National Library of Energy BETA

Sample records for lithography surface science

  1. Interfacial and Surface Science | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interfacial and Surface Science Image of irregular-outlined, light-colored shapes on a dark background. Represents a tapping-mode atomic force microscope image of gallium phosphide on silicon. NREL researchers have developed an integrated set of experimental capabilities to address a broad range of fundamental and applied issues in surface and interfacial science that are critical for advancing sustainable-energy technologies. Surface and interface phenomena often control the opto-electronic,

  2. Maskless lithography

    DOE Patents [OSTI]

    Sweatt, W.C.; Stulen, R.H.

    1999-02-09

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides. 12 figs.

  3. Maskless lithography

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Stulen, Richard H. (Livermore, CA)

    1999-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  4. Heterogeneous Catalysis and Surface Science - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heterogeneous Catalysis and Surface Science / Part I: Surface Science in JCAP Laboratories Heterogeneous Catalysis and Surface Science research in JCAP focuses on the basic understanding of the relationships among the structure, composition, and reactivity of electrocatalysts. Knowledge gained from surface science experimentation can be implemented toward the discovery of better heterogeneous catalysts for solar-fuel production from carbon dioxide and water. REFERENCE Soriaga, M. P. et al.

  5. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  6. VUV lithography

    DOE Patents [OSTI]

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  7. VUV lithography

    DOE Patents [OSTI]

    George, Edward V.; Oster, Yale; Mundinger, David C.

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  8. Surface coatings. Science and technology

    SciTech Connect (OSTI)

    Paul, S.

    1985-01-01

    This book covers the coating field from the latest industry developments to current energy and pollution regulations. It explains the composition of coatings, how they are prepared and applied and the factors that control their ultimate performance. The author discusses the synthesis of polymeric binders, industrial resins, pigments, paints and paint properties, types of coatings, and new technologies. CONTENTS: Binders: Synthesis of Polymeric Binders; Industrial Resins; Pigments; Paints and Paint Properties: Pigment Dispersion; Surface Preparation and Paint Application; Paint Properties and Their Evaluation; Types of Coatings; New Technolgies.

  9. Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF)

  10. Method for maskless lithography

    DOE Patents [OSTI]

    Sweatt, William C. (13027 Arrovo de Vista, Albuquerque, NM 87111); Stulen, Richard H. (5258 Roxanne Ct., Livermore, Alameda County, CA 94550)

    2000-01-01

    The present invention provides a method for maskless lithography. A plurality of individually addressable and rotatable micromirrors together comprise a two-dimensional array of micromirrors. Each micromirror in the two-dimensional array can be envisioned as an individually addressable element in the picture that comprises the circuit pattern desired. As each micromirror is addressed it rotates so as to reflect light from a light source onto a portion of the photoresist coated wafer thereby forming a pixel within the circuit pattern. By electronically addressing a two-dimensional array of these micromirrors in the proper sequence a circuit pattern that is comprised of these individual pixels can be constructed on a microchip. The reflecting surface of the micromirror is configured in such a way as to overcome coherence and diffraction effects in order to produce circuit elements having straight sides.

  11. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  12. Interferometric Lithography Patterned Pyrolytic Carbon. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Interferometric Lithography Patterned Pyrolytic Carbon. Citation Details In-Document Search Title: Interferometric Lithography Patterned Pyrolytic Carbon. Abstract not provided....

  13. Defect tolerant transmission lithography mask

    DOE Patents [OSTI]

    Vernon, Stephen P. (Pleasanton, CA)

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  14. Programmable imprint lithography template

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA); Talin, Albert A. (Livermore, CA)

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  15. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous

  16. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Haney, Steven J. (Tracy, CA); Sweeney, Donald W. (San Ramon, CA)

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  17. Maskless, reticle-free, lithography

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Markle, David A. (Saratoga, CA)

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  18. Maskless, reticle-free, lithography

    DOE Patents [OSTI]

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  19. Decal transfer lithography

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Childs, William R. (Champaign, IL); Motala, Michael J. (Champaign, IL); Lee, Keon Jae (Savoy, IL)

    2010-02-16

    A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.

  20. Membrane projection lithography

    DOE Patents [OSTI]

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  1. Solvent Immersion Imprint Lithography

    SciTech Connect (OSTI)

    Vasdekis, Andreas E.; Wilkins, Michael J.; Grate, Jay W.; Kelly, Ryan T.; Konopka, Allan; Xantheas, Sotiris S.; Chang, M. T.

    2014-06-21

    The mechanism of polymer disolution was explored for polymer microsystem prototyping, including microfluidics and optofluidics. Polymer films are immersed in a solvent, imprinted and finally brought into contact with a non-modified surface to permanently bond. The underlying polymer-solvent interactions were experimentally and theoretically investigated, and enabled rapid polymer microsystem prototyping. During imprinting, small molecule integration in the molded surfaces was feasible, a principle applied to oxygen sensing. Polystyrene (PS) was employed for microbiological studies at extreme environmental conditions. The thermophile anaerobe Clostridium Thermocellum was grown in PS pore-scale micromodels, revealing a double mean generation lifetime than under ideal culture conditions. Microsystem prototyping through directed polymer dissolution is simple and accessible, while simultaneous patterning, bonding, and surface/volume functionalization are possible in less than one minute.

  2. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  3. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  4. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing

  5. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Investigating Extreme Ultraviolet Lithography Mask Defects Print Wednesday, 28 July 2010 00:00 Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using

  6. Atomic-Level Measurements of Rough Surfaces | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Atomic-Level Measurements of Rough Surfaces Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15 Atomic-Level Measurements of Rough

  7. Center for Nanophase Materials Sciences (CNMS) - STM for Oxide Surfaces,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Assemblies and Electrical Transport STM for Oxide Surfaces, Molecular Assemblies and Electrical Transport STM for Oxide Surfaces, Molecular Assemblies and Electrical Transport

  8. Nanopatterning of ultrananocrystalline diamond thin films via block copolymer lithography.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O.

    2010-07-01

    Nanopatterning of diamond surfaces is critical for the development of diamond-based microelectromechanical system/nanoelectromechanical system (MEMS/NEMS), such as resonators or switches. Micro-/nanopatterning of diamond materials is typically done using photolithography or electron beam lithography combined with reactive ion etching (RIE). In this work, we demonstrate a simple process, block copolymer (BCP) lithography, for nanopatterning of ultrananocrystalline diamond (UNCD) films to produce nanostructures suitable for the fabrication of NEMS based on UNCD. In BCP lithography, nanoscale self-assembled polymeric domains serve as an etch mask for pattern transfer. The authors used thin films of a cylinder-forming organic-inorganic BCP, poly(styrene-block-ferrocenyldimethylsilane), PS-b-PFS, as an etch mask on the surface of UNCD films. Orientational control of the etch masking cylindrical PFS blocks is achieved by manipulating the polymer film thickness in concert with the annealing treatment. We have observed that the surface roughness of UNCD layers plays an important role in transferring the pattern. Oxygen RIE was used to etch the exposed areas of the UNCD film underneath the BCP. Arrays of both UNCD posts and wirelike structures have been created using the same starting polymeric materials as the etch mask.

  9. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115...

  10. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  11. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  12. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Livermore, CA); Kubiak, Glenn D. (Livermore, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  13. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    SciTech Connect (OSTI)

    Xu, Jia; Zhang, Ziang; Weng, Zhankun; Wang, Zuobin Wang, Dapeng

    2014-05-28

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  14. Micropatterning of metal substrate by adhesive force lithography

    SciTech Connect (OSTI)

    Seo, Soon-min; Park, Jeong-yong; Lee, Hong H.

    2005-03-28

    We introduce adhesive force lithography (AFL), a detachment-based method for patterning metal surface. In this method, all the polymer layer except for the desired pattern gets lifted up from the metal surface. The craze microstructure unique to thin polymer films on the order of 10{sup 2} nm is utilized for this AFL along with a difference in adhesive force at two interfaces. Poly(urethaneacrylate) mold, which has a high enough work of adhesion with polymer, makes AFL effective. This technique is purely additive, fast ({approx}10 s contact time), and applicable to large area patterning (10 cmx10 cm)

  15. Low-cost method for producing extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  16. Self-cleaning optic for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  17. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    blemishes. In lithography, the complex process used to create computer chips, a six-inch glass plate called a mask carries one layer of a circuit pattern-the image of which is...

  18. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  19. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  20. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  1. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  2. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  3. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  4. Extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Sweeney, Donald W. (San Ramon, CA); Shafer, David (Fairfield, CT); McGuire, James (Pasadena, CA)

    2001-01-01

    Condenser system for use with a ringfield camera in projection lithography where the condenser includes a series of segments of a parent aspheric mirror having one foci at a quasi-point source of radiation and the other foci at the radius of a ringfield have all but one or all of their beams translated and rotated by sets of mirrors such that all of the beams pass through the real entrance pupil of a ringfield camera about one of the beams and fall onto the ringfield radius as a coincident image as an arc of the ringfield. The condenser has a set of correcting mirrors with one of the correcting mirrors of each set, or a mirror that is common to said sets of mirrors, from which the radiation emanates, is a concave mirror that is positioned to shape a beam segment having a chord angle of about 25 to 85 degrees into a second beam segment having a chord angle of about 0 to 60 degrees.

  5. Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan, final report

    SciTech Connect (OSTI)

    Shen, Weidian

    2013-09-27

    This project, “Building Surface Science Capacity to Serve the Automobile Industry in Southeastern Michigan” was carried out in two phases: (1) the 2009 – 2012 renovation of space in the new EMU Science Complex, which included the Surface Science Laboratory (SSL), a very vigorous research lab at EMU that carries on a variety of research projects to serve the auto and other industries in Michigan; and (2) the 2013 purchase of several pieces of equipment to further enhance the research capability of the SSL. The funding granted by the DoE was proposed to “renovate the space in the Science Complex to include SSL and purchase equipment for tribological and electrochemical impedance measurements in the lab, thus SSL will serve the auto and other industries in Michigan better.” We believe we have fully accomplished the mission.

  6. Holographic illuminator for synchrotron-based projection lithography systems

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  7. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  8. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  9. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg; Skala, Dawn M.; Griffiths, Stewart K.; Talin, Albert Alec; Losey, Matthew W.; Yang, Chu-Yeu Peter

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  10. Koel applies science of surface chemistry to fusion research at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Koel applies science of surface chemistry to fusion research at PPPL By Catherine Zandonella March 26, 2012 Tweet Widget Google Plus One Share on Facebook To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum, titanium, zirconium and carbon known for its high strength and temperature properties, is heated inside an ultrahigh vacuum chamber

  11. "A Novel Objective for EUV Microscopy and EUV Lithography" Inventors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Novel Objective for EUV Microscopy and EUV Lithography" Inventors ..--.. Manfred Bitter, Kenneth Hill, Philip Efthimion. This invention is a new x-ray scheme for stigmatic...

  12. Nanoimprint-lithography Patterned Epitaxial Fe Nanowire Arrays...

    Office of Scientific and Technical Information (OSTI)

    epitaxial Fe nanowire arrays on MgO(001) substrates by nanoimprint lithography with a direct metallization of epitaxial materials through a metallic mask, which avoided the...

  13. Photo-lithography of xanthate precursor poly(p-phenylenevinylene...

    Office of Scientific and Technical Information (OSTI)

    of xanthate precursor poly(p-phenylenevinylene) polymers. Citation Details In-Document Search Title: Photo-lithography of xanthate precursor poly(p-phenylenevinylene) polymers. ...

  14. Plasma formed ion beam projection lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  15. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and researchers at work. News Releases Science Briefs Photos Picture of the Week Social Media Videos Fact Sheets Publications PHOTOS BY TOPIC Careers Community Visitors...

  16. science

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  17. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of energy atmospheric radiation measurement program ARM ARM The ... of Science created the Atmospheric Radiation Measurement (ARM) Program within the ...

  18. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  19. ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Torres, R.; Mendez-Torres, A.; Lam, P.

    2011-06-09

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  20. ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Mendez-Torres, A.; Torres, R.; Lam, P.

    2011-07-15

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  1. Graphene nanoribbon superlattices fabricated via He ion lithography

    SciTech Connect (OSTI)

    Archanjo, Braulio S.; Fragneaud, Benjamin; Gustavo Cançado, Luiz; Winston, Donald; Miao, Feng; Alberto Achete, Carlos; Medeiros-Ribeiro, Gilberto

    2014-05-12

    Single-step nano-lithography was performed on graphene sheets using a helium ion microscope. Parallel “defect” lines of ?1??m length and ?5?nm width were written to form nanoribbon gratings down to 20?nm pitch. Polarized Raman spectroscopy shows that crystallographic orientation of the nanoribbons was partially maintained at their lateral edges, indicating a high-fidelity lithography process. Furthermore, Raman analysis of large exposure areas with different ion doses reveals that He ions produce point defects with radii ? 2× smaller than do Ga ions, demonstrating that scanning-He{sup +}-beam lithography can texture graphene with less damage.

  2. Photoresist composition for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  3. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    SciTech Connect (OSTI)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  4. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  5. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wikipedia to forecast diseases November 13, 2014 Los Alamos research published in Public Library of Science LOS ALAMOS, N.M., Nov. 13, 2014-Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles, according to a team from Los Alamos National Laboratory. "A global disease-forecasting system will improve the way we respond to epidemics," scientist Sara Del Valle said. "In the same way we check the weather each

  6. Cavity-enhanced single photon emission from site-controlled In(Ga)As quantum dots fabricated using nanoimprint lithography

    SciTech Connect (OSTI)

    Tommila, J.; Hakkarainen, T. V.; Schramm, A. Guina, M.; Belykh, V. V.; Sibeldin, N. N.; Heinonen, E.

    2014-05-26

    We report on the emission dynamics of single In(Ga)As quantum dots formed in etched GaAs pits and integrated into micropillar cavities. The site-controlled quantum dots were fabricated by molecular beam epitaxy on nanoimprint lithography patterned GaAs(001) surfaces. Triggered single photon emission confirmed by photon autocorrelation measurements is demonstrated. Time-resolved photoluminescence experiments clearly show an effect of the cavity on the spontaneous emission rate of the quantum dot.

  7. Microphotonic parabolic light directors fabricated by two-photon lithography

    SciTech Connect (OSTI)

    Atwater, Jackson H; Spinelli, P.; Kosten, Emily D; Parsons, J.; Van Lare, C; Van de Groep, J; Garcia de Abajo, J.; Polman, Albert; Atwater, Harry A.

    2011-01-01

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 ?m high and 10 ?m in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs.

  8. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  9. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  10. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  11. Ultratech Develops an Improved Lithography Tool for LED Wafer Manufacturing

    Broader source: Energy.gov [DOE]

    Ultratech modified an existing lithography tool used for semiconductor manufacturing to better meet the cost and performance targets of the high-brightness LED manufacturing industry. The goal was to make the equipment compatible with the wide range of substrate diameters and thicknesses prevalent in the industry while reducing the capital cost and the overall cost of ownership (COO).

  12. Composite patterning devices for soft lithography

    DOE Patents [OSTI]

    Rogers, John A.; Menard, Etienne

    2007-03-27

    The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.

