Sample records for livermore ca 94550-9234

  1. EIS-0028: Lawrence Livermore National Laboratory and Sandia National Laboratories- Livermore Sites, Livermore, CA

    Broader source: Energy.gov [DOE]

    The statement assesses the potential impacts associated with current operation of the Lawrence Livermore National Laboratory and Sandia National Laboratories , Livermore, adjacent sites. This includes the impacts from postulated accidents associated with the activities. Various effluents including radioactive ones are released to the environment. However, a continuing comprehensive monitoring program is carried out to assist in the control of hazardous effluents. Alternatives considered to current operation of the laboratories include: (1) shutdown and decommissioning, (2) total or partial relocation, (3) scaling down those operations having greatest impact , and (4) wider use of alternate technologies having reduced impact .

  2. Livermore Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Livermore Field Office Livermore Field Office FY15 Semi Annual Report FY14 Year...

  3. TQP Qualifying Official Training Approaches - Livermore Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TQP Qualifying Official Training Approaches - Livermore Site Office TQP Qualifying Official Training Approaches - Livermore Site Office A QO is an individual who has the technical...

  4. Analysis Activities at Lawrence Livermore National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on Lawrence Livermore’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  5. Independent Oversight Inspection, Lawrence Livermore National Laboratory- February 2009

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  6. Independent Oversight Inspection, Lawrence Livermore National Laboratory- June 2005

    Broader source: Energy.gov [DOE]

    Inspection of Emergency Management at the Livermore Site Office and Lawrence Livermore National Laboratory

  7. DOE Selects Lawrence Livermore National Security, LLC to Manage...

    Office of Environmental Management (EM)

    and operating contractor for DOE's National Nuclear Security Administration's (NNSA) Lawrence Livermore National Laboratory in California. "Livermore National Laboratory...

  8. Ca

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P O. Box 3090 Ca rlsbad, New Mexico 88221 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau MAY 1 6 2012 New Mexico Environment Department 2905 E. Rodeo Park Drive,...

  9. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  10. Consent Order, Lawrence Livermore National National Security...

    Energy Savers [EERE]

    for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE)...

  11. Preliminary Notice of Violation, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    to the Unplanned Personnel Contaminations and Radioactive Material Intakes at the Hazardous Waste Management Facilities at the Lawrence Livermore National Laboratory,...

  12. Sandia National Laboratories: Livermore Valley Open Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Livermore Valley Open Campus Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation On August 28, 2013, in Center for Infrastructure...

  13. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    controls have been implemented to reduce the risk associated with events resulting from a fire or explosion at nuclear facilities. Independent Oversight Review, Lawrence Livermore...

  14. Independent Activity Report, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    technicians, and the Alameda County Fire Department to a fire in a fume hood containing a depleted uranium part. Independent Activity Report, Lawrence Livermore National Laboratory...

  15. Lessons Learned by Lawrence Livermore National Laboratory Activity...

    Energy Savers [EERE]

    Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work...

  16. 2014 Annual Workforce Analysis and Staffing Plan Report - Livermore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Livermore Field Office 2014 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office Managers perform an annual workforce analysis of their organization and...

  17. 2012 Annual Workforce Analysis and Staffing Plan Report - Livermore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office 2012 Annual Workforce Analysis and Staffing Plan Report - Livermore Field Office Managers perform an...

  18. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1987-12-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  19. UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY

    E-Print Network [OSTI]

    . WorkperformedundertheauspicesoftheU.S.DepartmentofEnergybyLawrenceLivermoreNationalLaboratoryunder Contract W-7405-Eng-48. #12

  20. Independent Oversight Inspection, Lawrence Livermore National Laboratory- May 2007

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Programs at the Lawrence Livermore National Laboratory

  1. Independent Oversight Review, Lawrence Livermore National Laboratory- September 2011

    Broader source: Energy.gov [DOE]

    Review of Integrated Safety Management System Effectiveness at Lawrence Livermore National Laboratory

  2. Site Visit Report, Lawrence Livermore National Laboratory- March 2010

    Broader source: Energy.gov [DOE]

    Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages

  3. Sandia National Laboratories: Locations: Livermore, California: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS TopLivermore Livermore

  4. Voluntary Protection Program Onsite Review, Livermore Operations- January 2012

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Livermore Operations is continuing to perform at a level deserving DOE-VPP Star recognition.

  5. Geothermal programs at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kasameyer, P.W.; Younker, L.W.

    1987-07-10T23:59:59.000Z

    Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

  6. Lawrence Livermore National Laboratory Summer Employment Summary

    SciTech Connect (OSTI)

    Wilson, A J

    2002-08-06T23:59:59.000Z

    This document will serve as a summary of my work activities as a summer employee for the Lawrence Livermore National Laboratory (LLNL). The intent of this document is to provide an overview of the National Ignition Facility (NIF) project, to explain the role of the department that I am working for, and to discuss my specific assigned tasks and their impact on the NIF project as a whole.

  7. Lawrence Livermore National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrence Livermore

  8. Lawrence Livermore National Laboratory, P. O. Box

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy LastLawrence Livermore National

  9. Livermore Contract Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | DepartmentComputing Center |ListLivermore

  10. National Nuclear Security Administration Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| NationalryLawrence Livermore

  11. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  12. Independent Oversight Review of the Lawrence Livermore National...

    Energy Savers [EERE]

    Laboratory's health services and to conduct an Accreditation Association of Ambulatory Health Care accreditation survey. Independent Oversight Review of the Lawrence Livermore...

  13. Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...

    National Nuclear Security Administration (NNSA)

    manufacturing * Special nuclear materials-plutonium and tritium * High performance computing FY2015 Ten Year Site Plan Limited Report Page 3 of 6 Lawrence Livermore...

  14. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing cluster is available for collaborative projects with industry through...

  15. Five Livermore and LANL Scientists Named "Most Influential Scientific...

    National Nuclear Security Administration (NNSA)

    Five Livermore and LANL Scientists Named "Most Influential Scientific Minds" | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

  16. Pressure safety program Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Borzileri, C.; Traini, M.

    1992-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  17. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25T23:59:59.000Z

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  18. Lawrence Livermore National Laboratory Environmental Report 2010

    SciTech Connect (OSTI)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14T23:59:59.000Z

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses System International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary.

  19. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  20. 1Option:UCRL#! Option:Additional Information! Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Kaiser, Ralf I.

    :Additional Information! Lawrence Livermore National Laboratory We replicate sound speeds for N2 for pressures to 25 kbars Laboratory We also replicate sound speed data for CH4 to 35 kbars and isotherms for CO2 to 10 kbars #12, SiO2, Fe3O4, CaCO3, Ni (solid, liquid), Al2SiO5, AlN (b1-solid, b4-solid), NiO, Al6O13Si2, FeS2, Si

  1. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Summary Report- July 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Lawrence Livermore National Laboratory

  2. Independent Oversight Inspection, Lawrence Livermore National Laboratory, Volume I- December 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory

  3. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops:Livermore:Livermore:

  4. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  5. Inspection Report "Personal Property Management at Lawrence Livermore National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-05-01T23:59:59.000Z

    The Department of Energy's (DOE's) Lawrence Livermore National Laboratory (Livermore) is a premier research and development institution for science and technology supporting the core mission of national security. According to Livermore, as of November 2008 the Laboratory managed 64,933 items of Government personal property valued at about $1 billion. At the beginning of Fiscal Year 2008, Livermore reported 249 DOE property items valued at about $1.3 million that were missing, unaccounted for, or stolen during Fiscal Year 2007. Livermore centrally tracks property utilizing the Sunflower Assets system (Sunflower), which reflects the cradle to grave history of each property item. Changes in the custodianship and/or location of a property item must be timely reported by the custodian to the respective property center representative for updating in Sunflower. In Fiscal Year 2008, over 2,000 individuals were terminated as a result of workforce reduction at Livermore, of which about 750 received a final notification of termination on the same day that they were required to depart the facility. All of these terminations potentially necessitated updates to the property database, but the involuntary terminations had the potential to pose particular challenges because of the immediacy of individuals departures. The objective of our inspection was to evaluate the adequacy of Livermore's internal controls over Government property. Based upon the results of our preliminary field work, we particularly focused on personal property assigned to terminated individuals and stolen laptop computers. We concluded that Livermore's internal controls over property could be improved, which could help to reduce the number of missing, unaccounted for, or stolen property items. Specifically, we found that: (1) The location and/or custodian of approximately 18 percent of the property items in our sample, which was drawn from the property assigned to individuals terminated on short notice in 2008, was inaccurately reflected in Sunflower. The data in this system is relied upon for tracking purposes, so inaccurate entries could increase the probability of property not being located during inventories and, thus, being reported as 'lost' or 'missing'. We believe that providing formal training to property custodians, which was not being done at the time of our inspection, could help improve this situation. (2) Some property custodians were not adequately protecting their Government laptop computers when taking them offsite, and they were not held accountable for the subsequent theft of the laptops. We made several recommendations to management intended to improve property controls at Livermore.

  6. Precision and manufacturing at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Saito, T.T.; Wasley, R.J.; Stowers, I.F.; Donaldson, R.R.; Thompson, D.C.

    1993-11-01T23:59:59.000Z

    Precision Engineering is one of Lawrence Livermore National Laboratory`s core strengths. This paper discusses the past and present current technology transfer efforts of LLNL`s Precision Engineering program and the Livermore Center for Advanced Manufacturing and Productivity (LCAMP). More than a year ago the Precision Machining Commercialization project embodied several successful methods of transferring high technology from the National Laboratories to industry. Currently LCAMP has already demonstrated successful technology transfer and is involved in a broad spectrum of current programs. In addition this paper discusses other technologies ripe for future transition including the Large Optics Diamond Turning Machine.

  7. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS TopLivermore Livermore Housing

  8. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  9. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04T23:59:59.000Z

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  10. Bibliography of Yucca Mountain Project (YMP) publications at Lawrence Livermore National Laboratory, September 1977--March 1997

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report consists of a listing of Lawrence Livermore National Laboratory`s research items on the Yucca Mountain Project.

  11. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  12. Lawrence Livermore National Laboratory environmental report for 1990

    SciTech Connect (OSTI)

    Sims, J.M.; Surano, K.A.; Lamson, K.C.; Balke, B.K.; Steenhoven, J.C.; Schwoegler, D.R. (eds.)

    1990-01-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs.

  13. The Computation Directorate at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Cook, L

    2006-09-07T23:59:59.000Z

    The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

  14. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21T23:59:59.000Z

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  15. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops:Livermore:

  16. Electroplating waste minimization at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dini, J.W.; Steffani, C.P.

    1992-04-01T23:59:59.000Z

    This paper describes efforts on waste minimization in the electroplating facility at Lawrence Livermore National Laboratory (LLNL). Issues that are covered include: elimination of cadmium plating, copper cyanide plating, hexavalent chromium plating and vapor degreasing, segregation of cyanide solutions, changing rinsing practices, recycling of rinse water, changing cleaning of aluminum parts and rejuvenation of gold plating solutions. Discussion is also presented on other issues currently being worked and these include: combining electroplating and physical vapor deposition, elimination of all cyanide plating processes, and recycling of electroless nickel and spent acid solutions.

  17. 2010 Annual Planning Summary Livermore Site Office (LSO) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09 SPR ReportEnergy Livermore

  18. Bob Hwang Director, Transportation Energy Center Sandia National Laboratories, Livermore, CA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10|BlueFire Ethanol,Bob Gemmer

  19. Routine environmental audit of the Sandia National Laboratories, California, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit`s functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites.

  20. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

  1. Lawrence Livermore National Laboratory Underground Coal Gasification project

    SciTech Connect (OSTI)

    Thorsness, C.B.; Britten, J.A.

    1989-10-15T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has been actively developing Underground Coal Gasification (UCG) technology for 15 years. The goal of the project has been to develop a fundamental technological understanding of UCG and foster the commercialization of the process. In striving to achieve this goal the LLNL project has carried out laboratory experiments, developed mathematical models, actively participated in technology transfer programs, and conducted field test experiments. As a result of this work the Controlled Retracting Injection Point (CRIP) concept was developed which helps insure optimum performance of an underground gasifier in a flat seam, and provides a means to produce multiple gasification cavities. The LLNL field work culminated in the Rocky Mountain I field test in which a gasifier using the CRIP technology generated gas of a quality equal to that of surface gasifiers. This last test and others preceding it have demonstrated beyond any reasonable doubt, that UCG is technically feasible in moderately thick coal seams at modest depths. 2 refs., 2 tabs.

  2. Research collaboration opportunities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Budwine, C.M.

    1996-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

  3. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    SciTech Connect (OSTI)

    Amy Wong; Denise Thronas; Robert Marshall

    1998-11-04T23:59:59.000Z

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  4. Lawrence Livermore Site Office Manager Joins EM’s Senior Leadership Team

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM Acting Assistant Secretary Dave Huizenga announced today that Alice Williams, manager of the DOE National Nuclear Security Administration (NNSA) Lawrence Livermore Site Office has joined the EM senior leadership team.

  5. The Current and Historical Distribution of Special Status Amphibians at the Livermore Site and Site 300

    SciTech Connect (OSTI)

    Hattem, M V; Paterson, L; Woollett, J

    2008-08-20T23:59:59.000Z

    65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.

  6. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  7. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect (OSTI)

    Coty, J

    2009-03-16T23:59:59.000Z

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  8. DHS-STEM Internship at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Feldman, B

    2008-08-18T23:59:59.000Z

    This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL) current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and/or update several TaqMan probes for these and develop a plan of identification for the more difficult ones. One suggestion for a genus with low conservation was to separate species into several groups and look for probes within these and then use a combination of probes to identify a genus. This has the added benefit of also providing subgenus identification in larger genera. During both projects I had developed a set of computer programs to simplify or consolidate several processes. These programs were constructed with the intent of being reused to either repeat these results, further this research, or to start a similar project. A big problem in the bioinformatic/sequencing field is the variability of data storage formats which make using data from various sources extremely difficult. Excluding for the moment the many errors present in online database genome sequences, there are still many difficulties in converting one data type into another successfully every time. Dealing with hundreds of files, each hundreds of megabytes, requires automation which in turn requires good data mining software. The programs I developed will help ease this issue and make more genomic sources available for use. With these programs it is extremely easy to gather the data, cleanse it, convert it and run it through some analysis software and even analyze the output of this software. When dealing with vast amounts of data it is vital for the researcher to optimize the process--which became clear to me with only ten weeks to work with. Due to the time constraint of the internship, I was unable to finish my metagenomic project; I did finish with success, my second project, discovering TaqMan identification for genera and species. Although I did not complete my first project I made significant findings along the way that suggest the need for further research on the subject. I found several instances of false positives in the metagenomic data from our microarrays which indicates the need to sequence more metagenomic samples. My initial research shows the importance of expanding our known metagenomic

  9. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kilpatrick, K; Hiddessen, A

    2007-08-22T23:59:59.000Z

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I as a fluorescent dye to detect amplification of viral DNA that can later be integrated into microfluidic PCR system for sorting and analysis is shown.

  10. Office of Inspector General report on audit of renovation and new construction projects at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-06-05T23:59:59.000Z

    The Oakland Operations Office (Oakland) is responsible for acquiring facilities needed to satisfy mission needs and to do so at the least cost to the Department of Energy (Department). The objective of the audit was to determine if proposed renovation and new construction projects at the Lawrence Livermore National Laboratory (Livermore) met mission needs while minimizing cost to the Government. In pursuing three projects, estimated to cost over $78 million, Livermore had not demonstrated that it had selected the best alternatives for meeting the Department`s needs while minimizing cost. Livermore was able to pursue these projects because Oakland did not ensure that the laboratory had performed cost and benefit analyses of all alternatives. Further, Oakland did not establish benchmarks to assess the reasonableness of the total costs of designing, constructing, and managing these projects. As a result, it was likely that the Department was spending more than necessary on renovation and new construction projects at Livermore. Although the projects met mission needs, it was recommended that the Manager, Oakland: (1) require Livermore to perform analyses of expected costs and benefits for alternatives; (2) evaluate the adequacy of Livermore`s cost and benefit analyses of alternatives; (3) establish benchmarks based on industry and other government agency cost data to assess the reasonableness of Livermore`s total design, construction, and project management costs; and (4) select the alternative that meets established needs at the least cost to the Government. Oakland agreed with the recommendations and will implement them starting with the Fiscal Year 1999 project submission and validation.

  11. Lawrence Livermore National Laboratory Proposal to Participate in the Carbon and

    E-Print Network [OSTI]

    for hydrogen storage. These materials have intrinsic high storage capacity with active carbon nanostructureLawrence Livermore National Laboratory Proposal to Participate in the Carbon and Metal Hydride storage Tanks are the "ace in the hole" storage technology Vacuum Shell Insulation Composite Overwrap

  12. Environmental monitoring at the Lawrence Livermore National Laboratory: Annual report, 1987

    SciTech Connect (OSTI)

    Holland, R.C.; Brekke, D.D.

    1988-04-01T23:59:59.000Z

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore Laboratory (LLNL) for 1987. To evaluate the effect of LLNL operations on the local environment, measurements were made of direct radiation and a variety of radionuclides and chemical pollutants in ambient air, soil, sewage effluents, surface water, groundwater, vegetation, foodstuff, and milk at both the Livermore site and nearby Site 300. Evaluations were made of LLNL's compliance with the applicable guides, standards, and limits for radiological and nonradiological releases to the environment. The data indicates that the only releases in excess of applicable standards were four releases to the sanitary sewer. LLNL operations had no adverse impact on the environment during 1987. 65 refs., 24 figs.

  13. Veil of secrecy is lifted from parts of Livermore's laser fusion program

    SciTech Connect (OSTI)

    Levi, B.G.

    1994-09-01T23:59:59.000Z

    Thanks to the [open quotes]openness initiative[close quotes] of Secretary Hazel O'Leary of the Department of Energy, results of experiments on inertial confinement done at the Nova facility at Lawrence Livermore National Laboratory will soon begin to be published in four papers dealing with such fundamental parameters as target size, material and cavity temperature. Livermore has concentrated on a particular scheme called indirect-drive ICF, in which the fuel pellet is placed inside a cylindrical cavity that has holes at both ends. This cavity is known as a hohlraum. Demonstrating the feasibility of indirect-drive ICF is expected to be a major focus of the National Ignition Facility, a proposed $1 billion project featuring a 1-2-MJ laser that is still awaiting the endorsement of the Department of Energy. 6 refs., 2 figs.

  14. 2003 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-05-23T23:59:59.000Z

    Annual Illness and Injury Surveillance Program report for 2003 for Lawrence Livermore National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  15. Development of a Novel Depleted Uranium Treatment Process at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gates-Anderson, D; Bowers, J; Laue, C; Fitch, T

    2007-01-22T23:59:59.000Z

    A three-stage process was developed at Lawrence Livermore National Laboratory to treat potentially pyrophoric depleted uranium metal wastes. The three-stage process includes waste sorting/rinsing, acid dissolution of the waste metal with a hydrochloric and phosphoric acid solution, and solidification of the neutralized residuals from the second stage with clay. The final product is a solid waste form that can be transported to and disposed of at a permitted low-level radioactive waste disposal site.

  16. U.S. Department of Energy Hydrogen Component and System Qualification Workshop Sandia National Laboratory, Livermore, CA

    E-Print Network [OSTI]

    until the manufacturer requests termination or fails to fulfill a requirement. UL must evaluate and gasoline blends until UL determined and notified AHJs that existing fuel dispensers certified under UL 87

  17. Environmental monitoring at the Lawrence Livermore National Laboratory. 1982 annual report

    SciTech Connect (OSTI)

    Griggs, K.S.; Gonzalez, M.A.; Buddemeier, R.W.

    1983-03-14T23:59:59.000Z

    Environmental monitoring efforts spanned air, water, vegetation and foodstuffs, and radiation doses. Monitoring data collection, analysis, and evaluation are presented for air, soils, sewage, water, vegetation and foodstuffs, milk, and general environmental radioactivity. Non-radioactive monitoring addresses beryllium, chemical effluents in sewage, noise pollution, and storm runoff and liquid discharge site pollutants. Quality assurance efforts are addressed. Five appendices present tabulated data; environmental activity concentration; dose calculation method; discharge limits to sanitary sewer systems of Livermore; and sampling and analytical procedures for environmental monitoring. (PSB)

  18. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29T23:59:59.000Z

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  19. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    SciTech Connect (OSTI)

    Williams, B.

    1997-08-01T23:59:59.000Z

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  20. (ESH), (), -(C-A).

    E-Print Network [OSTI]

    Homes, Christopher C.

    (ESH), (), - (C-A). C-A , , . , (ESHQ) C-A (Ray Karol, 5272, Pager 453-5971) C-A (Ed Lessard, x4250). . (ESH) - (-) " - " . . " " . 2 - . 3 - . 4 - ESH . 5 - ESH - . 5 - . 5 - . 5 - . 5 - ESH . 6 - . 7

  1. Site safety plan for Lawrence Livermore National Laboratory CERCLA investigations at site 300. Revision 2

    SciTech Connect (OSTI)

    Kilmer, J.

    1997-08-01T23:59:59.000Z

    Various Department of Energy Orders incorporate by reference, health and safety regulations promulgated by the Occupational Safety and Health Administration (OSHA). One of the OSHA regulations, 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, requires that site safety plans are written for activities such as those covered by work plans for Site 300 environmental investigations. Based upon available data, this Site Safety Plan (Plan) for environmental restoration has been prepared specifically for the Lawrence Livermore National Laboratory Site 300, located approximately 15 miles east of Livermore, California. As additional facts, monitoring data, or analytical data on hazards are provided, this Plan may need to be modified. It is the responsibility of the Environmental Restoration Program and Division (ERD) Site Safety Officer (SSO), with the assistance of Hazards Control, to evaluate data which may impact health and safety during these activities and to modify the Plan as appropriate. This Plan is not `cast-in-concrete.` The SSO shall have the authority, with the concurrence of Hazards Control, to institute any change to maintain health and safety protection for workers at Site 300.

  2. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    NONE

    1997-10-30T23:59:59.000Z

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  3. Microscopic study of Ca$+$Ca fusion

    E-Print Network [OSTI]

    R. Keser; A. S. Umar; V. E. Oberacker

    2012-02-17T23:59:59.000Z

    We investigate the fusion barriers for reactions involving Ca isotopes $\\mathrm{^{40}Ca}+\\mathrm{^{40}Ca}$, $\\mathrm{^{40}Ca}+\\mathrm{^{48}Ca}$, and $\\mathrm{^{48}Ca}+\\mathrm{^{48}Ca}$ using the microscopic time-dependent Hartree-Fock theory coupled with a density constraint. In this formalism the fusion barriers are directly obtained from TDHF dynamics. We also study the excitation of the pre-equilibrium GDR for the $\\mathrm{^{40}Ca}+\\mathrm{^{48}Ca}$ system and the associated $\\gamma$-ray emission spectrum. Fusion cross-sections are calculated using the incoming-wave boundary condition approach. We examine the dependence of fusion barriers on collision energy as well as on the different parametrizations of the Skyrme interaction.

  4. 2002 Small Mammal Inventory at Lawrence Livermore National Laboratory, Site 300

    SciTech Connect (OSTI)

    West, E; Woollett, J

    2004-11-16T23:59:59.000Z

    To assist the University of California in obtaining biological assessment information for the ''2004 Environmental Impact Statement for Continued Operation of Lawrence Livermore National Laboratory (LLNL)'', Jones & Stokes conducted an inventory of small mammals in six major vegetation communities at Site 300. These communities were annual grassland, native grassland, oak savanna, riparian corridor, coastal scrub, and seep/spring wetlands. The principal objective of this study was to assess the diversity and abundance of small mammal species in these communities, as well as the current status of any special-status small mammal species found in these communities. Surveys in the native grassland community were conducted before and after a controlled fire management burn of the grasslands to qualitatively evaluate any potential effects of fire on small mammals in the area.

  5. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S. [Golder Associates, Inc., Alameda, CA (United States)

    1996-08-01T23:59:59.000Z

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  6. Recent results from the EBIT and Super EBIT at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Marrs, R.E.

    1996-10-07T23:59:59.000Z

    The electron beam ion trap (EBIT), and the higher-energy Super EBIT at Lawrence Livermore National Laboratory can produce any highly charged ion. These highly charged ions are used in a variety of research programs. Recent results from four different experiments are reviewed here. K-shell ionization cross sections have been measured for the hydrogenlike ions of several elements, and L-shell ionization cross sections have been measured for uranium ions. A measurement of the ground-state hyperfine transition in hydrogenlike {sup 165}H{sup 66+} is notable because of the complete absence of Doppler shifts. A cryogenic Penning trap, injected with EBIT ions, has been used to observe a single highly charged ion as it recombines by sequential electron capture from H{sub 2} gas. A large sputtered ion yield, suggesting a surface Coulomb explosion, has been observed from insulators bombarded with very highly charged EBIT ions. 21 refs., 11 figs.

