National Library of Energy BETA

Sample records for livermore ia ia

  1. IA Experts Listing 2014 | Department of Energy

    Energy Savers [EERE]

    IA Experts Listing 2014 IA Experts Listing 2014 PDF icon IA Experts Listing January 2014 More Documents & Publications Office of International Affairs Organization Chart PI...

  2. Rolling Hills (IA) | Open Energy Information

    Open Energy Info (EERE)

    Rolling Hills (IA) Jump to: navigation, search Name Rolling Hills (IA) Facility Rolling Hills (IA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  4. Defining photometric peculiar type Ia supernovae

    SciTech Connect (OSTI)

    Gonzlez-Gaitn, S.; Pignata, G.; Frster, F.; Gutirrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T. [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hsiao, E. Y.; Phillips, M. M. [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Folatelli, G. [Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa 277-8583 (Kavli IPMU, WPI) (Japan); Anderson, J. P., E-mail: sgonzale@das.uchile.cl [European Southern Observatory, Alonso de Crdova 3107, Casilla 19, Santiago (Chile)

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  5. Category:Mason, IA | Open Energy Information

    Open Energy Info (EERE)

    Mason, IA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Mason, IA" The following 16 files are in this category, out of 16 total....

  6. Sweetspot: Near-infrared observations of 13 type Ia supernovae...

    Office of Scientific and Technical Information (OSTI)

    We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) ... Our sample includes two SNe Ia at z 0.09, which represent the most distant rest-frame ...

  7. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae We present the first large-scale...

  8. Constraining Cosmic Evolution of Type Ia Supernovae (Journal...

    Office of Scientific and Technical Information (OSTI)

    Constraining Cosmic Evolution of Type Ia Supernovae Citation Details In-Document Search Title: Constraining Cosmic Evolution of Type Ia Supernovae You are accessing a document...

  9. ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative

    Office of Scientific and Technical Information (OSTI)

    of Oklahoma Univ. of Oklahoma 79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer, Dark Energy, Type Ia supernovae, radiative transfer, The...

  10. Type Ia Supernovae Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of star called a white dwarf. The majority of SN Ia explosions occur far away from our galaxy; yet, due to their enormous intrinsic brightness, outshining billions of stars, we can...

  11. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "always be five years away." For four key clean energy technologies, that clean energy future has already arrived. August 21, 2013 IA Blog Archive ActOnClimate: Secretary...

  12. DOE - Office of Legacy Management -- Titus Metals - IA 04

    Office of Legacy Management (LM)

    Designated Name: Not Designated Alternate Name: None Location: Waterloo , Iowa IA.04-1 Evaluation Year: 1987 IA.04-2 Site Operations: Extruded uranium billets to produce fuel ...

  13. IA Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blog Archive IA Blog Archive RSS March 10, 2016 President Obama and Canadian Prime Minister Justin Trudeau at the White House in Washington. | Photo courtesy of the Government of Canada. How the U.S. and Canada are Fighting Climate Change Together Learn how the U.S. and Canada are partnering to build a stronger clean energy future. February 10, 2016 DOE Joins Pakistan's Energy Ministries to Launch $3 Million Program to support Pakistan's Energy Development Department of Energy Assistant

  14. IA News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    News Archive IA News Archive RSS April 14, 2016 Statement on First Meeting of the United States-Republic of Korea High Level Bilateral Commission Deputy Secretary of Energy Elizabeth Sherwood-Randall and Republic of Korea Vice Foreign Minister Cho Tae-Yul co-chaired the first meeting of the U.S.-ROK High Level Bilateral Commission in Seoul, South Korea. November 23, 2015 Energy Department Announces Six Clean Energy Projects through Partnership with Israel U.S. Department of Energy and Israel's

  15. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED...

    Office of Scientific and Technical Information (OSTI)

    Host galaxy measurements will yield improved distances to SNe Ia. less Authors: Kelly, Patrick L. ; Burke, David L. 1 ; Hicken, Malcolm ; Mandel, Kaisey S. ; Kirshner, Robert ...

  16. Turbulence-Flame Interactions in Type Ia Supernovae (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Turbulence-Flame Interactions in Type Ia Supernovae Citation Details In-Document Search Title: Turbulence-Flame Interactions in Type Ia Supernovae The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova

  17. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments [OSTI]

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  18. Search for surviving companions in type Ia supernova remnants

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu E-mail: taam@asiaa.sinica.edu.tw

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  19. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect (OSTI)

    Brown, Peter J., E-mail: pbrown@physics.tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States)

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the TypeIa supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observedmore than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  20. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  1. Improved Constraints on Type Ia Supernova Host Galaxy Properties using

    Office of Scientific and Technical Information (OSTI)

    Multi-Wavelength Photometry and their Correlations with Supernova Properties (Journal Article) | SciTech Connect Improved Constraints on Type Ia Supernova Host Galaxy Properties using Multi-Wavelength Photometry and their Correlations with Supernova Properties Citation Details In-Document Search Title: Improved Constraints on Type Ia Supernova Host Galaxy Properties using Multi-Wavelength Photometry and their Correlations with Supernova Properties We improve estimates of the stellar mass and

  2. Climate Action Champions: Dubuque, IA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dubuque, IA Climate Action Champions: Dubuque, IA The City of Dubuque, Iowa, features a rich history, a diverse arts and cultural scene, and abundant natural beauty, including majestic limestone bluffs along the Mississippi riverfront. Sustainability is among the city’s top priorities for the future. | Photo courtesy of the City of Dubuque. The City of Dubuque, Iowa, features a rich history, a diverse arts and cultural scene, and abundant natural beauty, including majestic limestone bluffs

  3. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE

    Office of Scientific and Technical Information (OSTI)

    HUBBLE CONSTANT (Journal Article) | SciTech Connect CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT Citation Details In-Document Search Title: CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT This is the first of two papers reporting measurements from a program to determine the Hubble constant to {approx}5% precision from a refurbished distance ladder. We present new observations of 110 Cepheid variables in the

  4. DOE - Office of Legacy Management -- Iowa Army Ammunition Plant - IA 02

    Office of Legacy Management (LM)

    Army Ammunition Plant - IA 02 FUSRAP Considered Sites Iowa Army Ammunition Plant, IA Alternate Name(s): Burlington Ordnance Plant Iowa Ordnance Plant Silas Mason Company IA.02-3 Location: Located in Township 70 North, Range 3 West, Section 32, 5th Principal Meridian, Des Moines County, Burlington, Iowa IA.02-1 IA.02-5 Historical Operations: Assembled nuclear weapons, primarily high explosive components and conducted explosives testing using the high explosive components and depleted uranium. AEC

  5. Turbulence-Flame Interactions in Type Ia Supernovae (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Journal Article: Turbulence-Flame Interactions in Type Ia Supernovae Citation Details In-Document Search Title: Turbulence-Flame Interactions in Type Ia Supernovae × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of

  6. IA REP0 SAND85-2809 Unlimited Release UC-92A

    Office of Scientific and Technical Information (OSTI)

    IA REP0 SAND85-2809 Unlimited Release UC-92A Printed July 1986 High Energy Gas Fracture Experiments in Fluid-Filled Boreholes-Potential Geothermal Application J. F. Cuderman, T. Y. Chu, J. Jung, R. D. Jacobson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  7. Color dispersion and Milky-Way-like reddening among type Ia supernovae...

    Office of Scientific and Technical Information (OSTI)

    Color dispersion and Milky-Way-like reddening among type Ia supernovae Citation Details In-Document Search Title: Color dispersion and Milky-Way-like reddening among type Ia ...

  8. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA (Journal...

    Office of Scientific and Technical Information (OSTI)

    We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color ... reddening from intrinsic supernova color, reducing the systematic uncertainty in SN ...

  9. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397

    Office of Scientific and Technical Information (OSTI)

    from the enhanced abundances of nickel and manganese (Journal Article) | SciTech Connect A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese Citation Details In-Document Search Title: A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One

  10. SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia

    Office of Scientific and Technical Information (OSTI)

    SUPERNOVA (Journal Article) | SciTech Connect SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA Citation Details In-Document Search Title: SN 2006bt: A PERPLEXING, TROUBLESOME, AND POSSIBLY MISLEADING TYPE Ia SUPERNOVA SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining

  11. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Citation Details In-Document Search Title: Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding

  12. A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA Citation Details In-Document Search Title: A STUDY OF CARBON FEATURES IN TYPE Ia SUPERNOVA SPECTRA One of the major differences between various explosion scenarios of Type Ia supernovae (SNe Ia) is the remaining amount of unburned (C+O) material and its velocity distribution within the expanding ejecta. While oxygen absorption features are not uncommon in the spectra of SNe Ia before maximum light, the presence of strong

  13. An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'

    SciTech Connect (OSTI)

    Campbell, Philip LaRoche

    2012-01-01

    The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IA Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)

  14. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect (OSTI)

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  15. Power-law cosmology, SN Ia, and BAO

    SciTech Connect (OSTI)

    Dolgov, Aleksander; Halenka, Vitali; Tkachev, Igor E-mail: vithal@umich.edu

    2014-10-01

    We revise observational constraints on the class of models of modified gravity which at low redshifts lead to a power-law cosmology. To this end we use available public data on Supernova Ia and on baryon acoustic oscillations. We show that the expansion regime a(t)?t{sup ?} with ? close to 3/2 in a spatially flat universe is a good fit to these data.

  16. Microsoft PowerPoint - IEEE IAS PES 102313.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst IEEE IAS/PES Pittsburgh Section October 23, 2013 # Topics * OE ARRA Smart Grid Program * OE ARRA Smart Grid Progress * Results and Case Studies * Life After ARRA Smart Grid # DOE OE ARRA Smart Grid Program # American Recovery and Reinvestment Act ($4.5B) * Smart Grid Investment Grants (99 projects) - $3.4 billion Federal; $4.7 billion private sector - > 800 PMUs covering almost 100% of transmission - ~ 8000 distribution

  17. Signatures of a companion star in type Ia supernovae

    SciTech Connect (OSTI)

    Maeda, Keiichi; Kutsuna, Masamichi; Shigeyama, Toshikazu

    2014-10-10

    Although type Ia supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is whether there is a nondegenerate companion star at the time of a thermonuclear explosion of a white dwarf. In this paper, we investigate whether an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multidimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, and the predicted behaviors (redder and fainter for the companion direction) are the opposite of what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from those observationally derived, so a large sample of SNe Ia with small calibration errors may be used to constrain the existence of such a companion star. The variations in different colors in optical band passes can be mimicked by external extinctions, so such an effect could be a source of scatter in the peak luminosity and derived distance. After the peak, hydrogen-rich materials expelled from the companion will manifest themselves in hydrogen lines, but Hα is extremely difficult to identify. Alternatively, we find that P{sub β} in postmaximum near-infrared spectra can potentially provide a powerful diagnostic.

  18. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN

    Office of Scientific and Technical Information (OSTI)

    THE NEARBY SUPERNOVA FACTORY DATA SET (Journal Article) | SciTech Connect A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET Citation Details In-Document Search Title: A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs

  19. Color dispersion and Milky-Way-like reddening among type Ia supernovae

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Color dispersion and Milky-Way-like reddening among type Ia supernovae Citation Details In-Document Search Title: Color dispersion and Milky-Way-like reddening among type Ia supernovae Past analyses of Type Ia supernovae have identified an irreducible scatter of 5%-10% in distance, widely attributed to an intrinsic dispersion in luminosity. Another equally valid source of this scatter is intrinsic dispersion in color. Misidentification of the true source

  20. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Citation Details In-Document Search Title: Type Ia Supernova Hubble Residuals and Host-Galaxy Properties Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized

  1. Type Ia supernovae yielding distances with 3-4% precision (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Type Ia supernovae yielding distances with 3-4% precision Citation Details In-Document Search Title: Type Ia supernovae yielding distances with 3-4% precision The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14-0.20 mag from broadband optical light curves, yielding

  2. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA Citation Details In-Document Search Title: VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant

  3. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect (OSTI)

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stritzinger, Maximilian; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castelln, Sergio; Morrell, Nidia; Salgado, Francisco [Carnegie Institution of Washington, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Suntzeff, Nicholas B. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, Department of Physics and Astronomy, College Station, TX 77843 (United States)

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B V), such that larger E(B V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  4. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST

    Office of Scientific and Technical Information (OSTI)

    GALAXY MASSES (Journal Article) | SciTech Connect HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES Citation Details In-Document Search Title: HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 <z< 0.08) from the hosts' absolute luminosities and mass-to-light

  5. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia

    Office of Scientific and Technical Information (OSTI)

    LIGHT CURVES (Journal Article) | SciTech Connect IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES Citation Details In-Document Search Title: IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  6. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Office of Scientific and Technical Information (OSTI)

    Curves (Journal Article) | SciTech Connect Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the

  7. Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes:

    Office of Scientific and Technical Information (OSTI)

    MLCS2k2 (Journal Article) | SciTech Connect Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2 Citation Details In-Document Search Title: Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2 We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to

  8. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ∼0.033-0.539 × 10{sup –3} yr{sup –1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ∼28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  9. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light

    Office of Scientific and Technical Information (OSTI)

    Curves (Journal Article) | SciTech Connect Journal Article: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  10. Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new

    Office of Scientific and Technical Information (OSTI)

    NOAO survey probing the nearby smooth Hubble flow (Journal Article) | SciTech Connect Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow Citation Details In-Document Search Title: Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) from 0.02 < z < 0.09

  11. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET Citation Details In-Document Search Title: THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction

  12. Grouping normal type Ia supernovae by UV to optical color differences

    SciTech Connect (OSTI)

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.; Bufano, Filomena; Gehrels, Neil

    2013-12-10

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u v and uvw1 v) to the level of the scatter in b v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II ?6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  13. THE BIRTH RATE OF SNe Ia FROM HYBRID CONe WHITE DWARFS

    SciTech Connect (OSTI)

    Meng, Xiangcun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Podsiadlowski, Philipp, E-mail: xiangcunmeng@ynao.ac.cn [Department of Astronomy, Oxford University, Oxford OX1 3RH (United Kingdom)

    2014-07-10

    Considering the uncertainties of the C-burning rate (CBR) and the treatment of convective boundaries, Chen et al. found that there is a regime where it is possible to form hybrid CONe white dwarfs (WDs), i.e., ONe WDs with carbon-rich cores. As these hybrid WDs can be as massive as 1.30 M {sub ?}, not much mass needs to be accreted for these objects to reach the Chandrasekhar limit and to explode as Type Ia supernovae (SNe Ia). We have investigated their contribution to the overall SN Ia birth rate and found that such SNe Ia tend to be relatively young with typical time delays between 0.1 and 1 Gyr, where some may be as young as 30 Myr. SNe Ia from hybrid CONe WDs may contribute several percent to all SNe Ia, depending on the common-envelope ejection efficiency and the CBR. We suggest that these SNe Ia may produce part of the 2002cx-like SN Ia class.

  14. On silicon group elements ejected by supernovae type IA

    SciTech Connect (OSTI)

    De, Soma; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Brown, Edward F. [Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN 46556 (United States); Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL (United States); Athanassiadou, Themis [Swiss National Supercomputing Centre, Via Trevano 131, 6900 Lugano (Switzerland); Chamulak, David A. [Physics Division, Argonne National Laboratory, Argonne, IL (United States); Hawley, Wendy [Laboratoire d'Astrophysique de Marseille, Marseille cedex 13 F-13388 (France); Jack, Dennis, E-mail: somad@asu.edu [Departamento de Astronoma, Universidad de Guanajuato, Apartado Postal 144, 36000 Guanajuato (Mexico)

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  15. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig Citation Details In-Document Search Title: HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup -1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between -14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify

  16. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses Citation Details In-Document Search Title: Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were

  17. ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA

    Office of Scientific and Technical Information (OSTI)

    SUPERNOVA REMNANT G299.2-2.9 (Journal Article) | SciTech Connect ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2-2.9 Citation Details In-Document Search Title: ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.2-2.9 We have performed a deep Chandra observation of the Galactic Type Ia supernova remnant G299.2-2.9. Here we report the initial results from our imaging and spectral analysis. The observed

  18. File:USDA-CE-Production-GIFmaps-IA.pdf | Open Energy Information

    Open Energy Info (EERE)

    IA.pdf Jump to: navigation, search File File history File usage Iowa Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  19. "Report Date","U.S.",,,"PADD I",,,"PADD IA",,,"PADD IB",,,"PADD...

    U.S. Energy Information Administration (EIA) Indexed Site

    I",,,"PADD IA",,,"PADD IB",,,"PADD IC",,,"PADD II" ,"Old Reported Value ( per Gallon)","New Revised Value ( per Gallon)","Difference","Old Reported Value ( per Gallon)","New ...

  20. Flames in Type Ia Supernova: Deflagration-Detonation Transition in the

    Office of Scientific and Technical Information (OSTI)

    Oxygen Burning Flame. (Journal Article) | SciTech Connect Journal Article: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Citation Details In-Document Search Title: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Abstract not provided. Authors: Kerstein, Alan R. ; Woosley, Stan E. ; Aspden, Andrew J. Publication Date: 2010-10-01 OSTI Identifier: 1121667 Report Number(s): SAND2010-7483J 485788 DOE

  1. New approaches for modeling type Ia supernovae (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: New approaches for modeling type Ia supernovae Citation Details In-Document Search Title: New approaches for modeling type Ia supernovae × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  2. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect (OSTI)

    Mosher, J.; Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N. [LPNHE, CNRS/IN2P3, Universit Pierre et Marie Curie Paris 6, Universi Denis Diderot Paris 7, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Biswas, R.; Kuhlmann, S. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Schneider, D. P., E-mail: kessler@kicp.chicago.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ?120 low-redshift (z < 0.1) SNe Ia, ?255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ?290 SNLS SNe Ia (z ? 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} w {sub recovered}) ranging from 0.005 0.012 to 0.024 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is 0.014 0.007.

  3. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Moll, Rainer; Woosley, Stan [Department of Physics and Department of Astronomy, University of California, Santa Cruz, CA (United States); Schwab, Josiah [Department of Physics and Department of Astronomy, University of California, Berkeley, CA (United States)

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  4. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect (OSTI)

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan; Kuin, Paul; De Pasquale, Massimiliano; Scalzo, Richard; Holland, Stephen; Milne, Peter

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  5. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses Citation Details In-Document Search Title: Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  6. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching

    Office of Scientific and Technical Information (OSTI)

    for prompt explosions in the early universe (Journal Article) | SciTech Connect Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe Citation Details In-Document Search Title: Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space

  7. Type Ia supernovae yielding distances with 3-4% precision (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Type Ia supernovae yielding distances with 3-4% precision Citation Details In-Document Search Title: Type Ia supernovae yielding distances with 3-4% precision × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  8. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    SciTech Connect (OSTI)

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; Folatelli, G.; Parent, E.; Gall, C.; Amanullah, R.; Anupama, G. C.; Arcavi, I.; Banerjee, D. P. K.; Beletsky, Y.; Blanc, G. A.; Bloom, J. S.; Brown, P. J.; Campillay, A.; Cao, Y.; De Cia, A.; Diamond, T.; Freedman, W. L.; Gonzalez, C.; Goobar, A.; Holmbo, S.; Howell, D. A.; Johansson, J.; Kasliwal, M. M.; Kirshner, R. P.; Krisciunas, K.; Kulkarni, S. R.; Maguire, K.; Milne, P. A.; Morrell, N.; Nugent, P. E.; Ofek, E. O.; Osip, D.; Palunas, P.; Perley, D. A.; Persson, S. E.; Piro, A. L.; Rabus, M.; Roth, M.; Schiefelbein, J. M.; Srivastav, S.; Sullivan, M.; Suntzeff, N. B.; Surace, J.; Woźniak, P. R.; Yaron, O.

