the AGQDs was 1.485 {mu}m with a linewidth broadening of 42 meV at room temperature, while the PL linewidth for the conventionally grown QDs was 85 meV. And the peaks for the excited-state transitions were also clearly observed from the excitation-power dependent PL. This is the first observation on the well-defined excited-state transitions from the InP-based InAs QDs, even though there were several reports on the features of the excited states.

Kim, Jin Soo; Lee, Jin Hong; Hong, Sung Ui; Kwack, Ho-Sang; Choi, Byung Seok; Oh, Dae Kon [Basic Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon (Korea, Republic of)

2005-08-01T23:59:59.000Z

145

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

146

Optical properties of a-plane (Al, Ga)N/GaN multiple quantum wells grown on strain engineered Zn{sub 1-x}Mg{sub x}O layers by molecular beam epitaxy  

Science Conference Proceedings (OSTI)

Nonpolar (1120) Al{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) have been grown by molecular beam epitaxy on (1120) Zn{sub 0.74}Mg{sub 0.26}O templates on r-plane sapphire substrates. The quantum wells exhibit well-resolved photoluminescence peaks in the ultra-violet region, and no sign of quantum confined Stark effect is observed in the complete multiple quantum well series. The results agree well with flat band quantum well calculations. Furthermore, we show that the MQW structures are strongly polarized along the [0001] direction. The origin of the polarization is discussed in terms of the strain anisotropy dependence of the exciton optical oscillator strengths.

Xia, Y.; Vinter, B.; Chauveau, J.-M. [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); University of Nice Sophia-Antipolis, 06103 Nice (France); Brault, J.; Nemoz, M.; Teisseire, M.; Leroux, M. [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France)

2011-12-26T23:59:59.000Z

147

American Agri diesel LLC | Open Energy Information  

Open Energy Info (EERE)

diesel LLC Jump to: navigation, search Name American Agri-diesel LLC Place Colorado Springs, Colorado Product Biodiesel producer in Colorado. References American Agri-diesel LLC1...

148

Renewable NRG LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Renewable NRG LLC Place Woodstock, New York Zip 12498 Product Small manufacturing company located in New York. References Renewable NRG LLC1...

149

Bay Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Bay Biodiesel LLC Place Martinez, California Zip 94553 Product Biodiesel producers in Martinez, California. References Bay Biodiesel LLC1...

150

Solar Panels Plus LLC | Open Energy Information  

Open Energy Info (EERE)

Panels Plus LLC Jump to: navigation, search Name Solar Panels Plus LLC Place Chesapeake, Virginia Zip 23320 Sector Solar Product Solar Panels Plus LLC distributes solar energy...

151

Mid America Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Mid America Biofuels LLC Jump to: navigation, search Name Mid-America Biofuels LLC Place Jefferson City, Missouri Zip 65102 Sector Biofuels Product Joint Venture of Biofuels LLC,...

152

Empire Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Empire Biofuels LLC Jump to: navigation, search Name Empire Biofuels LLC Place New York, New York Zip 13148 Sector Biofuels Product Empire Biofuels LLC (Empire) was founded in...

153

Skyward Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC is a company located in Midland, Texas . References "Skyward Energy LLC" Retrieved from "http:en.openei.orgwindex.php?titleSkywardEnergyLLC&oldid351181...

154

Long-wavelength laser based on self-assembled InAs quantum dots in InAlGaAs on InP (001)  

SciTech Connect

Seven stacks of self-assembled InAs quantum dots (QDs) separated by 28 nm thick InAlGaAs barriers were grown on InP (001) substrate by a solid-source molecular-beam epitaxy and were investigated by cross-sectional transmission electron microscopy and photoluminescence spectroscopy. Gain guided broad-area lasers with a stripe width of 75 {mu}m were fabricated by using the seven-stacked InAs QD layers with the InAlGaAs-InAlAs material system on InP (001). The lasing operation from InAs QDs was observed up to 260 K and the characteristic temperature of the uncoated QD laser calculated from the temperature dependence of threshold current density was 377 K for temperatures up to 200 K, and 138 K above 200 K. The drastic decrease in the characteristic temperature above 200 K was mainly related to the thermal behavior of carriers in QDs, and possibly the thermal coupling of the QDs to the wetting layer and the waveguide region.

Kim, Jin Soo; Lee, Jin Hong; Hong, Sung Ui; Han, Won Seok; Kwack, Ho-Sang; Lee, Chul Wook; Oh, Dae Kon [Basic Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon (Korea, Republic of)

2004-08-09T23:59:59.000Z

155

LBNL-4183E-rev1 N NA AT TU UR RA AL L G GA AS S V VA AR RI  

NLE Websites -- All DOE Office Websites (Extended Search)

4183E-rev1 4183E-rev1 N NA AT TU UR RA AL L G GA AS S V VA AR RI IA AB BI IL LI IT TY Y I IN N C CA AL LI IF FO OR RN NI IA A: : E EN NV VI IR RO ON NM ME EN NT TA AL L I IM MP PA AC CT TS S A AN ND D D DE EV VI IC CE E P PE ER RF FO OR RM MA AN NC CE E E EX XP PE ER RI IM ME EN NT TA AL L E EV VA AL LU UA AT TI IO ON N O OF F I IN NS ST TA AL LL LE ED D C CO OO OK KI IN NG G E EX XH HA AU US ST T F FA AN N P PE ER RF FO OR RM MA AN NC CE E Brett C. Singer, William W. Delp and Michael G. Apte Indoor Environment Department Atmospheric Sciences Department Environmental Energy Technologies Division July 2011 (Revised February 2012) Disclaimer 1 This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

156

Solenergis LLC | Open Energy Information  

Open Energy Info (EERE)

Solenergis LLC Jump to: navigation, search Name Solenergis LLC Place New York, New York Zip 11733 Sector Solar Product New York-based developer, owner and operator of solar...

157

Terrabon LLC | Open Energy Information  

Open Energy Info (EERE)

Product Texas-based Terrabon LLC was founded in 1995 in an effort to commercialize biofuel technology originally developed at Texas A&M University. References Terrabon LLC1...

158

OPC LLC | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon OPC LLC Jump to: navigation, search Name OPC LLC Place Nevada Sector Geothermal energy Product The Nevada-based company...

159

Savannah River Nuclear Solutions LLC  

Savannah River Nuclear Solutions LLC Permission to Publish KNOW ALL MEN BY THESE PRESENTS, that the undersigned (hereinafter referred to

160

Passivation of In{sub 0.53}Ga{sub 0.47}As/ZrO{sub 2} interfaces by AlN atomic layer deposition process  

SciTech Connect

Reducing defects at III-V/high-k interfaces is essential for optimizing devices built on these materials. Here, the role of an interfacial AlN process at In{sub 0.53}Ga{sub 0.47}As/ZrO{sub 2} interfaces is investigated by hard x-ray photoelectron spectroscopy (HAXPES) and capacitance/voltage (C-V) measurements. C-V measurements show a significant reduction in the density of interface traps with the interfacial AlN process and a capping TiN layer. To elucidate the specific role of the AlN process, blanket films with various deposition processes are compared. The AlN process alone (without subsequent dielectric deposition) reduces InGaAs oxide levels below the HAXPES detection limit, even though the AlN is ultimately found to be oxidized into AlO{sub x} with only trace N incorporation, yet AlN passivation provides a lower D{sub it} (density of interface traps) when compared with an H{sub 2}O-based Al{sub 2}O{sub 3} deposition. The AlN process does not passivate against re-oxidation of the InGaAs during an O{sub 3} based ZrO{sub 2} deposition process, but it does provide passivation against As-As development during subsequent TiN deposition. The role of chemical defects in the C-V characteristics is also discussed.

Weiland, C.; Woick, J. C. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, A. K. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973 (United States); Price, J.; Lysaght, P. [SEMATECH, 257 Fuller Road, Albany, New York 12203 (United States)

2013-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CE North America, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CE North America, LLC CE North America, LLC (freezers) BEFORE THE. U.S. DEPAR'tMENT OJT ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2013-SE-1429 COMPROMISE AGREEMENT The U.S. Department of Energy ("DOE 1 » Office of the General Counsel, Office of Enforcement, initiated this action against CE North America, LLC ("CE" or "Respondent") pursuant to 10 C.F~9.122 by Notice of Proposed Civil Penalty. DOE alleged thatllll freezer basic model - , which Respondent imported and distributed in commerce in the United States as models CE64731 and PS72731, failed to meet the applicable standard for maxinrnm energy use. See 10 C.F.R. § 430.32(a). Respondent, on behalf of itself and any parent, subsidiary, division or other related entity, and DOE, by their authorized representatives, hereby enter into this

162

Thickness Effect of Al-Doped ZnO Window Layer on Damp-Heat Stability of CuInGaSe2 Solar Cells  

DOE Green Energy (OSTI)

We investigated the damp heat (DH) stability of CuInGaSe{sub 2} (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 {micro}m to a modest 0.50 {micro}m over an underlying 0.10-{micro}m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 {micro}m/3 {micro}m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85 C and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

2011-01-01T23:59:59.000Z

163

Thickness Effect of Al-Doped ZnO Window Layer on Damp Heat Stability of CuInGaSe2 Solar Cells: Preprint  

DOE Green Energy (OSTI)

We investigated the damp heat (DH) stability of CuInGaSe2 (CIGS) solar cells as a function of thickness of the Al-doped ZnO (AZO) window layer from the 'standard' 0.12 ?m to a modest 0.50 ?m over an underlying 0.10-?m intrinsic ZnO buffer layer. The CIGS cells were prepared with external electrical contact using fine Au wire to the tiny 'standard' Ni/Al (0.05 ?m/3 ?m) metal grid contact pads. Bare cell coupons and sample sets encapsulated in a specially designed, Al-frame test structure with an opening for moisture ingress control using a TPT backsheet were exposed to DH at 85oC and 85% relative humidity, and characterized by current-voltage (I-V), quantum efficiency (QE), and (electrochemical) impedance spectroscopy (ECIS). The results show that bare cells exhibited rapid degradation within 50-100 h, accompanied by film wrinkling and delamination and corrosion of Mo and AlNi grid, regardless of AZO thickness. In contrast, the encapsulated cells did not show film wrinkling, delamination, and Mo corrosion after 168 h DH exposure; but the trend of efficiency degradation rate showed a weak correlation to the AZO thickness.

Pern, F. J.; Mansfield, L.; DeHart, C.; Glick, S. H.; Yan, F.; Noufi, R.

2011-07-01T23:59:59.000Z

164

Magwind LLC | Open Energy Information  

Open Energy Info (EERE)

Magwind LLC Magwind LLC Jump to: navigation, search Name Magwind LLC Place Texas Sector Wind energy Product Inventor of the Mag-Wind vertical axis wind turbine (VAWT) for building installations. The turbines are manufactured under contract at the facilities of Vector Systems, Inc. References Magwind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Magwind LLC is a company located in Texas . References ↑ "Magwind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Magwind_LLC&oldid=348589" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

165

Natsource LLC | Open Energy Information  

Open Energy Info (EERE)

Natsource LLC Natsource LLC Jump to: navigation, search Name Natsource LLC Place New York, New York Zip NY 10038 Sector Services Product Natsource provides brokerage and advisory services for natural gas, coal, and electricity, as well as weather hedging and environmental issues. References Natsource LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Natsource LLC is a company located in New York, New York . References ↑ "Natsource LLC" Retrieved from "http://en.openei.org/w/index.php?title=Natsource_LLC&oldid=349086" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

166

Fulcrum Biofuels LLc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 1848 - 1848 Environmental Assessment DOE/EA - 1848 FINAL ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO FULCRUM SIERRA BIOFUELS, LLC FOR A WASTE-TO-ETHANOL FACILITY IN MCCARRAN, STOREY COUNTY, NEVADA U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 June 2011 Table of Contents Environmental Assessment DOE/EA - 1848 i

167

Trinity CO2 LLC | Open Energy Information  

Open Energy Info (EERE)

Trinity CO2 LLC Jump to: navigation, search Name Trinity CO2 LLC Place Texas Product String representation "Trinity CO2 LLC ... smission lines." is too long. References Trinity CO2...

168

Impacts of anisotropic lattice relaxation on crystal mosaicity and luminescence spectra of m-plane Al{sub x}Ga{sub 1-x}N films grown on m-plane freestanding GaN substrates by NH{sub 3} source molecular beam epitaxy  

SciTech Connect

In-plane anisotropic lattice relaxation was correlated with the crystal mosaicity and luminescence spectra for m-plane Al{sub x}Ga{sub 1-x}N films grown on a freestanding GaN substrate by NH{sub 3}-source molecular beam epitaxy. The homoepitaxial GaN film exhibited A- and B-excitonic emissions at 8 K, which obeyed the polarization selection rules. For Al{sub x}Ga{sub 1-x}N overlayers, the m-plane tilt mosaic along c-axis was the same as the substrate as far as coherent growth was maintained (x{<=}0.25). However, it became more severe than along the a-axis for lattice-relaxed films (x{>=}0.52). The results are explained in terms of anisotropic lattice and thermal mismatches between the film and the substrate. Nonetheless, all the Al{sub x}Ga{sub 1-x}N films exhibited a near-band-edge emission peak and considerably weak deep emission at room temperature.

Hoshi, T.; Hazu, K.; Ohshita, K.; Kagaya, M.; Onuma, T.; Chichibu, S. F. [CANTech, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Fujito, K. [Optoelectronics Laboratory, Mitsubishi Chemical Corporation, 1000 Higashi-Mamiana, Ushiku 300-1295 (Japan); Namita, H. [Mitsubishi Chemical Group Science and Technology Research Center, Inc., 8-3-1 Chuo, Ami, Inashiki 300-0332 (Japan)

2009-02-16T23:59:59.000Z

169

Tremont Electric, LLC | Open Energy Information  

Open Energy Info (EERE)

Electric, LLC Address 2379 Professor Ave Place Cleveland, Ohio Zip 44113 Sector Bioenergy Website http:www.npowerpeg.com References Tremont Electric, LLC1 LinkedIn...

170

Lectrique Solaire LLC | Open Energy Information  

Open Energy Info (EERE)

Name Lectrique Solaire LLC Sector Solar Product Designs and manufactures solar photovoltaic and thermal products. References Lectrique Solaire LLC1 LinkedIn Connections...

171

Nextronex Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Nextronex Energy Systems LLC Address 4400 Moline Martin Rd Place Millbury, Ohio Zip 43447-9401 Sector Efficiency, Renewable Energy, Services,...

172

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Bison Renewable Energy LLC Place Minneapolis, Minnesota Zip 55401 Product Developing biogas production facilities. References Bison Renewable Energy LLC1 LinkedIn Connections...

173

Renewable Energy Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Engineering LLC Jump to: navigation, search Name Renewable Energy Engineering, LLC Place Newberg, Oregon Zip 22700 Sector Renewable Energy Product Oregon-based renewable energy...