  7. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  8. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    Crow, N.B.; Lamarre, A.L.

    1990-08-01T23:59:59.000Z

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  9. Environmental impact report addendum for the continued operation of Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Weston, R. F. [Roy F. Weston, Inc. (United States)

    1996-10-01T23:59:59.000Z

    An environmental impact statement/environmental impact report (ES/EIR) for the continued operation and management of Lawrence Livermore National Laboratory (LLNL) was prepared jointly by the U.S. Department of Energy (DOE) and the University of California (UC). The scope of the document included near-term (within 5-10 years) proposed projects. The UC Board of Regents, as state lead agency under the California Environmental Quality Act (CEQA), certified and adopted the EIR by issuing a Notice of Determination on November 20, 1992. The DOE, as the lead federal agency under the National Environmental Policy Act (NEPA), adopted a Record of Decision for the ES on January 27, 1993 (58 Federal Register [FR] 6268). The DOE proposed action was to continue operation of the facility, including near-term proposed projects. The specific project evaluated by UC was extension of the contract between UC and DOE for UC`s continued operation and management of LLNL (both sites) from October 1, 1992, through September 30, 1997. The 1992 ES/EIR analyzed impacts through the year 2002. The 1992 ES/EIR comprehensively evaluated the potential environmental impacts of operation and management of LLNL within the near-term future. Activities evaluated included programmatic enhancements and modifications of facilities and programs at the LLNL Livermore site and at LLNL`s Experimental Test Site (Site 300) in support of research and development missions 2048 established for LLNL by Congress and the President. The evaluation also considered the impacts of infrastructure and building maintenance, minor modifications to buildings, general landscaping, road maintenance, and similar routine support activities.

  10. This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Status of DPSSL Development

    E-Print Network [OSTI]

    by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. Status

  11. Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight

    SciTech Connect (OSTI)

    Hazi, A

    2005-09-20T23:59:59.000Z

    the 1960s, transportation industry planners have sought an energy-efficient design for a train that can glide through air at speeds up to 500 kilometers per hour. This type of train, called a magnetically levitated (maglev) train, is thought to be a viable solution to meet the nation's growing need for intercity and urban transportation networks. However, despite some promising developments, unresolved concerns with the operation and safety of maglev trains has prevented the transition from demonstration model to commercial development. Inductrack, a maglev system originally conceived by Livermore physicist Richard Post, is designed to address these issues. Post's work on Inductrack began with funding from Livermore's Laboratory Directed Research and Development Program, and in 2003, the technology was licensed to General Atomics (GA) in San Diego for train and transit system applications. This year, members of the Livermore-GA team received an R&D 100 Award for Inductrack's development. Inductrack uses permanent magnets to produce the magnetic fields that levitate the train and provides economic and operational advantages over other maglev systems. It can be adapted to both high-speed and urban-speed environments. In the event of a power failure, the train slows gradually until it comes to rest on its auxiliary wheels. The maintenance requirements for Inductrack are also lower than they are for other systems, plus it has a short turning radius and is designed for quiet operation. Previous designs for maglev systems did not offer the energy efficiency or safety protections that are in the Inductrack design. Electromagnetic systems (EMS) use powered electromagnets to levitate the train. However, these systems are based on magnetic attraction rather than repulsion and thus are inherently unstable. In EMS trains, the levitation gap--the separation between the magnet pole faces and the iron rail--is only about 10 millimeters and, during operation, must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.

  12. Final Report for the Arroyo Las Positas Maintenance Impact Study, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    van Hattem, M; Paterson, L

    2006-01-12T23:59:59.000Z

    In 2000, the Lawrence Livermore National Laboratory's (LLNL) Environmental Protection Department, in coordination with Plant Engineering (PE), began dredging sections of the Arroyo Las Positas (ALP) to alleviate concerns about flooding of sensitive facilities within the mainsite of Lawrence Livermore National Laboratory. In order to reduce potential impacts on the federally threatened California red-legged frog (Rana aurora draytonii), LLNL proposed to dredge sections of the ALP in a ''checkerboard pattern'', resulting in a mosaic of open water habitat and vegetated sections (Figure 1). The Arroyo Las Positas Management Plan (Plan) was coordinated with both state and federal agencies including the U.S. Fish and Wildlife Service (USFWS), California Department of Fish and Game (CDF&G), San Francisco Regional Water Quality Control Board (SFRWQCB), and the Army Corp of Engineers (ACOE). Water Discharge Requirements (WDRs) were issued for this project on December 30, 1999 (Order No. 99-086) by the SFRWQCB. Provision 19 of the WDRs outlined a five-year (2000 through 2004) Maintenance Impact Study (MIS) that LLNL began in coordination with dredging work that was conducted as part of the Arroyo Las Positas Management Plan. Provision 20 of these WDRs requires LLNL to submit a final report of the results of the Maintenance Impact Study for this project to the SFRWQCB. The purpose of this report is to present the results of the Maintenance Impact Study for Arroyo Las Positas and meet the requirements of Provision 20. A description of the annual monitoring included in this Maintenance Impact Study is included in the methods section of this report. Initially the Plan called for dredging the entire length of the Arroyo Las Positas (approximately 6,981 linear feet) over a 5-year period to minimize temporal impacts on the California red-legged frog. Dredging occurred in 2000 ({approx}1,300 ft.), 2001 ({approx}800 ft.), and 2002 ({approx}1,200 ft.), which constituted approximately 3,300 ft., or roughly half of the entire Plan (Figure 2). Logistical challenges and unanticipated cost influenced the decision to terminate the project prior to completion, and re-evaluate the long-term management goals for the ALP. No dredging was conducted in the final two years of the plan (2003 and 2004).

  13. Building an internet-based workflow system - the case of Lawrence Livermore National Laboratories` Zephyr project

    SciTech Connect (OSTI)

    Jordan, C. W., LLNL

    1998-04-01T23:59:59.000Z

    Lawrence Livermore National Laboratories` Zephyr System provides a showcase for the ways in which emerging technologies can help streamline procurement processes and improve the coordination between participants in engineering projects by allowing collaboration in ways that have not been possible before. The project also shows the success of a highly pragmatic approach that was initiated by the end user community, and that intentionally covered standard situations, rather than aiming at also automating the exceptions. By helping push purchasing responsibilities down to the end user, thereby greatly reducing the involvement of the purchasing department in operational activities, it was possible to streamline the process significantly resulting in time savings of up to 90%, major cost reductions, and improved quality. Left with less day-to- day purchasing operations, the purchasing department has more time for strategic tasks such as selecting and pre-qualifying new suppliers, negotiating blanket orders, or implementing new procurement systems. The case shows once more that the use of information technologies can result in major benefits when aligned with organizational adjustments.

  14. Cancer risks from soil emissions of volatile organic compounds at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dibley, V. R., LLNL

    1998-02-01T23:59:59.000Z

    The emission isolation flux chamber (EIFC) methodology was applied to Superfund investigations at the Lawrence Livermore National Laboratory Site 300 to determine if on-site workers were exposed to VOCs volatilizing from the subsurface and what, if any, health risks could be attributed to the inhalation of the VOCs volatilizing from the subsurface. During July and August of 1996, twenty, eighteen, and twenty six VOC soil vapor flux samples were collected in the Building 830, 832, and 854 areas, respectively using EIFCS. The VOC concentrations in the vapor samples were used to calculate soil flux rates which were used as input into an air dispersion model to calculate ambient air exposure-point concentrations. The exposure-point concentrations were compared to EPA Region IX Preliminary Remediation Goals (PRGs). Buildings 830 and 832 exposure-point concentrations were less then the PRGs therefore no cancer risks were calculated. The cancer risks for Building 854 ranged from 1.6 x 10{sup -7} to 2.1 x 10{sup -6}. The resultant inhalation cancer risks were all within the acceptable range, implying that on-site workers were not exposed to VOC vapors volatilizing from the subsurface soil that could have significant cancer risks. Therefore remediation in these areas would not be necessary.

  15. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16T23:59:59.000Z

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  16. Overview of the current spectroscopy effort on the Livermore electron beam ion traps

    SciTech Connect (OSTI)

    Beiersdorfer, P.; Lopez-Urrutia, J.C. [Lawrence Livermore National Lab., CA (United States); Brown, G. [Auburn Univ., AL (United States)] [and others

    1995-06-29T23:59:59.000Z

    An overview is given of the current spectroscopic effort on the Livermore electron beam ion trap facilities. The effort focuses on four aspects: spectral line position, line intensity, temporal evolution, and line shape. Examples of line position measurements include studies of the K-shell transitions in heliumlike Kr{sup 34+} and the 2s-2p intrashell transitions in lithiumlike Th{sup 87+} and U{sup 89+}, which provide benchmark values for testing the theory of relativistic and quantum electrodynamical contributions in high-Z ions. Examples of line intensity measurements are provided by measurements of the electron-impact excitation and dielectronic recombination cross sections of heliumlike transition-metal ions Ti{sup 20+} through CO{sup 25+}. A discussion of radiative lifetime measurements of metastable levels in heliumlike ions is given to illustrate the time-resolved spectroscopy techniques in the microsecond range. The authors also present a measurement of the spectral lineshape that illustrates the very low ion temperatures that can be achieved in an EBIT.

  17. Overview of crash and impact analysis at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Logan, R.W.; Tokarz, F.J.

    1993-08-05T23:59:59.000Z

    This work provides a brief overview of past and ongoing efforts at Lawrence Livermore National Laboratory (LLNL) in the area of finite-element modeling of crash and impact problems. The process has been one of evolution in several respects. One aspect of the evolution has been the continual upgrading and refinement of the DYNA, NIKE, and TOPAZ family of finite-element codes. The major missions of these codes involve problems where the dominant factors are high-rate dynamics, quasi-statics, and heat transfer, respectively. However, analysis of a total event, whether it be a shipping container drop or an automobile/barrier collision, may require use or coupling or two or more of these codes. Along with refinements in speed, contact capability, and element technology, material model complexity continues to evolve as more detail is demanded from the analyses. A more recent evolution has involved the mix of problems addressed at LLNL and the direction of the technology thrusts. A pronounced increase in collaborative efforts with the civilian and private sector has resulted in a mix of complex problems involving synergism between weapons applications (shipping container, earth penetrator, missile carrier, ship hull damage) and a more broad base of problems such as vehicle impacts as discussed herein.

  18. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect (OSTI)

    Cena, R. J.; Thorsness, C. B.

    1981-08-21T23:59:59.000Z

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  19. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01T23:59:59.000Z

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  20. Serving the Nation for Fifty Years: 1952 - 2002 Lawrence Livermore National Laboratory [LLNL], Fifty Years of Accomplishments

    DOE R&D Accomplishments [OSTI]

    2002-00-00T23:59:59.000Z

    For 50 years, Lawrence Livermore National Laboratory has been making history and making a difference. The outstanding efforts by a dedicated work force have led to many remarkable accomplishments. Creative individuals and interdisciplinary teams at the Laboratory have sought breakthrough advances to strengthen national security and to help meet other enduring national needs. The Laboratory's rich history includes many interwoven stories -- from the first nuclear test failure to accomplishments meeting today's challenges. Many stories are tied to Livermore's national security mission, which has evolved to include ensuring the safety, security, and reliability of the nation's nuclear weapons without conducting nuclear tests and preventing the proliferation and use of weapons of mass destruction. Throughout its history and in its wide range of research activities, Livermore has achieved breakthroughs in applied and basic science, remarkable feats of engineering, and extraordinary advances in experimental and computational capabilities. From the many stories to tell, one has been selected for each year of the Laboratory's history. Together, these stories give a sense of the Laboratory -- its lasting focus on important missions, dedication to scientific and technical excellence, and drive to made the world more secure and a better place to live.

  1. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23T23:59:59.000Z

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  2. Geomechanical Simulations of Caprock Integrity Using the Livermore Distinict Element Method

    SciTech Connect (OSTI)

    Morris, J; Johnson, S; Friedmann, S J

    2008-04-17T23:59:59.000Z

    Large-scale carbon capture and sequestration (CCS) projects involving annual injections of millions of tons of CO2 are a key infrastructural element needed to substantially reduce greenhouse gas emissions. The large rate and volume of injection will induce pressure and stress gradients within the formation that could activate existing fractures and faults, or drive new fractures through the caprock. We will present results of an ongoing investigation to identify conditions that will activate existing fractures/faults or make new fractures within the caprock using the Livermore Distinct Element Code (LDEC). LDEC is a multiphysics code, developed at LLNL, capable of simulating dynamic fracture of rock masses under a range of conditions. As part of a recent project, LDEC has been extended to consider fault activation and dynamic fracture of rock masses due to pressurization of the pore-space. We will present several demonstrations of LDEC functionality and an application of LDEC to a CO2 injection scenario. We present results from our investigations of Teapot Dome using LDEC to study the potential for fault activation during injection. Using this approach, we built finite element models of the rock masses surrounding bounding faults and explicitly simulated the compression and shear on the fault interface. A CO2 injection source was introduced and the area of fault activation was predicted as a function of injection rate. This work presents an approach where the interactions of all locations on the fault are considered in response to specific injection scenarios. For example, with LDEC, as regions of the fault fail, the shear load is taken up elsewhere on the fault. The results of this study are consistent with previous studies of Teapot Dome and indicate significantly elevated pore pressures are required to activate the bounding faults, given the assumed in situ stress state on the faults.

  3. Geomechanical Simulations of CO2 Storage Integrity using the Livermore Distinct Element Method

    SciTech Connect (OSTI)

    Morris, J P; Johnson, S M; Friedmann, S J

    2008-07-11T23:59:59.000Z

    Large-scale carbon capture and sequestration (CCS) projects involving annual injections of millions of tons of CO{sub 2} are a key infrastructural element needed to substantially reduce greenhouse gas emissions. The large rate and volume of injection will induce pressure and stress gradients within the formation that could activate existing fractures and faults, or drive new fractures through the caprock. We will present results of an ongoing investigation to identify conditions that will activate existing fractures/faults or make new fractures within the caprock using the Livermore Distinct Element Code (LDEC). LDEC is a multiphysics code, developed at LLNL, capable of simulating dynamic fracture of rock masses under a range of conditions. As part of a recent project, LDEC has been extended to consider fault activation and dynamic fracture of rock masses due to pressurization of the pore-space. We will present several demonstrations of LDEC functionality and applications of LDEC to CO{sub 2} injection scenarios including injection into an extensively fractured rockmass. These examples highlight the advantages of explicitly including the geomechanical response of each interface within the rockmass. We present results from our investigations of Teapot Dome using LDEC to study the potential for fault activation during injection. Using this approach, we built finite element models of the rock masses surrounding bounding faults and explicitly simulated the compression and shear on the fault interface. A CO{sub 2} injection source was introduced and the area of fault activation was predicted as a function of injection rate. This work presents an approach where the interactions of all locations on the fault are considered in response to specific injection scenarios. For example, with LDEC, as regions of the fault fail, the shear load is taken up elsewhere on the fault. The results of this study are consistent with previous studies of Teapot Dome and indicate significantly elevated pore pressures are required to activate the bounding faults, given the assumed in situ stress state on the faults.

  4. Application of system simulation for engineering the technical computing environment of the Lawrence Livermore National Laboratorie

    SciTech Connect (OSTI)

    Boyd, V; Edmunds, T; Minuzzo, K; Powell, E; Roche, L

    1998-09-15T23:59:59.000Z

    This report summarizes an investigation performed by Lawrence Livermore National Laboratory? s (LLNL) Scientific Computing & Communications Department (SCCD) and the Garland Location of Raytheon Systems Company (RSC) from April through August.1998. The study assessed the applicability and benefits of utilizing System Simulation in architecting and deploying technical computing assets at LLNL, particularly in support of the ASCI program and associated scientific computing needs. The recommendations and other reported findings reflect the consensus of the investigation team. The investigation showed that there are potential benefits to performing component level simulation within SCCD in support of the ASCI program. To illustrate this, a modeling exercise was conducted by the study team that generated results consistent with measured operational performance. This activity demonstrated that a relatively modest effort could improve the toolset for making architectural trades and improving levels of understanding for managing operational practices. This capability to evaluate architectural trades was demonstrated by evaluating some of the productivity impacts of changing one of the design parameters of an existing file transfer system. The use of system simulation should be tailored to the local context of resource requirements/limitations, technology plans/processes/issues, design and deployment schedule, and organizational factors. In taking these matters into account, we recommend that simulation modeling be employed within SCCD on a limited basis for targeted engineering studies, and that an overall performance engineering program be established to better equip the Systems Engineering organization to direct future architectural decisions and operational practices. The development of an end-to-end modeling capability and enterprise-level modeling system within SCCD is not warranted in view of the associated development requirements and difficulty in determining firm operational performance requirements in advance of the critical architectural decisions. These recommendations also account for key differences between the programmatic and institutional environments at LLNL and RSC.

  5. Lawrence Livermore National Laboratory Workshop Characterization of Pathogenicity, Virulence and Host-Pathogen Interactions

    SciTech Connect (OSTI)

    Krishnan, A

    2006-08-30T23:59:59.000Z

    The threats of bio-terrorism and newly emerging infectious diseases pose serious challenges to the national security infrastructure. Rapid detection and diagnosis of infectious disease in human populations, as well as characterizing pathogen biology, are critical for reducing the morbidity and mortality associated with such threats. One of the key challenges in managing an infectious disease outbreak, whether through natural causes or acts of overt terrorism, is detection early enough to initiate effective countermeasures. Much recent attention has been directed towards the utility of biomarkers or molecular signatures that result from the interaction of the pathogen with the host for improving our ability to diagnose and mitigate the impact of a developing infection during the time window when effective countermeasures can be instituted. Host responses may provide early signals in blood even from localized infections. Multiple innate and adaptive immune molecules, in combination with other biochemical markers, may provide disease-specific information and new targets for countermeasures. The presence of pathogen specific markers and an understanding of the molecular capabilities and adaptations of the pathogen when it interacts with its host may likewise assist in early detection and provide opportunities for targeting countermeasures. An important question that needs to be addressed is whether these molecular-based approaches will prove useful for early diagnosis, complement current methods of direct agent detection, and aid development and use of countermeasures. Lawrence Livermore National Laboratory (LLNL) will host a workshop to explore the utility of host- and pathogen-based molecular diagnostics, prioritize key research issues, and determine the critical steps needed to transition host-pathogen research to tools that can be applied towards a more effective national bio-defense strategy. The workshop will bring together leading researchers/scientists in the area of host-pathogen interactions as well as policy makers from federal agencies. The main objectives of the workshop are: (1) to assess the current national needs, capabilities, near-term technologies, and future challenges in applying various diagnostics tools to public health and bio-defense; (2) to evaluate the utility and feasibility of host-response and pathogen biomarker profiling in the diagnosis and management of infectious diseases; and (3) to create a comprehensive developmental strategy from proof-of-concept, through validation, to deployment of appropriate advanced technology for the clinical/public health and bio-defense environments.

  6. The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

  7. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  8. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    SciTech Connect (OSTI)

    Pawloski, G A

    2011-01-03T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  9. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect (OSTI)

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  10. Preliminary report of the past and present uses, storage, and disposal of hazardous materials at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dreicer, M.

    1985-12-01T23:59:59.000Z

    This report contains the findings of a records search performed to survey the past and present use, storage, and disposal of hazardous materials and wastes at the Lawrence Livermore National Laboratory (LLNL) site. This report provides a point of departure for further planning of environmental protection activities at the site. This report was conducted using the LLNL archives and library, documents from the US Navy, old LLNL Plant Engineering blueprint files, published articles and reports, Environmental Protection Program records, employee interviews, and available aerial photographs. Sections I and II of this report provide an introduction to the LLNL site and its environmental characteristics. Several tenants have occupied the site prior to the establishment of LLNL, currently operated by the University of California for the US Department of Energy. Section III of this report contains information on environmentally related operations of early site users, the US Navy and California Research and Development. Section IV of this report contains information on the handling of hazardous materials and wastes by LLNL programs. The information is presented in 12 sub-sections, one for each currently operating LLNL program. General site areas, i.e., garbage trenches, the traffic circle landfill, the taxi strip, and old ammunition bunkers are discussed in Section V. 12 refs., 23 figs., 27 tabs.

  11. EA-1442: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, CA

  12. Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952-1965) and was a staff member at Los Alamos National Laboratory, [LANL] from 1976 to 1991 and from

    E-Print Network [OSTI]

    Dr. Stirling A. Colgate has been a staff physicist at Lawrence Livermore National Lab. (1952 in WW II in the US Merchant Marine. Dr. Stirling A. Colgate is an associate staff member at Los Alamos

  13. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14T23:59:59.000Z

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  14. 2001-2002 Wet Season Branchiopod Survey Report, Lawrence Livermore National Laboratory, Site 300, Alameda and San Joaquin Counties, California

    SciTech Connect (OSTI)

    Weber, W; Woollett, J

    2004-11-16T23:59:59.000Z

    Condor County Consulting on behalf of Lawrence Livermore National Laboratory (LLNL) has performed wet season surveys for listed branchiopods at Site 300, located in eastern Alameda County and western San Joaquin County. LLNL is collecting information for the preparation of an EIS covering ongoing explosives testing and related activities on Site 300. Related activities include maintenance of fire roads and annual control burns of approximately 607 hectares (1500 acres). Control burns typically take place on the northern portion of the site. Because natural branchiopod habitat is sparse on Site 300, it is not surprising that listed branchiopods were not observed during this 2001-2002 wet season survey. Although the site is large, a majority of it has topography and geology that precludes the formation of static seasonal pools. Even the relatively gentle topography of the northern half of the site contains few areas where water pools for more than two weeks. The rock outcrops found on the site did not provide suitable habitat for listed branchiopods. Most of the habitat available to branchiopods on the site is puddles that form in roadbeds and dry quickly. The one persistent pool on the site, the larger of the two modified vernal pools and the only one to fill this season, is occupied by two branchiopod species that require long-lived pools to reach maturity. In short, there is little habitat available on the site for branchiopods and most of the habitat present is generally too short-lived to support the branchiopod species that do occur at Site 300.

  15. Mass of Ca-36

    E-Print Network [OSTI]

    Tribble, Robert E.; Cossairt, J. D.; Kenefick, R. A.

    1977-01-01T23:59:59.000Z

    TABLE II. Coulomb energies for the A =36 isobaric quintet. The results are in good agree- ment with the calculations if the charge-dependent contributions are included. The uncertainties for the experimental results given in parentheses are in ke...V. Nuclide Calculated Coulomb contribution (keV) Including charge dependence (keV) Experimental "Cl "Ar 36K "Ca 6368 6681 6994 7307 6210 6628 7047 7465 6224(2) 6629(2) 7033(6) ' 7469(40) Based on the quadratic IMME prediction for the K...

  16. NSTech Livermore VPP

    Broader source: Energy.gov (indexed) [DOE]

    Area systems, and providing diagnostics, vacuum and alignment services. The Electro-Optics Laboratories test, characterize, evaluate, and assemble electronic and electro-optic...

  17. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLauraGasSecurityLawrence

  18. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  19. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  20. TOUGH2/EOS7CA

    Energy Science and Technology Software Center (OSTI)

    003504MLTPL00 EOS7CA Version 1.0: TOUGH2 Module for Gas Migration in Shallow Subsurface Porous Media Systems   

  1. Ca2+ dependant synaptic modification

    E-Print Network [OSTI]

    Huh, Dongsung, 1981-

    2004-01-01T23:59:59.000Z

    It has been assumed that Ca2+ influx of different duration and amplitude would generate different level of potentiation. The conventional protocols of generating LTP have been 1. tetanic stimulation of presynaptic cell, ...

  2. Role of Lawrence Livermore National Laboratory in the Laboratory to Laboratory Nuclear Materials Protection, Control and Accounting (MPC&A) Program

    SciTech Connect (OSTI)

    Blasy, J.A.; Koncher, T.R.; Ruhter, W.D.

    1995-05-02T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is participating in a US Department of Energy sponsored multi-laboratory cooperative effort with the Russian Federation nuclear institutes to reduce risks of nuclear weapons proliferation by strengthening systems of nuclear materials protection, control, and accounting in both countries. This program is called the Laboratory-to-Laboratory Nuclear Materials Protection, Control, and Accounting (MPC&A) Program and it is designed to complement other US-Russian MPC&A programs such as the government-to-govermment (NunnLugar) programs. LLNL`s role in this program has been to collaborate with various Russian institutes in several areas. One of these is integrated safeguards and security planning and analysis, including the performing of vulnerability assessments. In the area of radiation measurements LLNL is cooperating with various institutes on gamma-ray measurement and analysis techniques for plutonium and uranium accounting. LLNL is also participating in physical security upgrades including entry control and portals.