  13. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    SciTech Connect (OSTI)

    Jiang, Ximan

    2006-05-18

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3{delta} CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

  14. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

    2007-06-30

    The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

  15. Maskless micro-ion-beam reduction lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  16. Etched-multilayer phase shifting masks for EUV lithography

    DOE Patents [OSTI]

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  17. Low-energy ion beamline scattering apparatus for surface science investigations

    SciTech Connect (OSTI)

    Gordon, M.J.; Giapis, K.P.

    2005-08-15

    We report on the design, construction, and performance of a high current (monolayers/s), mass-filtered ion beamline system for surface scattering studies using inert and reactive species at collision energies below 1500 eV. The system combines a high-density inductively coupled plasma ion source, high-voltage floating beam transport line with magnet mass-filter and neutral stripping, decelerator, and broad based detection capabilities (ions and neutrals in both mass and energy) for products leaving the target surface. The entire system was designed from the ground up to be a robust platform to study ion-surface interactions from a more global perspective, i.e., high fluxes (>100 {mu}A/cm{sup 2}) of a single ion species at low, tunable energy (50-1400{+-}5 eV full width half maximum) can be delivered to a grounded target under ultrahigh vacuum conditions. The high current at low energy problem is solved using an accel-decel transport scheme where ions are created at the desired collision energy in the plasma source, extracted and accelerated to high transport energy (20 keV to fight space charge repulsion), and then decelerated back down to their original creation potential right before impacting the grounded target. Scattered species and those originating from the surface are directly analyzed in energy and mass using a triply pumped, hybrid detector composed of an electron impact ionizer, hemispherical electrostatic sector, and rf/dc quadrupole in series. With such a system, the collision kinematics, charge exchange, and chemistry occurring on the target surface can be separated by fully analyzing the scattered product flux. Key design aspects of the plasma source, beamline, and detection system are emphasized here to highlight how to work around physical limitations associated with high beam flux at low energy, pumping requirements, beam focusing, and scattered product analysis. Operational details of the beamline are discussed from the perspective of available beam current, mass resolution, projectile energy spread, and energy tunability. As well, performance of the overall system is demonstrated through three proof-of-concept examples: (1) elastic binary collisions at low energy (2) core-level charge exchange reactions involving {sup 20}Ne{sup +} with Mg/Al/Si/P targets, and (3) reactive scattering of CF{sub 2}{sup +}/CF{sub 3}{sup +} off Si. These studies clearly demonstrate why low, tunable incident energy, as well as mass and energy filtering of products leaving the target surface is advantageous and often essential for studies of inelastic energy losses, hard-collision charge exchange, and chemical reactions that occur during ion-surface scattering.

  18. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect (OSTI)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  19. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  20. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  1. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  2. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  3. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect (OSTI)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  4. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  5. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  6. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  7. Critical illumination condenser for x-ray lithography

    DOE Patents [OSTI]

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  8. Critical illumination condenser for x-ray lithography

    DOE Patents [OSTI]

    Cohen, Simon J. (Pleasanton, CA); Seppala, Lynn G. (Livermore, CA)

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  9. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  10. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  11. M&A For Lithography Of Sparse Arrays Of Sub-Micrometer Features

    DOE Patents [OSTI]

    Brueck, Steven R.J.; Chen, Xiaolan; Zaidi, Saleem; Devine, Daniel J.

    1998-06-02

    Methods and apparatuses are disclosed for the exposure of sparse hole and/or mesa arrays with line:space ratios of 1:3 or greater and sub-micrometer hole and/or mesa diameters in a layer of photosensitive material atop a layered material. Methods disclosed include: double exposure interferometric lithography pairs in which only those areas near the overlapping maxima of each single-period exposure pair receive a clearing exposure dose; double interferometric lithography exposure pairs with additional processing steps to transfer the array from a first single-period interferometric lithography exposure pair into an intermediate mask layer and a second single-period interferometric lithography exposure to further select a subset of the first array of holes; a double exposure of a single period interferometric lithography exposure pair to define a dense array of sub-micrometer holes and an optical lithography exposure in which only those holes near maxima of both exposures receive a clearing exposure dose; combination of a single-period interferometric exposure pair, processing to transfer resulting dense array of sub-micrometer holes into an intermediate etch mask, and an optical lithography exposure to select a subset of initial array to form a sparse array; combination of an optical exposure, transfer of exposure pattern into an intermediate mask layer, and a single-period interferometric lithography exposure pair; three-beam interferometric exposure pairs to form sparse arrays of sub-micrometer holes; five- and four-beam interferometric exposures to form a sparse array of sub-micrometer holes in a single exposure. Apparatuses disclosed include arrangements for the three-beam, five-beam and four-beam interferometric exposures.

  12. Sequential Infiltration Synthesis Advances Lithography (IN-10-017, 10-106)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Sequential Infiltration Synthesis Advances Lithography (IN-10-017, 10-106) A unique lithography resist transformation process that dramatically improves image quality while reducing cost. Argonne National Laboratory Contact ANL About This Technology <p> Directed self-assembly (DSA) of block copolymers is targeted as a next-generation

  13. Photo-lithography of xanthate precursor poly(p-phenylenevinylene) polymers.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Photo-lithography of xanthate precursor poly(p-phenylenevinylene) polymers. Citation Details In-Document Search Title: Photo-lithography of xanthate precursor poly(p-phenylenevinylene) polymers. Conjugated polymers such as poly(p-phenylenevinylene) (PPV) have attracted a great deal of attention due to their optoelectronic properties. The ability to control the lateral spatial resolution of conjugated polymers will allow for improved integration into

  14. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so...

  15. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOE Patents [OSTI]

    Cohen, Simon J (Pleasonton, CA); Jeong, Hwan J (Los Altos, CA); Shafer, David R (Fairfield, CT)

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  16. Fundamentals of embossing nanoimprint lithography in polymer substrates.

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; King, William P.

    2011-02-01

    The convergence of micro-/nano-electromechanical systems (MEMS/NEMS) and biomedical industries is creating a need for innovation and discovery around materials, particularly in miniaturized systems that use polymers as the primary substrate. Polymers are ubiquitous in the microelectronics industry and are used as sensing materials, lithography tools, replication molds, microfluidics, nanofluidics, and biomedical devices. This diverse set of operational requirements dictates that the materials employed must possess different properties in order to reduce the cost of production, decrease the scale of devices to the appropriate degree, and generate engineered devices with new functional properties at cost-competitive levels of production. Nanoscale control of polymer deformation at a massive scale would enable breakthroughs in all of the aforementioned applications, but is currently beyond the current capabilities of mass manufacturing. This project was focused on developing a fundamental understanding of how polymers behave under different loads and environments at the nanoscale in terms of performance and fidelity in order to fill the most critical gaps in our current knowledgebase on this topic.

  17. Lithography with MeV Energy Ions for Biomedical Applications: Accelerator Considerations

    SciTech Connect (OSTI)

    Sangyuenyongpipat, S.; Whitlow, H. J.; Nakagawa, S. T.; Yoshida, E.

    2009-03-10

    MeV ion beam lithographies are very powerful techniques for 3D direct writing in positive or negative photoresist materials. Nanometer-scale rough structures, or clear areas with straight vertical sidewalls as thin as a few 10's of nm in a resist of a few nm to 100 {mu}m thickness can be made. These capabilities are particularly useful for lithography in cellular- and sub-cellular level biomedical research and technology applications. It can be used for tailor making special structures such as optical waveguides, biosensors, DNA sorters, spotting plates, systems for DNA, protein and cell separation, special cell-growth substrates and microfluidic lab-on-a-chip devices. Furthermore MeV ion beam lithography can be used for rapid prototyping, and also making master stamps and moulds for mass production by hot embossing and nanoimprint lithography. The accelerator requirements for three different high energy ion beam lithography techniques are overviewed. We consider the special requirements placed on the accelerator and how this is achieved for a commercial proton beam writing tool.

  18. Soft X-ray Lithography Beamline at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Klysubun, P.; Chomnawang, N.; Songsiriritthigul, P.

    2007-01-19

    Construction of a soft x-ray lithography beamline utilizing synchrotron radiation generated by one of the bending magnets at the Siam Photon Laboratory is finished and the beamline is currently in a commissioning period. The beamline was modified from the existing monitoring beamline and is intended for soft x-ray lithographic processing and radiation biological research. The lithography exposure station with a compact one-dimensional scanning mechanism was constructed and assembled in-house. The front-end of the beamline has been modified to allow larger exposure area. The exposure station for studying radiation effects on biological samples will be set up in tandem with the lithography station, with a Mylar window for isolation. Several improvements to both the beamline and the exposure stations, such as improved scanning speed and the ability to adjust the exposure spectrum by means of low-Z filters, are planned and will be implemented in the near future.

  19. Lithography process for patterning HgI2 photonic devices

    DOE Patents [OSTI]

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  20. Extreme-UV lithography vacuum chamber zone seal

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

    2003-04-15

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  1. Extreme-UV lithography vacuum chamber zone seal

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

    2003-04-08

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  2. Extreme-UV lithography vacuum chamber zone seal

    DOE Patents [OSTI]

    Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

    2001-01-01

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Research in Environmental Sciences CMDL (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat...

  4. Low thermal distortion Extreme-UV lithography reticle and method

    DOE Patents [OSTI]

    Gianoulakis, Steven E. (Albuquerque, NM); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  5. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E. (Albuquerque, NM); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  6. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E. (Albuquerque, NM); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  7. Science and Science Fiction

    ScienceCinema (OSTI)

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  8. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs /newsroom/_assets/images/newsroom-icon.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Science Briefs - 2016» Science Briefs - 2015» Science Briefs - 2014» Science Briefs - 2013» Science Briefs - 2012» Science Briefs - 2011» Shown are time lapse images of supercritical CO2 displacing water in a fracture etched into a shale micromodel. The white, blue and gray colors represent supercritical CO2,

  9. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Briefs newsroomassetsimageslegacy-icon-short.jpg Science Briefs Read in detail about specific Los Alamos science achievements, and the honors our scientists are...

  10. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  11. Research Staff | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Research staff members in NREL's Materials Science Center are aligned within four groups: Materials Physics, Analytical Microscopy and Imaging Science, Interfacial and Surface Science, and Thin-Film Materials Science and Processing. For lead researcher contacts, see our research areas. For our business contact, see Work with Us. Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 Materials Physics Photo of Angelo Mascarenhas Angelo

  12. SC e-journals, Materials Science

    Office of Scientific and Technical Information (OSTI)

    Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface

  13. Science Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Science Events Learn about our science by coming to Frontiers in Science lectures, catch Cafe Scientific events in your community, or come to sicence events at the Bradbury...

  14. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tration-Environmental Technology Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Surface Heat Budget of the Arctic Ocean (SHEBA) surface flux...

  16. Diffraction spectral filter for use in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Tichenor, Daniel A. (Castro Valley, CA); Bernardez, Luis J. (Livermore, CA)

    2002-01-01

    A condenser system for generating a beam of radiation includes a source of radiation light that generates a continuous spectrum of radiation light; a condenser comprising one or more first optical elements for collecting radiation from the source of radiation light and for generating a beam of radiation; and a diffractive spectral filter for separating first radiation light having a particular wavelength from the continuous spectrum of radiation light. Cooling devices can be employed to remove heat generated. The condenser system can be used with a ringfield camera in projection lithography.

  17. Wafer chamber having a gas curtain for extreme-UV lithography

    DOE Patents [OSTI]

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  18. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScience Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Science New C-band scanning ARM

  19. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Iberi, Vighter O.; Vlassiouk, Ivan V.; Zhang, X. -G.; Matola, Brad R.; Linn, Allison R.; Joy, David Charles; Adam Justin Rondinone

    2015-07-07

    The remarkable mechanical and electronic properties of graphene make it an ideal candidate for next generation nanoelectronics. With the recent development of commercial-level single-crystal graphene layers, the potential for manufacturing household graphene-based devices has improved, but significant challenges still remain with regards to patterning the graphene into devices. In the case of graphene supported on a substrate, traditional nanofabrication techniques such as e-beam lithography (EBL) are often used in fabricating graphene nanoribbons but the multi-step processes they require can result in contamination of the graphene with resists and solvents. In this letter, we report the utility of scanning helium ionmore » lithography for fabricating functional graphene nanoconductors that are supported directly on a silicon dioxide layer, and we measure the minimum feature size achievable due to limitations imposed by thermal fluctuations and ion scattering during the milling process. Further we demonstrate that ion beams, due to their positive charging nature, may be used to observe and test the conductivity of graphene-based nanoelectronic devices in situ.« less

  20. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  1. Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process

    SciTech Connect (OSTI)

    Nath, A., E-mail: anath@gmu.edu; Rao, M. V. [George Mason University, 4400 University Dr., Fairfax, Virginia 22030 (United States); Koehler, A. D.; Jernigan, G. G.; Wheeler, V. D.; Hite, J. K.; Hernández, S. C.; Robinson, Z. R.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, D.C. 20375 (United States); Garces, N. Y. [Sotera Defense Solutions, 2200 Defense Hwy. Suite 405, Crofton, Maryland 21114 (United States)

    2014-06-02

    It is well-known that the performance of graphene electronic devices is often limited by extrinsic scattering related to resist residue from transfer, lithography, and other processes. Here, we report a polymer-assisted fabrication procedure that produces a clean graphene surface following device fabrication by a standard lithography process. The effectiveness of this improved lithography process is demonstrated by examining the temperature dependence of epitaxial graphene-metal contact resistance using the transfer length method for Ti/Au (10?nm/50?nm) metallization. The Landauer-Buttiker model was used to explain carrier transport at the graphene-metal interface as a function of temperature. At room temperature, a contact resistance of 140 ?-?m was obtained after a thermal anneal at 523?K for 2?hr under vacuum, which is comparable to state-of-the-art values.

  2. Detection Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry for Measurement and Detection Science Chemistry for Measurement and Detection Science Project Description Chemistry used in measurement and detection science plays a crucial role in the Laboratory's Science of Signatures scientific thrust. Measurement and detection science areas that require chemistry include nuclear and radiological, materials, biological, energy, climate, and space. Los Alamos scientists integrate chemical-science capabilities to ensure that the Laboratory can

  3. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science /science-innovation/_assets/images/icon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling & Simulation» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of

  4. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal

  5. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  6. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  7. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  8. Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Science Gateways A science gateway is a web-based interface to access HPC computers ... perform shared computations, and generally interact with NERSC resources over the web. ...

  9. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively ...

  10. Material Science and Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Science and Nuclear Science Material Science and Nuclear Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. The Lab's four Science Pillars harness capabilities for solutions to threats- on national and global scales. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation

  11. Repair of localized defects in multilayer-coated reticle blanks for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Stearns, Daniel G.; Sweeney, Donald W.; Mirkarimi, Paul B.

    2004-11-23

    A method is provided for repairing defects in a multilayer coating layered onto a reticle blank used in an extreme ultraviolet lithography (EUVL) system. Using high lateral spatial resolution, energy is deposited in the multilayer coating in the vicinity of the defect. This can be accomplished using a focused electron beam, focused ion beam or a focused electromagnetic radiation. The absorbed energy will cause a structural modification of the film, producing a localized change in the film thickness. The change in film thickness can be controlled with sub-nanometer accuracy by adjusting the energy dose. The lateral spatial resolution of the thickness modification is controlled by the localization of the energy deposition. The film thickness is adjusted locally to correct the perturbation of the reflected field. For example, when the structural modification is a localized film contraction, the repair of a defect consists of flattening a mound or spreading out the sides of a depression.

