Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

2

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

3

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

4

Graphene Fabrication and Lithium Ion Batteries Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

5

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

6

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo in capillaries. Adv Mater 8:245­247. 24. Kim DK, et al. (2008) Spinel LiMn2O4 nanorods as lithium ion battery voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteries

Cui, Yi

7

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Nanostructured Materials for Lithium Ion Batteries and for ... to control capacity loss and enhance energy efficiency of lithium-ion batteries.

8

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

9

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

10

Modeling the Performance of Lithium-Ion Batteries and Capacitors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Performance of Lithium-Ion Batteries and Capacitors during Hybird Electric-Vehicle Operation Title Modeling the Performance of Lithium-Ion Batteries and Capacitors...

11

Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries  

Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries, IB-2253; Lower Cost Lithium Ion Batteries from Aluminum Substituted Cathode ...

12

Available Technologies: Lower Cost Lithium Ion Batteries from ...  

Lower Cost Lithium Ion Batteries from ... Although lithium ion batteries are the most promising candidates for plug-in hybrid electric vehicles, the u ...

13

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

Wilcox, James D.

2010-01-01T23:59:59.000Z

14

Surface-Modified Active Materials for Lithium Ion Battery Electrodes  

lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability.

15

Materials Processing for Lithium-Ion Batteries  

SciTech Connect

Extensive efforts have been undertaken to develop and optimize new materials for lithium-ion batteries to address power and energy demands of mobile electronics and electric vehicles. However, the introduction of large-format lithium-ion batteries is hampered by high cost, safety concerns, and deficiencies in energy density and calendar life. Advanced materials-processing techniques can contribute solutions to such issues. From that perspective, this work summarizes the materials-processing techniques used to fabricate the cathodes, anodes, and separators used in lithium-ion batteries.

Li, Jianlin [ORNL; Daniel, Claus [ORNL; Wood III, David L [ORNL

2010-01-01T23:59:59.000Z

16

High Rate Performing lithium-ion Batteries - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and for Supercapacitors, II. Presentation Title, High Rate Performing lithium-ion Batteries.

17

Lithium-ion batteries : an unexpected advance.  

DOE Green Energy (OSTI)

The discovery that the electronic conductivity of LiFePO{sub 4} can be increased by eight orders of magnitude may have a profound impact on the next generation of lithium-ion batteries.

Thackeray, M. M.; Chemical Engineering

2002-10-01T23:59:59.000Z

18

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

Kang, Jin Sung

2012-01-01T23:59:59.000Z

19

Electrothermal Analysis of Lithium Ion Batteries  

DOE Green Energy (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

20

Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB  

E-Print Network (OSTI)

of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

Zhang, Xueyuan; Devine, Thomas M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries  

E-Print Network (OSTI)

. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries battery design. The cathode of a lithium-ion battery is a large contributor to its overall performance power density and energy density of lithium-ion batteries. 1.3 Basic Ideal Cathode Structure

García, R. Edwin

22

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network (OSTI)

facing Li-ion batteries · Increase energy & power density · Decrease cost · Increase operating lifeMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

23

Materials Challenges and Opportunities of Lithium Ion Battery ...  

Science Conference Proceedings (OSTI)

... Lithium ion batteries have revolutionized the portable electronics market, ... Cost, safety, and energy and power densities are some of the major issues in ... Analysis of Cycling Induced Fatigue in Electrode Materials for Lithium Ion Batteries.

24

Multilayer Graphene-Silicon Structures for Lithium Ion Battery ...  

Automotive industry: electric vehicles, hybrid electric vehicles; High performance lithium ion battery manufacturers; Aerospace industry, for lightweight power storage;

25

Lower Cost Lithium Ion Batteries From Aluminum Substituted ...  

Lower Cost Lithium Ion Batteries From Aluminum Substituted Cathode Materials Lawrence Berkeley National Laboratory. Contact LBL About This Technology

26

The Inside Story of the Lithium Ion Battery  

E-Print Network (OSTI)

The Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel. #12;Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additives with charging and discharging a lithium ion battery · Research available devices · Test device to verify

Sze, Lawrence

27

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

E-Print Network (OSTI)

Virus-Enabled Silicon Anode for Lithium-Ion Batteries Xilin Chen, Konstantinos Gerasopoulos emerged as one of the most promising next-generation anode materials for lithium-ion batteries due to its with remarkable cycling stability. KEYWORDS: silicon anode · lithium-ion battery · Tobacco mosaic virus · physical

Ghodssi, Reza

28

Towards Safer Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

29

Anodes Improve Safety and Performance in Lithium-ion Batteries ...  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room ...

30

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries  

NREL Evaluates Secondary Uses for Lithium Ion Vehicle Batteries ... of PHEVs and EVs is limited by the current high cost of Li-ion batteries.

31

Anodes Improve Safety and Performance in Lithium-ion Batteries ...  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room for improvement.

32

Batteries - Beyond Lithium Ion Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

33

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

34

CUBICON Materials that Outperform Lithium-Ion Batteries  

and high-energy system applications has resulted in substantial research and development activities. Lithium-ion batteries are a chief contender ...

35

High Capacity Lithium-Ion Battery Characterization for Vehicular Applications.  

E-Print Network (OSTI)

?? A lithium-ion battery is one of the key research topics in energy storage technologies. Major characterization tests such as static capacity, open circuit voltage (more)

Ahmed, Sazzad Hossain

2012-01-01T23:59:59.000Z

36

UNDERSTANDING DEGRADATION AND LITHIUM DIFFUSION IN LITHIUM ION BATTERY ELECTRODES.  

E-Print Network (OSTI)

??Lithium-ion batteries with higher capacity and longer cycle life than that available today are required as secondary energy sources for a wide range of emerging (more)

Li, Juchuan

2012-01-01T23:59:59.000Z

37

Lithium-Ion Batteries: When Mechanics Meets Chemistry  

Science Conference Proceedings (OSTI)

Symposium, Fatigue and Fracture of Thin Films and Nanomaterials. Presentation Title, Lithium-Ion Batteries: When Mechanics Meets Chemistry. Author(s), Joost...

38

Studies On Electrode Materials For Lithium-Ion Batteries.  

E-Print Network (OSTI)

??In the early 1970s, research carried out on rechargeable lithium batteries at the Exxon Laboratories in the US established that lithium ions can be intercalated (more)

Palale, Suresh

2006-01-01T23:59:59.000Z

39

Electrode Materials for Rechargeable Lithium-Ion Batteries: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

40

Surface Modification Agents for Lithium-Ion Batteries | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: A process to modify the surface of the active material used in an electrochemical device...

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials and Processing for Lithium-Ion Batteries (Originally  

Science Conference Proceedings (OSTI)

... safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of...

42

Available Technologies: High Power Performance Lithium Ion Battery  

Cell 1, which has the highest binder (PVDF) to acetylene black ratio, displays the most favorable discharge ASI. Lithium ion batteries with high power ...

43

Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion Batteries  

Berkeley Lab researchers led by Gao Liu have developed an improved lithium ion battery electrolyte containing a solvent that remains liquid at typical ...

44

Nanotube composite anode materials improve lithium-ion battery ...  

Rechargeable lithium-ion batteries are a critical technology for many applications, ... while simultaneously providing enhanced stability at a lower c ...

45

Advanced Lithium Ion Battery Materials for Fast Charging and ...  

Advanced Lithium Ion Battery Materials for Fast Charging and Improved Safety Technology Summary ... a great low cost substitute for cobalt, were

46

Surface-Modified Active Materials for Lithium Ion Battery ...  

Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without ...

47

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density  

Hybrid Aluminum-Lithium Ion Battery having Enhanced Power Density Note: The technology described above is an early stage opportunity. Licensing rights to this ...

48

Students race lithium ion battery powered cars in Pantex competition...  

National Nuclear Security Administration (NNSA)

skip to the main content Facebook Flickr RSS Twitter YouTube Students race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our...

49

Lithium-Ion Batteries: Examining Material Demand and Recycling ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Use of vehicles with electric drive, which could reduce our oil dependence, will depend on lithiumion batteries. But is there enough lithium?

50

Solid Electrolyte Developed for Safer Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Feb 19, 2013 ... Today's lithium-ion batteries rely on a liquid electrolyte to conduct ions between the negatively charged anode and positive cathode.

51

Understanding Diffusion-Induced-Stresses in Lithium Ion Battery ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Lithium insertion and removal in lithium ion battery electrodes can result in large volume expansion and contraction which may cause fracture...

52

Nanostructured Anodes for Lithium-Ion Batteries - Energy ...  

New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS ...

53

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

54

Accelerated Degradation Assessment of 18650 Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

Power fade of lithium cells due to accelerated factors of temperature and charging-discharging rate was assessed. A lithium-ion battery aging model for predicting the power fade of 18650-size cells was applied, and then statistically accelerated degradation ... Keywords: accelerated degradation test, lithium-ion battery aging, power fade, state of charge (SOC)

Kuan-Jung Chung; Chueh-Chien Hsiao

2012-06-01T23:59:59.000Z

55

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

56

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network (OSTI)

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

57

Lithium-Ion Battery Teacher Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium Ion Battery Teacher Workshop Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B ¾ of an inch from one end of the sheet. Making the Chassis 6 3. Draw a 5/8" x ½" notch from 1" from the top of the sheet. Making the Chassis 7 4. Draw Line C 2 ½" from the other end of the same sheet of balsa. Making the Chassis 8 5. Using a sharp utility knife or a coping saw, cut

58

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

DOE Green Energy (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

59

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy....

60

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Redox shuttles for safer lithium-ion batteries.  

DOE Green Energy (OSTI)

Overcharge protection is not only critical for preventing the thermal runaway of lithium-ion batteries during operation, but also important for automatic capacity balancing during battery manufacturing and repair. A redox shuttle is an electrolyte additive that can be used as intrinsic overcharge protection mechanism to enhance the safety characteristics of lithium-ion batteries. The advances on stable redox shuttles are briefly reviewed. Fundamental studies for designing stable redox shuttles are also discussed.

Chen, Z.; Qin, Y.; Amine, K.; Chemical Sciences and Engineering Division

2009-10-01T23:59:59.000Z

62

Large-Format Lithium-Ion Battery Costs Analysis  

Science Conference Proceedings (OSTI)

The high cost of lithium ion batteries poses a serious problem for the competitiveness of Plug-In Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). The problem is complicated by the fact that the lithium ion battery cost projections developed by a number of apparently credible organizations over the past 5 years or so differ so much that different conclusions regarding the economic competitiveness of PHEVs (and even more so BEVs) have been stated. This situation creates confusion and...

2010-12-15T23:59:59.000Z

63

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network (OSTI)

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

64

Recycling of Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

65

1 Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of 2 Lithium-Ion Batteries  

E-Print Network (OSTI)

1 Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of 2 Lithium-Ion Batteries 3 the lithiated silicon phase. 20 KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity 21 Lithium-ion by the National Science Foundation 648through a grant on Lithium-ion Batteries (CMMI-1031161). 649This work

Liu, X. Shirley

66

Students race lithium ion battery powered cars in Pantex competition |  

NLE Websites -- All DOE Office Websites (Extended Search)

race lithium ion battery powered cars in Pantex competition | race lithium ion battery powered cars in Pantex competition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Students race lithium ion battery powered cars ... Students race lithium ion battery powered cars in Pantex competition Posted By Greg Cunningham, Pantex Public Affairs

67

Design and Optimization of Lithium-ion Batteries for Vehicular...  

NLE Websites -- All DOE Office Websites (Extended Search)

Design and Optimization of Lithium-ion Batteries for Vehicular Applications Speaker(s): Venkat Srinivasan Date: September 16, 2003 - 12:00pm Location: Bldg. 90 Seminar HostPoint...

68

Composite Electrodes for Rechargeable Lithium-Ion Batteries ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Composite Electrodes for Rechargeable Lithium-Ion Batteries Technology available for licensing: Electrodes having composite xLi2M'O3(1-x)LiMO2 structures in which an...

69

Advances in lithium-ion battery research and technology.  

Science Conference Proceedings (OSTI)

The lithium-ion battery market has undergone trememdous growth ever since Sony Corporation introduced the first commercial cell in 1990. In less than a decade, the field has become a front-runner in rechargeable battery technology. Sales of lithium-ion cells exceeded 400 million units in 1999, and the market is expected to exceed 1.1 billion units valued at more than $4 billion by 2005.

Abraham, D. P.; Chemical Engineering

2002-03-01T23:59:59.000Z

70

Performance and Characterization of Lithium-Ion Type Polymer Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Frank McLarnon A new process for the preparation of lithium-polymer batteries with crosslinked gel-polymer electrolyte will be introduced. The new process employs a thermal crosslinking method rather than cell lamination, and is termed "lithium ion type polymer battery (ITPB)". This thermal crosslinking process has many advantages over the standard lamination method, such as fusing the polymer into the electrodes and better adhesion between the electrolyte and electrodes. The new method results in improved high-temperature stability and a simpler process, as well as the improved

71

Materials and Processing for Lithium-Ion batteries  

Science Conference Proceedings (OSTI)

Lithium ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.

Daniel, Claus [ORNL

2008-01-01T23:59:59.000Z

72

REACTIVE FLOW IN LARGE-DEFORMATION ELECTRODES OF LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

8/3/2012 1 REACTIVE FLOW IN LARGE-DEFORMATION ELECTRODES OF LITHIUM-ION BATTERIES LAURENCE BRASSART;8/3/2012 2 1. Introduction In a lithium-ion battery, each electrode is a host of lithium. When the battery to 4.4 lithium atoms. By comparison, in the commonly used anodes in lithium-ion batteries made

Suo, Zhigang

73

Better Lithium-Ion Batteries Are On The Way From Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss,...

74

Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery cathode, anode and electrolyte materials Title Lithium K(1s) synchrotron NEXAFS spectra of lithium-ion battery...

75

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design  

E-Print Network (OSTI)

Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

Jasinski, Samuel Anthony

2008-01-01T23:59:59.000Z

76

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective  

E-Print Network (OSTI)

The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, ...

Braatz, Richard D.

77

Minimization of Circuitry in Large Format Lithium-ion Battery Management Systems.  

E-Print Network (OSTI)

??Lithium-ion based batteries are the most energy and power dense rechargeable batteries currently available. However, to operate within safety limits battery voltages, currents, and temperatures (more)

Miller, Jerin

2012-01-01T23:59:59.000Z

78

Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries  

E-Print Network (OSTI)

environment of the lithium- ion battery. The model, in bothlithium-ion batteries. The model shows how the cell is transformed upon overcharge from a battery

Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

79

Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries.  

E-Print Network (OSTI)

??The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research (more)

Mosby, James Matthew

2010-01-01T23:59:59.000Z

80

with Open Structure for Applications in High-Rate Lithium-ion Batteries  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method  

E-Print Network (OSTI)

Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

Papalambros, Panos

82

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

83

Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles  

E-Print Network (OSTI)

Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode sur- faces in postmortem analysis of batteries.5-7 Stress generation results from lithium-ion, as will be discussed later. Heat transfer analyses of lithium-ion batteries have stemmed from work on full cells.10

Sastry, Ann Marie

84

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances  

E-Print Network (OSTI)

Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

Paris-Sud XI, Université de

85

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge  

E-Print Network (OSTI)

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

Suo, Zhigang

86

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles  

E-Print Network (OSTI)

Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

87

2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING  

E-Print Network (OSTI)

1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

Braun, Paul

88

Gel electrolyte for lithium-ion batteries.  

DOE Green Energy (OSTI)

The electrochemical performance of gel electrolytes based on crosslinked poly[ethyleneoxide-co-2-(2-methoxyethyoxy)ethyl glycidyl ether-co-allyl glycidyl ether] was investigated using graphite/Li{sub 1.1}[Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3}]{sub 0.9}O{sub 2} lithium-ion cells. It was found that the conductivity of the crosslinked gel electrolytes was as high as 5.9 mS/cm at room temperature, which is very similar to that of the conventional organic carbonate liquid electrolytes. Moreover, the capacity retention of lithium-ion cells comprising gel electrolytes was also similar to that of cells with conventional electrolytes. Despite of the high conductivity of the gel electrolytes, the rate capability of lithium-ion cells comprising gel electrolytes is inferior to that of the conventional cells. The difference was believed to be caused by the poor wettability of gel electrolytes on the electrode surfaces.

Chen, Z.; Zhang, L. Z.; West, R.; Amine, K.; Chemical Sciences and Engineering Division; Univ. of Wisconsin-Madison

2008-03-10T23:59:59.000Z

89

Plug-In Electric Vehicle Lithium-Ion Battery Cost and Advanced Battery Technologies Forecasts  

Science Conference Proceedings (OSTI)

Batteries are a critical cost factor for plug-in electric vehicles, and the current high cost of lithium ion batteries poses a serious challenge for the competitiveness of Plug-In Electric Vehicles (PEVs). Because the market penetration of PEVs will depend heavily on future battery costs, determining the direction of battery costs is very important. This report examines the cost drivers for lithium-ion PEV batteries and also presents an assessment of recent advancements in the growing attempts to ...

2012-12-12T23:59:59.000Z

90

NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES  

DOE Green Energy (OSTI)

Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

John Olson, PhD

2004-07-21T23:59:59.000Z

91

Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations  

E-Print Network (OSTI)

) by eliminating components such as the separator.3 Among commercially available batteries, lithium ion batteriesTunable Networks from Thiolene Chemistry for Lithium Ion Conduction Catherine N. Walker, Craig. This system provides a route to optimize lithium ion conduction and mechanical properties. Access

92

Hybrid neural net and physics based model of a lithium ion battery.  

E-Print Network (OSTI)

??Lithium ion batteries have become one of the most popular types of battery in consumer electronics as well as aerospace and automotive applications. The efficient (more)

Refai, Rehan

2011-01-01T23:59:59.000Z

93

Innovative copper-tin electrodes provide improved capacity and cycle life for lithium-ion batteries  

lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room for ...

94

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion...