  3. Independent Oversight Inspection of Environment, Safety, and Health Management at the Lawrence Livermore National Laboratory, Technical Appendices, Volume II, December 2004

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Independent Oversight and Performance Assurance (OA), within the Office of Security and Safety Performance Assurance (SSA), conducted an inspection of environment, safety, and health (ES&H) at the DOE Lawrence Livermore National Laboratory (LLNL) during October and November 2004. The inspection was performed by the OA Office of Environment, Safety and Health Evaluations. Volume II of this report provides four technical appendices (C through F) containing detailed results of the OA review. Appendix C provides the results of the review of the application of the core functions of ISM for LLNL work activities. Appendix D presents the results of the review of NNSA, LSO, and contractor feedback and continuous improvement processes. Appendix E presents the results of the review of Plutonium Building essential safety system functionality, and Appendix F presents the results of the review of management of the selected focus areas.

  4. Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standard Revision 3 December 2006

    SciTech Connect (OSTI)

    Beach, D; Brereton, S; Failor, R; Hildum, J; Ingram, C; Spagnolo, S; van Warmerdam, C

    2007-06-07T23:59:59.000Z

    This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A.

  5. Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project

    SciTech Connect (OSTI)

    Brunckhorst, K

    2009-04-21T23:59:59.000Z

    This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

  6. Model formalisms, continued; CA, ODE, Boolean networks

    E-Print Network [OSTI]

    Utrecht, Universiteit

    ­ Mesoscale patterns ­ Zoo QUESTIONS? TODAY · CA as modeling tool: common generalisations · alternative

  7. carleton.ca Earth Sciences

    E-Print Network [OSTI]

    Dawson, Jeff W.

    carleton.ca Earth Sciences #12;Earth is our home. It is a dynamic planet, integrating and recording spectrometers or electron microprobes--earth scientists investigate Earth's evolution to help understand future today and for the future is enhanced by the expertise of economic geologists. Knowledge of the Earth

  8. carleton.ca Food Science

    E-Print Network [OSTI]

    Dawson, Jeff W.

    of foods, genetically modified foods, food contamination and preservation. The Carleton advantage Food and biochemistry, genetics and organic chemistry. A Principles of Nutrition (FOOD 2001) course allows you to gaincarleton.ca Food Science and Nutrition #12;The production and distribution of food is one

  9. Ca

    Broader source: Energy.gov (indexed) [DOE]

    30, 1998 Mr. Eric J. Fygi U.S. Department of Energy Office of General Counsel GC-52 1000 Independence Ave. S.W. Washington, D.C. 20585 (PAA.notice@hq.doe.gov) RE: Comments...

  10. Ca

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ED C. Walker, Trinity Engineering ED ED denotes electronic distribution CBFO:ORC :GTB:MDA: 1 0-0972 :UFC 5486 .00 David C. Moody, Manager M. F. Sharif, General Manager Carlsbad...

  11. Ca

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 -CURRICULUM9831 WallEnclosureP O.

  12. Ca

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 -CURRICULUM9831 WallEnclosureP

  13. Ca

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0 -CURRICULUM9831 WallEnclosurePJames

  14. Ca

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMission Welcomefor GasforCSMB6 1the

  15. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    Winterberg, Friedwardt

    2009-01-01T23:59:59.000Z

    The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

  16. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the U.S. Department of Energy. Quarter ending December 31, 1996

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Strauch, M.S.

    1997-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the First Quarter of Fiscal Year 1997 (October through December, 1996). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in four areas: (1) safeguards technology; (2) safeguards and material accountability; (3) computer security--distributed systems; and (4) physical and personnel security support. The remainder of this report describes the activities in each of these four areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  17. Lawrence Livermore National Laboratory Safeguards and Security quarterly progress report to the US Department of Energy: Quarter ending December 31, 1993

    SciTech Connect (OSTI)

    Davis, G.; Mansur, D.L.; Ruhter, W.D.; Steele, E.; Strait, R.S.

    1994-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the first quarter of fiscal year 1994 (October through December, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: (1) Safeguards Technology, (2) Safeguards and Decision Support, (3) Computer Security, (4) DOE Automated Physical Security, and (5) DOE Automated Visitor Access Control System. This report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  18. Lawrence Livermore National Laboratory safeguards and security quarterly progress report to the US Department of Energy: Quarter ending September 30, 1993

    SciTech Connect (OSTI)

    Ruhter, W.D.; Strait, R.S.; Mansur, D.L.; Davis, G.

    1993-10-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) carries out safeguards and security activities for the Department of Energy (DOE), Office of Safeguards and Security (OSS), as well as other organizations, both within and outside the DOE. This document summarizes the activities conducted for the OSS during the fourth quarter of Fiscal Year 1993 (July through September, 1993). The nature and scope of the activities carried out for OSS at LLNL require a broad base of technical expertise. To assure projects are staffed and executed effectively, projects are conducted by the organization at LLNL best able to supply the needed technical expertise. These projects are developed and managed by senior program managers. Institutional oversight and coordination is provided through the LLNL Deputy Director`s office. At present, the Laboratory is supporting OSS in five areas: Safeguards Technology, Safeguard System Studies, Computer Security, DOE Automated Physical Security and DOE Automated Visitor Access Control System. The remainder of this report describes the activities in each of these five areas. The information provided includes an introduction which briefly describes the activity, summary of major accomplishments, task descriptions with quarterly progress, summaries of milestones and deliverables and publications published this quarter.

  19. Physics of Sustainable Energy Berkeley CA

    E-Print Network [OSTI]

    Kammen, Daniel M.

    California Largest Solar Thermal Electric Plant SEGS Mojave Desert (CA) 354 MW Ivanpah Mojave Desert (CA) 400 of Sustainable Energy Berkeley CA March 5-6, 2011 Concentrating Solar Power ­ Direct Sun State and Kearney (2007) PV Solar Resource ­ Indirect Sun Roof area ~ 6B m2 ~ 600 GW Urban footprint ~ 3% of land

  20. DOE - Office of Legacy Management -- Berkeley CA Site - CA 03

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertowni5W 95.5x-L*AlaskaBerkeley CA

  1. CA-96062042 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility JumpBurleighGeothermal LeasesCA-96062042 Jump

  2. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 6. Summary

    SciTech Connect (OSTI)

    Peterson, S

    2007-09-05T23:59:59.000Z

    Throughout fifty-three years of operations, an estimated 792,000 Ci (29,300 TBq) of tritium have been released to the atmosphere at the Livermore site of Lawrence Livermore National Laboratory (LLNL); about 75% was tritium gas (HT) primarily from the accidental releases of 1965 and 1970. Routine emissions contributed slightly more than 100,000 Ci (3,700 TBq) HT and about 75,000 Ci (2,800 TBq) tritiated water vapor (HTO) to the total. A Tritium Dose Reconstruction was undertaken to estimate both the annual doses to the public for each year of LLNL operations and the doses from the few accidental releases. Some of the dose calculations were new, and the others could be compared with those calculated by LLNL. Annual doses (means and 95% confidence intervals) to the potentially most exposed member of the public were calculated for all years using the same model and the same assumptions. Predicted tritium concentrations in air were compared with observed mean annual concentrations at one location from 1973 onwards. Doses predicted from annual emissions were compared with those reported in the past by LLNL. The highest annual mean dose predicted from routine emissions was 34 {micro}Sv (3.4 mrem) in 1957; its upper confidence limit, based on very conservative assumptions about the speciation of the release, was 370 {micro}Sv (37 mrem). The upper confidence limits for most annual doses were well below the current regulatory limit of 100 {micro}Sv (10 mrem) for dose to the public from release to the atmosphere; the few doses that exceeded this were well below the regulatory limits of the time. Lacking the hourly meteorological data needed to calculate doses from historical accidental releases, ingestion/inhalation dose ratios were derived from a time-dependent accident consequence model that accounts for the complex behavior of tritium in the environment. Ratios were modified to account for only those foods growing at the time of the releases. The highest dose from an accidental release was calculated for a release of about 1,500 Ci HTO that occurred in October 1954. The likely dose for this release was probably less than 360 {micro}Sv (36 mrem), but, because of many unknowns (e.g., release-specific meteorological and accidental conditions) and conservative assumptions, the uncertainty was very high. As a result, the upper confidence limit on the predictions, considered a dose that could not have been exceeded, was estimated to be 2 mSv (200 mrem). The next highest dose, from the 1970 accidental release of about 290,000 Ci (10,700 TBq) HT when wind speed and wind direction were known, was one-third as great. Doses from LLNL accidental releases were well below regulatory reporting limits. All doses, from both routine and accidental releases, were far below the level (3.6 mSv [360 mrem] per year) at which adverse health effects have been documented in the literature.

  3. Microsoft Word - Renewable Energy Project at LLNL_June 2011_jb...

    National Nuclear Security Administration (NNSA)

    422-2567 NATIONAL NUCLEAR SECURITY ADMINISTRATION PURSUING DEVELOPMENT OF A RENEWABLE ENERGY PROJECT AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY Livermore, CA - The U.S....

  4. Li/Ca, B/Ca, and Mg/Ca Composition of Cultured Sea Urchin Spines and Paleo-Echinoderms Measured Using a Secondary Ion Mass Spectrometer

    E-Print Network [OSTI]

    Nguyen, Trung Timothy Do

    2013-01-01T23:59:59.000Z

    Li/Ca was normalized to HTP-CC standard, B/Ca was normalizednormalized to calcites (CAL-HTP and UCI) for Li and Mg and aintensity ratios of Li/Ca (CAL-HTP), B/Ca (M93), and Mg/Ca (

  5. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56

  6. www.yorku.ca/research Ergonomics Laboratory

    E-Print Network [OSTI]

    www.yorku.ca/research Ergonomics Laboratory -- Biomechanics At York School of Kinesiology Salas The Ergonomics Laboratory creates healthier workplaces by reducing individuals' risk of developing

  7. Physics Today Livermore ends LIFE

    E-Print Network [OSTI]

    flow batteries include one being developed by Harvard Univer- sity (shown in the photo on page 25). Duracell technology Not all the technologies backed by ARPA­E are flow batteries. The City University of New York, working with a $3.5 million grant, is advancing a rechargeable zinc­manganese oxide cell

  8. Lawrence Livermore National Laboratory Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases Tribune

  9. Santer of Lawrence Livermore National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanket A. Deshmukh ArgonneSanta8 6/1/2011

  10. carleton.ca/seo Arrive. Survive. Thrive.

    E-Print Network [OSTI]

    carleton.ca/seo Arrive. Survive. Thrive. Transition guide Your guide to a successful transition to university #12;2 carleton.ca/seo Arrive. Survive. Thrive. Welcome to Carleton University.The first year to help you through this new experience. The Student Experience Office (SEO) is your first stop when you

  11. COUNSELLING SERVICES STUDENTS.SFU.CA/HEALTH

    E-Print Network [OSTI]

    HEALTH AND COUNSELLING SERVICES STUDENTS.SFU.CA/HEALTH IDENTIFYING YOUR POSITIVE ATTRIBUTES 1 overcome - things that you have cared about - prizes, awards, good marks - things that you like about list even further is to think about people you have #12;HEALTH AND COUNSELLING SERVICESSTUDENTS.SFU.CA/HEALTH

  12. , ..., 23-25/5/2013 CaCO3,

    E-Print Network [OSTI]

    , - , . , , , . CaCO3, , . 200-800o C (XRD), (SEM), Raman, (BET). , CaCO3, , (PP) . « » (wet cup method). . .[1] (fillers) , , , .[2] CaCO3 (PP) .[3

  13. Calculation of Transactinide Homolog Isotope Production Reactions Possible with the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Moody, K J; Shaughnessy, D A; Gostic, J M

    2011-11-29T23:59:59.000Z

    The LLNL heavy element group has been investigating the chemical properties of the heaviest elements over the past several years. The properties of the transactinides (elements with Z > 103) are often unknown due to their low production rates and short half-lives, which require lengthy cyclotron irradiations in order to make enough atoms for statistically significant evaluations of their chemistry. In addition, automated chemical methods are often required to perform consistent and rapid chemical separations on the order of minutes for the duration of the experiment, which can last from weeks to months. Separation methods can include extraction chromatography, liquid-liquid extraction, or gas-phase chromatography. Before a lengthy transactinide experiment can be performed at an accelerator, a large amount of preparatory work must be done both to ensure the successful application of the chosen chemical system to the transactinide chemistry problem being addressed, and to evaluate the behavior of the lighter elemental homologs in the same chemical system. Since transactinide chemistry is literally performed on one single atom, its chemical properties cannot be determined from bulk chemical matrices, but instead must be inferred from the behavior of the lighter elements that occur in its chemical group and in those of its neighboring elements. By first studying the lighter group homologs in a particular chemical system, when the same system is applied to the transactinide element under investigation, its decay properties can be directly compared to those of the homologues, thereby allowing an inference of its own chemistry. The Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL) includes a 1 MV Tandem accelerator, capable of accelerating light ions such as protons to energies of roughly 15 MeV. By using the CAMS beamline, tracers of transactinide homolog elements can be produced both for development of chemical systems and for evaluation of homolog chemical properties. CAMS also offers an environment for testing these systems 'online' by incorporating automated chemical systems into the beamline so that tracers can be created, transported, and chemically separated all on the shorter timescales required for transactinide experiments. Even though CAMS is limited in the types and energies of ions they can accelerate, there are still a wide variety of reactions that can be performed there with commercially available target materials. The half-lives of these isotopes vary over a range that could be used for both online chemistry (where shorter half-lives are required) and benchtop tracers studies (where longer lived isotopes are preferred). In this document, they present a summary of tracer production reactions that could be performed at CAMS, specifically for online, automated chemical studies. They are from chemical groups four through seven, 13, and 14, which would be appropriate for studies of elements 104-107, 113, and 114. Reactions were selected that had (a) commercially available target material, (b) half-lives long enough for transport from a target chamber to an automated chemistry system, and (c) cross-sections at CAMS available projectile energies that were large enough to produce enough atoms to result in a statistically relevant signal after losses for transport and chemistry were considered. In addition, the resulting product atoms had to decay with an observable gamma-ray using standard Ge gamma-ray detectors. The table includes calculations performed for both metal targets and their corresponding oxides.

  14. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect (OSTI)

    A., B

    2008-07-31T23:59:59.000Z

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected information from across disciplines to outline where the state of knowledge on IND response is. In addition, the report looked at meetings that were held over the summer in various cities. The meetings were attended by both federal responders and local responders. The meetings explored issues regarding IND preparation and how to mitigate the effects of an IND detonation. Looking at the research and current preparation activity the report found that the state of knowledge in responding and communicating is a mixed bag. Some aspects of an IND attack are well understood, some are not, but much is left to synthesize. The effects of an IND would be devastating, yet much can be done to mitigate those effects through education, preparation, and research. A major gap in current knowledge is how to effectively communicate with the public before an attack. Little research on the effectiveness of public education has been done, but it is likely that educating the public about the effects of an IND and how to best protect oneself could save many lives.

  15. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24T23:59:59.000Z

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be considered separately when deciding on an approach for reducing the salt discharge to the subsurface. The smaller units may justify moderate changes to equipment, and may benefit from increased cleaning frequencies, more accurate and suitable chemical treatment, and sources of make up water and discharge re-use. The larger cooling towers would be more suitable for automated systems where they don't already exist, re-circulation and treatment of blow down water, and enhanced chemical dosing strategies. It may be more technically feasible and cost efficient for the smaller cooling towers to be replaced by closed loop dry coolers or hybrid towers. There are several potential steps that could be taken at each location to reduce the TDS concentration and/or water use. These include: sump water filtration, minimization of drift, accurate chemical dosing, and use of scale and corrosion coupons for chemical calibration. The implementation of some of these options could be achieved by a step-wise approach taken at two representative facilities. Once viable prototype systems have been proven in the field, systematic implementation should proceed for the remaining systems, with cost, desired reduction, and general feasibility taken into consideration for such systems.

  16. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical...

  17. Natural Abundance 43Ca NMR Spectroscopy of Tobermorite and Jennite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which has limited our ability to understand the structure of, for example, Ca–silicate hydrate (C–S–H). 43Ca nuclear magnetic resonance (NMR) spectroscopy has...

  18. Preparation of CaCO3 General concepts

    E-Print Network [OSTI]

    Csonka, Gábor István

    Preparation of CaCO3 General concepts precipitation, solubility, ageing, Oswald ripening During the experiment CaCO3 is produced by an ion-exchange reaction: the ions of the desired product are dissolved. The yield of the reaction is calculated from the Na2CO3 + CaCl2 = CaCO3 + 2NaCl equation. Procedure

  19. Multiple C-terminal tail Ca2 /CaMs regulate

    E-Print Network [OSTI]

    Lim, Wendell

    Findeisen1,2 , Elizabeth S Cooley1,2 , Ehud Y Isacoff3,4,5,7 and Daniel L Minor Jr1,2,6,7, * 1- region is labile, whereas Ca2Ăľ /CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo

  20. Temperature dependence of d7 Ca and Li/Ca during growth

    E-Print Network [OSTI]

    Temperature dependence of d7 Li, d44 Ca and Li/Ca during growth of calcium carbonate Caedmon S; calcium isotopes; calcium carbonate 1. Introduction The trace element and isotope chemistry of calci- um variable, in controlling the fraction- ation of three such potential proxies in calcium carbonates

  1. Historical Doses from Tritiated Water and Tritiated Hydrogen Gas Released to the Atmosphere from Lawrence Livermore National Laboratory (LLNL). Part 5. Accidental Releases

    SciTech Connect (OSTI)

    Peterson, S

    2007-08-15T23:59:59.000Z

    Over the course of fifty-three years, LLNL had six acute releases of tritiated hydrogen gas (HT) and one acute release of tritiated water vapor (HTO) that were too large relative to the annual releases to be included as part of the annual releases from normal operations detailed in Parts 3 and 4 of the Tritium Dose Reconstruction (TDR). Sandia National Laboratories/California (SNL/CA) had one such release of HT and one of HTO. Doses to the maximally exposed individual (MEI) for these accidents have been modeled using an equation derived from the time-dependent tritium model, UFOTRI, and parameter values based on expert judgment. All of these acute releases are described in this report. Doses that could not have been exceeded from the large HT releases of 1965 and 1970 were calculated to be 43 {micro}Sv (4.3 mrem) and 120 {micro}Sv (12 mrem) to an adult, respectively. Two published sets of dose predictions for the accidental HT release in 1970 are compared with the dose predictions of this TDR. The highest predicted dose was for an acute release of HTO in 1954. For this release, the dose that could not have been exceeded was estimated to have been 2 mSv (200 mrem), although, because of the high uncertainty about the predictions, the likely dose may have been as low as 360 {micro}Sv (36 mrem) or less. The estimated maximum exposures from the accidental releases were such that no adverse health effects would be expected. Appendix A lists all accidents and large routine puff releases that have occurred at LLNL and SNL/CA between 1953 and 2005. Appendix B describes the processes unique to tritium that must be modeled after an acute release, some of the time-dependent tritium models being used today, and the results of tests of these models.

  2. Inhibitors of the Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N)

    SciTech Connect (OSTI)

    Sueyoshi, Noriyuki; Takao, Toshihiko; Nimura, Takaki; Sugiyama, Yasunori; Numano, Takamasa [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795 (Japan); Shigeri, Yasushi [National Institute of Advanced Industrial Science and Technology, Osaka 563-8577 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510 (Japan); Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795 (Japan)], E-mail: kamesita@ag.kagawa-u.ac.jp; Ishida, Atsuhiko [Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510 (Japan); Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521 (Japan)], E-mail: aishida@hiroshima-u.ac.jp

    2007-11-23T23:59:59.000Z

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca{sup 2+}/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro.

  3. Giant-Resonances in Ca-40

    E-Print Network [OSTI]

    Lui, YW; Bronson, J. D.; Rozsa, C. M.; Youngblood, David H.; Bogucki, P.; Garg, U.

    1981-01-01T23:59:59.000Z

    PHYSICAL REVIE%' C VOLUME 24, NUMBER 3 SEPTEMBER 1981 Giant resonances in Ca Y.-W. Lui, J. D. Bronson, C. M. Rozsa, * D. H. Youngblood, P. Bogucki, and U. Garg Cyclotron Institute, Texas ActM Uniuersity, College Station, Texas 77843 (Received... LUI, BRONSON, ROZSA, YOUNGBLOOD, SOGUCKI, AND GARG 24 I I Ca(o, a'} Eg = )16.8 MeV 8L= 2.5' Ca(u e') Ea=IP9.4 MeV 80- 8L =o 100- eO- 40 80 J3 ~ ~0 bmIJJ C4 15 8-5L a) 20 E b blN 40- 30 t 'He 20 IO 0 I I e, =a IA ++ +0 (4ON...

  4. Isoscalar giant resonances in (48)Ca

    E-Print Network [OSTI]

    Lui, Y. -W; Youngblood, David H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan; Anders, M.; Button, J.

    2011-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 83, 044327 (2011) Isoscalar giant resonances in 48Ca Y.-W. Lui, D. H. Youngblood, S. Shlomo, X. Chen,* Y. Tokimoto,? Krishichayan, M. Anders, and J. Button Cyclotron Institute, Texas A&M University, College Station, Texas 77843...-10556-2813/2011/83(4)/044327(11) ?2011 American Physical Society Y.-W. LUI et al. PHYSICAL REVIEW C 83, 044327 (2011) 48Ca ? c.m. = 1.1o 0 50 100 150 200 d2 ?? ?? /d ?? ?? dE (m b/s r M eV ) 48Ca ? c.m.= 4.3o 0 20 40 60 80 100 0 10 20 30 40 50 60 Ex(MeV) d2...

  5. Abstract. Calmodulin (CaM), a primary Ca2+ in all eukaryotic cells, is a multifunctional protein that

    E-Print Network [OSTI]

    Zielinski, Ray

    -characterized members of this protein family in plants are calmodulin (CaM) and the CaM-like domain protein kinases of a variety of target proteins, known as CaM-binding proteins, generating physiological re- sponses eukaryotes and some of which are unique to plants (Zielinski 1998). Because CaM is ubiquitously expressed

  6. Porous, Biphasic CaCO3-Calcium Phosphate Biomedical Cement Scaffolds from Calcite (CaCO3) Powder

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Porous, Biphasic CaCO3-Calcium Phosphate Biomedical Cement Scaffolds from Calcite (CaCO3) Powder A porous, biocompatible, and resorb- able materials. Commercially available CaCO3 powders were physically crystallographically and spectroscopically resembled calcium hydroxyapatite. Upon mixing CaCO3 powders and the setting

  7. Specialized Resources: http://library.queensu.ca

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Specialized Resources: http://library.queensu.ca Under `Locations & Hours', choose: MADGIC - Maps by keyword to find these (and many more) resources: Annual Estimates of Employment Earning and Hours-STAT ­ time series for academic, non-profit use - FREE Energy Statistics Handbook ­ statistics on oil, gas

  8. kahl@cas.mcmaster.ca Engineering

    E-Print Network [OSTI]

    Carette, Jacques

    of Engineering McMaster University SFWR ENG 3BB4 --- Software Design 3 --- Concurrent System Design 1.3 5 CourseSFWR ENG 3BB4 --- Software Design 3 --- Concurrent System Design 1.2 4 Software Design III Concurrent System Design WOLFRAM KAHL kahl@cas.mcmaster.ca Department of Computing and Software Faculty

  9. Explorewww.trentu.ca/ers Environmental

    E-Print Network [OSTI]

    Fox, Michael

    environmental research, natural resource conservation, environmental planning and assessment, water and wasteExplorewww.trentu.ca/ers Explore Your Passion Environmental and Resource Studies/Science. Trent. You. #12;LEARNING TO MAKE A WORLD OF DIFFERENCE.TM Career Conscious Skills in environmental studies

  10. EMPLOYMENT SUMMARY San Francisco, CA 94117

    E-Print Network [OSTI]

    Galles, David

    EMPLOYMENT SUMMARY San Francisco, CA 94117 Website : http://www.usfca.edu/law/ Phone : 415 Employment status unknown 7 Unemployed - not seeking 5 Employed 156 78 64 Pursuing graduate degree FT 1 EMPLOYMENT STATUS NUMBER LONG TERM SHORT TERM Of employed - # law school funded 30 1 29 EMPLOYMENT BY LAW

  11. counselling students.sFu.ca/health

    E-Print Network [OSTI]

    health and counselling services students.sFu.ca/health how to help a Friend with eating and Body, weight, or body image of someone you care about. We understand that this can be a very difficult it or ignoring it won't help! Be caring, but be firm. Caring about your friend does not mean being manipulated

  12. carleton.ca European and Russian

    E-Print Network [OSTI]

    Dawson, Jeff W.

    carleton.ca European and Russian Studies #12;The current transformations in Europe, Russia and the international balance of power. At the same time, the region comprising Europe and Russia is certainly and non- governmental organizations inside and outside of Ottawa. Students who are accepted into the co

  13. ACEME 2013, April 9-12, 2013 Leuven, Belgium 143 Gas-solid carbonation of Ca(OH)2 and CaO particles

    E-Print Network [OSTI]

    published by Montes-Hernandez et al.1 . The results have revealed that Ca(OH)2-to-CaCO3 and CaO-to-CaCO3

  14. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Laramie Energy Technology Center (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) Lawrence Livermore National Laboratory (LLNL),...