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.

  9. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; et al

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less

  10. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    SciTech Connect (OSTI)

    Mandel, Kaisey S.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II ?6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B V and B R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B V and B R color differences between HV and NV groups are 0.06 0.02 and 0.09 0.02 mag, respectively. A linear model finds significant slopes of 0.021 0.006 and 0.030 0.009 mag (10{sup 3} km s{sup 1}){sup 1} for intrinsic B V and B R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as 0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  11. Type Ia supernova rate measurements to redshift 2.5 from CANDELS: Searching for prompt explosions in the early universe

    SciTech Connect (OSTI)

    Rodney, Steven A.; Riess, Adam G.; Graur, Or; Jones, David O. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory; Dahlen, Tomas; Casertano, Stefano; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Dickinson, Mark E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hayden, Brian [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jha, Saurabh W.; McCully, Curtis; Patel, Brandon [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); and others

    2014-07-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of ?0.25 deg{sup 2} with ?900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z ? 2.5. We classify ?24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z = 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only ?3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation (<500 Myr). Combining the CANDELS rates with all available SN Ia rate measurements in the literature we find that this prompt SN Ia fraction is f{sub P} = 0.53{sub stat0.10}{sup 0.09}{sub sys0.26}{sup 0.10}, consistent with a delay time distribution that follows a simple t {sup 1} power law for all times t > 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosionsthough further analysis and larger samples will be needed to examine that suggestion.

  12. SNe Ia tests of quintessence tracker cosmology in an anisotropic background

    SciTech Connect (OSTI)

    Miranda, W.; Carneiro, S.; Pigozzo, C. E-mail: saulo.carneiro@pq.cnpq.br

    2014-07-01

    We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gdel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ?, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters ?{sub M}=0.29 and ?{sub k}=0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.

  13. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect (OSTI)

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), H?{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (?0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  14. THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Contreras, C.; Roth, M.; Marion, G. H.; Kirshner, R. P.; Burns, C. R.; Freedman, W. L.; Persson, S. E.; Winge, C.; Gerardy, C. L.; Hoeflich, P.; Im, M.; Jeon, Y.; Pignata, G.; Stanishev, V.; and others

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m{sub 15}(B). The prominent break at {approx}1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m{sub 15}(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  15. lawrence livermore laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    livermore

  16. Optical and ultraviolet observations of the narrow-lined type Ia SN 2012fr in NGC 1365

    SciTech Connect (OSTI)

    Zhang, Ju-Jia; Bai, Jin-Ming; Wang, Bo; Liu, Zheng-Wei [Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650011 (China); Wang, Xiao-Feng; Zhao, Xu-Lin; Chen, Jun-Cheng [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084 (China); Zhang, Tian-Meng, E-mail: jujia@ynao.ac.cn, E-mail: baijinming@ynao.ac.cn, E-mail: wang_xf@mail.tsinghua.edu.cn [National Astronomical Observatories of China (NAOC), Chinese Academy of Sciences, Beijing 100012 (China)

    2014-07-01

    Extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2012fr are presented in this paper. It has a relatively high luminosity, with an absolute B-band peak magnitude of about 19.5 mag and a smaller post-maximum decline rate than normal SNe Ia (e.g., ?m {sub 15}(B) =0.85 0.05 mag). Based on the UV and optical light curves, we derived that a {sup 56}Ni mass of about 0.88 M {sub ?} was synthesized in the explosion. The earlier spectra are characterized by noticeable high-velocity features of Si II ?6355 and Ca II with velocities in the range of ?22, 000-25, 000 km s{sup 1}. At around the maximum light, these spectral features are dominated by the photospheric components which are noticeably narrower than normal SNe Ia. The post-maximum velocity of the photosphere remains almost constant at ?12,000 km s{sup 1} for about one month, reminiscent of the behavior of some luminous SNe Ia like SN 1991T. We propose that SN 2012fr may represent a subset of the SN 1991T-like SNe Ia viewed in a direction with a clumpy or shell-like structure of ejecta, in terms of a significant level of polarization reported in Maund et al. in 2013.

  17. A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Ma, Xin; Chen, Xuefei; Chen, Hai-liang; Han, Zhanwen; Denissenkov, Pavel A. E-mail: cxf@ynao.ac.cn

    2013-12-01

    The accretion of hydrogen-rich material on to carbon-oxygen white dwarfs (CO WDs) is crucial for understanding Type Ia supernova (SN Ia) from the single-degenerate model, but this process has not been well understood due to the numerical difficulties in treating H and He flashes during the accretion. For CO WD masses from 0.5 to 1.378 M {sub ?} and accretion rates in the range from 10{sup 8} to 10{sup 5} M {sub ?} yr{sup 1}, we simulated the accretion of solar-composition material on to CO WDs using the state-of-the-art stellar evolution code of MESA. For comparison with steady-state models, we first ignored the contribution from nuclear burning to the luminosity when determining the Eddington accretion rate, and found that the properties of H burning in our accreting CO WD models are similar to those from the steady-state models, except that the critical accretion rates at which the WDs turn into red giants or H-shell flashes occur on their surfaces are slightly higher than those from the steady-state models. However, the super-Eddington wind is triggered at much lower accretion rates than previously thought, when the contribution of nuclear burning to the total luminosity is included. This super-Eddington wind naturally prevents the CO WDs with high accretion rates from becoming red giants, thus presenting an alternative to the optically thick wind proposed by Hachisu etal. Furthermore, the super-Eddington wind works in low-metallicity environments, which may explain SNe Ia observed at high redshifts.

  18. SPECTROPOLARIMETRY OF THE TYPE Ia SN 2007sr TWO MONTHS AFTER MAXIMUM LIGHT

    SciTech Connect (OSTI)

    Zelaya, P.; Quinn, J. R.; Clocchiatti, A.; Baade, D.; Patat, F.; Hoeflich, P.; Maund, J.; Wang, L.; Wheeler, J. C.

    2013-02-01

    We present late-time spectropolarimetric observations of SN 2007sr, obtained with the Very Large Telescope at the ESO Paranal Observatory when the object was 63 days after maximum light. The late-time spectrum displays strong line polarization in the Ca II absorption features. SN 2007sr adds to the case of some normal Type Ia supernovae that show high line polarization or repolarization at late times, a fact that might be connected with the presence of high-velocity features at early times.

  19. Consistent use of type Ia supernovae highly magnified by galaxy clusters to constrain the cosmological parameters

    SciTech Connect (OSTI)

    Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Redlich, Matthias [Universitt Heidelberg, Zentrum fr Astronomie, Institut fr Theoretische Astrophysik, Philosophenweg 12, D-69120 Heidelberg (Germany); Broadhurst, Tom, E-mail: adizitrin@gmail.com [Department of Theoretical Physics, University of Basque Country UPV/EHU, Bilbao (Spain)

    2014-07-01

    We discuss how Type Ia supernovae (SNe) strongly magnified by foreground galaxy clusters should be self-consistently treated when used in samples fitted for the cosmological parameters. While the cluster lens magnification of a SN can be well constrained from sets of multiple images of various background galaxies with measured redshifts, its value is typically dependent on the fiducial set of cosmological parameters used to construct the mass model. In such cases, one should not naively demagnify the observed SN luminosity by the model magnification into the expected Hubble diagram, which would create a bias, but instead take into account the cosmological parameters a priori chosen to construct the mass model. We quantify the effect and find that a systematic error of typically a few percent, up to a few dozen percent per magnified SN may be propagated onto a cosmological parameter fit unless the cosmology assumed for the mass model is taken into account (the bias can be even larger if the SN is lying very near the critical curves). We also simulate how such a bias propagates onto the cosmological parameter fit using the Union2.1 sample supplemented with strongly magnified SNe. The resulting bias on the deduced cosmological parameters is generally at the few percent level, if only few biased SNe are included, and increases with the number of lensed SNe and their redshift. Samples containing magnified Type Ia SNe, e.g., from ongoing cluster surveys, should readily account for this possible bias.

  20. TYCHO SN 1572: A NAKED Ia SUPERNOVA REMNANT WITHOUT AN ASSOCIATED AMBIENT MOLECULAR CLOUD

    SciTech Connect (OSTI)

    Tian, W. W.; Leahy, D. A.

    2011-03-10

    The historical supernova remnant (SNR) Tycho SN 1572 originates from the explosion of a normal Type Ia supernova that is believed to have originated from a carbon-oxygen white dwarf in a binary system. We analyze the 21 cm continuum, H I, and {sup 12}CO-line data from the Canadian Galactic Plane Survey in the direction of SN 1572 and the surrounding region. We construct H I absorption spectra to SN 1572 and three nearby compact sources. We conclude that SN 1572 has no molecular cloud interaction, which argues against previous claims that a molecular cloud is interacting with the SNR. This new result does not support a recent claim that dust, newly detected by AKARI, originates from such an SNR-cloud interaction. We suggest that the SNR has a kinematic distance of 2.5-3.0 kpc based on a nonlinear rotational curve model. Very high energy {gamma}-ray emission from the remnant has been detected by the VERITAS telescope, so our result shows that its origin should not be an SNR-cloud interaction. Both radio and X-ray observations support that SN 1572 is an isolated Type Ia SNR.

  1. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect (OSTI)

    Krughoff, K. S.; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  2. LAX XXlCfl jX?iK, Idd+?KYLViG?IA

    Office of Legacy Management (LM)

    f , : I~&l, samtier cipwati8Aa CffUm - . Jiux.lCJ d,# 1754 - - _- - .- t :; . Jesse e. ahizmn*~*ter -2.' -------- - _ &tV' hi@A l f izau Bkteriala ;' . . 1 -7 I _' i' . Fpr&G& r&Q Q,&& fu &fI& L;&& -l&d 2;,i' iI,;/Qi' rIGN CQ&GgJy p;E& p;~p>gyf LAX XXlCfl jX?iK, Idd+?KYLViG?IA i-icfer~~o is &o ta yaw rwarandu3;: l P iimwmbec L?, 1953, reque&in~ a d&q.&ti of khority tA A&sister prog= for th+zz developmrrrl,

  3. Near-infrared line identification in type Ia supernovae during the transitional phase

    SciTech Connect (OSTI)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R.; Parrent, Jerod T.; Thomas, R. C.; Marion, G. H.

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 μm, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  4. EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82

    SciTech Connect (OSTI)

    Marion, G. H.; Vink, J. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Sand, D. J. [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Banerjee, D. P. K.; Joshi, V.; Venkataraman, V.; Ashok, N. M. [Astronomy and Astrophysics Division, Physical Research Laboratory, Navrangapura, Ahmedabad - 380009, Gujarat (India); Valenti, S.; Howell, D. A. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Stritzinger, M. D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Amanullah, R.; Johansson, J. [The Oskar Klein Centre, Physics Department, Stockholm University, Albanova University Center, SE 106 91 Stockholm (Sweden); Binzel, R. P. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bochanski, J. J. [Haverford College, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Bryngelson, G. L. [Department of Physics and Astronomy, Francis Marion University, 4822 East Palmetto Street, Florence, SC 29506 (United States); Burns, C. R. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Drozdov, D. [Department of Physics and Astronomy, Clemson University, 8304 University Station, Clemson, SC 29634 (United States); Fieber-Beyer, S. K. [Department of Space Studies, University of North Dakota, University Stop 9008, ND 58202 (United States); Graham, M. L., E-mail: hman@astro.as.utexas.edu [Astronomy Department, University of California at Berkeley, Berkeley, CA 94720 (United States); and others

    2015-01-01

    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10days before (10d) to 10days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I?1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from 10d to +29d, in the UBVRIJH and K{sub s} bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using R{sub V} = 1.46, which is consistent with previous studies, SNooPy finds that A{sub V} = 1.80 for E(B V){sub host} = 1.23 0.06 mag. The maximum B-band brightness of 19.19 0.10 mag was reached on February 1.74 UT 0.13days and the supernova has a decline parameter, ?m {sub 15}, of 1.12 0.02 mag.

  5. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  6. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect (OSTI)

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  7. A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey

    SciTech Connect (OSTI)

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

    2010-03-01

    We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4{sub -5.1}{sup +8.3})%.

  8. FIRST EVIDENCE OF GLOBULAR CLUSTER FORMATION FROM THE EJECTA OF PROMPT TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Bekki, Kenji, E-mail: taku.tsujimoto@nao.ac.jp [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2012-06-01

    Recent spectroscopic observations of globular clusters (GCs) in the Large Magellanic Cloud (LMC) have discovered that one of the intermediate-age GCs, NGC 1718, with [Fe/H] = -0.7 has an extremely low [Mg/Fe] ratio of {approx}-0.9. We propose that NGC 1718 was formed from the ejecta of Type Ia supernovae mixed with very metal-poor ([Fe/H] <-1.3) gas about {approx}2 Gyr ago. The proposed scenario is shown to be consistent with the observed abundances of Fe-group elements such as Cr, Mn, and Ni. In addition, compelling evidence for asymptotic giant branch stars playing a role in chemical enrichment during this GC formation is found. We suggest that the origin of the metal-poor gas is closely associated with efficient gas transfer from the outer gas disk of the Small Magellanic Cloud to the LMC disk. We anticipate that the outer part of the LMC disk contains field stars exhibiting significantly low [Mg/Fe] ratios, formed through the same process as NGC 1718.

  9. PRODUCTION OF THE p-PROCESS NUCLEI IN THE CARBON-DEFLAGRATION MODEL FOR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Kusakabe, Motohiko; Iwamoto, Nobuyuki; Nomoto, Ken'ichi E-mail: iwamoto.nobuyuki@jaea.go.jp

    2011-01-01

    We calculate the nucleosynthesis of proton-rich isotopes in the carbon-deflagration model for Type Ia supernovae (SNe Ia). The seed abundances are obtained by calculating the s-process nucleosynthesis that is expected to occur in the repeating helium shell flashes on the carbon-oxygen (CO) white dwarf (WD) during mass accretion from a binary companion. When the deflagration wave passes through the outer layer of the CO WD, p-nuclei are produced by photodisintegration reactions on s-nuclei in a region where the peak temperature ranges from 1.9 to 3.6 x 10{sup 9} K. We confirm the sensitivity of the p-process on the initial distribution of s-nuclei. We show that the initial C/O ratio in the WD does not affect much the yield of p-nuclei. On the other hand, the abundance of {sup 22}Ne left after s-processing has a large influence on the p-process via the {sup 22}Ne({alpha},n) reaction. We find that about 50% of p-nuclides are co-produced when normalized to their solar abundances in all adopted cases of seed distribution. Mo and Ru, which are largely underproduced in Type II supernovae (SNe II), are produced more than in SNe II although they are underproduced with respect to the yield levels of other p-nuclides. The ratios between p-nuclei and iron in the ejecta are larger than the solar ratios by a factor of 1.2. We also compare the yields of oxygen, iron, and p-nuclides in SNe Ia and SNe II and suggest that SNe Ia could make a larger contribution than SNe II to the solar system content of p-nuclei.

  10. Metabolomic profiling of the nectars of Aquilegia pubescens and <i>A. Canadensis

    SciTech Connect (OSTI)

    Noutsos, Christos; Perera, Ann M.; Nikolau, Basil J.; Seaver, Samuel M. D.; Ware, Doreen H.; Motta, Andrea

    2015-05-01

    To date, variation in nectar chemistry of flowering plants has not been studied in detail. Such variation exerts considerable influence on pollinator–plant interactions, as well as on flower traits that play important roles in the selection of a plant for visitation by specific pollinators. Over the past 60 years the Aquilegia genus has been used as a key model for speciation studies. In this study, we defined the metabolomic profiles of flower samples of two Aquilegia species, <i>A. Canadensis and <i>A. pubescens. We identified a total of 75 metabolites that were classified into six main categories: organic acids, fatty acids, amino acids, esters, sugars, and unknowns. The mean abundances of 25 of these metabolites were significantly different between the two species, providing insights into interspecies variation in floral chemistry. Using the PlantSEED biochemistry database, we found that the majority of these metabolites are involved in biosynthetic pathways. Finally, we explored the annotated genome of <i>A. coerulea, using the PlantSEED pipeline and reconstructed the metabolic network of Aquilegia. This network, which contains the metabolic pathways involved in generating the observed chemical variation, is now publicly available from the DOE Systems Biology Knowledge Base (KBase; http://kbase.us).

  11. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    SciTech Connect (OSTI)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Schaefer, Gail

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ? 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ? 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  12. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect (OSTI)

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  13. A POSSIBLE EVOLUTIONARY SCENARIO OF HIGHLY MAGNETIZED SUPER-CHANDRASEKHAR WHITE DWARFS: PROGENITORS OF PECULIAR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Das, Upasana; Mukhopadhyay, Banibrata; Rao, A. R. E-mail: bm@physics.iisc.ernet.in

    2013-04-10

    Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses {approx}2.1-2.8 M{sub Sun }, M{sub Sun} being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.

  14. Radiogenic p-isotopes from type Ia supernova, nuclear physics uncertainties, and galactic chemical evolution compared with values in primitive meteorites

    SciTech Connect (OSTI)

    Travaglio, C.; Gallino, R.; Rauscher, T.; Dauphas, N.; Rpke, F. K.; Hillebrandt, W. E-mail: claudia.travaglio@b2fh.org

    2014-11-10

    The nucleosynthesis of proton-rich isotopes is calculated for multi-dimensional Chandrasekhar-mass models of Type Ia supernovae (SNe Ia) with different metallicities. The predicted abundances of the short-lived radioactive isotopes {sup 92}Nb, {sup 97,} {sup 98}Tc, and {sup 146}Sm are given in this framework. The abundance seeds are obtained by calculating s-process nucleosynthesis in the material accreted onto a carbon-oxygen white dwarf from a binary companion. A fine grid of s-seeds at different metallicities and {sup 13}C-pocket efficiencies is considered. A galactic chemical evolution model is used to predict the contribution of SN Ia to the solar system p-nuclei composition measured in meteorites. Nuclear physics uncertainties are critical to determine the role of SNe Ia in the production of {sup 92}Nb and {sup 146}Sm. We find that, if standard Chandrasekhar-mass SNe Ia are at least 50% of all SN Ia, they are strong candidates for reproducing the radiogenic p-process signature observed in meteorites.