174

Superior Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Superior Renewable Energy LLC Jump to: navigation, search Name Superior Renewable Energy LLC Place Houston, Texas Zip 77002 Sector Renewable Energy, Wind energy Product An...

175

Encore Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Encore Renewable Energy LLC Jump to: navigation, search Name Encore Renewable Energy, LLC Place Santa Barbara, California Zip 93111 Sector Renewable Energy Product National...

176

Renewable Energy Products LLC | Open Energy Information  

Open Energy Info (EERE)

Products LLC Jump to: navigation, search Name Renewable Energy Products, LLC Place Santa Fe Springs, California Zip 90670 Product Own and operate a biodiesel production facility in...

177

Wind Management LLC | Open Energy Information  

Open Energy Info (EERE)

Management LLC Jump to: navigation, search Name Wind Management LLC Place South Yarmouth, Massachusetts Zip 2664 Sector Wind energy Product Massachussets wind project development...

178

Calpine Power Management LLC | Open Energy Information  

Open Energy Info (EERE)

Calpine Power Management LLC Jump to: navigation, search Name Calpine Power Management LLC Place Texas Utility Id 49824 Utility Location Yes Ownership W NERC Location TRE NERC...

179

Renewable Power Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power Systems, LLC Place Averill Park, New York Zip 12018 Sector Solar Product Albany, New York-based solar systems installer. References Renewable Power Systems, LLC1...

180

Best Power International LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place Minneapolis, Minnesota Zip 55343 Product Minneapolis-based developer of photovoltaic projects. References Best Power International LLC1 LinkedIn Connections...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name Lousiana Green Fuels LLC Place Louisiana Sector Biomass Product Developing a cellulosic biomass-to-ethanol plant in...

182

Cargill Power Markets LLC | Open Energy Information  

Open Energy Info (EERE)

Power Markets LLC Jump to: navigation, search Name Cargill Power Markets LLC Place Minnesota Utility Id 2481 Utility Location Yes Ownership W NERC Location MRO Activity Buying...

183

Bio Pure Maryland LLC | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Bio-Pure Maryland LLC Place Potomac, Maryland Product Biodiesel plant developer in Maryland. References Bio-Pure Maryland LLC1 LinkedIn...

184

Sustainable Energy Advantage LLC | Open Energy Information  

Open Energy Info (EERE)

Advantage LLC Jump to: navigation, search Name Sustainable Energy Advantage, LLC Place Massachusetts Zip 1701 Sector Renewable Energy Product String representation "Massachusetts-b...

185

Heritage Sustainable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Heritage Sustainable Energy LLC Jump to: navigation, search Name Heritage Sustainable Energy LLC Place Traverse City, Michigan Sector Wind energy Product Start up wind developer in...

186

Sustainable Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Sustainable Systems LLC Jump to: navigation, search Name Sustainable Systems LLC Place Missoula, Montana Zip 59812 Sector Renewable Energy Product Renewable energy and biobased...

187

Elemental Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Jump to: navigation, search Name Elemental Energy LLC Place New York, New York Zip 10065 Sector Solar Product Elemental Energy develops, owns and operates...

188

Sundance Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Place Golden, Colorado Zip 80401 Sector Solar Product Sundance provides turnkey solar PV installations. References Sundance Power LLC1 LinkedIn Connections CrunchBase...

189

Green Light Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Green Light Energy LLC Jump to: navigation, search Name Green Light Energy LLC Place...

190

Calgren Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Place Newport Beach, California Zip 92660 Product Developer of bio-ethanol plants in US, particularly California. References Calgren Renewable Fuels LLC1...

191

Fagen Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Engineering LLC Place Granite Falls, Minnesota Zip 56241 Product Designs and builds ethanol production plants and other engineering projects. References Fagen Engineering LLC1...

192

PJM Interconnection, LLC | Open Energy Information  

Open Energy Info (EERE)

PJM Interconnection, LLC Jump to: navigation, search Name PJM Interconnection, LLC Place Norristown, PA References SGIC1 No information has been entered for this organization....

193

Crown Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Jump to: navigation, search Name Crown Renewable Energy LLC Place Union City, California Zip 94587 Product Buys monosilicon PV cells from JingAo. References...

194

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

195

Varon Lighting Group LLC | Open Energy Information  

Open Energy Info (EERE)

Varon Lighting Group LLC Jump to: navigation, search Name Varon Lighting Group LLC Place Chicago, Illinois Zip 60126 Product Chicago-based manufacturer of energy-efficient lighting...

196

Sunworks Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Solar LLC Jump to: navigation, search Name Sunworks Solar LLC Place San Francisco, California Zip 94104 Sector Solar Product San Francisco-based developer of US-based...

197

FRONIUS USA LLC | Open Energy Information  

Open Energy Info (EERE)

USA LLC Place Brighton, Michigan 48116 USA, Michigan Sector Solar Product Focused on welding machines and solar inverters. References FRONIUS USA LLC1 LinkedIn Connections...

198

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equinox Carbon Equities LLC Jump to: navigation, search Name Equinox Carbon Equities, LLC Place Newport Beach, California Zip 92660 Sector Carbon Product Investment firm focused on...

199

Carbon Micro Battery LLC | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Carbon Micro Battery LLC Jump to: navigation, search Name Carbon Micro Battery, LLC Place California...

200

Chevron Hydrogen Company LLC | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Chevron Hydrogen Company LLC Jump to: navigation, search Name Chevron Hydrogen Company LLC Place...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Diamond Wire Technology LLC | Open Energy Information  

Open Energy Info (EERE)

Wire Technology LLC Jump to: navigation, search Name Diamond Wire Technology LLC Place Colorado Springs, Colorado Zip 80916 Sector Solar Product US-based manufacturer of diamond...

202

Chevron Technology Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Chevron Technology Ventures LLC Jump to: navigation, search Name Chevron Technology Ventures LLC Address 3901 Briarpark Drive Place Houston Zip 77042 Sector Marine and Hydrokinetic...

203

Synergy Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Synergy Biofuels LLC Jump to: navigation, search Name Synergy Biofuels LLC Place Dryden, Virginia Zip...

204

Universal Entech LLC | Open Energy Information  

Open Energy Info (EERE)

Entech, LLC Place Phoenix, Arizona Zip 85041 Product Project developer focused on waste-to-energy References Universal Entech, LLC1 LinkedIn Connections CrunchBase...

205

Hydrogen Innovations LLC | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Hydrogen Innovations LLC Jump to: navigation, search Name Hydrogen Innovations LLC Place...

206

Northwest Missouri Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Northwest Missouri Biofuels LLC Jump to: navigation, search Name Northwest Missouri Biofuels, LLC Place St Joseph, Missouri Sector Biofuels Product Northwest Missouri Biofuels...

207

Blackhawk Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Blackhawk Biofuels LLC Jump to: navigation, search Name Blackhawk Biofuels, LLC Place Freeport, Illinois Zip 61032 Sector Biofuels Product Blackhawk Biofuels was founded by a local...

208

Midwestern Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Midwestern Biofuels LLC Jump to: navigation, search Name Midwestern Biofuels LLC Place South Shore, Kentucky Zip 41175 Sector Biomass Product Kentucky-based biomass energy pellet...

209

Ultimate Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ultimate Biofuels LLC Jump to: navigation, search Name Ultimate Biofuels LLC Place Ann Arbor, Michigan Zip 48108 Product Plans to develop sweet sorghum based ethanol plants....

210

Biofuels of Colorado LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels of Colorado LLC Place Denver, Colorado Zip 80216 Product Biodiesel producer in Denver, Colorado. References Biofuels of Colorado LLC1 LinkedIn Connections CrunchBase...

211

Blue Ridge Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Blue Ridge Biofuels LLC Jump to: navigation, search Name Blue Ridge Biofuels LLC Place Asheville, North Carolina Zip 28801 Sector Biofuels Product Blue Ridge Biofuels is a worker...

212

Vermont Transco, LLC | Open Energy Information  

Open Energy Info (EERE)

Transco, LLC Jump to: navigation, search Name Vermont Transco, LLC Place Rutland, VT Website http:www.vermonttransco.com References SGIC1 No information has been entered for...

213

Reunion Power LLC Vermont | Open Energy Information  

Open Energy Info (EERE)

Reunion Power LLC Vermont Jump to: navigation, search Name Reunion Power LLC (Vermont) Place Vermont Sector Biomass Product Reunion Power holds a portfolio of biomass projects that...

214

Citrus Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name Citrus Energy LLC Place Boca Raton, Florida Zip 33434-5815 Product Focused on ethanol production technology using citrus feedstock. References Citrus Energy LLC1...

215

Central Indiana Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Central Indiana Ethanol LLC Jump to: navigation, search Name Central Indiana Ethanol LLC Place Marion, Indiana Zip 46952 Product Ethanol producer developina a 151 mlpa plant in...

216

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

River Ethanol LLC Jump to: navigation, search Name Sioux River Ethanol LLC Place Hudson, South Dakota Zip 57034 Product Farmer owned ethanol producer, Sioux River Ethanol is...

217

Adkins Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Adkins Energy LLC Place Illinois Product Cooperative producing bioethanol in Illinois References Adkins Energy LLC1 LinkedIn Connections CrunchBase Profile...

218

Big River Resources LLC | Open Energy Information  

Open Energy Info (EERE)

Name Big River Resources LLC Place West Burlington, Iowa Zip 52655 Product Dry-mill bioethanol producer with a cooperative structure. References Big River Resources LLC1...

219

Crownbutte Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Crownbutte Wind Power LLC Jump to: navigation, search Name Crownbutte Wind Power LLC Place Mandan, North Dakota Zip 58554 Sector Wind energy Product North Dakota wind power company...

220

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name Wind Power Associates LLC Place Goldendale, Washington State Sector Wind energy Product Wind farm developer and operater....

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Big Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

References "Big Biodiesel LLC" Retrieved from "http:en.openei.orgwindex.php?titleBigBiodieselLLC&oldid342724" Categories: Clean Energy Organizations Companies...

222

FT Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

FT Solutions LLC Jump to: navigation, search Name FT Solutions LLC Place South Jordan, Utah Zip 84095 Product JV between Headwaters Technology Innovation Group and Rentech to focus...

223

SmallFoot LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place Boulder, Colorado Product Colorado-based developer of wireless demand control devices for the small commercial market. References SmallFoot LLC1 LinkedIn...

224

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name Foresight Wind Energy LLC Place San Francisco, California Zip 94105 Sector Wind energy Product San Francisco-based...

225

Self-cleaning and surface recovery with arsine pretreatment in ex situ atomic-layer-deposition of Al2O3 on GaAs  

E-Print Network (OSTI)

. heavily doped GaAs 001 substrates at 650 °C with TMG Ga CH3 3 and arsine AsH3 V/III=23 with disilane Si2H6

226

Celgard LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Celgard LLC Place Charlotte, North Carolina Zip 28273 Product Celgard battery separators are polypropylene andor polyethylene electrolytic membranes used in high...

227

Genesys LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Genesys LLC Place Palo Alto, California Zip 94306 Sector Hydro, Hydrogen Product Focused on RET (Radiant Energy Transfer) technology for the production of...

228

GELcore LLC | Open Energy Information  

Open Energy Info (EERE)

search Name GELcore LLC Place Valley View, Ohio Zip 44125-4635 Product Manufacturer of LED lighting for signage and architecture, transportation and display lighting. GELcore was...

229

VADA LLC | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name VADA, LLC Place Arvada, Colorado Zip 80003 Sector Biofuels Product VADA is a beneficial owner of Range Fuels (formerly Kergy, Inc), a biofuels...

230

Washington Closure Hanford, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 19,2010 August 19,2010 CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by Washington Closure Hanford, LLC (WCH) occurred. Accordingly, DOE is issuing the enclosed Preliminary Notice of

231

Y2, Threading Defect Elimination in GaN Nanostructures  

Science Conference Proceedings (OSTI)

DD3, A New Approach to Make ZnO-Cu2O Heterojunctions for Solar Cells ... E2, AlGaAs/GaAs/GaN Wafer Fused HBTs with Ar Implanted Extrinsic Collectors.

232

Comments of Oncor Electric Delivery Company LLC | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC on Implementing the National Broadband Plan by...

233

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

Projects LLC Jump to: navigation, search Name Midwest Renewable Energy Projects LLC Place Florida Zip FL 33408 Sector Renewable Energy, Wind energy Product MRE Projects LLC is a...

234

EA-341 Photovoltaic Technologies, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Photovoltaic Technologies, LLC EA-341 Photovoltaic Technologies, LLC Order authorizing Photovoltaic Technologies, LLC to export electric energy to Mexico EA- 341 Photovoltaic...

235

EA-346 Credit Suisse Energy LLC - Canada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada EA-346 Credit Suisse Energy LLC - Canada Order authorizing Credit Suisse Energy LLC to export electric energy to Canada EA-346 Credit Suisse Energy LLC More Documents &...

236

EA-346 Credit Suisse Energy LLC - Mexico | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mexico EA-346 Credit Suisse Energy LLC - Mexico Order authorizing Credit Suisse Energy LLC to export electric energy to Mexico EA-346 Credit Suisse Energy LLC More Documents &...

237

Accelerated aging of GaAs concentrator solar cells  

DOE Green Energy (OSTI)

An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

Gregory, P.E.

1982-04-01T23:59:59.000Z

238

Effective passivation of In{sub 0.2}Ga{sub 0.8}As by HfO{sub 2} surpassing Al{sub 2}O{sub 3} via in-situ atomic layer deposition  

SciTech Connect

High {kappa} gate dielectrics of HfO{sub 2} and Al{sub 2}O{sub 3} were deposited on molecular beam epitaxy-grown In{sub 0.2}Ga{sub 0.8}As pristine surface using in-situ atomic-layer-deposition (ALD) without any surface treatment or passivation layer. The ALD-HfO{sub 2}/p-In{sub 0.2}Ga{sub 0.8}As interface showed notable reduction in the interfacial density of states (D{sub it}), deduced from quasi-static capacitance-voltage and conductance-voltage (G-V) at room temperature and 100 Degree-Sign C. More significantly, the midgap peak commonly observed in the D{sub it}(E) of ALD-oxides/In{sub 0.2}Ga{sub 0.8}As is now greatly diminished. The midgap D{sub it} value decreases from {>=}15 Multiplication-Sign 10{sup 12} eV{sup -1} cm{sup -2} for ALD-Al{sub 2}O{sub 3} to {approx}2-4 Multiplication-Sign 10{sup 12} eV{sup -1} cm{sup -2} for ALD-HfO{sub 2}. Further, thermal stability at 850 Degree-Sign C was achieved in the HfO{sub 2}/In{sub 0.2}Ga{sub 0.8}As, whereas C-V characteristics of Al{sub 2}O{sub 3}/p-In{sub 0.2}Ga{sub 0.8}As degraded after the high temperature annealing. From in-situ x-ray photoelectron spectra, the AsO{sub x}, which is not the oxidized state from the native oxide, but is an induced state from adsorption of trimethylaluminum and H{sub 2}O, was found at the ALD-Al{sub 2}O{sub 3}/In{sub 0.2}Ga{sub 0.8}As interface, while that was not detected at the ALD-HfO{sub 2}/In{sub 0.2}Ga{sub 0.8}As interface.