  15. SciTech Connect: "fuel cells"

    Office of Scientific and Technical Information (OSTI)

    Laramie Energy Technology Center (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) Lawrence Livermore National Laboratory (LLNL),...

  16. Li/Ca, B/Ca, and Mg/Ca Composition of Cultured Sea Urchin Spines and Paleo-Echinoderms Measured Using a Secondary Ion Mass Spectrometer

    E-Print Network [OSTI]

    Nguyen, Trung Timothy Do

    2013-01-01T23:59:59.000Z

    Weiner. "Amorphous calcium carbonate transforms into calciteof boron in synthetic calcium carbonate." Geochimica etCa during growth of calcium carbonate." Earth and Planetary

  17. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-10-29T23:59:59.000Z

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  18. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-01-01T23:59:59.000Z

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore »as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  19. Fusion of {sup 48}Ca+{sup 48}Ca Far Below the Barrier

    SciTech Connect (OSTI)

    Scarlassara, F.; Montagnoli, G.; Mason, P. [Dipartimento di Fisica 'G. Galilei', Universita di Padova and INFN Sezione di Padova, via Marzolo 8, I-35231 Padova (Italy); Stefanini, A. M.; Silvestri, R.; Corradi, L.; Fioretto, E.; Guiot, B. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova) (Italy); Courtin, S.; Haas, F.; Lebhertz, D. [IPHC, CNRS-IN2P3, Universite de Strasbourg, F-67037 Strasbourg Cedex 2 (France); Szilner, S. [Ruder Boskovic Institute, HR-10002 Zagreb (Croatia)

    2009-08-26T23:59:59.000Z

    In recent years, a puzzling pattern has been observed in fusion cross sections well below the Coulomb barrier, characterized as a departure from the exponential-like behavior predicted by standard coupled-channels models, known as fusion hindrance. We report on recent fusion measurements performed at the Laboratori Nazionali di Legnaro, in particular the {sup 48}Ca+{sup 48}Ca reaction down to the level of 0.6 {mu}b. Unlike most recent results in this field, we do not observe the typical divergent behavior of the logarithmic derivative; but rather a sort of saturation, albeit at a larger value than predicted with a standard nucleus-nucleus potential.

  20. CA Surface Leasing Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,BurkeNebraska: EnergyByronTechnologies Inc Jump to:CA

  1. Microsoft Word - Household Energy Use CA

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60 80 100 US PAC CA Site

  2. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern IL Elec Coop, Inc Jump to: navigation, searchCA Area Jump

  3. 4, 533560, 2007 Pelagic CaCO3

    E-Print Network [OSTI]

    BGD 4, 533­560, 2007 Pelagic CaCO3 production in the future ocean M. Gehlen et al. Title Page of pelagic CaCO3 production in a high CO2 ocean: A model study M. Gehlen 1 , R. Gangstř 1 , B. Schneider 1, 533­560, 2007 Pelagic CaCO3 production in the future ocean M. Gehlen et al. Title Page Abstract

  4. SNL/CA Environmental Management System Program Manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2007-04-01T23:59:59.000Z

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004. Elements of the ISO standard overlap with those of Department of Energy (DOE) Order 450.1, thus SNL/CA's EMS program also meets the DOE requirements.

  5. Giant monopole resonance strength in Ca-40

    E-Print Network [OSTI]

    Youngblood, David H.; Lui, YW; Clark, HL.

    1997-01-01T23:59:59.000Z

    . The work by Lui et al. @7# at E a 5130 MeV covered a wide range of excitation (4,Ex,60 MeV) but they were unable to definitively identify monopole strength. In this beam en- ergy range, the (a , 5Li) and (a , 5He) reactions with subse- quent decay...-2813/97/55~6!/2811~8!/$10.00 e strength in 40Ca . Lui, and H. L. Clark , College Station, Texas 77842 r 1996! inelastic scattering of 240 MeV a particles at small h G54.9560.25 MeV was found to contain 33 ~EWSR! strength and 5766% of the isoscalar E2 r E0 EWSR between 8...

  6. EIS-0455: Genesis Solar Energy Project in Riverside County, CA...

    Broader source: Energy.gov (indexed) [DOE]

    7, 2010 EIS-0455: Notice of Adoption of an Environmental Impact Statement Genesis Solar Energy Project, Riverside County, CA August 27, 2010 EIS-0455: Final Environmental Impact...

  7. EIS-0439: Rice Solar Energy Project in Riverside County, CA ...

    Office of Environmental Management (EM)

    Riverside County, CA October 22, 2010 EIS-0439: EPA Notice of Availability of the Draft Environmental Impact Statement Rice Solar Energy Project, Riverside County, California...

  8. EA-1798: Abengoa Solar's Mojave Solar Project near Barstow, CA...

    Office of Environmental Management (EM)

    Abengoa Solar's Mojave Solar Project near Barstow, CA July 1, 2011 EA-1798: Final Environmental Assessment Loan Guarantee to Mojave Solar, LLC for the Abengoa Mojave Solar...

  9. Beta decay of Neutron-Rich 53-56Ca

    E-Print Network [OSTI]

    P. F. Mantica; R. Broda; H. L. Crawford; A. Damaske; B. Fornal; A. A. Hecht; C. Hoffman; M. Horoi; N. Hoteling; R. V. F. Janssens; J. Pereira; J. S. Pinter; J. B. Stoker; S. L. Tabor; T. Sumikama; W. B. Walters; X. Wang; S. Zhu

    2008-01-07T23:59:59.000Z

    Beta-decay properties of neutron-rich Ca isotopes have been obtained. Half-life values were determined for the first time for 54Ca [86(7) ms], 55Ca [22(2) ms], and 56Ca [11(2) ms]. The half-life of 230(6) ms deduced for 53Ca is significantly longer than reported previously, where the decay chain 53K -> 53Ca -> 53Sc was considered. A delayed gamma ray with energy 247 keV as identified following beta decay of 54Ca, and is proposed to depopulate the first 1+ level in 54Sc. The beta-decay properties compare favorably with the results of shell model calculations completed in the full pf-space with the GXPF1 interaction. The half-lives of the neutron-rich Ca isotopes are also compared with gross beta-decay theory. The systematic trend of the neutron-rich Ca half-lives is consistent with the presence of a subshell gap at N=32.

  10. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22533 library@mcmaster.ca Geospatial Data

    E-Print Network [OSTI]

    Haykin, Simon

    Master University Libraries · library.mcmaster.ca · 905.525.9140 x22533 · library@mcmaster.ca Geospatial Data.3 · Colour Printer · FME installed · Google Earth Pro #12;http://library.mcmaster.ca/maps/geospatial #12

  11. Structure of a Ca 2+ /CaM:Kv7.4 (KCNQ4) B-Helix

    E-Print Network [OSTI]

    Lim, Wendell

    Qiang Xu1 , Aram Chang1 , Alexandra Tolia1 and Daniel L. Minor Jr.1,2,3,4 1 - Cardiovascular Research 94720, USA Correspondence to Daniel L. Minor: daniel.minor@ucsf.edu http://dx.doi.org/10.1016/j.jmb.2012 elusive. Here, we show that both apo-CaM and Ca2+ /CaM bind to the C-terminal tail of the neuronal channel

  12. Are seawater Sr/Ca variations preserved in Quaternary foraminifera?

    SciTech Connect (OSTI)

    Stoll, H.M.; Schrag, D.P.; Clemens, S.C.

    1999-11-01T23:59:59.000Z

    High precision measurements of Sr/Ca in planktonic foraminifera for the last 150 ka reveal Sr/Ca variations of up to 12% on glacial/interglacial time scales. Although records showing the largest variations appear to be strongly influenced by selective dissolution, other records show Sr/Ca variations of 3--5% that do not covary with indicators of dissolution intensity and that are reproduced in sites of contrasting Quaternary dissolution histories. These systematic variations are characterized by high Sr/Ca ratios during glacial maxima, followed by steep decreases during deglaciation and gradual increases through interstadial periods, closely following {delta}{sup 18}O curves. Foraminiferal Sr/Ca variations may reflect changes in the Sr/Ca ratio of seawater, or they may be due to kinetically or biologically induced changes in Sr partitioning. Coupled numerical models of the Sr and Ca budgets of the ocean reveal that sea level changes, together with large changes in river fluxes and carbonate accumulation rates, can produce seawater Sr/Ca variations that approximate both the shape and amplitude of foraminiferal Sr/Ca variations. However, such extreme changes in river and carbonate fluxes conflict with existing data on carbonate accumulation rates and Sr isotopic constraints on the magnitude of variations in the river flux. Smaller variations (1--3%) in the Sr/Ca ratio of seawater likely characterize Quaternary glacial cycles. Changes in Sr partitioning due to glacial-interglacial changes in the carbonate ion concentration and other environmental factors likely produce additional variation in the Sr/Ca record of planktonic foraminifera.

  13. SNL/CA Environmental Management System Program Manual.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2005-09-01T23:59:59.000Z

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program was developed in accordance with Department of Energy (DOE) Order 450.1 and incorporates the elements of the International Standard on Environmental Management Systems, ISO 14001.

  14. ANNUAL FINANCIAL REPORT INSPIRING INNOVATION AND DISCOVERY | mcmaster.ca

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    .ca TABLE OF CONTENTS Year In Review..............................................................4 http://www.mcmaster.ca/presidentsoffice/fwi.html #12;4 2013/14 FINANCIAL ANALYSIS AND COMMENTARY T YEAR IN REVIEW McMaster University's Mosaic Enterprise Resource Planning System represents the confluence

  15. Endoplasmic reticulum protein BI-1 regulates Ca2+

    E-Print Network [OSTI]

    Nizet, Victor

    Endoplasmic reticulum protein BI-1 regulates Ca2+ -mediated bioenergetics to promote autophagy by inositol triphosphate receptors (IP3Rs) maintains cellular bioenergetics, thus suppressing autophagy. We. By reducing steady-state levels of ER Ca2+ via IP3Rs, BI-1 influences mitochondrial bioenergetics, reducing

  16. 1 888 939 3333 | cancer.ca Cancer Statistics

    E-Print Network [OSTI]

    Habib, Ayman

    1 888 939 3333 | cancer.ca Canadian Cancer Statistics 2013 Special topic: Liver cancer Produced by Canadian Cancer Society, Statistics Canada, Public Health Agency of Canada, Provincial/Territorial Cancer Registries cancer.ca/statistics #12;2Canadian Cancer Society n Canadian Cancer Statistics 2013 Citation

  17. Independent Oversight Review, Livermore Site Office - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Activity-level Work Planning & Control Office of Environmental Management Work Planning and Control Oversight Enterprise Assessments Targeted Review,...

  18. Lawrence Livermore National Laborotory Safety Basis Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    * ITS (Event Occurrence) 19362, USQ of ES&H Manual Documents, 605 * ITS (External - LSO PIRMAR) 30457, Periodic Issues Report (PIR), February 2010 * ITS (External - MAR) 25648.1,...

  19. Enterprise Assessments Targeted Review, Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    February 2015 Targeted Review of the Safety-Class Room Ventilation Systems and Associated Final Filtration Stages, and Review of Federal Assurance Capability at the Lawrence...

  20. Independent Oversight Review, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Radioactive and Hazardous Waste Management Storage Facilities, National Ignition Facility, and other selected radiological facilities. This assessment was performed from...

  1. Lawrence Livermore National Laboratory Proposal to Participate...

    Broader source: Energy.gov (indexed) [DOE]

    EXAFS, ESR) to elucidate chemical structures We are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation Other materials...

  2. Lawrence Livermore National Laboratory / Energy Security and

    E-Print Network [OSTI]

    (Acting) Associate Program Leader Highly Enriched Uranium, Guy Armantrout NERI, Gas Hydrates, Bill Durham Vision 21, Rick Blake Enhanced Oil Recovery, Jim Johnson Exploration Tools, Barry Kirkendall NGOTP, Rick

  3. Salvador M. Aceves Lawrence Livermore National Laboratory

    E-Print Network [OSTI]

    in overall pressure vessel shape #12;Space groups exhaust all possibilities for Packing 3D space stress distribution #12;­ Reject possibility of customized components (e.g. Space Shuttle tiles) ­ Design

  4. University of California LawrenceLivermore

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    and Material Microstructural Properties on Capillary Barrier Design and Performance H51A-30 1 2 Dorthe the Kelvin's Law-range of processes with a traditional numerical modeling approach, - the model might have 0.39 0.48 porosity of coarse layer 0.50 0.41 average pump rate (ml/h) 29.8 29.3 average pump rate (m

  5. National Securities Technologies _NSTec_ Livermore Operations...

    Broader source: Energy.gov (indexed) [DOE]

    NAICS North American Industry Classification System NIF National Ignition Facility NNSA National Nuclear Security Administration NRTL Nationally Recognized Testing Laboratory...

  6. ARM - Campaign Instrument - wfov-livermore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments? Weair Comments?

  7. Lawrence Livermore National Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest

  8. Livermore, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,Little ValleyLiuzhou Xinneng

  9. Preliminary Notice of Violation, Lawrence Livermore National...

    Energy Savers [EERE]

    Preliminary Notice of Violation, University of California - EA-2006-01 Type B Accident Investigation Board Report on the June 2002 High Radiation Dose to Extremities in...

  10. 'Jeopardy!' features Lawrence Livermore National Laboratory ...

    National Nuclear Security Administration (NNSA)

    and programs, among them laser science and the National Ignition Facility, high performance computing and Sequoia, astrophysics and the GeMINI planet imager, satellite technology...

  11. Enterprise Assessments Targeted Review, Lawrence Livermore National

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -Railroad Review ofDecember

  12. Lawrence Livermore National Laboratory (LLNL): Hydrogen Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of Energy LaunchingLAWRENCE63725

  13. Livermore Contract Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and EmissionsDepartment

  14. Categorical Exclusion Determinations: Lawrence Livermore Site Office |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho CategoricalKentucky

  15. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56Administration

  16. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory PlasmasSecurity

  17. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory

  18. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolarrd

  19. Sandia National Laboratories: Locations: Livermore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS Top

  20. Lawrence Livermore National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLCKirmartLGCLawrence

  1. Lawrence Livermore National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases TribuneEnergy Innovation Portal

  2. Sandia Energy - Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdates Techno-EconomicLaunch ofHandling

  3. Lawrence Livermore National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia:

  4. Biomedical Environmental Sciences Divisions Lawrence Livermore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnical Report:Biomedical Applications

  5. Livermore Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration SandiaAdministration NewsAdministrator |Life||

  6. Independent Activity Report, Lawrence Livermore National Laboratory -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar Energy Awareness in El-

  7. Independent Oversight Review, Lawrence Livermore National Laboratory -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar EnergyMarchReportofEnergy Site

  8. Sandia National Laboratories: Locations: Livermore, California: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About

  9. Independent Activity Report, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of theResponses to2012 | DepartmentFebruary

  10. Independent Oversight Review, Lawrence Livermore National Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecember 2001 |ofandJanuaryEnergySeptember

  11. Dr. Yuan Ping Lawrence Livermore National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69Christopher Fecko Dr.Friday,

  12. Boolean Modeling of Serotonin mediated Ca2+ Signaling pathway

    E-Print Network [OSTI]

    Albert, RĂ©ka

    for Boolean Modeling · 5-HTR* = Serotonin · PLC* = 5-HTR or DAG · cAMP* = 5-HTR · PKA* = cAMP · DAG* = PIP2 and (PLC or PLC) · PLC* = DAG · IP3 * = PIP2 and (PLC or PLC) · cGMP* = NO · cGMPK* = cGMP · PKC* = (PLC or PLC) and/or (Ca2+ or Ca2+ER) · TRPC3* = [(IP3R and PLC and CaM) and not HOMER] and Stathmin · HOMER

  13. A MONITOR FOR DETECTING NUCLEAR WASTE LEAKAGE IN A SUBSURFACE REPOSITORY

    E-Print Network [OSTI]

    Klainer, S.

    2010-01-01T23:59:59.000Z

    uranium analysis, laser-induced fluorescence, selective laser excitation, fluorescence (Submitted to Analytical Chemistry,Chemistry and Environmental Science Divisions Lawrence Livermore Laboratory, University of California, Livermore, CA 94550 ULTRA-TRACE DETECTION OF URANIUM

  14. Thermodynamic properties and atomic structure of Ca-based liquid alloys

    E-Print Network [OSTI]

    Poizeau, Sophie (Sophie Marie Claire)

    2013-01-01T23:59:59.000Z

    To identify the most promising positive electrodes for Ca-based liquid metal batteries, the thermodynamic properties of diverse Ca-based liquid alloys were investigated. The thermodynamic properties of Ca-Sb alloys were ...

  15. Monetite (CaHPO4) Synthesis in Ethanol at Room Temperature A. Cuneyt Tas*,w

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    (orthophosphoric acid, 85%). Precipitated CaCO3 (calcium carbonate, calcite form) powders with submicrometer not contain any unreacted CaCO3. Monetite powders were also found to have the ability to completely transform for CaHPO4 Á 2H2O (brushite), CaCO3, Ca10(PO4)6(OH)2 (hydroxyapatite, HA), b-Ca3(PO4)2 (whitlockite

  16. alto ca usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Technology, Pasadena, CA 91109, USA; amainzer@jpl.nasa.gov 2 Infrared Processing, Tucson, AZ 85719, USA 4 Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los...

  17. 10-04-2010 CA-B-10-0139

    Broader source: Energy.gov (indexed) [DOE]

    0-04-2010 CA-B-10-0139 Sandia National LaboratoriesCalifornia (SNLCA) proposes to fund a Campus Executive Fellowship for a student at the University of California at Berkeley....

  18. acid sensitize ca1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA1 pyramidal neurons GABA synapses and E20. Brains were removed and placed in oxygenated ice-cooled artificial CSF (ACSF) and hippocampal Cossart, Rosa 19 Encoding and Retrieval...

  19. Fall-run chinook salmon habitat assessment : lower Marsh Creek, Contra Costa, CA

    E-Print Network [OSTI]

    Levine, Jessie; Stewart, Rosalyn

    2004-01-01T23:59:59.000Z

    mean streamflow data, Marsh Creek near Brentwood CA, Marchmean streamflow data, Marsh Creek near Byron CA, 1952-1983.condition of the Marsh Creek watershed. Natural Heritage

  20. Optical induction of plasticity at single synapses reveals input-specific accumulation of CaMKII

    E-Print Network [OSTI]

    Oertner, Thomas

    Optical induction of plasticity at single synapses reveals input-specific accumulation of Ca spines on the same dendrite, providing evidence that CaMKII accumulation at postsynaptic sites induces CaMKII accumulation in spines (8­10) have created much interest because CaMKII activation is both

  1. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber,

    E-Print Network [OSTI]

    ] Laser­ablation inductively coupled plasma­mass spectrometry microanalyses of Mg/Ca across individual

  2. ATP-dependent regulation of nuclear Ca2 levels in plant cells

    E-Print Network [OSTI]

    Shaw, Peter

    ATP-dependent regulation of nuclear Ca2 levels in plant cells Tom D. Bunney, Peter J. Shaw, Peter A in [Ca2+ ] occurs in the nuclear periphery. The occurrence of ATP-dependent Ca2+ uptake in plant nuclei rights reserved. Key words: Nucleus; Plant; Ca2 uptake; Signal transduction; Imaging; Nuclear pore

  3. Company City State Contact Info Acacia Research Corporation Newport Beach CA www.acaciaresearch.com

    E-Print Network [OSTI]

    McGaughey, Alan

    Company City State Contact Info Acacia Research Corporation Newport Beach CA www. Fountain City CA www.kingston.com Microchip Technology Incorporated Chandler AZ www Milpitas CA www.sandisk.com Silicon Storage Technology, Inc. Sunnyvale CA www.sst.com SMART Modular

  4. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans

    E-Print Network [OSTI]

    Gruber, Nicolas

    Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans Richard A. Feely,1, * Christopher L carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from2 on CaCO3 shell­ forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per

  5. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22081 library@mcmaster.ca Helping Organizations Access, Share and

    E-Print Network [OSTI]

    Haykin, Simon

    @mcmaster.ca Organization Library of Congress Classification · Combination of letters and numbers that group materialsMaster University Libraries · library.mcmaster.ca · 905.525.9140 x22081 · library@mcmaster.ca Week 9 Helping Organizations Access, Share and Use Information Information Management: The Library Perspective Ines Perkovic

  6. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22533 library@mcmaster.ca Sociology 1A06

    E-Print Network [OSTI]

    Haykin, Simon

    @mcmaster.ca Sociology 1A06: Finding Academic Sources and Newspaper Articles Nora Gaskin Sociology Liaison Librarian Need@mcmaster.ca By the end of this session, you will be able to... Find Academic Sources journal articles books Find@mcmaster.ca Sociological Abstracts · the major database of academic journal articles for sociology · 1952 to the present

  7. Particle Decay from Giant Resonance Region of Ca-40

    E-Print Network [OSTI]

    Youngblood, David H.; Bacher, A. D.; Brown, D. R.; Bronson, J. D.; Moss, JM; Rozsa, C. M.

    1977-01-01T23:59:59.000Z

    , Texas A& M University, College Station, Texas 77843 (Received 12 July 1976) The reactions ' Ca(a, 2a)' Ar and Ca(a, ap)' K have been studied at 115-MeV bombarding energy in order to obtain the charged particle decay characteristics of the giant... quadrupole resonance at E?= 18.0 MeV. Energy and angle were measured for both outgoing light particles to completely define the kinematics. Weak proton decay to the d?, (I ~ /I = 0.08+00,') and s?, (I p /I = 0.22+0'08) hole states of "K was observed from...

  8. The fabrication and characterization of (Pb,Ca)TiO{sub 3} pyroelectric thin films with different Ca contents

    SciTech Connect (OSTI)

    Chang, C. C.; Lai, Y. C. [Department of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan 20224 (China)

    2007-05-15T23:59:59.000Z

    This study uses radio-frequency sputtering methods to deposit lead titanate thin films with different contents of Ca on Pt/Ti/SiO{sub 2}/Si substrates to form Pb{sub 1-x}Ca{sub x}TiO{sub 3} (PCT) thin films. The PCT thin films contained different amounts of Ca in order to examine the influence of the Ca content on the properties of thin films. Analysis of the electrical properties of the PCT thin films revealed that their relative permittivities, dissipation factors, and pyroelectric coefficients tend to increase with the Ca content. On the other hand, the coercive field and remnant polarization decreased with an increase in the Ca content. In addition, the measured data indicated that the figure of merit for voltage (F{sub v}) and the figure of merit for detectivity (F{sub D}) of a PCT (30) thin film are the highest with values of 0.033 m{sup 2} C{sup -1} and 0.862x10{sup -6} (m{sup 3} J{sup -1}){sup 1/2}, respectively. Therefore, the PCT (30) thin film was evaluated as the best composition for manufacturing pyroelectric infrared (PIR) sensors. PCT thin films were also used to fabricate thermal PIR sensors by surface machining technology. The detectivity measurement showed that the PIR sensor with PCT (30) thin films has the highest value of D{sup *} (1.29x10{sup 7} cm Hz{sup 1/2}/W) at 0.3 Hz.