95

Internal Resistance Identification in Vehicle Power Lithium-Ion Battery and Application in Lifetime Evaluation  

Science Conference Proceedings (OSTI)

According to the characteristic analysis of lithium-ion power battery, battery accelerate life test is carried out to obtain the relevant conclusions such as the changing trend of battery ohmic resistance in different conditions. Battery ohmic resistance ... Keywords: Lithium-ion battery, Internal resistance, Equivalent model, Lifetime evaluation

Xuezhe Wei; Bing Zhu; Wei Xu

2009-04-01T23:59:59.000Z

96

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Anode Design to Improve Lithium-Ion Batteries Print Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

97

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

98

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

99

Costs of lithium-ion batteries for vehicles  

DOE Green Energy (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

100

Materials issues in lithium ion rechargeable battery technology  

DOE Green Energy (OSTI)

Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

Doughty, D.H.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lithium ion batteries with titania/graphene anodes  

DOE Patents (OSTI)

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

102

Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented  

E-Print Network (OSTI)

#12;Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented by Kejie Zhao, Joost J. Vlassak Kejie Zhao Mechanics of Electrodes in Lithium-ion Batteries Abstract This thesis investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery

103

Thermal Characteristic Analysis of Power Lithium-ion Battery System for Electric Vehicle  

Science Conference Proceedings (OSTI)

With the electric vehicles used lithium manganese lithium-ion power battery (LiMn2O4 power battery) as the research object, the paper researched on the parameter identification of battery cell, has built the finite element model of single cell and completed ... Keywords: Lithium-ion battery, Thermal characteristic analysis, Electric Vehicle

Wang Wenwei; Lin Cheng; Tang Peng; Zhou Chengjun

2012-07-01T23:59:59.000Z

104

Cyanoethylated Compounds as Additives in Lithium/Lithium Ion Batteries  

DOE Patents (OSTI)

The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

Nagasubramanian, Ganesan

1998-05-08T23:59:59.000Z

105

Lithium-Ion Batteries - Energy Innovation Portal  

Understanding the impact of hot and cold domains on ion transport within the battery can lead to significant ... This model takes into account cell .. ...

106

Lithium Ion Batteries: Materials Processing and Mechanical ...  

Science Conference Proceedings (OSTI)

Assessing Cast Alloys for Use in Advanced Ultra-supercritical Steam Turbines Cathode/Anode Selection and Full Cell Performance for Stationary Li-ion Battery

107

Intercalation dynamics in lithium-ion batteries  

E-Print Network (OSTI)

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

108

STRUCTURE AND PERFORMANCE RELATIONSHIP IN HIGH PERFORMANCE LITHIUM ION BATTERY CATHODES.  

E-Print Network (OSTI)

??The goal of this dissertation is to study the structure and performance relationship in cathodes material used in lithium-ion battery applications. In addition, functional materials (more)

Zhu, Pengyu

2013-01-01T23:59:59.000Z

109

UNDERSTANDING AND IMPROVING LITHIUM ION BATTERIES THROUGH MATHEMATICAL MODELING AND EXPERIMENTS.  

E-Print Network (OSTI)

??There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including (more)

Deshpande, Rutooj D.

2011-01-01T23:59:59.000Z

110

A Platform Towards In Situ Stress/Strain Measurement in Lithium Ion Battery Electrodes.  

E-Print Network (OSTI)

??This thesis demonstrates the design, fabrication and testing of a platform for in situ stress/strain measurement in lithium ion battery electrodes. The platform - consisting (more)

Baron, Sergio Daniel

2012-01-01T23:59:59.000Z

111

Improving lithium-ion battery power and energy densities using novel cathode architectures and materials.  

E-Print Network (OSTI)

??Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the (more)

Lange, Jonathan

2012-01-01T23:59:59.000Z

112

3D thermal-electrochemical lithium-ion battery computational modeling.  

E-Print Network (OSTI)

??The thesis presents a modeling framework for simulating three dimensional effects in lithium-ion batteries. This is particularly important for understanding the performance of large scale (more)

Gerver, Rachel Ellen

2010-01-01T23:59:59.000Z

113

Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design.  

E-Print Network (OSTI)

??Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of (more)

Jasinski, Samuel Anthony

2008-01-01T23:59:59.000Z

114

Simplified Electrode Formation using Stabilized Lithium Metal Powder (SLMP) Doping of Lithium Ion Battery Electrodes  

lithium ion battery electrode formation that can boost a cells charge capacity and lower its cost while improving reliability and safety.

115

Catching Lithium Ions in Action in a Battery Electrode | U.S...  

Office of Science (SC) Website

Catching Lithium Ions in Action in a Battery Electrode Basic Energy Sciences (BES) BES Home About BES Research Facilities Science Highlights Benefits of BES Funding Opportunities...

116

TransForum v9n2 - Lithium-ion Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Working With Argonne Contact TTRDC TransForum Vol. 9, No. 2 Argonne's Lithium-ion Battery Research Produces New Materials and Technology Transfer Successes li-ionbattery...

117

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan  

E-Print Network (OSTI)

Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including present day portable consumer electronics and large-scale energy storage. Realization of these batteries

Zhou, Yaoqi

118

Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes  

E-Print Network (OSTI)

that lower- ing the price of batteries is a major goal, the cost of the processing and fabricationSolution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasing

Cui, Yi

119

State-of-Charge Estimations for Lead-Acid and Lithium-Ion Batteries.  

E-Print Network (OSTI)

??This thesis studies State-of-Charge (SOC) method for widely used lead-acid batteries and the most prospective lithium-ion batteries. First, the relationship between the battery capacity and (more)

Chen, Yi-Ping

2007-01-01T23:59:59.000Z

120

Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems  

E-Print Network (OSTI)

FePO? lithium ion batteries that have cathodes constructed by viruses are scaled up in size to examine potential for use as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled ...

Kolesnikov-Lindsey, Rachel

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Carbon fiber paper cathodes for lithium ion batteries  

Science Conference Proceedings (OSTI)

A novel lithium ion battery cathode structure was produced which has the potential for excellent capacity retention and good thermal management. In these cathodes, the active cathode material (lithium iron phosphate) was carbon bonded to a thermally and electrically conductive carbon fiber paper (CFP) support. Electrochemical testing was performed on Swagelok cells consisting of CFP cathodes and lithium anodes. High specific energy, near-theoretical capacity, and good cycling performance were demonstrated for 0.11 mm and 0.37 mm thick CFP cathodes.

Kercher, Andrew K [ORNL; Kiggans, Jim [ORNL; Dudney, Nancy J [ORNL

2010-01-01T23:59:59.000Z

122

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk  

E-Print Network (OSTI)

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

Ryan, Dominic

123

Fault Prediction and Fault-Tolerant of Lithium-ion Batteries Temperature Failure for Electric Vehicle  

Science Conference Proceedings (OSTI)

Design and implementation of dual-redundancy was developed to predict Lithium-ion battery failure for electric vehicle. Data fusion unit, prediction unit and determination unit were designed. Outputs from original and redundant sensors were integrated ... Keywords: Lithium-ion battery, dual-redundancy, data fusion, prediction, Fault-tolerant

Hu Chunhua; He Ren; Wang Runcai; Yu Jianbo

2012-07-01T23:59:59.000Z

124

UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors  

DOE Green Energy (OSTI)

the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

Voelker, Gary

2012-04-30T23:59:59.000Z

125

Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

2010-11-01T23:59:59.000Z

126

Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with  

E-Print Network (OSTI)

and operating potential, lithium ion batteries have been widely adopted in portable electronics. However in lithium ion batteries.2 The use of a liquid electrolyte restricts battery shape and processing while also and proton conductivity14 have also been reported. While the intercalation of lithium ions

Qi, Limin

127

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo  

E-Print Network (OSTI)

Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

Suo, Zhigang

128

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double Layer on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium-ion is used because of its high surface area. Lithium-ion Batteries ·Higher energy density than other

Mellor-Crummey, John

129

High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries  

E-Print Network (OSTI)

Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION Rechargeable lithium-ion batteries have been widely used in portable electronics and are promising

Cui, Yi

130

Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes Riccardo Ruffo a  

E-Print Network (OSTI)

Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes Riccardo Ruffo 2008 Available online xxxx Keywords: LiCoO2 Aqueous electrolyte LiNO3 Lithium-ion battery Cathode substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic

Cui, Yi

131

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors  

E-Print Network (OSTI)

The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer power. #12;The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double of the Lithium-ion Battery (LIB). A LIB using only graphite in the anode was the control. SWNTs were mixed

Mellor-Crummey, John

132

Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer  

E-Print Network (OSTI)

, but was lower at later cycles. The temperature that optimizes the active surface in a lithium-ion battery. Published February 14, 2011. Rechargeable lithium-ion batteries have been extensively used in mobile-discharge rate. The lithium-ion battery is also promising for electric (plug-in and hybrid) vehicles

Barton, Paul I.

133

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective  

Science Conference Proceedings (OSTI)

The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

2012-01-01T23:59:59.000Z

134

Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex  

E-Print Network (OSTI)

Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis ...

Adams, Melanie Chantal

2013-01-01T23:59:59.000Z

135

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network (OSTI)

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

136

Lithium-ion batteries with intrinsic pulse overcharge protection  

SciTech Connect

The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

Chen, Zonghai; Amine, Khalil

2013-02-05T23:59:59.000Z

137

Modeling of Transport in Lithium Ion Battery Electrodes  

E-Print Network (OSTI)

Lithium ion battery systems are promising solutions to current energy storage needs due to their high operating voltage and capacity. Numerous efforts have been conducted to model these systems in order to aid the design process and avoid expensive and time consuming prototypical experiments. Of the numerous processes occurring in these systems, solid state transport in particular has drawn a large amount of attention from the research community, as it tends to be one of the rate limiting steps in lithium ion battery performance. Recent studies have additionally indicated that purposeful design of battery electrodes using 3D microstructures offers new freedoms in design, better use of available cell area, and increased battery performance. The following study is meant to serve as a first principles investigation into the behaviors of 3D electrode architectures by monitoring concentration and cycle behaviors under realistic operating conditions. This was accomplished using computational tools to model the solid state diffusion behavior in several generated electrode morphologies. Developed computational codes were used to generate targeted structures under prescribed conditions of particle shape, size, and overall morphology. The diffusion processes in these morphologies were simulated under conditions prescribed from literature. Primary results indicate that parameters usually employed to describe electrode geometry, such as volume to surface area ratio, cannot be solely relied upon to predict or characterize performance. Additionally, the interaction between particle shapes implies some design aspects that may be exploited to improve morphology behavior. Of major importance is the degree of particle isolation and overlap in 3D architectures, as these govern gradient development and lithium depletion within the electrode structures. The results of this study indicate that there are optimum levels of these parameters, and so purposeful design must make use of these behaviors.

Martin, Michael

2012-05-01T23:59:59.000Z

138

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

139

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

140

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)  

Science Conference Proceedings (OSTI)

Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

Kim, G. H.; Smith, K.

2009-05-01T23:59:59.000Z

142

An analytical model for predicting the remaining battery capacity of lithium-ion batteries  

E-Print Network (OSTI)

AbstractPredicting the residual energy of the battery source that powers a portable electronic device is imperative in designing and applying an effective dynamic power management policy for the device. This paper starts up by showing that a 30 % error in predicting the battery capacity of a lithium-ion battery can result in up to 20 % performance degradation for a dynamic voltage and frequency scaling algorithm. Next, this paper presents a closed form analytical expression for predicting the remaining capacity of a lithium-ion battery. The proposed high-level model, which relies on online current and voltage measurements, correctly accounts for the temperature and cycle aging effects. The accuracy of the highlevel model is validated by comparing it with DUALFOIL simulation results, demonstrating a maximum of 5 % error between simulated and predicted data. Index TermsAccelerated rate capacity, cycle aging and dynamic voltage scaling, remaining battery capacity, temperature. I.

Peng Rong; Student Member; Massoud Pedram

2003-01-01T23:59:59.000Z

143

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

144

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Celebrates Expansion of Lithium-Ion Battery Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Celgard received $49 million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded expansions, Celgard expects to double its production capacity by 2012 and since January 2010, the company

145

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122...

146

Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries  

E-Print Network (OSTI)

A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

Moore, Charles J. (Charles Jacob)

2012-01-01T23:59:59.000Z

147

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries  

E-Print Network (OSTI)

We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

Meng, Shirley Y.

148

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries  

E-Print Network (OSTI)

Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

Meng, Shirley Y.

149

Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries  

E-Print Network (OSTI)

Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

Davis, Robin M. (Robin Manes)

2005-01-01T23:59:59.000Z

150

Llife-Cycle Analysis for Lithium-Ion Battery Production and Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

No. 11-3891 Life-Cycle Analysis for Lithium-Ion Battery Production and Recycling By Linda Gaines (630) 252-4919 E-mail: lgaines@anl.gov John Sullivan (734) 945-1261 E-mail:...

151

Graphene-based composites as cathode materials for lithium ion batteries  

Science Conference Proceedings (OSTI)

Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode ...

Libao Chen, Ming Zhang, Weifeng Wei

2013-01-01T23:59:59.000Z

152

Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis  

E-Print Network (OSTI)

A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

Meier, Joseph D. (Joseph David)

2013-01-01T23:59:59.000Z

153

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

Not Available

2012-10-01T23:59:59.000Z

154

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network (OSTI)

Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

Braatz, Richard D.

155

Surface-Modified Copper Current Collector for Lithium Ion Battery Anode  

A team of Berkeley Lab researchers led by Gao Liu has developed an innovative approach to improve the adhesion of anode laminate to copper current collectors in lithium ion batteries. This nanotechnology directly addresses delamination of graphite ...

156

Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity  

E-Print Network (OSTI)

The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

Hill, Richard Lee, Sr

2011-01-01T23:59:59.000Z

157

High Power Performance Lithium Ion Battery - Energy Innovation Portal  

... Optimization of Acetylene Black Conductive Additive and Polyvinylidene Fluoride Composition for high Power Rechargeable Lithium-Ion Cells, The 211th ...

158

Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries  

SciTech Connect

Mesoporous TiO2-B microsperes with a favorable material architecture are designed and synthesized for high power lithium ion batteries. This material, combining the advantages of fast lithium transport with a pseudocapacitive mechanism, adequate electrode-electrolyte contact and compact particle packing in electrode layer, shows superior high-rate charge-discharge capability and long-time cyclability for lithium ion batteries.

Liu, Hansan [ORNL; Bi, Zhonghe [ORNL; Sun, Xiao-Guang [ORNL; Unocic, Raymond R [ORNL; Paranthaman, Mariappan Parans [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

2011-01-01T23:59:59.000Z

159

Role of surface coating on cathode materials for lithium-ion batteries.  

Science Conference Proceedings (OSTI)

Surface coating of cathode materials has been widely investigated to enhance the life and rate capability of lithium-ion batteries. The surface coating discussed here was divided into three different configurations which are rough coating, core shell structure coating and ultra thin film coating. The mechanism of surface coating in achieving improved cathode performance and strategies to carry out this surface modification is discussed. An outlook on atomic layer deposition for lithium ion battery is also presented.

Chen, Z.; Qin, Y.; Amine, K.; Sun, Y.-K. (Chemical Sciences and Engineering Division); (Hanyang Univ.)

2010-01-01T23:59:59.000Z

160

Batteries - Lithium-ion - Developing Better High-Energy Batteries for  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material. Researcher Michael Thackeray holds a model of the molecular structure associated with Argonne's advanced cathode material, a key element of the material licensed to NanoeXa. Argonne's an internationally recognized leader in the development of lithium-battery technology. "Our success reflects a combined effort with a materials group and a technology group to exploit the concept to tackle key safety and energy problems associated with conventional technology," said Argonne's Michael Thackeray. Recently, Argonne announced a licensing agreement with NanoeXa (see

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Quantifying Cell-to-Cell Variations in Lithium Ion Batteries  

DOE Green Energy (OSTI)

Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

Santhanagopalan, S.; White, R. E.

2012-01-01T23:59:59.000Z

162

Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.  

SciTech Connect

In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

Nelson, P. A.; Henriksen, G. L.; Amine, K.

2000-12-04T23:59:59.000Z

163

High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office of  

Office of Science (SC) Website

High-Power Electrodes for Lithium-Ion High-Power Electrodes for Lithium-Ion Batteries Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 High-Power Electrodes for Lithium-Ion Batteries Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement For novel 3-D anodes made of sheets of carbon (graphene) and silicon nanoparticles, transport studies found much shorter lithium diffusion paths throughout the electrode and fast lithiation/delithiation of the nanoparticles. Significance and Impact This anode design holds a greater charge than conventional lithium-ion anodes and charges/discharges more rapidly while maintaining mechanical stability. Research Details Electrochemical studies: 83% of theoretical capacity (3200 mAh g-1)

164

Better Lithium-Ion Batteries Are On The Way From Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss, +1 510 486 6249, paul_preuss@lbl.gov traditional-new.jpg At left, the traditional approach to composite anodes using silicon (blue spheres) for higher energy capacity has a polymer binder such as PVDF (light brown) plus added particles of carbon to conduct electricity (dark brown spheres). Silicon swells and shrinks while acquiring and releasing lithium ions, and repeated swelling and shrinking eventually break contacts among the conducting carbon particles. At right, the new Berkeley Lab polymer (purple) is itself conductive and continues to bind tightly to the silicon particles despite repeated swelling and shrinking.

165

Nanostructured lithium nickel manganese oxides for lithium-ion batteries.  

DOE Green Energy (OSTI)

Nanostructured lithium nickel manganese oxides were investigated as advanced positive electrode materials for lithium-ion batteries designated to power plug-in hybrid electric vehicles and all-electric vehicles. The investigation included material characterization and electrochemical testing. In cell tests, the Li{sub 1.375}Ni{sub 0.25}Mn{sub 0.75}O{sub 2.4375} composition achieved high capacity (210 mAh g{sup -1}) at an elevated rate (230 mA g{sup -1}), which makes this material a promising candidate for high energy density Li-ion batteries, as does its being cobalt-free and uncoated. The material has spherical morphology with nanoprimary particles embedded in micrometer-sized secondary particles, possesses a multiphase character (spinel and layered), and exhibits a high packing density (over 2 g cm{sup -3}) that is essential for the design of high energy density positive electrodes. When combined with the Li{sub 4}Ti{sub 5}O{sub 12} stable anode, the cell showed a capacity of 225 mAh g{sup -1} at the C/3 rate (73 mA g{sup -1}) with no capacity fading for 200 cycles. Other chemical compositions, Li{sub (1+x)}Ni{sub 0.25}Mn{sub 0.75}O{sub (2.25+x/2)} (0.32 {le} x {le} 0.65), were also studied, and the relationships among their structural, morphological, and electrochemical properties are reported.

Deng, H.; Belharouak, I.; Cook, R. E.; Wu, H.; Sun, Y.-K.; Amine, K.; Hanyang Univ.

2010-02-25T23:59:59.000Z

166

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

DOE Green Energy (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

167

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network (OSTI)

Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium batteries.3 A lithium-ion battery contains an electrolyte and two electrodes. Each electrode is an atomic

Suo, Zhigang

168

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery  

E-Print Network (OSTI)

Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam August 2011; accepted 29 August 2011; published online 22 September 2011) Formation of lithium dendrite to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our

Endres. William J.

169

Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa  

E-Print Network (OSTI)

Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume strength. © 2011 American Institute of Physics. doi:10.1063/1.3525990 Lithium-ion batteries

170

Developments in lithium-ion battery technology in the Peoples Republic of China.  