Chang, Y. H.; Chiang, T. H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, C. A.; Liu, Y. T.; Lin, H. Y.; Huang, M. L.; Kwo, J. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, T. D.; Hong, M. [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Pi, T. W. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

2012-10-22T23:59:59.000Z

239

Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount  

SciTech Connect

Vertical and flip-chip light-emitting diode (LED) chips are compared from the viewpoint of the behavior of current spreading in the active region and the distribution of local temperatures and thermal resistances of chips. AlGaInN LED chips of vertical design are fabricated using Si as a submount and LED flipchips were fabricated with the removal of a sapphire substrate. The latter are also mounted on a Si submount. The active regions of both chips are identical and are about 1 mm{sup 2} in size. It is shown that both the emittance of the crystal surface in the visible range and the distribution of local temperatures estimated from radiation in the infrared region are more uniform in crystals of vertical design. Heat removal from flip-chips is insufficient in regions of the n contact, which do not possess good thermal contact with the submount. As a result, the total thermal resistances between the p-n junction and the submount both for the vertical chips and for flip-chips are approximately 1 K/W. The total area of the flip-chips exceeds that of the vertical design chips by a factor of 1.4.

Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavlyuchenko, A. S. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kukushkin, M. V.; Vasil'eva, E. D. [ZAO Innovation 'Tetis' (Russian Federation); Chernyakov, A. E. [Russian Academy of Sciences, Science-and-Technology Microelectronics Center (Russian Federation); Usikov, A. S. [De Core Nanosemiconductors Ltd. (India)

2013-03-15T23:59:59.000Z

240

Ga Air Compressor, Ga Air Compressor Products, Ga Air ...  

U.S. Energy Information Administration (EIA)

Ga Air Compressor, You Can Buy Various High Quality Ga Air Compressor Products from Global Ga Air Compressor Suppliers and Ga Air Compressor ...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-377 DC Energy Texas LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-377 DC Energy Texas LLC EA-377 DC Energy Texas LLC Order authorizing DC Energy Texas LLC to export electric energy to Mexico. EA-377 DC Energy Texas LLC More Documents &...

242

EA-351 DC Energy Dakota, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 DC Energy Dakota, LLC EA-351 DC Energy Dakota, LLC Order authorizing DC Energy Dakota, LLC to export electric energy to Canada EA-351 DC Energy Dakota, LLC More Documents &...

243

EA-358 Twin Cities Energy, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Twin Cities Energy, LLC EA-358 Twin Cities Energy, LLC Order authorizing Twin Cities Energy, LLC to export electric energy to Canada EA-358 Twin Cities Energy, LLC More Documents...

244

EA-358 Twin Cities Energy, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-358 Twin Cities Energy, LLC EA-358 Twin Cities Energy, LLC Order authorizing Twin Cities Energy, LLC to export electric energy to Canada EA- 358 Twin Cities Energy, LLC More...

245

GaSb molecular beam epitaxial growth on p-InP(001) and passivation with in situ deposited Al{sub 2}O{sub 3} gate oxide  

SciTech Connect

The integration of high carrier mobility materials into future CMOS generations is presently being studied in order to increase drive current capability and to decrease power consumption in future generation CMOS devices. If III-V materials are the candidates of choice for n-type channel devices, antimonide-based semiconductors present high hole mobility and could be used for p-type channel devices. In this work we first demonstrate the heteroepitaxy of fully relaxed GaSb epilayers on InP(001) substrates. In a second part, the properties of the Al{sub 2}O{sub 3}/GaSb interface have been studied by in situ deposition of an Al{sub 2}O{sub 3} high-{kappa} gate dielectric. The interface is abrupt without any substantial interfacial layer, and is characterized by high conduction and valence band offsets. Finally, MOS capacitors show well-behaved C-V with relatively low D{sub it} along the bandgap, these results point out an efficient electrical passivation of the Al{sub 2}O{sub 3}/GaSb interface.

Merckling, C.; Brammertz, G.; Hoffmann, T. Y.; Caymax, M.; Dekoster, J. [Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, 3001, Leuven (Belgium); Sun, X. [Katholieke Universiteit Leuven, Celestijnelaan 200D, 3001, Leuven (Belgium); Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520-8284 (United States); Alian, A.; Heyns, M. [Interuniversity Microelectronics Center (IMEC vzw), Kapeldreef 75, 3001, Leuven (Belgium); Katholieke Universiteit Leuven, Celestijnelaan 200D, 3001, Leuven (Belgium); Afanas'ev, V. V. [Katholieke Universiteit Leuven, Celestijnelaan 200D, 3001, Leuven (Belgium)

2011-04-01T23:59:59.000Z

246

Innovative Systems Engineering Solar LLC ISE Solar LLC | Open Energy  

Open Energy Info (EERE)

Solar LLC ISE Solar LLC Solar LLC ISE Solar LLC Jump to: navigation, search Name Innovative Systems Engineering Solar LLC (ISE Solar LLC) Place Warminster, Pennsylvania Zip 18974-1454 Sector Solar Product US-based manufacturer of vacuum deposition equipment for thin-film amorphous silicon products; offers management and operation of thin-film solar plants. Coordinates 40.205459°, -75.100077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.205459,"lon":-75.100077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Fibrominn LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrominn LLC Fibrominn LLC Jump to: navigation, search Name Fibrominn LLC Place Yardley, Pennsylvania Zip 19067 Product Fibrominn LLC is a JV between project developers Fibrowatt and Contour Global. Coordinates 40.241337°, -74.83738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.241337,"lon":-74.83738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

GWE LLC | Open Energy Information  

Open Energy Info (EERE)

GWE LLC GWE LLC Jump to: navigation, search Name GWE LLC Facility GWE LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Goodwind Energy Inc Developer Goodwind Energy Inc Energy Purchaser Central Iowa Power Cooperative Coordinates 42.00274891°, -93.48017693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.00274891,"lon":-93.48017693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Airius LLC | Open Energy Information  

Open Energy Info (EERE)

Airius LLC Airius LLC Jump to: navigation, search Logo: Airius LLC Name Airius LLC Address 811 South Sherman Street Place Longmont, Colorado Zip 80501 Sector Efficiency Product Develops "thermal equalizers" for use withing buildings Website http://www.airius.us/indexAIRI Coordinates 40.149489°, -105.116403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.149489,"lon":-105.116403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Fibrowatt LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrowatt LLC Fibrowatt LLC Jump to: navigation, search Name Fibrowatt LLC Place Langhorne, Pennsylvania Zip 19047 Product Fibrowatt LLC is a developer, builder, owner and operator of electricity power plants fueled by poultry litter. Coordinates 40.176396°, -74.918884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.176396,"lon":-74.918884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Encorp LLC | Open Energy Information  

Open Energy Info (EERE)

Encorp LLC Encorp LLC Jump to: navigation, search Logo: Encorp LLC Name Encorp LLC Address 1825 Sharp Point Drive Place Fort Collins, Colorado Zip 80525 Sector Efficiency Product Develops, markets and delivers integrated hardware and software solutions for our distributed energy customers Website http://www.encorp.com/ Coordinates 40.562637°, -105.02884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.562637,"lon":-105.02884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Agenera, LLC | Open Energy Information  

Open Energy Info (EERE)

Agenera, LLC Agenera, LLC Jump to: navigation, search Logo: Agenera, LLC Name Agenera, LLC Address P.O. Box 15544 Place Phoenix, Arizona Zip 85060 Sector Solar Product Solar energy systems Number of employees 11-50 Phone number 602-445-6498 Website http://www.agenera.com/ Coordinates 33.4486°, -112.0733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4486,"lon":-112.0733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

TIAX LLC | Open Energy Information  

Open Energy Info (EERE)

TIAX LLC TIAX LLC Jump to: navigation, search Logo: TIAX LLC Name TIAX LLC Address 15 Acorn Park Place Cambridge, Massachusetts Zip 02140-2390 Sector Efficiency Year founded 2002 Phone number 617-498-5000 Website http://www.tiaxllc.com Coordinates 42.397934°, -71.147783° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.397934,"lon":-71.147783,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Switch LLC | Open Energy Information  

Open Energy Info (EERE)

Product Installer and distributor of small-scale solar passive, PV, fuel cell, and other distributed energy systems. References Switch LLC1 LinkedIn Connections CrunchBase...

255

Solarbuzz LLC | Open Energy Information  

Open Energy Info (EERE)

San Francisco, California Zip 94103 Product Consultancy and research provider to PV industry References Solarbuzz LLC1 LinkedIn Connections CrunchBase Profile No CrunchBase...

256

Agribiofuels LLC | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Agribiofuels, LLC Place Dayton, Texas Zip 77535 Sector Biofuels Product Agribiofuels operates a 45.5mLpa (12m gallon) biodiesel plant in Dayton,...

257

Fortistar LLC | Open Energy Information  

Open Energy Info (EERE)

10650 Product Fortistar is a privately owned US power generation company largely based on landfill gas. References Fortistar LLC1 LinkedIn Connections CrunchBase Profile No...

258

Alte LLC | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Michigan-based manufacturer of powertrains for plug-in hybrid electric vehicles. References Alte LLC1 LinkedIn Connections CrunchBase Profile No...

259

Epuron LLC | Open Energy Information  

Open Energy Info (EERE)

Epuron LLC Epuron LLC Jump to: navigation, search Name Epuron LLC Place Philadelphia, Pennsylvania Zip 19103 Sector Solar Product Epuron LLC is the US subsidiary of Germany solar developer Conergy. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Liqcrytech LLC | Open Energy Information  

Open Energy Info (EERE)

Liqcrytech LLC Liqcrytech LLC Jump to: navigation, search Logo: Liqcrytech LLC Name Liqcrytech LLC Address 30800 1st Avenue Place La Junta, Colorado Zip 81050 Sector Efficiency Product Developer of energy efficient glass windows Website http://www.liqcrytech.com/ Coordinates 38.0443719°, -103.5124651° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.0443719,"lon":-103.5124651,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Techsolas LLC | Open Energy Information  

Open Energy Info (EERE)

Techsolas LLC Techsolas LLC Jump to: navigation, search Logo: Techsolas LLC Name Techsolas LLC Address 10955 Westmoor Drive Place Westminster, Colorado Zip 80021 Sector Solar Product Project developer targeting businesses, government agencies for implementation of power stations Website http://www.techsolas.com/ Coordinates 39.8999643°, -105.1241243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8999643,"lon":-105.1241243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

263

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

264

Tri State Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

Tri State Biodiesel LLC Jump to: navigation, search Name Tri-State Biodiesel LLC Place New York, New York Zip 10009 Product A New York-based producer and retailer of biodiesel....

265

Clean Tech LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Clean-Tech LLC Place Los Angeles, California Zip 90045 Product California-based company with subsidiaries seeking to make EVs and Lithium...

266

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name AREA USA LLC Place Washington, DC Zip 20004 Sector Services Product Washington, D.C.-based division of Fabiani & Company providing...

267

Western NY Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Western NY Energy LLC Place Mount Morris, New York Zip 14510 Product Bioethanol producer. References Western NY Energy LLC1 LinkedIn Connections CrunchBase...

268

Bio Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Bio-Energy Systems LLC Place san Anselmo, California Zip 94960 Product Biodiesel producer in Vallejo, California. References Bio-Energy Systems LLC1 LinkedIn...

269

MMA Belmar Power LLC | Open Energy Information  

Open Energy Info (EERE)

Belmar Power LLC Jump to: navigation, search Name MMA Belmar Power LLC Place Colorado Utility Id 56114 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

270

Sky Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Place Portland, Oregon Zip 97204 Sector Wind energy Product Developer of a high-altitude wind turbine technology. References Sky Power LLC1 LinkedIn Connections...

271

Tharaldson Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tharaldson Ethanol LLC Jump to: navigation, search Name Tharaldson Ethanol LLC Place Casselton, North Dakota Zip 58012 Product Owner of a USD 200m 120m-gallon ethanol plant in...

272

Access Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Access Solar Energy LLC Jump to: navigation, search Name Access Solar Energy LLC Place Park CIty, Utah Zip 84060 Sector Renewable Energy, Solar Product Utah-based developers of...

273

Alliance Star Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Star Energy LLC Jump to: navigation, search Name Alliance Star Energy LLC Place California Utility Id 56929 References EIA Form EIA-861 Final Data File for 2010 - File220101...

274

Solar Star NAFB LLC | Open Energy Information  

Open Energy Info (EERE)

Star NAFB LLC Jump to: navigation, search Name Solar Star NAFB LLC Place Nevada Utility Id 56203 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

275

SolarAire LLC | Open Energy Information  

Open Energy Info (EERE)

SolarAire LLC Place Folsom, California Sector Solar Product Developing a solar thermal air conditioning unit. References SolarAire LLC1 LinkedIn Connections CrunchBase Profile...

276

EDrive Systems LLC | Open Energy Information  

Open Energy Info (EERE)

EDrive Systems LLC Place Los Angeles, California Product Developer of a plug-in and battery kit for the Toyota Prius. References EDrive Systems LLC1 LinkedIn Connections...

277

Chief Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place Sioux City, Iowa Product Developer of 108m gallon (409.3m litres) per year corn-to-ethanol plant in Sioux City. References Chief Energy Company LLC1 LinkedIn...

278

Ever Cat Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Ever Cat Fuels LLC Jump to: navigation, search Name Ever Cat Fuels, LLC Place Anoka, Minnesota...

279

Morris Cogeneration LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Morris Cogeneration LLC Place Illinois Utility Id 54755 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

280

Bull Moose Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place San Diego, California Sector Biomass Product Focused on development of biomass waste energy projects. References Bull Moose Energy LLC1 LinkedIn Connections CrunchBase...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sun Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Group LLC Jump to: navigation, search Name Sun Energy Group LLC Place New Orleans, Louisiana Zip 70130 Product Louisiana-based waste-to-energy start-up company that is...

282

Palmco Power NJ, LLC | Open Energy Information  

Open Energy Info (EERE)

Palmco Power NJ, LLC Jump to: navigation, search Name Palmco Power NJ, LLC Place New York Utility Id 56501 Utility Location Yes Ownership R Operates Generating Plant Yes References...

283

Badger State Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Name Badger State Ethanol LLC Place Monroe, Wisconsin Zip 53566 Product Dry-mill bioethanol producer References Badger State Ethanol LLC1 LinkedIn Connections CrunchBase...

284

Agri Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name Agri-Energy LLC Place Luverne, Minnesota Zip 56156 Product Corn trader and bioethanol producer. References Agri-Energy LLC1 LinkedIn Connections CrunchBase Profile No...