  12. Study of nano imprinting using soft lithography on Krafty glue and PVDF polymer thin films

    SciTech Connect (OSTI)

    Sankar, M. S. Ravi, E-mail: rameshg.phy@pondiuni.edu; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry - 605014 (India)

    2014-04-24

    The present work reveals soft lithography strategy based on self assembly and replica molding for carrying out micro and nanofabrication. It provides a convenient, effective and very low cost method for the formation and manufacturing of micro and nano structures. Al-layer of compact disc (sony CD-R) used as a stamp with patterned relief structures to generate patterns and structures with pattern size of 100nm height, 1.7 ?m wide. In literature, PDMS (Polydimethylsiloxane) solution is widely used to get negative copy of the Al-layer. In this work, we have used inexpensive white glue (Polyvinylacetate + water), 15gm (?5) and PVDF (Polyvinylidene difluoride) spin coated films and successfully transferred the nano patterns of Al layer on to white glue and PVDF films.

  13. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  14. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader Joanne Wendelberger Email Deputy Group Leader James R. Gattiker Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research. Statistical

  15. Explosives Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Science Explosives Science Current efforts in explosives science cover many areas critical to national security. One particular area is the need for countermeasures against explosive threats. v Comprehensive explosives process Los Alamos National Laboratory offers a comprehensive explosives process. This process leverages entire technical divisions dedicated to explosives science. Los Alamos scientists combine advanced expertise and capabilities with modern facilities. These assets

  16. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect (OSTI)

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO[sub x], the addition of Pt increased the selectivity of hydrogenation over isomerization.

  17. The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

    SciTech Connect (OSTI)

    Kim, C.

    1992-04-01

    Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO{sub x}, the addition of Pt increased the selectivity of hydrogenation over isomerization.

  18. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  19. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  20. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  1. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  2. Explore Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explore Explore Science Create your own science adventure by exploring our varied exhibits, and learn what inspired our scientists, engineers and technicians to discover new things. August 18, 2014 boys conducting experiment [Science is] a great game. It is inspiring and refreshing. The playing field is the universe itself. -I.I. Rabi Science is thinking in an organized way about things. You don't need a license or permission to practice science. Scientists are interested in just about anything

  3. Science Briefs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed-image Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Science Briefs Science Briefs ALS Science Briefs are short (200 words maximum) descriptions of recently published ALS-related work. These "brief" highlights also include one image, a caption (50 words), and the publication citation. All ALS users and beamline scientists are invited to fill out the short submission form here

  4. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  5. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs /science-innovation/_assets/images/icon-science.jpg Science Programs The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Applied Energy Programs» Civilian Nuclear Programs» Laboratory Directed Research & Development» Office of Science»

  6. Big Science

    ScienceCinema (OSTI)

    Dr. Thomas Zacharia

    2010-01-08

    Big science seeks big solutions for the most urgent problems of our times. Video courtesy Cray, Inc.

  7. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  8. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  9. Science DMZ for ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  10. Science DMZ Case Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study...

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Measurement (ARM) Science Team Meeting A description of the four ARM sites (BillingsBRS, E13, Manus and Nauru) currently included in the Baseline Surface Radiation...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The state of the land surface has a direct impact on the sensible and...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consist of over twelve sites. The science objective is ground truth for global satellite retrieval and accurate vertical distribution information in combination with surface...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ... Charlock, T.P. Surface Albedo at Atmospheric Radiation Measurement Southern Great Plains ...

  15. Argonne OutLoud: Catch a Rising Science Star (Sept. 10, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    --Photosynthesis & biomimetics -Materials science --Complex oxides --Nanoscience --Materials simulation & theory --Surface & interface studies --Tribology -Mathematics,...

  16. Solar Water Splitting: Putting an Extra "Eye" on Surface Reactions...

    Office of Science (SC) Website

    Solar Water Splitting: Putting an Extra "Eye" on Surface Reactions that Store Sunlight as Fuel Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights ...

  17. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those missions. This effort strategically invests in new technologies and development of large-scale photon systems for various federal agencies and industry sponsors. NIF&PS researchers are developing world-class

  18. Fermilab | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science

  19. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  20. Information Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science and Technology (ASIS&T) American Society for Indexing (ASI) Digital Library Federation (DLF) National Archives and Records Administration (NARA) Special...

  1. SCIENCE Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program early science program Early at the Argonne Leadership Computing Facility CONTACT Argonne Leadership Computing Facility | www.alcf.anl.gov | (877) 737-8615...

  2. Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Scientists are advancing the fundamental science of materials within the context of global energy-related challenges. They are developing experimental and theoretical...

  3. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  4. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  5. DIVERSITY. EDUCATION. SCIENCE. The ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sciences-Biology, Computer, Information Technology, Geology, Mathematics, Microbiology, and Physics. Social Sciences-Economics, Organizational Psychology, Political Science, ...

  6. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  7. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  8. NREL: Photovoltaics Research - Materials Science Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Staff The Materials Science staff members at the National Renewable Energy Laboratory work within one of four groups: the Materials Physics Group, the Microscopy & Imaging Group, the Interfacial & Surface Science Group, and the Thin Film Material Science & Processing Group. Access the staff members' background, areas of expertise, and contact information below. Nancy Haegel Center Director Paula Robinson Administrative Professional Materials Physics Angelo Mascarenhas Group

  9. Science Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & ANALYSIS www.sciencemag.org SCIENCE VOL 339 8 FEBRUARY 2013 635 Steven Chu, the fi rst Nobel-winning scien- tist to lead the sprawling U.S. Department of Energy (DOE), has rarely...

  10. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology and algae biofuels exhibits open July 26 at the Bradbury Science Museum July 22, 2013 LOS ALAMOS, N.M., July 22, 2013-Los Alamos National Laboratory's Bradbury Science Museum is opening two new exhibits July 26 as part of the Laboratory's 70th Anniversary celebration. One is a nanotechnology exhibit featuring the Laboratory's Center for Integrated Nanotechnologies (CINT) and the other is an algae biofuel exhibit from the Laboratory and the New Mexico Consortium. An opening

  11. Isotope Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Production 35 years of experience in isotope production, processing, and applications. Llllll Committed to the safe and reliable production of radioisotopes, products, and services. Contact: Kevin John LANL Isotope Program Manager kjohn@lanl.gov 505-667-3602 Sponsored by the Department of Energy National Isotope Program http://www.nuclear.energy.gov/isotopes/nelsotopes2a.html Isotopes for Environmental Science Isotopes produced at Los Alamos National Laboratory are used as

  12. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure

  13. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Science Highlights Science highlights feature research conducted by staff and users at the ALS. If a Power Point summary slide or a PDF handout of the highlight is available, you will find it linked beneath the highlight listing and on the highlight's page. You may also print a version of a highlight by clicking the print icon associated with each highlight. Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Monday, 22 February 2016 00:00 ALS research has shown that

  14. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  15. Nuclear Science

    Energy Savers [EERE]

    and Engineering Education Sourcebook 2013 American Nuclear Society US Department of Energy Nuclear Science & Engineering Education Sourcebook 2013 North American Edition American Nuclear Society Education, Training, and Workforce Division US Department of Energy Office of Nuclear Energy Editor and Founder John Gilligan Professor of Nuclear Engineering North Carolina State University Version 5.13 Welcome to the 2013 Edition of the Nuclear Science and Engineering Education (NS&EE)

  16. Demonstration of electronic pattern switching and 10x pattern demagnification in a maskless micro-ion beam reduction lithography system

    SciTech Connect (OSTI)

    Ngo, V.V.; Akker, B.; Leung, K.N.; Noh, I.; Scott, K.L.; Wilde, S.

    2002-05-31

    A proof-of-principle ion projection lithography (IPL) system called Maskless Micro-ion beam Reduction Lithography (MMRL) has been developed and tested at the Lawrence Berkeley National Laboratory (LBNL) for future integrated circuits (ICs) manufacturing and thin film media patterning [1]. This MMRL system is aimed at completely eliminating the first stage of the conventional IPL system [2] that contains the complicated beam optics design in front of the stencil mask and the mask itself. It consists of a multicusp RF plasma generator, a multi-beamlet pattern generator, and an all-electrostatic ion optical column. Results from ion beam exposures on PMMA and Shipley UVII-HS resists using 75 keV H+ are presented in this paper. Proof-of-principle electronic pattern switching together with 10x reduction ion optics (using a pattern generator made of nine 50-{micro}m switchable apertures) has been performed and is reported in this paper. In addition, the fabrication of a micro-fabricated pattern generator [3] on an SOI membrane is also presented.

  17. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  18. Tuning the interaction between propagating and localized surface plasmons for surface enhanced Raman scattering in water for biomedical and environmental applications

    SciTech Connect (OSTI)

    Shioi, Masahiko; Jans, Hilde; Lodewijks, Kristof; Van Dorpe, Pol; Lagae, Liesbet; Kawamura, Tatsuro

    2014-06-16

    With a view to biomedical and environmental applications, we investigate the plasmonic properties of a rectangular gold nanodisk array in water to boost surface enhanced Raman scattering (SERS) effects. To control the resonance wavelengths of the surface plasmon polariton and the localized surface plasmon, their dependence on the array period and diameter in water is studied in detail using a finite difference time domain method. A good agreement is obtained between calculated resonant wavelengths and those of gold nanodisk arrays fabricated using electron beam lithography. For the optimized structure, a SERS enhancement factor of 7.8 × 10{sup 7} is achieved in water experimentally.

  19. Atomistic surface erosion and thin film growth modelled over...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; 37 ... MAGNETRONS; MATERIALS; MOLECULAR DYNAMICS ... FAULTS; SURFACES; THIN FILMS; VACANCIES Word Cloud More ...

  20. Ecological Screening Values for Surface Water, Sediment, and...

    Office of Scientific and Technical Information (OSTI)

    Ecological Screening Values for Surface Water, Sediment, and Soil Friday, G. P. 54 ENVIRONMENTAL SCIENCES; SOILS; SURFACE WATERS; SEDIMENTS; ECOLOGICAL CONCENTRATION; ENVIRONMENTAL...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Hyperspectral Imaging Interferometer for Measurements of Surface Albedo Minnett, P.J.(a) and Sellar, R.G.(b), Rosenstiel School of Marine and Atmospheric Sciences, University of Miami (a), Florida Space Institute (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Uncertainties in the bidirectional reflection coefficient of the surface is a major component of the errors in the measurements of the surface radiation budget. A new instrument will be presented that

  2. Princeton Plasma Physics Lab - Surface science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the complex edge region, an important research area in fusion energy research. "We're learning more and more that to some extent the edge is the dog that wags the tail of the...

  3. Surface science | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two phases of matter, such as solid to liquid or liquid to gas. Laboratory Director Stewart Prager heralds start of new era with NSTX-U and looks to future projects in "State of...

  4. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintaining nuclear stability in times of transition focus of talk at Bradbury Science Museum January 9, 2014 First in series of evening lectures open to public LOS ALAMOS, N.M., Jan. 9, 2014-Los Alamos National Laboratory Senior Fellow Houston "Terry" Hawkins talks about the role that the nation's nuclear weapons stockpile plays in maintaining the nation's defense - and that of our allies - in a talk at 5:30 p.m., Jan. 15 at the Bradbury Science Museum. The talk is the first in a

  5. Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emerging threats to global security focus of March 12 talk at Bradbury Science Museum March 6, 2014 Terry Wallace to address Lab's role in helping the government meet national security challenges LOS ALAMOS, N.M., March 6, 2014-Terry Wallace, principal associate director for Global Security at Los Alamos National Laboratory, will talk about potential emerging threats in a lecture at 5:30 p.m., March 12 at the Bradbury Science Museum. The talk is the third in a series of evening lectures planned

  6. Surface-Plasmon Enhanced Transparent Electrodes in Organic Photovoltaics

    SciTech Connect (OSTI)

    Reilly III, T. H.; van de Lagemaat, J.; Tenent, R. C.; Morfa, A. J.; Rowlen, K. L.

    2008-01-01

    Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92 nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.

  7. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  8. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security ...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle Shupe, M.D. and Intrieri, J.M., NOAA - Environmental Technology Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud

  10. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  11. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  12. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  13. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  14. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roadrunner firsts pave way for greener, faster supercomputing science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and ...

  15. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  16. Ultrahigh density ferroelectric storage and lithography by high order ferroic switching

    DOE Patents [OSTI]

    Kalinin, Sergei V. (Knoxville, TN); Baddorf, Arthur P. (Knoxville, TN); Lee, Ho Nyung (Oak Ridge, TN); Shin, Junsoo (Knoxville, TN); Gruverman, Alexei L. (Raleigh, NC); Karapetian, Edgar (Malden, MA); Kachanov, Mark (Arlington, MA)

    2007-11-06

    A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.

  17. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively since the late 1980s, only in the last decade has the field matured into a cohesive area of science. November 22, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  18. Energy Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Print Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities-the synchrotrons of today and the next-generation light sources of tomorrow-are the scientific tools of choice for exploring the electronic and atomic structure of matter. As

  19. Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  20. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  1. Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  2. Discovery Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science Since the beginning of civilization, humans have marveled at the night sky and pondered the vast stretches of the universe. The invention of telescopes in the 17th century revealed the first details of the Moon and the planets in our solar system. Four hundred years later, space-based observatories such as NASA's Hubble and Kepler regularly capture amazing vistas of billions of galaxies millions of light years away. Despite these advances, astronomers have only been able to

  3. Information Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Information Sciences Uncovering actionable knowledge and generating insight into exascale datasets from heterogeneous sources in real time Leadership Group Leader Patrick M. Kelly Email Deputy Group Leader Amy Larson Email Contact Us Administrator Yvonne McKelvey Email Conceptual illustration of futuristic data stream processing. Developing methods and tools for understanding complex interactions and extracting actionable information from massive data streams. Basic and applied research

  4. Science DMZ Implemented at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @...

  5. Science Brief Submission Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Brief Submission Form Science Brief Submission Form Print Tuesday, 01 May 2007 00:00 Loading... < Prev

  6. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation /science-innovation/_assets/images/icon-science.jpg Science and Innovation Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Science & Engineering Capabilities» Science Programs» Science Facilities» Features» Capabilities Strategy: Science Pillars» Top Ten Innovations of 2013 Science and

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preferred Modes of Surface-Atmosphere Interaction in the Polar Regions Stramler, K.L.(a), Del Genio, A.D.(b), and Rossow, W.B.(b), Department of Earth and Environmental Sciences,...

  8. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  9. Life sciences and environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  10. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (218 Eastridge Dr., San Ramon, CA 94583-4905); Shafer, David R. (56 Drake La., Fairfield, CT 06430-2925)

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first convex mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receive a chief ray at an incidence angle of less than substantially 9.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 14.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 12 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than substantially 16 .mu.m.