SciTech Connect

Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

Patil, P. G.; Energy Systems

2008-02-28T23:59:59.000Z

171

Developments in lithium-ion battery technology in the Peoples Republic of China.  

DOE Green Energy (OSTI)

Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

Patil, P. G.; Energy Systems

2008-02-28T23:59:59.000Z

172

Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells  

E-Print Network (OSTI)

The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

Campbell, John Earl, Jr

2012-01-01T23:59:59.000Z

173

Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles  

E-Print Network (OSTI)

In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

Fu, Haitao

2009-01-01T23:59:59.000Z

174

Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)  

Science Conference Proceedings (OSTI)

This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

2011-01-01T23:59:59.000Z

175

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents (OSTI)

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

176

Doped LiFePO? cathodes for high power density lithium ion batteries  

E-Print Network (OSTI)

Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

Bloking, Jason T. (Jason Thompson), 1979-

2003-01-01T23:59:59.000Z

177

Surface Modification Agents Increase Safety, Security of Lithium-Ion Batteries  

Argonne National Laboratory has developed a process to modify the surface of the active material used in lithium-ion batteries. The modification agent can be a silane, an organometallic compound, or a mixture of two or more of such compounds. Both ...

178

Effects of Silicon and Carbon Composition on Carbon Nanotubes in Lithium-Ion Batteries Sadie Roberts, Georgia Institute of Technology Georgia Tech SURF 2011 Fellow  

E-Print Network (OSTI)

Effects of Silicon and Carbon Composition on Carbon Nanotubes in Lithium-Ion Batteries Sadie Graduate Mentor: Kara Evanoff Introduction Lithium-ion (Li-ion) batteries are attractive for many] Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., "High-performance lithium-ion

Li, Mo

179

Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries  

DOE Green Energy (OSTI)

The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

1995-09-01T23:59:59.000Z

180

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation Improved Electrode Materials in Lithium-Ion (Li-ion) Batteries: Innovation and Optimization Speaker(s): Jordi Cabana-Jimenez Date: January 14, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan The advent of Li-ion batteries has played a central role in the impressive development of portable digital and wireless technology. Such success has triggered further efforts to utilize them as key components in other applications with an even larger impact on society, which include electric vehicles and energy backup for renewable energy sources. However, several challenges need to be met before these expectations can be realized, as Li-ion batteries currently do not meet the power and energy density requirements of these devices. New and better materials for the electrodes

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another, which either stores or discharges energy, depending on the direction of the flow. They can employ several different chemistries, each offering distinct benefits and limitations. Despite their success in mobile applications, Li-ion technologies have not demonstrated

182

Temperature-Dependent Battery Models for High-Power Lithium-Ion Batteries  

DOE Green Energy (OSTI)

In this study, two battery models for a high-power lithium ion (Li-Ion) cell were compared for their use in hybrid electric vehicle simulations in support of the U.S. Department of Energy's Hybrid Electric Vehicle Program. Saft America developed the high-power Li-Ion cells as part of the U.S. Advanced Battery Consortium/U.S. Partnership for a New Generation of Vehicles programs. Based on test data, the National Renewable Energy Laboratory (NREL) developed a resistive equivalent circuit battery model for comparison with a 2-capacitance battery model from Saft. The Advanced Vehicle Simulator (ADVISOR) was used to compare the predictions of the two models over two different power cycles. The two models were also compared to and validated with experimental data for a US06 driving cycle. The experimental voltages on the US06 power cycle fell between the NREL resistive model and Saft capacitance model predictions. Generally, the predictions of the two models were reasonably close to th e experimental results; the capacitance model showed slightly better performance. Both battery models of high-power Li-Ion cells could be used in ADVISOR with confidence as accurate battery behavior is maintained during vehicle simulations.

Johnson, V.H.; Pesaran, A.A. (National Renewable Energy Laboratory); Sack, T. (Saft America)

2001-01-10T23:59:59.000Z

183

Artificial SEI Enables High-Voltage Lithium-ion Batteries | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Functional Materials for Energy Functional Materials for Energy Artificial SEI Enables High-Voltage Lithium-ion Batteries September 03, 2013 Efficacy of Lipon coating as an artificial SEI for suppression of electrolyte decomposition on a 5V spinel cathode: coulombic efficiency was measured versus cycle numbers at samples with different coating thickness. An artificial solid electrolyte interphase (SEI) of lithium phosphorus oxynitride (Lipon) enables the use of 5V cathode materials with conventional carbonate electrolytes in lithium-ion batteries. Five volt cathode materials, such as LiNi0.5Mn1.5O4, are desirable to provide higher energy, however conventional carbonate electrolytes decompose above 4.5V compromising the battery performance. This work shows that Lipon coating suppresses the electrolyte decomposition, as measured by the

184

Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems  

Science Conference Proceedings (OSTI)

A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

2012-07-15T23:59:59.000Z

185

Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing  

E-Print Network (OSTI)

Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory ...

Mueller, Tim

186

Effect of oxide nanoparticles on thermal and mechanical properties of electrospun separators for lithium-ion batteries  

Science Conference Proceedings (OSTI)

This study reports the fabrication and characterization of poly(ethylene oxide) (PEO) and poly(vinylidenefluoride-cochlorotrifluoroethylene) (PVDF-CTFE) nanofibrous separators for lithium-ion batteries loaded with different amounts of fumedsilica and ...

Marco Zaccaria, Chiara Gualandi, Davide Fabiani, Maria Letizia Focarete, Fausto Croce

2012-01-01T23:59:59.000Z

187

Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries  

SciTech Connect

A variety of approaches are being made to enhance the performance of lithium ion batteries. Incorporating multi-valence transition metal ions into metal oxide cathodes has been identified as an essential approach to achieve the necessary high voltage and high capacity. However, the fundamental mechanism that limits their power rate and cycling stability remains unclear. The power rate strongly depends on the lithium ion drift speed in the cathode. Crystallographically, these transition metal-based cathodes frequently have a layered structure. In the classic wisdom, it is accepted that lithium ion travels swiftly within the layers moving out/in of the cathode during the charge/discharge. Here, we report the unexpected discovery of a thermodynamically driven, yet kinetically controlled, surface modification in the widely explored lithium nickel manganese oxide cathode material, which may inhibit the battery charge/discharge rate. We found that during cathode synthesis and processing before electrochemical cycling in the cell nickel can preferentially move along the fast diffusion channels and selectively segregate at the surface facets terminated with a mix of anions and cations. This segregation essentially blocks the otherwise fast out/in pathways for lithium ions during the charge/discharge. Therefore, it appears that the transition metal dopant may help to provide high capacity and/or high voltage, but can be located in a wrong location that blocks or slows lithium diffusion, limiting battery performance. In this circumstance, limitations in the properties of Li-ion batteries using these cathode materials can be determined more by the materials synthesis issues than by the operation within the battery itself.

Gu, Meng; Belharouak, Ilias; Genc, Arda; Wang, Zhiguo; Wang, Dapeng; Amine, Khalil; Gao, Fei; Zhou, Guangwen; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

2012-09-17T23:59:59.000Z

188

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

189

Conductive Binder for Lithium Ion Battery Electrode - IB-2643 ...  

The Berkeley Lab electrode technology contributes to improved battery safety by circumventing lithium metal dendrite ... Scalable manufacturing using ...

190

Cycle life testing of lithium-ion batteries for small satellite LEO space missions  

DOE Green Energy (OSTI)

In 1990, Sony corporation announced their intention to manufacture a rechargeable lithium ion battery, based on the intercalation of lithium ions into a carbonaceous anode. The cells were first introduced for portable telephone use in June, 1991. (1) A 3.6V average cell voltage (4.1-2.75V range); (2) Excellent cycle life (1200 @ 100% DOD); (3) Good capacity retention (70% after 6 months); (4) Wide temperature range performance ({minus}20 to +60{degrees}C); (5) Excellent Discharge rate (82% capacity at 30 min. discharge rate); (6) Excellent Charge rate (100% Charge in <3 hrs); and (7) High energy density (264 W*hr/1 and 120 Whr/kg for ``D`` size cell. These specifications show significant promise for application of these batteries in low earth orbit (LEO) small satellites, particularly when compared to existing NiH{sub 2} and NiCd technology. The very high energy density and specific energy will reduce power system volume and weight. The wide temperature range enables simpler thermal design, particularly for new, small, high power satellites. The materials used in the lithium ion batteries are relatively inexpensive and benign, so that we expect costs to come down substantially in the future. The specified cycle life at 100% DOD is also 50% longer than most NiCds, so low DOD (depth of discharge) performance could be substantial. This study was undertaken to: (a) assess the feasibility for using lithium ion cells on small satellite LEO missions and (b) verify the claims of the manufacturer. This was accomplished by performing a detailed autopsy and various depth of discharge and rate tests on the cells. Of special interest was the cycle life performance of these cell at various depths of discharge DOD`s, to get an initial measure of the reduction in capacity fade with cycle conditions. Low DOD`s are used to extend the life of all batteries used in a space application.

Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.

1993-08-16T23:59:59.000Z

191

Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes  

Science Conference Proceedings (OSTI)

Carbon-coated silicon nanowire array films prepared by metal catalytic etching of silicon wafers and pyrolyzing of carbon aerogel were used for lithium-ion battery anodes. The films exhibited an excellent first discharge capacity of 3344 ? mAh ? g ? 1 with a Coulombic efficiency of 84% at a rate of 150 ? mA ? g ? 1 between 2 and 0.02 V and a significantly enhanced cycling performance

Rui Huang; Xing Fan; Wanci Shen; Jing Zhu

2009-01-01T23:59:59.000Z

192

Development of a high-power lithium-ion battery.  

DOE Green Energy (OSTI)

Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.

Jansen, A. N.

1998-09-02T23:59:59.000Z

193

Electrolytes for Lithium Ion Batteries - Energy Innovation Portal  

As mobile electronics continue to evolve, the need for high-output, long-lasting rechargeable batteries has grown tremendously. In the search for ...

194

Fail Safe Design for Large Capacity Lithium-ion Batteries  

NATIONAL RENEWABLE ENERGY LABORATORY! Challenges for Large LIB Systems 2 Li-ion batteries are flammable, require expensive manufacturing to reduce defects

195

Lithium Ion Battery Modeling using Orthogonal Projections And Descriptor Form.  

E-Print Network (OSTI)

??This thesis focuses on computationally efficient methods to solve the equations of the Doyle Fuller Newman electrochemical battery model. The two methods used in this (more)

Beeney, Michael

2013-01-01T23:59:59.000Z

196

Electrode Materials for Rechargeable Lithium-Ion Batterie  

AV AILABLE FOR LICENSING Higher-performance, more cost-effective batteries for PHEVs and HEVs. The Invention New high-energy cathode materials for use ...

197

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Since lithium sources are concentrated in only few countries and sodium is available worldwide, there is interest to develop a Na-ion battery...

198

Lithium-Ion Batteries: Examining Material Demand and Recycling...  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSUES Linda Gaines and Paul Nelson Argonne National Laboratory, Argonne, IL Keywords: battery materials, lithium, recycling Abstract Use of vehicles with electric drive, which...

199

Lithium-ion Batteries for Stationary Energy Storage  

DOE Green Energy (OSTI)

The use of Li-ion batteries for stationary energy storage systems to complement renewable energy sources such as solar and wind power has recently attracted great interest. Currently available Li-ion battery electrode materials suitable for such stationary applications have been discussed, along with optimum cathode and anode combinations, limitations and future research directions.

Xu, Terrence (Tianren); Wang, Wei; Gordin, Mikhail; Wang, Donghai; Choi, Daiwon

2010-09-01T23:59:59.000Z

200

The lithium-ion battery industry for electric vehicles  

E-Print Network (OSTI)

Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nanotube Arrays for Advanced Lithium-ion Batteries - Energy ...  

The development of high-power, high-energy, long-life, and low-cost rechargeable batteries is critical for the next-generation electric and hybrid electric vehicles.

202

Success Stories: Solid Electrolyte Lithium Ion Batteries - Seeo, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Electrolyte May Usher in a New Generation of Solid Electrolyte May Usher in a New Generation of Rechargeable Lithium Batteries For Vehicles With sky rocketing gasoline prices and exploding laptops, there could not have been a better time for a new rechargeable battery breakthrough. Enter Lawrence Berkeley National Laboratory's (LBNL) nanostructured polymer electrolyte (NPE). NPE is a solid electrolyte designed for use in rechargeable lithium batteries. The unique material was developed by LBNL researchers Nitash Balsara, Hany Eitouni, Enrique Gomez, and Mohit Singh and licensed to startup company Seeo Inc. in 2007. With solid financial backing from Khosla Ventures, located in Menlo Park, California, and an impressive scientific team recruited from LBNL, University of California, Berkeley, and the battery industry, Seeo is now

203

The Application of Synchrotron Techniques to the Study of Lithium-ion Batteries  

SciTech Connect

This paper gives a brief review of the application of synchrotron X-ray techniques to the study of lithium-ion battery materials. The two main techniques are X-ray absorption spectroscopy (XAS) and high-resolution X-ray diffraction (XRD). Examples are given for in situ XAS and XRD studies of lithium-ion battery cathodes during cycling. This includes time-resolved methods. The paper also discusses the application of soft X-ray XAS to do ex situ studies on battery cathodes. By applying two signal detection methods, it is possible to probe the surface and the bulk of cathode materials simultaneously. Another example is the use of time-resolved XRD studies of the decomposition of reactions of charged cathodes at elevated temperatures. Measurements were done both in the dry state and in the presence of electrolyte. Brief reports are also given on two new synchrotron techniques. One is inelastic X-ray scattering, and the other is synchrotron X-ray reflectometry studies of the surface electrode interface (SEI) on highly oriented single crystal lithium battery cathode surfaces.

McBreen, J.

2009-07-01T23:59:59.000Z

204

Effects of Entropy Changes in Anode and Cathode on Thermo Behavior of Lithium Ion Batteries  

SciTech Connect

The entropies (?S) in various cathode and anode materials, as well as complete lithium ion bat-teries, were investigated by Electrochemical Thermodynamic Measurement System (ETMS). A thermodynamic model based on the fundamental properties of individual electrodes is used to obtain the transient and equilibrium temperature distribution of lithium ion batteries. The results from theoretical simulations are compared with the results obtained in experimental measure-ments. It is found that detailed shape of the entropy curves strongly depends on the manufac-turer of the materials even for the same nominal compositions. LiCoO2 has a much larger en-tropy change than those of LiNixCoyMnzO2. This means that LiNixCoyMnzO2 is much more thermodynamically stable than LiCoO2. The temperatures around the positive terminal of a prismatic battery are consistently higher than those at the negative terminal. When all other simulation parameters are the same, the effects of using battery-averaged entropy in the simulation tends to overestimate the predicted temperatures than using individual entropies for anode and cathode.

Williford, Ralph E.; Vishwanathan, Vilanyur V.; Zhang, Jiguang

2009-04-01T23:59:59.000Z

205

Layered cathode materials for lithium ion rechargeable batteries  

DOE Patents (OSTI)

A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

2007-04-17T23:59:59.000Z

206

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents (OSTI)

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

1999-01-12T23:59:59.000Z

207

Approach to make macroporous metal sheets as current collectors for lithium-ion batteries  

SciTech Connect

A new approach and simple method is described to produce macroporous metal sheet as current collector for anode in lithium ion battery. This method, based on slurry blending, tape casting, sintering, and reducing of metal oxides, produces a uniform, macroporous metal sheet. Silicon film sputter-coated on such porous copper substrate shows much higher capacity and longer cycle life than on smooth Cu foil. This methodology produces very limited wastes and is also adaptable to many other materials. It is easy for industrial scale production.

Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Li, Xiaohong S.; Bennett, Wendy D.; Bonham, Charles C.; Zhang, Jiguang

2010-05-05T23:59:59.000Z

208

Chemical overcharge protection of lithium and lithium-ion secondary batteries  

DOE Patents (OSTI)

This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

1999-01-01T23:59:59.000Z

209

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

210

Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries  

Science Conference Proceedings (OSTI)

Single crystal Ni"5Sb"2 nanowires array is synthesized by direct-current electrodeposition technique. The initial specific discharge and charge capacity of the as-produced Ni"5Sb"2 nanowires array electrode as an anode material for lithium-ion batteries ... Keywords: Anode, Array structure, Charge/discharge capacity, Lithium-ion batteries, Nanowires

You-Wen Yang; Tian-Ying Li; Fei Liu; Wen-Bin Zhu; Xue-Liang Li; Yu-Cheng Wu; Ming-Guang Kong

2013-04-01T23:59:59.000Z

211

Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles  

Science Conference Proceedings (OSTI)

State of health (SOH) determination becomes an increasingly important issue for a safe and reliable operation of lithium-ion batteries in hybrid electric vehicles (HEVs). Characteristic performance parameters as capacity and resistance change over lifetime ... Keywords: Extended Kalman filter, Hybrid electric vehicle, Internal resistance estimation, Lithium-ion batteries, State of health, Structured neural networks

D. Andre, A. Nuhic, T. Soczka-Guth, D. U. Sauer

2013-03-01T23:59:59.000Z

212

The Self-Improvement of Lithium-Ion Batteries | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Architecture and Viral Disease Architecture and Viral Disease RNA Folding: A Little Cooperation Goes a Long Way A New Phase in Cellular Communication Engineering Thin-Film Oxide Interfaces Novel Materials Become Multifunctional at the Ultimate Quantum Limit Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Self-Improvement of Lithium-Ion Batteries NOVEMBER 30, 2012 Bookmark and Share Amorphous titanium oxide nanotubes, upon lithium insertion in a Li-ion battery, self-create the highest capacity cubic lithium titanium oxide structure. The search for clean and green energy in the 21st century requires a better and more efficient battery technology. The key to attaining that goal may

213

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

214

Improving the Performance of Lithium Ion Batteries at Low Temperature  

DOE Green Energy (OSTI)

The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below 10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of 20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

Trung H. Nguyen; Peter Marren; Kevin Gering

2007-04-20T23:59:59.000Z

215

The development of low cost LiFePO4-based high power lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

216

Lithium Ion Accomplishments  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

217

Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.  

DOE Green Energy (OSTI)

This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

Nelson, P. A.