285

Langford Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Langford Wind Power LLC Jump to: navigation, search Name Langford Wind Power LLC Place Texas Utility Id 56506 References EIA Form EIA-861 Final Data File for 2010 - File220101...

286

Cielo Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Cielo Wind Power LLC Jump to: navigation, search Name Cielo Wind Power LLC Place Austin, Texas Zip 78701 2459 Sector Wind energy Product Currently the largest wind power developer...

287

Northern Lights Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

You can help OpenEI by expanding it. Northern Lights Ethanol LLC is a company located in Big Stone City, South Dakota . References "Northern Lights Ethanol LLC" Retrieved from...

288

Idaho Winds LLC | Open Energy Information  

Open Energy Info (EERE)

Idaho Winds, LLC Place Idaho Sector Wind energy Product Wholly-owned subsidiary of PowerworksPacific Winds, operating wind farms in Idaho. References Idaho Winds, LLC1 LinkedIn...

289

WKN Texas LLC | Open Energy Information  

Open Energy Info (EERE)

Texas LLC Jump to: navigation, search Name WKN Texas LLC Place Texas Sector Wind energy Product A wind farm developer based in Texas. Originally a subsidiary of Windkraft Nord USA,...

290

Electron transport in an In{sub 0.52}Al{sub 0.48}As/In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As quantum well with a {delta}-Si doped barrier in high electric fields  

Science Conference Proceedings (OSTI)

The electron conduction in a two-dimensional channel of an In{sub 0.52}Al{sub 0.48}As/In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As quantum well (QW) with a {delta}-Si doped barrier has been investigated. It is shown that the introduction of thin InAs barriers into the QW reduces the electron scattering rate from the polar optical and interface phonons localized in the QW and increases the electron mobility. It is found experimentally that the saturation of the conduction current in the In{sub 0.53}Ga{sub 0.47}As channel in strong electric fields is determined by not only the sublinear field dependence of the electron drift velocity, but also by the decrease in the electron concentration n{sub s} with an increase in the voltage across the channel. The dependence of n{sub s} on the applied voltage is due to the ionized-donor layer located within the {delta}-Si doped In{sub 0.52}Al{sub 0.48}As barrier and oriented parallel to the In{sub 0.53}Ga{sub 0.47}As QW.

Vasil'evskii, I. S.; Galiev, G. B.; Matveev, Yu. A.; Klimov, E. A.; Pozela, J., E-mail: pozela@pfi.lt [Russian Academy of Sciences, Institute of Microwave Semiconductor Electronics (Russian Federation); Pozela, K.; Suziedelis, A.; Paskevic, C.; Juciene, V. [Semiconductor Physics Institute (Lithuania)

2010-07-15T23:59:59.000Z

291

Avalence LLC | Open Energy Information  

Open Energy Info (EERE)

Avalence LLC Avalence LLC Jump to: navigation, search Name Avalence LLC Address 1240 Oronoque Road Place Milford, Connecticut Zip 06460 Sector Hydrogen Product Hydrogen generating equipment Website http://www.avalence.com/ Coordinates 41.2230689°, -73.1027179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2230689,"lon":-73.1027179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Deltak LLC | Open Energy Information  

Open Energy Info (EERE)

Deltak LLC Deltak LLC Jump to: navigation, search Name Deltak LLC Place Minneapolis, Minnesota Zip 55441 Product Supplier of custom designed heat recovery steam generators (HRSGs) for gas turbine combined-cycle power generation and specialty boilers for waste heat recovery applications Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Geoplasma LLC | Open Energy Information  

Open Energy Info (EERE)

Geoplasma LLC Geoplasma LLC Jump to: navigation, search Name Geoplasma LLC Place Atlanta, Georgia Zip 30363 Product Geoplasma is developing plasma gasification technology. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

HCE LLC | Open Energy Information  

Open Energy Info (EERE)

HCE LLC HCE LLC Jump to: navigation, search Name HCE LLC Place Oakton, Virginia Zip 22124-1530 Sector Hydro, Hydrogen Product Has developed a new device and method for hydrogen storage. Coordinates 38.880787°, -77.301381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.880787,"lon":-77.301381,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Phycal LLC | Open Energy Information  

Open Energy Info (EERE)

Phycal LLC Phycal LLC Jump to: navigation, search Name Phycal LLC Address 51 Alpha Park Place Highland Heights, Ohio Zip 44143 Sector Biofuels, Biomass Product Agriculture; Raw materials/extraction; Research and development Phone number 440-460-2477 Website http://www.phycal.com Coordinates 41.5533226°, -81.451283° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5533226,"lon":-81.451283,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

MILACRON, LLC | Open Energy Information  

Open Energy Info (EERE)

MILACRON, LLC MILACRON, LLC Jump to: navigation, search Name MILACRON, LLC Address 418 W MAIN ST Place Mt. Orab, Ohio Zip 45154 Sector Services, Wind energy Product Manufacturing Phone number 513-536-2800 Website http://MilacronMachining.com Coordinates 39.0323997°, -83.9284878° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0323997,"lon":-83.9284878,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Segway LLC | Open Energy Information  

Open Energy Info (EERE)

Segway LLC Segway LLC Jump to: navigation, search Name Segway LLC Place Bedford, New Hampshire Zip 3110 Product Focused on development of zero-emission personal transportation using alternative-power systems. Coordinates 42.897515°, -110.935047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.897515,"lon":-110.935047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Fiberight LLC | Open Energy Information  

Open Energy Info (EERE)

Fiberight LLC Fiberight LLC Jump to: navigation, search Name Fiberight LLC Place Lawrenceville, Virginia Zip 23868 Product Virginia-based waste-to-ethanol producer. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

USGlobal LLC | Open Energy Information  

Open Energy Info (EERE)

USGlobal LLC USGlobal LLC Jump to: navigation, search Name USGlobal LLC Address 1451 W. Cypress Creek Road, Suite 307 Place Fort Lauderdale, Florida Zip 33309 Product Investment and development firm. Phone number (954) 784-6442 Website http://www.usgloballlc.com/ Coordinates 26.203089°, -80.1627965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.203089,"lon":-80.1627965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Smallfoot, LLC | Open Energy Information  

Open Energy Info (EERE)

Smallfoot, LLC Smallfoot, LLC Jump to: navigation, search Name Smallfoot, LLC Place Boulder, Colorado Coordinates 40.0149856°, -105.2705456° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0149856,"lon":-105.2705456,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Luminate LLC | Open Energy Information  

Open Energy Info (EERE)

Luminate LLC Luminate LLC Jump to: navigation, search Name Luminate, LLC Place Denver, Colorado Zip 80202 Sector Services Product Denver-based consultancy providing technical and management advisory services to companies active in the energy industry. They have specialist expertises in the biofuel industry. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Hythane LLC | Open Energy Information  

Open Energy Info (EERE)

Hythane LLC Hythane LLC Jump to: navigation, search Name Hythane LLC Place Denver, Colorado Sector Hydro, Hydrogen Product Produces a fuel system which runs on 'Hythane' - a 50:50 blend of natural gas and hydrogen. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

BSST LLC | Open Energy Information  

Open Energy Info (EERE)

BSST LLC BSST LLC Jump to: navigation, search Name BSST LLC Place Irwindale, California Zip 91706 Product Their core-competency is thermo-electrics (heat to electricity), using alternate thermodynamic cycles. Coordinates 34.105143°, -117.933771° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.105143,"lon":-117.933771,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

RLR Consultants LLC | Open Energy Information  

Open Energy Info (EERE)

RLR Consultants LLC RLR Consultants LLC Jump to: navigation, search Name RLR Consultants, LLC Place Englewood Cliffs, New Jersey Zip 7632 Sector Renewable Energy Product String representation "RLR Consultants ... or our clients." is too long. References RLR Consultants, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. RLR Consultants, LLC is a company located in Englewood Cliffs, New Jersey . References ↑ "RLR Consultants, LLC" Retrieved from "http://en.openei.org/w/index.php?title=RLR_Consultants_LLC&oldid=350449" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

305

Catalytic Device International LLC | Open Energy Information  

Open Energy Info (EERE)

Catalytic Device International LLC Catalytic Device International LLC Jump to: navigation, search Name Catalytic Device International LLC Place Pleasanton, California Product California-based, firm focused on portable, heat-on-demand products. References Catalytic Device International LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Catalytic Device International LLC is a company located in Pleasanton, California . References ↑ "Catalytic Device International LLC" Retrieved from "http://en.openei.org/w/index.php?title=Catalytic_Device_International_LLC&oldid=343285" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

306

Central Texas Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Central Texas Biofuels LLC Place Giddings, Texas Zip 78942 Product Biodiesel producer in Giddings, Texas. References Central Texas Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Texas Biofuels LLC is a company located in Giddings, Texas . References ↑ "Central Texas Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Central_Texas_Biofuels_LLC&oldid=343385" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

307

CPV Wind Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

CPV Wind Ventures LLC CPV Wind Ventures LLC Jump to: navigation, search Name CPV Wind Ventures LLC Place Silver Spring, Maryland Zip 20910 Sector Wind energy Product Wind power project developer. References CPV Wind Ventures LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CPV Wind Ventures LLC is a company located in Silver Spring, Maryland . References ↑ "CPV Wind Ventures LLC" Retrieved from "http://en.openei.org/w/index.php?title=CPV_Wind_Ventures_LLC&oldid=343959" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

308

Clark Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Clark Energy Group LLC Clark Energy Group LLC Jump to: navigation, search Name Clark Energy Group LLC Place Arlington, Virginia Zip 22203 Sector Efficiency, Renewable Energy Product Virginia-based energy efficiency and renewable energy project developer. References Clark Energy Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clark Energy Group LLC is a company located in Arlington, Virginia . References ↑ "Clark Energy Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Clark_Energy_Group_LLC&oldid=343635" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

309

Cambrian Energy Development LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Development LLC Energy Development LLC Jump to: navigation, search Name Cambrian Energy Development LLC Place Los Angeles, California Zip 90017 Sector Biomass Product Los Angeles-based developer of landfill gas-to-energy projects, in addition to other biomass/fuel activities. References Cambrian Energy Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cambrian Energy Development LLC is a company located in Los Angeles, California . References ↑ "Cambrian Energy Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Cambrian_Energy_Development_LLC&oldid=343171" Categories: Clean Energy Organizations Companies Organizations Stubs

310

Best Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

Biofuels LLC Biofuels LLC Jump to: navigation, search Name Best Biofuels LLC Place Austin, Texas Zip 78746 Sector Biofuels Product Best Biofuels is developing and commercialising vegetable oils and ethanol as fuel. References Best Biofuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Best Biofuels LLC is a company located in Austin, Texas . References ↑ "Best Biofuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=Best_Biofuels_LLC&oldid=342683" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

311

Environmental Capital Group LLC | Open Energy Information  

Open Energy Info (EERE)

Group LLC Group LLC Jump to: navigation, search Name Environmental Capital Group LLC Place Grass Valley, California Zip 95945 Product String representation "Environmental C ... tartup forward." is too long. References Environmental Capital Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Group LLC is a company located in Grass Valley, California . References ↑ "Environmental Capital Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Group_LLC&oldid=345025" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

312

Renewable Spirits LLC | Open Energy Information  

Open Energy Info (EERE)

Spirits LLC Spirits LLC Jump to: navigation, search Name Renewable Spirits LLC Place Delray Beach, Florida Zip 33446 Product Focused on developing citrus waste into ethanol. References Renewable Spirits LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Spirits LLC is a company located in Delray Beach, Florida . References ↑ "Renewable Spirits LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Spirits_LLC&oldid=350353" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

313

Renewegy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Renewegy Systems LLC Renewegy Systems LLC Jump to: navigation, search Name Renewegy Systems, LLC Place Oshkosh, Wisconsin Zip 54901-1216 Sector Wind energy Product Wisconsin-based mechatronics engineering firm specializing in strategic product development and planning. Renewegyâ€(tm)s line of light commercial wind turbines targets farms, schools, and commercial businesses to enable them to harness wind energy. References Renewegy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewegy Systems, LLC is a company located in Oshkosh, Wisconsin . References ↑ "Renewegy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Renewegy_Systems_LLC&oldid=350362

314

SolarAMP LLC | Open Energy Information  

Open Energy Info (EERE)

SolarAMP LLC SolarAMP LLC Jump to: navigation, search Name SolarAMP LLC Place Raleigh, North Carolina Zip 27615 Product Developing a PV cell using nanostructured light absorption rods of organic material, and SnO2 (tin oxide) as the semiconductor. References SolarAMP LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarAMP LLC is a company located in Raleigh, North Carolina . References ↑ "SolarAMP LLC" Retrieved from "http://en.openei.org/w/index.php?title=SolarAMP_LLC&oldid=351354" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us

315

Bluewater Wind LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Bluewater Wind LLC Place New York, New York Zip 10018 Sector Wind energy Product New York-based offshore wind farm developer and operator. References Bluewater Wind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Bluewater Wind LLC is a company located in New York, New York . References ↑ "Bluewater Wind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Bluewater_Wind_LLC&oldid=342944" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

316

New Bio LLC | Open Energy Information  

Open Energy Info (EERE)

New Bio LLC New Bio LLC Jump to: navigation, search Name New Bio LLC Place Eden Prarie, Minnesota Zip MN 55344-3446 Sector Biomass Product Working on the development and commercialization of an Integrated Biomass to Electricity System (IBES) References New Bio LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Bio LLC is a company located in Eden Prarie, Minnesota . References ↑ "New Bio LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Bio_LLC&oldid=349152" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

317

S W Energy LLC | Open Energy Information  

Open Energy Info (EERE)

W Energy LLC W Energy LLC Jump to: navigation, search Name S.W. Energy, LLC Place Elk River, Minnesota Zip 55330 Product Minnesota-based ethanol project developer. References S.W. Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. S.W. Energy, LLC is a company located in Elk River, Minnesota . References ↑ "S.W. Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=S_W_Energy_LLC&oldid=350546" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

318

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

319

Alterra Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

Alterra Bioenergy LLC Alterra Bioenergy LLC Jump to: navigation, search Name Alterra Bioenergy LLC Place Macon, Georgia Sector Biofuels Product Manufacturer and distributor of biofuels. References Alterra Bioenergy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Alterra Bioenergy LLC is a company located in Macon, Georgia . References ↑ "Alterra Bioenergy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Alterra_Bioenergy_LLC&oldid=342070" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

320

Capitaline Advisors LLC | Open Energy Information  

Open Energy Info (EERE)

Capitaline Advisors LLC Capitaline Advisors LLC Jump to: navigation, search Name Capitaline Advisors LLC Place Sioux Falls, South Dakota Sector Renewable Energy Product Private equity firm based in Sioux Falls, focusing on bioethanol and renewable energy investments. References Capitaline Advisors LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Capitaline Advisors LLC is a company located in Sioux Falls, South Dakota . References ↑ "Capitaline Advisors LLC" Retrieved from "http://en.openei.org/w/index.php?title=Capitaline_Advisors_LLC&oldid=343219" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