  11. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (315 Eastridge Dr., San Ramon, CA 94583-4905)

    2001-01-01

    An all-reflective optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle of less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six reflecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  12. High numerical aperture ring field projection system for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Hudyma, Russell (218 Eastridge Dr., San Ramon, CA 84583-4905)

    2000-01-01

    An all-refelctive optical system for a projection photolithography camera has a source of EUV radiation, a wafer and a mask to be imaged on the wafer. The optical system includes a first concave mirror, a second mirror, a third convex mirror, a fourth concave mirror, a fifth convex mirror and a sixth concave mirror. The system is configured such that five of the six mirrors receives a chief ray at an incidence angle less than substantially 12.degree., and each of the six mirrors receives a chief ray at an incidence angle of less than substantially 15.degree.. Four of the six reflecting surfaces have an aspheric departure of less than substantially 7 .mu.m. Five of the six reflecting surfaces have an aspheric departure of less than substantially 14 .mu.m. Each of the six refelecting surfaces has an aspheric departure of less than 16.0 .mu.m.

  13. Science Cafe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cafés Science Cafe April 27, 2015-Special ALS Colloquium Print Wednesday, 22 April 2015 13:19 Special Event on Monday, April 27 @ 12 noon, USB 15-253 X-Ray Microscopy: The First 120 Years Janos Kirz, ALS Abstract Röntgen's great discovery became an instant public sensation. Fascination with the "new kind of rays" that could reveal the structure of opaque objects swept the world in 1896. Fifty years later it was widely recognized that the short wavelength of the radiation should open

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Influence of Clouds on the Arctic Surface Intrieri, J.M.(a) and Shupe, M.D.(b), NOAA/Environmental Technology Laboratory (a), STC/NOAA/Environmental Technology Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting SHEBA observations of Arctic cloud and surface fluxes were used to determine surface cloud radiative forcing over an annual cycle. Cloud amount and phase had the largest influence on the magnitude of surface forcing in both winter and summer while

  15. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    SciTech Connect (OSTI)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  16. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum - Science on Wheels Our Mission: To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory Our Vision: The public interested in and excited about science, technology, engineering and mathematics, and the work of Los Alamos National Laboratory Program Description During the school year, the Bradbury Science Museum Educators drive there van to schools

  17. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  18. Capabilities: Science Pillars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pillars /science-innovation/_assets/images/icon-science.jpg Capabilities: Science Pillars The Lab's four Science Pillars harness our scientific capabilities for national security solutions. What are the Los Alamos National Laboratory's Science Pillars? The Laboratory has established the Science Pillars under four main themes to bring together the Laboratory's diverse array of scientific capabilities and expertise: Information, Science, and Technology Pillar Materials for the Future Pillar

  19. Lunar and Planetary Science Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science sleuth on the trail of a martian mystery March 19, 2013 EMBARGOED: Until 5 p.m. MDT, March 19, 2013Poster Session T617, Poster #246, 44 th Lunar and Planetary Science Conference Postdoctoral researcher sees promise in data from cutting room floor THE WOODLANDS, Texas, March 19, 2013 - When it comes to examining the surface of rocks on Mars with a high-powered laser, five is a magic number for Los Alamos National Laboratory postdoctoral researcher Nina Lanza. During a poster session today

  20. ARM - Publications: Science Team Meeting Documents: Using ARM data to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluate the dependence of surface downward longwave radiation on near-surface temperature and water vapour path, in both ARM observations and the Met Office NWP model. Using ARM data to evaluate the dependence of surface downward longwave radiation on near-surface temperature and water vapour path, in both ARM observations and the Met Office NWP model. Henderson, Peter Environmental Systems Science Centre Slingo, Anthony Environmental Systems Science Centre In this work, we continue our

  1. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    SciTech Connect (OSTI)

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D.

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  2. Science Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2009 » Links Scientific Highlight Duckworth Research Sposito Research SSRL MEIS » Share this Article Laboratree Ologeez SciLink LabSpaces The Competition for Iron Impacts the Global Carbon Cycle Phytoplankton are microorganisms that live in the ocean surface waters and are important because they act as lungs for the planet, consuming carbon dioxide and producing oxygen. Phytoplankton account for an astounding 50% of the total biological uptake (or sequestration) of carbon dioxide annually.

  3. BioenergizeME Virtual Science Fair: Science & Technology Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels BioenergizeME Virtual Science Fair: ...

  4. Surface figure control for coated optics

    DOE Patents [OSTI]

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  5. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable energy is focus of New Science on Wheels programs offered by Bradbury Science Museum September 21, 2010 Los Alamos National Laboratory is taking science on the road to...

  6. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  7. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  8. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  9. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand

  10. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities /science-innovation/_assets/images/icon-science.jpg Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science»

  11. Science Serving Sustainability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Goal 8: Science Serving Sustainability LANL takes opportunities to engage the ... ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Community involvement: Andy Erickson and Duncan ...

  12. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science...

  13. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Faces of Science The people behind our science Radical Supercomputing Extreme speeds, big data, powerful simulations 70 Years of Innovation Addressing the nation's most complex...

  14. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  15. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  16. Nuclear Science Series: Radiochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiochemistry Nuclear Science Series: Radiochemistry These volumes are publicly ... working under the Committee on Nuclear Science within the National Academy of ...

  17. Stewardship Science Academic Alliances

    National Nuclear Security Administration (NNSA)

    0%2A en NNSA's holds Stewardship Science Academic Programs Annual Review Symposium http:nnsa.energy.govblognnsas-holds-stewardship-science-academic-programs-annual-review-symp...

  18. Science and Technology Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Technology Day Science and Technology Day February 24, 2015 Tuesday, Feb. 24 Berkeley Lab Building 50 Auditorium Attendance is open to anyone. Remote streaming is...

  19. Science Briefs - 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newsroomassetsimagesnewsroom-icon.jpg Science Briefs - 2012 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing. Los...

  20. Science Briefs - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newsroomassetsimagesnewsroom-icon.jpg Science Briefs - 2014 Read in detail about specific Los Alamos science achievements, and the honors our scientists are accruing....

  1. ARM - TWP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical...

  2. Adding Nanocavities to Catalyst Surfaces Enhances Chemical Selectivity |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Adding Nanocavities to Catalyst Surfaces Enhances Chemical Selectivity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  3. One Nanocrystal, Many Faces: Connecting the Atomic Surface Structures of

    Office of Science (SC) Website

    CeO2 Nanocrystals to Catalysis | U.S. DOE Office of Science (SC) One Nanocrystal, Many Faces: Connecting the Atomic Surface Structures of CeO2 Nanocrystals to Catalysis Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space-Borne Remote Sensing of High-latitude Surface Radiative Properties Berque, J., Lubin, D., and Somerville, R.C.J., Scripps Institution of Oceanography, University of California, San Diego Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Several studies have demonstrated the far-reaching influences of the Antarctic climate. Here we present a method to monitor the surface radiative properties from space. These properties play a key role in the surface energy budget in

  5. Printability and inspectability of programmed pit defects on teh masks in EUV lithography

    SciTech Connect (OSTI)

    Kang, I.-Y.; Seo, H.-S.; Ahn, B.-S.; Lee, D.-G.; Kim, D.; Huh, S.; Koh, C.-W.; Cha, B.; Kim, S.-S.; Cho, H.-K.; Mochi, I.; Goldberg, K. A.

    2010-03-12

    Printability and inspectability of phase defects in ELlVL mask originated from substrate pit were investigated. For this purpose, PDMs with programmed pits on substrate were fabricated using different ML sources from several suppliers. Simulations with 32-nm HP L/S show that substrate pits with below {approx}20 nm in depth would not be printed on the wafer if they could be smoothed by ML process down to {approx}1 nm in depth on ML surface. Through the investigation of inspectability for programmed pits, minimum pit sizes detected by KLA6xx, AIT, and M7360 depend on ML smoothing performance. Furthermore, printability results for pit defects also correlate with smoothed pit sizes. AIT results for pattemed mask with 32-nm HP L/S represents that minimum printable size of pits could be {approx}28.3 nm of SEVD. In addition, printability of pits became more printable as defocus moves to (-) directions. Consequently, printability of phase defects strongly depends on their locations with respect to those of absorber patterns. This indicates that defect compensation by pattern shift could be a key technique to realize zero printable phase defects in EUVL masks.

  6. Method and apparatus for detecting the presence and thickness of carbon and oxide layers on EUV reflective surfaces

    DOE Patents [OSTI]

    Malinowski, Michael E.

    2005-01-25

    The characteristics of radiation that is reflected from carbon deposits and oxidation formations on highly reflective surfaces such as Mo/Si mirrors can be quantified and employed to detect and measure the presence of such impurities on optics. Specifically, it has been shown that carbon deposits on a Mo/Si multilayer mirror decreases the intensity of reflected HeNe laser (632.8 nm) light. In contrast, oxide layers formed on the mirror should cause an increase in HeNe power reflection. Both static measurements and real-time monitoring of carbon and oxide surface impurities on optical elements in lithography tools should be achievable.

  7. Fundamental Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Science Applications Fundamental Science Applications Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Contact thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Fundamental Science Applications The DOE Basic Energy Science (BES) program supports research to understand, predict and ultimately control

  8. Solar Energy Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Projects Curriculum: Solar Power -(thermodynamics, lightelectromagnetic, radiation, energy transformation, conductionconvection, seasons, trigonometry) Grade Level: ...

  9. Materials sciences programs, Fiscal year 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  10. Science and Suds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Suds Science and Suds WHEN: Jul 18, 2015 12:00 PM - 4:00 PM WHERE: Los Alamos ScienceFest Beer Garden Ashley Pond, Downtown Los Alamos, NM CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science and Suds - Social Event Event Description Conversations with real scientists at the Los Alamos ScienceFest Beer Garden SCIENCE & SUDS Stop by the museum's tent in the beer garden at Ashley Pond during Los Alamos ScienceFest to visit with a scientist

  11. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us DOE Home » ScienceCinema Navigation ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us OSTI Home DOE Home ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search × Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE

  12. Manhattan Project: Science

    Office of Scientific and Technical Information (OSTI)

    Science In the Laboratory Particle Accelerators and Other Technologies The Atom and Atomic Structure Nuclear Physics Bomb Design and Components Radioactivity Science and technology of the Manhattan Project Science PLEASE NOTE: The Science pages are not yet available. Links to the pages listed below and to the left will be activated as content is developed. Select topics relating to the science and technology of the Manhattan Project have been grouped into the categories listed to the left. A

  13. Committee on Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SHERWOOD BOEHLERT, CHAIRMAN Ralph M. Hall, Texas, Ranking Democrat www.house.gov/science October 9, 2001 Press Contacts: Heidi Mohlman Tringe (Heidi.Tringe@mail.house.gov) Jeff Donald (Jeffrey.Donald@mail.house.gov) (202)225-4275 BOEHLERT, GRUCCI TO URGE SWIFT CONFIRMATION OF SCIENCE ADVISOR WASHINGTON, DC -- Today, House Science Committee Chairman Sherwood Boehlert (R-NY23) and Committee member Felix J. Grucci (R-NY1) will call for the swift confirmation of Presidential Science Advisor

  14. BER Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Science Network Requirements Report of the Biological and Environmental Research Network Requirements Workshop Conducted July 26 and 27, 2007 BER Science Network Requirements Workshop Biological and Environmental Research Program Office, DOE Office of Science Energy Sciences Network Bethesda, MD - July 26 and 27, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is

  15. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science /science-innovation/_assets/images/icon-science.jpg National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at LANL is part of the

  16. Science Requirements Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies News & Publications ESnet News Publications and Presentations Galleries ESnet Awards and Honors Blog ESnet Live Home » Science Engagement » Science Requirements Reviews Science Engagement Move your data Programs & Workshops Science Requirements Reviews Network Requirements Reviews Requirements Review Reports Case Studies Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Golitsyn, G.S., Anikine, P.P., and Sviridenkov, M.A., Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, local measurements of the optical properties of the near-surface aerosol were carried out parallel with aureole measurements of the aerosol in the atmospheric column. The spectral radiation was measured by a complex of spectrometers. Global

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Availability and Status of MISR Geophysical Data Products Diner, D.J. and the MISR Science Team, Jet Propulsion Laboratory, California Institute of Technology Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra spacecraft has been collecting Earth imagery since February 2000. MISR contains nine cameras pointed at fixed along-track directions, and acquires images with view angles at the EarthÂ’s surface

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Period Variations of UV-B Radiation From Results of Ozone Reconstruction from Dendrochronologic Data Zuev, V.V. and Bondarenko, S.L., Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The thickness of stratospheric ozone layer modulates the level of UV-B radiation reaching the surface without cloudiness. The high level of UV-B radiation causes a stress of vegetation including trees. The

  20. Bradbury Science Museum - Science on Wheels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To stimulate interest in and enthusiasm for science, technology, engineering and mathematics and promote public understanding and appreciation of Los Alamos National Laboratory...

  1. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650?nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500?nA/W and 11 × 10{sup ?6} for 445?nm illumination.

  2. Physical Sciences 2007 Science & Technology Highlights

    SciTech Connect (OSTI)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  3. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Mar 19, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544 CONTACT: Jessica Privette 505 667-0375...

  4. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Nov 19, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544 USA SPEAKER: Ray Newell, Quantum...

  5. Science on Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January Science on Tap Science on Tap WHEN: Jan 15, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked The Wine Room, 145 Central Park Square, Los Alamos CONTACT: Jessica Privette 505...

  6. National Science Bowl

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) National Science Bowl is a nationwide academic competition that tests students' knowledge in all areas of science. High school and middle school students are...

  7. Science of Signatures - Past Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Science of Signatures - Past Programs Science of Signatures Program Science of Signatures - Past Programs Contact Institute Director Charles Farrar (505) 665-0860...