2011-10-20T23:59:59.000Z

218

Understanding the Degredation of Silicion Electrodes for Lithium Ion Batteries Using Acoustic Emission  

Science Conference Proceedings (OSTI)

Silicon is a promising anode material for lithium ion battery application due to its high specific capacity, low cost, and abundance. However, when silicon is lithiated at room temperature it can undergo a volume expansion in excess of 280% which leads to extensive fracturing. This is thought to be a primary cause of the rapid decay in cell capacity routinely observed. Acoustic emission (AE) was employed to monitor activity in composite silicon electrodes while cycling in lithium ion half-cells using a constant current-constant voltage procedure. The major source of AE was identified as the brittle fracture of silicon particles resulting from the alloying reaction that gives rise to LixSi phases. The largest number of emissions occurred on the first lithiation corresponding to surface fracture of the silicon particles, followed by distinct emission bursts on subsequent charge and discharge steps. Furthermore, a difference in the average parameters describing emission during charge and discharge steps was observed. Potential diagnostic and materials development applications of the presented AE techniques are discussed.

Rhodes, Kevin J [ORNL; Dudney, Nancy J [ORNL; Lara-Curzio, Edgar [ORNL; Daniel, Claus [ORNL

2010-01-01T23:59:59.000Z

219

Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery  

DOE Green Energy (OSTI)

Lithium-ion batteries are prone to failure, because both their capacity and rate capability decrease with cycling. Side reactions, which decrease the cell's cyclable lithium content, can be responsible for capacity fade. An increase in cyclable lithium content is also possible, but is limited by the initial overall lithium content. Formation of a solid electrolyte interphase film on the carbonaceous anode not only consumes cyclable lithium, but also increases the anode resistance, thus reducing the rate capability of the cell, as demonstrated via computer simulation of a lithium-ion cell. Simulations also suggest that the use of cutoff potentials may not effectively prevent undesired irreversible side reactions on overcharge or overdischarge.

Christensen, J.; Newman, J.

2003-04-10T23:59:59.000Z

220

Multiscale Multiphysics Lithium-Ion Battery Model with Multidomain Modular Framework  

Science Conference Proceedings (OSTI)

Lithium-ion batteries (LIBs) powering recent wave of personal ubiquitous electronics are also believed to be a key enabler of electrification of vehicle powertrain on the path toward sustainable transportation future. Over the past several years, National Renewable Energy Laboratory (NREL) has developed the Multi-Scale Multi-Domain (MSMD) model framework, which is an expandable platform and a generic modularized flexible framework resolving interactions among multiple physics occurring in varied length and time scales in LIB[1]. NREL has continued to enhance the functionality of the framework and to develop constituent models in the context of the MSMD framework responding to U.S. Department of Energy's CAEBAT program objectives. This talk will introduce recent advancements in NREL's LIB modeling research in regards of scale-bridging, multi-physics integration, and numerical scheme developments.

Kim, G. H.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improving the performance of soft carbon for lithium-ion batteries.  

DOE Green Energy (OSTI)

A novel technique for designing a robust solid electrolyte interface (SEI) on the negative electrodes of lithium-ion batteries has been developed using a silane coating. Two silane compounds, 3,3,3-trifluoropropyltrimethoxysilane (TFPTMS) and dimethoxybis(2-(2-(2-mothoxyethoxy)ethoxy)ethoxy)silane (1ND3(MeO)), have been investigated with respect to improving the capacity retention of lithium manganese oxide spinel/soft carbon cells. The impact of the silane coating on the soft carbon electrode will be attributed to (1) changes in surface functional groups, (2) compositional change of the SEI, and (3) changes in the kinetics of manganese deposition. The impact of the upper cutoff voltage on the capacity retention of the cell was also discussed.

Chen, Z.; Wang, Q.; Amine, K.; Chemical Engineering

2006-01-01T23:59:59.000Z

222

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

DOE Green Energy (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

223

Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries  

SciTech Connect

Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

224

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

225

Observation of State of Charge Distributions in Lithium-ion Battery Electrodes  

Science Conference Proceedings (OSTI)

Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented.

Remillard, Jeffrey [Ford Research and Advanced Engineering, Ford Motor Company; O'Neil, Ann E [Ford Research and Advanced Engineering, Ford Motor Company; Bernardi, Dawn [Ford Research and Advanced Engineering, Ford Motor Company; Ro, Tina J [Massachusetts Institute of Technology (MIT); Miller, Ted [Ford Motor Company; Neitering, Ken [Ford Research and Advanced Engineering, Ford Motor Company; Go, Joo-Young [SB Limotive, Korea; Nanda, Jagjit [ORNL

2011-01-01T23:59:59.000Z

226

Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles  

DOE Green Energy (OSTI)

The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

2001-06-22T23:59:59.000Z

227

Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion ...  

Rechargeable lithium ion batteries for cellular phones, laptop computers and other consumer electronics; Batteries for electrically-powered vehicles;

228

Fused ring and linking groups effect on overcharge protection for lithium-ion batteries.  

DOE Green Energy (OSTI)

The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li{sup +} with better solubility in a commercial electrolyte (1.2 M LiPF{sub 6}) dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12}/LiFePO{sub 4} cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.

Weng, W.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K.

2011-02-01T23:59:59.000Z

229

Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

230

Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

SciTech Connect

This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

Wright, Randy Ben; Motloch, Chester George

2001-03-01T23:59:59.000Z

231

Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery  

E-Print Network (OSTI)

This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

Kim, Jun Young

232

Model for the Fabrication of Tailored Materials for Lithium-Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Model for the Fabrication of Tailored Materials for Lithium-Ion Batteries Technology available for licensing: Safe, stable and high-capacity cathodes for lithium-ion batteries...

233

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

234

Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries  

Science Conference Proceedings (OSTI)

A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

Liao, Chen [ORNL; Shao, Nan [ORNL; Bell, Jason R [ORNL; Guo, Bingkun [ORNL; Luo, Huimin [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

2013-01-01T23:59:59.000Z

235

Layered Li1+x(Ni0.425Mn0.425Co0.15)1xO2 Positive Electrode Materials for Lithium-Ion Batteries  

E-Print Network (OSTI)

Layered Li1+x(Ni0.425Mn0.425Co0.15)1­xO2 Positive Electrode Materials for Lithium-Ion Batteries range decreased with overlithiation Keywords : Although LiCoO2 is suitable for the lithium-ion battery by Ohzuku et al. to deliver a high discharge capacity close to 200 mAh/g,21 a lot of research in the lithium-ion

Paris-Sud XI, Université de

236

An analytical model for predicting the remaining battery capacity of lithium-ion batteries  

Science Conference Proceedings (OSTI)

Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing and applying an effective dynamic power management policy for the device. This paper starts up by showing that a 30% error in predicting ... Keywords: accelerated rate capacity, cycle aging and dynamic voltage scaling, remaining battery capacity, temperature

Peng Rong; Massoud Pedram

2006-05-01T23:59:59.000Z

237

Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries  

Science Conference Proceedings (OSTI)

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

Sun Liang [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China (China); Qiu Keqiang, E-mail: qiuwhs@sohu.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Ministry of Education of the People's Republic of China (China)

2012-08-15T23:59:59.000Z

238

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementnot dominate the total battery cost. Note that in generalsuch as cycle life and battery cost and battery management

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

239

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

240

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries  

E-Print Network (OSTI)

,12 nanowires13-17 (NW), bundled Si nanotubes,18 and thin films19 as candidate anode materials in lithium ion morphology change. In particular, the axial void spaces of the Si NTs provide additional free surfaces physics, to account for experimental observations and to derive optimized dimen- sions in the tubes

Rogers, John A.

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST)  

E-Print Network (OSTI)

Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST) C O L L A B O R A T O R To fabricate a single nanowire Li-ion battery and observe it charging and discharging. K E Y A C C O M P L I S H M E N T S Designed, fabricated, and tested complete Li-ion nanowire batteries measuring

Magee, Joseph W.

242

Ceramic-Metal Composites for Electrodes of Lithium Ion ...  

Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries ... Applications and Industries. Anodes for primary and secondary (rechargeable) ...

243

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

244

Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric Vehicle  

Science Conference Proceedings (OSTI)

Based on fuzzy clustering and multi-model support vector regression, a novel lithium-ion battery state of charge (SOC) estimating model for electric vehicle is proposed. Fuzzy C-means and Subtractive clustering combined algorithm is employed to implement ...

Xiaosong Hu; Fengchun Sun

2009-08-01T23:59:59.000Z

245

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

246

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

247

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

DOE Green Energy (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

248

Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

Barsukov, Igor V.

2002-12-10T23:59:59.000Z

249

Lithium Ion Battery Aging Experiments and Algorithm Development for Life Estimation.  

E-Print Network (OSTI)

??Battery lifespan is one of the largest considerations when designing battery packs for electrified vehicles. Even during vehicle operation, it is essential to monitor the (more)

Suttman, Alexander K.

2011-01-01T23:59:59.000Z

250

Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles  

E-Print Network (OSTI)

BATTERIES FOR USE IN HYBRID ELECTRIC VEHICLES R. Kostecki,ion batteries for hybrid electric vehicles. Nine 18650-sizebatteries for hybrid electric vehicle (HEV) applications.

2001-01-01T23:59:59.000Z

251

The Lithium-Ion Cell: Model, State Of Charge Estimation  

E-Print Network (OSTI)

The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

Schenato, Luca

252

Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

Not Available

2012-04-01T23:59:59.000Z

253

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network (OSTI)

lead to improvement in the capacity of a battery for UAVs.battery characteristics under mechanical static loading: charge/discharge capacitybattery characteristics under mechanical static loading: charge/discharge capacity

Kang, Jin Sung

2012-01-01T23:59:59.000Z

254

Composition-tailored synthesis of gradient transition metal precursor particles for lithium-ion battery cathode materials.  

DOE Green Energy (OSTI)

We report the tailored synthesis of particles with internal gradients in transition metal composition aided by the use of a general process model. Tailored synthesis of transition metal particles was achieved using a coprecipitation reaction with tunable control over the process conditions. Gradients in the internal composition of the particles was monitored and confirmed experimentally by analysis of particles collected during regularly timed intervals. Particles collected from the reactor at the end of the process were used as the precursor material for the solid-state synthesis of Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2}, which was electrochemically evaluated as the active cathode material in a lithium battery. The Li{sub 1.2}(Mn{sub 0.62}Ni{sub 0.38}){sub 0.8}O{sub 2} material was the first example of a structurally integrated multiphase material with a tailored internal gradient in relative transition metal composition as the active cathode material in a lithium-ion battery. We believe our general synthesis strategy may be applied to produce a variety of new cathode materials with tunable interior, surface, and overall relative transition metal compositions.

Koenig, G. M.; Belharouak, I.; Deng, H.; Amine, K.; Sun, Y. K. (Chemical Sciences and Engineering Division)

2011-04-12T23:59:59.000Z

255

Improve Performance and Reduce Cost of Any Lithium-Ion Battery  

TM Microstructured components for high-performance lithium batteries www.porouspower.com Symmetrix - Improve Performance & Reduce Cost of Any ...

256

Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries.  

DOE Green Energy (OSTI)

3,5-di-tert-butyl-1,2-dimethoxybenzene (DBDB) has been synthesized as a new redox shuttle additive for overcharge protection of lithium-ion batteries. DBDB can easily dissolve in carbonate-based electrolytes, which facilitates its practical use in lithium-ion batteries; however, it has poor electrochemical stability compared to 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB). The structures of DBDB and DDB were investigated using X-ray crystallography and density functional calculations. The structures differ in the conformations of the alkoxy bonds probably due to the formation of an intramolecular hydrogen bond in the case of DBDB. We investigated reaction energies for decomposition pathways of neutral DBDB and DDB and their radical cations and found little difference in the reaction energies, although it is clear that kinetically, decomposition of DBDB is more favorable.

Zhang, Z.; Zhang, L.; Schlueter, J. A.; Redfern, P. C.; Curtiss, L.; Amine, K.

2010-01-01T23:59:59.000Z

257

Stochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1  

E-Print Network (OSTI)

as described above. III. THE CONDUCTIVITY The basic electrochemistry of the lithium ion battery in- volves only the transfer of lithium ions between the two insertion electrodes. Typical lithium ion battery consistsStochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1 A. Averbuch,2,a

Averbuch, Amir

258

Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report  

Science Conference Proceedings (OSTI)

The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

2006-07-01T23:59:59.000Z

259

Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries.  

DOE Green Energy (OSTI)

Non-doped and aluminum-doped LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathodes from three industrial developers coupled with graphite anodes were made into lithium-ion cells for high-power applications. The powder morphology of the active cathode materials was examined by a scanning electron microscope. The electrochemical performance of these cells was investigated by hybrid pulse power characterization (HPPC) testing, accelerated aging, and AC impedance measurement of symmetric cells. Although all of the fresh cells are found to meet and exceed the power requirements set by PNGV, the power capability of those cells with non-doped LiNi {sub 0.8}Co{sub 0.2}O{sub 2} cathodes fades rapidly due to the rise of the cell impedance. Al-doping is found very effective to suppress the cell impedance rise by stabilizing the charge-transfer impedance on the cathode side. The stabilization mechanism may be related to the low average oxidation state of nickel ions in the cathode. The powder morphology also plays a secondary role in determining the impedance stabilization.

Chen, C. H.; Liu, J.; Stoll, M. E.; Henriksen, G.; Vissers, D. R.; Amine, K.; Chemical Engineering; Univ. of Science and Technology of China

2004-04-05T23:59:59.000Z

260

ForPeerReview A Validation Study of Lithium-ion Cell Constant C-Rate  

E-Print Network (OSTI)

and Engineering, Engineering and Public Policy Keywords: Battery Design Studio®, Lithium-ion, Battery Performance compare battery performance simulations from a commercial lithium-ion battery modeling software package in discharge performance simulations for many applications. Keywords: Battery Design Studio®; Lithium-ion

Michalek, Jeremy J.

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Phase Field Model of Li-Plating in Lithium Ion Battery  

Science Conference Proceedings (OSTI)

Abstract Scope, Li plating limits the maximum safe charging rate of Li-ion batteries, and thus the amount of energy that can be captured by regenerative braking.

262

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

supervises testing in the Hybrid Vehicle Propulsion SystemsChemistries for Plug-in Hybrid Vehicles Andrew Burke,batteries, plug-in hybrid vehicles, energy density, pulse

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

263

The Solid-Electrolyte-Interface Processes in Lithium-Ion Battery by ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Modeling of Multi-Scale Phenomena for Batteries. Presentation Title, The...

264

Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries  

SciTech Connect

Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

2013-10-08T23:59:59.000Z

265

Spinel LiMn(2)O(4)/Reduced Graphene Oxide Hybrid for High Rate Lithium Ion Batteries  

DOE Green Energy (OSTI)

A well-crystallized and nano-sized spinel LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid cathode material for high rate lithium-ion batteries has been successfully synthesized via a microwave-assisted hydrothermal method at 200 C for 30 min without any post heat-treatment. The nano-sized LiMn{sub 2}O{sub 4} particles were evenly dispersed on the reduced graphene oxide template without agglomeration, which allows the inherent high active surface area of individual LiMn{sub 2}O{sub 4} nanoparticles in the hybrid. These unique structural and morphological properties of LiMn{sub 2}O{sub 4} on the highly conductive reduced graphene oxide sheets in the hybrid enable achieving the high specific capacity, an excellent high rate capability and stable cycling performance. An analysis of the cyclic voltammogram data revealed that a large surface charge storage contribution of the LiMn{sub 2}O{sub 4}/reduced graphene oxide hybrid plays an important role in achieving faster charge/discharge.

Bak, S.M.; Nam, K.; Lee, C.-W.; Kim, K.-H.; Jung, H.-C.; Yang, X-Q.; Kim, K.-B.

2011-10-04T23:59:59.000Z

266

Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries  

Science Conference Proceedings (OSTI)

In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life. After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.

Ding, Fei; Xu, Wu; Choi, Daiwon; Wang, Wei; Li, Xiaolin; Engelhard, Mark H.; Chen, Xilin; Yang, Zhenguo; Zhang, Jiguang

2012-04-27T23:59:59.000Z

267

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

DOE Green Energy (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

268

Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)  

DOE Green Energy (OSTI)

NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

2008-12-01T23:59:59.000Z

269

TransForum v7n1 - Lithium-ion Batteries Could Hold the Key to...  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicles that let consumers recharge batteries by plugging into a wall outlet. Hybrid electric vehicles (HEVs) are no longer cars of the future. As the price of gasoline...

270

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumof a plug-in hybrid-electric vehicle is the selection of theHybrid and Fuel Cell Electric Vehicle Symposium negative)

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

271

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

A. , et al. , Plug-In Hybrid Electric Vehicles: How Does Oneand in particular, hybrid electric vehicles. In addition to1.1 Motivation: Why Hybrid Electric Vehicles? 1 1.2 Battery

Wilcox, James D.

2010-01-01T23:59:59.000Z

272

Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries  

E-Print Network (OSTI)

There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

Limthongkul, Pimpa, 1975-

2002-01-01T23:59:59.000Z

273

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents (OSTI)

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

1995-06-20T23:59:59.000Z

274

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents (OSTI)

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1995-01-01T23:59:59.000Z

275

D9: Electrode Development for All-Ceramic Lithium Ion Batteries  

Science Conference Proceedings (OSTI)

In order to utilize these systems effectively, it is necessary to develop batteries to store the ... Blends for Tissue Engineering and Drug Delivery Application .... C19: Dissolution Behavior of Cu Under Bump Metallization in Ball Grid Array ... for High Volume and Fast Turnaround Automated Inline TEM Sample Preparation.

276

Argonne Transportation Technology R&D Center - Lithium-ion Batteries,  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Autonomie Batteries Downloadable Dynamometer Database Engines Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Photo of battery developers that links to story Press Coverage What's New Multimedia Logo of the Wharton School of Business Dec. 13. Knowledge@Wharton. Green SPorts and Transportation: The Elephant in the Room Logo of Crain's Chicago Business Dec. 10. Crain's Chicago Business. Argonne chemist Pete Chupas named one of Crain's 2013 "40 under 40" Logo of the Sioux City Journal Dec. 2. Sioux City Journal. Ethanol Supporters Say the Numbers Support Their Industry

277

3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)  

DOE Green Energy (OSTI)

In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involving a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.

Lee, K. J.; Kim, G. H.; Smith, K.

2010-10-14T23:59:59.000Z

278

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-01-01T23:59:59.000Z

279

Solid lithium-ion electrolyte  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-02-10T23:59:59.000Z

280

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network (OSTI)

Coating for Lithium-Ion Battery Cathodes", Chemistry ofas the cathode of the lithium ion battery by Thackeray et

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

282

Novel Redox Shuttles for Overcharge Protection of Lithium-Ion ...  

Increases the safety of lithium-ion batteries; ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

283

NANOTUBE COMPOSITE ANODE MATERIALS SUITABLE FOR LITHIUM ION ...  

The present invention provides a composite material suitable for use in an anode for a lithium ion battery, the composite material comprising a layer of a lithium ...

284

Observation of Lithium Ions at Atomic Resolution Using an ...  