American Ag Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Ag Fuels LLC Ag Fuels LLC Jump to: navigation, search Name American Ag Fuels LLC Place Defiance, Ohio Zip 43512 Product Biodiesel producer in Defiance, Ohio. References American Ag Fuels LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Ag Fuels LLC is a company located in Defiance, Ohio . References ↑ "American Ag Fuels LLC" Retrieved from "http://en.openei.org/w/index.php?title=American_Ag_Fuels_LLC&oldid=342105" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

322

Eco Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Capital LLC Capital LLC Jump to: navigation, search Name Eco Capital LLC Place New York, New York Zip 10166 Sector Carbon, Renewable Energy Product New York-based advisory and investment firm prioritizing activity in renewable energy, clean technology and carbon finance. References Eco Capital LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Eco Capital LLC is a company located in New York, New York . References ↑ "Eco Capital LLC" Retrieved from "http://en.openei.org/w/index.php?title=Eco_Capital_LLC&oldid=344441" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

323

Mont Vista Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Vista Capital LLC Vista Capital LLC Jump to: navigation, search Name Mont Vista Capital LLC Place New York, New York Zip 10167 Sector Services Product Mont Vista Capital is a leading global provider of services to clients in the alternative energy industry. Mont Vista also seeks proprietary trading and growth equity opportunities in alternative energy markets which add value for our stakeholders. References Mont Vista Capital LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mont Vista Capital LLC is a company located in New York, New York . References ↑ "Mont Vista Capital LLC" Retrieved from "http://en.openei.org/w/index.php?title=Mont_Vista_Capital_LLC&oldid=348916"

324

Global Power Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Power Solutions LLC Power Solutions LLC Jump to: navigation, search Name Global Power Solutions LLC Place Colorado Zip CO 80401 Sector Geothermal energy Product String representation "Global Power So ... sition support." is too long. References Global Power Solutions LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Power Solutions LLC is a company located in Colorado . References ↑ "Global Power Solutions LLC" Retrieved from "http://en.openei.org/w/index.php?title=Global_Power_Solutions_LLC&oldid=345917" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

325

Solstice Solar Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Solstice Solar Systems LLC Solstice Solar Systems LLC Jump to: navigation, search Name Solstice Solar Systems LLC Place Campbell, California Zip 95008-6906 Sector Solar Product US-based manufacturer of PV inverters and wires to connect solar panels. References Solstice Solar Systems LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solstice Solar Systems LLC is a company located in Campbell, California . References ↑ "Solstice Solar Systems LLC" Retrieved from "http://en.openei.org/w/index.php?title=Solstice_Solar_Systems_LLC&oldid=351510" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

326

New Planet Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name New Planet Energy LLC Place League City, Texas Sector Renewable Energy Product Texas-based firm that specialises in commercializing technologies that utilize waste materials and other sustainable resources in the production of renewable energy and related products. References New Planet Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Planet Energy LLC is a company located in League City, Texas . References ↑ "New Planet Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Planet_Energy_LLC&oldid=349175" Categories: Clean Energy Organizations Companies Organizations Stubs

327

Atlanta Chemical Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Atlanta Chemical Engineering LLC Jump to: navigation, search Logo: Atlanta Chemical Engineering LLC Name Atlanta Chemical Engineering LLC Place Marietta, Georgia Zip 30064 Country United States Sector Biomass Year founded 2008 Company Type For Profit Company Ownership Private Small Business Yes References Atlanta Chemical Engineering LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Atlanta Chemical Engineering LLC is a company based in Marietta, Georgia. References ↑ "Atlanta Chemical Engineering LLC" Retrieved from "http://en.openei.org/w/index.php?title=Atlanta_Chemical_Engineering_LLC&oldid=699086"

328

Environmental Capital Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Partners LLC Partners LLC Jump to: navigation, search Name Environmental Capital Partners LLC Place New York, New York Zip 10017 Sector Services Product Private equity firm funded with USD 100m for investment in middle-market companies specialising in green consumer products, building materials, alternative energy, and industrial environmental services. References Environmental Capital Partners LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Partners LLC is a company located in New York, New York . References ↑ "Environmental Capital Partners LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Partners_LLC&oldid=345026"

329

Resource Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Systems LLC Energy Systems LLC Jump to: navigation, search Name Resource Energy Systems, LLC Place Rochelle Park, New Jersey Zip 7662 Sector Services, Solar Product Resource Energy Systems (RES) provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References Resource Energy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Resource Energy Systems, LLC is a company located in Rochelle Park, New Jersey . References ↑ "Resource Energy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Resource_Energy_Systems_LLC&oldid=350391" Categories: Clean Energy Organizations

330

The Ashlawn Group LLC | Open Energy Information  

Open Energy Info (EERE)

Ashlawn Group LLC Ashlawn Group LLC Jump to: navigation, search Name The Ashlawn Group LLC Place Alexandria, Virginia Zip 22304 Sector Services Product Provides management and technical consulting services, sales representations, product development, design and manufacturing process engineering solutions for industrial applications for the Department of Defense and energy-related industries. References The Ashlawn Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Ashlawn Group LLC is a company located in Alexandria, Virginia . References ↑ "The Ashlawn Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=The_Ashlawn_Group_LLC&oldid=352164"

331

Padoma Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Padoma Wind Power LLC Padoma Wind Power LLC Jump to: navigation, search Name Padoma Wind Power LLC Place La Jolla, California Zip 92037 Sector Wind energy Product A wind energy consulting and development company. References Padoma Wind Power LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Padoma Wind Power LLC is a company located in La Jolla, California . References ↑ "Padoma Wind Power LLC" Retrieved from "http://en.openei.org/w/index.php?title=Padoma_Wind_Power_LLC&oldid=349559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

332

808 Investments LLC | Open Energy Information  

Open Energy Info (EERE)

Investments LLC Investments LLC Jump to: navigation, search Name 808 Investments LLC Place Huntington Beach, California Zip 92649 Sector Solar Product California-based boutique investment banking firm focusing on solar and cogeneration project development or acquisition. References 808 Investments LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. 808 Investments LLC is a company located in Huntington Beach, California . References ↑ "808 Investments LLC" Retrieved from "http://en.openei.org/w/index.php?title=808_Investments_LLC&oldid=341642" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

333

AeroCity LLC | Open Energy Information  

Open Energy Info (EERE)

AeroCity LLC AeroCity LLC Jump to: navigation, search Name AeroCity LLC Place Lake Katrine, New York Sector Wind energy Product Micro urban wind turbine maker based in New York State. References AeroCity LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AeroCity LLC is a company located in Lake Katrine, New York . References ↑ "AeroCity LLC" Retrieved from "http://en.openei.org/w/index.php?title=AeroCity_LLC&oldid=341825" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

334

SOFCo EFS Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

SOFCo EFS Holdings LLC SOFCo EFS Holdings LLC Jump to: navigation, search Name SOFCo-EFS Holdings LLC Place Alliance, Ohio Zip 44601 Product SOFCo-EFS has developed a proprietary planar SOFC design and a low cost approach to manufacturing that is expected to lead to commercially viable SOFC power systems. References SOFCo-EFS Holdings LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SOFCo-EFS Holdings LLC is a company located in Alliance, Ohio . References ↑ "SOFCo-EFS Holdings LLC" Retrieved from "http://en.openei.org/w/index.php?title=SOFCo_EFS_Holdings_LLC&oldid=351221" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

335

Psomas FMG LLC | Open Energy Information  

Open Energy Info (EERE)

Psomas FMG LLC Psomas FMG LLC Jump to: navigation, search Name Psomas FMG, LLC Place Los Angeles, California Zip 90071 Sector Solar Product String representation "At virtually no ... after 20 years" is too long. References Psomas FMG, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Psomas FMG, LLC is a company located in Los Angeles, California . References ↑ "Psomas FMG, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Psomas_FMG_LLC&oldid=350035" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

336

Caithness Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Caithness Energy LLC Caithness Energy LLC Jump to: navigation, search Name Caithness Energy LLC Place New York, New York Zip 10017 Sector Geothermal energy, Renewable Energy, Solar, Wind energy Product Caithness Energy is a renewable energy project developer, plant owner and investor focusing on geothermal, wind and solar power. References Caithness Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Caithness Energy LLC is a company located in New York, New York . References ↑ "Caithness Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Caithness_Energy_LLC&oldid=343142" Categories: Clean Energy Organizations Companies Organizations

337

Higher Power Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Higher Power Energy LLC Higher Power Energy LLC Jump to: navigation, search Name Higher Power Energy, LLC Place Flower Mound, Texas Zip 78028 Sector Renewable Energy, Wind energy Product Higher Power Energy is focused on the development and management of renewable wind energy across North America. References Higher Power Energy, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Higher Power Energy, LLC is a company located in Flower Mound, Texas . References ↑ "Higher Power Energy, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Higher_Power_Energy_LLC&oldid=346535" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

338

P8, Fabrication of Subwavelength Pillar Arrays on GaAs by Confined ...  

Science Conference Proceedings (OSTI)

DD3, A New Approach to Make ZnO-Cu2O Heterojunctions for Solar Cells ... E2, AlGaAs/GaAs/GaN Wafer Fused HBTs with Ar Implanted Extrinsic Collectors.

339

Prospero LLC | Open Energy Information  

Open Energy Info (EERE)

Prospero LLC Prospero LLC Jump to: navigation, search Logo: Prospero LLC Name Prospero LLC Address 20 Marshall Street, Suite 300 Place Norwalk, Connecticut Zip 06854 Region Northeast - NY NJ CT PA Area Product Merchant bank providing financial services and capital to companies in the technology and energy sectors Year founded 1998 Phone number (203) 354-1529 Website http://www.prosperollc.net/ Coordinates 41.100803°, -73.4174967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.100803,"lon":-73.4174967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Gentivity, LLC | Open Energy Information  

Open Energy Info (EERE)

Gentivity, LLC Gentivity, LLC Jump to: navigation, search Logo: Gentivity, LLC Name Gentivity, LLC Address 9314 Knoll Crest Loop Place Austin, Texas Zip 78759 Sector Renewable energy Product Consulting - Origination, Market Structure & Entry Year founded 2004 Number of employees 1-10 Phone number 512-814-7149 Website http://www.gentivity.com Coordinates 30.394897°, -97.7604719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.394897,"lon":-97.7604719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Structure and magnetic properties of the Al{sub 1-x}Ga{sub x}FeO{sub 3} family of oxides: A combined experimental and theoretical study  

Science Conference Proceedings (OSTI)

Magnetic properties of the Al{sub 1-x}Ga{sub x}FeO{sub 3} family of oxides crystallizing in a non-centrosymmetric space group have been investigated in detail along with structural aspects by employing X-ray and neutron diffraction, Moessbauer spectroscopy and other techniques. The study has revealed the occurrence of several interesting features related to unit cell parameters, site disorder and ionic size. Using first-principles density functional theory based calculations, we have attempted to understand how magnetic ordering and related properties in these oxides depend sensitively on disorder at the cation site. The origin and tendency of cations to disorder and the associated properties are traced to the local structure and ionic sizes. -- Graphical abstract: We have studied both experimentally and theoretically the important role of disorder at the cation site on magnetic and related properties of the Al{sub 1-x}Ga{sub x}FeO{sub 3} family of oxides crystallizing in a non-centrosymmetric space group. Display Omitted Research highlights: {yields} Interesting observations on cation site disorder, cell parameters and ionic size. {yields} Cation site disorder explains magnetic ordering. {yields} Demonstrates the importance of the A-site cations.

Saha, Rana; Shireen, Ajmala [Chemistry and Physics of Materials Unit, New Chemistry Unit, Theoretical Science Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 (India); Bera, A.K. [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Shirodkar, Sharmila N.; Sundarayya, Y.; Kalarikkal, Nandakumar [Chemistry and Physics of Materials Unit, New Chemistry Unit, Theoretical Science Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 (India); Yusuf, S.M. [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Waghmare, Umesh V. [Chemistry and Physics of Materials Unit, New Chemistry Unit, Theoretical Science Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 (India); Sundaresan, A., E-mail: sundaresan@jncasr.ac.i [Chemistry and Physics of Materials Unit, New Chemistry Unit, Theoretical Science Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 (India); Rao, C.N.R, E-mail: cnrrao@jncasr.ac.i [Chemistry and Physics of Materials Unit, New Chemistry Unit, Theoretical Science Unit and International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 (India)

2011-03-15T23:59:59.000Z

342

EA-212-A Coral Power, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Mexico. EA-212-A Coral Power, LLC More Documents & Publications EA-212 Coral Power, LLC EA-167 PG&E Energy Trading-Power, L.P EA-166 Duke Energy Trading and Marketing, L.L.C...

343

EA-178-A Citizens Power Sales LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC to export electric energy to Mexico. EA-178-A Citizens Power Sales LLC More Documents & Publications EA-178 Citizens Power Sales EA-166 Duke Energy Trading and Marketing, L.L.C...

344

Green Partners LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Green Partners LLC Jump to: navigation, search Name Green Partners LLC Place New York Zip NY 10022 Sector Efficiency, Renewable Energy Product US-based investment firm focused on investments in renewable energy, energy efficiency and climate change. References Green Partners LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Partners LLC is a company located in New York . References ↑ "Green Partners LLC" Retrieved from "http://en.openei.org/w/index.php?title=Green_Partners_LLC&oldid=346040"

345

Energy 5 0 LLC | Open Energy Information  

Open Energy Info (EERE)

Energy 5.0 LLC Energy 5.0 LLC Place West Palm Beach, Florida Zip FL 33401 Sector Renewable Energy Product String representation "Energy 5.0 deve ... ven technology." is too long. References Energy 5.0 LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Energy 5.0 LLC is a company located in West Palm Beach, Florida . References ↑ "Energy 5.0 LLC" Retrieved from "http://en.openei.org/w/index.php?title=Energy_5_0_LLC&oldid=344825" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

346

Changes related to "Biofuel Industries Group LLC" | Open Energy...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Biofuel Industries Group LLC" Biofuel Industries Group LLC Jump to: navigation, search...

347

Pages that link to "Biofuel Industries Group LLC" | Open Energy...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Biofuel Industries Group LLC" Biofuel Industries Group LLC Jump to: navigation, search...

348

Mid America Bio Energy and Commodities LLC | Open Energy Information  

Open Energy Info (EERE)

America Bio Energy and Commodities LLC Jump to: navigation, search Name Mid America Bio Energy and Commodities, LLC Place North Platte, Nebraska Zip 69101 Product Nebraska based...

349

Progress Energy Service Company, LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name Progress Energy Service Company, LLC Place Raleigh, NC References SGIC1 No information has been entered for this organization. Add...

350

Ocean Renewable Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Renewable Power Company LLC Jump to: navigation, search Name Ocean Renewable Power Company LLC Place Portland, Maine Zip 4101 Sector Ocean, Renewable Energy Product Ocean...