  15. Persistent C II absorption in the normal type Ia supernova 2002fk

    SciTech Connect (OSTI)

    Cartier, Rgis; Zelaya, Paula [Millennium Institute of Astrophysics, Casilla 36-D, Santiago (Chile); Hamuy, Mario; Maza, Jos; Gonzlez, Luis; Huerta, Leonor [Departamento de Astronoma, Universidad de Chile, Casilla 36-D, Santiago (Chile); Pignata, Giuliano [Departamento Ciencias Fisicas, Universidad Andres Bello, Av. Repblica 252, Santiago (Chile); Frster, Francisco [Center for Mathematical Modelling, Universidad de Chile, Avenida Blanco Encalada 2120, Piso 7, Santiago (Chile); Folatelli, Gaston [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Phillips, Mark M.; Morrell, Nidia; Contreras, Carlos; Roth, Miguel; Gonzlez, Sergio [Carnegie Institution of Washington, Las Campanas Observatory, Colina el Pino s/n, Casilla 601 (Chile); Krisciunas, Kevin; Suntzeff, Nicholas B. [Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station, TX 77843 (United States); Clocchiatti, Alejandro [Departamento de Astronoma y Astrofsica, Pontificia Universidad Catlica de Chile, Casilla 306, Santiago (Chile); Coppi, Paolo [Department of Astronomy, Yale University, New Haven, CT 06520-8101 (United States); Koviak, Kathleen, E-mail: rcartier@das.uchile.cl [Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 911901 (United States)

    2014-07-01

    We present well-sampled UBVRIJHK photometry of SN 2002fk starting 12 days before maximum light through 122 days after peak brightness, along with a series of 15 optical spectra from 4 to +95 days since maximum. Our observations show the presence of C II lines in the early-time spectra of SN 2002fk, expanding at 11,000 km s{sup 1} and persisting until 8 days past maximum light with a velocity of ?9000 km s{sup 1}. SN 2002fk is characterized by a small velocity gradient of v-dot {sub Si} {sub II}=26 km s{sup 1} day{sup 1}, possibly caused by an off-center explosion with the ignition region oriented toward the observer. The connection between the viewing angle of an off-center explosion and the presence of C II in the early-time spectrum suggests that the observation of C II could be also due to a viewing angle effect. Adopting the Cepheid distance to NGC 1309 we provide the first H {sub 0} value based on near-infrared (near-IR) measurements of a Type Ia supernova (SN) between 63.0 0.8 (3.4 systematic) and 66.7 1.0 (3.5 systematic) km s{sup 1} Mpc{sup 1}, depending on the absolute magnitude/decline rate relationship adopted. It appears that the near-IR yields somewhat lower (6%-9%) H {sub 0} values than the optical. It is essential to further examine this issue by (1) expanding the sample of high-quality near-IR light curves of SNe in the Hubble flow, and (2) increasing the number of nearby SNe with near-IR SN light curves and precise Cepheid distances, which affords the promise to deliver a more precise determination of H {sub 0}.

  16. THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q.; Fisher, R. T.; Townsley, D. M.; Meakin, C.; Reid, L. B.

    2012-11-01

    We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

  17. MID-IR SPECTRA OF TYPE Ia SN 2014J IN M82 SPANNING THE FIRST 4 MONTHS

    SciTech Connect (OSTI)

    Telesco, Charles M.; Li, Dan; Barnes, Peter J.; Mariñas, Naibí; Zhang, Han; Höflich, Peter; Álvarez, Carlos; Fernández, Sergio; Rebolo, Rafael; Hough, James H.; Levenson, N. A.; Pantin, Eric; Roche, Patrick E-mail: phoeflich77@gmail.com

    2015-01-10

    We present a time series of 8-13 μm spectra and photometry for SN 2014J obtained 57, 81, 108, and 137 days after the explosion using CanariCam on the Gran Telescopio Canarias. This is the first mid-IR time series ever obtained for a Type Ia supernova (SN Ia). These observations can be understood within the framework of the delayed detonation model and the production of ∼0.6 M {sub ☉} of {sup 56}Ni, consistent with the observed brightness, the brightness decline relation, and the γ-ray fluxes. The [Co III] line at 11.888 μm is particularly useful for evaluating the time evolution of the photosphere and measuring the amount of {sup 56}Ni and thus the mass of the ejecta. Late-time line profiles of SN 2014J are rather symmetric and not shifted in the rest frame. We see argon emission, which provides a unique probe of mixing in the transition layer between incomplete burning and nuclear statistical equilibrium. We may see [Fe III] and [Ni IV] emission, both of which are observed to be substantially stronger than indicated by our models. If the latter identification is correct, then we are likely observing stable Ni, which might imply central mixing. In addition, electron capture, also required for stable Ni, requires densities larger than ∼1 × 10{sup 9} g cm{sup –3}, which are expected to be present only in white dwarfs close to the Chandrasekhar limit. This study demonstrates that mid-IR studies of SNe Ia are feasible from the ground and provide unique information, but it also indicates the need for better atomic data.

  18. Systematic uncertainties associated with the cosmological analysis of the first Pan-STARRS1 type Ia supernova sample

    SciTech Connect (OSTI)

    Scolnic, D.; Riess, A.; Brout, D.; Rodney, S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Huber, M. E.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Foley, R. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Stubbs, C. W.; Kirshner, R. P.; Challis, P.; Czekala, I.; Drout, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Smartt, S. J.; Botticella, M. T. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Schlafly, E. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); and others

    2014-11-01

    We probe the systematic uncertainties from the 113 Type Ia supernovae (SN Ia) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ?0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037 0.031 mag for host galaxies with high and low masses. Assuming flatness and including systematic uncertainties in our analysis of only SNe measurements, we find w =?1.120{sub ?0.206}{sup +0.360}(Stat){sub ?0.291}{sup +0.269}(Sys). With additional constraints from Baryon acoustic oscillation, cosmic microwave background (CMB) (Planck) and H {sub 0} measurements, we find w=?1.166{sub ?0.069}{sup +0.072} and ?{sub m}=0.280{sub ?0.012}{sup +0.013} (statistical and systematic errors added in quadrature). The significance of the inconsistency with w = 1 depends on whether we use Planck or Wilkinson Microwave Anisotropy Probe measurements of the CMB: w{sub BAO+H0+SN+WMAP}=?1.124{sub ?0.065}{sup +0.083}.

  19. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    SciTech Connect (OSTI)

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that began roughly 200 {+-} 70 Myr ago. We discuss the implications of these observations for progenitor models and cosmology using Type Ia supernovae.

  20. DISPLAYING THE HETEROGENEITY OF THE SN 2002cx-LIKE SUBCLASS OF TYPE Ia SUPERNOVAE WITH OBSERVATIONS OF THE Pan-STARRS-1 DISCOVERED SN 2009ku

    SciTech Connect (OSTI)

    Narayan, G.; Foley, R. J.; Berger, E.; Chornock, R.; Rest, A.; Soderberg, A. M.; Kirshner, R. P.; Botticella, M. T.; Smartt, S.; Valenti, S.; Huber, M. E.; Scolnic, D.; Grav, T.; Burgett, W. S.; Chambers, K. C.; Flewelling, H. A.; Gates, G.; Kaiser, N.; Magnier, E. A.; Morgan, J. S. E-mail: rfoley@cfa.harvard.edu

    2011-04-10

    SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter ({approx}0.6 mag) than other SN 2002cx-like objects, peaking at M{sub V} = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of {approx}2000 km s{sup -1} at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M{sub V} = -14.2 mag, {approx}4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.

  1. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert; et al

    2015-03-12

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less

  2. Cosmological constraints from measurements of type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey

    SciTech Connect (OSTI)

    Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Scolnic, D.; Riess, A.; Rodney, S.; Brout, D. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Foley, R. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Stubbs, C. W.; Kirshner, R. P.; Challis, P.; Czekala, I.; Drout, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Huber, M. E.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT71NN (United Kingdom); Schlafly, E. [Max Planck Institute for Astronomy, Knigstuhl 17, D-69117 Heidelberg (Germany); Botticella, M. T. [INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); and others

    2014-11-01

    We present griz {sub P1} light curves of 146 spectroscopically confirmed Type Ia supernovae (SNe Ia; 0.03 < z < 0.65) discovered during the first 1.5 yr of the Pan-STARRS1 Medium Deep Survey. The Pan-STARRS1 natural photometric system is determined by a combination of on-site measurements of the instrument response function and observations of spectrophotometric standard stars. We find that the systematic uncertainties in the photometric system are currently 1.2% without accounting for the uncertainty in the Hubble Space Telescope Calspec definition of the AB system. A Hubble diagram is constructed with a subset of 113 out of 146 SNe Ia that pass our light curve quality cuts. The cosmological fit to 310 SNe Ia (113 PS1 SNe Ia + 222 light curves from 197 low-z SNe Ia), using only supernovae (SNe) and assuming a constant dark energy equation of state and flatness, yields w=?1.120{sub ?0.206}{sup +0.360}(Stat){sub ?0.291}{sup +0.269}(Sys). When combined with BAO+CMB(Planck)+H {sub 0}, the analysis yields ?{sub M}=0.280{sub ?0.012}{sup +0.013} and w=?1.166{sub ?0.069}{sup +0.072} including all identified systematics. The value of w is inconsistent with the cosmological constant value of 1 at the 2.3? level. Tension endures after removing either the baryon acoustic oscillation (BAO) or the H {sub 0} constraint, though it is strongest when including the H {sub 0} constraint. If we include WMAP9 cosmic microwave background (CMB) constraints instead of those from Planck, we find w=?1.124{sub ?0.065}{sup +0.083}, which diminishes the discord to <2?. We cannot conclude whether the tension with flat ?CDM is a feature of dark energy, new physics, or a combination of chance and systematic errors. The full Pan-STARRS1 SN sample with ?three times as many SNe should provide more conclusive results.

  3. No X-rays from the very nearby type Ia SN 2014J: Constraints on its environment

    SciTech Connect (OSTI)

    Margutti, R.; Parrent, J.; Kamble, A.; Soderberg, A. M.; Milisavljevic, D.; Drout, M. R.; Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Foley, R. J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States)

    2014-07-20

    Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d{sub L} = 3.5 Mpc) reveal no X-ray emission down to a luminosity L{sub x} < 7 10{sup 36} erg s{sup 1} (0.3-10 keV) at ?t ? 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M-dot <10{sup ?9} M{sub ?} yr{sup ?1} (for wind velocity v{sub w} = 100 km s{sup 1}). Alternatively, the SN shock might be expanding into a uniform medium with density n{sub CSM} < 3 cm{sup 3}. These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be ?1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.

  4. ASYMMETRY IN THE OBSERVED METAL-RICH EJECTA OF THE GALACTIC TYPE IA SUPERNOVA REMNANT G299.22.9

    SciTech Connect (OSTI)

    Post, Seth; Park, Sangwook [Department of Physics, University of Texas at Arlington, Arlington, Box 19059, TX 76019 (United States); Badenes, Carles [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT-PACC), University of Pittsburgh, 3941 OHara Street, Pittsburgh, PA 15260 (United States); Burrows, David N. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Lee, Jae-Joon [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Mori, Koji [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki 889-2192 (Japan); Slane, Patrick O., E-mail: seth.post@mavs.uta.edu, E-mail: badenes@pitt.edu, E-mail: burrows@astro.psu.edu, E-mail: jph@physics.rutgers.edu, E-mail: mori@astro.miyazaki-u.ac.jp, E-mail: slane@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-09-01

    We have performed a deep Chandra observation of the Galactic TypeIa supernova remnant G299.22.9. Here we report the initial results from our imaging and spectral analysis. The observed abundance ratios of the central ejecta are in good agreement with those predicted by delayed-detonation TypeIa supernovae models. We reveal inhomogeneous spatial and spectral structures of metal-rich ejecta in G299.22.9. The Fe/Si abundance ratio in the northern part of the central ejecta region is higher than that in the southern part. A significant continuous elongation of ejecta material extends out to the western outermost boundary of the remnant. In this western elongation, both the Si and Fe are enriched with a similar abundance ratio to that in the southern part of the central ejecta region. These structured distributions of metal-rich ejecta material suggest that this TypeIa supernova might have undergone a significantly asymmetric explosion and/or has been expanding into a structured medium.

  5. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect (OSTI)

    The, Lih-Sin [Department of Physics and Astronomy, Clemson University, SC 29634 (United States); Burrows, Adam, E-mail: tlihsin@clemson.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-10

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ?3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ?30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  6. Type Ia Supernovae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the universe is undergoing an accelerated expansion - a result which fits the General Relativity if a yet unknown form of "dark" energy is assumed to dominate the...

  7. IA News Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilma Rousseff of Brazil and he announced the creation of a Strategic Energy Dialogue (SED) to support the two countries' common goals of developing safe, secure and affordable...

  8. IA Blog Archive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 21:03:00 +0000 921386 at http:energy.gov Ministers Meet in Addis Ababa for U.S.-Africa Energy Ministerial http:energy.goviaarticlesministers-meet-addis-ababa-us-africa-...

  9. Gorchakova-IA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Google Rules of Behavior Form Google Rules of Behavior Form Google Rules of Behavior Form File Google Drive for Work Rules of Behavior Form More Documents & Publications Audit Report: DOE-OIG-16-12 Remote Access Options April 2014 Cybersecurity Awareness Campaign - Malware

    Atl anta, Georgia, March 19-23, 2001 1 Estimate of Horizontal Cloud Inhomogeneity Effect on Solar Radiative Fluxes for Conditions of Winter Zvenigorod Experiment I. A. Gorchakova, G. S. Golitsyn, and I. I. Mokhov

  10. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W.; Meyer, B. S.

    2013-07-01

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

  11. OPTICAL AND NEAR-INFRARED POLARIMETRY OF HIGHLY REDDENED Type Ia SUPERNOVA 2014J: PECULIAR PROPERTIES OF DUST IN M82

    SciTech Connect (OSTI)

    Kawabata, K. S.; Akitaya, H.; Itoh, R.; Moritani, Y. [Hiroshima Astrophysical Science Center, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Yamanaka, M. [Department of Physics, Faculty of Science and Engineering, Konan University, Okamoto, Kobe, Hyogo 658-8501 (Japan); Maeda, K.; Nogami, D. [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Ui, T.; Kawabata, M.; Mori, K.; Takaki, K.; Ueno, I.; Chiyonobu, S.; Harao, T.; Matsui, R.; Miyamoto, H.; Nagae, O. [Department of Physical Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Nomoto, K.; Suzuki, N. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Tanaka, M., E-mail: kawabtkj@hiroshima-u.ac.jp [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); and others

    2014-11-01

    We present optical and near-infrared multi-band linear polarimetry of the highly reddened Type Ia supernova (SN) 2014J that appeared in M82. SN 2014J exhibits large polarization at shorter wavelengths, e.g., 4.8% in the B band, which decreases rapidly at longer wavelengths, while the position angle of the polarization remains at approximately 40 over the observed wavelength range. These polarimetric properties suggest that the observed polarization is likely predominantly caused by the interstellar dust within M82. Further analysis shows that the polarization peaks at a wavelengths much shorter than those obtained for the Galactic dust. The wavelength dependence of the polarization can be better described by an inverse power law rather than by the Serkowski law for Galactic interstellar polarization. These points suggest that the nature of the dust in M82 may be different from that in our Galaxy, with polarizing dust grains having a mean radius of <0.1 ?m.

  12. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  13. TYPE Ia SUPERNOVA REMNANT SHELL AT z = 3.5 SEEN IN THE THREE SIGHTLINES TOWARD THE GRAVITATIONALLY LENSED QSO B1422+231

    SciTech Connect (OSTI)

    Hamano, Satoshi; Kobayashi, Naoto [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Kondo, Sohei [Koyama Astronomical Observatory, Kyoto-Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Tsujimoto, Takuji [National Astronomical Observatory of Japan and Department of Astronomical Science, Graduate University for Advanced Studies, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Okoshi, Katsuya [Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamanbe, Hokkaido 049-3514 (Japan); Shigeyama, Toshikazu, E-mail: hamano@ioa.s.u-tokyo.ac.jp [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)

    2012-08-01

    Using the Subaru 8.2 m Telescope with the IRCS Echelle spectrograph, we obtained high-resolution (R = 10,000) near-infrared (1.01-1.38 {mu}m) spectra of images A and B of the gravitationally lensed QSO B1422+231 (z = 3.628) consisting of four known lensed images. We detected Mg II absorption lines at z = 3.54, which show a large variance of column densities ({approx}0.3 dex) and velocities ({approx}10 km s{sup -1}) between sightlines A and B with a projected separation of only 8.4h{sup -1}{sub 70} pc at that redshift. This is the smallest spatial structure of the high-z gas clouds ever detected after Rauch et al. found a 20 pc scale structure for the same z = 3.54 absorption system using optical spectra of images A and C. The observed systematic variances imply that the system is an expanding shell as originally suggested by Rauch et al. By combining the data for three sightlines, we managed to constrain the radius and expansion velocity of the shell ({approx}50-100 pc, 130 km s{sup -1}), concluding that the shell is truly a supernova remnant (SNR) rather than other types of shell objects, such as a giant H II region. We also detected strong Fe II absorption lines for this system, but with much broader Doppler width than that of {alpha}-element lines. We suggest that this Fe II absorption line originates in a localized Fe II-rich gas cloud that is not completely mixed with plowed ambient interstellar gas clouds showing other {alpha}-element low-ion absorption lines. Along with the Fe richness, we conclude that the SNR is produced by an SN Ia explosion.

  14. Livermore Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Livermore Field Office

  15. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Lawrence Livermore National Lab Perforemance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Lawrence Livermore National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Lawrence Livermore National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Lawrence Livermore National Security, LLC FY 2015 Performance Evaluation Plan, Lawrence Livermore National Security, LLC FY 2014 FY 2014 Performance Evaluation Report,

  16. livermore field office

    National Nuclear Security Administration (NNSA)

    donation to those in need.

    Livermore Field Office sets core values as part of continuous improvement process http:nnsa.energy.govbloglivermore-field-office-sets-cor...

  17. IA News Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    17, 2012 Deputy Secretary Poneman Statement on Second Meeting of the U.S. - South Africa Bilateral Energy Dialogue U.S. Deputy Secretary of Energy Daniel Poneman and South...

  18. Edward Jones, Lawrence Livermore National Laboratory, Outcomes...

    Energy Savers [EERE]

    Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable Edward Jones, Lawrence Livermore National Laboratory, Outcomes of U.S.-Japan Roundtable...

  19. Enforcement Letter, Lawrence Livermore National Security, LLC...

    Office of Environmental Management (EM)

    Security, LLC - May 2008 Enforcement Letter, Lawrence Livermore National Security, LLC - May 2008 May 15, 2008 Issued to Lawrence Livermore National Security, LLC related to the...

  20. Livermore Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Livermore Field Office Livermore Field Office FY15 Year End Report Semi Annual...

  1. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    About Us Our Operations Acquisition and Project Management M & O Support Department Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence ...

  2. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 Case Case Study DDCMP: Beyond Homogeneous Decomposition with ddcMD Scaling Long-Range Forces on ...

  3. livermore field office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    field office livermore field office Livermore Field Office sets core values as part of continuous improvement process At their recent off-site continuous improvement session,...

  4. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory - September 2013 September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory This report documents the...

  5. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2012 Independent Activity Report, Lawrence Livermore National Laboratory - October 2012 October 2012 Lawrence Livermore National Laboratory Site Lead Planning Activities...