Science Conference Proceedings (OSTI)

Presentation Title, Observation of Lithium Ions at Atomic Resolution Using an ... at atomic resolution in several important electrode materials for Li-ion batteries.

285

A general solution-chemistry route to the synthesis LiMPO{sub 4} (M=Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries  

SciTech Connect

A general and efficient solvothermal strategy has been developed for the preparation of lithium transition metal phosphate microstructures (LiMnPO{sub 4}, LiFePO{sub 4}, and LiCoPO{sub 4}), employing ethanol as the solvent, LiI as the Li source, metal salts as the M sources, H{sub 3}PO{sub 4} as the phosphorus source, and poly(vinyl pyrrolidone) (PVP) as the carbon source and template. This route features low cost, environmental benign, and one-step process for the cathode material production of Li-ion batteries without any complicated experimental setups and sophisticated operations. The as-synthesized LiMPO{sub 4} microstructures exhibit unique, well-shaped and favorable structures, which are self-assembled from microplates or microrods. The b axis is the preferred crystal growth orientation of the products, resulting in a shorter lithium ion diffusion path. The LiFePO{sub 4} microstructures show an excellent cycling stability without capacity fading up to 50 cycles when they are used as a cathode material in lithium-ion batteries. - Graphical abstract: A general and efficient solvothermal strategy has been developed for the preparation of lithium transition metal phosphate microstructures under solvothermal conditions in the presence of PVP. Highlights: > A general and efficient solvothermal strategy has been developed for the preparation of LiMPO{sub 4} microstructures. > This route features low cost, environmental benign, and one-step process. > The LiMPO{sub 4} microstructures exhibit unique, well-shaped, and favorable structures. > The LiFePO{sub 4} microstructures show an excellent cycling stability up to 50 cycles as a cathode material of lithium-ion batteries.

Su Jing [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Wei Bingqing; Rong Jiepeng [Department of Mechanical Engineering, University of Delaware, Newark, DE 19716 (United States); Yin Wenyan; Ye Zhixia; Tian Xianqing; Ren Ling [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Cao Minhua, E-mail: caomh@bit.edu.cn [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Hu Changwen [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)

2011-11-15T23:59:59.000Z

286

Silicon Anode Materials for All-Solid-State Lithium-ion Microbatteries  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Silicon Anode Materials for All-Solid-State...

287

Cycle-Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries  

E-Print Network (OSTI)

Batteries This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe on privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DOE/ID-10845

Randy B. Wright; Chester G. Motloch

2001-01-01T23:59:59.000Z

288

CHARACTERIZATION OF LOW-FLAMMABILITY ELECTROLYTES FOR LITHIUM-ION BATTERIES  

DOE Green Energy (OSTI)

In an effort to develop low-flammability electrolytes for a new generation of Li-ion batteries, we have evaluated physical and electrochemical properties of electrolytes with two proprietary phosphazene additives. We have studied performance quantities including conductivity, viscosity, flash point, and electrochemical window of electrolytes as well as formation of solid electrolyte interphase (SEI) films. In the course of study, the necessity for a simple method of SEI characterization was realized. Therefore, a new method and new criteria were developed and validated on 10 variations of electrolyte/electrode substrates. Based on the summation of determined physical and electrochemical properties of phosphazene-based electrolytes, one structure of phosphazene compound was found better than the other. This capability helps to direct our further synthetic work in phosphazene chemistry.

Sergiy V. Sazhin; Mason K. Harrup; Kevin L. Gering

2011-04-01T23:59:59.000Z

289

Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries  

Science Conference Proceedings (OSTI)

Graphene-modified LiFePO{sub 4} composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO{sub 4} nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO{sub 4} primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO{sub 4} nanoparticles and graphene sheets was beneficial for Li{sup +} diffusion. The composite cathode material could deliver a capacity of 70 mAh g{sup -1} at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

2011-01-24T23:59:59.000Z

290

Ab initio Molecular Dynamics Simulations of the Initial Stages of Solid-electrolyte Interphase Formation on Lithium Ion Battery Graphitic Anodes  

E-Print Network (OSTI)

The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

Leung, Kevin; 10.1039/B925853A

2010-01-01T23:59:59.000Z

291

Synthesis of polycrystalline SnO{sub 2} nanotubes on carbon nanotube template for anode material of lithium-ion battery  

Science Conference Proceedings (OSTI)

Polycrystalline tin oxide nanotubes have been prepared by a layer-by-layer technique on carbon nanotubes template. Firstly, the surface of carbon nanotubes was modified by polyelectrolyte. Then, a uniform layer of tin oxide nanoparticles was formed on the positive charged surface of carbon nanotubes via a redox process. At last, the polycrystalline tin oxide nanotubes were synthesized after calcination at 650 deg. C in air for 3 h. The as-synthesized polycrystalline nanotubes with large surface area exhibit finer lithium storage capacity and cycling performance, which shows the potentially interesting application in lithium-ion battery.

Du Ning; Zhang Hui; Chen Bindi; Ma Xiangyang; Huang Xiaohua; Tu Jiangping [State Key Lab of Silicon Materials and Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Yang Deren [State Key Lab of Silicon Materials and Department of Material Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: mseyang@zju.edu.cn

2009-01-08T23:59:59.000Z

292

Parameter Estimation and Life Modeling of Lithium-Ion Cells Shriram Santhanagopalan,*,a  

E-Print Network (OSTI)

for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient Sindhuja online 30 June 2010 Keywords: Integral transform technique Semianalytical method Lithium ion battery of diffusion process in lithium ion battery electrode. The solutions obtained using the method presented

293

Studies of ionic liquids in lithium-ion battery test systems  

SciTech Connect

In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-06-01T23:59:59.000Z

294

Technical Specification for a Transportable Lithium-Ion Energy Storage System for Grid Support Using Commercially Available Lithium- Ion Technology  

Science Conference Proceedings (OSTI)

The impressive global scale of lithium-ion battery production and investment in R&D is driving cost reduction and performance improvements that could make lithium-ion technology desirable for certain grid-scale storage applications in the near term. Although many stationary grid market applications can be configured using lithium-ion batteries, Electric Power Research Institute (EPRI) research identified a 1-MW, 2-hour containerized substation grid support storage system as a key electric utility product...

2012-07-31T23:59:59.000Z

295

Single-Crystal Intermetallic M-Sn (M ) Fe, Cu, Co, Ni) Nanospheres as Negative Electrodes for Lithium-Ion Batteries  

DOE Green Energy (OSTI)

FeSn{sub 2}, Cu{sub 6}Sn{sub 5}, CoSn{sub 3}, and Ni{sub 3}Sn{sub 4} single-crystalline nanospheres with a characteristic uniform particle size of 40 nm have been synthesized via a modified polyol process, aiming at determining and understanding their intrinsic cycling performance as negative electrode materials for lithium-ion batteries. We find that, in this morphologically controlled condition, the reversible capacities follow FeSn{sub 2} > Cu{sub 6}Sn{sub 5} {approx} CoSn{sub 3} > Ni{sub 3}Sn{sub 4}, which is not directly decided by their theoretical capacities or lithium-driven volume changes. FeSn{sub 2} exhibits the best electrochemical activity among these intermetallic nanospheres and an effective solid electrolyte interface, which explains its superior cycling performance. The small particle dimension also improves cycling stability and Li{sup +} diffusion.

Wang, X.; Han, W; Chen, J; Graetz, J

2010-01-01T23:59:59.000Z

296

A Facile synthesis of flower-like Co{sub 3}O{sub 4} porous spheres for the lithium-ion battery electrode  

Science Conference Proceedings (OSTI)

The porous hierarchical spherical Co{sub 3}O{sub 4} assembled by nanosheets have been successfully fabricated. The porosity and the particle size of the product can be controlled by simply altering calcination temperature. SEM, TEM and SAED were performed to confirm that mesoporous Co{sub 3}O{sub 4} nanostructures are built-up by numerous nanoparticles with random attachment. The BET specific surface area and pore size of the product calcined at 280 deg. C are 72.5 m{sup 2} g{sup -1} and 4.6 nm, respectively. Our experiments further demonstrated that electrochemical performances of the synthesized products working as an anode material of lithium-ion battery are strongly dependent on the porosity. - Graphical abstract: The flower-like Co{sub 3}O{sub 4} porous spheres with hierarchical structure have been successfully prepared via a simple calcination process using cobalt hydroxide as precursor.

Zheng Jun; Liu Jing; Lv Dongping; Kuang Qin [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Jiang Zhiyuan, E-mail: zyjiang@xmu.edu.c [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Xie Zhaoxiong; Huang Rongbin; Zheng Lansun [State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

2010-03-15T23:59:59.000Z

297

Solid lithium ion conducting electrolytes and methods of preparation  

SciTech Connect

A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

Narula, Chaitanya K; Daniel, Claus

2013-05-28T23:59:59.000Z

298

B#: A battery emulator and power-profiling instrument  

E-Print Network (OSTI)

simulator for lithium-ion battery cells, to model the emu-Current (A) er than the lithium-ion batterys cutoff voltageresponse time of lithium-ion battery to changes in current

Park, C S; Liu, J F; Chou, P H

2005-01-01T23:59:59.000Z

299

The development of low cost LiFePO4-based high power lithium-ion batteries  

DOE Green Energy (OSTI)

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

300

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

The LiNiOiCarbon Lithium-Ion Battery," S. S. lonics, 69,238-the mid-1980's, the lithium-ion battery based on a carboncommercialization of the lithium-ion battery, several other

Doyle, C.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes  

SciTech Connect

Three-dimensional (3D) dendrite-shaped CuO hollow micro/nanostructures have been prepared via a Kirkendall-effect-based approach for the first time and have been demonstrated as a high-performance anode material for lithium-ion batteries. The as-prepared hollow structures were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electrochemical properties. A CuO hollow structure composed of nanocubes outside and a dense film inside was selected as a typical example of the optimized design; it exhibited significantly improved cyclability at a current rate of 0.5 C, with the average Coulombic efficiency of {approx}97.0% and 57.9% retention of the discharge capacity of the second cycle after 50 cycles. The correlation between the structure features of the hollow CuO and their electrochemical behavior was discussed in detail. Smaller size of primary structure and larger internal space of electrode materials are crucial to better electrochemical performance. This work represents that Kirkendall effect is a promising method to fabricate excellent hollow electrode materials for Li-ion batteries. - Graphical abstract: SEM images of 3D dendrite-shaped CuO hollow micro/nanostructures prepared via a Kirkendall-effect-based approach have been shown. The as-prepared CuO electrode exhibited significantly improved cyclability for Li-ion batteries.

Hu Yingying, E-mail: yyhu@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Huang Xintang, E-mail: xthuang@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Wang Kai; Liu Jinping; Jiang Jian; Ding Ruimin; Ji Xiaoxu; Li Xin [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China)

2010-03-15T23:59:59.000Z

302

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

in the energy equation, battery capacity, is defined as theperformance and capacity fading of a lithium-ion batteryof large-capacity lithium- ion battery systems. With new

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

303

A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery  

Science Conference Proceedings (OSTI)

The fracture of Si particles due to internal stresses formed during the intercalation of lithium ions was described by means of thermal analogy model and brittle fracture damage parameter. The stresses were calculated following the diffusion equation and equations of elasticity with appropriate volumetric expansion term. The damage parameter takes into account triaxiality of the stress state and change in elasticity upon tension and compression, and represents the probability of fracture under given stress state, - an approach suitable for brittle materials. The results were compared with the acoustic emission data from the experiments on electrochemical cycling of Li ion half-cells with silicon electrodes. A good correlation between experiment and prediction was observed.

Daniel, Claus [ORNL; Kalnaus, Sergiy [ORNL; Rhodes, Kevin [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

304

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network (OSTI)

9 Figure 1.9. Schematic of a traditional lithium-ion batterythan traditional lithium-ion battery batteries. OrganicBattery Design A lithium-ion battery consists of a negative

Patel, Shrayesh

2013-01-01T23:59:59.000Z

305

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology andAltairnano EIG Lithium-ion battery modules available for

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

306

Design and Study on the State of Charge Estimation for Lithium-ion Battery Pack in Electric Vehicle  

Science Conference Proceedings (OSTI)

State of charge (SOC) estimation is an increasingly important issue in battery management system (BMS) and has become a core factor to promote the development of electric vehicle (EV). In addition to offering the real time display of battery parameters ... Keywords: combination algorithm, state of charge (SOC), open circuit voltage (OCV), extended Kalman filtering (EKF), ampere hour (Ah), battery management system (BMS), electric vehicle (EV)

Jie Xu; Mingyu Gao; Zhiwei He; Jianbin Yao; Hongfeng Xu

2009-11-01T23:59:59.000Z

307

Solid-state Inorganic Lithium-Ion Conductors  

A research team at the University of Colorado Boulder led by Se-Hee Lee has developed an advanced single step, high energy ball milling system for preparation of electrodes for use in a solid state lithium-ion battery.

308

Performance and Characterization of Lithium-Ion Type Polymer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance and Characterization of Lithium-Ion Type Polymer Batteries Speaker(s): Myung D. Cho Date: January 18, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact:...

309

Ion-exchanged MnO2 nanoparticles as cathodes of lithium ion ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ion-exchanged MnO2 nanoparticles as cathodes of lithium ion batteries at elevated temperatures. Author(s), Dawei Liu, Jasper Wright, Wei...

310

Aligned TiO2 Nanotubes as Long Durability Anodes for Lithium-Ion ...  

Science Conference Proceedings (OSTI)

Aligned TiO2 Nanotubes as Long Durability Anodes for Lithium-Ion Batteries Aniline Coated Carbon Cryogel with Improved Cyclic Stability for Supercapacitor ...

311

Lithium Ion Technology Status and Directions: 2013 Update  

Science Conference Proceedings (OSTI)

This report describes the state of the art in lithium ion battery technology with respect to the electric transportation and utility energy storage fields. Although lithium ion batteries have become widely accepted as the dominant energy storage technology to be used in electric vehicles, at least for the next decade, their improvement in terms of performance and cost will be an important factor in the adoption of electric vehicles.This report provides a brief review of the technical and ...

2013-12-27T23:59:59.000Z

312

Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries  

SciTech Connect

The commercial Li4Ti5O12 (LTO) is successfully modified by AlF3 via a low temperature process. After being calcined at 400oC for 5 hours, AlF3 reacts with LTO to form a composite material which mainly consists of Al3+ and F- co-doped LTO with small amounts of anatase TiO2 and Li3AlF6. Al3+ and F- co-doped LTO demonstrates largely improved rate capability comparing to the pristine LTO. Since the amount of the byproduct TiO2 is relatively small, the modified LTO electrodes retain the main voltage characteristics of LTO with a minor feature similar to those of anatase TiO2. The doped LTO anodes deliver higher discharge capacity and significantly improved high-rate performance when compared to the pristine LTO anode. They also demonstrate excellent long-term cycling stability at elevated temperatures. Therefore, Al3+ and F- co-doped LTO synthesized at low temperature is an excellent anode for stable and ultra-high power lithium-ion batteries.

Xu, Wu; Chen, Xilin; Wang, Wei; Choi, Daiwon; Ding, Fei; Zheng, Jianming; Nie, Zimin; Choi, Young Joon; Zhang, Jiguang; Yang, Zhenguo

2013-08-15T23:59:59.000Z

313

Recent advances in lithium ion technology  

Science Conference Proceedings (OSTI)

Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

Levy, S.C.

1995-01-01T23:59:59.000Z

314

Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

Lee, K. J.; Smith K.; Kim, G. H.

2011-04-01T23:59:59.000Z

315

Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithium ion battery  

Science Conference Proceedings (OSTI)

Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method followed by a carbonization process. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were produced by a wet-type beadsmill method. To obtain Si-CNT nanocomposites with spherical morphologies, a silica precursor (tetraethylorthosilicate, TEOS) and polymer (PMMA) mixture was employed as a structure-directing medium. Thus the Si-CNT/Silica-Polymer microspheres were prepared by an acid catalyzed sol-gel method. Then a carbon precursor such as polypyrrole (PPy) was incorporated onto the surfaces of pre-existing Si-CNT/silica-polymer to generate Si-CNT/Silica-Polymer-PPy microspheres. Subsequent thermal treatment of the precursor followed by wet etching of silica produced Si-CNT-C microcapsules. The intermediate silica/polymer must disappear during the carbonization and etching process resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT-C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT-C microcapsules were measured with a lithium battery half cell tests. - Graphical Abstract: Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT-C) have been fabricated by a surfactant mediated sol-gel method. Highlights: > Polymeric microcapsules containing Si-CNT transformed to carbon microcapsules. > Accommodate volume changes of Si NPs during Li ion charge/discharge. > Sizes of microcapsules were controlled by experimental parameters. > Lithium storage capacity and coulombic efficiency were demonstrated. > Use of sol-gel procedure as intermediate reaction.

Bae, Joonwon, E-mail: joonwonbae@gmail.com [Samsung Advanced Institute of Technology, Yong-In City 446-712, Gyeong-Gi Province (Korea, Republic of)

2011-07-15T23:59:59.000Z

316

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy densitypresent study. The lithium-ion battery technology used for

Burke, Andrew

2009-01-01T23:59:59.000Z

317

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

13]); (d) 48 lithium ion battery modules in Nissan Leafhighly toxic. In 1991, lithium-ion battery was introduced byThree main types of lithium ion battery have been developed

Wang, Zuoqian

2013-01-01T23:59:59.000Z

318

Electrochemical and microstructural studies of AlPO?-nanoparticle coated LiCoO? for lithium-ion batteries  

E-Print Network (OSTI)

AlPO?-nanoparticle coated LiCoO? is studied as a positive electrode for lithium rechargeable batteries for a high-voltage charge limit of 4.7V. To understand the role of the coating in transport phenomena and in deintercalation ...

Appapillai, Anjuli T. (Anjuli Tara)

2006-01-01T23:59:59.000Z

319

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2008) Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

320

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2008) Emerging lithium-ion battery technologies forbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel-metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2008. Emerging lithium-ion battery technologies forbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (battery chemistries, including nickel- metal hydride (NiMH) and several lithium-ion (

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

322

In situ XAFS of the Li{sub x}Ni{sub 0.8}Co{sub 0.2} cathode for lithium-ion batteries  

DOE Green Energy (OSTI)

The layered LiNi{sub 0.8}Co{sub 0.2}O{sub 2} system is being considered as a new cathode material for the lithium-ion battery. Compared with LiCoO{sub 2}, the standard cathode formulation, it possesses improved electrochemical performance at a projected lower cost. In situ x-ray absorption fine-structure spectroscopy (XAFS) measurements were conducted on a cell cycled at a moderate rate and normal Li-ion operating voltages (3.0--4.1 V). The XAFS data collected at the Ni and Co edges approximately every 30 min. revealed details about the response of the cathode to Li insertion and extraction. These measurements on the Li{sub x}Ni{sub 0.8}Co{sub 0.2}O{sub 2} cathode (0.29 < x < 0.78) demonstrated the excellent reversibility of the cathode's short-range structure. However, the Co and Ni atoms behaved differently in response to Li insertion. This study corroborates previous work that explains the XAFS of the Ni atoms in terms of a Ni{sup 3+} Jahn-Teller ion. An analysis of the metal-metal distances suggests, contrary to a qualitative analysis of the x-ray absorption near-edge structure (XANES), that the Co{sup 3+} is oxidized to the maximum extent possible (within the Li content range of this experiment) at x = 0.47 {+-} 0.04, and further oxidation occurs at the Ni site.