  8. Science of Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science of Signatures Science of Signatures (SoS) The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion Nancy Sauer Email Pillar Contact Gene Peterson Email Science of Signatures (SoS) Overview In its broadest and simplest sense, a "signature" is any information that is unique, recognizable, and useful. A handwritten mark as a means of demonstrating authenticity is a familiar example, as is the pattern variation

  9. Weaving Community and Science

    Broader source: Energy.gov [DOE]

    Weaving Community and Science: Former Summer Intern Is Investigating Plant Uptake of Contaminants on Disposal Cell Covers

  10. ORISE: Science Education Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education Events Science Education Events Recognizing that vast improvements in science, technology, engineering and math are key to innovation and economic growth, the Oak Ridge Institute for Science and Education (ORISE) manages high-profile local and national education and research initiatives. For example, scholarly competitions, summer education workshops and teacher professional development programs create excitement and inspire educators and students to pursue interests in

  11. Frontiers in Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers in Science Lectures » Frontiers in Science Archive Frontiers in Science Archive x LInda Anderman (505) 665-9196 Email The Frontiers in Science lecture series are a public service of the Los Alamos National Laboratory Fellows. Fellows are appointed by the Laboratory Director in recognition of sustained outstanding contributions and exceptional promise for continued professional achievement. All lectures are open to the public and free of charge. PAST LECTURES 2015 August Beyond Pluto:

  12. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation needed to develop a fusion energy source. Get Expertise Don Rej (505) 665-1883 Email Building the scientific foundation needed to develop a fusion energy source The mission of the DOE Office of Science's Fusion Energy Sciences (FES) program is to expand the fundamental understanding of matter at very high temperatures and

  13. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  14. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links MC3E Home News News & Press MC3E Backgrounder (PDF, 1.61MB) SGP Images ARM flickr site Field Blog ARM Data Discovery Browse Data Deployment Operations Measurements Science Plan (PDF, 3.85 MB) Featured Data Plots SGP Data Plots (all) Experiment Planning Steering Committee Science Questions MC3E Proposal Abstract and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Science Questions This experiment seeks to use a

  15. Judicial Science School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Judicial Science School Judicial Science School The goal of Los Alamos Judicial Science School is to provide judges with knowledge and experience that will enhance their ability to evaluate whether scientific arguments meet the threshold requirements of admissibility. Contacts NSEC Director David L. Clark (505) 665-0983 Email Engineering Institute Director Charles Farrar (505) 665-0860 Email Executive Administrator Ellie Vigil (505) 667-2818 Email Judicial Science School Developed through close

  16. NERSC Science Engagements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagements NERSC Science Engagements At NERSC, science comes first. NERSC systems and services are designed to enable and support cutting-edge research within the U.S. Deparment of Energy's Office of Science. NERSC engages with the scientific community in many ways both formally and informally. Among the more formal mechanisms are the NERSC Requirements Reviews, which have now become the DOE Exascale Requirements Reviews jointly with the Argonne and Oak Ridge Leadership Computing

  17. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum Bradbury Science Museum Providing a window into the history of LANL, its national security mission, and the broad range of exciting science and technology research programs undertaken to improve our nation's future. June 13, 2012 Young visitor shakes the hand of an Oppenheimer statue J. Robert Oppenheimer is a welcoming presence in the Bradbury Science Museum's History Gallery. Visitors go on to explore the Laboratory's beginnings during the Manhattan Project through

  18. ARM - AMF Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AzoresAMF Science Questions Azores Deployment AMF Home Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning CAP-MBL Proposal Abstract and Related Campaigns Science Questions Science Plan (PDF, 4.4M) Rob Wood Website Outreach Backgrounders English Version (PDF, 363K) Portuguese Version (PDF, 327K) AMF Posters, 2009 English Version Portuguese Version Education Flyers English Version Portuguese Version News Campaign Images AMF Science Questions Which

  19. Advances in Lithography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    algorithm customized for partially coherent imaging and targeted for fast and accurate retrieval. For information, see Yamazoe et al., pp. B34-B43, part of the Applied...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Atmospheric Clear-sky Shortwave Radiation Models to Collocated Satellite and Surface Measurements in Canada Jing, X., and Cess, R.D., State University of New York at Stony Brook Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements of the top of the atmosphere (TOA) reflected shortwave radiation from the Earth Radiation Budget Satellite (ERBS) have been collocated with surface insolation measurements made at 24 Canadian stations located below 57 degrees

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping of Surface Reflectance over the Southern Great Plains Region from Multiple Satellites Trishchenko, A.P.(a), Li, Z. (a,b), and Park, W. (a), Canada Centre for Remote Sensing, Ottawa, Canada (a), Now at ESSIC, Department of Meteorology, College Park (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ground-based ARM observations are limited to a handful of locations sparsely distributed in the South Great Plains (SGP). Mapping of surface narrow and broadband

  2. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CU Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  3. Science DMZ National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU...

  4. BES Science Network Requirements

    SciTech Connect (OSTI)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  5. Middle School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 » February » Middle School Science Bowl Middle School Science Bowl WHEN: Feb 28, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, NM CATEGORY: Community INTERNAL: Calendar Login Event Description The Science Bowl is a Jeopardy-like event for high school and middle school students who have a strong interest in mathematics and science. The Science Bowl competition is in the form of a round robin in the morning and double elimination after lunch. Teams

  6. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. September 25, 2014 Computer modeling provides policymakers with essential information on such data as global sea surface temperatures related to specific currents. Computer modeling provides policymakers with essential information

  7. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  8. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco

  9. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  10. Chemistry and materials science progress report, FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  11. Superhydrophobic surfaces

    DOE Patents [OSTI]

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  12. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  13. Materials sciences programs, fiscal year 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  14. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal Laboratory operations. April 12, 2012 Farm soil sampling Two LANL environmental field team members take soil samples from a farm. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Measurements are compared to samples from the regional sites and

  15. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multipronged HIV vaccine shows promise in monkeys /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. lab worker Multipronged HIV vaccine shows promise in monkeys lab worker HIV constantly mutates into many different strains that

  16. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Liquid-scanning technology boosts airport security placeholder Uniquely combining Magnetic Resonance Imaging (MRI) and X-ray technology,

  17. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. RAPTOR telescope witnesses black hole birth placeholder The first "thinking telescope" RAPTOR found the birth of big black holes,

  18. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space probes predict hazards to protect spacecraft /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Space probes predict hazards to protect spacecraft placeholder Researchers think they've solved a 50-year-old space mystery about how

  19. Biomolecular Science (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  20. Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 GeV Upgrade Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. Read more User Information Science Accelerator Magnets Magnets ready for installation at Jefferson Lab as part of the 12 GeV Upgrade project. Read more Experiment Research Science Jefferson Lab's Accelerator Tunnel Jefferson Lab's accelerator is

  1. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  2. Recent Science - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Science Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers Governance &

  3. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS Experimental Physical Sciences Developing and applying materials science and experimental physics capabilities to programs and problems of national importance. Advancing physics and materials science for problems of national importance Neutrons find "missing" magnetism of plutonium Neutrons find "missing" magnetism of plutonium READ MORE Los Alamos among new DOE projects Create new technology pathways for low-cost fusion energy development READ MORE Combined methods

  4. Fermilab | Science | Historic Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark

  5. ARM - SGP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Science Overall Objectives The primary goal of the Southern Great Plains (SGP) site is to produce data adequate to support significant research addressing

  6. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  7. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links ISDAC Home AAF Home AVP Aircraft Instrumentation, October 14-16, 2008 ARM Data Discovery Browse Data Post-Campaign Data Sets Flight Summary Table (PDF, 440K) ISDAC Wiki Mission Summary Journal Deployment Resources NSA Site ARM Data Plots Quick Links Experiment Planning ISDAC Proposal Abstract Full Proposal (pdf, 1,735K) Science Questions Science Overview Document for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements

  8. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Related Links RACORO Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Data Guide (PDF, 1.4MB) Campaign Journal Flight Details Images ARM flickr site Deployment Operations Measurements Science & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF, 886K) Collaborations Meetings CLOWD Working Group News Discovery Channel Earth Live Blog

  9. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sciences and Technology Information Sciences and Technology National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Steve Stringer Business Development Executive Richard P. Feynman Center for Innovation (505) 660-2177 Email Los Alamos leverages advances in theory, algorithms,

  10. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a variety of chemical and materials science calculations. VASP is available to NERSC users who already have a VASP license. Read More » Quantum ESPRESSO/PWscf Quantum Espresso is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on

  11. ARM - NSA Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaNSA Science NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Science Scientific objectives for the NSA/AAO site are provided below: Provide the comprehensive data sets necessary to develop and test continually improved algorithms for GCMs to describe radiative transfer and cloud processes at high

  12. ORISE: Science Education Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interested in conducting undergraduate research at Oak Ridge National Laboratory? DOE is currently seeking undergraduate students for paid internships at ORNL for the 2015 spring term of the Science Undergraduate Laboratory Internship Program. The program at ORNL is administered by ORAU, through a contract with DOE to manage ORISE. Oak Ridge Institute for Science Education Science Education Programs The U.S. Department of Energy (DOE) and more than a dozen other federal agencies rely on the Oak

  13. Frontiers in Science Lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontiers in Science Lectures Frontiers in Science Lectures x Linda Anderman (505) 665-9196 Email The Frontiers in Science lecture series are a public service of the Los Alamos National Laboratory Fellows. Fellows are appointed by the Laboratory Director in recognition of sustained outstanding contributions and exceptional promise for continued professional achievement. All lectures are open to the public and free of charge. LATEST LECTURE Hacking Photosynthesis: Growing Plants to Power Our

  14. Science and Suds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activities and dynamic speakers to engage kids, families and individuals interested in life-long learning in science, technology, engineering, art and math. For the full...

  15. Sandia Science & Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories. More Info Liquid Common SS&TP welcomes Liquid Common Liquid Common is a digital marketing company now located in the Park. More Info Sandia Science & Technology...

  16. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  17. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Apr 16, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544, USA CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science On Tap Presenters Aditya Mohite and Wanyi Nie Event Description Science On Tap happens every third Thursday of the month, featuring a new topic each week. It begins with an informal 15-minute talk and is followed by a lively group discussion. This

  18. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Feb 19, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room, 145 Central Park Square, Los Alamos, NM 87544 CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science on Tap February Event Description Science On Tap happens every third Thursday of the month. It begins with an informal 15-minute talk followed by a lively group discussion. This week, Harshini Mukundan of Physical Chemistry and Applied Spectroscopy at Los Alamos

  19. Science On Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science On Tap Science On Tap WHEN: Nov 19, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544 USA SPEAKER: Ray Newell, Quantum Encryption CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Science On Tap Event Description Science On Tap happens every third Thursday of the month, featuring a new topic each week. It begins with an informal 15-minute talk and is followed by a lively group discussion. Quantum Cryptography:

  20. Science on Tap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January » Science on Tap Science on Tap WHEN: Jan 15, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked The Wine Room, 145 Central Park Square, Los Alamos CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Science on Tap January Event Description Sara Del Valle of Energy and Infrastructure Analysis (DSA-4) talks about her and her team's research into using Wikipedia to monitor and forecast diseases around the globe. Science on Tap is a project of the Los Alamos Creative

  1. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  2. Basic Energy Sciences Update

    Broader source: Energy.gov (indexed) [DOE]

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  3. Science on Tap - Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Plasmas Science on Tap - Plasmas WHEN: Apr 21, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Science on tap Event Description Science On Tap happens every third Thursday of the month, featuring a new topic each week. It begins with an informal 15-minute talk and is followed by a lively group discussion. Observing the stuff of stars (and

  4. ORISE: Science Education Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE reports track U.S. scientific workforce trends The Oak Ridge Institute for Science and Education (ORISE) has published several reports that analyze labor trends, assess ...

  5. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    presentation in yearlong series at Bradbury Science Museum LOS ALAMOS, N.M., Nov. 7, 2013-John C. Hopkins, former associate director for Los Alamos National Laboratory's nuclear...

  6. High School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High School Science Bowl High School Science Bowl WHEN: Feb 07, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, USA CATEGORY: Community INTERNAL: Calendar Login Event Description The Science Bowl is a Jeopardy-like event for high school and middle school students who have a strong interest in mathematics and science. The competition is in the form of a round robin in the morning and double elimination after lunch. Teams consist of four students and one optional

  7. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for - 2 - Science, Technology, and Engineering (PADSTE). Bishop has been acting...

  8. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES Earth and Environmental Sciences (EES) Sustainable energy, climate impacts, nuclear threat detection, and environmental management are primary focus areas of earth and...

  9. Science Briefs - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Career Options Maps Mission Science & Engineering Capabilities RELATED NEWS Impact of ... without killing the surrounding healthy tissue.December 20, 2015 Raising the bar on ...

  10. Earth and Environmental Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES Division Earth and Environmental Sciences We provide solutions to complex problems in climate and environmental change, sustainable energy, and national security. Climate...

  11. Help | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQ FAQ What is Sciencecinema? ScienceCinema allows users to search for specific words and phrases spoken within video files. Users can then easily access the precise point in the video where the word was spoken. There are two search options within ScienceCinema, the default "Audio Search" and "Fielded Search." What is the content scope of ScienceCinema? Content in ScienceCinema varies topically; however, it is limited to material produced by the DOE National Laboratories,

  12. Science Highlights Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC Requirements for Science HPC Workshop Reports NERSC Staff Publications & Presentations Journal Cover Stories Galleries facebook icon Facebook google plus icon Google+ twitter...

  13. Regional Science Bowl 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business Expand Doing Business Skip navigation links Community & Education Science Bowl 2015 High School Team Photos 2015 Middle School Team Photos Scholarships...

  14. Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE Science, Technology, and Engineering Delivering mission success and innovative solutions to national security problems through the agile, rapid application of our...

  15. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology - 2015 October HAPLS Completes Phase 1 Energy-Ramping Campaign Shaping NIF's Beams for Direct-Drive Experiments September A Pioneering Betatron...

  16. Geospatial Science Steering Committee

    Broader source: Energy.gov [DOE]

    The Geospatial Science Steering Committee (GSSC) functions in an advisory role to the DOE national laboratories, major facilities, and to headquarters and field office elements to actively promote...

  17. CASL - Science Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    but may assess due to the importance of multi-physics integration and structural mechanics Physics Integration (PHI) and Advanced Modeling Applications (AMA). The Science...

  18. Ryerson Building Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ryerson Building Science -Zone Residence Project Summary - ZONE is a sustainable approach to infill housing in underutilized urban settings Constrained by buildings to the ...

  19. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs Visit Us Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Experiments Fast Ignition Energy for the Future How to Make a Star How...

  20. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved biofuel methods: greener, cheaper yet powerful science-innovationassets... Improved biofuel methods: may be greener, cheaper, powerful placeholder We've improved ...

  1. Science at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC HPC Achievement Awards Share Your Research User Submitted Research Citations NERSC Citations Home » Science at NERSC Science at NERSC NERSC's core mission is to accelerate the pace of scientific discovery. NERSC and its nearly 6,000 users are are extremely active contributors to all fields of energy-related science in which computation and data analysis play a central role. NERSC is citied in about 1,500 refereed scientific publications per year. A complete list of science articles is at

  2. ARM - Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gerald Mace, Lead Scientist Science Questions Scatter plot of ice crystal number concentration from two different probes used during TWP-ICE. The differences are significant...

  3. ARM Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ER-ARM-0402 Atmospheric Radiation Measurement Program Science Plan Current Status and ... Executive Summary The Atmospheric Radiation Measurement (ARM) Program has matured ...

  4. Energy, information science, and systems science

    SciTech Connect (OSTI)

    Wallace, Terry C; Mercer - Smith, Janet A

    2011-02-01

    This presentation will discuss global trends in population, energy consumption, temperature changes, carbon dioxide emissions, and energy security programs at Los Alamos National Laboratory. LANL's capabilities support vital national security missions and plans for the future. LANL science supports the energy security focus areas of impacts of Energy Demand Growth, Sustainable Nuclear Energy, and Concepts and Materials for Clean Energy. The innovation pipeline at LANL spans discovery research through technology maturation and deployment. The Lab's climate science capabilities address major issues. Examples of modeling and simulation for the Coupled Ocean and Sea Ice Model (COSIM) and interactions of turbine wind blades and turbulence will be given.

  5. High School Teams Compete in Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teams from Across Colorado Compete in Science Bowl For more information contact: e:mail: Public Affairs Golden, Colo., Feb. 23, 1998 — On the surfaces of which three planets would you weigh more than you do on Earth? How many molecules are in two moles of sulfur trioxide? High school students from across Colorado will face such questions as they test their mental agility in the 1998 Colorado Science Bowl Feb. 28 at Metropolitan State College in Denver. More than 40 teams will compete in this

  6. Science DMZ Implemented at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web

  7. Sandia National Labs: Physical, Chemical and Nano Sciences Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Departments Radiation, Nano Materials, & Interface Sciences...