351

First Capitol Risk Management LLC | Open Energy Information  

Open Energy Info (EERE)

Search Page Edit with form History Facebook icon Twitter icon First Capitol Risk Management LLC Jump to: navigation, search Name First Capitol Risk Management, LLC Place...

352

American Green Holdings LLC AGH | Open Energy Information  

Open Energy Info (EERE)

Holdings LLC AGH Jump to: navigation, search Name American Green Holdings LLC (AGH) Place Montana Product Montana-based biodiesel manufacturer, using high-pressure reactors....

353

SeQuential Pacific Biodiesel LLC | Open Energy Information  

Open Energy Info (EERE)

Pacific Biodiesel LLC Jump to: navigation, search Name SeQuential-Pacific Biodiesel LLC Place Oregon Sector Biofuels Product JV between SeQuential Biofuels, Pacific Biodiesel, and...

354

Accent Energy Holdings, LLC (New York) | Open Energy Information  

Open Energy Info (EERE)

LLC (New York) Jump to: navigation, search Name Accent Energy Holdings, LLC Place New York Utility Id 54872 References EIA Form EIA-861 Final Data File for 2010 -...

355

Strategic Energy LLC (New York) | Open Energy Information  

Open Energy Info (EERE)

Energy LLC (New York) Jump to: navigation, search Name Strategic Energy LLC Place New York Utility Id 18193 References EIA Form EIA-861 Final Data File for 2010 -...

356

Agri Ethanol Products LLC AEPNC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Products LLC AEPNC Jump to: navigation, search Name Agri-Ethanol Products LLC (AEPNC) Place Raleigh, North Carolina Zip 27615 Product Ethanol producer and project...

357

Department of Energy Cites Brookhaven Science Associates, LLC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brookhaven Science Associates, LLC for Worker Safety and Health Violations Department of Energy Cites Brookhaven Science Associates, LLC for Worker Safety and Health Violations...

358

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

Biomass Gas Electric LLC BG E Jump to: navigation, search Name Biomass Gas & Electric LLC (BG&E) Place Norcross, Georgia Zip 30092 Sector Biomass Product Project developer...

359

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

360

Changes related to "Carbon Micro Battery LLC" | Open Energy Informatio...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Changes related to "Carbon Micro Battery LLC" Carbon Micro Battery LLC Jump to: navigation, search This is a list of...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BioEnergy Engineering LLC | Open Energy Information  

Open Energy Info (EERE)

Engineering LLC" Retrieved from "http:en.openei.orgwindex.php?titleBioEnergyEngineeringLLC&oldid342799" Categories: Clean Energy Organizations Companies...

362

BECHTEL JACOBS COMPANY LLC'S MANAGEMENT AND INTEGRATION CONTRACT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home BECHTEL JACOBS COMPANY LLC'S MANAGEMENT AND INTEGRATION CONTRACT AT OAK RIDGE, IG-0498 BECHTEL JACOBS COMPANY LLC'S MANAGEMENT AND INTEGRATION CONTRACT AT OAK...

363

Department of Energy Cites Battelle Energy Alliance, LLC for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battelle Energy Alliance, LLC for Nuclear Safety and Radiation Protection Violations Department of Energy Cites Battelle Energy Alliance, LLC for Nuclear Safety and Radiation...

364

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington River Protection Solutions, LLC for Tank Operations Contract at Hanford Site DOE Selects Washington River Protection Solutions, LLC for Tank Operations Contract at...

365

Blue Hill Investment Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Investment Partners LLC Jump to: navigation, search Name Blue Hill Investment Partners LLC Place Philadelphia, Pennsylvania Zip PA 19118 Sector Renewable Energy Product A...

366

Lake Country Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Country Wind Energy LLC Jump to: navigation, search Name Lake Country Wind Energy LLC Place Minnesota Zip 56209 Sector Renewable Energy, Wind energy Product Minnesota-based wind...

367

BrightPath Energy LLC | Open Energy Information  

Open Energy Info (EERE)

New York . References "BrightPath Energy LLC" Retrieved from "http:en.openei.orgwindex.php?titleBrightPathEnergyLLC&oldid343040" Categories: Clean Energy Organizations...

368

California Wave Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

California Wave Energy Partners LLC Jump to: navigation, search Name California Wave Energy Partners LLC Address 1590 Reed Road Place Pennington Zip 8534 Sector Marine and...

369

Duke Energy Business Services LLC | Open Energy Information  

Open Energy Info (EERE)

Duke Energy Business Services LLC Jump to: navigation, search Name Duke Energy Business Services LLC Place Charlotte, NC References SGIC1 No information has been entered for this...

370

Idaho National Laboratory Battelle Energy Alliance,LLC | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Battelle Energy Alliance,LLC Idaho National Laboratory Battelle Energy Alliance,LLC Idaho National Laboratory Idaho National Laboratory Battelle Energy...

371

"1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC...  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" "1. PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370 "2. PSEG Linden Generating Station","Gas","PSEG Fossil LLC",1587 "3. Bergen Generating...

372

Tri-State Materials Testing Lab, LLC  

Science Conference Proceedings (OSTI)

Tri-State Materials Testing Lab, LLC. NVLAP Lab Code: 200010-0. Address and Contact Information: 160 S. Turnpike Road ...

2013-11-08T23:59:59.000Z

373

NETL: ICCS Area 1 - Leucadia Energy, LLC  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture & Sequestration Project Lake Charles, Louisiana PROJECT FACT SHEET Leucadia Energy, LLC: Lake Charles Carbon Capture & Sequestration Project PDF-488KB (Oct 2013)...

374

Rational Energies LLC | Open Energy Information  

Open Energy Info (EERE)

Minnesota-based development-stage company formed to produce and market renewable diesel made from waste feedstocks. References Rational Energies LLC1 LinkedIn Connections...

375

C3 LLC | Open Energy Information  

Open Energy Info (EERE)

marketer of software applications for supporting enterprises in their carbon exposure and energy management. References C3, LLC1 LinkedIn Connections CrunchBase Profile No...

376

Calpine Power Management LLC | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Calpine Power Management LLC (Redirected from Calpine Power Management) Jump to: navigation, search Name...

377

Bethel Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name Bethel Energy LLC Place Cardiff, California Zip 92007 Sector Solar Product Solar thermal electricity generation (STEG) project developer, to use parabolic trough design with...

378

Solar Millennium LLC USA | Open Energy Information  

Open Energy Info (EERE)

LLC (USA) Place Berkeley, California Sector Solar Product California-based STEG power plant developer, parabolic trough maker and subsidiary of Solar Trust of America....

379

Lone Star Transmission LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place Juno Beach, Florida Zip 33408 Product Wholly owned subsidiary of FPL Energy, developing transmission lines. First project is the DFW Express high voltage DC...

380

American Transmission Company LLC | Open Energy Information  

Open Energy Info (EERE)

American Transmission Company LLC Place Waukesha, WI References SGIC1 No information has been entered for this organization. Add Organization This article is a stub. You can help...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nimes Capital LLC | Open Energy Information  

Open Energy Info (EERE)

equity firm that provides growth capital to companies focused on sustainable development, alternative energy, infrastructure, or clean technology. References Nimes Capital LLC1...

382

KGRA Energy LLC | Open Energy Information  

Open Energy Info (EERE)

systems developer to convert the geothermal energy contained in water and waste heat from oil and gas surface machinery to provide electricity. References KGRA Energy LLC1...

383

SunEdison LLC | Open Energy Information  

Open Energy Info (EERE)

SunEdison LLC Place Beltsville, Maryland Zip 20705 Sector Solar Product Maryland-based provider of financial and installation solutions for solar projects. References SunEdison...

384

Iogen Biorefinery Partners, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with the flexibility to process a wide range of agricultural residues into cellulose ethanol. Iogen Biorefinery Partners, LLC More Documents & Publications RSE Pulp & Chemical,...

385

FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating and 95.4 percent of the possible incentive fee...

386

FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating and 95 percent of the possible incentive fee from...

387

FY 2012 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating in Program, Operations, and Institutional...

388

FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating and 95.3 percent of the possible incentive fee...

389

FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned a "Very Good" rating and 76.1 percent of the possible incentive fee from...

390

Strategic Energy LLC (Ohio) | Open Energy Information  

Open Energy Info (EERE)

Retrieved from "http:en.openei.orgwindex.php?titleStrategicEnergyLLC(Ohio)&oldid412825" Categories: EIA Utility Companies and Aliases Utility Companies...

391

Encap Development LLC | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Encap Development LLC Place Massachusetts Zip 17200 Sector Efficiency, Renewable Energy, Services, Solar Product String representation "encap...

392

Terranova Bioenergy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Terranova Bioenergy LLC Place Larkspur, California Zip 94939 Sector Biofuels Product California-based project developer and consultant in the field of biofuels....

393

Supercritical Recovery Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Recovery Systems LLC Place Clayton, Missouri Zip 63105 Product Holder of various biofuel processing technologies. Deeveloping an ethanol plant in Lacassine, Louisiana....

394

Sentry Power LLC | Open Energy Information  

Open Energy Info (EERE)

Name Sentry Power LLC Place New Castle, Delaware Zip 19720 Product Sentry Power sells battery-driven back up uninterrupted power supply systems for commercial and residential...

395

Alta Power Group LLC | Open Energy Information  

Open Energy Info (EERE)

Product California-based firm specializing in advisory services for the renewable energy market. References Alta Power Group LLC1 LinkedIn Connections CrunchBase Profile...

396

Phoenix Energy LLC | Open Energy Information  

Open Energy Info (EERE)

94115 Sector Biomass Product California-based distributor and installer of biomass gasification systems. References Phoenix Energy LLC1 LinkedIn Connections CrunchBase Profile...

397

Biodiesel Systems LLC | Open Energy Information  

Open Energy Info (EERE)

supply, build, invest in, and guarantee turn-key biodiesel production and glycerine refining facilities. References Biodiesel Systems, LLC1 LinkedIn Connections CrunchBase...

398

Sino Transpacific Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

California Sector Wind energy Product A venture capital established for clean energy investment in China, mainly in wind. References Sino Transpacific Ventures LLC1 LinkedIn...

399

from Savannah River Nuclear Solutions, LLC NEWS  

NLE Websites -- All DOE Office Websites (Extended Search)

and communications campaign known as "Safety Begins with Me" led by Savannah River Nuclear Solutions, LLC (SRNS). Banners are flying over roadways, safety-related stories fill...

400

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place Sun Prairie, Wisconsin Zip 53590 Sector Services, Wind energy Product Wisconsin-based wind developer and construction services provider. References Wave Wind...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Enforcement Letter, National Security Technologies, LLC - May...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 21, 2007 Enforcement Letter issued to National Security Technologies, LLC related to Nuclear Safety Quality Assurance Requirements Deficiencies at the Nevada Test Site The...

402

Solar Electric Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Woodland Hills, California Zip 91364 Sector Solar Product California-based developer of solar PV projects. References Solar Electric Solutions, LLC1 LinkedIn Connections...

403

Lincolnland Agrienergy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Lincolnland Agrienergy LLC Place Palestine, Illinois Zip 62451 Product Bioethanol producer using corn as feedstock Coordinates 39.029655, -81.407084 Loading...

404

Brilliant Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Name Brilliant Energy, LLC Place Texas Utility Id 56255 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861...

405

Duquesne Light Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Light Energy, LLC Place Pennsylvania Utility Id 56254 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 -...

406

Accent Energy Holdings, LLC | Open Energy Information  

Open Energy Info (EERE)

Accent Energy Holdings, LLC Place Ohio Utility Id 54872 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 -...

407

Sunton United Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Product Utah-based investment company seeking to fund the commercial development of alternative and renewable energy technologies. References Sunton United Energy LLC1...

408

FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating and 95.3 percent of the possible incentive fee from...

409

FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...  

National Nuclear Security Administration (NNSA)

& Technologies, LLC, the management and operating contractor for the Kansas City Plant, earned an "Excellent" rating and 95.4 percent of the possible incentive fee from...

410

Bar Gadda LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Bar-Gadda LLC Place Palo Alto, California Zip 94306 Sector Geothermal energy, Hydro, Hydrogen Product Has developed a new technology to produce hydrogen from...

411

Alliance for Sustainable Energy, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27, 2013 27, 2013 Dr. Dan Arvizu, President Alliance for Sustainable Energy, LLC National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 WEL-2013-04 Dear Dr. Arvizu: The Office of Health, Safety and Security's Office of Enforcement and Oversight evaluated a drum rupture and flash event that occurred on February 8, 2013, at the National Renewable Energy Laboratory (NREL) Thermochemical User Facility (TCUF). Alliance for Sustainable Energy, LLC (Alliance) manages and operates NREL under a contract with the Department of Energy (DOE) and is subject to the provisions of DOE's Worker Safety and Health Program rule (10 C.F.R. Part 851). The Office of Enforcement and Oversight is issuing this enforcement

412

AXI LLC | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » AXI LLC Jump to: navigation, search Name AXI LLC Place Quincy, Massachusetts Zip 02169 Sector Biofuels Product Aims to make commercially feasible strains of algae for fuel production Coordinates 42.2363996°, -71.0200613° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2363996,"lon":-71.0200613,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Didion Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Didion Ethanol LLC Didion Ethanol LLC Jump to: navigation, search Name Didion Ethanol LLC Place Cambria, Wisconsin Zip 53923 Product Also Didion Milling LLC, Grand River Distribution LLC. Developing a 50m gallon ethanol facility in Cambria, Wisconsin. Coordinates 43.543205°, -89.108619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.543205,"lon":-89.108619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Michael Andersen, LLC | Open Energy Information  

Open Energy Info (EERE)

Michael Andersen, LLC Michael Andersen, LLC Jump to: navigation, search Logo: Michael Andersen, LLC Name Michael Andersen, LLC Place Denver, Colorado Zip 80202 Sector Services Product Renewable Energy Artwork / Photography Number of employees 1-10 Website http://www.MichaelAndersenLLC. Coordinates 39.7541032°, -105.0002242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7541032,"lon":-105.0002242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

EMC3, llc | Open Energy Information  

Open Energy Info (EERE)

EMC3, llc EMC3, llc Jump to: navigation, search Logo: EMC3, llc Name EMC3, llc Address 5 Blue Anchor Street Place Marlton, New Jersey Zip 08053 Phone number 1-800-338-1005 Website http://www.emc3llc.com/ Coordinates 39.892°, -74.9228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.892,"lon":-74.9228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Energy Matters LLC | Open Energy Information  

Open Energy Info (EERE)

Matters LLC Matters LLC Jump to: navigation, search Name Energy Matters LLC Place Santa Rosa, California Zip 95402 Sector Renewable Energy Product Energy Matters specialises in software tools for the renewable energy industries. References Energy Matters LLC[1] Solar-Estimate.org[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Energy Matters LLC is a company located in Santa Rosa, California . Solarestimate.gif Solar-Estimate.org Energy Matters created the solar estimator, a useful tool to analyze the benefits of a solar or wind system installation in your home or business. The estimator takes into account your region, average utility bills, and the system you are installing, and calculates a 25-year timeline for you to analyze the potential cost savings on energy.