Kropf, J.; Johnson, C. S.

2000-01-17T23:59:59.000Z

323

Synthesis of nanospherical Fe{sub 3}BO{sub 6} anode material for lithium-ion battery by the rheological phase reaction method  

Science Conference Proceedings (OSTI)

This paper developed a novel method, the rheological phase reaction method, to synthesize nanospherical Fe{sub 3}BO{sub 6}. The sizes and morphologies of products vary with the calcination temperatures. Spherical particles with a uniform size about 40 nm in a monodisperse state were obtained at 800 deg. C, while the spherical particles with a larger size of 100-500 nm were obtained at 900 deg. C. The electrochemical properties of these Fe{sub 3}BO{sub 6} nanospheres were investigated. Sample synthesized at 800 deg. C delivers a high reversible capacity above 500 mAh g{sup -1}. Sample synthesized at 900 deg. C possesses relatively good cycleability with a capacity retaining of 376 mAh g{sup -1} after 10 cycles. The measurement of electrochemical impedance spectra for the first time indicated that smaller Fe{sub 3}BO{sub 6} nanoparticles intend to give higher impedance of solid-electrolyte interface layer and lower charge-transfer impedance after the first discharge. Additionally, it can be speculated that the increase of resistance charge-transfer is the possible reason for the capacity fading during cycling. - Graphical abstract: Nanospherical Fe{sub 3}BO{sub 6} anode material for lithium-ion battery has been synthesized by the rheological phase reaction method. The electrochemical properties of these Fe{sub 3}BO{sub 6} nanospheres show that sample synthesized at 800 deg. C delivers a high reversible capacity above 500 mAh g{sup -1}, and sample synthesized at 900 deg. C possesses relatively good cycleability with a capacity retaining of 376 mAh g{sup -1} after 10 cycles.

Shi Xixi; Chang Caixian; Xiang Jiangfeng; Xiao Yong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Yuan Liangjie [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)], E-mail: ljyuan@whu.edu.cn; Sun Jutang [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

2008-09-15T23:59:59.000Z

324

Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4  

E-Print Network (OSTI)

capacity fading of a lithium-ion battery cycled at elevatedthe lifetime of the lithium-ion battery by arresting the Mna challenge in the lithium-ion battery field to identifying

Stroeve, Pieter; Vidu, Ruxandra

2004-01-01T23:59:59.000Z

325

Novel Cell Design for Combined In Situ Acoustic Emission and X-ray Diffraction of Cycling Lithium Ion Batteries  

SciTech Connect

An in situ acoustic emission (AE) and X-ray diffraction (XRD) cell for use in the study of battery electrode materials has been devised and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk which acts as both an X-ray window and a current collector. In this manner the use of beryllium and its associated cost and hazard is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles which were previously studied by the AE technique were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

Rhodes, Kevin J [ORNL; Kirkham, Melanie J [ORNL; Meisner, Roberta Ann [ORNL; Parish, Chad M [ORNL; Dudney, Nancy J [ORNL; Daniel, Claus [ORNL

2011-01-01T23:59:59.000Z

326

Electrochemical Stability of Carbon Fibers Compared to Metal Foils as Current Collectors for Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

The electrochemical behaviors of highly conductive, fully-graphitic, semi-graphitic and non-graphitic carbon fibers were studied as the cathode current collectors of lithium batteries in standard electrolyte (alkyl carbonate/LiPF6) solutions and compared to bare aluminum (Al). All of these current collectors demonstrate a stable electrochemical behavior within the potential range of 2.5 to 5 V, due to passivation by surface films. Carbon fibers have comparable electrochemical stability of Al and may be used in place Al foil. While the carbon fibers do not contribute any irreversible or extra capacity when they are cycled below 4.5 V, for fully-graphitic and semi-graphitic fibers PF6 intercalation and deintercalation into the carbon fiber may occur when they are cycled at high potentials >4.5 V.

Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Nanda, Jagjit [ORNL

2012-01-01T23:59:59.000Z

327

Review of lithium-ion technology  

DOE Green Energy (OSTI)

The first practical use of graphite intercalation compounds (GIC) as battery anodes was reported in a 1981 patent by Basu in which a molten salt cell was described having a negative electrode that consisted of lithium intercalated in graphite. A second patent by Basu, issued in 1983, described an ambient temperature rechargeable system which also utilized lithium intercalated in graphite as the anode. Work in this area progressed at a low level, however, until interest was sparked in 1990 when Sony Corporation announced a new ``lithium-ion`` rechargeable cell containing a lithium ion intercalating carbon anode. These cells have the advantages of metallic lithium systems; i.e., high energy density, high voltage, and light weight, without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium. Materials other than carbon have been studied as intercalation anodes. Examples are Fe{sub 2}O{sub 3}, WO{sub 2} and TiS{sub 2}. Although these alternate anode materials are of interest academically and for specialty applications, they do not hold much promise for widespread general use due to their increased weight and lower cell voltage. Studies of cathode materials for lithium-ion systems have centered on the transition metal chalcogenides. A number of these materials are capable of reversibly intercalating lithium ions at a useful potential versus lithium. Both organic liquids and polymers are candidate electrolytes for this technology.

Levy, S.C.; Cieslak, W.R.

1993-12-31T23:59:59.000Z

328

A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure  

DOE Green Energy (OSTI)

Li-ion batteries have empowered consumer electronics and are now seen as the best choice to propel forward the development of eco-friendly (hybrid) electric vehicles. To enhance the energy density, an intensive search has been made for new polyanionic compounds that have a higher potential for the Fe{sup 2+}/Fe{sup 3+} redox couple. Herein we push this potential to 3.90 V in a new polyanionic material that crystallizes in the triplite structure by substituting as little as 5 atomic per cent of Mn for Fe in Li(Fe{sub 1-{delta}}Mn{delta})SO{sub 4}F. Not only is this the highest voltage reported so far for the Fe{sup 2+}/Fe{sup 3+} redox couple, exceeding that of LiFePO{sub 4} by 450 mV, but this new triplite phase is capable of reversibly releasing and reinserting 0.7-0.8 Li ions with a volume change of 0.6% (compared with 7 and 10% for LiFePO{sub 4} and LiFeSO{sub 4}F respectively), to give a capacity of {approx}125 mA h g{sup -1}.

Barpanda, P.; Ati, M.; Melot, B.C.; Rousse, G.; Chotard, J-N.; Doublet, M-L.; Sougrati, M.T.; Corr, S.A.; Jumas, J-C.; Tarascon, J-M. (CNRS-UMR); (U. Kent)

2011-11-17T23:59:59.000Z

329

Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells.  

SciTech Connect

Li-ion cells are being developed for high-power applications in hybrid electric vehicles currently being designed for the FreedomCAR (Freedom Cooperative Automotive Research) program. These cells offer superior performance in terms of power and energy density over current cell chemistries. Cells using this chemistry are the basis of battery systems for both gasoline and fuel cell based hybrids. However, the safety of these cells needs to be understood and improved for eventual widespread commercial application in hybrid electric vehicles. The thermal behavior of commercial and prototype cells has been measured under varying conditions of cell composition, age and state-of-charge (SOC). The thermal runaway behavior of full cells has been measured along with the thermal properties of the cell components. We have also measured gas generation and gas composition over the temperature range corresponding to the thermal runaway regime. These studies have allowed characterization of cell thermal abuse tolerance and an understanding of the mechanisms that result in cell thermal runaway.

Crafts, Chris C.; Doughty, Daniel Harvey; McBreen, James. (Bookhaven National Lab, Upton, NY); Roth, Emanuel Peter

2004-03-01T23:59:59.000Z

330

LiFe(x)Mn(1-x)PO(4): A Cathode for Lithium-ion Batteries  

DOE Green Energy (OSTI)

The high redox potential of LiMnPO{sub 4}, {approx}4.0 vs. (Li{sup +}/Li), and its high theoretical capacity of 170 mAh g{sup -1} makes it a promising candidate to replace LiCoO{sub 2} as the cathode in Li-ion batteries. However, it has attracted little attention because of its severe kinetic problems during cycling. Introducing iron into crystalline LiMnPO{sub 4} generates a solid solution of LiFe{sub x}Mn{sub 1-x}PO{sub 4} and increases kinetics; hence, there is much interest in determining the Fe-to-Mn ratio that will optimize electrochemical performance. To this end, we synthesized a series of nanoporous LiFe{sub x}Mn{sub 1-x}PO{sub 4} compounds (with x = 0, 0.05, 0.1, 0.15, and 0.2), using an inexpensive solid-state reaction. The electrodes were characterized using X-ray diffraction and energy-dispersive spectroscopy to examine their crystal structure and elemental distribution. Scanning-, tunneling-, and transmission-electron microscopy (viz., SEM, STEM, and TEM) were employed to characterize the micromorphology of these materials; the carbon content was analyzed by thermogravimetric analyses (TGAs). We demonstrate that the electrochemical performance of LiFe{sub x}Mn{sub 1-x}PO{sub 4} rises continuously with increasing iron content. In situ synchrotron studies during cycling revealed a reversible structural change when lithium is inserted and extracted from the crystal structure. Further, introducing 20% iron (e.g., LiFe{sub 0.2}Mn{sub 0.8}PO{sub 4}) resulted in a promising capacity (138 mAh g{sup -1} at C/10), comparable to that previously reported for nano-LiMnPO{sub 4}.

J Hong; F Wang; X Wang; J Graetz

2011-12-31T23:59:59.000Z

331

Facile synthesis and electrochemical characterization of Sn{sub 4}Ni{sub 3}/C nanocomposites as anode materials for lithium ion batteries  

SciTech Connect

Sn{sub 4}Ni{sub 3}/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn{sub 4}Ni{sub 3}/C powders deliver an initial charge capacity of 525.2 mA h g{sup -1}, 400 mA h g{sup -1} over 10 cycles at 36 mA g{sup -1}, >300 mA h g{sup -1} after 40 cycles at 72 mA g{sup -1} and maintain 240 mA h g{sup -1} for 40 cycles at 150 mA g{sup -1}. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment. - Graphical abstract: TEM image of the annealed Sn{sub 4}Ni{sub 3}/C nanocomposites reveals that the crystallized Sn{sub 4}Ni{sub 3} nanoparticles are dispersed in the carbon layer. The synergetic effect of ductile Ni and carbon layer is beneficial to buffer the volume change of Sn during discharge/charge process, thus improving the electrochemical performance when used as anode materials for lithium ion batteries. Highlights: Black-Right-Pointing-Pointer Sn{sub 4}Ni{sub 3} nanoparticles well dispersed in carbon matrix were successfully fabricated. Black-Right-Pointing-Pointer Stable cycling property was achieved due to the synergetic effect of Ni and carbon. Black-Right-Pointing-Pointer The cycling process did not change the structure and crystallinity of the materials.

Ma, Ruguang [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Lu, Zhouguang, E-mail: zglucsu@gmail.com [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China) [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Yang, Shiliu; Xi, Liujiang; Wang, Chundong; Wang, H.E.; Chung, C.Y. [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

2012-12-15T23:59:59.000Z

332

Lithium-ion Energy Storage Market Opportunities  

Science Conference Proceedings (OSTI)

Lithium-ion (Li-ion) batteries have garnered major investment in R&D and manufacturing as the initial chemistry of choice for the electric transportation industry. This report presents granular cost/benefit analysis for Li-ion based energy storage systems for utility and customer-side of the meter stationary applications. Li-ion batteries have desirable performance characteristics with the potential for kW- and MW-scale systems with flexible functionality to address multiple benefit streams from a single...

2010-12-31T23:59:59.000Z

333

electrodes in lithium ion batteries  

E-Print Network (OSTI)

Nickel oxide (NiO) nanotubes have been produced for the first time via a template processing method. The synthesis involved a two step chemical reaction in which nickel hydroxide (Ni(OH)2) nanotubes were firstly formed within the walls of an anodic aluminium oxide (AAO) template. The template was then dissolved away using concentrated NaOH, and the freed nanotubes were converted to NiO by heat treatment in air at 350 ? C. Individual nanotubes measured 60 ?m in length with a 200 nm outer diameter and a wall thickness of 2030 nm. The NiO nanotube powder was used in Li-ion cells for assessment of the lithium storage ability. Preliminary testing indicates that the cells demonstrate controlled and sustainable lithium diffusion after the formation of an SEI. Reversible capacities in the 300 mAh g ?1 range were typical.

S. A. Needham; G. X. Wang; H. K. Liu

2006-01-01T23:59:59.000Z

334

Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4  

E-Print Network (OSTI)

lithium-ion battery by arresting the Mn + dissolution, thereby increasing the battery stability. Key Words: Lithium Battery, Cathode,

Stroeve, Pieter; Vidu, Ruxandra

2004-01-01T23:59:59.000Z

335

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

Rechargeable, Lithium-ion Molten Salt Battery for Highare room- temperature molten salts, which are typically

Wang, Zuoqian

2013-01-01T23:59:59.000Z

336

Thin film method of conducting lithium-ions  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

1998-11-10T23:59:59.000Z

337

Thin film method of conducting lithium-ions  

DOE Patents (OSTI)

The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

Zhang, J.G.; Benson, D.K.; Tracy, C.E.

1998-11-10T23:59:59.000Z

338

Novel carbonaceous materials used as anodes in lithium ion cells  

DOE Green Energy (OSTI)

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

339

A New Family of Two Dimensional Materials for Use in Lithium Ion ...  

Science Conference Proceedings (OSTI)

More recently, we reported on the use of Ti2C as an anode material in lithium-ion batteries (LIBs) that can be cycled at high rates. Herein, we report for first time...

340

Multi-Dimensional Electrochemical-Thermal Coupled Model of Large Format Cylindrical Lithium Ion Cells (Presentation)  

DOE Green Energy (OSTI)

Presentation on 3-D modeling of lithium-ion cells used in plug-in hyybrid electric vehicle batteries. 3-D models provide better understanding of cell design, operation, and management.

Kim, G.-H.; Smith, K.

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Overview of the Batteries for Advanced Transportation  

E-Print Network (OSTI)

cobaltate batteries have been in commercial use since 1991. A new lithium-ion battery with different cathodeMn2O4 cathode in lithium ion batteries by using surface modification. Since one of the main reasons cathode material for rechargeable lithium ion batteries because of its high voltage, low cost, and safety

Knowles, David William

342

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

343

Toward a Na-Ion Battery  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

344

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

technology is a lithium-ion battery using lithium titanateof lithium-ion batteries of various chemistries Batterylithium-ion batteries were 20-22 kg and in the zinc-air battery,

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

345

Batteries for Vehicular Applications Venkat Srinivasan  

E-Print Network (OSTI)

Office of Technology Transfer Structurally Integrated Composite Cathodes for Lithium-Ion Batteries) to commercial equipment (e.g., backup-power systems and power tools), lithium-ion battery's Advanced Photon Source, researchers load a lithium-ion battery pouch into an insertion device x

Knowles, David William

346

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

347

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

348

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications .  

E-Print Network (OSTI)

??In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power (more)

Prakash, Shruti

2009-01-01T23:59:59.000Z

349

Food Battery Competition (New for 2011) Sponsored by  

E-Print Network (OSTI)

Lithium-air Battery 8 Argonne's Lithium-ion Battery Research Produces New Materials and Technology'S RESOURCESTOWORK FORYOU Lithium-ion Battery Research page 8 Minister of Science and Technology Visits Argonne page Agency, the Tesla Roadster can travel 244 miles on a single charge of its lithium- ion battery pack

Tennessee, University of

350

Lithium ion conducting electrolytes  

DOE Patents (OSTI)

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

351

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

DOE Green Energy (OSTI)

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

352

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

353

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

354

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

355

Graphene Based Anodes for Li-ion Batteries  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

356

Abstract--The State Of Charge Indicator (SOCI) for the Lithium Poly Carbon Monoflouride (Li/CFx) battery has a wide  

E-Print Network (OSTI)

datasets from the Battery Design Studio are presented for the Lithium Ion battery. The working model). Currently, the research effort is based on recorded data for the widely used Lithium Ion (Li/Ion) battery Networks. A. Li/Ion Batteries Lithium Ion batteries are one of the most common batteries in portable

Manic, Milos

357

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

cost. Third, lithium-ion (Li-Ion) battery designs are betterclass of advanced battery using lithium-ion chemistry. LMS Li-Ion battery technologies as follows: LCO: Lithium cobalt

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

358

Lithium ion rechargeable systems studies  

Science Conference Proceedings (OSTI)

Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

1995-02-01T23:59:59.000Z

359

Modeling capacity fade in lithium-ion cells.  

SciTech Connect

Battery life is an important, yet technically challenging, issue for battery development and application. Adequately estimating battery life requires a significant amount of testing and modeling effort to validate the results. Integrated battery testing and modeling is quite feasible today to simulate battery performance, and therefore applicable to predict its life. A relatively simple equivalent-circuit model (ECM) is used in this work to show that such an integrated approach can actually lead to a high-fidelity simulation of a lithium-ion cell's performance and life. The methodology to model the cell's capacity fade during thermal aging is described to illustrate its applicability to battery calendar life prediction.

Liaw, Bor Yann (University of Hawaii, Honolulu, HI); Doughty, Daniel Harvey; Nagasubramanian, Ganesan; Jungst, Rudolph George

2003-09-01T23:59:59.000Z

360

Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes  

E-Print Network (OSTI)

-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy evidence of facile transport of lithium ions, which are both desirable properties for enhanced battery

Li, Teng

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

High performance batteries with carbon nanomaterials and ionic liquids  

SciTech Connect

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

362

Better Batteries with a Conducting Polymer Binder  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries with a Conducting Polymer Binder Conductive polymer binder for Lithium ion battery June 2013 Berkeley Lab scientists have invented a new material for use in...

363

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for...

364

Nanofilm Coatings Improve Battery Performance - Energy Innovation ...  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The lithium-ion battery is an ...