  6. livermore | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    livermore NNSA Livermore Field Office donates over 4,000 pounds of food to food banks The NNSA Livermore Field Office in California donated over 4,000 pounds of food to local food banks, food pantries and other local groups in support of the 2015 Feds Feed Families campaign. As part of the campaign LFO staff, family and friends worked with The Urban Farmers to pick 600 pounds of... Catch up on the latest Sandia California news Each summer, Sandia National Laboratories focuses on news and events

  7. Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  8. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  9. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory | July 2011 Aerial View Lawrence Livermore National Laboratory's (LLNL) primary mission is research and development in support of national security. As a nuclear weapons design laboratory, LLNL has responsibilities in nuclear stockpile stewardship. LLNL also applies its expertise to prevent the spread and use of

  10. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  11. Independent Activity Report, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2013 | Department of Energy February 2013 Independent Activity Report, Lawrence Livermore National Laboratory - February 2013 February 2013 Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility [HIAR LLNL-2013-02-27] The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational

  12. Independent Oversight Inspection, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 2007 | Department of Energy Lawrence Livermore National Laboratory - May 2007 Independent Oversight Inspection, Lawrence Livermore National Laboratory - May 2007 May 2007 Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory This report provides the results of an inspection of the environment, safety, and health programs at the Department of Energy's (DOE) Lawrence Livermore National Laboratory. The inspection was conducted during January

  13. National Nuclear Security Administration Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Security, LLC Performance Evaluation Report Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Livermore Field Office Performance Period: October 2013 - September 2014 November 14, 2014 Livermore Field Office November 14, 2014 LLNL PER 2 | P a g e Executive Summary The Department of Energy/National Nuclear Security Administration (DOE/NNSA), Livermore Field Office (LFO) in accordance with guidance from the DOE/NNSA Office of Infrastructure and Operations

  14. Lawrence Livermore National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Lawrence Livermore National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Lawrence Livermore National Laboratory (LLNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Lawrence Livermore National Laboratory 23 Technology Marketing Summaries Category Title and Abstract Laboratories Date Energy Storage

  15. livermore

    National Nuclear Security Administration (NNSA)

    on stories about Sandia's telemetry work, recycling algae nutrients and looking how computer users handle phish. A story about the Sandia LED Pulser offers a glimpse of how the...

  16. ARM - Campaign Instrument - wfov-livermore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentswfov-livermore Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Wide Field of View Cameras - Livermore (WFOV-LIVERMORE) Instrument Categories Cloud Properties, Surface/Subsurface Properties Campaigns Spring UAV Campaign [ Download Data ] Off Site Campaign : various, including non-ARM sites, 1999.04.01 - 1999.05.31 Primary Measurements Taken The following measurements are those considered scientifically relevant.

  17. Livermore Compiler Analysis Loop Suite

    Energy Science and Technology Software Center (OSTI)

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  18. Consent Order, Lawrence Livermore National National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with implementation of the Chronic Beryllium Disease Prevention Program (CBDPP) and related work planning and control processes at the Lawrence Livermore National Laboratory. ...

  19. Dr. Yuan Ping Lawrence Livermore National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM ...

  20. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Violation, Lawrence Livermore National Laboratory - EA-98-01 March 9, 1998 Issued to University of California related to the Unplanned Personnel Contaminations and Radioactive...

  1. Sandia National Laboratories: Locations: Livermore, California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top 15 hometowns of SandiaCalifornia employees Livermore (34%) Tracy (8%) Pleasanton (5%) Dublin (4%) Oakland (3%) Manteca (3%) San Ramon (3%) Stockton (3%) Modesto (2%) Fremont ...

  2. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Broader source: Energy.gov (indexed) [DOE]

    Basis Issues On November 5, 1999, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Lawrence Livermore National Laboratory related to the...

  3. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-98-06 July 28, 1998 Issued to the University of California related to Criticality Safety and the...

  4. Enterprise Assessments Targeted Review, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National...

  5. Livermore Contract Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Livermore has branched out from its original mission into bioscience and environmental programs, laser research, supercomputing, energy technology research - even forensic science. ...

  6. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Yesterday Secretary of Energy Ernest Moniz hosted a ... flexibility in collecting data for stockpile stewardship ... The solar power system installed at Lawrence Livermore ...

  7. Lawrence Livermore researchers awarded early career funding ...

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory scientists Jennifer Pett-Ridge and Todd Gamblin have been selected by DOE's Office of Science Early Career Research program to receive ...

  8. Lawrence Livermore National Lab Perforemance Evaluations | National...

    National Nuclear Security Administration (NNSA)

    at NNSA Blog Home About Us Our Operations Acquisition and Project Management Performance Evaluations Lawrence Livermore National Lab Perforemance Evaluations Lawrence...

  9. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It ...

  10. Independent Activity Report, Livermore Site Office - January...

    Office of Environmental Management (EM)

    Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led...

  11. Livermore's biosciences celebrates 50th anniversary | National...

    National Nuclear Security Administration (NNSA)

    a complete list of their biosciences contributions. See more. About the photo: In the 1970s, the Laboratory established preeminence in cytometric research. Livermore was the first...

  12. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Letter, Lawrence Livermore National Laboratory - November 5, 1999 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Enforcement Letter, Brookhaven ...

  13. Voluntary Protection Program Onsite Review, Livermore Operations...

    Broader source: Energy.gov (indexed) [DOE]

    January 2012 Evaluation to determine whether the Livermore Operations is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during...

  14. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material

  15. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s

    Office of Scientific and Technical Information (OSTI)

    Transformational Materials Initiative (Technical Report) | SciTech Connect Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative Citation Details In-Document Search Title: Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and

  16. IA-HySafe International Conference on Hydrogen Safety (ICHS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AC22-91PC91056 Molecular Catalytic Hydrogenation of Aromatic Hydrocarbons and the Hydrotreating of Coal Liquids Final Report For U. S. Department of Energy Pittsburgh Energy Technology Center Pittsburgh, Pennsylvania By Shiyong Yang and Leon M. Stock Department of Chemistry The University of Chicago Chicago, Illinois May 1996 Work Performed Under Contract No. DE-AC22-91PC91056 - i - Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  17. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS...

    Office of Scientific and Technical Information (OSTI)

    In the second paper, we present observations of the ... further mitigating systematic errors along the ... Country of Publication: United States Language: English Subject: ...

  18. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    Tao, C.; Thomas, R. C.; Weaver, B. A. 79 ASTRONOMY AND ASTROPHYSICS distance scale, supernovae: general distance scale, supernovae: general Kim et al. (2013) K13 introduced a...

  19. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    Kim et al. (2013) K13 introduced a new methodology for determining peak- brightness ... Resource Relation: Journal Name: Astrophysical Journal Research Org: Ernest Orlando ...

  20. Flames in Type Ia Supernova: Deflagration-Detonation Transition...

    Office of Scientific and Technical Information (OSTI)

    Language: English Word Cloud More Like This Full Text Journal Articles Find in Google Scholar Find in Google Scholar Search WorldCat Search WorldCat to find libraries that may hold ...

  1. Closest Type Ia Supernova in Decades Solves a Cosmic Mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observations of SN 2011fe were carried out at the Liverpool Telescope at La Palma in the Canary Islands, followed within hours by the Shane Telescope at Lick Observatory in...

  2. Improved Distances to Type Ia Supernovae withMulticolor Light...

    Office of Scientific and Technical Information (OSTI)

    We also develop a simple model to disentangle intrinsic color variations and reddening by ... Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COLOR; DIPOLES; DUSTS; ...

  3. Improved Distances to Type Ia Supernovae withMulticolor Light...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... We present an updated version of the Multicolor Light Curve Shape method to measure ...

  4. Improved Constraints on Type Ia Supernova Host Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    Astrophys. ; Smith, Mathew ; Cape Town U. ; Bassett, Bruce ; South African Astron. Observ. Cape Town U., Dept. Math. African Inst. Math. Sci., Cape Town ; Frieman, Joshua A. ; ...

  5. Microsoft PowerPoint - IEEE IAS PES 102313.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... - Voltage and frequency control - VoltVAR balance - Automated load balancing Demand response & consumer behavior Outage management Remote services (e.g., reading, connection) ...

  6. New approaches for modeling type Ia supernovae (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC02-05CH11231 Resource Type: Conference Resource Relation: Conference: SciDAC 2006, Denver, CO, 25-29 June2006 Publisher: Institute of Physics, ...

  7. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties...

    Office of Scientific and Technical Information (OSTI)

    The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not ...

  8. A Chandrasekhar mass progenitor for the Type Ia supernova remnant...

    Office of Scientific and Technical Information (OSTI)

    Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the ...

  9. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore Livermore Housing Education Recreation Locations Life in Livermore Photo of Livermore countryside The Livermore Valley provides a relaxed lifestyle with good schools and friendly people. With a population of nearly 81,000, the city of Livermore maintains a local personality. Whether you are a sports fan, wine connoisseur, or outdoor enthusiast, you will have plenty to see and do. Pavilion Music The Bay Area is a haven for musicians and artists, with many galleries, concerts, and

  10. Livermore Field Office Public Affairs | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Livermore National Laboratory (August 11, 2011) NNSA Pursuing Development of a Renewable Energy Project at the Lawrence Livermore National Laboratory (June 3, 2011) Public ...

  11. FY 2010 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2010 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2010 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  12. FY 2008 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2008 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2008 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  13. FY 2009 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2009 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2009 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  14. FY 2011 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2011 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2011 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  15. Livermore's Crawford selected for California Council on Science...

    National Nuclear Security Administration (NNSA)

    Livermore's Crawford selected for California Council on Science and Technology | National ... Livermore's Crawford selected for California Council on Science and Technology Dona ...

  16. Site Visit Report, Lawrence Livermore National Laboratory - February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Livermore National Laboratory - February 2011 Site Visit Report, Lawrence ... Office of Safety and Emergency Management Evaluations and Livermore Site Office staff. ...

  17. Sandia National Laboratories: Locations: Livermore, California...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Maps and Directions to SandiaCalifornia SandiaCalifornia is located at 7011 East Avenue in Livermore, Calif., a suburban community about 45 miles east of San Francisco. ...

  18. Livermore, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Livermore is a city in Alameda County, California. It falls under California's 10th congressional district.12...

  19. Science on Saturday @ Lawrence Livermore Lab

    Broader source: Energy.gov [DOE]

    Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students. Each topic highlights cutting-edge science occurring at the Lawrence Livermore...

  20. Preliminary Notice of Violation, Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    worker safety and health program (10 C.F.R. Part 851) associated with the sulfuric acid burn event that occurred at Lawrence Livermore National Laboratory. PDF icon Preliminary...

  1. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    worker safety and health program (10 C.F.R. Part 851) associated with the sulfuric acid burn event that occurred at Lawrence Livermore National Laboratory. Preliminary Notice of...

  2. Sandia National Laboratories: Locations: Livermore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore, California Livermore, California administration building For more than 50 years, the California campus of Sandia National Laboratories has delivered essential science and technology to resolve the nation's most challenging security issues. Many of these challenges - like energy resources, transportation, immigration, ports, and more - surfaced early in the state of California, providing Sandia/California with a special opportunity to participate in the first wave of solutions to

  3. Sandia National Laboratories: Locations: Livermore, California: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/California California Livermore, California administration building Our location and hours of operation Sandia/California is located at 7011 East Avenue in Livermore, Calif., a suburban community about 45 miles east of San Francisco. Positioned at the eastern edge of the San Francisco Bay Area, Sandia is within easy commuting distance of many affordable housing communities in San Joaquin County and the Central Valley. The official hours of operation at Sandia/California are from 7:30

  4. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Physicist, Lawrence Livermore National Laboratory Kennedy Reed Kennedy Reed July 2009 Presidential Award for Excellence in Science and Engineering Mentoring President Obama has named Lawrence Livermore National Laboratory physicist Kennedy Reed as a recipient of the prestigious Presidential Award for Excellence in Science and Engineering Mentoring. Reed is a theoretical physicist at the laboratory, conducting research on atomic collisions in high temperature plasmas.

  5. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another paper titled

  6. Independent Oversight Review, Lawrence Livermore National Laboratory- July 2013

    Broader source: Energy.gov [DOE]

    Review of Preparedness for Severe Natural Phenomena Events at the Lawrence Livermore National Laboratory

  7. Site Visit Report, Lawrence Livermore National Laboratory- March 2010

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

  8. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Broader source: Energy.gov [DOE]

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  9. Independent Oversight Review, Lawrence Livermore National Laboratory- August 2014

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Radiological Controls Activity-Level Implementation.

  10. ERSUG Meeting: June 13 - 14, 1995 (Livermore, CA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ERSUG Meeting: June 13 - 14, 1995 (Livermore, CA) Dates ERSUG Meeting: June 13 & 14, 1995 Location Lawrence Livermore National Laboratory Livermore, CA Minutes Summary of ERSUG Meeting June 13 - 14, 1995, Livermore, California The Energy Research Supercomputer Users Group (ERSUG) June 1995 meeting was hosted by the National Energy Research Supercomputer Center (NERSC) at the Lawrence Livermore National Laboratory (LLNL). Some of the talks are summarized below. Welcome The meeting opened

  11. EIS-0157: Site-wide for Continued Operation of Lawrence Livermore/Sandia National Laboratory, Livermore

    Broader source: Energy.gov [DOE]

    The Department of Energy prepared this environmental impact statement to analyze the potential environmental impacts of the continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratory - Livermore, including programmatic enhancements and facility modifications to occur over the subsequent 10-year term that are pursuant to research and development missions established for the Laboratories by Congress and the President.

  12. Lawrence Livermore National Laboratory Environmental Report 2014

    SciTech Connect (OSTI)

    Jones, H. E.; Bertoldo, N. A.; Blake, R. G.; Buscheck, W. M.; Byrne, J. G.; Cerruti, S. J.; Bish, C. B.; Fratanduono, M. E.; Grayson, A. R.; MacQueen, D. H.; Montemayor, W. E.; Ottaway, H. L.; Paterson, L. E.; Revelli, M. A.; Rosene, C. A.; Swanson, K. A.; Terrill, A. A.; Wegrecki, A. M.; Wilson, K. R.; Woollett, J. S.

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  13. DOE Selects Lawrence Livermore National Security, LLC to Manage its Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that Lawrence Livermore National Security, LLC (LLNS) has been selected to be the management and operating contractor for DOE's...

  14. Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)

    Energy Savers [EERE]

    Penrose C. Albright Department of Energy Washington, DC 20585 July 22, 2013 President and Laboratory Director Lawrence Livermore National Security, LLC Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94550 NEL-2013-03 Dear Dr. Albright: The Office of Health, Safety and Security's Office of Enforcement and Oversight has evaluated the facts and circumstances surrounding programmatic deficiencies identified in the Lawrence Livermore National Security, LLC (LLNS)

  15. Consent Order, Lawrence Livermore National National Security, LLC -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WCO-2010-01 | Department of Energy Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Issued to Lawrence Livermore National Security, LLC for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) issued a

  16. Enforcement Letter, Lawrence Livermore National Laboratory- June 2, 2005

    Broader source: Energy.gov [DOE]

    Issued to Lawrence Livermore National Laboratory for Quality Assurance Deficiencies related to Weapon Activities, June 2, 2005

  17. Independent Oversight Review of the Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - March 2001 | Department of Energy Review of the Lawrence Livermore National Laboratory - March 2001 Independent Oversight Review of the Lawrence Livermore National Laboratory - March 2001 March 2001 Review of the Lawrence Livermore National Laboratory Health Services Department This report provides the results of an independent oversight review of the Health Services Division at the Department of Energy's (DOE) Lawrence Livermore National Laboratory. The review was performed March 19-21,

  18. Independent Oversight Review, Livermore Site Office - October 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Livermore Site Office - October 2011 Independent Oversight Review, Livermore Site Office - October 2011 October 2011 Review of Integrated Safety Management System Effectiveness at the Livermore Site Office This report provides the results of an independent oversight review of the effectiveness of the integrated safety management system at the Department of Energy's (DOE) Livermore Site Office. The review was conducted July 11-21, 2011, by the Office of Safety and

  19. 2011 Annual Planning Summary for Livermore Site Office (LSO) | Department

    Energy Savers [EERE]

    of Energy Livermore Site Office (LSO) 2011 Annual Planning Summary for Livermore Site Office (LSO) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Livermore Site Office (LSO). PDF icon 2011 Annual Planning Summary for Livermore Site Office (LSO) More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012

  20. 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory

    Energy Savers [EERE]

    | Department of Energy Lawrence Livermore National Laboratory 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Lawrence Livermore National Laboratory. PDF icon NNSA_LLNL_NEPA-APS-2013.pdf More Documents & Publications 2012 Annual Planning Summary for Livermore Site Office 2013 Annual Planning Summary for the Office of Fossil Energy 2014 Annual

  1. PROJECT PROFILE: Lawrence Livermore National Laboratory (PREDICTS 2) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lawrence Livermore National Laboratory (PREDICTS 2) PROJECT PROFILE: Lawrence Livermore National Laboratory (PREDICTS 2) Funding Opportunity: PREDICTS 2 LLNL Logo.png SunShot Subprogram: PV Location: Livermore, CA Amount Awarded: $570,000 Awardee Cost Share: $375,000 Principal Investigator: Mihail Bora As a part of their PREDICTS 2 award, researchers at Lawrence Livermore National Laboratory (LLNL) will explore the use of spectral imaging as a non-destructive means of

  2. FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration FY 2012 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2012 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $50,506,024 $44,555,181 88% Lawrence Livermore National Security, LLC, the management and operating contractor for the Lawrence Livermore National Laboratory, earned a Very Good rating in Programs and Operations, a Good rating in Institutional Management and Business, and 88

  3. Enforcement Letter, Lawrence Livermore National Laboratory- August 22, 1996

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Radiological Worker Training Deficiencies at the Lawrence Livermore National Laboratory

  4. The Livermore Phantom History and Supplementation

    SciTech Connect (OSTI)

    Snyder, Sandra F.; Traub, Richard J.

    2010-03-01

    In vivo monitoring facilities determine the absence or presence of internally entrained radionuclides. To be of greatest utility, the detection systems must detect and quantify the nuclides of interest at levels of interest. Phantoms have been developed to improve measurements at in vivo monitoring facilities. Since the 1970s, the Lawrence Livermore National Laboratory (LLNL, or simply "Livermore") phantom continues to be a well-used tool at lung monitoring facilities, especially for the detection of low-energy emissions from transuranics. The history of its development from need, through design development and current availability, is summarized. The authors have taken the LLNL phantom one step further by scanning the phantom surface and announce the availability of the scan files on the internet.