  8. SCIENCE ON SATURDAY- "The Large Hadron Collider: big science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 5, 2013, 9:30am Science On Saturday MBG Auditorium SCIENCE ON SATURDAY- "The Large Hadron Collider: big science for big questions" Professor James Olsen Department of ...

  9. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Highlights Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter

  10. Expanding Science and Energy Literacy with America's Science and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Centers | Department of Energy Science and Energy Literacy with America's Science and Technology Centers Expanding Science and Energy Literacy with America's Science and Technology Centers October 20, 2014 - 3:48pm Addthis This new partnership with the Association of Science and Technology Centers aims to increase energy literacy and promote STEM education. | Photo courtesy of the Department of Energy. This new partnership with the Association of Science and Technology Centers

  11. Stewardship Science Academic Programs Annual | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Test, and Evaluation University Partnerships Academic Alliances Stewardship Science Academic Alliances Stewardship Science Academic Programs Annual Stewardship Science...

  12. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect (OSTI)

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  13. ESnet's Science DMZ Breaks Down Barriers, Speeds up Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESnet's Science DMZ Breaks Down Barriers, Speeds up Science News & Publications ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us...

  14. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Leadership Computing Facility (OLCF) Energy Sciences Network (ESnet) BES User ... yellow and red, while negative spins are green and black.) 12.14.15Science Highlight ...

  15. Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science Warp Speed and Lightsabers: Energy Science Fiction vs Energy Science March 7, 2014 - 2:20pm Addthis Science fiction has envisioned many ways that mankind might be able to explore distant galaxies, like the spiral galaxy M106 pictured here, but what is science fiction and what could one day be science fact? | Photo Credit: NASA. Science fiction has envisioned many ways that mankind might be able to

  16. Brookhaven Women in Science Lecture

    ScienceCinema (OSTI)

    Johanna Levelt Sengers

    2010-09-01

    Sponsored by Brookhaven Women in Science (BWIS), Johanna Levelt Sengers, Scientist Emeritus at the National Institute of Standards & Technology (NIST), presents a talk titled "The World's Science Academies Address the Under-Representation of Women in Science and Technology."

  17. Open Science Grid at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open Science Grid Open Science Grid at NERSC NERSC provides computing to Open Science Grid (OSG) users through a special allocation. OSG Users must submit an OSG new user request...

  18. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at...

  19. Computing and Computational Sciences Directorate - Divisions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCSD Divisions Computational Sciences and Engineering Computer Sciences and Mathematics Information Technolgoy Services Joint Institute for Computational Sciences National Center for Computational Sciences

  20. Information Science, Computing, Applied Math

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities » Information Science, Computing, Applied Math /science-innovation/_assets/images/icon-science.jpg Information Science, Computing, Applied Math National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Computer, Computational, and Statistical Sciences (CCS)» High Performance Computing (HPC)» Extreme Scale Computing, Co-design»

  1. ARM - ARM Science Team Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceARM Science Team Meetings Science Team Meetings 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 ARM Science Team Meetings Poster sessions were key components of the ARM Science Team Meetings through the years. Former ARM Chief Scientist Tom Ackerman (center, dark pants) spent many hours participating in these sessions. Poster sessions were key components of the ARM Science Team Meetings through the years. Former ARM Chief Scientist Tom Ackerman

  2. Science on Tap - Earthquakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Earthquakes Science on Tap - Earthquakes WHEN: Jan 21, 2016 5:30 PM - Feb 12, 2015 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA SPEAKER: Paul Johnson - Los Alamos National Laboratory CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Science on Tap happens every third Thursday of the month, featuring a new topic each time. It begins with an informal 15 minute talk and is followed by

  3. Bradbury Science Museum celebrates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates its 50th anniversary December 9, 2013 Public reception scheduled Dec. 11 LOS ALAMOS, N.M., Dec. 9, 2013-This year has been one of milestones for Los Alamos National Laboratory, including for its Bradbury Science Museum. To mark the museum's 50th anniversary, the museum will host a reception open to the public from 4 to 6 p.m. Wednesday, Dec. 11. "For 50 years, the Bradbury Science Museum's mission has been to foster enthusiasm and support for science and engineering, and a better

  4. Regional Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January » Regional Science Bowl Regional Science Bowl WHEN: Jan 23, 2016 8:00 AM - 5:00 PM WHERE: Highland High School 4700 Coal SE, Albuquerque, NM CONTACT: Janelle Vigil-Maestas (505) 665-4329 CATEGORY: Community INTERNAL: Calendar Login Event Description Five teams from Northern New Mexico area schools are among 16 participating in the middle school Regional Science Bowl competition. Northern area teams participating are from Los Alamos, Española, Cuba and Santa Fe. The winning team at this

  5. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  6. Science Undergraduate Laboratory Internships (SULI)

    Broader source: Energy.gov [DOE]

    The Science Undergraduate Laboratory Internship (SULI) program encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM) careers by providing research...

  7. ORISE Science Education Programs: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Science Education Programs Capabilities The Oak Ridge Institute for Science and Education (ORISE) connects the best and most diverse students and faculty members to...

  8. Science Highlights | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Press Releases Features Science Highlights In the News Photos Videos Science Highlights Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency...

  9. APS Science | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  10. Neutron and Nuclear Science Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Recent publications related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science Publications Chi-Nu Publications DANCE Publications GEANIE...

  11. 2014 Science of Signatures Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email 2014 Science of Signatures Program Agenda 2014 Projects and Teams 2014 Science of Signatures Speakers and Presentations LDRD Penta Chart Template ER Proposal Template...

  12. 2015 Science of Signatures Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science of Signatures Program Agenda (PDF) 2015 Projects and Teams 2015 Science of Signatures Speakers and Presentations LDRD Penta Chart Template (PDF) ER Proposal Template (PDF)...

  13. Help | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    video files. Users can then easily access the precise point in the video where the word was spoken. There are two search options within ScienceCinema, the default "Audio...

  14. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates NanoDays 2013. NanoDays is a national campaign, engaging people of all ages in learning about the emerging field of nanoscale science and engineering. The Bradbury...

  15. Fermilab Science Education Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Off or Not Supported in Your Browser. You can still access all of the content on the Education Server about Science Education, but turn on JavaScript to enable all this site's...

  16. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Astronomy days lectures begin July 8 at Bradbury Science Museum July 2, 2008 LOS ALAMOS, New Mexico, July 2, 2008-A series of six evening lectures that focus on astronomy and the...

  17. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  18. It Starts with Science...

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Chu sits down with a journalism student at Carnegie Mellon's Education City campus in Qatar to discuss the value of science in education and what attracted him to the study of Physics.

  19. NP Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Rotman, Lauren; Tierney, Brian

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  20. Science Briefs - 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4% DOE Office of Science 3% Energy and other programs 11% Work for Others Demographics (LANS and students only) 34% of employees live in Los Alamos, the remainder commute...

  1. It Starts with Science...

    Broader source: Energy.gov [DOE]

    Secretary Chu sits down with a journalism student at Carnegie Mellon's Education City campus in Qatar to discuss the value of science in education and what attracted him to the study of Physics.

  2. ARM - AMF Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Science Locale: Anywhere in the World The purpose of an ARM...

  3. About Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  4. ScienceFest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Show your passion for innovation with a creative talk July 22, 2014 Presentations sought for TechRev Day at Los Alamos ScienceFest LOS ALAMOS, N.M., July 22, 2014-Organizers of Los...

  5. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example is the use of betatron x-ray radiation for research in the growing field of high energy density (HED) science on extremely short time and length scales (energy density is...

  6. Science & Technology - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Science & Technology - 2014 July International Team Conducts First Collisionless Shock Experiment on NIF The first NIF Discovery Science experiment designed to create and study fully formed collisionless shocks, such as those responsible for the properties of many astrophysical phenomena including supernova remnants, gamma-ray bursts, jets from active galactic nuclei, and cosmic ray acceleration, was performed on July 29. Tycho Supernova Chandra X-ray Observatory photo of the Tycho

  7. Alliance for Science

    Broader source: Energy.gov [DOE]

    EM’s Jud Lilly explains the nuclear fuel cycle to a group of students participating in the recent Sixth Annual Science Alliance at the Portsmouth Gaseous Diffusion Plant site in southern Ohio. A record 1,255 high school juniors attended and participated in interactive demonstrations designed to match their interests with potential careers related to science, technology, engineering and math. Students also learned about post-secondary educational requirements for those careers and regional universities that offer the necessary curricula.

  8. Science Gateways : Demos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demos Science Gateways : Demos Most science gateway services require authentication to access compute and data resources. If you're not a NERSC user this will limit the scope of the examples below. If you are a NERSC user please login with your NERSC username and password to enable the examples below. demo set 1 Last edited: 2016-02-01 08:06:05

  9. Chemical Sciences Project Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation Data Analysis and Modeling & Simulation for the Chemical Sciences Project Description Almos every scientific activity at Los Alamos involves data analysis and modeling. From a chemical sciences point of view, such work transforms "raw" data into a form that provides useful information that is predictive, confirmatory, or exploratory. The key to understanding the world around us is the ability to put the chemical data we collect into a meaningful context

  10. Frontiers in Science Lectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lectures focus on saving energy through superconductivity June 12, 2009 LOS ALAMOS, New Mexico, June 12, 2009-Los Alamos National Laboratory scientist Dean Peterson discusses the science of high-temperature superconductivity in a series of Frontiers in Science lectures starting June 16 at the Duane W. Smith Auditorium at Los Alamos High School. In the talk, titled "Lost In Transmission: Saving Energy With Superconductivity," Peterson, of the Laboratory's Superconductivity Technology

  11. ARM - Science Project Ideas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersScience Project Ideas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Science Project Ideas Do changes in air pressure affect the weather? What is the relationship between air pressure and temperature? Monitor the weather forecast data from the web to find the answer. How does the

  12. About | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About About ScienceCinema ScienceCinema uses innovative, state-of-the-art audio indexing and speech recognition technology from Microsoft Research to allow users to quickly find video files produced by the DOE National Laboratories, other DOE research facilities, and the European Organization for Nuclear Research (CERN). Users can search for specific words and phrases, and precise snippets of the video where the search term was spoken will appear along with a timeline. Users can then select a

  13. Computational Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Computational Earth Science We develop and apply a range of high-performance computational methods and software tools to Earth science projects in support of environmental health, cleaner energy, and national security. Contact Us Group Leader Carl Gable Deputy Group Leader Gilles Bussod Email Profile pages header Search our Profile pages Hari Viswanathan inspects a microfluidic cell used to study the extraction of hydrocarbon fuels from a complex fracture network. EES-16's Subsurface Flow

  14. Brookhaven Science Associates, LLC

    Office of Environmental Management (EM)

    23, 2015 Dr. Doon L. Gibbs Laboratory Director Brookhaven Science Associates, LLC Brookhaven National Laboratory 40 Brookhaven Avenue Upton, New York 11973-5000 WCO-2015-02 Dear Dr. Gibbs: The Office of Enterprise Assessments' Office of Enforcement completed its investigation into the facts and circumstances associated with the meteorological tower electrical shock event that occurred at the Brookhaven National Laboratory on November 12, 2014. Brookhaven Science Associates, LLC (BSA) documented

  15. ARM - Other Science Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesOther Science Resources Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Other Science Resources AIMS Education Foundation This website offers tools, activities, and information "designed by teachers for teachers." AIMS activities and curricula are extensively field tested and

  16. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search Ă— Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE CERN Research Org.: Sponsoring Org.: Publication Date: Publication Date Until to System Entry Date: Publication Date Until to Sort: Relevance Publication Date (Newest to Oldest)

  17. LASSO* - Science Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASSO* - Science Requirements *LES ARM Symbiotic Simulation and Observation (LASSO) workflow Andy Vogelmann 1 , William I Gustafson Jr 2 Zhijin Li 3,4 , Xiaoping Cheng 3 , Satoshi Endo 1 , Tami Toto 1 , and Heng Xiao 2 1 Brookhaven National Laboratory 2 Pacific Northwest National Laboratory 3 University of California Los Angeles 4 NASA Jet Propulsion Laboratory And TONS of people from the rest of ARM! LASSO Webpage: http://www.arm.gov/science/themes/lasso LASSO e-mail list sign up:

  18. Lab grants Decision Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Decision Sciences Corporation exclusive commercial license for muon tomography October 7, 2008 LOS ALAMOS, New Mexico, October 7, 2008-Los Alamos National Laboratory has granted Decision Sciences Corporation (DSC) an exclusive worldwide license to commercialize muon tomography, a LANL-developed technology. Muon tomography uses naturally occurring cosmic-ray muons, a type of subatomic particle, to detect and identify concealed nuclear threat materials based on their atomic number and

  19. Science Highlights Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Presentations Science Highlights Presentations NERSC collects highlights of recent scientific work carried out by its users. If you are a user and have work that you would like us to highlight please send e-mail to consult@nersc.gov. In the list below, names of researchers who did the work appear in brackets. December 2015 Presentation [PDF] Creating Nanoscale Ferroelectricity from a Nonferroelectric Film [X. Wu, Temple University, Science, 349, 6254, 1314-1317, Sep. 2015] [BES]

  20. Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Argonne Research Library supports the scientific and technical research of the employees of Argonne National Laboratory. While the library is not open to the public, we do make our catalog available for searching. Women in Science and Technology (WIST) aims to promote the success of women in scientific and technical positions at Argonne. Science The best and brightest minds come to Argonne to make scientific discoveries and technological innovations that improve the quality of life

  1. MISSOURI UNIVERSITY OF SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY (MS&T) RPSEA SUBCONTRACT# 11123-14 DR. BAOJUN BAI PRINCIPAL INVESTIGATOR STUDY AND PILOT TEST OF PREFORMED PARTICLE GEL CONFORMANCE CONTROL COMBINED WITH SURFACTANT TREATMENT Final Report Covering the period from November 2012 to August 2015 Prime Contractor's Technical Point of Contact: Baojun Bai Phone: 573-341-4016; Email: baib@mst.edu Missouri University of Science and Technology August 2015 Study and Pilot Test of Preformed Particle Gel

  2. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thomas Jefferson Site Office Staff Cryomodules, sections of Jefferson Lab's accelerator, are designed, assembled, tested and maintained in the Test Lab building. A D D I T I O N A L L I N K S: SRF Institute CASA Operations Injector Group CEBAF About Accelerators top-right bottom-left-corner bottom-right-corner Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Modeling of Mixed-Phase Arctic Clouds and Radiation Observed at SHEBA and the ARM NSA Site Morrison, H.C.(a) and Pinto, J.O.(a,b), University of Colorado (a), National Center for Atmospheric Research (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Previous studies have shown that bulk microphysics schemes often poorly simulate Arctic cloudiness. These deficiencies led to substantial biases in the surface radiative fluxes. Simulated clouds and radiation using

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Influence of Age-Dependent Optical and Thermal Snow Properties on the Modeled Surface Temperature and Albedo in the Arctic Curry, J.A., and Schramm, J.L., University of Colorado Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new multi-level snow model has been developed to simulate the time-varying snow thermal and optical characteristics in response to precipitation events and snow aging. The model is forced by observations from the Russian ice islands in the Arctic

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview of FIRE Arctic Clouds Experiment Curry, J.A., and Pinto, J.O., University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting An overview is given of the FIRE (First ISCCP Regional Experiment) Arctic Clouds Experiment that was conducted in the Arctic from April to July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of Arctic clouds on the radiation exchange between the surface, atmosphere and space, and to

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Doelling, D.R., Ho, S.-P., Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data are needed to provide measurements of the earth-atmosphere shortwave (SW) albedo, outgoing longwave radiation (OLR), and cloud and surface radiative properties for the

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of the Asymmetry Parameter and Volume Extinction Coefficient in Arctic Clouds Gerber, H., Gerber Scientific; Garrett, T.J., University of Washington; Hobbs, P.V., University of Washington; Platnick, S., University of Maryland, Baltimore County Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements were made with a cloud-integrating nephelometer mounted on the University of Washington's CV-580 aircraft during the Arctic Surface Heat Budget of the Arctic/First

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Diamond Dust Formation and its Radiative Effects Khvorostyanov, V.I. and Curry, J.A., University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Diamond dust consists of small ice crystals that are frequently observed in the lower troposphere during winter in the polar regions. Diamond dust has been hypothesized to influence surface radiation budget, formation of polar anticyclones and precipitation amount on the Antarctic Plateau Diamond. Diamond Dust is

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Observed and Retrieved Downwelling Surface Radiation Using ASTEX Data Lazarus, S.M., Krueger, S.K., and Frisch, A.S., University of Utah, National Oceanic and Atmospheric Administration-Environmental Technology Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting We apply data obtained from the FIRE's (First International Satellite Cloud Climatology Project [ISCCP] Regional Experiment's) Atlantic Stratocumulus Transition Experiment (ASTEX). Estimates of the

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol-Cloud-Radiation Interaction: A Comparison of GCM Results versus Surface Observations Liepert, B.G., Lamont-Doherty Earth Observatory of Columbia University; Lohmann, U., Dalhousie University, Halifax, Canada Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The change in cloud properties due to increased anthropogenic emissions of aerosols and their precursor gases is referred to as "indirect aerosol effect." Estimates with general circulation models (GCMs)

  11. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of Surface- and Satellite-Derived Cloud Fractions for the ARM SGP Long, C. N., and Ackerman, T. P., The Pennsylvania State University; Minnis, P., and Smith, W. L., National Aeronautics Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Determinations of cloud fractions are essential for radiative energy balance studies. Only satellites afford the global coverage needed to extend these studies to global climate research.