365

The Seventh Cell of a Six-Cell Battery Delyan Raychev, Youhuizi Li and Weisong Shi  

E-Print Network (OSTI)

MH and Lithium-Ion batteries are currently the most widely used batteries for a range of applications, from-Air, NiMH, Lithium-Ion Liquid, Lithium-Ion Polymer, and Lithium-Alloy Polymer. The volumetric energy density of these batteries range from 100 Wh/l for NiCd batteries to 350 Wh/l for Lithium Alloy Polymer

Shi, Weisong

366

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Title Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Publication Type Journal Article Year of Publication 2012 Authors Ridgway, Paul L., Honghe Zheng, A. F. Bello, Xiangyun Song, Shidi Xun, Jin Chong, and Vincent S. Battaglia Journal Journal of The Electrochemical Society Volume 159 Issue 5 Pagination A520 Date Published 2012 ISSN 00134651 Abstract Battery grade graphite products from major suppliers to the battery industry were evaluated in 2325 coin cells with lithium counter electrodes. First and ongoing cycle efficiency, total and reversible capacity, cycle life and discharge rate performance were measured to compare these anode materials. We then ranked the graphites using a formula which incorporates these performance measures to estimate the cost of the overall system, relative to the cost of a system using MCMB. This analysis indicates that replacing MCMB with CCP-G8 (Conoco Phillips) would add little to no cost, whereas each of the other graphites would lead to a more costly system. Therefore we chose CCP-G8 as the new baseline graphite for the BATT program.

367

A new phase in Ni-Sn-P system and its property as an anode material for lithium-ion batteries  

SciTech Connect

A new metastable phase was synthesized by ball milling. The new phase is tetragonal with lattice parameters a = 3.671 A and c = 4.033 A. It was found that the new phase transformed into equilibrium orthorhombic Ni{sub 2}SnP phase at 973 K. The initial capacity of the lithium battery with the tetragonal Ni{sub 2}SnP phase as anode material reaches 500.4 mAh/g, but decreases to 181.8 mAh/g after 25 cycles. However, its initial irreversible capacity is 102 mAh/g, which makes it a promising anode material.

Xia, Z.P.; Lin, Y. [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, Z.Q. [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: zongquanli@zju.edu.cn

2008-09-15T23:59:59.000Z

368

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

369

Final Report - Recovery Act - Development and application of processing and process control for nano-composite materials for lithium ion batteries  

SciTech Connect

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 System s nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, Claus [ORNL; Armstrong, Beth L [ORNL; Maxey, L Curt [ORNL; Sabau, Adrian S [ORNL; Wang, Hsin [ORNL; Hagans, Patrick [A123 Systems, Inc.; Babinec, Sue [A123 Systems, Inc.

2013-08-01T23:59:59.000Z

370

CRADA Final Report for NFE-08-01826: Development and application of processing and processcontrol for nano-composite materials for lithium ion batteries  

SciTech Connect

Oak Ridge National Laboratory and A123 Systems, Inc. collaborated on this project to develop a better understanding, quality control procedures, and safety testing for A123 Systems nanocomposite separator (NCS) technology which is a cell based patented technology and separator. NCS demonstrated excellent performance. x3450 prismatic cells were shown to survive >8000 cycles (1C/2C rate) at room temperature with greater than 80% capacity retention with only NCS present as an alternative to conventional polyolefin. However, for a successful commercialization, the coating conditions required to provide consistent and reliable product had not been optimized and QC techniques for being able to remove defective material before incorporation into a cell had not been developed. The work outlined in this report addresses these latter two points. First, experiments were conducted to understand temperature profiles during the different drying stages of the NCS coating when applied to both anode and cathode. One of the more interesting discoveries of this study was the observation of the large temperature decrease experienced by the wet coating between the end of the infrared (IR) drying stage and the beginning of the exposure to the convection drying oven. This is not a desirable situation as the temperature gradient could have a deleterious effect on coating quality. Based on this and other experimental data a radiative transfer model was developed for IR heating that also included a mass transfer module for drying. This will prove invaluable for battery coating optimization especially where IR drying is being employed. A stress model was also developed that predicts that under certain drying conditions tensile stresses are formed in the coating which could lead to cracking that is sometimes observed after drying is complete. Prediction of under what conditions these stresses form is vital to improving coating quality. In addition to understanding the drying process other parameters such as slurry quality and equipment optimization were examined. Removal of particles and gels by filtering, control of viscosity by %solids and mixing adjustments, removal of trapped gas in the slurry and modification of coater speed and slot die gap were all found to be important for producing uniform and flaw-free coatings. Second, an in-line Hi-Pot testing method has been developed specifically for NCS that will enable detection of coating flaws that could lead to soft or hard electrical shorts within the cell. In this way flawed material can be rejected before incorporation into the cell thus greatly reducing the amount of scrap that is generated. Improved battery safety is an extremely important benefit of NCS. Evaluation of battery safety is usually accomplished by conducting a variety of tests including nail penetration, hot box, over charge, etc. For these tests entire batteries must be built but the resultant temperature and voltage responses reveal little about the breakdown mechanism. In this report is described a pinch test which is used to evaluate NCS quality at various stages including coated anode and cathode as well as assembled cell. Coupled with post-microscopic examination of the damaged pinch point test data can assist in the coating optimization from an improved end-use standpoint. As a result of this work two invention disclosures, one for optimizing drying methodology and the other for an in-line system for flaw detection, have been filed. In addition, 2 papers are being written for submission to peer-reviewed journals.

Daniel, C.; Armstrong, B.; Maxey, C.; Sabau, A.; Wang, H.; Hagans, P. (A123 Systems, Inc.); and Babinec, S. (A123 Systems, Inc.)

2012-12-15T23:59:59.000Z

371

Why are there no volume Li-ion battery manufacturers in the ...  

Science Conference Proceedings (OSTI)

... There No Volume Lithium-Ion Battery Manufacturers in ... R&D; US Manufacturing of Li-ion Batteries. ... The Innovation Process for Battery Technologies. ...

2008-07-28T23:59:59.000Z

372

Thin Film Patterned Sandwich Anode Structures for Li-Ion batteries  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

373

Electrochimica Acta 51 (2006) 20122022 A generalized cycle life model of rechargeable Li-ion batteries  

E-Print Network (OSTI)

· Gas evolution Cathode Aging Image: Vetter et al., "Ageing mechanisms in lithium-ion batteries," J Battery Robust Design - 13 Cathode Aging Source: Vetter et al., "Ageing mechanisms in lithium-ion., "Ageing mechanisms in lithium- ion batteries," J. Power Sources, 147 (2005) 269-281 ASTR 2010 Oct 6 ­ 8

Popov, Branko N.

374

Polymeric Nanoscale All-Solid State Battery Steven E. Bullock1  

E-Print Network (OSTI)

. #12;Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additivesThe Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel with charging and discharging a lithium ion battery · Research available devices · Test device to verify

Kofinas, Peter

375

Characterization of Battery Cycling by In-Situ Microscopy  

Science Conference Proceedings (OSTI)

Presentation Title, Characterization of Battery Cycling by In-Situ Microscopy ... of lithium ion batteries provides an important route to reducing the lifetime costs of...

376

NIST: Neutron Imaging of Lithium and Alkaline Batteries  

Science Conference Proceedings (OSTI)

... the figure are tomographic slices through two different AA batteries after the ... imaging has been used to study a wound prismatic lithium-ion battery. ...

2013-07-23T23:59:59.000Z

377

Rechargeable lithium-ion cell  

DOE Patents (OSTI)

The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

Bechtold, Dieter (Bad Vilbel, DE); Bartke, Dietrich (Kelkheim, DE); Kramer, Peter (Konigstein, DE); Kretzschmar, Reiner (Kelkheim, DE); Vollbert, Jurgen (Hattersheim, DE)

1999-01-01T23:59:59.000Z

378

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

379

Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)  

SciTech Connect

This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

2013-05-01T23:59:59.000Z

380

It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers  

E-Print Network (OSTI)

can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so in lithium-ion batteries, which are the current favorite for deployment in electric vehicles. The Planar-state lithium batteries at half the cost and triple the performance of today's lithium-ion batteries. To further

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Storage & Battery | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

in Electrochemical Devices Composite Electrodes for Rechargeable Lithium-Ion Batteries Device and Method for Fluidizing and Coating of Ultrafine Particles Economical...

382

Surface Modification Agents for Lithium Batteries  

Increased safety and life of lithium-ion batteries, ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

383

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

384

Available Technologies: Battery Electrode Materials Based on ...  

Lower cost; Durable; Compatible with lithium ... they could also be developed as lower cost electrodes for the high capacity lithium-ion batteries ...

385

AvAilAble for licensing Additives could help make batteries safer, more economical.  

E-Print Network (OSTI)

the lithium ions to migrate out of the cathode and through the electrolyte,"plating out"onto the substrate can achieve triple the performance of today's lithium-ion batteries at half the cost, and if so in lithium-ion batteries, which are the current favorite for deployment in electric vehicles. The Planar

Kemner, Ken

386

Nanofilm Coatings Improve Battery Performance  

demand for electric vehicles within the next five years. The lithium-ion battery is an attractive candidate for use in such vehicles because of its light weight and high energy density. At present, however, lithium-ion batteries are not ...

387

Materials as a Key to Electro-Mobility with Rechargeable LI Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

by development and application of innovative battery components and concepts. The lithium ion battery has been introduced into the market by 19901991 and only by the mid...

388

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network (OSTI)

lithium-ion battery is shown in Figure 1.9. When discharging a battery, the positive electrode is the cathode

Patel, Shrayesh

2013-01-01T23:59:59.000Z

389

Autogenic pressure reactors provide simple, rapid means of producing battery materials  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room ...

390

TransForum v8n2 - Advanced Lithium Battery Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

lithium batteries for transportation applications, organizers from the U.S., Japan and Korea jointly initiated the conference. Among available battery technologies, lithium-ion...

391

Rechargeable Batteries: Basics, Pitfalls, and Safe Recharging Practices  

E-Print Network (OSTI)

Abstract: This overview of charging methods and current battery technologies gives you a better understanding of the batteries used in portable devices. Nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li+) battery chemistries are discussed. The article also describes a product that protects single-cell lithium-ion and lithium-polymer batteries.

unknown authors

2005-01-01T23:59:59.000Z

392

AGM Batteries Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Place United Kingdom Product Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References AGM Batteries Ltd1 LinkedIn Connections CrunchBase Profile...

393

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

394

Lithium Ion Cell Development for Photovoltaic Energy Storage Applications  

Science Conference Proceedings (OSTI)

The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component ?? the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program ?? even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials ?? specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge with this material will be to maintain proven performance when this composite is coated onto a thicker electrode; as well the high temperature storage must meet application requirements. One continuing program challenge was the lack of specific performance variables for this PV application and so the low power requirements of PHEV/EV transportation markets were again used.

Susan Babinec

2012-02-08T23:59:59.000Z

395

Low temperature hydrothermally synthesized nanocrystalline orthorhombic LiMnO2 cathode material for lithium-ion cells  

Science Conference Proceedings (OSTI)

Nanocrystalline orthorhombic LiMnO2 particles with an average particle size of about 35 nm in diameter were successfully synthesized by a hydrothermal process at 160-180 C from trimanganese tetroxide (Mn3O4) prepared ... Keywords: hydrothermal process, lithium ion battery, nanocrystalline, orthorhombic LiMnO2, solvothermal process

Mengqiang Wu; Ai Chen; Rongqing Xu; Yue Li

2003-05-01T23:59:59.000Z

396

Redox Shuttle Electrolyte Additive Could Help Make Batteries Safer ...  

Argonne National Laboratory has developed a way to make commercially viable lithium-ion (Li-ion) batteries for plug-in hybrid electric vehicles (PHEVs) and electric ...

397

Negative Electrodes Improve Safety in Lithium Cells and Batteries  

To help improve the stability and safety of lithium-ion batteries, Argonne researchers have developed a new intermetallic structure type that can be ...

398

Composite Electrodes for Rechargeable Llithium-Ion Batteries  

Superior cost and safety features over state-of-the-art LiCoO ... Composite Electrodes for Rechargeable Lithium-ion Batteries June 2012 cse-6677082 ...

399

Utilizing Nanoscale Interfacial Films to Tailor Battery and Other Ionic ...  

Science Conference Proceedings (OSTI)

Such nanoscale intergranular and surficial films can be utilized to engineer lithium-ion battery cathode and anode materials, as well as solid-state ionic...

400

Novel Electrode Material Offers Alternative for Li-ion Batteries  

Science Conference Proceedings (OSTI)

Jun 10, 2013 ... Further increasing the capacity of lithium-ion batteries could enable laptops to work longer and electric cars to drive farther, among many...

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Battery-Driven System Design: A New Frontier in Low Power Design? yKanishka Lahiri zAnand Raghunathan ySujit Dey yDebashis Panigrahi  

E-Print Network (OSTI)

" (carbon nanotubes, electrodes of lithium ion battery, intermetallic alloys) and "soft" (gaseous clusters of lithium ion battery Electronic structure of hydrogen in perovskite oxide Nagoya University, Nagoya, Japan Research associate (1997 ­ 2000) Lithium manganese/cobalt oxides as cathode materials of lithium ion

California at San Diego, University of

402

NaNi0.5Mn0.5O2 for Na-ion Batteries: Effects of Synthesis Conditions  

Science Conference Proceedings (OSTI)

Abstract Scope, Sodium ion batteries (SIBs) are a promising alternative to lithium ion ... Battery Offgas Behavior under Stress Conditions: Implications for Safety...

403

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

404

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

405

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

battery since lithium ions migrate back and forth between the anode and cathodelithium ions batteries. 54 This battery, which consists of mesocarbon microbeads (MCMB) anode and MoO y S z cathode

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

406

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

Liu, Jun

2010-01-01T23:59:59.000Z

407

Calorimetric Studies of Lithium Ion Cells and Their Constructing ...  

Science Conference Proceedings (OSTI)

Commercial Lithium-ion pouch cells, several types of 18650 cylindrical cells and coin cells were cycled at different charge and discharge rates. Heat capacities...

408

Atomic resolution of Lithium Ions in LiCoO  

SciTech Connect

LiCoO2 is the most common lithium storage material for lithium rechargeable batteries, used widely to power portable electronic devices such as laptop computers. Lithium arrangements in the CoO2 framework have a profound effect on the structural stability and electrochemical properties of LixCoO2 (0 < x < 1), however, probing lithium ions has been difficult using traditional X-ray and neutron diffraction techniques. Here we have succeeded in simultaneously resolving columns of cobalt, oxygen, and lithium atoms in layered LiCoO2 battery material using experimental focal series of LiCoO2 images obtained at sub-Angstrom resolution in a mid-voltage transmission electron microscope. Lithium atoms are the smallest and lightest metal atoms, and scatter electrons only very weakly. We believe our observations of lithium to be the first by electron microscopy, and that they show promise to direct visualization of the ordering of lithium and vacancy in LixCoO2.

Shao-Horn, Yang; Croguennec, Laurence; Delmas, Claude; Nelson, Chris; O' Keefe, Michael A.

2003-03-18T23:59:59.000Z

409

Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions  

E-Print Network (OSTI)

CA 94720 Performance of Lithium Ion Cell Anode Graphitesevaluated (in coin cells with lithium counter electrodes) asanode materials for lithium-ion cells intended for use in

Ridgway, Paul

2010-01-01T23:59:59.000Z

410

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation  

E-Print Network (OSTI)

Lithium Hexamethyldisilazide: A View of Lithium Ion Solvation through a Glass-Bottom Boat BRETT L and reactivities, we were drawn to lithium hexamethyldisilazide (LiHMDS; (Me3Si)2NLi) by its promi- nence principles of lithium ion coordination chemistry.2 Understanding how solvation influences organolithium

Collum, David B.

411

A FAILURE ACCOMMODATING BATTERY MANAGEMENT SYSTEM WITH INDIVIDUAL CELL EQUALIZERS AND STATE OF CHARGE OBSERVERS.  

E-Print Network (OSTI)

??Lithium-ion batteries are the most commonly chosen power source for many portable applications. Advantages like high energy density, high nominal voltage, less maintenance, and low (more)

Annavajjula, Vamsi Krishna

2007-01-01T23:59:59.000Z

412

Microsoft PowerPoint - NanoAnode for Li-ion Batteries SRNL-L9100...  

NLE Websites -- All DOE Office Websites (Extended Search)

Anodes for Lithium-Ion Batteries at a glance patent pending increase energy density longer cyclic life replaces graphite anodes simple and lower cost...

413

Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)  

DOE Green Energy (OSTI)

Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

Smith, K.; Kim, G. H.; Pesaran, A.

2009-06-01T23:59:59.000Z

414

TransForum v8n1 - Li-Ion Battery Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

material, a key element of the material licensed to NanoeXa. Argonne's Lithium-Ion Battery Technology Offers Reliability, Greater Safety Argonnes an internationally...

415

Advanced High Energy and High Power Battery Systems for Automotive Applications Khalil Amine  

E-Print Network (OSTI)

materials for lithium ion battery Prof. Hua Kun Liu, Dr. Zaiping Guo Mrs. Nurul Idris Nanomaterials for lithium rechargeable batteries Prof. Hua Kun Liu, Dr. Jiazhao Wang Mr. Mohammad Ismail Hydrogen storage. Rong Zeng Mr. Hao Liu Nanostructured materials for lithium ion batteries Dr. Guoxiu Wang, Prof. Chao

Levi, Anthony F. J.

416

High energy density, thin-lm, rechargeable lithium batteries for marine eld operations  

E-Print Network (OSTI)

/discharge performance of a Li-ion battery. In their model, loss of cyclable lithium ions and increase in the anode film a one-dimensional schematic of a recharge- able Li-ion battery. During discharge, lithium ions deinter in the cycle life model of rechargeable Li-ion batteries Parameter Cathode (LixCoO2) Membrane separator

Sadoway, Donald Robert

417

The search for better batteries  

Science Conference Proceedings (OSTI)

To handle small, power-hungry electronic systems, manufacturers of rechargeable batteries are exploring at least five technologies: nickel-cadmium, nickel-metal hydride, lithium-ion, lithium-solid polymer electrolyte, and zinc-air. The author describes ...

M. J. Riezenman

1995-05-01T23:59:59.000Z

418

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

419

Innovative lithium-titanium-oxide anodes improve battery safety and performance (IN-98-069)  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room for improvement. Scientists at Argonne National Laboratory are leading efforts to revolutionize battery ...