  5. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  6. Lessons Learned by Lawrence Livermore National Laboratory Activity-level

    Energy Savers [EERE]

    Work Planning & Control | Department of Energy Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control May 16, 2013 Presenter: Donna J. Governor, Lawrence Livermore National Laboratory Topics Covered: Work Control Review Board (WCRB) Functional Area Manager identified at the Institution level reporting directly to the Deputy Laboratory Director

  7. Independent Activity Report, Lawrence Livermore National Laboratory - March

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy March 2011 Independent Activity Report, Lawrence Livermore National Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review [HIAR-LLNL-2011-03-25] This Independent Activity Report documents an oversight activity conducted by Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations March 14-25, 2011, at the Lawrence Livermore National

  8. 2012 Annual Planning Summary for Livermore Site Office | Department of

    Energy Savers [EERE]

    Energy Livermore Site Office 2012 Annual Planning Summary for Livermore Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within the Livermore Site Office. PDF icon APS-2012-LSO.pdf Office spreadsheet icon APS-2012-LSO.xls More Documents & Publications 2012 Annual Planning Summary for National Nuclear Security Administration 2012 Annual Planning Summary for Nuclear Energy 2014 Annual Planning Summary for the West Valley

  9. Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) The Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) is a joint procurement activity among three of the Department of Energy's National Laboratories launched in 2014 to build state-of-the-art high-performance computing technologies that are essential for supporting U.S. national nuclear security and are key tools used for

  10. Voluntary Protection Program Onsite Review, Livermore Operations - January

    Energy Savers [EERE]

    2012 | Department of Energy Livermore Operations - January 2012 Voluntary Protection Program Onsite Review, Livermore Operations - January 2012 January 2012 Evaluation to determine whether the Livermore Operations is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during January 23 - 26, 2012 to determine whether National Security Technologies, LLC is continuing to perform at a level deserving DOE-VPP Star recognition. PDF icon Voluntary

  11. Audit of Lawrence Livermore National Laboratory orders for memorabilia

    SciTech Connect (OSTI)

    Not Available

    1988-12-23

    We reviewed selected aspects of orders placed by Lawrence Livermore National Laboratory, a Department of Energy contractor, during 1979--1985 for memorabilia, models, and illustrations and the oversight of those orders by the San Francisco Operations Office (SAN). This review extends earlier audit work at a second Department contractor, Rockwell International, Rocky Flats Plant, Engineering Prototype Group, on which we issued a report dated July 12, 1988. That audit focused on the Prototype Group's providing Livermore with illustrations, models, engineering prototypes, and other articles (mementos, plaques, etc.) during October 1977 through September 1985. Issues arose during that audit which required a separate review at SAN and Livermore, to determine specifically: the propriety of, and SAN oversight of, procurement practices followed by Livermore; the basis for the Livermore orders; the adequacy of reimbursement to the Department for silver used in medallions; and the cost ceilings for memorabilia contained in the Department's contract with the University of California, which operates Livermore for the Department. Limiting the audit scope to the orders Livermore placed with Rockwell's Prototype Group, we reviewed Department and Livermore procedures for acquiring memorabilia. In addition to interviewing SAN and Livermore Legal Counsel, Special Material Office personnel, and Research and Development Program representatives, we examined SMO requisitions, accounts payable listings and related payments, and selected research and development correspondences.

  12. Livermore Field Office sets core values as part of continuous...

    National Nuclear Security Administration (NNSA)

    At their recent off-site continuous improvement session, the NNSA Livermore Field Office (LFO) in California unveiled their new set of core values: Integrity - Trustworthy, ...

  13. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    Catalyst, a first-of-a-kind supercomputer at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and ...

  14. Livermore, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Livermore, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0745127, -71.3772971 Show Map Loading map... "minzoom":false,"mapp...

  15. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  16. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  17. NNSA Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER

    National Nuclear Security Administration (NNSA)

    Corporate CPEP Process NNSA Lawrence Livermore National Security, LLC PER NNSA/NA-00.2 National Nuclear Security Administration FY 2013 PEP Lawrence Livermore National Security, LLC Performance Evaluation Report Livermore Field Office Lawrence Livermore National Laboratory Performance Period: October 2012 - September 2013 November 22, 2013 Livermore Field Office November 22, 2013 NNSA Lawrence Livermore National Security, LLC PER NNSA/NA-00.2 Page 1 of 23 Executive Summary This report was

  18. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  19. Supercomputing with Livermore National Lab | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working With Livermore National Lab on Supercomputing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Working With Livermore National Lab on Supercomputing GE Global Research has been selected by Lawrence Livermore National Laboratory (LLNL) to participate in an incubator program that will use high-performance computing

  20. Sandia National Laboratories: Livermore Valley Open Campus (LVOC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in eastern Livermore, California, the LVOC is situated on a parcel of land that spans the border between the two historically closed, self-contained labs. New and emerging programs...

  1. TIMELINE: 60 Years of Computing at Lawrence Livermore National...

    Energy Savers [EERE]

    Lawrence Livermore machines have topped lists of the world's fastest, greenest, and most big-data capable systems, but if you ask the Laboratory's researchers, they'll voice...

  2. Human Resources at Lawrence Livermore National Laboratory | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Institute Lawrence Livermore National Laboratory Careers at Lawrence Livermore National Laboratory Main contacts in Human Resources for recruitment and hiring: Jennifer Brizel Recruitment & Staffing Group Leader 925-422-9388 brizel1@llnl.gov Teri Kobayashi Senior Staffing Specialist 925-422-9050 kobayashi3@llnl.gov Daphne Simons Recruitment and Staffing Coordinator 925-422-7511 simons3@llnl.gov Careers

  3. Technical Sessions J. E. Penner Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penner Lawrence Livermore National Laboratory Livermore, California 94550 The stated goal of the Atmospheric Radiation Measure- ment (ARM) program is to improve the treatment of radia- tion in general circulation models (GCMs). The means for doing so will be to compare model-predicted radiative fluxes with measured fluxes at four to six permanent sites. The measured fluxes will characterize the fluxes expected on the scale of a GCM grid box. Because aerosol optical depths at solar wavelengths

  4. 2012 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Energy Savers [EERE]

    Office | Department of Energy Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office 2012 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense

  5. 2014 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Energy Savers [EERE]

    Office | Department of Energy Livermore Field Office 2014 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities. This workforce analysis process continues to cover technical capability needs to address defense nuclear facility and related operational hazards.

  6. Retired lab physicist and computational pioneer, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Retired lab physicist and computational pioneer, Lawrence Livermore National Laboratory Berni Alder, 2009 National Medal of Science Winner Berni Alder September 2009 National Medal of Science Winner President Obama has named Berni Alder, Lawrence Livermore National Laboratory retired physicist, as a recipient of the National Medal of Science, the highest honor bestowed by the United States government on scientists, engineers, and

  7. Seismology Group Leader, Lawrence Livermore National Laboratory | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Seismology Group Leader, Lawrence Livermore National Laboratory Artie Rogers demonstrating seismology modeling. Artie Rogers August 2009 Fulbright Scholarship Artie Rodgers, Seismology Group Leader at Lawrence Livermore National Laboratory, was recently awarded a Fulbright Scholarship. In January he will be heading to Grenoble, France to study the relationship between topography and seismology with computer modeling at Laboratoire de Géohysique Interne et

  8. Livermore's Crawford selected for California Council on Science and

    National Nuclear Security Administration (NNSA)

    Technology | National Nuclear Security Administration Livermore's Crawford selected for California Council on Science and Technology Wednesday, February 19, 2014 - 3:00pm Dona Crawford, Associate Director for Computation at Lawrence Livermore National Laboratory, has been selected as a member of the California Council on Science and Technology (CCST). The council is an assembly of corporate CEOs, academics, scientists and scholars who are leaders in their respective fields. CCST members

  9. Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit February 28, 2011 - 11:31am Addthis Mike Gleason (second from left), president and CEO of The Arc of Hilo. Also shown, from left: Annemarie Meike, Mark Sueksdorf, Marjorie Gonzalez and Larry Ferderber | Photo Courtesy of LLNL Mike Gleason (second from left), president and CEO of The Arc of Hilo. Also shown, from left: Annemarie Meike, Mark

  10. Final row of solar panels installed at Livermore | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Blog Final row of solar panels installed at Livermore Monday, January 11, 2016 - 1:14pm NNSA Blog The last row of panels at the Whitethorn Solar Facility project site at Lawrence Livermore National Laboratory in California was installed last week. When complete, the 3.3 MW fixed-tilt solar photovoltaic facility will represent the largest DOE/NNSA purchase of solar energy from an onsite facility. Electrical installation will continue for several more weeks, then

  11. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  12. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  13. Preliminary Notice of Violation, Lawrence Livermore National Security, LLC- September 25, 2014

    Broader source: Energy.gov [DOE]

    Worker Safety and Health Enforcement Preliminary Notice of Violation issued to Lawrence Livermore National Security, LLC

  14. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  15. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  16. Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville

    Energy Savers [EERE]

    Melvin G. Williams, Jr. About Us Melvin G. Williams, Jr. - Former Associate Deputy Secretary Melvin G. Williams, Jr. Melvin G. Williams Jr., Vice Admiral, U.S. Navy (retired), served as the Associate Deputy Secretary of Energy until February 2013. As a Presidential Appointee at the U.S. Department of Energy, he served as the key leader responsible for the Department's management and operational excellence. He reported directly to the Secretary of Energy and the Deputy Secretary, and drove

  17. Targeted Energy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

  18. Type Ia supernova rate measurements to redshift 2.5 from CANDELS...

    Office of Scientific and Technical Information (OSTI)

    ... EXPLOSIONS; GALAXIES; LIMITING VALUES; NEAR INFRARED RADIATION; ORBITS; PHOTOMETRY; RED SHIFT; SPACE; SPECTROSCOPY; SUPERNOVAE; TELESCOPES; TIME DELAY; UNIVERSE Word ...

  19. IA REP0 SAND85-2809 Unlimited Release UC-92A

    Office of Scientific and Technical Information (OSTI)

    ... technique which uses propellants t o obtain controlled fracture initiation and extension. ... Computer modeling of HBGF a t Sandia6 shows that HEGF's ability to create multiple ...

  20. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE...

    Office of Scientific and Technical Information (OSTI)

    We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as ...

  1. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CALIBRATION; COSMOLOGY; DUSTS; GALAXIES; LUMINOSITY; SKY; TESTING ...

  2. NEAR-ULTRAVIOLET PROPERTIES OF A LARGE SAMPLE OF TYPE Ia SUPERNOVAE...

    Office of Scientific and Technical Information (OSTI)

    Hicken, Malcolm ; Kirshner, Robert P. ; Challis, Peter J. 6 ; Mazzali, Paolo 7 ; Schmidt, Brian P. 8 + Show Author Affiliations Steward Observatory, University of Arizona, ...

  3. Type Ia supernovae from merging white dwarfs. II. Post-merger...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States) Department of Physics and Department of Astronomy, University of California, Santa ...

  4. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA...

    Office of Scientific and Technical Information (OSTI)

    ... Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, ...Lick Observatory, Univ. of California, Santa Cruz, CA 95064 (United States) Dept. of ...

  5. Rock Creek I: 48-core iA Tera Scale Prototype

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to make sure we don't miss any great ideas. Hence, my views are by design far "off the roadmap". Here is what I'd like to talk about * Please stop using acronyms and undefined...

  6. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Authors: Hicken, Malcolm ; Challis, Peter ; Kirshner, Robert P. ; Bakos, Gaspar ; Berlind, Perry ; Brown, Warren R. ; Caldwell, Nelson ; Calkins, Mike ; Falco, Emilio ; Fernandez, ...

  7. Environmental monitoring at the Lawrence Livermore Laboratory. 1979 annual report

    SciTech Connect (OSTI)

    Silver, W.J.; Lindeken, C.L.; White, J.H.; Buddemeir, R.W.

    1980-04-25

    Information on monitoring activities is reported in two sections for EDB/ERA/INIS. The first section covers all information reported except Appendix D, which gives details of sampling and analytical procedures for environmental monitoring used at Lawrence Livermore Laboratory. A separate abstract was prepared for Appendix D. (JGB)

  8. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  9. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - - - - 1997 Average ... - - - - - - - - - - - - Subdistrict IA January ... - - - - - - - - - - - - February...

  10. Technical Qualification Program Self-Assessment Report- Livermore Field Office- 2013

    Broader source: Energy.gov [DOE]

    The purpose of the Livermore Field Office (LFO) Teclmical Qualification Program (TQP) is to ensure that federal teclmical personnel with safety oversight responsibilities at defense nuclear facilities at Lawrence Livermore National Laboratory possess competence commensurate with responsibilities.

  11. Top 10 Things You Didn't Know About Lawrence Livermore National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore ... Learn more by browsing other articles in the "Top Things You Didn't Know About" series. ...

  12. The adaptive x-ray optics project at the Lawrence Livermore National...

    Office of Scientific and Technical Information (OSTI)

    The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence Livermore ...

  13. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  14. Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997

    SciTech Connect (OSTI)

    1997-03-01

    This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

  15. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R.

    1990-01-01

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  16. Sandia National Laboratories: Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LVOC LVOC CREATE Visiting the LVOC Locations Livermore Valley Open Campus (LVOC) Open engagement Expanding opportunities for open engagement of the broader scientific community. Building on success Sandia's Combustion Research Facility pioneered open collaboration over 30 years ago. Access to DOE-funded capabilities Expanding access to foundational research at the Department of Energy national labs. Targeting the toughest problems Join us in multi-disciplinary R&D to solve large-scale

  17. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the

  18. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the

  19. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste

  20. Special Analysis for the Disposal of the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada (Program Document) | SciTech Connect Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada Citation Details In-Document Search Title: Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste

  1. 2015 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Energy Savers [EERE]

    5 Annual NEPA Planning Summaries 2015 Annual NEPA Planning Summaries The ongoing and projected Environmental Assessments and Environmental Impact Statements for various US Department of Energy offices. PDF icon 2015 Annual NEPA Planning Summaries More Documents & Publications LM Annual NEPA Planning Summary 2015 LM Annual NEPA Planning Summary 2016 Annual NEPA Planning Summary Report Template (DOE, 2015) Office | Department of Energy

    Livermore Field Office 2015 Annual Workforce

  2. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  3. Associate director for Physical and Life Sciences, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    National Laboratory | National Nuclear Security Administration Associate director for Physical and Life Sciences, Lawrence Livermore National Laboratory William Goldstein William Goldstein American Association for the Advancement of Science (AAAS) Fellow William Goldstein has been awarded the distinction of American Association for the Advancement of Science (AAAS) Fellow. Election as a fellow is an honor bestowed upon AAAS members by their peers. Goldstein was elected for distinguished

  4. Livermore research finds that climate models overestimate rainfall

    National Nuclear Security Administration (NNSA)

    increases | National Nuclear Security Administration research finds that climate models overestimate rainfall increases Monday, December 21, 2015 - 12:00am Researchers at Lawrence Livermore National Laboratory and collaborators have found that most climate models overestimate the increase in global precipitation due to climate change. Specifically, the team looked at 25 models and found they underestimate the increase in absorption of sunlight by water vapor as the atmosphere becomes

  5. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  6. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  7. First-of-a-kind supercomputer at Lawrence Livermore available for

    National Nuclear Security Administration (NNSA)

    collaborative research | National Nuclear Security Administration Home / Blog First-of-a-kind supercomputer at Lawrence Livermore available for collaborative research Friday, May 16, 2014 - 12:00pm Catalyst, a first-of-a-kind supercomputer at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and applications. Developed by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing

  8. Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs.

  9. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-06

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Criticality Safety and the Quality Assurance Program at the Lawrence Livermore National Laboratory, (EA-98-06)

  10. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2000-12

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12)

  11. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2003-04

    Broader source: Energy.gov [DOE]

    Issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04)

  12. PCR Bartsch, Michael S. [Sandia National Lab. (SNL-CA), Livermore...

    Office of Scientific and Technical Information (OSTI)

    short tandem repeat (STR) amplification, and second strand cDNA synthesis. Public Library of Science Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA...

  13. Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by

  14. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  15. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Mathews, S., LLNL

    1998-02-25

    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchases by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in ac concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved.

  16. The adaptive x-ray optics project at the Lawrence Livermore National...

    Office of Scientific and Technical Information (OSTI)

    The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence ...

  17. Enterprise Assessments Targeted Review, Lawrence Livermore National Laboratory – February 2015

    Broader source: Energy.gov [DOE]

    Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence Livermore National Laboratory Plutonium Facility

  18. Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-01

    Broader source: Energy.gov [DOE]

    Issued to University of California related to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory, (EA-98-01)

  19. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    SciTech Connect (OSTI)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

  20. Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

  1. George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory

    Office of Scientific and Technical Information (OSTI)

    FISSION FRAGMENT ROCKETS -- A POTENTIAL BREAKTHROUGH * * " ^ " * * ' - George F. Chapline EGG-M-88285 Lawrence Livermore National Laboratory Livermore, California 94550 D E S S 016953 Paul W. Dickson and Bruce G. Schnitzler Idaho National Engineering Laboratory Idaho Falls, Idaho 83415 ABSTRACT A new reactor concept which has the potential of enabling extremely energetic and ambitious space propulsion missions is described. Fission fragments are directly utilized as the propellant by

  2. Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tri-Lab Directors' statement on the nuclear posture review April 9, 2010 Joint Statement from Los Alamos Director Michael Anastasio, Lawrence Livermore Director George Miller, and Sandia Director Tom Hunter Los Alamos, New Mexico, April 9, 2010-The directors of the three Department of Energy, National Nuclear Security Administration Laboratories-Dr. George Miller from Lawrence Livermore National Laboratory, Dr. Michael Anastasio from Los Alamos National Laboratory, and Dr. Tom Hunter from Sandia

  3. Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE

  4. Five Livermore and LANL Scientists Named "Most Influential Scientific

    National Nuclear Security Administration (NNSA)

    Minds" | National Nuclear Security Administration Five Livermore and LANL Scientists Named "Most Influential Scientific Minds" Tuesday, July 29, 2014 - 3:24pm Three scientists from Los Alamos National Laboratory and two from Livermore National Laboratory were named to Thomson Reuters' list of The World's Most Influential Scientific Minds. The ranking recognizes researchers whose published work in their specialty areas has consistently been judged by peers to be of particular

  5. Livermore Field Office sets core values as part of continuous improvement

    National Nuclear Security Administration (NNSA)

    process | National Nuclear Security Administration Livermore Field Office sets core values as part of continuous improvement process Monday, November 23, 2015 - 9:18am NNSA Blog At their recent off-site continuous improvement session, the NNSA Livermore Field Office (LFO) in California unveiled their new set of core values: Integrity - Trustworthy, Reliable, Ethical We are responsible stewards of federal resources Collaboration - Communicate, Support, Team-Focused We work together,

  6. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  7. Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.

    SciTech Connect (OSTI)

    Marek, Laura F.

    2011-06-17

    Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

  8. Automotive Stirling Engine Market and Industrial Readiness Program (MIRP). Final report for Phase IA, September 15, 1982-July 31, 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    A brief history of the project is presented. Included in appendices are the scope of work, management and cost plans, major milestones, and the digital engine control spare parts' list. (MHR)

  9. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  10. Superfund Record of Decision (EPA Region 7): Vogel Paint and Wax, Maurice, IA. (First remedial action), September 1989. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-09-20

    The Vogel Paint and Wax (VPW) site is an approximately two-acre disposal area two miles southwest of the town of Maurice, in Sioux County, Iowa. Adjacent land uses are primarily agricultural; however, several private residences are within one-quarter mile of the site. A surficial sand and gravel aquifer underlies the site and supplies nearby private wells and the Southern Sioux County Rural Water System, located a mile and one half southeast of the site. Paint sludge, resins, solvents, and other paint-manufacturing wastes were disposed of at the site between 1971 and 1979. VPW records indicate that approximately 43,000 gallons of aliphatic and aromatic hydrocarbons and 6,000 pounds of metals waste were buried at the site. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylenes; and metals including chromium and lead. The selected remedial action for this site includes excavation of contaminated soil and separation of solid and liquid wastes; onsite bioremediation of 3,000 cubic yards of the contaminated soil in a fully contained surface impoundment unit, or onsite thermal treatment if soil contains high metal content; and stabilization of treated soil, if necessary to prevent leaching of metals, followed by disposal in the excavated area.