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collocated Satellite, Surface and Sounding Data Emerges On-line from CAVE (CERES ARM Validation Experiment) at SGP Rose, F.G., Rutan, D.A., Smith, N.M., and Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Top-of-the-atmosphere (TOA) broadband observations from the Clouds and the Earth's Radiant Energy System (CERES) instrument on the

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intraseasonal Variation Observed from Multi-Infrared Channel Inoue, T., Meteorological Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Intraseasonal variations (MJO) of convective cloud, sea surface temperature (SST) and water vapor information are studied using three infrared channels (6.7, 11, 12 um). Split window(11 and 12 um) can classify optically thin ice cloud and optically thick cloud. Further SST and water vapor information can be retrieved from

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Spectral and Broadband Measurements of Surface Flux with Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a), State University of New York, Albany (b), NASA Ames Research Center (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations of spectral and broadband solar irradiance at the ARM/SGP site

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of the Atmospheric Aerosol Condensation Activity Studies Isakov, A.A. and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Some new results are presented. of investigations of optical and microphysical characteristics of the atmospheric surface layer aerosol by means of spectropolarimeter The daily measurements were carried out in February - April 2000 at the Zvenigorod Scientific Station of the Institute

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Surface Aerosol and Ozone Budgets at ARM Continental and Polar Sites Iziomon, M.G. and Lohmann, U., Dalhousie University, Canada Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Although tropospheric aerosols and ozone are of significant importance to climate change and contribute substantially to the radiative forcing of the Earth's climate, the understanding of their climatic influence are compounded by their variable concentrations. Long-term measurements

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Impact of Cumulus Cloud Field Anisotropy on Broadband Shortwave Radiative Fluxes and Atmospheric Heating Rates Hinkelman, L.M.(a), Evans, K.F.(b), Clothiaux, E.E.(a), and Ackerman, T.P.(c), The Pennsylvania State University (a), University of Colorado (b), Pacific Northwest National Laboratory (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of fair-weather cumulus cloud field anisotropy on domain average surface fluxes and atmospheric heating profiles

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieving Cloud Height Using Infrared Thermometer Measurements Sengupta, M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite measurements using passive sensors are more accurate in measuring cloud tops than cloud bases especially in thick clouds. On the other hand, a combination of active sensors at the surface can measure both cloud tops and bases accurately. The expense of deploying and maintaining active

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cirrus Optical Depths Derived from GOES-8 and Surface Measurements Min, Q.(a) and Minnis, P.(b), ASRC, SUNY at Albany (a), NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Passive radiometer measurements are used to validate satellite-derived cirrus optical depths over the Atmospheric Radiation Measurement Program Southern Great Plains site during March 2000. Optical depths derived from direct beam measurements by a multifilter rotating

  20. Science & Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Science & Innovation Mars Rover Curiosity Mars Rover Curiosity Mars Rover Curiosity landed safely on the planet's surface with an array of equipment powered with technology developed at the National Labs. Read more Dark Energy Cam Dark Energy Cam Fermilab's 570-megapixels, five-ton Dark Energy camera is expanding our understanding of the universe. Read more Celebrating the Higgs boson Celebrating the Higgs boson Scientists recently found evidence of the elusive particle that fills

  1. Genomic Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Genomic Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link Facilities

  2. The Crucibles Science Club Wins Colorado Science Bowl - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL The Crucibles Science Club Wins Colorado Science Bowl Team Heads to Washington D.C. to Challenge Students from Across the USA for National Title January 31, 2009 Photo of the winning team at the Colorado Science Bowl. The Crucibles Science Club (team one) was the winner of this year's Colorado Science Bowl and heads to Washington D.C. in April to compete for the national title. Students from The Crucibles Science Club in Denver won the Colorado High School Science Bowl today. In the

  3. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  4. Surface mining

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    This paper reports on a GAO study of attorney and expert witness fees awarded as a result of litigation brought under the Surface Mining Control and Reclamation Act. As of March 24, 1989, a total of about $1.4 million had been awarded in attorney fees and expenses - about $1.3 subject to the provisions of the Employee Retirement Income Security Act, a comparison of its features with provisions of ERISA showed that the plan differed from ERISA provisions in areas such as eligibility, funding, and contribution limits.

  5. Catalysis Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Catalysis Science Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Catalysis Science Print Text Size: A A A FeedbackShare Page Notice: NOVEMBER 16, 2015 is the Catalysis Science target date for submission of proposals to be considered for funding within fiscal year 2016. Proposals

  6. Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Iowa Regional High School Science Bowl January 23, 2016 About Coach Information Volunteers Schedule 2016 Participating teams 2016 Results Iowa Regional Middle School Science Bowl Registration is Closed (event is full) February 20, 2016 About Coach Information Volunteers Schedule 2016 Participating Teams 2016 Results 2013 National Science Bowl video (YouTube) Contact Sponsors Image

  7. Extreme Science (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew; Torok, Tamas

    2012-02-27

    On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel.

  8. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  9. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic Nucleation Mechanism of Polarization Switching on Ferroelectric Surfaces Peter Maksymovych,1 Stephen Jesse,1 Mark Huijben,2 Ramamoorthy Ramesh,2 Anna Morozovska,3 Samrat Choudhury,4 Long-Qing Chen,4 Arthur P. Baddorf,1 and Sergei V. Kalinin1 1Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; 2Department of Materials Sciences and Engineering and Department of Physics, University of California Berkeley; 3Lashkaryov Institute for Semiconductor Physics, National

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polarization Control of Electron Tunneling into Ferroelectric Surfaces Peter Maksymovych1, Stephen Jesse1, Pu Yu2, Ramamoorthy Ramesh2, Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2Department of Materials Sciences and Engineering and Department of Physics, University of California Berkeley Achievement We have discovered that polarization switching in 30-50 nm oxide films of lead-zirconate and bismuth

  12. Self-Replenishing Vascularized Fouling-Release Surfaces (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Self-Replenishing Vascularized Fouling-Release Surfaces « Prev Next » Title: Self-Replenishing Vascularized Fouling-Release Surfaces × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. Inspired by

  13. Jefferson Lab announces 2004 Spring Science Series events | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    announces 2004 Spring Science Series events January 30, 2004 The Dept. of Energy's Jefferson Lab Spring 2004 Science Series events begin Tuesday, February 24, with science writer Nigel Hey presenting "Worlds Beyond the Matrix." In his presentation, learn about the exploration of space and see images gathered by probes and telescopes. He will venture into topics ranging from "What do those huge canyons on Mars look like?" to "What is waiting for us on the surfaces of the

  14. What Makes Science, Science? Research, Shared Effort ... & A New Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Website | Department of Energy Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website March 28, 2011 - 12:10pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What makes science, science? To find out, click into the new Office of Science (SC) website. You'll see what science is about on the new Office of Science

  15. Water, law, science

    SciTech Connect (OSTI)

    Narasimhan, T.N.

    2007-10-17

    In a world with water resources severely impacted bytechnology, science must actively contribute to water law. To this end,this paper is an earth scientist s attempt to comprehend essentialelements of water law, and to examine their connections to science.Science and law share a common logical framework of starting with apriori prescribed tenets, and drawing consistent inferences. In science,observationally established physical laws constitute the tenets, while inlaw, they stem from social values. The foundations of modern water law inEurope and the New World were formulated nearly two thousand years ago byRoman jurists who were inspired by Greek philosophy of reason.Recognizing that vital natural elements such as water, air, and the seawere governed by immutable natural laws, they reasoned that theseelements belonged to all humans, and therefore cannot be owned as privateproperty. Legally, such public property was to be governed by jusgentium, the law of all people or the law of all nations. In contrast,jus civile or civil law governed private property. Remarkably, jusgentium continues to be relevant in our contemporary society in whichscience plays a pivotal role in exploiting vital resources common to all.This paper examines the historical roots of modern water law, followstheir evolution through the centuries, and examines how the spirit ofscience inherent in jus gentium is profoundly influencing evolving waterand environmental laws in Europe, the United States and elsewhere. In atechnological world, scientific knowledge has to lie at the core of waterlaw. Yet, science cannot formulate law. It is hoped that a philosophicalunderstanding of the relationships between science and law willcontribute to their constructively coming together in the service ofsociety.

  16. Thomas Jefferson High School for Science & Technology National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl® Champion | Department of Energy Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from

  17. Science on Tap - Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Matter Science on Tap - Matter WHEN: Feb 18, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA SPEAKER: Jack Shlachter CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Mark your calendars for this event held every third Thursday from 5:30 to 7 p.m. A short presentation is followed by a lively discussion on a different subject each month. What's the Matter with Matter?

  18. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kennedy memorabilia unveiled at Bradbury Science Museum April 19, 2011 LOS ALAMOS, New Mexico, April 19, 2011-For almost a half-century, no one except a handful of Los Alamos National Laboratory employees even knew it existed- a collection of lovingly preserved artifacts from President John F. Kennedy's 1962 visit to Los Alamos.For the first time, LANL is making the collection available to the public, who can see it until this August at the Bradbury Science Museum."We're fortunate that the

  19. Science and Society Colloquium

    ScienceCinema (OSTI)

    None

    2011-04-25

    Mr. Randi will give an update of his lecture to the American Physical Society on the occasion of his award of the 1989 Forum Prize. The citation said: "for his unique defense of Science and the scientific method in many disciplines, including physics, against pseudoscience, frauds and charlatans. His use of scientific techniques has contributed to refuting suspicious and fraudulent claims of paranormal results. He has contributed significantly to public understanding of important issues where science and society interact". He is a professional magician and author of many books. He worked with John Maddox, the Editor of Nature to investigate the claims of "water with memory".

  20. GNU Science Library (GSL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GNU Science Library (GSL) GNU Science Library (GSL) Description GSL, a numerical library for C and C++ programmers, is available on Hopper, Edison, and Carver, and PDSF. How to Access GSL You must use the module utility to access the library on all machines at NERSC. To load: module load gsl To see what environment variables are defined by the library: module show gsl Using GSL on Cori and Edison On Cori or Edison if you want to use the gcc compiler and GSL you must swap the modulefiles for the

  1. Science@WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the dawn of discovery ... Science@WIPP The deep geologic repository at WIPP is more than a place to dispose of transuranic (TRU) waste – it’s also a science laboratory. Following the designation of the Department of Energy’s Carlsbad office as a field office in 2000, numerous universities and research institutions across the nation sought to take advantage of WIPP’s strong safety culture, open door policy, and extremely low levels of natural background radiation in the underground. It’s

  2. ASCR Science Network Requirements

    SciTech Connect (OSTI)

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high performance networks is a consistent, widely deployed, well-maintained toolset that is optimized for wide area, high-speed data transfer (e.g. GridFTP) that allows scientists to easily utilize the services and capabilities that the network provides. Network test and measurement is an important part of ensuring that these tools and network services are functioning correctly. One example of a tool in this area is the recently developed perfSONAR, which has already shown its usefulness in fault diagnosis during the recent deployment of high-performance data movers at NERSC and ORNL. On the other hand, it is clear that there is significant work to be done in the area of authentication and access control - there are currently compatibility problems and differing requirements between the authentication systems in use at different facilities, and the policies and mechanisms in use at different facilities are sometimes in conflict. Finally, long-term software maintenance was of concern for many attendees. Scientists rely heavily on a large deployed base of software that does not have secure programmatic funding. Software packages for which this is true include data transfer tools such as GridFTP as well as identity management and other software infrastructure that forms a critical part of the Open Science Grid and the Earth System Grid.

  3. Los Alamos ScienceFest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos ScienceFest Los Alamos ScienceFest WHEN: Jul 16, 2015 12:00 AM - Jul 18, 2015 6:00 PM WHERE: Los Alamos, New Mexico CONTACT: Jessica Privette 505 667-0375 CATEGORY: Bradbury INTERNAL: Calendar Login Los Alamos ScienceFest July 16-18, 2015 Event Description A 3-day science festival running July 16-18, 2015 Bradbury Events @ Los Alamos ScienceFest Join us during Los Alamos ScienceFest!-a 3-day festival of interactive demonstrations, hands-on activities and dynamic speakers meant to

  4. JLF Science Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Publications 2015 2014 2013 2012 2011 2010 2009 2008 2007 2003-06 Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date Title Author Source Date

  5. Science on Saturday attracts science fans of all ages | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Saturday attracts science fans of all ages By Jeanne Jackson DeVoe January 28, 2013 Tweet Widget Google Plus One Share on Facebook Joshua E. G. Peek, a Hubble Fellow at...

  6. User Science Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a Field Reverse Configuration (FRC) magnetic field. Magnetic separatrix denoted by green surface. Spheres are colored by azimuthal velocity. Image courtesy of Charlson Kim,...