  9. Ca II 854.2 nm BISECTORS AND CIRCUMFACULAR REGIONS

    SciTech Connect (OSTI)

    Pietarila, A.; Harvey, J. W. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)] [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2013-02-20T23:59:59.000Z

    Active regions appear bright in Ca II 854.2 nm line core intensity while the surrounding areas, referred to as circumfacular regions, are darker than the active region or the quiet Sun. We use Synoptic Optical Long-term Investigations of the Sun Vector Spectromagnetograph Ca II 854.2 nm data (photospheric and chromospheric full disk magnetograms as well as high spectral resolution Stokes I and V profiles) to study the connection between magnetic canopies, circumfacular regions, and Ca II 854.2 nm bisector amplitudes (spans). The line bisector amplitude is reduced in circumfacular regions, where the 3 minute period power in chromospheric H{alpha} intensity oscillations is also reduced relative to the surrounding quiet Sun. The latter is consistent with magnetic canopies in circumfacular regions suppressing upward propagating steepening acoustic waves. Our results provide further strong evidence for shock waves as the cause of the inverse C-shaped bisector and explain the observed solar cycle variation of the shape and amplitude of Sun-as-a-star Ca II 854.2 nm bisectors.

  10. Roadmap: Art History Bachelor of Arts [CA-BA-ARTH

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Art History ­ Bachelor of Arts [CA-BA-ARTH] College of the Arts School of Art Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 29-May-12/JS This roadmap is a recommended semester Elective (upper division) 3 Minor Requirements or General Electives 9 See note 2 on page 2 #12;Roadmap

  11. Roadmap: Art History Bachelor of Arts [CA-BA-ARTH

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Art History ­ Bachelor of Arts [CA-BA-ARTH] College of the Arts School of Art Catalog Year: 2013­2014 Page 1 of 2 | Last Updated: 30-Apr-13/JS This roadmap is a recommended semester Elective (upper division) 3 Minor Requirements or General Electives 9 See note 2 on page 2 #12;Roadmap

  12. Synthesis of BiPbSrCaCuO superconductor

    DOE Patents [OSTI]

    Hults, William L. (Los Alamos, NM); Kubat-Martin, Kimberly A. (Espanola, NM); Salazar, Kenneth V. (Espanola, NM); Phillips, David S. (Los Alamos, NM); Peterson, Dean E. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  13. The Monieson Centre www.business.queensu.ca/knowledge

    E-Print Network [OSTI]

    Graham, Nick

    About The Monieson Centre www.business.queensu.ca/knowledge Generating Value Through Knowledge wwwWarner-Lambert),The Monieson Centre was established at Queen's School of Business in 1999 to study the management of knowledge." By taking the road not travelled, The Monieson Centre has earned many "firsts."We were the first business

  14. Center for Adaptive Optics* Santa Cruz,CA

    E-Print Network [OSTI]

    Grether, Gregory

    Center for Adaptive Optics* Santa Cruz,CA The Center for Adaptive Optics (CfAO) will concentrate on astronomical and vision science applications of adaptive optics and will reach out to other adaptive optics communities to share technologies. It will develop new instruments optimized for adaptive optics. Adaptive

  15. www.usask.ca/learning_charter OurLearningVision

    E-Print Network [OSTI]

    Saskatchewan, University of

    other institutions of learning. Our students undertake programs of many different types and durations types: Discovery,Knowledge, Integrity,Skills, and Citizenship. Core Learning Goals · Apply critical1 www.usask.ca/learning_charter OurLearningVision The University of Saskatchewan Learning Charter

  16. California Energy Commission www.energy.ca.gov

    E-Print Network [OSTI]

    California Energy Commission www.energy.ca.gov TECHNICAL ASSISTANCE TO PUBLIC AGENCIES Request Program o Energy Partnership Technical Assistance Program o Energy Conservation Assistance Act (ECAA) Loan Program · RFQ Overview · How to Respond to this RFQ · Questions and Answers California Energy Commission

  17. rec.sfu.ca it's for everyone REC LEADERSHIP

    E-Print Network [OSTI]

    rec.sfu.ca · it's for everyone REC LEADERSHIP OPPORTUNITIES POSITION TITLE: FITNESS are part of a leadership program and include goal setting and professional development activities. The 3 · Be a part of a larger leadership program including goal setting and professional development. · Increase

  18. EMPLOYMENT SUMMARY FOR 2011 GRADUATES San Francisco, CA 94117

    E-Print Network [OSTI]

    Galles, David

    EMPLOYMENT SUMMARY FOR 2011 GRADUATES San Francisco, CA 94117 Website : http - Start Date Deferred 0 Total graduates 222 Unemployed - Not Seeking 8 Employment Status Unknown 13 Unemployed - Seeking 26 Employed - Undeterminable * 0 0 0 0 0 Employed - Bar Passage Required 76 3 6 26 111

  19. Synthesis of BiPbSrCaCuO superconductor

    DOE Patents [OSTI]

    Hults, W.L.; Kubat-Martin, K.A.; Salazar, K.V.; Phillips, D.S.; Peterson, D.E.

    1994-04-05T23:59:59.000Z

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi[sub a]Pb[sub b]Sr[sub c]Ca[sub d]Cu[sub e]O[sub f] wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10[+-]z by reacting a mixture of Bi[sub 4]Sr[sub 3]Ca[sub 3]Cu[sub 4]O[sub 16[+-]z], an alkaline earth metal cuprate, e.g., Sr[sub 9]Ca[sub 5]Cu[sub 24]O[sub 41], and an alkaline earth metal plumbate, e.g., Ca[sub 2[minus]x]Sr[sub x]PbO[sub 4] wherein x is about 0.5, is disclosed.

  20. http://launch.cs.ualberta.ca Department of Computing Science

    E-Print Network [OSTI]

    Machel, Hans

    http://launch.cs.ualberta.ca Department of Computing Science 2-32 Athabasca Hall University of Computing Science at the University of Alberta offers students the chance to explore their passion having personalized attention from their camp instructors. All Computing Science Summer Camps run from 9

  1. Mills Memorial Library Directory http://library.mcmaster.ca

    E-Print Network [OSTI]

    Thompson, Michael

    Mills Memorial Library Directory http://library.mcmaster.ca 2011 Lower Level Archives & Research Collections Bertrand Russell Archives Preservation 1st Floor Library Services (Circulation, Reserve, Interlibrary Loan, Research Help) Bertrand Russell Research Centre L111 Connections Centre L113 Digital Lab L

  2. Mills Memorial Library Directory http://library.mcmaster.ca

    E-Print Network [OSTI]

    Thompson, Michael

    Mills Memorial Library Directory http://library.mcmaster.ca 2010 Lower Level Archives & Research Collections Bertrand Russell Archives Preservation 1st Floor Library Services (Circulation, Reserve, Interlibrary Loan, Research Help) Bertrand Russell Research Centre L111 Connections Centre L113 Digital Lab L

  3. Support.Strategies.Resources. learningcommons.sfu.ca

    E-Print Network [OSTI]

    Support.Strategies.Resources. learningcommons.sfu.ca Demystifying Academic Writing What is academic writing? Academic writing (AW) is the general term for several distinct forms of professional writing practiced at the university level: essays, critical articles or reviews, and scientific reports are among

  4. JOURNAL OF CATALYSIS 177, 343351 (1998) ARTICLE NO. CA982143

    E-Print Network [OSTI]

    Iglesia, Enrique

    1998-01-01T23:59:59.000Z

    - modynamically favorable at high temperatures, but often leads to high yields of coke and smaller hydrocarbons, but it requires a selective catalyst in order to avoid complete oxidation to CO and CO2. A number of recentJOURNAL OF CATALYSIS 177, 343­351 (1998) ARTICLE NO. CA982143 Structure and Properties of Vanadium

  5. learn.environment.utoronto.ca @EnvironmentAtUT

    E-Print Network [OSTI]

    Sokolowski, Marla

    University of Toronto learn.environment.utoronto.ca #12;AECOM Agriculture Canada Alberta Energy Apotex Atomic Canadian Mint State University of New York, Fredonia Swiss Solar Development Group Teknion Toronto District 401 8 Wind Energy CRE 402 9 Urban Energy Systems CRE 403 9 Solar Energy CRE 404 10 Geographic

  6. CA STATEWIDE RASS JOB #C03152 GILMORE RESEARCH GROUP

    E-Print Network [OSTI]

    ELEMNCDA Page 4....POST CLEANING ANNUALIZED ELECTRIC BILLS - THIS VALUE WAS USED AS INPUT INTO CDA Table THMMNCDA Page 5....POST CLEANING ANNUALIZED GAS BILLS - THIS VALUE WAS USED AS INPUT INTO CDA Table QA1 FOR NATURAL GAS SERVICE TO YOUR HOME? Table QB1 Page 41........B1 DO YOU PAY TO HEAT YOUR HOME? #12;CA

  7. Absorption spectrum of Ca atoms attached to $^4$He nanodroplets

    E-Print Network [OSTI]

    Alberto Hernando; Manuel Barranco; Marek Kro?nicki; Ricardo Mayol; Martí Pi

    2007-11-12T23:59:59.000Z

    Within density functional theory, we have obtained the structure of $^4$He droplets doped with neutral calcium atoms. These results have been used, in conjunction with newly determined {\\it ab-initio} $^1\\Sigma$ and $^1\\Pi$ Ca-He pair potentials, to address the $4s4p$ $^1$P$_1 \\leftarrow 4s^2$ $^1$S$_0$ transition of the attached Ca atom, finding a fairly good agreement with absorption experimental data. We have studied the drop structure as a function of the position of the Ca atom with respect of the center of mass of the helium moiety. The interplay between the density oscillations arising from the helium intrinsic structure and the density oscillations produced by the impurity in its neighborhood plays a role in the determination of the equilibrium state, and hence in the solvation properties of alkaline earth atoms. In a case of study, the thermal motion of the impurity within the drop surface region has been analyzed in a semi-quantitative way. We have found that, although the atomic shift shows a sizeable dependence on the impurity location, the thermal effect is statistically small, contributing by about a 10% to the line broadening. The structure of vortices attached to the calcium atom has been also addressed, and its effect on the calcium absorption spectrum discussed. At variance with previous theoretical predictions, we conclude that spectroscopic experiments on Ca atoms attached to $^4$He drops will be likely unable to detect the presence of quantized vortices in helium nanodrops.

  8. www.schoolofpublicpolicy.sk.ca JULY2010ISSUE4

    E-Print Network [OSTI]

    Saskatchewan, University of

    www.schoolofpublicpolicy.sk.ca JULY2010ISSUE4 JSGS WorkinG PaPer SerieS Wheat and Trade Policy POLICY UNIVERSITY OF REGINA Globalization and the Wheat Trade While there is considerable debate con and soil conditions were suit- able, particularly in the United States, Canada, Argentina, and Australia

  9. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  10. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence), different Ca-species such as calcite, aragonite-like CaCO3, and Ca adsorbed on extracellular polymers were of the amorphous aragonite-like CaCO3 was found to take place within the tightly bound extracellular polymeric

  11. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals. Isotopic Fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with Carbonate Minerals. Abstract: Density...

  12. Consequences of Molecular-Level Ca21 Channel and Synaptic Vesicle

    E-Print Network [OSTI]

    Delaney, Kerry R.

    be exposed to markedly different [Ca21 ], varying by up to 13-fold, depending on their position around al., 1998; Jarvis and Zamponi, 2001). The interactions between these proteins and the Ca21 channel

  13. Persistent Reversal of Enhanced Amphetamine Intake by Transient CaMKII Inhibition

    E-Print Network [OSTI]

    Loweth, Jessica A.

    Amphetamine exposure transiently increases Ca2+/calmodulin-dependent protein kinase II (CaMKII) ? expression in the nucleus accumbens (NAcc) shell and this persistently increases local GluA1 S831 phosphorylation and enhances ...

  14. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA...

    Energy Savers [EERE]

    KB Home, San Marcos, CA, Production Home DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home Case study of a DOE Zero Energy Ready Home in San Marcos,...

  15. ANNUAL FINANCIAL REPORT 2012/2013 INSPIRING INNOVATION AND DISCOVERY | mcmaster.ca

    E-Print Network [OSTI]

    Thompson, Michael

    | mcmaster.ca TABLE OF CONTENTS Year In Review..............................................................3://www.mcmaster.ca/presidentsoffice/fwi.html #12;3 YEAR IN REVIEW 2012/13 YEAR IN REVIEW This year in McMaster University's history will be marked

  16. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using

    E-Print Network [OSTI]

    Coppersmith, Susan N.

    Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption are demonstrated here on geologic calcite (CaCO3) and used to investigate the prismatic layer of a mollusk shell

  17. FILTRATION DYNAMIQUE DE SUSPENSIONS DE CaCO3 ET DE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    FILTRATION DYNAMIQUE DE SUSPENSIONS DE CaCO3 ET DE SOLUTIONS DE SURFACTANTS Soutenue le 26 Juin. tel-00413890,version1-7Sep2009 #12;Résumé Filtration dynamique de suspensions de CaCO3 et de solutions

  18. ANL supplement to the CA-Disspla user's manual

    SciTech Connect (OSTI)

    Thommes, M.M.; Larson, E.M. (ed.)

    1989-03-01T23:59:59.000Z

    The ANL Supplement to the CA-DISSPLA USER'S MANUAL (ANL/TM 467) summarizes installation-dependent options and features of Disspla; this Supplement supersedes Using Cuechart, Tellegraf, and Disspla at ANL (ANL/TM 433). The information in this Supplement applies to version 10.5 of Disspla (which is currently installed in CMS, in MVS batch, and in several Argonne VAX/VMS systems), to Disspla 11.0 on the VAX 8700, and to version 10.0 of Disspla (which is currently installed on the Cray X-MP/14 under UNICOS). Unless this Supplement states otherwise, you should write Disspla programs according to instructions in the CA-Disspla User's Manual. This chapter contains information common to Disspla as installed in CMS, MVS, VAX/VMS, and UNICOS. (Chapter Two contains information specific to using Disspla in each of these computer systems.) 9 tabs.

  19. The Infrared Ca II lines in Sunspot Umbrae

    E-Print Network [OSTI]

    Kollatschny, W; Wiehr, E; Fallipou, M A

    2012-01-01T23:59:59.000Z

    We present an empirical working model for sunspot umbrae which equally describes observed continuum intensities and line profiles. The wings of the infrared Ca II lines depend sensitively on the temperature gradient at -0.6 umbra and are thus insensitive to parasitic light. It is also shown that the infrared K I 7699 line is suitable for umbral spectroscopy since it is not seriously blended, its continuum is well defined and it is less influenced by parasitic light as compared to lines in the visible spectrum, due to the smaller umbal contrast. Calculations show that the umbral gradient dT/d(tau), required to fit the Ca II triplet lines, strongly conflicts with the observed profiles of K I 7699, NaD2 and Fe I 5434 (g=0), even when assuming vanishing Fe II lines for a maximum correction of parasitic light. It is shown that the discrepancy from the different line pr...

  20. Ca(OH).sub.2 -treated ceramic microsphere

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

  1. Ca(OH)[sub 2]-treated ceramic microsphere

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-04-18T23:59:59.000Z

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

  2. Ca(OH).sub.2 -treated ceramic microsphere

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1990-01-01T23:59:59.000Z

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350.degree. C.) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH).sub.2 for up to 20 hours and at 100.degree.-300.degree. C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours.

  3. Ca(OH)[sub 2]-treated ceramic microsphere

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1990-06-26T23:59:59.000Z

    Geothermal wells with lost circulation problems are treated with a lightweight, high temperature (i.e. 350 C) cement slurry which incorporates pressure resistant hollow microspheres into the slurry wherein the spheres have been pretreated with an alkali compound such as Ca(OH)[sub 2] for up to 20 hours and at 100--300 C. Preferably, the alkali solution is a saturated aqueous solution and the treatment is for 10 hours. 2 figs.

  4. Hydrogen Industrial Trucks

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  5. CSA International Certification Discussion Hydrogen Technology Workshop

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  6. Certification and Listing Process and Procedures Workshop

    Broader source: Energy.gov [DOE]

    Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

  7. Ca2+-Doped CeBr3 Scintillating Materials

    SciTech Connect (OSTI)

    Guss, Paul [NSTec; Foster, Michael E. [SNL; Wong, Bryan M. [SNL; Doty, F. Patrick [SNL; Shah, Kanai [RMD; Squillante, Michael R. [RMD; Shirwadkar, Urmila [RMD; Hawrami, Rastgo [RMD; Tower, Josh [RMD; Yuan, Ding [NSTec

    2014-01-21T23:59:59.000Z

    Despite the outstanding scintillation performance characteristics of cerium tribromide (CeBr3) and cerium-activated lanthanum tribromide, their commercial availability and application are limited due to the difficulties of growing large, crack-free single crystals from these fragile materials. This investigation employed aliovalent doping to increase crystal strength while maintaining the optical properties of the crystal. One divalent dopant (Ca2+) was used as a dopant to strengthen CeBr3 without negatively impacting scintillation performance. Ingots containing nominal concentrations of 1.9% of the Ca2+ dopant were grown. Preliminary scintillation measurements are presented for this aliovalently doped scintillator. Ca2+-doped CeBr3 exhibited little or no change in the peak fluorescence emission for 371 nm optical excitation for CeBr3. The structural, electronic, and optical properties of CeBr3 crystals were studied using the density functional theory within the generalized gradient approximation. The calculated lattice parameters are in good agreement with the experimental data. The energy band structures and density of states were obtained. The optical properties of CeBr3, including the dielectric function, were calculated.

  8. Hydrogen Energy CA Project (08-AFC-8) Loreen R. McMahon

    E-Print Network [OSTI]

    Hydrogen Energy CA Project (08-AFC-8) Loreen R. McMahon Associate Public Adviser September 16, 2009 (email notification) www.energy.ca.gov/listservers /hydrogen_energy Notices and Announcements Documents > www.energy.ca.gov/sitingcases/hydrogen_energy/documents #12;Informal Participation Comments

  9. Introduction The formation of solid calcium carbonate (CaCO3) is

    E-Print Network [OSTI]

    Hell, Stefan W.

    Introduction The formation of solid calcium carbonate (CaCO3) is an important process in biological the nucleation and growth of solid CaCO3. Insoluble Langmuir monolayers at the air-water interface provide crystallisation of silver propionate [8]. A new approach in the investigation of CaCO3 formation at interfaces

  10. Mechanical Strength of Amorphous CaCO3 Colloidal Michael Faatz, Wei Cheng, and Gerhard Wegner*

    E-Print Network [OSTI]

    Mechanical Strength of Amorphous CaCO3 Colloidal Spheres Michael Faatz, Wei Cheng, and Gerhard, University of Crete Received March 7, 2005. In Final Form: June 2, 2005 AmorphousglassyCaCO3 of glassy CaCO3 at a density of 1.9 g/cm3 were extracted from the particle vibration frequencies

  11. Modeling the dissolution of settling CaCO3 in the ocean Heiko Jansen,1

    E-Print Network [OSTI]

    Zeebe, Richard E.

    Modeling the dissolution of settling CaCO3 in the ocean Heiko Jansen,1 Richard E. Zeebe, and Dieter generate a microenvironment that is undersaturated with respect to CaCO3. In marine snow aggregates dissolved in the water column (60­80% of CaCO3 production), however, cannot be explained by the mechanisms

  12. Response of deep-sea CaCO3 sedimentation to Atlantic meridional overturning circulation shutdown

    E-Print Network [OSTI]

    Chikamoto, Megumi O.

    Response of deep-sea CaCO3 sedimentation to Atlantic meridional overturning circulation shutdown of the preservation and burial of calcium carbonate (CaCO3) in deep ocean sediments and associated atmospheric pCO2 significantly decreases the CaCO3 content in North Atlantic sediments. This is a consequence of a decrease

  13. CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism

    E-Print Network [OSTI]

    Wehrli, Bernhard

    CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism M and 4. The kinetics of CaCO3 nucleation was compared between experiments: (i) with ongoing the nucleation process of CaCO3 at the surface of S. leopoliensis. Furthermore, ion exchange processes did

  14. High-pressure phases of CaCO3: Crystal structure prediction and experiment

    E-Print Network [OSTI]

    Oganov, Artem R.

    High-pressure phases of CaCO3: Crystal structure prediction and experiment Artem R. Oganov a October 2005 Available online 18 November 2005 Editor: G.D. Price Abstract Post-aragonite phase of CaCO3 transformation in CaCO3 at 40 GPa, Am. Mineral. 90 (2005) 667­671], is believed to be a major carbon- containing

  15. Deep Pacific CaCO3 compensation and glacialinterglacial atmospheric CO2

    E-Print Network [OSTI]

    Lynch-Stieglitz, Jean

    Deep Pacific CaCO3 compensation and glacial­interglacial atmospheric CO2 Thomas M. Marchittoa into the deep ocean during the last glacial period. According to the dCaCO3 compensationT hypothesis dissolution of CaCO3. The resulting increase in whole-ocean pH may have had a significant impact

  16. O isotopic composition of CaCO3 measured by continuous ow isotope ratio mass spectrometry

    E-Print Network [OSTI]

    d13 C and d18 O isotopic composition of CaCO3 measured by continuous Żow isotope ratio mass. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction

  17. Check our website at: library.queensu.ca/research/guide/genealogy LIBRARY LOCATIONS & ACRONYMS

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    GENEALOGY Check our website at: library.queensu.ca/research/guide/genealogy LIBRARY LOCATIONS & ACRONYMS SL Stauffer Library OGS Ontario Genealogical Society Docs Government Documents, Stauffer Library) Kingston Public Library Genealogy Information: www.kfpl.ca/ and http://www.kfpl.ca/genealogy

  18. Microscopic description of isoscalar giant resonance excitations in ??Ca and ąą?SN nuclei

    E-Print Network [OSTI]

    Karki, Bhishma

    2000-01-01T23:59:59.000Z

    excitation for Ca is shown in Figure 18. 26 5 4c mb 1 ?, 1 4 ebee 4E' ee 51e 0 5 0 10 20 30 40 50 60 E(Meri Fig. 13. Differential Cross-section for ISGDR for Ca at 1 From the figure it is seen that the cross-section for Ca is highest at about 14...

  19. Corrosion of, and cellular responses to MgZnCa bulk metallic glasses Xuenan Gu a

    E-Print Network [OSTI]

    Zheng, Yufeng

    Corrosion of, and cellular responses to Mg­Zn­Ca bulk metallic glasses Xuenan Gu a , Yufeng Zheng a: Magnesium alloy Bulk metallic glass Mechanical property Corrosion Cytotoxicity a b s t r a c t Mg­Zn­Ca bulk, mechanical testing, corrosion and cytotoxicity tests. It was found that the Mg66Zn30Ca4 sample presents

  20. Modulation of Spike-Mediated Synaptic Transmission by Presynaptic Background Ca2

    E-Print Network [OSTI]

    Calabrese, Ronald

    -mediated and graded components, both of which wax and wane on a cycle- by-cycle basis. Low-threshold Ca2 currents gate the graded component. Ca imaging experiments indicate that these low-threshold currents are widespread concentration changes evoked by low- threshold Ca2 currents modulate spike-mediated synaptic transmission. We

  1. In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy q

    E-Print Network [OSTI]

    Zheng, Yufeng

    In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy q Y Biodegradation Cytotoxicity Powder metallurgy a b s t r a c t Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge

  2. Steam catalysis in CaO carbonation under low steam partial pressure

    SciTech Connect (OSTI)

    Yang, S.J.; Xiao, Y.H. [Chinese Academy of Science, Beijing (China)

    2008-06-15T23:59:59.000Z

    CaO was widely used to capture CO{sub 2} in direct hydrogen production process, where steam always existed simultaneously. The effect of steam on CaO carbonation performance under low steam partial pressure was investigated using a pressurized thermogravimetric apparatus. The experimental results revealed that steam improved CaO carbonation performance significantly no matter whether Ca(OH){sub 2} was produced or not. At 823 K and 0.5 MPa of steam partial pressure, effect of steam on CaO carbonation performance could not be attributed mainly to production of Ca(OH){sub 2} because the hydration rate of CaO was very slow. The main reason was steam catalysis in CaO carbonation. Enhancement of steam on CaO carbonation performance without Ca(OH){sub 2} production could not be attributed to improvement of steam on the physical property, but to catalytic effect of steam. Effects of CaO precursors, CO{sub 2} partial pressure, steam partial pressure, and temperature with steam addition on CaO carbonation performance were also investigated.