  11. The adaptive x-ray optics project at the Lawrence Livermore National

    Office of Scientific and Technical Information (OSTI)

    Laboratory (Conference) | SciTech Connect The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Citation Details In-Document Search Title: The adaptive x-ray optics project at the Lawrence Livermore National Laboratory Authors: Pardini, T ; Poyneer, L A ; McCarville, T J ; Macintosh, B ; Bauman, B ; Pivovaroff, M J Publication Date: 2013-06-25 OSTI Identifier: 1108860 Report Number(s): LLNL-PROC-639907 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference

  12. Remedial investigation and feasibility study for the Lawrence Livermore National Laboratory Site 300 Pit 7 Complex

    SciTech Connect (OSTI)

    Taffet, M.J. ); Oberdorfer, J.A. ); McIlvride, W.A. )

    1989-10-01

    This report summarizes the results and conclusions of the investigation of tritium and other compounds in ground water in the vicinity of landfills at the Lawrence Livermore National Laboratory (LLNL) Site 300 Pit 7 Complex. 91 refs., 110 figs., 43 tabs.

  13. Electromechanical battery research and development at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Baldwin, D.E.; Bender, D.A.; Fowler, T.K.

    1993-06-01

    The concepts undergirding a funded program to develop a modular electromechanical battery (EMB) at the Lawrence Livermore National Laboratory are described. Example parameters for EMBs for electric and hybrid-electric vehicles are given, and the importance of the high energy recovery efficiency of EMBs in increasing vehicle range in urban driving is shown.

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - - - December... - - - - - - 1997 Average... - - - - - - Subdistrict IA January... - - - - - - February... - - - - - - March... - - - - - -...

  15. No Slide Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Affairs (IA-1) Office of Resource Management (IA-10) . DAS for Africa, ... African and Middle Eastern Affairs (IA-22) DAS for Asia & the Americas (IA-30) Office of ...

  16. Environmental monitoring at the Lawrence Livermore National Laboratory: 1986 annual report

    SciTech Connect (OSTI)

    Holland, R.C.; Buddemeier, R.W.; Brekke, D.D.

    1987-04-01

    This report documents the results of the environmental monitoring program at the Lawrence Livermore National Laboratory (LLNL) for 1986. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, surface water, groundwater, vegetation, milk, foodstuff, and sewage effluents were made at both the Livermore site and nearby Site 300. This report was prepared to meet the requirements of DOE Order 5484.1. Evaluations are made of LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicate that no releases in excess of the applicable standards were made during 1986, and that LLNL operations had no adverse environmental impact.

  17. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  18. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  19. Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992 Summary

    Office of Environmental Management (EM)

    Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board Date 6/29/1992

  20. Lawrence Livermore National Laboratory Main Site FFA Under CERCLA Section 120, November 1, 1988 Summary

    Office of Environmental Management (EM)

    Lawrence Livermore National Laboratory (Main Site) Federal Facility Agreement Under CERCLA Section 120, November 1, 1988 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Health Services; California Regional Water Quality Control Board Date 11/1/1988 SCOPE * Establish a

  1. Lawrence Livermore's 'Site 300' looks back on 60 years of significant

    National Nuclear Security Administration (NNSA)

    scientific contributions | National Nuclear Security Administration Livermore's 'Site 300' looks back on 60 years of significant scientific contributions Monday, September 28, 2015 - 4:58pm NNSA Blog The entrance to Site 300 circa 1955. Sixty years ago, the University of California Radiation Laboratory began testing high explosives at what would become one of the nation's most sophisticated non-nuclear weapons testing sites, an 11 square-mile plot of rural grassland tucked away in the steep

  2. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modelling Future Changes in Surface Ozone: a Parameterized Approach Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Chuang, C., Lawrence Livermore National Laboratory Area of Research: Aerosol Processes Working Group(s): Aerosol Life Cycle Journal Reference: Wild O, AM Fiore, DT Shindell, RM Doherty, WJ Collins, FJ Dentener, MG Schultz, S Gong, IA MacKenzie, G Zeng, P Hess, DJ Bergmann, S Szopa, JE Jonson, TJ Keating, and A Zuber. 2012. "Modelling

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Controls on Ozone Precursors Will Have Different Impacts on Future Climate Download a printable PDF Submitter: Bergmann, D., Lawrence Livermore National Laboratory Chuang, C., Lawrence Livermore National Laboratory Area of Research: General Circulation and Single Column Models/Parameterizations Working Group(s): Aerosol Life Cycle Journal Reference: Fry MM, V Naik, JJ West, MD Schwartzkopf, AM Fiore, WJ Collins, FJ Dentener, DT Shindell, C Atherton, D Bergmann, BN Duncan, P Hess, IA

  4. Environmental monitoring at the Lawrence Livermore National Laboratory. 1982 annual report

    SciTech Connect (OSTI)

    Griggs, K.S.; Gonzalez, M.A.; Buddemeier, R.W.

    1983-03-14

    Environmental monitoring efforts spanned air, water, vegetation and foodstuffs, and radiation doses. Monitoring data collection, analysis, and evaluation are presented for air, soils, sewage, water, vegetation and foodstuffs, milk, and general environmental radioactivity. Non-radioactive monitoring addresses beryllium, chemical effluents in sewage, noise pollution, and storm runoff and liquid discharge site pollutants. Quality assurance efforts are addressed. Five appendices present tabulated data; environmental activity concentration; dose calculation method; discharge limits to sanitary sewer systems of Livermore; and sampling and analytical procedures for environmental monitoring. (PSB)

  5. Ellen O. Tauscher named to Lawrence Livermore and Los Alamos Boards of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governors Tauscher named to Boards of Governors Ellen O. Tauscher named to Lawrence Livermore and Los Alamos Boards of Governors Tauscher has also been appointed as a member of the LANS/LLNS Boards' Mission Committee. August 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

  6. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  7. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  8. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  9. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  10. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  11. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  12. Lawrence Livermore National Laboratory site seismic safety program: summary of findings

    SciTech Connect (OSTI)

    Scheimer, J.F.

    1985-07-01

    This report summarizes the final assessments of geologic hazards at the Lawrence Livermore National Laboratory (LLNL). Detailed discussions of investigations are documented in a series of reports produced by LLNL's Site Seismic Safety Program and their consultants. The Program conducted a probabilistic assessment of hazards at the site as a result of liquefaction, landslide, and strong ground shaking, using existing models to explicitly treat uncertainties. The results indicate that the Greenville and Las Positas-Verona Fault systems present the greatest hazard to the LLNL site as a result of ground shaking, with a lesser contribution from the Calaveras Fault. Other, more distant fault systems do not materially contribute to the hazard. No evidence has been found that the LLNL site will undergo soil failures such as landslides or liquefaction. In addition, because of the locations and ages of the faults in the LLNL area, surface ground rupture during an earthquake is extremely unlikely.

  13. Superfund Record of Decision (EPA Region 7): Des Moines TCE Site, Operable Unit 3, Des Moines, IA. (Second remedial action), September 1992. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-09-18

    The Des Moines TCE site is located southwest of downtown Des Moines, Polk County, Iowa. Land use in the area is predominantly industrial and commercial, and part of the site lies within the floodplain of the Raccoon River. Water from the Des Moines Water Works north infiltration gallery was found to be contaminated with trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride at levels above accepted drinking water standards. The ROD addresses OU3, which encompasses potential sources of ground water contamination in an area north of the Raccoon River. The selected remedial action for OU3 includes no action with periodic groundwater monitoring.

  14. Targeted Energy Efficiency Expert Evaluation (E4) Report: Iowa City Federal Building and U.S. Post Office, Iowa City, IA

    SciTech Connect (OSTI)

    Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    Final report summarizing Targeted E4 measures and energy savings analysis for the Iowa City Federal Building and Post Office.

  15. OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts Workshop September 27th 28th 2010 Clontarf Castle, Dublin Ireland

    SciTech Connect (OSTI)

    Copping, Andrea E.; O'Toole, Michael J.

    2010-12-02

    An experts' workshop was convened in Dublin Ireland September 27th 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: Developing the Annex IV database, with specific uses and audiences Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. Although the idea of cases representing the best practices was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as cases. There was also discomfort at the implication that best practices implied lesser practices; this being unhelpful to a new and emerging industry. Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

  16. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  17. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  18. Lawrence Livermore National Laboratory Site Seismic Safety Program: Summary of findings

    SciTech Connect (OSTI)

    Scheimer, J.F.; Burkhard, N.R.; Emerson, D.O.

    1991-05-01

    This report summarizes the final assessments of geologic hazards at the Lawrence Livermore National Laboratory (LLNL) and includes a revision of the peak acceleration hazard curve. Detailed discussions of investigations are documented in a series of reports produced by LLNL's Site Seismic Safety Program and their consultants. The Program conducted a probabilistic assessment of hazards at the site as a result of liquefaction, landslide, and strong ground shaking, using existing models to explicitly treat uncertainties. The results indicate the Greenville and Las Positas-Verona Fault systems present the greatest hazard to the LLNL site as a result of ground shaking, with a lesser contribution from the Calaveras Fault. Other, more distant fault systems do not materially contribute to the hazard. No evidence has been found that the LLNL site will undergo soil failures such as landslides or liquefaction. In addition, because of the locations and ages of the faults in the LLNL area, surface ground rupture during an earthquake is extremely unlikely. 21 refs., 3 figs.

  19. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  20. Overview of crash and impact analysis at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Logan, R.W.; Tokarz, F.J.

    1993-08-05

    This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

  1. Workplace investigation of increased diagnosis of malignant melanoma among employees of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moore, D.H. II; Patterson, H.W.; Hatch, F.; Discher, D.; Schneider, J.S.; Bennett, D.

    1994-08-01

    Based on rates for the surrounding communities, the diagnosis rate of malignant melanoma for employees of Lawrence Livermore National Laboratory (LLNL) during 1972 to 1977 was three to four times higher than expected. In 1984 Austin and Reynolds concluded, as a result of a case-control study, that five occupational factors were {open_quotes}causally associated{close_quotes} with melanoma risk at LLNL. These factors were: (1) exposure to radioactive materials, (2) work at Site 300, (3) exposure to volatile photographic chemicals, (4) presence at the Pacific Test Site, and (5) chemist duties. Subsequent reviews of the Austin and Reynolds report concluded that the methods used were appropriate and correctly carried out. These reports did determine, however, that Austin and Reynolds` conclusion concerning a causal relationship between occupational factors and melanoma among employees was overstated. There is essentially no supporting evidence linking the occupational factors with melanoma from animal studies or human epidemiology. Our report summarizes the results of further investigation of potential occupational factors.

  2. Routine environmental audit of the Sandia National Laboratories, California, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit`s functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites.

  3. Investigating Sources of Toxicity in Stormwater: Algae Mortality in Runoff Upstream of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Folks, K; Mathews, S; Martinelli, R

    2003-10-06

    A source evaluation case study is presented for observations of algae toxicity in an intermittent stream passing through the Lawrence Livermore National Laboratory near Livermore, California. A five-step procedure is discussed to determine the cause of water toxicity problems and to determine appropriate environmental management practices. Using this approach, an upstream electrical transfer station was identified as the probable source of herbicides causing the toxicity. In addition, an analytical solution for solute transport in overland flow was used to estimate the application level of 40 Kg/ha. Finally, this source investigation demonstrates that pesticides can impact stream water quality regardless of application within levels suggested on manufacturer labels. Environmental managers need to ensure that pesticides that could harm aquatic organisms (including algae) not be used within close proximity to streams or storm drainages and that application timing should be considered for environmental protection.

  4. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  5. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-01-01

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  6. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  7. Part B - Requirements & Funding Information PART B - Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IA, indicate whether Part A of the IA is attached or the location of Part A. For example, Part A could be located in the master file for IA number xxx at contracting office xxx. ...

  8. Part B - Requirements & Funding Information PART B - Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IA, indicate whether Part A of the IA is attached or the location of Part A. For example, Part A could be located in the master file for IA number xxx at contracting office xxx. ...

  9. DOE - Office of Legacy Management -- Iowa State University Ames...

    Office of Legacy Management (LM)

    Site Operations: Produced uranium and thorium metal, recovered uranium scrap, and ... Radioactive Materials Handled: Uranium, Thorium IA.01-1 IA.01-4 IA.01-5 Radiological ...

  10. ,"Iowa Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...20IA3","N3035IA3","N3045IA3" "Date","Natural Gas Citygate Price in Iowa (Dollars per Thousand Cubic Feet)","Iowa Price of Natural Gas Delivered to Residential Consumers (Dollars ...

  11. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect (OSTI)

    Krishnan, A

    2006-08-30

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

  12. L AW R E N C E N A T I O N A L LABORATORY LIVERMORE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AW R E N C E N A T I O N A L LABORATORY LIVERMORE Atoms for Peace After 50 Years R.N. Schock, E.S. Vergino, N. Joeck, and R.F. Lehman Issues in Science and Technology Spring 2004 Spring 2004 UCRL-JRNL-203590 This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility

  13. EIS-0348 and EIS-0236-S3: Continued Operation of Lawrence Livermore National Laboratory and Supplement Stockpile Stewardship and Management

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to continue operation of Lawrence Livermore National Laboratory (LLNL), which is critical to the National Nuclear Security Administration’s Stockpile Stewardship Program and to preventing the spread and use of nuclear weapons worldwide. This document is also Supplement 3 to the Final Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (EIS-0236) for use of proposed materials at the National Ignition Facility (NIF). This combination ensures timely analysis of the reasonably foreseeable environmental impact of NIF experiments using the proposed materials concurrent with the environmental analyses being conducted for the site-wide activities.

  14. Member Case Studies: LED Street Lighting Programs in Algona ...

    Energy Savers [EERE]

    Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), and Boston (MA) Member Case Studies: LED Street Lighting Programs in Algona (IA), Asheville (NC), ...

  15. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    PHYSICS; ACCURACY; COLOR; COSMOLOGICAL CONSTANT; LUMINOSITY; PHOTOMETRY; SHAPE; SUPERNOVAE Astrophysics,ASTRO",,"We combine the CfA3 supernovae Type Ia (SN Ia) sample with...

  16. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Univ of Oklahoma Univ of Oklahoma ASTRONOMY AND ASTROPHYSICS Dark Energy Type Ia supernovae radiative transfer Dark Energy Type Ia supernovae radiative transfer The progress...

  17. Pioneer Prairie II (09) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Developer Horizon Wind Energy Energy Purchaser Ameren Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  18. Pioneer Prairie I (4Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Horizon Developer Horizon Energy Purchaser Na Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  19. DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer...

    Office of Legacy Management (LM)

    Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated...

  20. June 2012 Electrical Safety Occurrences

    Broader source: Energy.gov (indexed) [DOE]

    to date have included the reduction of the number of active Issuing Authorities (IA), providing updated IA training, and requiring a Senior Review Board review and approval...

  1. DOE - Office of Legacy Management -- Ames Laboratory Research...

    Office of Legacy Management (LM)

    Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location:...

  2. Exploration of tetrahedral structures in silicate cathodes using...

    Office of Scientific and Technical Information (OSTI)

    Author Affiliations Iowa State Univ., Ames, IA (United States) Xiamen Univ., Xiamen (China) Univ. of Science and Technology of China, Hefei (China) Ames Lab., Ames, IA (United...

  3. European Commission Impact Assessment Tools | Open Energy Information

    Open Energy Info (EERE)

    Publications, Softwaremodeling tools User Interface: Other Website: iatools.jrc.ec.europa.eubinviewIQToolWebHome.html IPTS-IA Tools Screenshot References: IPTS-IA Tools1...

  4. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  5. Livermore Lab's giant laser system will bring star power to Earth

    SciTech Connect (OSTI)

    Moses, E

    2010-04-08

    In the 50 years since the laser was first demonstrated in Malibu, California, on May 16, 1960, Lawrence Livermore National Laboratory (LLNL) has been a world leader in laser technology and the home for many of the world's most advanced laser systems. That tradition continues today at LLNL's National Ignition Facility (NIF), the world's most energetic laser system. NIF's completion in March 2009 not only marked the dawn of a new era of scientific research - it could also prove to be the next big step in the quest for a sustainable, carbon-free energy source for the world. NIF consists of 192 laser beams that will focus up to 1.8 million joules of energy on a bb-sized target filled with isotopes of hydrogen - forcing the hydrogen nuclei to collide and fuse in a controlled thermonuclear reaction similar to what happens in the sun and the stars. More energy will be produced by this 'ignition' reaction than the amount of laser energy required to start it. This is the long-sought goal of 'energy gain' that has eluded fusion researchers for more than half a century. Success will be a scientific breakthrough - the first demonstration of fusion ignition in a laboratory setting, duplicating on Earth the processes that power the stars. This impending success could not be achieved without the valuable partnerships forged with other national and international laboratories, private industry and universities. One of the most crucial has been between LLNL and the community in which it resides. Over 155 businesses in the local Tri-Valley area have contributed to the NIF, from industrial technology and engineering firms to tool manufacturing, electrical, storage and supply companies. More than $2.3B has been spent locally between contracts with nearby merchants and employee salaries. The Tri-Valley community has enabled the Laboratory to complete a complex and far-reaching project that will have national and global impact in the future. The first experiments were conducted on NIF last summer and fall, successfully delivering a world-record level of ultraviolet laser energy - more than 1.2 million joules - to a target. The experiments also demonstrated the target drive and target capsule conditions required to achieve fusion ignition. When ignition experiments begin later this year, NIF's lasers will create temperatures and pressures in the hydrogen target that exist only in the cores of stars and giant planets and inside thermonuclear weapons. As a key component of the National Nuclear Security Administration's Stockpile Stewardship Program, NIF will offer the means for sustaining a safe, secure and reliable U.S. nuclear deterrent without nuclear testing. NIF is uniquely capable of providing the experimental data needed to develop and validate computer models that will enable scientists to assess the continuing viability of the nation's nuclear stockpile. Along with this vital national security mission, success at NIF also offers the possibility of groundbreaking scientific discoveries in a wide variety of disciplines ranging from hydrodynamics to astrophysics. As a unique facility in the world that can create the conditions that exist in supernovas and in the cores of giant planets, NIF will help unlock the secrets of the cosmos and inspire the next generation of scientists. It is NIF's third mission, energy security that has been generating the most excitement in the news media and the international scientific community. The reasons are obvious: global energy demand, driven by population growth and the aspirations of the developing world, already is straining the planet's existing energy resources. Global need for electricity is expected to double from its current level of about two trillion watts (TW) to four TW by 2030 and could reach eight to ten TW by the end of the century. As many as 10,000 new billion-watt power plants will have to be built to keep up with this demand. Meeting this pressing need will require a sustainable carbon-free energy technology that can supply base load electricity to the world. Successful ignition experim

  6. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA. Performance at levels greater than those established by this document will provide a higher level of fire safety, fire protection, or loss control and is encouraged. In Section 7, Determination of Baseline Needs, a standard template was used to describe the process used that involves separating basic emergency response needs into nine separate services. Each service being evaluated contains a determination of minimum requirements, an analysis of the requirements, a statement of minimum performance, and finally a summary of the minimum performance. The requirement documents, listed in Section 5, are those laws, regulations, DOE Directives, contractual obligations, or LLNL policies that establish service levels. The determination of minimum requirements section explains the rationale or method used to determine the minimum requirements.

  7. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  8. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  9. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  10. Lawrence Livermore National Laboratory- Completing the Human Genome Project and Triggering Nearly $1 Trillion in U.S. Economic Activity

    SciTech Connect (OSTI)

    Stewart, Jeffrey S.