  7. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Highlights Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Reports and Activities Science Highlights Highlight Archives Principal Investigators' Meetings BES Home Science Highlights Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc Key to close. close Select all that apply. University DOE Laboratory Industry SC User Facilities ASCR User Facilities [+] Options « ASCR User Facilities National Energy Research

  8. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Highlights Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Reports and Activities Science Highlights Highlight Archives Principal Investigators' Meetings BES Home Science Highlights Print Text Size: A A A FeedbackShare Page Filter by Performer Or press Esc Key to close. close Select all that apply. University DOE Laboratory Industry SC User Facilities ASCR User Facilities [+] Options « ASCR User Facilities National Energy Research Scientific Computing

  9. Science Highlights | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights User Facilities User Facilities Home User Facilities at a Glance User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Program Or press Esc Key to close. close Select all that apply. Advanced Scientific

  10. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility ... Read More Data collected from the Atmospheric Radiation Measurement Climate Research ...

  11. Science Olympiad | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Olympiad Science Olympiad PARC's outreach efforts helped fund students from KIPP Inspire Academy as they competed with other regional schools in the Science Olympiad 2013...

  12. Enforcement Letter, Brookhaven Science Associates - January 16...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Associates - January 16, 2002 Enforcement Letter, Brookhaven Science Associates - January 16, 2002 January 16, 2002 Issued to Brookhaven Science Associates related to...

  13. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  14. Division Director, Chemical Sciences, Geosciences and Biosciences

    Broader source: Energy.gov [DOE]

    The Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division is seeking a motivated and highly qualified individual to...

  15. Principal Associate Director - Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, Technology, and Engineering As Principal Associate Director for Science, Technology, and Engineering, Alan Bishop leads programs to ensure a world-class science and...

  16. Integrating Information, Science, and Technology for Prediction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Information, Science, and Technology for Prediction Integrating Information, Science, and Technology for Prediction (IS&T) The Lab's four Science Pillars harness...

  17. Science Frontiers Pacific Northwest National Laboratory (PNNL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Frontiers Pacific Northwest National Laboratory (PNNL), a U.S. Department of Energy Office of Science Laboratory, is pushing the frontiers of science in areas that are...

  18. Frontiers in Science Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video Resources » Frontiers in Science Lecture Series Frontiers in Science Lecture Series The Laboratory Fellows are appointed by the Laboratory Director in recognition of sustained outstanding contributions and exceptional promise for continued professional achievement. The Frontiers in Science series shares the Laboratory's cutting-edge research with the surrounding community. Contact Communications Office (505)665-9196 or (505)667-7000 Frontiers in Science Lecture Series Presented by the Los

  19. ARM - RHUBC II Science Objectives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objectives Related Links RHUBC-II Home RHUBC Home ARM Field Campaigns Home ARM Data Discovery Browse Data Deployment Instruments Science Team RHUBC-II Wiki Site Tour News RHUBC-II Backgrounder (PDF, 300K) News & Press Images Experiment Planning RHUBC-II Proposal Abstract Science Plan (PDF, 267KB) Science Objectives Contacts Eli Mlawer, Principal Investigator Dave Turner, Principal Investigator RHUBC II Science Objectives To conduct clear-sky radiative closure studies in order to reduce the

  20. ARM - RHUBC II Science Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Related Links RHUBC-II Home RHUBC Home ARM Field Campaigns Home ARM Data Discovery Browse Data Deployment Instruments Science Team RHUBC-II Wiki Site Tour News RHUBC-II Backgrounder (PDF, 300K) News & Press Images Experiment Planning RHUBC-II Proposal Abstract Science Plan (PDF, 267KB) Science Objectives Contacts Eli Mlawer, Principal Investigator Dave Turner, Principal Investigator RHUBC II Science Team Principal Investigators Eli Mlawer, Atmospheric & Environmental Research, Inc.

  1. Inspiring Careers in Science Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inspiring Careers in Science Research Inspiring Careers in Science Research January 21, 2012 Lowell-3_2.JPG David Turner shows Lowell High School students around NERSC's computer room. (Photo by Margie Wylie) In an effort to expose high school students to careers in research, the Lawrence Berkeley National Laboratory's (Berkeley Lab) Computing Sciences Diversity Outreach Program partnered with San Francisco's Lowell High School Science Research Program, an after school program that aims to give

  2. Science Highlights | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels...

  3. NIF & Photon Science Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF & Photon Science Management The management team for the NIF & Photon Science Principal Directorate supports the directorate's key mission areas: Stockpile Stewardship, national security applications, NIF Discovery Science, laser-based directed energy and related laser and optical technologies, and advanced photon technologies. Directorate Programs Jeff Wisoff Principal Associate Director NIF & Photon Science Jeff Atherton Principal Deputy Principal Associate Director NIF &

  4. Lab supports multiethnic science careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supports multiethnic science careers Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab supports multi-ethnic science careers Pilot program prepares regional students for national conference November 1, 2013 Society for Advancement of Chicanos and Native Americans in Science Society for Advancement of Chicanos and Native Americans in Science Contact Community Programs Office Director Kurt

  5. Los Alamos Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacity and our availability for stockpile stewardship activities," said Kurt Schoenberg, deputy associate director for Experimental Physical Sciences. "The increased...

  6. Environmental Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Science & Technology » Environmental Science Environmental Science A revolutionary new turbine technology for hydropower plants is one step closer to its first commercial deployment. At peak performance, an Alden turbine should convert about 94 percent of the water’s energy into usable electricity, comparable or superior to the efficiency of traditional turbines; the overall wildlife survival rate should be over 98 percent, up from 80-85 percent for a

  7. Science & Technology - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology - 2014 December Guiding Intense Laser Pulses Through Thin Air Measuring NIF's Enormous Shocks November Vital NIF Diagnostic Upgraded Adding Radiant Heating Capability to NASA's Heat-Shield Research October LLNL to Play Key Role in 10-Petawatt Laser Project LLNL's Phase-Shifting Diffraction Interferometer Has Many Uses September Demand Grows for NIF's Versatile X-ray Spectrometer August First Multi-bunch Operation from a Compact X-band Accelerator Tracking NIF

  8. Art and Science

    ScienceCinema (OSTI)

    Murray Gibson

    2010-01-08

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast.Both artists and scientists rely on the principles of mathematics and physics, whether consciously or intuitively, to achieve their goals.And, at the same time, both science and art rely on the creative questioner to ask, "Why do we do it this way?" and "Why not try something else and see what happens?"

  9. Applied Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADTSC » CCS » CCS-7 Applied Computer Science Innovative co-design of applications, algorithms, and architectures in order to enable scientific simulations at extreme scale Leadership Group Leader Linn Collins Email Deputy Group Leader (Acting) Bryan Lally Email Climate modeling visualization Results from a climate simulation computed using the Model for Prediction Across Scales (MPAS) code. This visualization shows the temperature of ocean currents using a green and blue color scale. These

  10. Genome Science/Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genome Genome Science/Technologies Los Alamos using cutting-edge sequencing, finishing, and analysis, impact valuable genomic data. Srinivas Iyer Bioscience Group Leader Email Get Expertise David Bruce Bioscience Deputy Group Leader Email Momchilo Vuyisich Scientist Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein research Read caption + Los Alamos National Laboratory graduate student, Patricia Langan, changes the

  11. Environmental Science - Electro Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liz Hudd Unit Title: Subject: Environmental Science Lesson Title: Electro Grade Level(s): 11/12 Lesson Length: Date(s): July 2014 * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will explore energy policy and decision making around balancing the various aspects of city development and energy consumption. * Energy Connection [How is this lesson connected to energy or renewable energy concepts.] Exploring the different

  12. Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Materials Sciences and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. New Science Developments | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Science Developments Lawrence Berkeley National Laboratory's scientist Anna Javier prepares a sample for transmission electron microscopy imaging using a microtome in a battery lab at Berkeley Lab's Environmental Energy Technologies Division. Berkeley Lab is one of several major U.S. research institutions and industrial firms that form the Joint Center for Energy Storage Research, a public-private partnership that aims to overcome critical scientific and technical barriers and create new

  15. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Accelerators PXIE As America's particle physics laboratory, Fermilab operates and builds powerful particle accelerators for investigating the smallest things human beings have ever observed. About 2,300 physicists from all over the world come to Fermilab to conduct experiments using particle accelerators. These machines not only drive discovery, they are themselves the subjects of research and innovation. Scientists and engineers at Fermilab actively advance accelerator science and

  16. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Science DMZ for Pennsylvania State University & Virginia Tech...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penn & VTTI Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science...

  18. Science on Saturday @ Lawrence Livermore Lab

    Broader source: Energy.gov [DOE]

    Science on Saturday. Science on Saturday (SOS) is a series of science lectures for middle and high school students. Each topic highlights cutting-edge science occurring at the Lawrence Livermore...

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of In-Situ, Airborne and Surface Remote Sensing of Cloud Droplet Size and Liquid Water Path Over SGP CART During the Aerosol IOP Pilewskie, P.(a), Feingold, G.(b), Wendisch, M.(c), and Jonsson, H.(d), Ames Research Center (a), NOAA/ETL (b), Institute for Tropospheric Research, Leipzig (c), NPS/CIRPAS (d) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We provide results from optical remote sensing of cloud droplet size, cloud optical depth, and liquid water

  20. Welcome to The Office of Science

    ScienceCinema (OSTI)

    Brinkman, William

    2013-05-29

    The Director of the Department of Energy's Office of Science, Dr. William Brinkman, introduces the new Office of Science website.

  1. Sandia National Labs: PCNSC: Departments: Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor & Optical Sciences Energy Sciences > CINT User Program > CINT Science Small Science Cluster Business Office News Partnering Research Neal Shinn Neal D. Shinn Sr. Manager Lupita Serna Lupita Serna Admin. Asst. Resources P. J. Feibelman Departments Energy Sciences The Energy Sciences Department oversees the operations of the following departments providing oversight in the areas of: Basic Energy Sciences/Materials Science Center for Integrated Nanotechnology (CINT), a

  2. Science Education Programs | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs Science Education Student Programs Undergraduates Community College Internship (CCI) National Undergraduate Fellowship Program (NUF) Science Undergraduate Laboratory...

  3. DOE - NNSA/NFO -- Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office REGISTER NOW FOR THE 2016 NEVADA SCIENCE BOWL HIGH SCHOOL MIDDLE SCHOOL Click Here Click Here Nevada Science Bowl VIDEO: 2015 Nevada Science Bowl Finals The U.S. Department of Energy (DOE) Office of Science sponsors a range of science education initiatives through its Workforce Development for Teachers and Scientists program. Included within this program is the Science Bowl, a nationwide academic science competition. Science Bowl

  4. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science employees and computer research Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights,...

  5. Computing and Computational Sciences Directorate - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home › About Us Contacts Jeff Nichols Associate Laboratory Director Computing and Computational Sciences Becky Verastegui Directorate Operations Manager Computing and Computational Sciences Directorate Michael Bartell Chief Information Officer Information Technologies Services Division Jim Hack Director, Climate Science Institute National Center for Computational Sciences Shaun Gleason Division Director Computational Sciences and Engineering Barney Maccabe Division Director Computer Science

  6. ARM - 1994 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 ARM Science Team Meeting 1994 Meeting 1994 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 1994 ARM Science Team Meeting February 28 - March 3 | Charleston, South Carolina The fourth ARM Science Team Meeting was held in Charleston, South Carolina. The Science

  7. 2014 CHEMICAL REACTIONS AT SURFACES GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR (APRIL 28-MAY 3, 2013 - LES DIABLERETS CONFERENCE CENTER, LES DIABLERETS, SWITZERLAND)

    SciTech Connect (OSTI)

    Stair, Peter C.

    2013-02-03

    presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.

  8. Collaborative, Data-Intensive Science Key to Science & Commerce Challenges

    SciTech Connect (OSTI)

    Kleese van Dam, Kerstin

    2013-05-28

    This article coincides with the release of "Data-Intensive Science," co-edited by Dr. Kerstin Kleese van Dam. In the piece, Dr. Kleese van Dam explains how data-intensive science has the potential to transform not only how we do science but how quickly we can translate scientific progress into complete solutions, policies, decisions and, ultimately, economic success. In the article, she states it is clear that nations that can most effectively transform tons of scientific data into actionable knowledge are going to be the leaders in the future of science and commerce and how creating the required new insights for complex challenges cannot be done without effective collaboration. Because many science domains already are unable to explore all of the data they collect (or which is relevant to their research), progress in collaborative, data-intensive science is crucial toward unlocking the potential of big data.

  9. APS Science 2006.

    SciTech Connect (OSTI)

    Gibson, J. M.; Fenner, R. B.; Long, G.; Borland, M.; Decker, G.

    2007-05-24

    In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from work at the APS, to complement the tremendous output of work in basic science, which often has payoff in technology but over decades rather than years. Highlights in this report also reflect the relevance of APS work to Department of Energy missions, for example a route to more efficient fuel cells (page xx mr-88-073113) addresses the energy challenge, and natural approaches to cleaning up the environment.

  10. Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology NIF Optics Damage Repair is 2015 Top Technology Pick Taking X-ray Snapshots of Hohlraum Dynamics What happens in a NIF hohlraum no longer stays in a NIF hohlraum. LLNL researchers have fielded a new ultrafast x-ray camera that captures time-resolved images, or snapshots, of nanoseconds-long hohlraum interactions that can influence the outcome of a NIF ignition experiment. One of the keys to achieving ignition is coming to a better scientific understanding of

  11. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    view of museum floor Unravel our Legacy view of museum floor Experience the History view of museum floor Discover the Future view of museum floor Participate with Us Historic Manhattan Project Sites at Los Alamos Featured National Park SitesPotential sites of the Manhattan Project National Historical Park March Newsletter Highlights March NewsletterMarch issue of @theBradbury is available HAPPENING NOW Mar 14 Mon 1:00 PM Pi Day on Monday @ Bradbury Science Museum Come "around" for this

  12. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Recent DIII-D research has provided significant new in- formation for the physics basis of key scientific issues for successful operation of ITER and future steady state fu- sion tokamaks, including control of edge localized modes (ELMs), plasma

  13. ARM - ARM Science Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Board Board Business About Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Facility Documents ARM Management Plan (PDF, 1.3MB) Field Campaign Guidelines (PDF, 574KB) ARM Climate Research Facility Expansion Workshop (PDF, 1.46MB) Facility Activities ARM and the Recovery Act Contributions to International Polar Year Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send

  14. FY 1990 Applied Sciences Branch annual report

    SciTech Connect (OSTI)

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  15. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Highlights Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Performer Or press Esc Key to

  16. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Highlights Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter by Performer Or press Esc Key to close. close Select all that apply. University DOE Laboratory Industry SC User Facilities ASCR User Facilities [+] Options « ASCR User Facilities National Energy Research Scientific Computing Center (NERSC)

  17. Sciences | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sciences High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Medicine Homeland Security Industry Computing Sciences Workforce Development A Growing List Accelerators for Americas Future External link Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More

  18. DOE Science Showcase - Neutron Science Research from DOE Databases | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize in Physics. Access Shull's early research records in Energy Citations Database. Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize

  19. Computing and Computational Sciences Directorate - Computer Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics Division Computer Science and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic and applied research in high-performance computing, applied mathematics, and intelligent systems. Our mission includes basic research in computational sciences and application of advanced computing systems, computational, mathematical and analysis techniques to the solution of scientific problems of national importance. We seek to work

  20. Expanding Science and Energy Literacy with America's Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at museums. These visits created lasting impressions, inspiring us to discover more about the world around us. It's no wonder that science and technology museums around the ...