  3. Measurement of neutron capture on $^{48}$Ca at thermal and thermonuclear energies

    E-Print Network [OSTI]

    H. Beer; C. Coceva; P. V. Sedyshev; Yu. P. Popov; H. Herndl; R. Hofinger; P. Mohr; H. Oberhummer

    1996-08-07T23:59:59.000Z

    At the Karlsruhe pulsed 3.75\\,MV Van de Graaff accelerator the thermonuclear $^{48}$Ca(n,$\\gamma$)$^{49}$Ca(8.72\\,min) cross section was measured by the fast cyclic activation technique via the 3084.5\\,keV $\\gamma$-ray line of the $^{49}$Ca-decay. Samples of CaCO$_3$ enriched in $^{48}$Ca by 77.87\\,\\% were irradiated between two gold foils which served as capture standards. The capture cross-section was measured at the neutron energies 25, 151, 176, and 218\\,keV, respectively. Additionally, the thermal capture cross-section was measured at the reactor BR1 in Mol, Belgium, via the prompt and decay $\\gamma$-ray lines using the same target material. The $^{48}$Ca(n,$\\gamma$)$^{49}$Ca cross-section in the thermonuclear and thermal energy range has been calculated using the direct-capture model combined with folding potentials. The potential strengths are adjusted to the scattering length and the binding energies of the final states in $^{49}$Ca. The small coherent elastic cross section of $^{48}$Ca+n is explained through the nuclear Ramsauer effect. Spectroscopic factors of $^{49}$Ca have been extracted from the thermal capture cross-section with better accuracy than from a recent (d,p) experiment. Within the uncertainties both results are in agreement. The non-resonant thermal and thermonuclear experimental data for this reaction can be reproduced using the direct-capture model. A possible interference with a resonant contribution is discussed. The neutron spectroscopic factors of $^{49}$Ca determined from shell-model calculations are compared with the values extracted from the experimental cross sections for $^{48}$Ca(d,p)$^{49}$Ca and $^{48}$Ca(n,$\\gamma$)$^{49}$Ca.

  4. Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    with either calcium carbonate (CaCO 3 ) or sevelamer. Serumlevels. Keywords Calcium carbonate . Parathyroid hormone .with either calcium carbonate (CaCO 3 ) or sevelamer in

  5. Ionic conductivity and the formation of cubic CaH{sub 2} in the LiBH{sub 4}–Ca(BH{sub 4}){sub 2} composite

    SciTech Connect (OSTI)

    Sveinbjörnsson, Dadi; Blanchard, Didier [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde (Denmark); Myrdal, Jon Steinar Gardarsson [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde (Denmark); Center for Atomic-Scale Materials Design, Department of Physics, Technical University of Denmark, Anker Engelunds Vej 1, DK-2800 Lyngby (Denmark); Younesi, Reza; Viskinde, Rasmus [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde (Denmark); Riktor, Marit Dalseth [Physics Department, Institute for Energy Technology, Instituttveien 18, P.O. Box 40, NO-2027 Kjeller (Norway); Norby, Poul [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde (Denmark); Vegge, Tejs, E-mail: teve@dtu.dk [Department of Energy Conversion and Storage, Technical University of Denmark, Frederiksborgvej 399, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2014-03-15T23:59:59.000Z

    LiBH{sub 4}–Ca(BH{sub 4}){sub 2} composites were prepared by ball milling. Their crystal structures and phase composition were investigated using synchrotron X-ray diffraction and Rietveld refinement, and their ionic conductivity was measured using impedance spectroscopy. The materials were found to form a physical mixture. The composites were composed of ?-Ca(BH{sub 4}){sub 2}, ?-Ca(BH{sub 4}){sub 2} and orthorhombic LiBH{sub 4}, and the relative phase quantities of the Ca(BH{sub 4}){sub 2} polymorphs varied significantly with LiBH{sub 4} content. The formation of small amounts of orthorhombic CaH{sub 2} and cubic CaH{sub 2} in a CaF{sub 2}-like structure was observed upon heat treatment. Concurrent formation of elemental boron may also occur. The ionic conductivity of the composites was measured using impedance spectroscopy, and was found to be lower than that of ball milled LiBH{sub 4}. Electronic band structure calculations indicate that cubic CaH{sub 2} with hydrogen defects is electronically conducting. Its formation along with the possible precipitation of boron therefore has an effect on the measured conductivity of the LiBH{sub 4}–Ca(BH{sub 4}){sub 2} composites and may increase the risk of an internal short-circuit in the cells. -- Graphical abstract: An Arrhenius plot of the ionic conductivity of the LiBH{sub 4}–Ca(BH{sub 4}){sub 2} composites (red, blue, green). The ionic conductivity of ball milled (gray) and non-milled (black) LiBH{sub 4} is shown for comparison. The filled symbols are measured during heating runs and the empty symbols are measured during subsequent cooling runs. The conductivity of the composites is in all cases higher during cooling, most probably due to the formation of an electronically conducting layer containing defect-rich cubic CaH{sub 2}. Such layer formation could eventually lead to a short circuit in the cell and reveals a general issue of chemical stability that should be attended to in the development of solid electrolyte materials. Highlights: • The LiBH{sub 4}–Ca(BH{sub 4}){sub 2} composite forms a physical mixture rather than a solid solution. • The formation of defect-rich, cubic CaH{sub 2} in a CaF{sub 2}-like structure is observed. • A new layer containing cubic CaH{sub 2} is conducting and may lead to a short-circuit.

  6. Validity of pair truncations with effective interaction in Ca isotopes

    SciTech Connect (OSTI)

    Lei, Y.; Xu, Z. Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Y. M. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); Arima, A. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyoda ku, Tokyo 102-0091 (Japan)

    2010-09-15T23:59:59.000Z

    Using the GXPF1A interaction for the pf shell nuclei, we calculate energy levels and E2 transition rates for the semimagic nuclei {sup 43-46}Ca within both the exact shell-model space and a number of subspaces constructed using collective nucleon pairs. We present explicitly the overlaps between wave functions of low-lying states obtained from shell-model calculations and those obtained using truncated nucleon-pair subspaces. These examples are used as touchstones of pair approximations.

  7. California Fuel Cell Partnership CaFCP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin ChartsQuality Act Jump to: navigation,CaFCP

  8. Property:EIA/861/IsoCa | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve JumpallowedAltFuelVehicle Jump to:IsoCa Jump

  9. RAPID/Roadmap/14-CA-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutionsPublicQuanlightR3(2)3-AK-aNV-aCA-e <

  10. RAPID/Roadmap/7-CA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-a <NV-ca2)b <

  11. RAPID/Roadmap/7-CA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to: navigation, searcheWA-a <NV-ca2)b

  12. 10-04-2010 CA-B-10-0139

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia0-04-2010 CA-B-10-0139

  13. 10-04-2010 CA-B-10-0153

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia0-04-2010 CA-B-10-01393

  14. 10-04-2010 CA-B-10-0154

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National01 Sandia0-04-2010 CA-B-10-013934

  15. 11-03-2010 CA-B-10-0135

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 CA-B-10-0135 Sandia

  16. 11-03-2010 CA-B-10-0149

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer | National011-03-2010 CA-B-10-0135

  17. Workplace Charging Challenge Partner: Alameda County, CA | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnershipsAngieTerri QuinnCapitalEnergy Alameda County, CA

  18. RAPID/Roadmap/1-CA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformation TexasTexas) Redirect page JumpAK-a <CA-a

  19. RAPID/Roadmap/19-CA-b | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-b <

  20. RAPID/Roadmap/19-CA-c | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-b <c <

  1. RAPID/Roadmap/19-CA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-b <c

  2. RAPID/Roadmap/19-CA-e | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-b

  3. RAPID/Roadmap/19-CA-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bf <

  4. RAPID/Roadmap/19-CA-g | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ | RoadmapHI-acCA-bf <g

  5. RAPID/Roadmap/4-CA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione < RAPID‎ |gWA-eID-b <aib <CA-a

  6. RAPID/Roadmap/8-CA-a | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <

  7. RAPID/Roadmap/8-CA-d | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <d

  8. RAPID/Roadmap/8-CA-f | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethodInformatione <RAPID/Roadmap/7-FD-k <TX-ca <df

  9. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22081 library@mcmaster.ca High School Business Heroes

    E-Print Network [OSTI]

    Haykin, Simon

    to all types of library materials is available for free to anyone with an HPL card. · Don't have a cardMaster University Libraries · library.mcmaster.ca · 905.525.9140 x22081 · library@mcmaster.ca High School Business Heroes Research Resources Innis Library (Business) KTH-108 Ines Perkovic & Ali Versluis March 2014 #12

  10. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22533 library@mcmaster.ca Sociology 1A06

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    @mcmaster.ca Sociological Abstracts · the major database of academic journal articles for sociology · 1952 to the present: Finding Books and Articles Nora Gaskin Sociology Liaison Librarian Mills Research Help 2nd floor - ext@mcmaster.ca By the end of this session, you will be able to... Find Peer-Reviewed Journal Articles Find Media Accounts

  11. Preparation of CaO as OLED getter material through control of crystal growth of CaCO{sub 3} by block copolymers in aqueous solution

    SciTech Connect (OSTI)

    Park, Jae-Hyung [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)], E-mail: seongoh@hanyang.ac.kr

    2009-01-08T23:59:59.000Z

    As the starting materials of organic light-emitting diode (OLED) getter, calcium carbonate (CaCO{sub 3}) particles with various shapes and crystal structures have been successfully prepared with additives (L64 or PEGPG), which contain blocks of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO). These CaCO{sub 3} particles were calcinated into highly crystalline calcium oxide (CaO) nanoparticles with high capacity of water adsorption up to 14.23 wt.%. The CaCO{sub 3} and CaO particles prepared at various conditions were characterized using the field emission scanning electron microscopy (FE-SEM), Fourier transform infrared microscopy (FT-IR), X-ray powder diffraction (XRD), and dynamic vapor sorption (DVS) method.

  12. Structural basis for the evolutionary inactivation of Ca[superscript 2+] binding to synaptotagmin 4

    SciTech Connect (OSTI)

    Dai, Han; Shin, Ok-Ho; Machius, Mischa; Tomchick, Diana R.; Südhof, Thomas C.; Rizo, Josep (U. of Texas-SMED)

    2010-11-16T23:59:59.000Z

    The neuronal protein synaptotagmin 1 functions as a Ca{sup 2+} sensor in exocytosis via two Ca{sup 2+}-binding C{sub 2} domains. The very similar synaptotagmin 4, which includes all the predicted Ca{sup 2+}-binding residues in the C{sub 2}B domain but not in the C{sub 2}A domain, is also thought to function as a neuronal Ca{sup 2+} sensor. Here we show that, unexpectedly, both C{sub 2} domains of fly synaptotagmin 4 exhibit Ca{sup 2+}-dependent phospholipid binding, whereas neither C{sub 2} domain of rat synaptotagmin 4 binds Ca{sup 2+} or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca{sup 2+} ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C{sub 2}B domain unable to form full Ca{sup 2+}-binding sites. These results indicate that synaptotagmin 4 is a Ca{sup 2+} sensor in the fly but not in the rat, that the Ca{sup 2+}-binding properties of C{sub 2} domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.

  13. Modulation and daily banding of Mg/Ca in Orbulina universa tests by symbiont photosynthesis and respiration: a complication for

    E-Print Network [OSTI]

    /Ca; seawater thermometry; laser ablation ICPMS; foraminifera; palaeoceanography 1. Introduction The recent

  14. SNL/CA Environmental Planning and Ecology Program Annual Report 2007.

    SciTech Connect (OSTI)

    Larsen, Barbara L.

    2007-02-01T23:59:59.000Z

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Environmental Planning and Ecology Program for a given calendar year. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. The 2006 program report describes the activities undertaken during the past year, and activities planned in future years to implement the Planning and Ecology Program, one of six programs that supports environmental management at SNL/CA.

  15. DOI: 10.1002/cssc.201200454 Mechanical Activation of CaO-Based Adsorbents for CO2

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    of carbonation and calcination,[9] pri- marily because CaCO3 sinters during the high temperatures cycling of CaO adsorbents to CaCO3 for high- temperature CO2 capture is substantially improved by mechan as an example of an inert binder to help mitigate CaCO3 sintering. Wet planetary milling of MgO into CaCO3 al

  16. Restoration Potential of a Mining-Impacted Urban Stream: Horseshoe Branch of Lion Creek, Oakland, CA

    E-Print Network [OSTI]

    Hackenjos, Bethany; Woelfle-Erskine, Cleo; Wood, Jacob

    2010-01-01T23:59:59.000Z

    Level Biotic Index Score, 0= low, 10= high Horseshoe CreekWater Quality in an Urban Creek Watershed, Oakland, CA. AGUHydraulics. 2010. Codornices Creek Gage: Codornices Creek,

  17. Localization and activation of CaMKII delta isoforms and their involvement in heart failure

    E-Print Network [OSTI]

    Mishra, Shikha

    2010-01-01T23:59:59.000Z

    hypertrophy and heart failure ..CaMKII mediated hypertrophy and heart failure .. I.F.II.C. Preparation of heart tissue extract and cell lysate

  18. Influence of Mg2+ on CaCO3 precipitation during subsurface reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsurface reactive transport in a homogeneous silicon-etched pore network. Abstract: Calcium carbonate (CaCO3) geochemical reactions exert a fundamental control on the...

  19. Kinetics of Heterogeneous Reaction of CaCO3 Particles with Gaseous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Humidity. Abstract: Heterogeneous reaction kinetics of gaseous nitric acid (HNO3) with calcium carbonate (CaCO3) particles was investigated using the Particle-on-Substrate...

  20. V-006: CA ARCserve Backup Flaws Let Remote Users Execute Arbitrary Code and Deny Service

    Broader source: Energy.gov [DOE]

    Two vulnerabilities were reported in CA ARCserve Backup. A remote user can execute arbitrary code on the target system. A remote user can cause denial of service conditions.

  1. Pore-Scale Study of Transverse Mixing Induced CaCO3 Precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and permeability reduction relevant to groundwater remediation and geological carbon sequestration. Solutions containing CaCl2 and Na2CO3 at four different saturation...

  2. Municipal Consortium LED Street Lighting Workshop: April 19–20, Los Angeles, CA

    Broader source: Energy.gov [DOE]

    Workshop Location: The Sheraton Los Angeles Downtown Hotel, 711 Hope Street, Los Angeles, CA 90017City Partner: City of Los Angeles Bureau of Street LightingCost: $175

  3. Greenwood, Foster, and Romani: Archaeological Study of CA-VEN-110, California; and Roeder: Archaeological Study of CA-VEN-110, Ventura, California: Fish Remains

    E-Print Network [OSTI]

    Johnson, John R.

    1991-01-01T23:59:59.000Z

    procedures had been followed by Ventura County, the Corps ofStudy of CA-VEN-110, Ventura, California: Fish Remains. MarkLemos, and Jamie Karl V, Ventura County, et al,. Central

  4. Rapid Traffic Information Dissemination Using Named Data Los Angeles, CA, USA

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Rapid Traffic Information Dissemination Using Named Data Lucas Wang UCLA Los Angeles, CA, USA lucas@us.toyota-itc.com Lixia Zhang UCLA Los Angeles, CA, USA lixia@cs.ucla.edu ABSTRACT This paper applies the Named Data traffic information dissemination application based on the data naming design from our previ- ous work

  5. Effect of doping in Bi-Pb-Sr-Ca-Cu-O superconductor composites

    E-Print Network [OSTI]

    Ertekin, Abdullah

    2001-01-01T23:59:59.000Z

    The goal of this thesis is to analyze the solid solubility limit of dopants in Bi-Pb-Sr-Ca-Cu-O superconductors. We have studied the effect of Mn doping Bi-Pb-Sr-Ca-Cu-O. The electrical resistivity and critical temperature were measured for samples...

  6. Functions of Mg and Mg-CaO mixtures in hot metal desulphurization David Lindstrma

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Functions of Mg and Mg-CaO mixtures in hot metal desulphurization David Lindströma , Patrice of hot metal desulphurization using Mg and Mg-CaO mixtures were studied in a newly designed setup published online" DOI : 10.1002/srin.201300071 #12;Introduction Hot metal desulphurization is an important

  7. Parvalbumin 3 is an Abundant Ca2+ Buffer in Hair Cells

    E-Print Network [OSTI]

    Hudspeth, A. James

    Parvalbumin 3 is an Abundant Ca2+ Buffer in Hair Cells STEFAN HELLER,* ANDREA M. BELL, CHARLOTTE S parts of a hair cell. The Ca2+ concentration in ste- reocilia regulates adaptation and, through rapid saccular and chicken cochlear hair cells. We cloned cDNAs en- coding this protein from the corresponding

  8. Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon

    SciTech Connect (OSTI)

    Lombardo, I., E-mail: ilombardo@lns.infn.it; Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A. [INFN Laboratori Nazionali del Sud (Italy); Auditore, L. [Universita di Messina, and INFN-Gr. Coll. Messina, Dipartimento di Fisica (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering (Romania); Cardella, G. [INFN, Sezione di Catania (Italy); Cavallaro, S. [INFN Laboratori Nazionali del Sud (Italy); Chatterjee, M. B. [Saha Institute of Nuclear Physics (India); Filippo, E. De [INFN, Sezione di Catania (Italy); Di Pietro, A.; Figuera, P. [INFN Laboratori Nazionali del Sud (Italy); Giuliani, G.; Geraci, E.; Grassi, L. [Dipartimento di Fisica e Astronomia Universita di Catania (Italy); Grzeszczuk, A. [University of Silesia, Institute of Physics (Poland); Han, J. [INFN Laboratori Nazionali del Sud (Italy); La Guidara, E. [INFN, Sezione di Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud (Italy); and others

    2011-11-15T23:59:59.000Z

    Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.

  9. Challenge on Ca-48 enrichment for CANDLES double beta decay experiment

    E-Print Network [OSTI]

    R. Hazama; Y. Tatewaki; T. Kishimoto; K. Matsuoka; N. Endo; K. Kume; Y. Shibahara; M. Tanimizu

    2007-10-20T23:59:59.000Z

    Chemical isotope effects of calcium were studied by liquid-liquid extraction using a crown ether of dicyclohexano-18-crown-6 for the purpose of finding a cost-effective and efficient way of enrichment of Ca-48 towards the study of the neutrinoless double beta decay of Ca-48. We evaluated each contribution ratio of the field shift effect and the hyperfine splitting shift effect to the mass effect of the calcium isotopes for the first time. The present preliminary result suggests the contribution of the field shift effect is small, especially for Ca-40-Ca-48 case, compared with the case of Chromium trichloride-crown in which the isotope enrichment factors are strongly affected by the field shifts. These indications are promising towards the mass producion of enriched Ca-48 by the chemical separation method.

  10. {gamma} spectroscopy around doubly magic {sup 48}Ca by heavy-ion transfer reactions

    SciTech Connect (OSTI)

    Leoni, Silvia [Department of Physics, University of Milano and INFN, Milano (Italy)

    2012-10-20T23:59:59.000Z

    {gamma} spectroscopy of neutron-rich nuclei around {sup 48}Ca is performed by the heavy-ion transfer reaction {sup 48}Ca on {sup 64}Ni at 282 MeV, with the PRISMA-CLARA setup at Legnaro Laboratory. Angular distributions, polarizations and lifetimes analysis probe spin and parities of several excited states, shading lights on their configuration. In the one neutron transfer channels, {sup 49}Ca and {sup 47}Ca, states arising by coupling a single particle to the 3{sup -} phonon of {sup 48}Ca are observed, showing the robustness of nuclear collectivity in rather light systems. The work demonstrates the feasibility of complete in-beam {gamma}-spectroscopy with heavy-ion transfer reactions and provides a method that can be further exploited in the future with heavy targets and radioactive beams.

  11. Magnetic core studies at LBNL and LLNL

    E-Print Network [OSTI]

    Molvik, A.W.

    2008-01-01T23:59:59.000Z

    LLNL) and DE-AC03-76SF00098 (LBNL). References Wayne Meier,Magnetic Core Studies at LBNL and LLNL A. W. Molvik a,* , A.Livermore, CA 94550, USA LBNL, Berkeley, CA 94720, USA c

  12. Deformation and $?$ clustering in excited states of $^{42}$Ca

    E-Print Network [OSTI]

    Yasutaka Taniguchi

    2014-04-09T23:59:59.000Z

    The coexistence of various low-lying deformed states in $^{42}$Ca and $\\alpha$--$^{38}$Ar correlations in those deformed states have been investigated using deformed-basis antisymmetrized molecular dynamics. Wave functions of the low-lying states are obtained via parity and angular momentum projections and the generator coordinate method (GCM). Basis wave functions of the GCM calculation are obtained via energy variations with constraints on the quadrupole deformation parameter $\\beta$ and the distance between $\\alpha$ and $^{38}$Ar clusters. The rotational band built on the $J^\\pi = 0_2^+$ (1.84 MeV) state as well as the $J^\\pi = 0_3^+$ (3.30 MeV) state are both reproduced. The coexistence of two additional $K^\\pi = 0^+$ rotational bands is predicted; one band is shown to be built on the $J^\\pi = 0_3^+$ state. Members of the ground-state band and the rotational band built on the $J^\\pi = 0_3^+$ state contain $\\alpha$--$^{38}$Ar cluster structure components.

  13. California Basin Studies (CaBS). Final contract report

    SciTech Connect (OSTI)

    Gorsline, D.S.

    1991-12-31T23:59:59.000Z

    The California Continental Borderland`s present configuration dates from about 4 to 5 X 10{sup 6} years Before Present (B.P.) and is the most recent of several configurations of the southern California margin that have evolved after the North America Plate over-rode the East Pacific Rise about 30 X 10{sup 6} years ago. The present morphology is a series of two to three northwest-southeast trending rows of depressions separated by banks and insular ridges. Two inner basins, Santa Monica and San Pedro, have been the site for the Department of Energy-funded California Basin Study (CaBS) Santa Monica and San Pedro Basins contain post-Miocene sediment thicknesses of about 2.5 and 1.5 km respectively. During the Holocene (past 10,000 years) about 10-12 m have accumulated. The sediment entered the basin by one or a combination of processes including particle infall (mainly as bioaggregates) from surface waters, from nepheloid plumes (surface, mid-depths and near-bottom), from turbidity currents, mass movements, and to a very minor degree direct precipitation. In Santa Monica Basin, during the last century, particle infall and nepheloid plume transport have been the most common processes. The former dominates in the central basin floor in water depths from 900 to 945 m. where a characteristic silt-clay with a typical mean diameter of about 0.006 mm, phi standard deviation.

  14. Proc. International Conference on Manufacturing Education, SME, San Diego, CA Proceedings of the SME Int. Conf. on Manufacturing Education for the 21st Century, San Diego CA, March 1996 Page1

    E-Print Network [OSTI]

    Lamancusa, John S.

    Proc. International Conference on Manufacturing Education, SME, San Diego, CA March 1996 Proceedings of the SME Int. Conf. on Manufacturing Education for the 21st Century, San Diego CA, March 1996

  15. Ion exchange-induced dissolution of calcite in Na-montmorillonite/CaCO?b3?s systems: its effect on hydraulic conductivity, CaCO?b3?s dissolution kinetics, and CaCO?b3?s equilibrium relations

    E-Print Network [OSTI]

    Del Rio Durand, Jose Bruno

    1990-01-01T23:59:59.000Z

    with deionized water 80 4. 2 Values for pH, H2CO3*, Ca concentration and alkalinity of water (a) in equilibrium with calcite at the designated pCO2, and (b) following elution of deionized water equilibrated at this same pCO2 and passed through a sand.../[ALK] as a function of Na desorption for experiment B during elution with deionized water 117 5. 10 Calcite particle partially under the influence of the diffuse double layer (DDL), where dissolution is taking place, and Ca is rapidly adsorbed...

  16. U.S. Department of Energy Best Practices Workshop onFile Systems & Archives San Francisco, CA September 26-27, 2011 Position Paper

    SciTech Connect (OSTI)

    Hedges, R M

    2011-09-01T23:59:59.000Z

    This position paper discusses issues of usability of the large parallel file systems in the Livermore Computing Center. The primary uses of these file systems are for storage and access of data that is created during the course of a simulation running on an LC system. The Livermore Computing Center has multiple, globally mounted parallel file systems in each of its computing environments. The single biggest issue of file system usability that we have encountered through the years is to maintain continuous file system responsiveness. Given the back end storage hardware that our file systems are provisioned with, it is easily possible for a particularly I/O intensive application or one with particularly inefficiently coded I/O operations to bring the file system to an apparent halt. The practice that we will be addressing is one of having an ability to indentify, diagnose, analyze and optimize the I/O quickly and effectively.