    2015-07-28

    The success of the Human Genome project is already nearing $1 Trillion dollars of U.S. economic activity. Lawrence Livermore National Laboratory (LLNL) was a co-leader in one of the biggest biological research effort in history, sequencing the Human Genome Project. This ambitious research effort set out to sequence the approximately 3 billion nucleotides in the human genome, an effort many thought was nearly impossible. Deoxyribonucleic acid (DNA) was discovered in 1869, and by 1943 came the discovery that DNA was a molecule that encodes the genetic instructions used in the development and functioning of living organisms and many viruses. To make full use of the information, scientists needed to first sequence the billions of nucleotides to begin linking them to genetic traits and illnesses, and eventually more effective treatments. New medical discoveries and improved agriculture productivity were some of the expected benefits. While the potential benefits were vast, the timeline (over a decade) and cost ($3.8 Billion) exceeded what the private sector would normally attempt, especially when this would only be the first phase toward the path to new discoveries and market opportunities. The Department of Energy believed its best research laboratories could meet this Grand Challenge and soon convinced the National Institute of Health to formally propose the Human Genome project to the federal government. The U.S. government accepted the risk and challenge to potentially create new healthcare and food discoveries that could benefit the world and the U.S. Industry.

  11. Lawrence Livermore National Laboratory Quality Assurance Project Plan for National Emission Standards for Hazardous Air Pollutants (NESHAPs), Subpart H

    SciTech Connect (OSTI)

    Hall, L.; Biermann, A

    2000-06-27

    As a Department of Energy (DOE) Facility whose operations involve the use of radionuclides, Lawrence Livermore National Laboratory (LLNL) is subject to the requirements of 40 CFR 61, the National Emission Standards for Hazardous Air Pollutants (NESHAPs). Subpart H of this Regulation establishes standards for exposure of the public to radionuclides (other than radon) released from DOE Facilities (Federal Register, 1989). These regulations limit the emission of radionuclides to ambient air from DOE facilities (see Section 2.0). Under the NESHAPs Subpart H Regulation (hereafter referred to as NESHAPs), DOE facilities are also required to establish a quality assurance program for radionuclide emission measurements; specific requirements for preparation of a Quality Assurance Program Plan (QAPP) are given in Appendix B, Method 114 of 40 CFR 61. Throughout this QAPP, the specific Quality Assurance Method elements of 40 CFR 61 Subpart H addressed by a given section are identified. In addition, the US Environmental Protection Agency (US EPA) (US EPA, 1994a) published draft requirements for QAPP's prepared in support of programs that develop environmental data. We have incorporated many of the technical elements specified in that document into this QAPP, specifically those identified as relating to measurement and data acquisition; assessment and oversight; and data validation and usability. This QAPP will be evaluated on an annual basis, and updated as appropriate.

  12. Sandia`s network for Supercomputing `94: Linking the Los Alamos, Lawrence Livermore, and Sandia National Laboratories using switched multimegabit data service

    SciTech Connect (OSTI)

    Vahle, M.O.; Gossage, S.A.; Brenkosh, J.P.

    1995-01-01

    Supercomputing `94, a high-performance computing and communications conference, was held November 14th through 18th, 1994 in Washington DC. For the past four years, Sandia National Laboratories has used this conference to showcase and focus its communications and networking endeavors. At the 1994 conference, Sandia built a Switched Multimegabit Data Service (SMDS) network running at 44.736 megabits per second linking its private SMDS network between its facilities in Albuquerque, New Mexico and Livermore, California to the convention center in Washington, D.C. For the show, the network was also extended from Sandia, New Mexico to Los Alamos National Laboratory and from Sandia, California to Lawrence Livermore National Laboratory. This paper documents and describes this network and how it was used at the conference.

  13. Discovering the Nature of Dark Energy: Towards Better Distances from Type

    Office of Scientific and Technical Information (OSTI)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998

  14. Discovery in Action - Pacific Northwest National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ia Supernovae -- Final Technical Report (Technical Report) | SciTech Connect Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the

  15. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  16. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect (OSTI)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  17. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take into account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.

  18. Livermore Interpolation Package

    SciTech Connect (OSTI)

    Fritsch, F. N.

    2011-12-01

    LIP is a library of openly published mathematical algorithms used to assist in 1D and 2D interpolation of discrete tabular data. Example usage includes Equation of State analysis, boundary condition inputs for applications, mesh generation, image manipulation, and host of other applications where discrete data needs to be sampled as a continuous function. The distribution contains a facility for building and testing a library, liblip.a, from which applications may access the various functions that make up LIP.

  19. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    en Sandia California works on nuclear weapon W80-4 Life Extension Program http:www.nnsa.energy.govblogsandia-california-works-nuclear-weapon-w80-4-life-extension-program...

  20. Livermore Metagenomics Analysis Toolkit

    Energy Science and Technology Software Center (OSTI)

    2012-10-01

    LMAT is designed to take as input a collection of raw metagenomic sequencer reads, and search each read against a reference genome database and assign a taxonomic label and confidence value to each read and report a summary of the predicted taxonomic contents of the metagenomic sample.

  1. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships Supplier Resources News Media Contacts Media Library Publications Lab Report Social Media About Organization Management and Sponsors History Visiting Directions...

  2. Livermore Interns Showcase Wares

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiveChat Thurs, 10/20, 2pm ET: Clean Tech Markets LiveChat Thurs, 10/20, 2pm ET: Clean Tech Markets October 17, 2011 - 11:30am Addthis Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs How can I participate? Send an email to newmedia@hq.doe.gov; Tweeting your question to @energy with the hashtag #energymatters; or leaving a question for Kauffman at Facebook.com/energygov. On Energy.gov, we've been showcasing a series of stories about innovations from our National

  3. Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    to bringing the facility on-line smoothly so it will provide the DOE with cost-effective solar power for years to come."

    "We are excited to move to the next phase and bring...

  4. Livermore Interpolation Package

    Energy Science and Technology Software Center (OSTI)

    2011-12-01

    LIP is a library of openly published mathematical algorithms used to assist in 1D and 2D interpolation of discrete tabular data. Example usage includes Equation of State analysis, boundary condition inputs for applications, mesh generation, image manipulation, and host of other applications where discrete data needs to be sampled as a continuous function. The distribution contains a facility for building and testing a library, liblip.a, from which applications may access the various functions that makemore » up LIP.« less

  5. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  6. Lawrence Livermore National Laboratories Perspective on Code Development and High Performance Computing Resources in Support of the National HED/ICF Effort

    SciTech Connect (OSTI)

    Clouse, C. J.; Edwards, M. J.; McCoy, M. G.; Marinak, M. M.; Verdon, C. P.

    2015-07-07

    Through its Advanced Scientific Computing (ASC) and Inertial Confinement Fusion (ICF) code development efforts, Lawrence Livermore National Laboratory (LLNL) provides a world leading numerical simulation capability for the National HED/ICF program in support of the Stockpile Stewardship Program (SSP). In addition the ASC effort provides high performance computing platform capabilities upon which these codes are run. LLNL remains committed to, and will work with, the national HED/ICF program community to help insure numerical simulation needs are met and to make those capabilities available, consistent with programmatic priorities and available resources.

  7. Analysis of natural gases, AL, AR, FL, GA, IL, IN, IA, KY, LA, MD, MI, MS, MO, NJ, NY, NC, OH, PA, TN, VA, and WV; 1951-1991 (for microcomputers). Data file

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The U.S. Bureau of Mines diskette contains analysis and related source data for 2,357 natural gas samples collected from miscellaneous states, which include the following states: Alabama, Arkansas (except Arkoma Basin), Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maryland, Michigan, Mississippi, Missouri, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. All samples were obtained and analyzed as part of the Bureau's investigations of occurrences of helium in natural gases of countries with free market economies. The survey has been conducted since 1917. The analysis contained on the diskette contain the full range of component analysis data. Five files are on the diskette: READ.ME, MISC.TXT, MISC.DBF, USHEANAL.DBF, and BASINCDE.TXT.

  8. Environmental assessment for the demonstration of uranium-atomic vapor laser isotope separation (U-AVLIS) at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy, proposes to use full-scale lasers and separators to demonstrate uranium enrichment as part of the national Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) Program. Demonstration of uranium enrichment is planned to be conducted in Building 490 of the Lawrence Livermore National Laboratory (LLNL), near Livermore, California in 1991 and 1992. The collective goal of the U-AVLIS Program is to develop and demonstrate an integrated technology for low-cost enrichment of uranium for nuclear reactor fuel. Alternatives to the proposed LLNL demonstration activity are no action, use of alternative LLNL facilities, and use of an alternative DOE site. This EA describes the existing LLNL environment and surroundings that could be impacted by the proposed action. Potential impacts to on- site and off-site environments predicted during conduct of the Uranium Demonstration System (UDS) at LLNL and alternative actions are reported in this EA. The analysis covers routine activities and potential accidents. 81 refs., 8 figs., 6 tabs.

  9. Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

  10. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  11. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  12. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  13. Welcome to DOE International

    Broader source: Energy.gov [DOE]

    Welcome to the U.S. Department of Energy’s Office of International Affairs (IA). IA has the primary responsibility for coordinating DOE’s international cooperation in the areas of energy, science, and technology.

  14. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....",0,".",".",".",".",0 2014,1,471,"Amana Society Service Co","IA","Final",177,5,".",".",18... 2014,1,12341,"MidAmerican Energy Co","IA","Final",561054,87577,453,0,64908...

  15. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...3323,".",".",".",".",0 2016,1,471,"Amana Society Service Co","IA","Preliminary",704,180,1,... 2016,1,12341,"MidAmerican Energy Co","IA","Preliminary",571337,90705,646,0...

  16. "Utility Characteristics",,,,,,"Number AMR- Automated Meter Reading...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2242,".",".",".",".",0 2015,1,471,"Amana Society Service Co","IA","Preliminary",516,61,0,0... 2015,1,12341,"MidAmerican Energy Co","IA","Preliminary",565871,89165,618,0...

  17. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,92986.022,1106028.081,427520 471,"Amana Society Service Co","IA",2011,1,86,687,709,83,720...,104340,1293080,483884 12341,"MidAmerican Energy Co","IA",2011,1,45419.941,606535.866,5501...

  18. UTILITY CHARATERISTICS",,,,,,,"RESIDENTIAL",,,"COMMERCIAL",,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...055,1197718.168,433523 2014,1,471,"Amana Society Service Co","IA","Investor ... 2014,1,12341,"MidAmerican Energy Co","IA","Investor Owned","Final",51877.2...

  19. UTILITY CHARACTERISTICS",,,,,,"RESIDENTIAL",,,"COMMERCIAL",,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ....04,1144493.302,434617 2013,1,471,"Amana Society Service Co","IA","Final",70,644,707,69,71... 2013,1,12341,"MidAmerican Energy Co","IA","Final",45501.781,574786.749,556...

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","12312015" ,"Next Release Date:","01292016" ,"Excel File Name:","n3050ia3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn3050ia3m.htm"...

  1. Pioneer Prairie II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  2. Microsoft Word - Map and Directions to UV.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schilletter-University Village (SUV) Iowa State University Ames, IA 50011 Ames Laboratory - Public Affairs 111 TASF Iowa State University Ames, IA 50011-3020 Page 1 515.294.9557 1...

  3. Microsoft Word - Map and Directions to FrCt.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frederiksen Court Housing Iowa State University Ames, IA 50011 Ames Laboratory - Public Affairs 111 TASF Iowa State University Ames, IA 50011-3020 Page 1 515.294.9557 1 Enter Ames...

  4. Pioneer Prairie I (3Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    In Service Owner Horizon Wind Energy Developer Horizon Wind Energy Location Northeastern IA IA Coordinates 43.450321, -92.551074 Show Map Loading map... "minzoom":false,"mappi...

  5. Chapter 17 - Special Contracting Methods | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    June 2008 17.1 - Attachment 2 - OFPP Business Case Guidance 17.1 - Attachment 3A - IA FUNDS OUT Assisted Aquisition Part A 17.1 - Attachment 3A - IA FUNDS OUT Assisted...

  6. NERSC course syllabus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    003: U ser---defined structure constructors; e ncapsulation a nd i nformation h iding v ia m odules a nd private scoping; c omposition, a ggregation, a nd i nheritance v ia...

  7. Office Of International Affairs Expert Listing 2/25/14 Organization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IA-32 European & Asian Pacific Affairs Belgium Nick Sherman 3903 Nick.Sherman@hq.doe.gov Samuel Browne 8724 IA-32 European & Asian Pacific Affairs Bhutan Nick Sherman 3903 ...

  8. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 percent. The key is a special type of Type Ia supernovae. Type Ia supernovae are thermonuclear explosions of white dwarfs - the very dense remnants of stars that have burned all...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... TYPE Ia SUPERNOVAE AS A POSSIBLE SYSTEMATIC UNCERTAINTY FOR SUPERNOVA COSMOLOGY ... We find that changing the UV SED of an SN Ia within the observed dispersion can change the ...

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    File Name:","n3020ia2m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn3020ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help,...

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    File Name:","n3020ia4m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn3020ia4m.htm" ,"Source:","Energy Information Administration" ,"For Help,...

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    File Name:","n3020ia3m.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghistn3020ia3m.htm" ,"Source:","Energy Information Administration" ,"For Help,...

  13. Draft Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2004-02-27

    This ''Site-wide Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory and Supplemental Stockpile Stewardship and Management Programmatic Environmental Impact Statement'' (LLNL SW/SPEIS) describes the purpose and need for agency action for the continued operation of LLNL and analyzes the environmental impacts of these operations. The primary purpose of continuing operation of LLNL is to provide support for the National Nuclear Security Administration's (NNSA's) nuclear weapons stockpile stewardship missions. LLNL, located about 40 miles east of San Francisco, California, is also needed to support other U.S. Department of Energy (DOE) programs and Federal agencies such as the U.S. Department of Defense, Nuclear Regulatory Commission, U.S. Environmental Protection Agency (EPA), and the newly established U.S. Department of Homeland Security. This LLNL SW/SPEIS analyzes the environmental impacts of reasonable alternatives for ongoing and foreseeable future operations, facilities, and activities at LLNL. The reasonable alternatives include the No Action Alternative, Proposed Action, and the Reduced Operation Alternative. The major decision to be made by DOE/NNSA is to select one of the alternatives for the continued operation of the LLNL. As part of the Proposed Action, DOE/NNSA is considering: using additional materials including plutonium on the National Ignition Facility (NIF); increasing the administrative limit for plutonium in the Superblock, which includes the Plutonium Facility, the Tritium Facility, and the Hardened Engineering Test Building; conducting the Integrated Technology Project, using laser isotope separation to provide material for Stockpile Stewardship experiments, in the Plutonium Facility; increasing the material-at-risk limit for the Plutonium Facility; and increasing the Tritium Facility material-at-risk. A discussion of these issues is presented in Section S.5.2, Proposed Action. The ''National Environmental Policy Act'' (NEPA) establishes environmental policy, sets goals, and provides means for implementing the policy. NEPA contains provisions to ensure that Federal agencies adhere to the letter and spirit of the Act. The key provision requires preparation of an environmental impact statement on ''major Federal actions significantly affecting the quality of the human environment'' (40 ''Code of Federal Regulations'' [CFR] {section}1502.3). NEPA ensures that environmental information is available to public officials and citizens before decisions are made and actions are taken (40 CFR {section}1500.1[b]). DOE has a policy to prepare sitewide environmental impact statements documents for certain large, multiple-facility sites such as LLNL (10 CFR {section}1021.330). In August 1992, DOE released the ''Final Environmental Impact Statement and Environmental Impact Report for Continued Operations of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore'' (LLNL EIS/EIR). A Record of Decision (ROD) (58 ''Federal Register'' [FR] 6268) was issued in January 1993. With the passage of more than 10 years since the publication of the 1992 LLNL EIS/EIR (DOE/EIS-0157) and because of proposed modifications to existing projects and new programs, NNSA determined that it was appropriate to prepare a new LLNL SW/SPEIS.

  14. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect (OSTI)

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  15. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

  16. Lawrence Livermore National Laboratory Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.M. Di Nicola, Shamasundar Dixit, Gaylen Erbert, James Folta, John Heebner, Mark Henesian, Mark Hermann, Kenneth Jancaitis, Kai LaFortune, Lawrence Lagin, Douglas Larson, ...

  17. Santer of Lawrence Livermore National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 612011 6.28 Human Effects on Global Warming By themselves, droplets of sulfuric acid resulting from the burning of fossil fuels are of little consequence. But vast numbers of ...

  18. Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  19. Lawrence Livermore National Security, LLC

    DOE Patents [OSTI]

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  20. Lawrence Livermore and Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bechtel National, the University of California, BWX Technologies, URS and Battelle. The team also includes Texas A&M University. LANS operates Los Alamos National Laboratory, a...

  1. Chapter 17 - Special Contracting Methods | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 - Special Contracting Methods Chapter 17 - Special Contracting Methods 17.1 - Attachment 1 - OFPP Guidance Interagence Acquisitions June 2008 17.1 - Attachment 2 - OFPP Business Case Guidance 17.1 - Attachment 3A - IA FUNDS OUT Assisted Aquisition Part A 17.1 - Attachment 3A - IA FUNDS OUT Assisted Aquisition Part B 17.1 - Attachment 3B - IA FUNDS OUT Interagency Transaction Part A 17.1 - Attachment 3B - IA FUNDS OUT Interagency Transaction Part B 17.1 - Attachment 3C - IA STRIPES Cover form

  2. Inhibiting voltage suppression in lithium/fluorinated carbon batteries

    SciTech Connect (OSTI)

    Shia, G.A.; Nalewajek, D.; Pyszczek, M.F.

    1988-12-13

    This patent describes a lithium/fluorinated carbon battery having a reduced initial voltage suppression which comprises the incorporation in the battery cathode of fluorinated carbon which has been reacted with a compound selected from the group consisting of a Group IA metal-alkyl compound and a Group IA metal-aryl compound, which Group IA metal-aryl compound has at least 10 carbon atoms, until surface fluorine on the fluorinated carbon has been stripped and alkyl or aryl groups from the Group IA metal-alkyl compound or Group IA metal-aryl compound are substituted for surface fluorine atoms.

  3. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

  4. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  5. About Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Us About Us IA has the primary responsibility for coordinating the efforts of diverse elements in the Department to ensure a unified voice in our international energy policy. IA works closely with Departmental elements, other Federal agencies, national and international organizations and institutions, and the private sector to coordinate and align our international energy activities with our national energy policies. IA coordinates DOE international initiatives on clean energy, climate change,

  6. IBEW Local 1002 | Department of Energy

    Energy Savers [EERE]

    IA Experts Listing 2014 IA Experts Listing 2014 PDF icon IA Experts Listing January 2014 More Documents & Publications Office of International Affairs Organization Chart PI Organization Chart Office of Policy and International Affairs Organization Chart

    IAPMO/PMI CCE Overview and Update IAPMO/PMI CCE Overview and Update This presentation was given in a webinar hosted by IAMPO and PMI on June 24, 2011. It addresses the certification and compliance provisions for plumbing products covered

  7. OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING

    Office of Scientific and Technical Information (OSTI)

    SNe Ia AND ESTIMATING THEIR REDSHIFTS (Journal Article) | SciTech Connect OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS Citation Details In-Document Search Title: OPTICAL CROSS-CORRELATION FILTERS: AN ECONOMICAL APPROACH FOR IDENTIFYING SNe Ia AND ESTIMATING THEIR REDSHIFTS Large photometric surveys of transient phenomena, such as Panoramic Survey Telescope and Rapid Response System and Large Synoptic Survey Telescope, will

  8. Logs of wells and boreholes drilled during hydrogeologic studies at Lawrence Livermore National Laboratory Site 300, January 1, 1982--June 30, 1988: January 1, 1982 through June 30, 1988

    SciTech Connect (OSTI)

    Toney, K.C.; Crow, N.B.