417

Renewable Alternatives LLC | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Renewable Alternatives LLC Jump to: navigation, search Name Renewable Alternatives LLC Place Columbia, Missouri Zip 65211 Product Focused on the research, development and commercialization of products that are an alternative to petroleum-based feedstock materials. References Renewable Alternatives LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Alternatives LLC is a company located in Columbia, Missouri . References ↑ "Renewable Alternatives LLC"

418

Synchrotron Radiation Photoemission Spectroscopic Study of Band Offsets and Interface Self-cleaning by Atomic Layer Deposited HfO2 on In0.53Ga0.47As and In0.52Al0.48As  

SciTech Connect

The Synchrotron Radiation Photoemission Spectroscopic (SRPES) study was conducted to (a) investigate the surface chemistry of In{sub 0.53}Ga{sub 0.47}As and In{sub 0.52}Al{sub 0.48}As post chemical and thermal treatments, (b) construct band diagram and (c) investigate the interface property of HfO{sub 2}/In{sub 0.53}Ga{sub 0.47}As and HfO{sub 2}/In{sub 0.52}Al{sub 0.48}As. Dilute HCl and HF etch remove native oxides on In{sub 0.53}Ga{sub 0.47}As and In{sub 0.52}Al{sub 0.47}As, whereas in-situ vacuum annealing removes surface arsenic pile-up. After the atomic layer deposition of HfO{sub 2}, native oxides were considerably reduced compared to that in as-received epi-layers, strongly suggesting the self-clean mechanism. Valence and conduction band offsets are measured to be 3.37 {+-} 0.1eV, 1.80 {+-} 0.3eV for In{sub 0.53}Ga{sub 0.47}As and 3.00 {+-} 0.1eV, 1.47 {+-} 0.3eV for In{sub 0.52}Al{sub 0.47}As, respectively.

Kobayashi, Masaharu; /SLAC, SSRL; Chen, P.T.; Sun, Y.; Goel, N.; Majhi, P.; Garner, M; Tsai, W.; Pianetta, P.; Nishi, Y.; /SLAC, SSRL

2008-10-31T23:59:59.000Z

419

Synthesis and structural characterization of the ternary Zintl phases AE{sub 3}Al{sub 2}Pn{sub 4} and AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As)  

Science Conference Proceedings (OSTI)

Ten new ternary phosphides and arsenides with empirical formulae AE{sub 3}Al{sub 2}Pn{sub 4} and AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As) have been synthesized using molten Ga, Al, and Pb fluxes. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with two different structures-Ca{sub 3}Al{sub 2}P{sub 4}, Sr{sub 3}Al{sub 2}As{sub 4}, Eu{sub 3}Al{sub 2}P{sub 4}, Eu{sub 3}Al{sub 2}As{sub 4}, Ca{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}As{sub 4}, and Eu{sub 3}Ga{sub 2}As{sub 4} crystallize with the Ca{sub 3}Al{sub 2}As{sub 4} structure type (space group C2/c, Z=4); Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} adopt the Na{sub 3}Fe{sub 2}S{sub 4} structure type (space group Pnma, Z=4). The polyanions in both structures are made up of TrPn{sub 4} tetrahedra, which share common corners and edges to form {sup 2}{sub {infinity}}[TrPn{sub 2}]{sub 3-} layers in the phases with the Ca{sub 3}Al{sub 2}As{sub 4} structure, and {sup 1}{sub {infinity}}[TrPn{sub 2}]{sub 3-} chains in Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} with the Na{sub 3}Fe{sub 2}S{sub 4} structure type. The valence electron count for all of these compounds follows the Zintl-Klemm rules. Electronic band structure calculations confirm them to be semiconductors. - Graphical abstract: AE{sub 3}Al{sub 2}Pn{sub 4} and AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As) crystallize in two different structures-Ca{sub 3}Al{sub 2}P{sub 4}, Sr{sub 3}Al{sub 2}As{sub 4}, Eu{sub 3}Al{sub 2}P{sub 4}, Eu{sub 3}Al{sub 2}As{sub 4}, Ca{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}As{sub 4}, and Eu{sub 3}Ga{sub 2}As{sub 4}, are isotypic with the previously reported Ca{sub 3}Al{sub 2}As{sub 4} (space group C2/c (No. 15)), while Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} adopt a different structure known for Na{sub 3}Fe{sub 2}S{sub 4} (space group Pnma (No. 62). The polyanions in both structures are made up of TrPn{sub 4} tetrahedra, which by sharing common corners and edges, form {sup 2}{sub {infinity}}[TrPn{sub 2}]{sub 3-}layers in the former and {sup 1}{sub {infinity}}[TrPn{sub 2}]{sub 3-} chains in Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4}. Highlights: Black-Right-Pointing-Pointer AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As) are new ternary pnictides. Black-Right-Pointing-Pointer Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} adopt the Na{sub 3}Fe{sub 2}S{sub 4} structure type. Black-Right-Pointing-Pointer The Sr- and Ca-compounds crystallize with the Ca{sub 3}Al{sub 2}As{sub 4} structure type. Black-Right-Pointing-Pointer The valence electron count for all title compounds follows the Zintl-Klemm rules.

He, Hua; Tyson, Chauntae; Saito, Maia [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

2012-04-15T23:59:59.000Z

420

HH8, Characterization of Thin InAlP Native Oxide Gate Dielectric ...  

Science Conference Proceedings (OSTI)

DD3, A New Approach to Make ZnO-Cu2O Heterojunctions for Solar Cells ... E2, AlGaAs/GaAs/GaN Wafer Fused HBTs with Ar Implanted Extrinsic Collectors.

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EA-294-A TexMex Energy, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC EA-294-A TexMex Energy, LLC Order authorizing TexMex Energy, LLC to export electric energy to Mexico EA-294-A TexMex Energy, LLC More Documents & Publications EA-294-B TexMex...

422

NorthStar Medical Technologies LLC  

National Nuclear Security Administration (NNSA)

Environmental Assessment for Environmental Assessment for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Molybdenum-99 (DOE/EA-1929) Prepared for U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation/ Global Threat Reduction Initiative August 2012 EA for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Mo-99 i COVER SHEET ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL DOMESTIC PRODUCTION OF THE MEDICAL ISOTOPE MOLYBDENUM-99 Proposed Action: The Department of Energy (DOE) National Nuclear Security Administration (NNSA) proposes to provide funding to NorthStar to accelerate the establishment of the commercial production of

423

Edgewood Carbon Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

Edgewood Carbon Holdings LLC Edgewood Carbon Holdings LLC Jump to: navigation, search Name Edgewood Carbon Holdings LLC Place Cornwall, Vermont Zip 57530 Sector Carbon Product Edgewood Carbon Holdings LLC is active worldwide in the evolving commercialization of carbon recovery. Coordinates 50.443321°, -4.93986° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.443321,"lon":-4.93986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

DPC Juniper, LLC | Open Energy Information  

Open Energy Info (EERE)

DPC Juniper, LLC DPC Juniper, LLC Jump to: navigation, search Name DPC Juniper, LLC Place California Utility Id 56466 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Industrial: $0.2190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=DPC_Juniper,_LLC&oldid=412509" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

425

Capitol Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Capitol Solar Energy LLC Capitol Solar Energy LLC Jump to: navigation, search Logo: Capitol Solar Energy LLC Name Capitol Solar Energy LLC Address 8243 N. Pinewood Drive Place Castle Rock, Colorado Zip 80108 Sector Solar Product PV system design, installation and maintenance Year founded 1982 Website http://capitolsolarenergy.com/ Coordinates 39.482348°, -104.891927° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.482348,"lon":-104.891927,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Nedak Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Nedak Ethanol LLC Nedak Ethanol LLC Jump to: navigation, search Name Nedak Ethanol LLC Place Atkinson, Nebraska Zip 68713 Product NEDAK Ethanol, LLC is a Nebraska limited liability company, which was formed on December 15, 2003 for the purpose of constructing and operating an ethanol plant near Atkinson, Nebraska. Coordinates 34.52909°, -78.168819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.52909,"lon":-78.168819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Hinson Power Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hinson Power Company LLC Hinson Power Company LLC Jump to: navigation, search Name Hinson Power Company LLC Place Connecticut Utility Id 8936 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hinson_Power_Company_LLC&oldid=410830"

428

New Hope Partners LLC | Open Energy Information  

Open Energy Info (EERE)

Partners LLC Partners LLC Jump to: navigation, search Name New Hope Partners, LLC Place Newtown, Pennsylvania Sector Renewable Energy Product New Hope Partners LLC, is a business development, capitalization and advisory specialist with a current focus on value-added, agricultural and renewable energy based start-up ventures. Coordinates 37.91553°, -77.141525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.91553,"lon":-77.141525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

DPI Energy LLC | Open Energy Information  

Open Energy Info (EERE)

DPI Energy LLC DPI Energy LLC Jump to: navigation, search Name DPI Energy LLC Place Texas Utility Id 56326 Utility Location Yes Ownership R NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1740/kWh Commercial: $0.1370/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=DPI_Energy_LLC&oldid=410554" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs

430

Porous Power Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies LLC Porous Power Technologies LLC Jump to: navigation, search Logo: Porous Power Technologies LLC Name Porous Power Technologies LLC Address 2765 Dagny Way, Suite 200 Place Lafayette, Colorado Zip 80026 Sector Efficiency Product Laminable, porous, absorbent Li-ion batteries Website http://www.porouspower.com/ Coordinates 40.0130129°, -105.1327972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0130129,"lon":-105.1327972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Ecowatt Design LLC | Open Energy Information  

Open Energy Info (EERE)

Ecowatt Design LLC Ecowatt Design LLC Jump to: navigation, search Logo: Ecowatt Design LLC Name Ecowatt Design LLC Address 10900 Northwest Fwy Place Houston, Texas Zip 77092 Sector Solar Product Solar power system installation for residential & commercial customers Website http://www.ecowattdesign.com/ Coordinates 29.752554°, -95.3704009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.752554,"lon":-95.3704009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Inovateus Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Solar LLC Solar LLC Jump to: navigation, search Logo: Inovateus Solar LLC Name Inovateus Solar LLC Address 19890 State Line Rd. Place South Bend, Indiana Zip 46637 Sector Solar Year founded 2006 Number of employees 11-50 Phone number 574-485-1400 Website http://www.inovateussolar.com/ Coordinates 41.7605236°, -86.2531935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7605236,"lon":-86.2531935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

BekkTech LLC | Open Energy Information  

Open Energy Info (EERE)

BekkTech LLC BekkTech LLC Jump to: navigation, search Logo: BekkTech LLC Name BekkTech LLC Address 2367 West 8th Street Place Loveland, Colorado Zip 80537 Sector Hydrogen Product Fuel cell component testing Website http://www.bekktech.com/ Coordinates 40.403719°, -105.109978° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.403719,"lon":-105.109978,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

TDX Manley Generating LLC | Open Energy Information  

Open Energy Info (EERE)

TDX Manley Generating LLC TDX Manley Generating LLC Jump to: navigation, search Name TDX Manley Generating LLC Place Alaska Utility Id 56503 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6340/kWh Commercial: $0.6920/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=TDX_Manley_Generating_LLC&oldid=411634

435

Potentia Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Potentia Energy, LLC Potentia Energy, LLC Jump to: navigation, search Name Potentia Energy, LLC Place Texas Utility Id 56428 Utility Location Yes Ownership R NERC Location TX Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1000/kWh Commercial: $0.1080/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Potentia_Energy,_LLC&oldid=411384" Categories: EIA Utility Companies and Aliases Utility Companies

436

WilderShares LLC | Open Energy Information  

Open Energy Info (EERE)

WilderShares LLC WilderShares LLC Jump to: navigation, search Name WilderShares LLC Place Encinitas, California Zip 92024 Product WilderShares LLC, is a provider of indexes for the clean energy, green living, and environmental sectors. Coordinates 33.045436°, -117.292518° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.045436,"lon":-117.292518,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Homeland Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Homeland Renewable Energy LLC Homeland Renewable Energy LLC Jump to: navigation, search Name Homeland Renewable Energy LLC Place Langhorne, Pennsylvania Zip 19047 Product Holding company for Fibrowatt LLC and its subsidiaries, which develop poultry litter-fuelled power plants in the US. Coordinates 40.176396°, -74.918884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.176396,"lon":-74.918884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Felton Bay Logistics, LLC | Open Energy Information  

Open Energy Info (EERE)

Felton Bay Logistics, LLC Felton Bay Logistics, LLC Jump to: navigation, search Logo: Felton Bay Logistics, LLC Name Felton Bay Logistics, LLC Place San Diego Zip 92115 Sector Services Product Strategies for Sustainability Year founded 2010 Number of employees 1-10 Website http://www.feltonbay.com Coordinates 32.7612759°, -117.0735241° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7612759,"lon":-117.0735241,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Franklin County Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Franklin County Wind LLC Franklin County Wind LLC Facility Franklin County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Franklin County Wind LLC Developer Franklin County Wind LLC Energy Purchaser Merchant (MISO) Location Franklin County IA Coordinates 42.61481487°, -93.36564124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.61481487,"lon":-93.36564124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Devonshire Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Energy, LLC Energy, LLC Jump to: navigation, search Name Devonshire Energy, LLC Place Massachusetts Utility Id 56521 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0649/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Devonshire_Energy,_LLC&oldid=410582" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Vortex Hydro Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Hydro Energy LLC Hydro Energy LLC Jump to: navigation, search Name Vortex Hydro Energy LLC Address 4870 West Clark Rd Suite 108 Place Ypsilanti Zip 48197 Sector Marine and Hydrokinetic Phone number 734.971.4020 Website http://www.vortexhydroenergy.c Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Marine Hydrodynamics Laboratory at the University of Michigan This company is involved in the following MHK Technologies: Vortex Induced Vibrations Aquatic Clean Energy VIVACE This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Vortex_Hydro_Energy_LLC&oldid=678497

442

National Grid Generation, LLC | Open Energy Information  

Open Energy Info (EERE)

National Grid Generation, LLC National Grid Generation, LLC (Redirected from KeySpan Generation LLC) Jump to: navigation, search Name National Grid Generation, LLC Place New York Service Territory Massachusetts, New Hampshire, New York, Rhode Island Website www1.nationalgridus.com/C Green Button Landing Page www1.nationalgridus.com/S Green Button Reference Page www.whitehouse.gov/blog/2 Green Button Implemented Yes Utility Id 26751 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

443

LappinTech LLC | Open Energy Information  

Open Energy Info (EERE)