  17. The structure of molten CaSiO3: A neutron diffraction isotope substitution and aerodynamic levitation study.

    SciTech Connect (OSTI)

    Skinner, Lawrie [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Santodonato, Louis J [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL; Neuefeind, Joerg C [ORNL; Lazareva, Lena [State University of New York, Stony Brook; Du, Jincheng [University of North Texas; Parise, John B [Stony Brook University (SUNY)

    2012-01-01T23:59:59.000Z

    We have performed neutron diffraction isotopic substitution experiments on aerodynamically levitated droplets of CaSiO3, to directly extract intermediate and local structural information on the Ca environment. The results show a substantial broadening of the Ca-O peak in the pair distribution function of the melt compared to the glass, which comprises primarily of 6- and 7-fold coordinated Ca-polyhedra. The broadening can be explained by a re-distribution of Ca-O bond lengths, especially towards longer distances in the liquid. The first order neutron difference function provides a rigorous test of recent molecular dynamics simulations and supports the model of the presence of short chains or channels of edge shared Ca-octahedra in the liquid state. It is suggested that the polymerization of Ca-polyhedra is responsible for the fragile viscosity behavior of the melt and the glass forming ability in CaSiO3.

  18. Cross-shell excitation in two-proton knockout: Structure of $^{52}$Ca

    E-Print Network [OSTI]

    A. Gade; R. V. F. Janssens; D. Bazin; R. Broda; B. A. Brown; C. M. Campbell; M. P. Carpenter; J. M. Cook; A. N. Deacon; D. -C. Dinca; B. Fornal; S. J. Freeman; T. Glasmacher; P. G. Hansen; B. P. Kay; P. F. Mantica; W. F. Mueller; J. R. Terry; J. A. Tostevin; S. Zhu

    2006-06-26T23:59:59.000Z

    The two-proton knockout reaction $^9$Be($^{54}$Ti,$^{52}$Ca$ + \\gamma$) has been studied at 72 MeV/nucleon. Besides the strong feeding of the $^{52}$Ca ground state, the only other sizeable cross section proceeds to a 3$^-$ level at 3.9 MeV. There is no measurable direct yield to the first excited 2$^+$ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of $^{52}$Ca.

  19. Biomineralization and dissolution of CaCO3 in the Oceans

    E-Print Network [OSTI]

    Einat, Aharonov

    Biomineralization and dissolution of CaCO3 in the Oceans: A Negative Feedback Mechanism productive ecosystem in the oceans 2. Precipitate ~ 50 % of the net CaCO3 accumulation in the ocean 3. Coral) HUJI #12;-1 -0.5 0 0.5 1 1.5 2 2.5 3 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6 pH Calcification(µmoleCaCO3h -1

  20. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu

    SciTech Connect (OSTI)

    Tu, Dong; Kamimura, Sunao [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); Xu, Chao-Nan, E-mail: cn-xu@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Fujio, Yuki; Sakata, Yoshitaro [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Ueno, Naohiro [National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052 (Japan); Graduate School of Science and Engineering, Saga University, Saga 840-8502 (Japan)

    2014-07-07T23:59:59.000Z

    We have found that phosphorescence intensity of CaZnOS:Cu decreased visibly under an applied load. This mechanical quenching (MQ) of phosphorescence in CaZnOS:Cu corresponded to the mechanical stimuli. We have thus demonstrated that the MQ of CaZnOS:Cu could be used for visualizing stress distributions in practical applications. We propose that MQ arises from non-radiative recombination due to electron-transfer from trap levels to non-radiative centers as a result of the mechanical load.

  1. O Isotopic Composition of CaCO3 Measured by Continuous Flow Isotope Ratio Mass Spectrometry: Statistical Evaluation and

    E-Print Network [OSTI]

    d13 C and d18 O Isotopic Composition of CaCO3 Measured by Continuous Flow Isotope Ratio Mass method streamlines the classical phosphoric acid ­ calcium carbonate (H3 PO4 ­ CaCO3 ) reaction method XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3 PO4 ­ CaCO3 reaction

  2. Quantifying the flux of CaCO3 and organic carbon from the surface ocean using in situ measurements

    E-Print Network [OSTI]

    Quantifying the flux of CaCO3 and organic carbon from the surface ocean using in situ measurements attention on the importance of understanding the rates and mechanisms of CaCO3 formation so that changes can be monitored and feedbacks predicted. We present a method for determining the rate of CaCO3 production using

  3. Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-Pleistocene glacial cycles

    E-Print Network [OSTI]

    Winckler, Gisela

    Modern CaCO3 preservation in equatorial Pacific sediments in the context of late form 31 October 2007; accepted 21 November 2007 Abstract The CaCO3 content of marine sediments in many variable regulating this variability. We have evaluated the preserved flux of CaCO3 in cores from

  4. PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Michael Dietzsch,,,

    E-Print Network [OSTI]

    Kühnle, Angelika

    PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Formation Michael Dietzsch Supporting Information ABSTRACT: Scale formation, the deposition of certain minerals such as CaCO3, MgCO3 investigated in detail regarding their impact on the different stages of the crystallization process of CaCO3

  5. October 15, 2004 23:18 GMB TJ1303-02/40139 Quantifying CaCO3 Microprecipitates Within Developing

    E-Print Network [OSTI]

    Decho, Alan

    October 15, 2004 23:18 GMB TJ1303-02/40139 Quantifying CaCO3 Microprecipitates Within Developing DOI: 10.1080/01490450490888037 Quantifying CaCO3 Microprecipitates Within Developing Surface Mats and min- eral CaCO3 provides a fluorescence signature detectable using con- ventional confocal scanning

  6. A Free Boundary Problem for CaCO3 Neutralization of Acid Lorenzo Fusi, Angiolo Farina, Mario Primicerio,

    E-Print Network [OSTI]

    Primicerio, Mario

    A Free Boundary Problem for CaCO3 Neutralization of Acid Waters Lorenzo Fusi, Angiolo Farina, Mario kinetics of CaCO3 in an acid solution. In particular we study the system in planar geometry showing carbonate, CaCO3 ) that is particularly useful when available in crushed or pulverized form (because

  7. Lawrence Livermore Site Office Safety Basis Self-Assessment Final...

    Broader source: Energy.gov (indexed) [DOE]

    of lower tier facility procedures for USQ implementation. The currently approved revision of the LLNL USQ procedure is Document 51.3 of the Laboratory's Environment,...

  8. FY 2009 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    a "Very Good" rating and 79.3 percent of the possible incentive fee from the National Nuclear Security Administration for its fiscal year 2009 performance. For a copy of the...

  9. FY 2008 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    "Unsatisfactory" rating and 49.5 percent of the possible incentive fee from the National Nuclear Security Administration for its fiscal year 2008 performance. For a copy of the...

  10. FY 2010 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    a "Very Good" rating and 86.4 percent of the possible incentive fee from the National Nuclear Security Administration for its fiscal year 2010 performance. For a copy of the...

  11. Timely delivery of LIFE Tom Anklam, Lawrence Livermore

    E-Print Network [OSTI]

    Physics will be Demonstrated on the NIF #12;LIFE will use a modular laser architeccture #12;#12;#12;11 NIF;Fuel production at the required scale and cost is achievable using known manufacturing techniques Fusion fuel is designed to enable mass manufacturing #12;LIFE Fuel cycle expected to allow for limited

  12. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    SciTech Connect (OSTI)

    Bainer, R.; Duarte, J.

    1993-07-01T23:59:59.000Z

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

  13. Site Visit Report - Review of the Lawrence Livermore National...

    Broader source: Energy.gov (indexed) [DOE]

    engineering drawings in order to establish record drawings that can be retrieved from the site engineering database. A performance metric should be developed to demonstrate the...

  14. Expanding Your Horizons Conference, Lawrence Livermore National Lab

    Broader source: Energy.gov [DOE]

    Our goal is to introduce young women in grades 6 through 12 to a variety of diverse and challenging careers and encourage their interest in science and mathematics. At the conference, participants...

  15. Director of Lawrence Livermore National Laboratory to Step Down...

    National Nuclear Security Administration (NNSA)

    Energy Department's national defense laboratories, through a transition to a post-Cold War world and helped carry out the NNSA's stockpile stewardship program. The program...

  16. Earthquake engineering programs at the Lawrence Livermore Laboratory

    SciTech Connect (OSTI)

    Tokarz, F.J.

    1980-02-28T23:59:59.000Z

    Information is presented concerning assessments of current seismic design methods; systematic evaluation program for older operating reactors; seismic vulnerability of fuel reprocessing facilities; and advisability of seismic scram.

  17. Livermore's Crawford selected for California Council on Science...

    National Nuclear Security Administration (NNSA)

    December 2012 (19) 1 of 2 Related Topics llnl honors and awards Related News SOLAR POWER PURCHASE FOR DOE LABORATORIES Y-12 recognized for outstanding procurement...

  18. Livermore scientist, engineers train to be inspectors for test...

    National Nuclear Security Administration (NNSA)

    scientist, engineers train to be inspectors for test ban treaty organization | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing...

  19. FY 2011 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    indirect cost baselines and demonstrated utilization of performance reporting and change control process and tools. Among areas for improvement cited by NNSA: It is recommended...

  20. Sandia National Laboratories: Livermore Valley Open Campus (LVOC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The CRADA calls for researchers with Sandia's New Mexico solar energy ... ECIS-I2CNER: Hydrogen Infrastructure Research Aids Energy Independence Goal On February 14, 2013, in...

  1. NNSA Corporate CPEP Process NNSA Lawrence Livermore National...

    National Nuclear Security Administration (NNSA)

    in demonstrating effective use of Advanced Scientific Computing (ASC) high performance computing systems for weapons applications. It provided exceptional support for the...

  2. 2013 Annual Workforce Analysis and Staffing Plan Report - Livermore...

    Energy Savers [EERE]

    year are a basis for DOE Federal Technical Capability Panel reporting to the Secretary of Energy summarizing DOE's federal technical capabilities for defense nuclear facility...

  3. Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| DepartmentTracking Database, INLDepartment of

  4. Lawrence Livermore National Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest FeatureNews--

  5. Livermore, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,Little ValleyLiuzhou XinnengNew

  6. Enforcement Letter, Lawrence Livermore National Laboratory - August 22,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession 3CybersecurityEnergy1996 | Department

  7. Enforcement Letter, Lawrence Livermore National Security, LLC - May 2008 |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession 3CybersecurityEnergy1996 |

  8. FTCP Site Specific Information - Livermore Field Office | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartment ofEnergy Chief ofKansas

  9. Consent Order, Lawrence Livermore National National Security, LLC -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergy M HillWCO-2010-01 |

  10. DOE Selects Lawrence Livermore National Security, LLC to Manage its

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | Department of EnergyFunding

  11. Lawrence Livermore National Laboratory Proposal to Participate in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of Energy

  12. Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrence

  13. Lawrence Livermore National Security Enforcement Letter (NEL-2013-03)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment of EnergyLawrencePenrose C.

  14. Lessons Learned by Lawrence Livermore National Laboratory Activity-level

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons361Work

  15. Welcome to the Livermore Field Office | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |andAbout Us

  16. Associate director for Physical and Life Sciences, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator| National Lisa Cutler,National

  17. Cleantech Open meets with Lawrence Livermore, Sandia national laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | National Nuclear|

  18. Director of the National Ignition Facility, Lawrence Livermore National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment of Energy Established |Laboratory |

  19. Lawrence Livermore National Lab Perforemance Evaluations | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56 WarheadSecurity

  20. Livermore engineer to answer questions on Reddit | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader, LosSigned |Little

  1. Livermore researchers create new technology for first responders | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader, LosSigned |LittleNuclear

  2. Livermore retiree selected as finalist in international contest | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader, LosSigned

  3. Livermore team awarded for hydrogen production research | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader,

  4. Livermore's Crawford selected for California Council on Science and

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader,Technology | National

  5. Livermore's biosciences celebrates 50th anniversary | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity Administration Leader,Technology |

  6. Retired lab physicist and computational pioneer, Lawrence Livermore

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High EnergyNational Nuclear

  7. Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY

  8. Preliminary Notice of Violation, Lawrence Livermore National Security, LLC

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmountCammie Croft SeniorDepartment of2015 |LLC --

  9. Sandia National Laboratories: Featured Programs at the Livermore Valley

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS Top Defense SystemsOpen Campus

  10. Sandia National Laboratories: Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS Top DefenseIntegrated Military

  11. 2012 Annual Planning Summary for Livermore Site Office | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1

  12. 2012 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1The

  13. 2013 Annual Planning Summary for the Lawrence Livermore National Laboratory

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2 NationalEnergy FERMI Site Office.of|

  14. 2013 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2Department of Energy SavannahDepartment

  15. 2014 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of Energy

  16. Lawrence Livermore National Laboratory is home to the National Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases TribuneEnergy Innovation

  17. Lawrence Livermore researchers awarded early career funding | National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News Releases TribuneEnergy InnovationNuclear

  18. Livermore Field Office Public Affairs | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC)

  19. 2013 Annual Workforce Analysis and Staffing Plan Report - Livermore Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell2 - FederalFuel20123 -DepartmentOffice |

  20. Supercomputing with Livermore National Lab | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer.Supercomputing on a Budget AdvancedWorking

  1. DOE Selects Lawrence Livermore National Security, LLC to Manage its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions andDefinition of ShowerheadandFederal

  2. Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of EnergyDepartment of

  3. Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of EnergyDepartment ofEA-2003-04 |

  4. Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of EnergyDepartment ofEA-2003-04

  5. Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of EnergyDepartment

  6. Preliminary Notice of Violation, Lawrence Livermore National Security, LLC

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment of EnergyDepartment- September 25,

  7. 2011 Annual Planning Summary for Livermore Site Office (LSO) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy More Documents &DepartmentofEnergyof

  8. Secretary of Energy Advisory Board Lawrence Livermore Laboratory

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergy RightsAnnouncement |Report | Department of Energy of

  9. Overview of the Tritium research activities at Lawrence Livermore National

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T en Y earEnergy T HK-12OtherOverseasOverviewLaboratory

  10. Boralex Beaver Livermore Falls Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundell 1 GeothermalBonnevilleIndiana:Boralex

  11. Energy Innovations from Livermore Lab to Power Hawaiian Nonprofit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack 1 TrackDepartment of Energy

  12. FY 2008 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017National Nuclear SecurityNational

  13. FY 2009 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017NationalNational Nuclear SecurityNuclear

  14. FY 2010 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russianvolunteer0017NationalNationalNuclearNational

  15. FY 2011 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PER Summary |National

  16. FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:Administration Sandia Corporation PERSecurityNational NuclearNuclear

  17. Human Resources at Lawrence Livermore National Laboratory | Critical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault SignInstituteDOEMaterials Institute

  18. Lawrence Livermore National National Security. LLC Consent Order

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEtheInspection15Department10PM

  19. Preliminary Notice of Violation issued to Lawrence Livermore National Security

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and|Hours(5-Unit) AreaEnergyofN E12, 20158, 2014 CERTIFIED

  20. Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC |Departmentinputof Energy 12,Department of

  1. Enforcement Letter, Lawrence Livermore National Laboratory - November 5,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC |Departmentinputof Energy 12,Department of1999

  2. Independent Activity Report, Lawrence Livermore National Laboratory - March

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar Energy Awareness in El-2011 |

  3. Independent Oversight Review of the Lawrence Livermore National Laboratory

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar EnergyMarchReport - February 2003-

  4. Independent Oversight Review, Lawrence Livermore National Laboratory - July

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar EnergyMarchReportofEnergy Site2013

  5. Edward Jones, Lawrence Livermore National Laboratory, Outcomes of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofM A NNRELU.S.-Japan

  6. Technical Qualification Program Self-Assessment Report - Livermore Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWindBuilding

  7. Technical Sessions J. E. Penner Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153 To.T. J. Kulp J.APenner

  8. Sandia Energy » Livermore Valley Open Campus (LVOC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergyTeaches

  9. Sandia National Laboratories: Partnership Opportunities at the Livermore

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home AboutMeeting: ProgramFebruaryJune 26, 2015 JillNoValley

  10. Sandia National Laboratories: Visiting the Livermore Valley Open Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche HomeCybernetics: VisualTraining and Technology

  11. Sandia National Laboratories: Working at the Livermore Valley Open Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche HomeCybernetics: VisualTraining and Technology(LVOC)

  12. Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6, 1945:Laura Smith Morton About Us LauraBerkeley

  13. City of Livermore, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville,

  14. Elastic and inelastic scattering of 240-MeV (6)Li ions from (40)Ca and (48)Ca and tests of a systematic optical potential

    E-Print Network [OSTI]

    Chen, Krishichayan X.; Lui, Y. -W; Button, J.; Youngblood, David H.

    2010-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 81, 044612 (2010) Elastic and inelastic scattering of 240-MeV 6Li ions from 40Ca and 48Ca and tests of a systematic optical potential Krishichayan, X. Chen,* Y.-W. Lui, J. Button, and D. H. Youngblood Cyclotron Institute, Texas... that 0556-2813/2010/81(4)/044612(10) 044612-1 ?2010 The American Physical Society KRISHICHAYAN, CHEN, LUI, BUTTON, AND YOUNGBLOOD PHYSICAL REVIEW C 81, 044612 (2010) the real and imaginary optical potentials have the same radial shape [22]. However...

  15. Robotics and Manufacturing Automation Laboratory of the MMRI http://robotics.mcmaster.ca

    E-Print Network [OSTI]

    Bone, Gary

    Robotics and Manufacturing Automation Laboratory of the MMRI http://robotics.mcmaster.ca Powered Chan and Matthew Lahey Robotics and Manufacturing Automation Laboratory, McMaster Manufacturing Research Institute (MMRI). The 14th International Conference on Flexible Automation and Intelligent

  16. The history and development of English anchors ca. 1550- to 1850

    E-Print Network [OSTI]

    Jobling, Harold James Williamson

    1993-01-01T23:59:59.000Z

    This thesis examines the history and development of the English Admiralty pattern anchor, from ca. 1550 to 1850. The anchor is not necessarily the most essential piece of equipment onboard a vessel, but it is certainly a standard implement...

  17. http://www.ci.manteca.ca.us/pwt/engdiv/sdeng/charity carwash.asp

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    http://www.ci.manteca.ca.us/pwt/engdiv/sdeng/charity carwash.asp Car Washing? Got Pollution? UCSC residents may not know the effects untreated car wash residue from car washes contain high amounts of nutrients, metals and hydrocarbons

  18. www.usask.ca/icngd 2013 MNGD Internship Handbook 1 2013 Internship Handbook

    E-Print Network [OSTI]

    Peak, Derek

    www.usask.ca/icngd 2013 MNGD Internship Handbook 1 2013 Internship Handbook Master in Northern Governance and Development Program University of Saskatchewan #12;2013 MNGD Internship Handbook 2 Table of Contents 1. Objectives of the Internship

  19. AKT-Independent Signaling Downstream of Oncogenic PIK3CA Mutations in Human Cancer

    E-Print Network [OSTI]

    Jacks, Tyler E.

    Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through ...

  20. Encoding and Retrieval in a Model of the Hippocampal CA1 Microcircuit

    E-Print Network [OSTI]

    Graham, Bruce

    lacunosum-moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3; pyramidal cell; basket cell; bistratified cell; OLM cell; axo-axonic cell; STDP INTRODUCTION Associative

  1. "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy

    E-Print Network [OSTI]

    Dawson, Jeff W.

    "Sustainable energy is critical to Canada's economic future." carleton.ca/sustainable-energy GRADUATE PROGRAMS IN SUSTAINABLE ENERGY SHAPE YOUR FUTURE BASED ON YOUR RESEARCH INTERESTS Sustaining programs in sustainable energy address these crucial challenges in a unique interdisciplinary fashion

  2. ANNUAL FINANCIAL REPORT 2011/2012 INSPIRING INNOVATION AND DISCOVERY | mcmaster.ca

    E-Print Network [OSTI]

    Haykin, Simon

    OF CONTENTS Year In Review..............................................................4 By The NumbersMaster Community http://www.mcmaster.ca/presidentsoffice/fwi.html #12;4 YEAR IN REVIEW 2011/12 YEAR IN REVIEW As Mc

  3. Plant Water Use in Owens Valley, CA: Understanding the Influence of Climate and Depth to Groundwater

    E-Print Network [OSTI]

    Pataki, Diane E

    2008-01-01T23:59:59.000Z

    J.R. Ehleringer. 2006. Water extraction times for plant andstems were sampled for water extraction and stable isotopeCA). Following the water extraction, roots were removed from

  4. E-Print Network 3.0 - anhydrase ix ca Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anhydrase ix ca Page: << < 1 2 3 4 5 > >> 1 Prokaryotic carbonic anhydrases Kerry S. Smith *, James G. Ferry Summary: during purica- tion 22 conrmed an earlier report of a...

  5. The development of binary MgeCa alloys for use as biodegradable materials within bone

    E-Print Network [OSTI]

    Zheng, Yufeng

    the biocorrosion process and the associated hydroxyapatite mineralization. Ó 2007 Elsevier Ltd. All rights reserved to cells, and the viability of cells for Mge1Ca alloy extraction medium was better than that of control

  6. C isothermal section of the MgeAleCa system D. Kevorkov a

    E-Print Network [OSTI]

    Medraj, Mamoun

    rights reserved. 1. Introduction Mg-alloys attract attention of the automotive and aerospace industries to steel and aluminum alloys. Recent research showed that Ca can replace the expensive rare-earth metals

  7. The structural distortion of the anti-perovskite nitride Ca sub 3 AsN

    SciTech Connect (OSTI)

    Chern, M.Y.; DiSalvo, F.J. (Cornell Univ., Ithaca, NY (United States)); Parise, J.B. (State Univ. of New York, Stony Brook, NY (United States)); Goldstone, J.A. (Los Alamos National lab., NM (United States))

    1992-02-01T23:59:59.000Z

    The structure of the distorted anti-perovskite nitride Ca{sub 3}AsN has been studied both by neutron powder diffraction at 305 and 15 K and by X-ray powder diffraction at room temperature. Ca{sub 3}AsN is distorted to an orthorhombic cell with a and b {approximately} {radical}2a{prime} and c{approximately}2a{prime}, where a{prime} is the lattice constant of the ideal undistorted cubic anti-perovskite. The distortion is produced by tilting of octahedra of Ca{sub 6}N and results in six short and six long bond distances of the twelvefold coordinated As atom by Ca atoms.

  8. Biomimetic Model Studies Reveal the Role of the Ca2+ Ion in Photosyste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Model Studies Reveal the Role of the Ca2+ Ion in Photosystem II Friday, October 31, 2014 Fig 1 Figure 1. The biomimetic complexes that model the OEC in the final step of...

  9. FACULTY OF ARTS & SCIENCE 2012/13 www.uc.utoronto.ca/drama

    E-Print Network [OSTI]

    Toronto, University of

    FACULTY OF ARTS & SCIENCE 2012/13 DRAMA www.uc.utoronto.ca/drama The drama program offers students and other departments and programs such as Anthropology, Canadian Studies, Cinema Studies, Classics

  10. Growth and optical properties of partially transparent Eu doped CaF{sub 2} ceramic

    SciTech Connect (OSTI)

    Ghosh, Manoranjan, E-mail: mghosh@barc.gov.in; Sen, Shashwati, E-mail: mghosh@barc.gov.in; Pitale, S. S., E-mail: mghosh@barc.gov.in; Goutam, U. K., E-mail: mghosh@barc.gov.in; Shinde, Seema, E-mail: mghosh@barc.gov.in; Patra, G. D., E-mail: mghosh@barc.gov.in; Gadkari, S. C., E-mail: mghosh@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24T23:59:59.000Z

    Partially transparent ceramic of 2 at.% Eu doped CaF{sub 2} have been grown preferentially towards [111] direction. For this purpose, Eu doped CaF{sub 2} nanoparticles (size?12 nm) obtained by a low temperature solution growth method has been pressed at 1000°C under vacuum. The preferentially grown ceramic shows 15% transparency within the visible range of spectrum. As confirmed by the X-ray diffraction result, the hot pressed ceramic exhibits reduced lattice volume than the nanopowder. It indicates Eu{sup 3+} as the dominant substituting ions at the Ca{sup 2+} sites of CaF{sub 2} lattice in the hot pressed ceramic material. It is corroborated by the photoluminescence results of hot pressed ceramic which shows strong red emission corresponding to Eu{sup 3+} sites. However, photoluminescence of nanopowder exhibits intense peak in the blue region of the spectrum which is characteristics of Eu2+ sites.