    1988-01-01

    We present the hydrogeologic well logs for monitor wells and exploratory boreholes drilled at Lawrence Livermore National Laboratory (LLNL) Site 300 between the beginning of environmental investigations in June 1982 and the end of June 1988. These wells and boreholes were drilled as part of studies made to determine the horizontal and vertical distribution of volatile organic compounds (VOCs), high explosive (HE) compounds, and tritium in soil, rock, and ground water at Site 300. The well logs for 293 installations comprise the bulk of this report. We have prepared summaries of Site 300 geology and project history that provide a context for the well logs. Many of the logs in this report have also been published in previous topical reports, but they are nevertheless included in order to make this report a complete record of the wells and boreholes drilled prior to July 1988. A commercially available computer program, LOGGER has been used since late 1985 to generate these logs. This report presents details of the software programs and the hardware used. We are presently completing a project to devise a computer-aided design (CAD) system to produce hydrogeologic cross sections and fence diagrams, utilizing the digitized form of these logs. We find that our system produces publication-quality well and exploratory borehole logs at a lower cost than that of logs drafted by traditional methods.

  9. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  10. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  11. Consumer Choice of E85: Lessons from Minnesota's Experience

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ND Fleet MN State IA State ND State The Minnesota data was previously analyzed by Greene ... gallon equivalent Using data from Minnesota through 2007, Greene (2009) found price ...

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The Physics and Astrophysics of Type Ia Supernova Explosions Guidry, Mike W ; Messer, Bronson January 2013 Developing MiniApps on Modern Platforms Using Using Multiple Programming ...

  13. Expectations for the hard x-ray continuum and gamma-ray line fluxes from

    Office of Scientific and Technical Information (OSTI)

    the typE IA supernova SN 2014J in M82 (Journal Article) | SciTech Connect Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 Citation Details In-Document Search Title: Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82 The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass

  14. Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curves (Journal Article) | SciTech Connect Journal Article: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves Citation Details In-Document Search Title: Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski

  15. 2014 Annual Site Environmental Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a noxious weed. Populations of diffuse knapweed (Acosta diffusa) and Dalmatian toadflax (Linar- ia genistifolia subsp. dalmatica) are scattered through- out the whole community. ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... Filter Results Filter by Subject impervious surface (1) prior-knowledge (1) spectral ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... These assessments of model performance, as well as our knowledge of cloud and aerosol ...

  18. From: Pam Hartwig To: Congestion Study Comments Subject:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT be an established National Corridor. In other words: DO NOT ESTABLISH ANY NATIONAL INTERST ENERGY TRANSMISSION CORRIDOR Pam Hartwig 1076 Virginia Ave Bennett Ia 52721

  19. Platinum Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  20. Permanent-Magnet Adjustable-Speed Motors John S . Hsu (Htsui...

    Office of Scientific and Technical Information (OSTI)

    cogging torque, and inertia and mechanical system torque. ... currents can be adjusted to change ia, ib, and ic. ... "Investigation into A Class of Brushless DC Motor with ...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... financiers, and supply chain participants, to identify barriers and opportunities. ...

  2. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Name: Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: ... ; Schlagel, D. L. ; Lograsso, T. A. ; Iowa State Univ., Ames, IA ; Chakrabarti, ...

  3. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature ...

  4. Discovering the Nature of Dark Energy: Towards Better Distances...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report Citation Details In-Document Search Title: Discovering the Nature of Dark ...

  5. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Citation Details In-Document Search Title: Final Technical Report: Discovering the Nature of Dark ...

  6. Top of Iowa III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Owner Madison Gas & Electric Developer Midwest Renewable Energy Projects Energy Purchaser Madison Gas & Electric Location Worth County IA...

  7. Top of Iowa Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Commercial Scale Wind Facility Status In Service Developer Zilkha RenewableMidwest Renewable Energy Purchaser AlliantIES Utilities Location Worth County IA Coordinates...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Energy Physics (HEP) (SC-25)","79 ASTRONOMY AND ASTROPHYSICS Dark Energy, Type Ia supernovae, radiative transfer,",,"The progress over the course of the grant period was...

  9. Final Technical Report: Discovering the Nature of Dark Energy...

    Office of Scientific and Technical Information (OSTI)

    Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae Saurabh W. Jha 79 ASTRONOMY AND ASTROPHYSICS dark energy; supernovae; cosmology dark...

  10. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Report Discovering the Nature of Dark Energy Towards Better Distances from Type Ia Supernovae Saurabh W Jha ASTRONOMY AND ASTROPHYSICS dark energy supernovae cosmology dark...

  11. Metals on graphene: correlation between adatom adsorption behavior...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Physical Chemistry Chemical Physics; Journal Volume: 14 Research Org: Ames Laboratory (AMES), Ames, IA (United...

  12. Co-benefits Evaluation Tools | Open Energy Information

    Open Energy Info (EERE)

    Interface: Spreadsheet ComplexityEase of Use: Simple Website: tools.ias.unu.edu Cost: Free Related Tools Simplified Approach for Estimating Impacts of Electricity Generation...

  13. Search for: kondo effect | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two ...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... Metal-metal bonding is used to explain such 'abnormal' behaviour and a generalized ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (IA) (United States) USDOE Office of Management and Administration (United States) ... is paramount to optimising their behaviour and function and in situ ...

  16. Victory Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Invenergy Energy Purchaser MidAmerican Energy Location Carroll and Crawford Counties IA Coordinates 42.144715, -95.138183 Show Map Loading map... "minzoom":false,"mappings...

  17. Eclipse | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Adair IA Coordinates 41.53604897, -94.65567112 Show Map Loading map... "minzoom":false,"mapp...

  18. Clarion-Goldfield School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Clarion-Goldfield High School Location Wright County IA Coordinates 42.737179, -93.718132 Show Map Loading map... "minzoom":false,"mappings...

  19. Contractor Past Performance Information

    Broader source: Energy.gov (indexed) [DOE]

    a. Part A. b. Part B. 2. Interagency agreement format and samples. a. STRIPES IA funds out templates for interagency assisted acquisitions and interagency transactions....

  20. Roeder Farms | Open Energy Information

    Open Energy Info (EERE)

    Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Des Moines IA Coordinates 43.29729211, -93.28315258 Show Map Loading map... "minzoom":false,"mapp...

  1. Akron-Westfield School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Comm. Schools Energy Purchaser AlliantIES Utilities Location Akron-Westfield IA Coordinates 42.7859, -96.5836 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Hardin-Hilltop Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Community wind Developer Community wind Energy Purchaser Alliant Location Greene County IA Coordinates 42.086204, -94.349999 Show Map Loading map... "minzoom":false,"mappings...

  3. Midland Power Coop | Open Energy Information

    Open Energy Info (EERE)

    search Name: Midland Power Coop Address: 1005 E. Lincoln Way Place: Jefferson, IA Zip: 50129 Phone Number: 1-515-386-4111 Facebook: https:www.facebook.commidlandpower...

  4. Laurel | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Haverhill IA Coordinates 41.89096884, -92.97214508 Show Map Loading map... "minzoom":false,"mapp...

  5. Morning Light | Open Energy Information

    Open Energy Info (EERE)

    Clipper Windpower Development Company Energy Purchaser MidAmerican Energy Location Casey IA Coordinates 41.44819506, -94.58280087 Show Map Loading map... "minzoom":false,"mapp...

  6. AL2007-03.doc

    Broader source: Energy.gov (indexed) [DOE]

    from GAO and Inspector General (IG) reports of other federal agencies. Introduction The IA relationship involves two Federal agencies that enter into a relationship for the...

  7. Story County Wind Project II | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Developer NextEra Energy Resources Location Story & Hardin Counties IA Coordinates 42.301351, -93.45156 Show Map Loading map... "minzoom":false,"mappingse...

  8. Forest City High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    High School Energy Purchaser Forest City Community School District Location Forest City IA Coordinates 43.266011, -93.653378 Show Map Loading map... "minzoom":false,"mappings...

  9. Endeavor (3Q07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Energy Purchaser AlliantIES Utilities Location Osceola and Dickenson Counties IA Coordinates 43.416841, -95.423477 Show Map Loading map... "minzoom":false,"mappings...

  10. Endeavor (3Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Developer NextEra Energy Resources Location Osceola and Dickenson Counties IA Coordinates 43.432497, -95.452752 Show Map Loading map... "minzoom":false,"mappings...

  11. Neppel Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Developer Alliant Energy Energy Purchaser AlliantIES Utilities Location Armstrong IA Coordinates 43.402001, -94.578989 Show Map Loading map... "minzoom":false,"mappings...

  12. Iowa Distributed Wind Generation Project | Open Energy Information

    Open Energy Info (EERE)

    Energy Purchaser Consortium -- Cedar Falls leads with 23 ownership Location Algona IA Coordinates 43.0691, -94.2255 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Winnebago I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Iberdrola Renewables Energy Purchaser Dairyland Power Location Winnebago County IA Coordinates 43.317944, -93.761537 Show Map Loading map... "minzoom":false,"mappings...

  14. Bulldog | Open Energy Information

    Open Energy Info (EERE)

    Bulldog LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.22708706, -94.43487167 Show Map Loading map... "minzoom":false,"mapp...

  15. Wolverine | Open Energy Information

    Open Energy Info (EERE)

    Wolverine LLC Energy Purchaser Farmers' Cooperative of Greenfield Location Greenfield IA Coordinates 41.39310112, -94.44487095 Show Map Loading map... "minzoom":false,"mapp...

  16. Pocahontas Prairie | Open Energy Information

    Open Energy Info (EERE)

    Owner Algonquin Power Developer Gamesa Energy Purchaser Merchant Location Pomeroy IA Coordinates 42.62183365, -94.6978569 Show Map Loading map... "minzoom":false,"mappi...

  17. Sibley Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Northern Alternative Energy Energy Purchaser AlliantIES Utilities Location Sibley IA Coordinates 43.4037, -95.7417 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Eldora-New Providence Schools Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Schools Energy Purchaser Eldora - New Providence Schools Location Hardin County IA Coordinates 42.3794, -93.2497 Show Map Loading map... "minzoom":false,"mappingservi...

  19. Pioneer Grove | Open Energy Information

    Open Energy Info (EERE)

    Acciona Energy Energy Purchaser Central Iowa Power Cooperative Location Mechanicsville IA Coordinates 41.85086289, -91.23407364 Show Map Loading map... "minzoom":false,"mapp...

  20. Little Cedar | Open Energy Information

    Open Energy Info (EERE)

    Developer Paul Roeder Energy Purchaser Dairyland Power Cooperative Location Little Cedar IA Coordinates 43.3858262, -92.7595209 Show Map Loading map... "minzoom":false,"mappin...

  1. Waverly III Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Waverly Light & Power Energy Purchaser Waverly Light & Power Location Waverly IA Coordinates 42.7241, -92.4786 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Nevada High School Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Windpower Energy Purchaser AlliantIES Utilities Location NV - Story County IA Coordinates 42.020791, -93.435997 Show Map Loading map... "minzoom":false,"mappings...

  3. http://emdev.apps.em.doe.gov/EMDEV/Pages/groundwaterReport.aspx

    Office of Environmental Management (EM)

    DOE-LM since 2005, long-term monitoring and surveillance with institutional controls. IA plume is actually a collection of several small VOC plumes grouped together for...

  4. Zachary Ridge/LJ Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser AlliantIES Utilities Location Osceola County near Sibley IA Coordinates 43.4037, -95.7417 Show Map Loading map... "minzoom":false,"mappingservi...

  5. Wind Walkers | Open Energy Information

    Open Energy Info (EERE)

    Partners Developer 5045 Wind Partners Energy Purchaser Alliant Energy Location Waukon IA Coordinates 43.2655101, -91.4863848 Show Map Loading map... "minzoom":false,"mappin...

  6. Intrepid Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Energy Energy Purchaser MidAmerican Energy Location Buena Vista & Sac Counties IA Coordinates 42.483311, -95.308807 Show Map Loading map... "minzoom":false,"mappings...

  7. Endeavor (2Q08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Energy Purchaser AlliantIES Utilities Location Osceola and Dickenson Counties IA Coordinates 43.427012, -95.414987 Show Map Loading map... "minzoom":false,"mappings...

  8. Clay Central Everly School Dist Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Everly School District Energy Purchaser Clay CentralEverly School District Location IA Coordinates 43.1392, -95.2644 Show Map Loading map... "minzoom":false,"mappingservi...

  9. I

    Office of Legacy Management (LM)

    Ilt.hll8dpOPItWiStObO comended for the file job of decantmain8 the l8ttm qeed ia the operation, ,...

  10. Iowa Lakes Community College Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Community College Energy Purchaser Iowa Lakes Community College Location Esterville IA Coordinates 43.397912, -94.81768 Show Map Loading map... "minzoom":false,"mappingse...

  11. Top of Iowa II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Worth County IA Coordinates 43.361088, -93.294282 Show Map Loading map... "minzoom":false,"mappings...

  12. Marshalltown Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Consumers Energy Energy Purchaser Consumers Energy Location Marshalltown IA Coordinates 42.0518, -92.9079 Show Map Loading map... "minzoom":false,"mappingservi...

  13. Iowa Office of Energy Independence | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Iowa Office of Energy Independence Place: Des Moines, Iowa Zip: IA 50319 Product: In 2007, Governor Culver and the Iowa State Legislature created the...

  14. Doug Robinson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Scientist, Microelectronics Research Center, Iowa State University, Ames, IA Ph.D. Condensed Matter Physics, University of Illinois, Urbana, Illinois; 1983 M.S....

  15. Meadow Ridge | Open Energy Information

    Open Energy Info (EERE)

    (community owned) Energy Purchaser Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.39004255, -94.44637299 Show Map Loading map... "minzoom":false,"mapp...

  16. KTFC Midwest Bible Radio Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Owner KTFC Midwest Bible Radio Energy Purchaser KTFC Midwest Bible Radio Location IA Coordinates 42.4837, -96.3068 Show Map Loading map... "minzoom":false,"mappingservi...

  17. Cumberland Rose | Open Energy Information

    Open Energy Info (EERE)

    Purchaser City of Fontanelle - excess to Central Iowa Power Coopeative Location Orient IA Coordinates 41.22534409, -94.44139481 Show Map Loading map... "minzoom":false,"mapp...

  18. Kirkwood Community College | Open Energy Information

    Open Energy Info (EERE)

    Kirkwood Community College Energy Purchaser Alliant Energy Location Cedar Rapids IA Coordinates 41.91674479, -91.65078163 Show Map Loading map... "minzoom":false,"mapp...

  19. Sibley Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Northern Alternative Energy Energy Purchaser AlliantIES Utilities Location Sibley IA Coordinates 43.4037, -95.7417 Show Map Loading map... "minzoom":false,"mappingservi...

  20. Spirit Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Windpower Energy Purchaser AlliantIES Utilities Location Spirit Lake IA Coordinates 43.411381, -95.10075 Show Map Loading map... "minzoom":false,"mappingse...

  1. Stuart Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stuart Municipal Utilities Energy Purchaser Stuart Municipal Utilities Location Stuart IA Coordinates 41.493988, -94.327403 Show Map Loading map... "minzoom":false,"mappings...

  2. New Harvest | Open Energy Information

    Open Energy Info (EERE)

    Iberdrola Renewables Energy Purchaser ComEd and Ameren Illinois Location Schleswig IA Coordinates 42.16197194, -95.44696569 Show Map Loading map... "minzoom":false,"mapp...

  3. Consumers 2 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Developer Consumers Energy Energy Purchaser Consumers Energy Location Marshalltown IA Coordinates 42.0518, -92.9079 Show Map Loading map... "minzoom":false,"mappingservi...

  4. Vienna | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Marshalltown IA Coordinates 42.159909, -92.779639 Show Map Loading map... "minzoom":false,"mappings...

  5. Endeavor II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Resources Developer NextEra Energy Resources Location Osceola and Dickenson Counties IA Coordinates 43.427012, -95.414987 Show Map Loading map... "minzoom":false,"mappings...

  6. AG Land 6 | Open Energy Information

    Open Energy Info (EERE)

    LLC Developer Enervation LLC Energy Purchaser Alliant Energy Location Hamilton County IA Coordinates 42.335536, -93.632344 Show Map Loading map... "minzoom":false,"mappings...

  7. Barton Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Renewables Developer Iberdrola Renewables Energy Purchaser NIPSCO Location Worth County IA Coordinates 43.365893, -93.095412 Show Map Loading map... "minzoom":false,"mappings...

  8. Waverly Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    & Power Developer GE Energy Energy Purchaser Waverly Light & Power Location Waverly IA Coordinates 42.7241, -92.4786 Show Map Loading map... "minzoom":false,"mappingservi...

  9. IDGWP Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Iowa Distributed Wind Generation Project Energy Purchaser Cedar Falls Location Algona IA Coordinates 43.0699663, -94.233019 Show Map Loading map... "minzoom":false,"mapping...

  10. Energy Efficiency Standard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pending approval Other EE Program Info Sector Name State Website http:www.state.ia.usgovernmentcomutilenergyenergyefficiency.html State Iowa Program Type Energy...

  11. Elk | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Greeley IA Coordinates 42.58659755, -91.36861324 Show Map Loading map... "minzoom":false,"mapp...

  12. Lenox Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lenox Municipal Utilities Energy Purchaser Lenox Municipal Utilities Location Lenox IA Coordinates 40.880592, -94.559029 Show Map Loading map... "minzoom":false,"mappings...

  13. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  14. Carsten Farms | Open Energy Information

    Open Energy Info (EERE)

    energy Facility Type Commercial Scale Wind Facility Status In Service Location Shelby IA Coordinates 41.4013022, -94.60524023 Show Map Loading map... "minzoom":false,"mappi...

  15. Spirit Lake II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lake School District Energy Purchaser Spirit Lake School District Location Spirit Lake IA Coordinates 43.411412, -95.09914 Show Map Loading map... "minzoom":false,"mappingse...

  16. Rippey | Open Energy Information

    Open Energy Info (EERE)

    Access Wind Development Energy Purchaser Central Iowa Power Cooperative Location Rippey IA Coordinates 41.9963704, -94.19471741 Show Map Loading map... "minzoom":false,"mappi...

  17. Waverly, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Iowa: Energy Resources (Redirected from Waverly, IA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7272032, -92.4668511 Show Map Loading map......

  18. Forward Fontanelle | Open Energy Information

    Open Energy Info (EERE)

    City of Fontanelle - excess to Central Iowa Power Coopeative Location Fontanelle IA Coordinates 41.33958763, -94.5707202 Show Map Loading map... "minzoom":false,"mappi...

  19. Waverly Light and Power | Open Energy Information

    Open Energy Info (EERE)

    and Power Jump to: navigation, search Name: Waverly Light and Power Place: Waverly, IA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other...

  20. New London | Open Energy Information

    Open Energy Info (EERE)

    Scale Wind Facility Status In Service Developer Shermco Industries Location New London IA Coordinates 40.95478446, -91.39509201 Show Map Loading map... "minzoom":false,"mapp...