LappinTech LLC LappinTech LLC Jump to: navigation, search Logo: LappinTech LLC Name LappinTech LLC Place Douglas, Wyoming Zip 82633 Product Stuffing Box Rubbers Year founded 2002 Number of employees 1-10 Phone number 307-358-5192 Website http://www.lappintech.com/ Coordinates 42.7596897°, -105.3822069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7596897,"lon":-105.3822069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Gaebler Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Gaebler Ventures LLC Gaebler Ventures LLC Jump to: navigation, search Logo: Gaebler Ventures LLC Name Gaebler Ventures LLC Address 156 N. Jefferson Street, Suite 301 Place Chicago, Illinois Zip 60661 Product Seed-stage and early-stage venture capital fund. Year founded 1999 Website http://www.gaebler.com/ Coordinates 41.885004°, -87.643754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.885004,"lon":-87.643754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Our Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Jump to: navigation, search Name Our Energy LLC Place Texas Utility Id 56441 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1290/kWh Commercial: $0.0928/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Our_Energy_LLC&oldid=411288" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

446

NRG Power Marketing LLC | Open Energy Information  

Open Energy Info (EERE)

Marketing LLC Marketing LLC Jump to: navigation, search Name NRG Power Marketing LLC Place New Jersey Utility Id 56784 Utility Location Yes Ownership W ISO CA Yes ISO Ercot Yes RTO PJM Yes ISO NY Yes RTO SPP Yes ISO MISO Yes ISO NE Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=NRG_Power_Marketing_LLC&oldid=411141

447

RavenBrick LLC | Open Energy Information  

Open Energy Info (EERE)

RavenBrick LLC RavenBrick LLC Jump to: navigation, search Logo: RavenBrick LLC Name RavenBrick LLC Address 2201A Lawrence Street Place Denver, Colorado Zip 80205 Sector Buildings Product Efficient window and daylighting systems Website http://www.ravenbrick.com/ Coordinates 39.754373°, -104.9890567° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.754373,"lon":-104.9890567,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Chateau Tebeau LLC | Open Energy Information  

Open Energy Info (EERE)

Chateau Tebeau LLC Chateau Tebeau LLC Jump to: navigation, search Name Chateau Tebeau LLC Facility Chateau Tebeau LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SUREnergy Location Helena OH Coordinates 41.32860734°, -83.27046633° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.32860734,"lon":-83.27046633,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Front Range Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Jump to: navigation, search Logo: Front Range Energy LLC Name Front Range Energy LLC Address 31375 Great Western Dr Place Windsor, Colorado Zip 80550 Sector Biofuels Product Ethanol producer Website http://www.frontrangeenergy.co Coordinates 40.4605154°, -104.8565272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4605154,"lon":-104.8565272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Haddington Ventures LLC | Open Energy Information  

Open Energy Info (EERE)

Haddington Ventures LLC Haddington Ventures LLC Jump to: navigation, search Logo: Haddington Ventures LLC Name Haddington Ventures LLC Address 2603 Augusta, Suite 900 Place Houston, Texas Zip 77057 Region Texas Area Product Midstream energy private equity fund Phone number (713) 532-7992 Website http://www.hvllc.com/ Coordinates 29.739323°, -95.481781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.739323,"lon":-95.481781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Millennium Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Logo: Millennium Energy LLC Name Millennium Energy LLC Address PO Box 16073 Place Golden, Colorado Zip 80402 Sector Solar Product Solar Consulting Services Year founded 1998 Phone number (303) 526-2972 Website http://www.millennium-energy.n Coordinates 39.750771°, -105.180005° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.750771,"lon":-105.180005,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Novo Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Novo Energy LLC Novo Energy LLC Jump to: navigation, search Logo: Novo Energy LLC Name Novo Energy LLC Address 2330 E Prospect Rd, Suite B Place Fort Collins, Colorado Zip 80525 Sector Biomass Product Provides the technology for biomass plant implementation Website http://www.novo-energy.com/ Coordinates 40.568585°, -105.034775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.568585,"lon":-105.034775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Bio Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Bio-Energy founded at the beginning of the year has been commissioned its first biogas plant. References Bio-Energy LLC1 LinkedIn Connections CrunchBase Profile No...

454

Ocean Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Company LLC Address 505 Fifth Ave 800 Place Des Moines Zip 50309-2426 Sector Marine and Hydrokinetic Year founded 2011 Phone number (515) 246-1500 Region United States...

455

Ardour Global Indexes LLC | Open Energy Information  

Open Energy Info (EERE)

Zip 10016 Product New-York based company that manages the Ardour Global Indexes, a set of alternative energy financial indicators. References Ardour Global Indexes LLC1 LinkedIn...

456

Solar America LLC | Open Energy Information  

Open Energy Info (EERE)

New Jersey-based company that designs and installs Solar Electric Systems for Homeowners and Business Owners. References Solar America LLC1 LinkedIn Connections CrunchBase...

457

Invenergy TN LLC | Open Energy Information  

Open Energy Info (EERE)

Tennessee Sector Wind energy Product Wholly-owned subsidiary of Invenergy Wind developing wind farms in Tenessee. References Invenergy TN LLC1 LinkedIn Connections CrunchBase...

458

Luma Resources LLC | Open Energy Information  

Open Energy Info (EERE)

Hills, Michigan Zip 48309 Sector Solar Product Michigan-based developer and installer of solar roof kits for the residential market. References Luma Resources LLC1 LinkedIn...

459

Solargen Energy LLC | Open Energy Information  

Open Energy Info (EERE)

California Zip CA 95014 Sector Solar Product California-based Solargen is developing a thin film solar farm with a planned capacity of 250MW. References Solargen Energy LLC1...

460

Clean Burn Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

developer planning to build a 60m gallons per year (227.12m litres per year) bioethanol plant in Raeford, North Carolina. References Clean Burn Fuels LLC1 LinkedIn...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Palmco Power PA, LLC | Open Energy Information  

Open Energy Info (EERE)

PA, LLC Place New York Utility Id 56573 Utility Location Yes Ownership R Operates Generating Plant Yes References EIA Form EIA-861 Final Data File for 2010 - File1a1 LinkedIn...

462

CECG Maine, LLC | Open Energy Information  

Open Energy Info (EERE)

search Name CECG Maine, LLC Place Maryland Utility Id 4166 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861...

463

Alliance Power Co LLC | Open Energy Information  

Open Energy Info (EERE)

Alliance Power Co LLC Place Texas Utility Id 49818 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final...

464

True Electric LLC | Open Energy Information  

Open Energy Info (EERE)

search Name True Electric LLC Place Texas Utility Id 56298 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861...

465

Kinetic Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name Kinetic Energy LLC Place Texas Utility Id 56210 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861...

466

Reliable Power, LLC | Open Energy Information  

Open Energy Info (EERE)

Power, LLC Place New York Utility Id 56735 Utility Location Yes Ownership R Operates Generating Plant Yes References EIA Form EIA-861 Final Data File for 2010 - File1a1 LinkedIn...

467

AmeriPower LLC | Open Energy Information  

Open Energy Info (EERE)

search Name AmeriPower LLC Place Texas Utility Id 50156 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861...

468

Texas Retail Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Texas Retail Energy, LLC Place Arkansas Utility Id 50046 Utility Location Yes Ownership R ISO Ercot Yes ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final...

469

AP Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

AP Holdings LLC Place Texas Utility Id 56571 Utility Location Yes Ownership R ISO Ercot Yes ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for...

470

Robison Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Name Robison Energy, LLC Place New York Utility Id 16177 Utility Location Yes Ownership R NERC NPCC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File...

471

Young Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Young Energy, LLC Place Texas Utility Id 56248 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data...

472

Reach Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Reach Energy, LLC Place Texas Utility Id 56587 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861...

473

H2 Energy LLC | Open Energy Information  

Open Energy Info (EERE)

H2 Energy LLC Place Hawaii Sector Hydro, Hydrogen Product Partnership between HiBEAM, an organisation of venture capitalists, and Sennet Capital, a merchant bank, selected by state...

474

Asia West LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Logo: Asia West LLC Name Asia West LLC Address One East Weaver Street Place Greenwich, Connecticut Zip 06831 Region Northeast - NY NJ CT PA Area Product Strategic investor in environmental technologies. Phone number (203) 983-6300 Website http://www.asiawestfunds.com/ Coordinates 41.017605°, -73.649147° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.017605,"lon":-73.649147,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Agway Energy Services, LLC | Open Energy Information  

Open Energy Info (EERE)

Agway Energy Services, LLC Agway Energy Services, LLC Jump to: navigation, search Name Agway Energy Services, LLC Place New York Utility Id 113 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0893/kWh Commercial: $0.0781/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Agway_Energy_Services,_LLC&oldid=408942" Categories: EIA Utility Companies and Aliases

476

BB2, Novel Cs-Free GaN Photocathodes  

Science Conference Proceedings (OSTI)

L6, PECVD-SiN, Si or Si/Al2O3-Capped ED-Mode AlN/GaN Inverters Hide details for [

477

Simulation and Design Analysis of (A1Ga)As/GaAs MODFET Integrated Circuits  

Science Conference Proceedings (OSTI)

A new (AlGa)As/GaAs MODFET integrated circuit simulator is described. Our simulator is a customized version of SPICE incorporating the extended charge control model for MODFET's and the velocity saturation model for ungated FET's used as the load devices. ...

Choong H. Hyun; M. S. Shur; N. C. Cirillo

2006-11-01T23:59:59.000Z

478

Hestia BioEnergy LLC | Open Energy Information  

Open Energy Info (EERE)

Hestia BioEnergy LLC Jump to: navigation, search Name Hestia BioEnergy LLC Place New York, New York Zip 11378 Sector Biomass Product Hestia builds, operates and owns biomass...

479

E3Tec service LLC | Open Energy Information  

Open Energy Info (EERE)

E3Tec service LLC Jump to: navigation, search Name E3Tec service LLC Sector Marine and Hydrokinetic Website http:http:www.crrc.unh.edu Region United States LinkedIn Connections...

480

NextLight Renewable Power LLC | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon NextLight Renewable Power LLC Jump to: navigation, search Name NextLight Renewable Power LLC Place San...

Note: This page contains sample records for the topic "llc al ga" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

U.S. Energy Partners LLC | Open Energy Information  

Open Energy Info (EERE)

U.S. Energy Partners LLC Jump to: navigation, search Name U.S. Energy Partners LLC Place New York Utility Id 49922 Utility Location Yes Ownership R ISO NY Yes Activity Retail...

482

EA-327-A DC Energy, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7-A DC Energy, LLC EA-327-A DC Energy, LLC Order authorizing DC Energy to export electric energy to Canada. EA-327-A DC Energy.pdf More Documents & Publications Application to...

483

AP Holdings LLC (New York) | Open Energy Information  

Open Energy Info (EERE)

icon AP Holdings LLC (New York) Jump to: navigation, search Name AP Holdings LLC Place New York Utility Id 56571 References EIA Form EIA-861 Final Data File for 2010 -...

484

Energy Plus Holdings LLC (New York) | Open Energy Information  

Open Energy Info (EERE)

Holdings LLC (New York) Jump to: navigation, search Name Energy Plus Holdings LLC Place New York Utility Id 56265 References EIA Form EIA-861 Final Data File for 2010 -...

485

Noble Americas Energy Solutions LLC (New York) | Open Energy...  

Open Energy Info (EERE)

LLC (New York) Jump to: navigation, search Name Noble Americas Energy Solutions LLC Place New York Utility Id 16840 References EIA Form EIA-861 Final Data File for 2010 -...

486

Pages that link to "Idaho Winds LLC" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Idaho Winds LLC" Idaho Winds LLC Jump to: navigation, search What links here Page: Idaho...

487

Changes related to "Idaho Winds LLC" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Idaho Winds LLC" Idaho Winds LLC Jump to: navigation, search This is a list of changes...

488

SunPeak Solar LLC | Open Energy Information  

Open Energy Info (EERE)

SunPeak Solar LLC Jump to: navigation, search Name SunPeak Solar LLC Place Palm Desert, California Zip 92260 Product US project developer and asset manager, focussing on PV...

489

South Trent Wind Farm LLC | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon South Trent Wind Farm LLC Jump to: navigation, search Name South Trent Wind Farm, LLC Place Texas...

490

PowerSHIFT Biofuels LLC | Open Energy Information  

Open Energy Info (EERE)

PowerSHIFT Biofuels LLC Jump to: navigation, search Name PowerSHIFT Biofuels LLC Place Wyoming Product Focused on biodiesel plants and power generation facilities in the US....

491

Tomorrow BioFuels LLC | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Tomorrow BioFuels LLC Jump to: navigation, search Name Tomorrow BioFuels LLC Place Cranston, Rhode Island Zip 2921 Product...

492

Palmco Power NJ, LLC (New Jersey) | Open Energy Information  

Open Energy Info (EERE)

NJ, LLC (New Jersey) Jump to: navigation, search Name Palmco Power NJ, LLC Place New Jersey Utility Id 56501 References EIA Form EIA-861 Final Data File for 2010 - File220101...

493

World Wind and Water Energy LLC | Open Energy Information  

Open Energy Info (EERE)

World Wind and Water Energy LLC Jump to: navigation, search Name World Wind and Water Energy LLC Place Delaware Sector Wind energy Product Delaware-based company focused on...

494

US BioGen LLC | Open Energy Information  

Open Energy Info (EERE)

US BioGen LLC Place Dallas, Texas Zip 75231 Sector Hydro, Hydrogen Product Produces bioethanol, electricity and hydrogen from grain crops such as corn. References US BioGen LLC1...

495

EA-367 EDF Trading North America, LLC | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivery and Energy Reliability (OE): EA-367 EDF Trading North America, LLC (EDF) EA-373 EDF Trading North America, LLC Natural Gas Imports and Exports - First Quarter Report 2013...

496

GreenTech Research LLC | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon GreenTech Research LLC Jump to: navigation, search Name GreenTech Research LLC Place New York, New York Zip NY 10019...

497

S B Energy Company LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name S&B Energy Company LLC Place Hawaii Zip 96708 Sector Hydro, Wind energy Product Hawaii based project developer focused on PV, wind, and hydro...

498

LOS ALAMOS NATIONAL SECURITY, LLC BIOLOGICAL MATERIAL TRANSFER ...  

Folding Reporter Not 4 Profit BMTA LANL Agreement Number: LOS ALAMOS NATIONAL SECURITY, LLC . BIOLOGICAL MATERIAL TRANSFER AGREEMENT . THIS BIOLOGICAL ...

499

LOS ALAMOS NATIONAL SECURITY, LLC BIOLOGICAL MATERIAL TRANSFER ...  

Folding Reporter Foreign Not 4 Profit BMTA LANL Agreement Number: LOS ALAMOS NATIONAL SECURITY, LLC . BIOLOGICAL MATERIAL TRANSFER AGREEMENT

500

Electric field engineering in GaN high electron mobility transistors  

E-Print Network (OSTI)

In the last few years, AlGaN/GaN high electron mobility transistors (HEMTs) have become the top choice for power amplification at frequencies up to 20 GHz. Great interest currently exists in industry and academia to increase ...

Zhao, Xu, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z