  11. Europium substitution into intermetallic phases grown in Ca/Zn flux

    SciTech Connect (OSTI)

    Stojanovic, Milorad [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (United States); Latturner, Susan E., E-mail: latturne@chem.fsu.ed [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 (United States)

    2009-08-15T23:59:59.000Z

    Replacement of calcium with europium in the phases Ca{sub 21}Ni{sub 2}Zn{sub 36} and CaNi{sub 2}Zn{sub 3} was attempted to explore the possibility of substitution in metal flux reactions and potential magnetic interactions between closely spaced Eu{sup 2+} ions. Limited substitution occurs when Eu is added to the reaction of nickel in a Ca/Zn flux mixture, up to stoichiometries of Eu{sub 5.8(3)}Ca{sub 15.2(3)}Ni{sub 2}Zn{sub 36} and Eu{sub 0.42(8)}Ca{sub 0.58(8)}Ni{sub 2}Zn{sub 3}. Structural characterization and magnetic susceptibility studies on Eu{sub x}Ca{sub 21-x}Ni{sub 2}Zn{sub 36} phases indicate that the Eu and Ca ions do not form an even solid solution on their sites, but instead segregate in separate regions of the crystals. The europium-rich regions of the samples order ferromagnetically, with T{sub C} dependent on the size of the clusters. If the concentration of Eu in the flux is raised above 20 mol%, a new compound Eu{sub 1.63(1)}Ca{sub 1.37(1)}Ni{sub 2}Zn{sub 3} (Cmcm, a=4.1150(5) A, b=16.948(2) A, c=10.302(1) A, Z=4, R{sub 1}=0.0396) is produced. - Graphical abstract: Exploration of europium substitution into intermetallic compounds grown in Ca/Zn flux has yielded analogs of Eu{sub x}Ca{sub 21-x}Ni{sub 2}Zn{sub 36} with unusual magnetic properties due to segregation of europium in the crystals; high concentrations of Eu in the flux trigger the growth of Eu{sub 1.63(1)}Ca{sub 1.37(1)}Ni{sub 2}Zn{sub 3} with a new structure type.

  12. To be presented at the 2000 ACEEE Summer Study on Energy Efficiency in Buildings, August 20-25, 2000, Pacific Grove, CA

    E-Print Network [OSTI]

    , CA 94720 Peter Pettler Vistron Corporation 329 Bridge Way Nevada City, CA 95959 June 2000 #12 concept. New manufacturing techniques can produce semiconductor devices that incorporate a microprocessor

  13. Study of Double Beta Decay of {sup 48}Ca by CANDLES

    SciTech Connect (OSTI)

    Umehara, S.; Kishimoto, T.; Ogawa, I.; Matsuoka, K.; Ito, G.; Yasuda, K.; Kakubata, H.; Miyashita, M.; Nomachi, M. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ajimura, S. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 560-0047 (Japan); Tamagawa, Y. [Graduate School of Engineering, University of Fukui, Fukui 910-8507 (Japan); Fushimi, K. [Faculty of Integrated Arts and Scinence, The University of Tokushima, Tokushima 770-8502 (Japan); Hazama, R. [Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Ohsumi, H. [Faculty of Culture and Education, Saga University, Saga 840-8502 (Japan); Okada, K. [Department of Computer Science and Engineering, Kyoto San-gyo University, Kyoto 603-8555 (Japan); Yoshida, S. [Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fujii, Y. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-05-12T23:59:59.000Z

    CANDLES is the project to search for neutrino-less double beta decay (0nubetabeta) of {sup 48}Ca. The observation of 0nubetabeta will prove existence of a massive Majorana neutrino. We have developed the new detector system CANDLES which features CaF{sub 2}(pure) scintillators. Here expected performances of the system for background rejection are presented. It is also described current status of development for the detector system.

  14. Measurement of isotope ratio of Ca{sup +} ions in a linear Paul Trap

    SciTech Connect (OSTI)

    Hashimoto, Y.; Minamino, K.; Nagamoto, D.; Hasegawa, S. [Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-03-17T23:59:59.000Z

    Measurement of isotope ratios of Calcium is very useful in many fields. So we demonstrated the measurement of isotope ratios of {sup 40}Ca{sup +}(abundance 96.4%) to {sup 44}Ca{sup +}(2.09%) ions in a linear Paul trap with several laser lights tuning to the isotope shifts. And we found that the experimental parameters had large influences on the measurement of the isotope ratios.

  15. Home (/research/) (http://facebook.com/sharer.php?u=http://www.mcgill.ca/research/channels

    E-Print Network [OSTI]

    Lovejoy, Shaun

    /sharer.php?u=http://www.mcgill.ca/research/channels /news/global-warming-just-giant-natural-fluctuation-235236& amp;t=Is+global+warming+just+a+giant+natural+fluctuation%3F) (http://twitter.com /home?status=Is+global+warming+just+a+giant+natural+fluctuation%3F+http: //www.mcgill.ca/research/channels/news/global-warming-just-giant-natural- fluctuation-235236) (https

  16. Report of exploratory trenching for the Decontamination and Waste Treatment Facility at Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Dresen, M.D.; Weiss, R.B.

    1985-12-01T23:59:59.000Z

    Three exploratory trenches, totaling about 1,300 ft in length were excavated and logged across the site of a proposed Decontamination and Waste Treatment Facility (DWTF), to assess whether or not active Greenville fault zone, located about 4100 ft to the northeast, pass through or within 200 ft of the site. The layout of the trenches (12-16 ft deep) was designed to provide continuous coverage across the DWTF site and an area within 200 ft northeast and southwest of the site. Deposits exposed in the trench walls are primarily of clay, and are typical of weakly cemented silty sand to sandy silt with the alluvial deposits in the area. Several stream channels were encountered that appear to have an approximated east-west orintation. The channel deposits consist of well-sorted, medium to coarse-grained sand and gravel. A well-developed surface soil is laterally continuous across all three trenches. The soil reportedly formed during late Pleistocene time (about 35,000 to 40,000 yr before present) based on soil stratigraphic analyses. A moderately to well-developed buried soil is laterally continuous in all three trenches, except locally where it has been removed by channelling. This buried soil apparently formed about 100,000 yr before present. At least one older, discontinuous soil is present below the 100,000-yr-old soil in some locations. The age of the older soil is unknown. At several locations, two discontinuous buried soils were observed between the surface soil and the 100,000-yr-old soil. Various overlapping stratigraphic units could be traced across the trenches providing a continuous datum of at least 100,000 yr to assess the presence or absence of faulting. The continuity of stratigraphic units in all the trenches demonstrated that no active faults pass through or within 200 ft of the proposed DWTF site.

  17. X-RAY IRRADIATION OF THE LkCa 15 PROTOPLANETARY DISK

    SciTech Connect (OSTI)

    Skinner, Stephen L. [CASA, University of Colorado, Boulder, CO 80309-0389 (United States)] [CASA, University of Colorado, Boulder, CO 80309-0389 (United States); Guedel, Manuel, E-mail: stephen.skinner@colorado.edu, E-mail: manuel.guedel@univie.ac.at [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria)] [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria)

    2013-03-01T23:59:59.000Z

    LkCa 15 in the Taurus star-forming region has recently gained attention as the first accreting T Tauri star likely to host a young protoplanet. High spatial resolution infrared observations have detected the suspected protoplanet within a dust-depleted inner gap of the LkCa 15 transition disk at a distance of {approx}15 AU from the star. If this object's status as a protoplanet is confirmed, then LkCa 15 will serve as a unique laboratory for constraining physical conditions within a planet-forming disk. Previous models of the LkCa 15 disk have accounted for disk heating by the stellar photosphere but have ignored the potential importance of X-ray ionization and heating. We report here the detection of LkCa 15 as a bright X-ray source with Chandra. The X-ray emission is characterized by a cool, heavily absorbed plasma component at kT {sub cool} Almost-Equal-To 0.3 keV and a harder component at kT {sub hot} Almost-Equal-To 5 keV. We use the observed X-ray properties to provide initial estimates of the X-ray ionization and heating rates within the tenuous inner disk. These estimates and the observed X-ray properties of LkCa 15 can be used as a starting point for developing more realistic disk models of this benchmark system.

  18. Student Career Centre Agora : Rm 7-153 Tel: 250-960-6598 hirestudents@unbc.ca www.unbc.ca/careercentre Revised: Oct 2007

    E-Print Network [OSTI]

    Northern British Columbia, University of

    and consultant for matters dealing with the management and preservation of cultural differences. SKILLS YOU.unbc.ca/careercentre Revised: Oct 2007 COMMUNICATION SKILLS INFORMATION MANAGEMENT The ability to communicate ideas clearly, and Special skills in communicating, generating, and defending apply knowledge. approaches to the subject

  19. Approved Module Information for AM30CA, 2014/5 Module Title/Name: Complex Analysis Module Code: AM30CA

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    30CA School: Engineering and Applied Science Module Type: Standard Module New Module? No Module@aston.ac.uk Telephone Number Not Specified Office Not Specified Additional Module Tutor(s): . Level Description: Level 6/subject-specific skills - Analytical Skills. Indicative Module Content: Algebraic structure of the complex numbers

  20. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22533 library@mcmaster.ca Sociology 1A06

    E-Print Network [OSTI]

    Haykin, Simon

    @mcmaster.ca Articles can be found in... · scholarly, or academic journals, like the Annual Review of Sociology image are academic journals different? articles in academic or scholarly journal articles are different from newspaper or magazine articles because they: ­ are written by and for researchers/academics ­ are based

  1. McMaster University Libraries library.mcmaster.ca 905.525.9140 x22533 library@mcmaster.ca Sociology 1A06

    E-Print Network [OSTI]

    Haykin, Simon

    are academic journals? articles in "academic" or "scholarly" journal articles are: ­ written@mcmaster.ca Sociological Abstracts · the major database of academic journal articles for sociology · 1952 to the present: Finding Scholarly Sociology Articles Nora Gaskin Sociology Liaison Librarian Mills Research Help 2nd floor

  2. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    SciTech Connect (OSTI)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil)] [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil)] [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil)] [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil) [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil)] [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18T23:59:59.000Z

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  3. Precision isotope shift measurements in Ca$^+$ using highly sensitive detection schemes

    E-Print Network [OSTI]

    Florian Gebert; Yong Wan; Fabian Wolf; Christopher N. Angstmann; Julian C. Berengut; Piet O. Schmidt

    2015-04-13T23:59:59.000Z

    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with non-closed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a co-trapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the $^{2}$D$_{3/2}$ $\\rightarrow$ $^{2}$P$_{1/2}$ transition in $^{40}$Ca$^{+}$, resulting in a transition frequency of $f=346\\, 000\\, 234\\, 867(96)$ kHz. Furthermore, we determine the isotope shift of this transition and the $^{2}$S$_{1/2}$ $\\rightarrow$ $^{2}$P$_{1/2}$ transition for $^{42}$Ca$^{+}$, $^{44}$Ca$^{+}$ and $^{48}$Ca$^{+}$ ions relative to $^{40}$Ca$^{+}$ with an accuracy below 100 kHz. Improved field and mass shift constants of these transitions as well as changes in mean square nuclear charge radii are extracted from this high resolution data.

  4. Precision isotope shift measurements in Ca$^+$ using highly sensitive detection schemes

    E-Print Network [OSTI]

    Gebert, Florian; Wolf, Fabian; Angstmann, Christopher N; Berengut, Julian C; Schmidt, Piet O

    2015-01-01T23:59:59.000Z

    We demonstrate an efficient high-precision optical spectroscopy technique for single trapped ions with non-closed transitions. In a double-shelving technique, the absorption of a single photon is first amplified to several phonons of a normal motional mode shared with a co-trapped cooling ion of a different species, before being further amplified to thousands of fluorescence photons emitted by the cooling ion using the standard electron shelving technique. We employ this extension of the photon recoil spectroscopy technique to perform the first high precision absolute frequency measurement of the $^{2}$D$_{3/2}$ $\\rightarrow$ $^{2}$P$_{1/2}$ transition in $^{40}$Ca$^{+}$, resulting in a transition frequency of $f=346\\, 000\\, 234\\, 867(96)$ kHz. Furthermore, we determine the isotope shift of this transition and the $^{2}$S$_{1/2}$ $\\rightarrow$ $^{2}$P$_{1/2}$ transition for $^{42}$Ca$^{+}$, $^{44}$Ca$^{+}$ and $^{48}$Ca$^{+}$ ions relative to $^{40}$Ca$^{+}$ with an accuracy below 100 kHz. Improved field and ...

  5. Pressure dependence of the superconducting critical temperature of HgBa 2Ca 2Cu 3O 8 y and HgBa 2Ca 3Cu 4O 10 y up to 30 GPa

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    Pressure dependence of the superconducting critical temperature of HgBa 2Ca 2Cu 3O 8 y and HgBa 2Ca of the reported pressure- induced Tc values well above 150 K in the mercury-based high-Tc superconductors has been superconducting transition temperature Tc have been observed in HgBa2Ca2Cu3O8 y Hg-1223 samples under very high

  6. Influence of Ionic strength on calcium carbonate (CaCO3) polymorphism

    E-Print Network [OSTI]

    Evans, Taylor

    2012-01-01T23:59:59.000Z

    CaCO3 crystals' physical properties, such as polymorphism and hence the reflectivity and stability, are critical factors of their qualities in industrial applications. Factors such as additives and substrates that influence CaCO3 polymorphism have been intensively studied. However, the effects of ionic strength created by varying additives are seldom paid attention to. This study is analyzing how ionic strength of the growth solution influences the crystalline structure of CaCO3, by applying growth solutions containing different types of cations of varying concentrations, K+, Na+, and NH4+. This study reveals that the ionic strength plays a significant role in polymorph selection in the way that the percentage of vaterite among the precipitates increases with the concentration of ionic strength.

  7. Structural and dielectric properties of Nd/Ca co-doped bi-ferrite multiferroics

    SciTech Connect (OSTI)

    Kumar, Ashwini, E-mail: vdinesh33@rediffmail.com, E-mail: ashu.dhanda@gmail.com; Sharma, Poorva, E-mail: vdinesh33@rediffmail.com, E-mail: ashu.dhanda@gmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ashu.dhanda@gmail.com [School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India)

    2014-04-24T23:59:59.000Z

    Single-phase polycrystalline samples of Bi{sub 0.8}Nd{sub 0.2?x}Ca{sub x}FeO{sub 3} (x = 0.0, 0.1) were synthesized by chemical coprecipitation method. X-ray diffraction patterns accompanied by Rietveld-refined crystal structure parameters reveal the phase transition of Bi{sub 0.8}Nd{sub 0.1}Ca{sub 0.1}FeO{sub 3} with rhombohedral R3c symmetry to triclinic structure of Bi{sub 0.8}Nd{sub 0.2}FeO{sub 3} sample. Frequency dependence of dielectric constant (?') and dielectric loss (tan?), infers enhancement of both ?' (tan?) in narrow band gap of Nd/Ca co-doped BFO as compare to wide band pristine BFO.

  8. Ca II H and K filter photometry on the uvby system. I - The standard system

    SciTech Connect (OSTI)

    Anthony-twarog, B.J.; Twarog, B.A.; Laird, J.B.; Payne, D. (Kansas, University, Lawrence (USA) Cerro Tololo Inter-American Observatory, La Serena (Chile) Bowling Green State University, OH (USA))

    1991-05-01T23:59:59.000Z

    A fifth filter (fwhm = 90 A) centered on Ca II H and K has been developed for use with the standard uvby system. The filter, called Ca, is designed primarily for applications to metal-poor dwarfs and red giants, regions where the uvby metallicity index, m(l), loses some sensitivity. An index, hk, is defined by replacing v in m(l) by Ca. The effects of interstellar extinction on the index are modeled and demonstrated to be modest and relatively insensitive to spectral type. Observations of V, (b-y), and hk for 163 primary standards are detailed and transformed to the standard V and (b-y) system. A qualitative analysis using only the primary standards indicates that hk is more sensitive than m(l) over the regions of interest by about a factor of 3. 58 refs.

  9. Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca˛? or Ca˛? substituted by Sr˛?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogt, Leslie [Yale Univ., New Haven, CT (United States); Ertem, Mehmed Z. [Yale Univ., New Haven, CT (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Pal, Rhitankar [Yale Univ., New Haven, CT (United States); Brudvig, Gary W. [Yale Univ., New Haven, CT (United States); Batista, Victor S. [Yale Univ., New Haven, CT (United States)

    2015-01-27T23:59:59.000Z

    The oxygen-evolving complex of photosystem II can function with either Ca˛? or Sr˛? as the heterocation, but the reason for differing turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S?) and in a series of reduced states (S?, S??, and S-?). Through comparison with experimental data, we determine that X-ray crystal structures with either Ca˛? or Sr˛? are most consistent with the S-? state, Mn?[III,III,III,II] with O4 and O5 protonated. As expected, the QM/MM models show that Ca˛?/Sr˛? substitution results in elongation of the heterocation bonds and displaces terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr˛? as the heterocation, suggesting that this water may play a critical role during water oxidation.

  10. Computational insights on crystal structures of the oxygen-evolving complex of photosystem II with either Ca˛? or Ca˛? substituted by Sr˛?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogt, Leslie; Ertem, Mehmed Z.; Pal, Rhitankar; Brudvig, Gary W.; Batista, Victor S.

    2015-01-27T23:59:59.000Z

    The oxygen-evolving complex of photosystem II can function with either Ca˛? or Sr˛? as the heterocation, but the reason for differing turnover rates remains unresolved despite reported X-ray crystal structures for both forms. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we optimize structures with each cation in both the resting state (S?) and in a series of reduced states (S?, S??, and S-?). Through comparison with experimental data, we determine that X-ray crystal structures with either Ca˛? or Sr˛? are most consistent with the S-? state, Mn?[III,III,III,II] with O4 and O5 protonated. As expected, the QM/MM models show that Ca˛?/Sr˛? substitutionmore »results in elongation of the heterocation bonds and displaces terminal waters W3 and W4. The optimized structures also show that hydrogen-bonded W5 is displaced in all S states with Sr˛? as the heterocation, suggesting that this water may play a critical role during water oxidation.« less

  11. TRANSFER OF CONTINUOUSLY I. V. INFUSED NaHC14O3 AND Ca47Cl2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TRANSFER OF CONTINUOUSLY I. V. INFUSED NaHC14O3 AND Ca47Cl2 TO THE HEN'S EGG-SHELL (1) K. LÖRCHER experiment was designed : after continuous i.v. infusion of Ca&dquo;C12 and/or NaHC1403 to achieve constant&dquo;/Sc&dquo;. RESULTS AND DISCUSSION The average egg-shell incorporation of continuously infused Ca&dquo; came out

  12. Study of the hydration of CaO powder by gas-solid reaction 1 , Favergeon.L1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    « Study of the hydration of CaO powder by gas-solid reaction »1 2 3 4 5 6 7 8 9 10 11 12 13 14 15'industrie, B-1400 Nivelles, Belgium Abstract: Hydration of CaO powders by reaction with water vapor has been of the morphological properties on the mechanism of growth of Ca(OH)2. Keywords: A kinetics; A hydration; B

  13. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect (OSTI)

    Kim, Hyong June

    2011-12-01T23:59:59.000Z

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  14. Ca depletion and the presence of dust in large scale nebulosities in radiogalaxies (I)

    E-Print Network [OSTI]

    M. Villar-Martin; L. Binette

    1995-11-24T23:59:59.000Z

    We show that the study of the Calcium depletion is a valid an highly sensitive method for investigating the chemical and physical history of the very extended ionized nebulae seen around radio galaxies (EELR), massive ellipticals and `cooling flow' galaxies. By observing the near IR spectrum of nebular regions characterized by low excitation emission lines (LINER-like), we can use the intensity of the [CaII]$\\lambda\\lambda 7291,7324$\\AA\\ doublet --relative to other lines, like H$\\alpha$-- to infer the amount of Calcium depletion onto dust grains. The presence of dust in these objects --which does not necessarily result in a measurable level of extinction-- would favour a `galactic debris' rather than a `cooling flow' origin for the emitting gas. Before aplying such test to our data, we study four possible alternative mechanisms to dust depletion and which could have explained the absence of the [CaII] lines: a) ionization of Ca$^+$ from its metastable level, b) thermal ionization of Ca$^+$, c) a high ionization parameter and/or a harder ionizing contiuum than usually asummed and d) matter bounded models associated to a hard ionizing continuum. We show that none of these alternative mechanisms explain the absence of the [CaII] lines, except possibly for the highly ionized EELR where a high ionization parameter is required combined with a soft power law. We thus conclude that for the other low excitation emission regions (cooling flows, liners, low excitation EELR), the abscence of the CaII lines {\\it must} be due to the depletion of Calcium onto dust grains.

  15. Influence of multiphonon excitations and transfer on the fusion of Ca+Zr

    E-Print Network [OSTI]

    H. Esbensen; A. M. Stefanini

    2014-04-16T23:59:59.000Z

    Fusion data for $^{48}$Ca+$^{90,96}$Zr are analyzed by coupled-channels calculations that are based on the M3Y+repulsion, double-folding potential. By applying a previously determined nuclear density of $^{48}$Ca, the neutron densities of the zirconium isotopes are adjusted to optimize the fit to the fusion data, whereas the proton densities are determined by electron scattering experiments. It is shown that the fusion data can be explained fairly well by including couplings to one- and two-phonon excitations of the reacting nuclei and to one- and two-nucleon transfer reactions but there is also some sensitivity to multiphonon excitations. The neutron skin thicknesses extracted for the two zirconium isotopes are consistent with anti-proton measurements. The densities of the zirconium isotopes are used together with the previously determined nuclear density of $^{40}$Ca to calculate the M3Y+repulsion potentials and predict the fusion cross sections of $^{40}$Ca+$^{90,96}$Zr. The predicted cross sections for $^{40}$Ca+$^{90}$Zr are in reasonable agreement with the data when the influence of multiphonon excitations and a modest transfer is considered. The prediction of the $^{40}$Ca+$^{96}$Zr fusion cross section, on the other hand, is poor and under-predicts the data by 30 to 40%. Although couplings to transfer channels with positive $Q$ values were expected to play an important role, they are not able to explain the data, primarily because the predicted Coulomb barrier is about 1.5 MeV too high. Possible reasons for this failure are discussed.

  16. $\\beta$ Decay and Isomeric Properties of Neutron-Rich Ca and Sc Isotopes

    E-Print Network [OSTI]

    Crawford, H L; Mantica, P F; Berryman, J S; Broda, R; Carpenter, M P; Cieplicka, N; Fornal, B; Grinyer, G F; Hoteling, N; Kay, B P; Lauritsen, T; Minamisono, K; Stefanescu, I; Stoker, J B; Walters, W B; Zhu, S

    2010-01-01T23:59:59.000Z

    The isomeric and $\\beta$-decay properties of neutron-rich $^{53-57}$Sc and $^{53,54}$Ca nuclei near neutron number $N$=32 are reported, and the low-energy level schemes of $^{53,54,56}$Sc and $^{53-57}$Ti are presented. The low-energy level structures of the $_{21}$Sc isotopes are discussed in terms of the coupling of the valence $1f_{7/2}$ proton to states in the corresponding $_{20}$Ca cores. Implications with respect to the robustness of the $N$=32 subshell closure are discussed, as well as the repercussions for a possible $N$=34 subshell closure.

  17. Thermopowers of Ca1 xA1x metallic glasses

    E-Print Network [OSTI]

    Erwin, James Hoyle

    1982-01-01T23:59:59.000Z

    of the resistivity, the temperature coeffi- cient of resi sti vi ty and the fi rst peak in the structure factor plotted against aluminum composi- tion for amorphous Ca-Al alloys An idealized representation of the experimental thermopower stage of the cryostat... = 0. 20 and x = 0. 40 31 40 8. Absolute thermopower of Ca 80A1 20 vs. temperature at low temperature . 41 The f4ooij correlation; temperature coefficient of resistance vs. resistivity for selected amorphous alloys 50 10. Slope...

  18. Location of platinum clusters in PtCaY and PtNaY zeolites

    E-Print Network [OSTI]

    Treybig, Duane Steven

    1980-01-01T23:59:59.000Z

    ) 350'C . . . ~ . . . . . . . . . . . . . 32 Pt 4f spectra of PtCaY: (A) after heating in flowing oxygen at 100'C for 2 hr, (B) after reduction in flowing hydrogen in increments of 100'C/hr to 350'C, (C) after deammination and dehydration in flowing... oxygen in incre- ments of 100'C/hr to 350'C, evacuation at 25'C followed by reduction in flowing hydrogen in increments oi 100'C/hr to 400'C Pt 4d spectra of PtCaY: (A) after heating in flowing oxygen at 100'C for 2 hr, (B) after reduction...

  19. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOE Patents [OSTI]

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1994-10-11T23:59:59.000Z

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  20. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    DOE Patents [OSTI]

    Dorris, Stephen E. (La Grange Park, IL); Poeppel, Roger B. (Glen Ellyn, IL); Prorok, Barton C. (Harrisville, PA); Lanagan, Michael T. (Woodridge, IL); Maroni, Victor A. (Naperville, IL)

    1994-01-01T23:59:59.000Z

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.