420

Rate-based degradation modeling of lithium-ion cells  

DOE Green Energy (OSTI)

Accelerated degradation testing is commonly used as the basis to characterize battery cell performance over a range of stress conditions (e.g., temperatures). Performance is measured by some response that is assumed to be related to the state of health of the cell (e.g., discharge resistance). Often, the ultimate goal of such testing is to predict cell life at some reference stress condition, where cell life is defined to be the point in time where performance has degraded to some critical level. These predictions are based on a degradation model that expresses the expected performance level versus the time and conditions under which a cell has been aged. Usually, the degradation model relates the accumulated degradation to the time at a constant stress level. The purpose of this article is to present an alternative framework for constructing a degradation model that focuses on the degradation rate rather than the accumulated degradation. One benefit of this alternative approach is that prediction of cell life is greatly facilitated in situations where the temperature exposure is not isothermal. This alternative modeling framework is illustrated via a family of rate-based models and experimental data acquired during calendar-life testing of high-power lithium-ion cells.

E.V. Thomas; I. Bloom; J.P. Christophersen; V.S. Battaglia

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network (OSTI)

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

422

A Quantum Leap Forward for Li-Ion Battery Cathodes GCEP Final Technical Report: August 2007 July 2010  

E-Print Network (OSTI)

, nanoscale coating, nanostructures, interface control 1. INTRODUCTION Lithium-ion batteries are one-Induced Damage and Disorder in LiCoO2 Cathodes for Recharge- able Lithium Batteries, J. Electrochem. Soc. 146 Material for Lithium-Ion Batteries, Chem. Mater. 17, 3695 (2005). 27. J. Cho, Y. J. Kim, and B. Park, Novel

Nur, Amos

423

Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies  

E-Print Network (OSTI)

words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge amplitude, rate capability Abstract A detailed analysis of the capacity fade of a battery/supercapacitor

Popov, Branko N.

424

On the safety of the Li{sub 4}Ti{sub 5}O{sub 12}/ LiMn{sub 2}O{sub 4} lithium-ion battery system.  

SciTech Connect

The aim of this work is to investigate the inherent safety characteristics of the Li{sub 4}Ti{sub 5}O{sub 12}/LiMn{sub 2}O{sub 4} cell chemistry in a real battery. For this purpose, the reactivity of the Li{sub 4}Ti{sub 5}O{sub 12} anode material with the electrolyte was first studied upon its electrochemical lithiation in a Li-metal half-cell. Results obtained by differential scanning calorimetry show that the total heat associated with this reaction increased when the lithium amount inserted in Li{sub 4}Ti{sub 5}O{sub 12} increased, with no noticeable change in the onset temperature (125 C). It was also found that the total heat of the fully lithiated Li{sub 4}Ti{sub 5}O{sub 12} (383 J/g) was much smaller compared to that of the fully lithiated graphite (2700 J/g), the latter having a lower onset temperature (100 C). The thermal and structural stability of Li{sub 6.5}Ti{sub 5}O{sub 12} and Li{sub 0.2}Mn{sub 2}O{sub 4} phases was investigated after the chemical lithiation of Li{sub 4}Ti{sub 5}O{sub 12} with butylithium and the chemical delithiation of LiMn{sub 2}O{sub 4} with nitronium tetrafluoroborate. Data from thermal gravimetric analysis show that the Li{sub 0.2}Mn{sub 2}O{sub 4} cathode released less than 2 wt % oxygen below 400 C, while the Li{sub 6.5}Ti{sub 5}O{sub 12} anode gained 4 wt % at the same temperature. The accelerated rate calorimetry test performed on 18650-cells containing Li{sub 4}Ti{sub 5}O{sub 12}/LiMn{sub 2}O{sub 4} chemistry showed no thermal runaway, explosion, or fire. These results clearly demonstrate that the Li{sub 4}Ti{sub 5}O{sub 12}/LiMn2O{sub 4} battery could be one of the safest Li-ion battery systems.

Belharouak, I.; Sun, Y.-K.; Lu, W.; Amine, K.; Chemical Engineering; Hanyang Univ.

2007-01-01T23:59:59.000Z

425

NREL: News - Solar and Lithium Ion Car Race Winners Announced  

NLE Websites -- All DOE Office Websites (Extended Search)

913 Solar and Lithium Ion Car Race Winners Announced May 18, 2013 Ninety-seven teams from 28 Colorado schools participated in today's car competitions hosted by the U.S. Department...

426

A combined Li-ion & lead-acid battery system for start-stop application: potential & realization.  

E-Print Network (OSTI)

??The aim of this master thesis is to investigate the possibility of using lithium-ion batteries as a second battery instead of lead-acid batteries for the (more)

Taha Mahmoud, Heza

2011-01-01T23:59:59.000Z

427

Electrochemical and Structural Study of the Layered, 'Li-Excess' Lithium-Ion Battery Electrode Material Li[Li[subscript 1/9]Ni[subscript 1/3]Mn[subscript 5/9  

SciTech Connect

The overcapacity mechanism and high voltage process of the Li-excess electrode material Li[Li{sub 1/9}Ni{sub 1/3}Mn{sub 5/9}]O{sub 2} are studied by solid-state NMR, X-ray diffraction, X-ray absorption spectroscopy, transmission electron microscopy, combined with galvanostatic and potentiostatic intermittent titration electrochemical measurements. The cycling performance is improved noticeably when the material is cycled between potential windows of 5.3-2.5 V compared to 4.6-2.5 V. Diffraction data show that structural changes occur at high voltages, the solid-state NMR data of the same samples indicating that the high voltage processes above 4.4 V are associated with Li removal from the structure, in addition to electrolyte decomposition. The NMR spectra of the discharged samples show that cation rearrangements in the transition metal layers have occurred. The XAS spectra confirm that the Mn oxidation state remains unchanged at 4+, whereas Ni{sup 2+} is oxidized to Ni{sup 4+} on charging to 4.4 V, returning to Ni{sup 2+} on discharge, independent of the final charge voltage. A significant change of the shape of the Ni edge is observed in the 4.6-5.3 V potential range on charge, which is ascribed to a change in the Ni local environment. No O{sub 2} evolution was detected based on ex situ analysis of the gases evolved in the batteries, the TEM data showing that thick passivating films form on the electrodes. The results suggest that at least some of the oxygen loss from these lithium-excess materials occurs via a mechanism involving electrolyte decomposition.

Jiang, Meng; Key, Baris; Meng, Ying S.; Grey, Clare P.; (SBU); (Florida)

2009-09-15T23:59:59.000Z

428

Advanced Solid State Li-Ion Battery  

Research on all-solid-state rechargeable lithium batteries has increased considerably in recent years due to raised concerns relating to safety hazards such as solvent leakage and flammability of liquid electrolytes used for commercial lithium-ion ...

429

Nanostructured, Rechargeable Solid-State Composite Batteries  

Research on all-solid-state rechargeable lithium batteries has increased considerably in recent years due to raised concerns relating to safety hazards such as solvent leakage and flammability of liquid electrolytes used for commercial lithium-ion ...

430

Key challenges in developing rechargeable magnesium batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

application as post lithium-ion batteries, due to the following advantages; 1) high energy density, 2) low cost and 3) intrinsic safety. If two electron and divalent Mg ion...

431

Mesoporous Titanium Oxide Based Anodes for Batteries  

Presentation_namefor the U.S. Department of Energy Mesoporous TiO 2 Anodes for Lithium Ion Batteries Mesoporous TiO 2 ... Increased energy density ?Mesoporous TiO. 2 .

432

Design and modeling of cylindrical and falt-wound lithium-ion cells for the PNGV application.  

DOE Green Energy (OSTI)

In this study, 10-Ah cylindrical and flat-wound cells were designed and studied for use in batteries for the Partnership for a New Generation of Vehicles (PNGV). A low-cost current collection system was devised that results in a low resistance. Heat rejection from flat cells is much better than that from cylindrical cells and is an important safety factor. Very compact, powerful batteries of about 1.5 kW/L can be designed with wound lithium-ion cells.

Nelson, P. A.; Henriksen, G. L.; Amine, K.

2000-11-10T23:59:59.000Z

433

Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms.  

DOE Green Energy (OSTI)

The Advanced Technology Development (ATD) Program is a multilaboratory effort to assist industrial developers of high-power lithium-ion batteries overcome the barriers of cost, calendar life, abuse tolerance, and low-temperature performance so that this technology may be rendered practical for use in hybrid electric vehicles (HEVs). Included in the ATD Program is a comprehensive diagnostics effort conducted by researchers at Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Lawrence Berkeley National Laboratory (LBNL). The goals of this effort are to identify and characterize processes that limit lithium-ion battery performance and calendar life, and ultimately to describe the specific mechanisms that cause performance degradation. This report is a compilation of the diagnostics effort conducted since spring 2001 to characterize Generation 2 ATD cells and cell components. The report is divided into a main body and appendices. Information on the diagnostic approach, details from individual diagnostic techniques, and details on the phenomenological model used to link the diagnostic data to the loss of 18650-cell electrochemical performance are included in the appendices. The main body of the report includes an overview of the 18650-cell test data, summarizes diagnostic data and modeling information contained in the appendices, and provides an assessment of the various mechanisms that have been postulated to explain performance degradation of the 18650 cells during accelerated aging. This report is intended to serve as a ready reference on ATD Generation 2 18650-cell performance and provide information on the tools for diagnostic examination and relevance of the acquired data. A comprehensive account of our experimental procedures and resulting data may be obtained by consulting the various references listed in the text. We hope that this report will serve as a roadmap for the diagnostic analyses of other lithium-ion technologies being evaluated for HEV applications. It is our hope that the information contained in this report will lead to the development of new lithium-ion cell chemistries and designs that will meet the 15-year cell calendar-life goal established by DOE's FreedomCar and Fuel Partnership.

Abraham, D. P.; Dees, D. W.; Knuth, J.; Reynolds, E.; Gerald, R.; Hyung,Y.-E.; Belharouak, I.; Stoll, M.; Sammann, E.; MacLaren, S.; Haasch, R.; Twesten,R.; Sardela, M.; Battaglia, V.; Cairns, E.; Kerr, J.; Kerlau, M.; Kostecki, R.; Lei,J.; McCarthy, K.; McLarnon, F.; Reimer, J.; Richardson, T.; Ross, P.; Sloop,S.; Song, X.; Zhuang, V.; Balasubramanian, M.; McBreen, J.; Chung, K.-Y.; Yang, X.Q.; Yoon, W.-S.; Norin, L.

2005-07-15T23:59:59.000Z

434

Technology Analysis - Battery Recycling and Life Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Recycling and Life Cycle Analysis Lithium-Ion Battery Recycling and Life Cycle Analysis diagram of the battery recycling life cycle Several types of recycling processes are available, recovering materials usable at different stages of the production cycle- from metallic elements to materials that can be reused directly in new batteries. Recovery closer to final usable form avoids more impact-intensive process steps. Portions courtesy of Umicore, Inc. To identify the potential impacts of the growing market for automotive lithium-ion batteries, Argonne researchers are examining the material demand and recycling issues related to lithium-ion batteries. Research includes: Conducting studies to identify the greenest, most economical recycling processes, Investigating recycling practices to determine how much of which

435

Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries (Presentation)  

DOE Green Energy (OSTI)

This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.; Lee, K. J.

2012-05-01T23:59:59.000Z

436

Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life (Presentation)  

DOE Green Energy (OSTI)

Electric-drive vehicles enabled by power- and energy-dense batteries promise to improve vehicle efficiency and help reduce society's dependence on fossil fuels. Next generation plug-in hybrid vehicles and battery electric vehicles may also enable vehicles to be powered by electricity generated from clean, renewable resources; however, to increase the commercial viability of such vehicles, the cost, performance and life of the vehicles batteries must be further improved. This work illustrates a virtual design process to optimize the performance and life of large-format lithium ion batteries. Beginning with material-level kinetic and transport properties, the performance and life of multiple large-format cell designs are evaluated, demonstrating the impact of macroscopic design parameters such as foil thickness, tab location, and cell size and shape under various cycling conditions. Challenges for computer-aided engineering of large-format battery cells, such as competing requirements and objectives, are discussed.

Smith, K.; Kim, G. H.; Pesaran, A.

2010-04-01T23:59:59.000Z

437

The Breakthrough Behind the Chevy Volt Battery | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Breakthrough Behind the Chevy Volt Battery The Breakthrough Behind the Chevy Volt Battery Stories of Discovery & Innovation The Breakthrough Behind the Chevy Volt Battery Enlarge Photo Image courtesy of General Motors The 2011 Chevrolet Volt's 16 kWh battery can be recharged using a 120V or 240V outlet. The car's lithium-ion battery is based on technology developed at Argonne National Laboratory. Enlarge Photo Illustration courtesy Argonne National Laboratory This illustration shows the inner workings of a lithium-ion battery. When delivering energy to a device, the lithium ion moves from the anode to the cathode. The ion moves in reverse when recharging. Compared to other rechargeable 03.28.11 The Breakthrough Behind the Chevy Volt Battery A revolutionary breakthrough cathode for lithium-ion batteries-the kind in your

438

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

439

TransForum v8n2 - EnerDel/Argonne Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact TTRDC TransForum Vol. 8, No. 2 R&D 100 Award: EnerDelArgonne High-Power Battery for Hybrid Electric Vehicles The EnerDelArgonne Lithium-Ion Battery Khalil Amine, a...

440

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction  

E-Print Network (OSTI)

Cycle life is critically important in applications of rechargeable batteries, but lifetime prediction is mostly based on empirical trends, rather than mathematical models. In practical lithium-ion batteries, capacity fade ...

Pinson, Matthew Bede

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Metal hydrides: Relevant Materials for Lithium-ion Batteries ...  

Science Conference Proceedings (OSTI)

Reactivity of MgH2 with lithium is a reversible conversion reaction (reversible capacity of 1500 mAh/g) generalized to many hydrides as: MHx + xLi+ + xe- ? M +...

442

Nanostructured electrodes for lithium ion batteries using biological scaffolds  

E-Print Network (OSTI)

Without doubt, energy and environment are becoming central issues for the future. In this regard, not only device performance but also environmentally sustainable ways of making energy device is important. To meet these ...

Lee, Yun Jung, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

443

Si/C Based Composite Anodes for Lithium Ion Batteries  

Science Conference Proceedings (OSTI)

Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel Impact of Impurities and Alloying Metals on the Performance of Liquid Metal...

444

Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries ...  

An approach developed by Robert Kostecki and Marek Marcinek of Berkeley Lab has given rise to a new generation of nanostructured carbon-tin films that ...

445

Materials and Processing for lithium-ion Batteries  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory ... Argonne National Lab ... The focus of the U.S. Department of Energy's (DOE's) Vehicle Technologies Program is on...

446

Heat Generation Measurements of Prismatic Lithium Ion Batteries.  

E-Print Network (OSTI)

??Electric and hybrid electric vehicles are gaining momentum as a sustainable alternative to conventional combustion based transportation. The operating temperature of the vehicle will vary (more)

Chen, Kaiwei

2013-01-01T23:59:59.000Z

447

The lithium-ion battery industry for electric vehicles.  

E-Print Network (OSTI)

??Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. (more)

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

448

Synthesis of Titania Nanotubes for Lithium Ion Batteries  

Science Conference Proceedings (OSTI)

Application of Biomass Waste Materials in the Nano Mineral Synthesis ... Effect of Initial Microstructure on the Processing of Titanium Using Equal ... Effect of Reinforcement Volume Fraction on the Properties of Nanocrystalline Mg .... Sonochemistry as a Tool for Synthesis of Ion-Substituted Calcium Phosphate Nanoparticles.

449

Monitoring Electrode Degradation in Lithium Ion Batteries using ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , General Abstracts: Electronic, Magnetic and Photonic Materials Division.

450

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... In order to investigate how this lithiation-induced softening affects the fracturing conditions, we investigate the coupled mechano-diffusional...

451

LLNL leads new initiative to improve lithium-ion batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and cost. This, in turn, would greatly reduce the nation's dependence on fossil fuels and carbon emissions associated with them. An advance in safety will have significant...

452

Novel High Capacity Anodes for Lithium Ion Batteries  

Science Conference Proceedings (OSTI)

Fracture Toughness Evaluation of Polymeric Materials for Wind Turbine Blades ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

453

Aqueous Lithium Ion Batteries Can Be Recharged Thousands of ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Energy Storage III: Materials, Systems and Applications Symposium.

454

Development of Materials for Advanced Lithium-Ion Batteries  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Storage: Materials, Systems, and Applications. Presentation Title...

455

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... NMR is element- (nuclear-) specific and sensitive to small variations in the ... substrate for future applications of flexible energy storage devices.

456

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Session Chair: David Mitlin , University of Alberta and NINT NRC; Reza Shahbazian-Yassar, Michigan Technological University; Peter...

457

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... For more demanding applications such as powering electric ... and supported by the U.S. Department of Energy's Office of Basic Energy...

458

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Supercapacitors are gradually becoming a very popular subject, presumably as a result of the growing demand on fossil fuels and the...

459

Revealing the Illusive Interphase in Lithium Ion Batteries |...  

Office of Science (SC) Website

microscopy (TEM) energy dispersive X-ray spectroscopy (EDX) method with the TEM grid integrated into the electrode. This affords simultaneous, in-situ structural and...

460

Forming Gas Treatment of Lithium Ion Battery Anode Graphite ...  

WOOD III, DAVID L Materials Science and Technology Div Licensing Contact DETRANA, ALEXANDER G UT-Battelle, LLC Oak Ridge National Laboratory

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced titania nanostructures and composites for lithium ion battery  

E-Print Network (OSTI)

in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and other electric utilities gen- eration of energy storage technologies applied in hybrid electric vehicles (HEVs) [2], plug-in hybrid electric vehicles (PHEVs) [3, 4], and storage systems for renew- able and intermittent energy

Guo, John Zhanhu

462

A Nanofiber Approach to Advanced Lithium-Ion Battery Materials  

Science Conference Proceedings (OSTI)

The design of functional nanofiber materials for alternative energy systems is, ... Design of Light Weight Structure for Wind Turbine Tower by Using Nano-...

463

Oriented nanotube electrodes for lithium ion batteries and supercapacitors  

DOE Patents (OSTI)

An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

Frank, Arthur J.; Zhu, Kai; Wang, Qing

2013-03-05T23:59:59.000Z

464

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... The Electrochemical Flow Capacitor for Efficient Grid-Scale Energy Storage.

465

NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.  

E-Print Network (OSTI)

carbonate Separator Cathode:Anode: e-e- Li++e-+C6LiC6 Li+ Lithium-ion battery e- Binder Conductive additives to as lithium batteries and the various chemistries that are the most promising for these applications. While Li-ion. The figure shows that lithium-ion (Li-ion) batteries are superior to nickel metal hydride (Ni-MH) batteries

466

Megawatt-Class Lithium Ion Energy Storage Systems  

Science Conference Proceedings (OSTI)

This project describes the most recent developments in the use of energy storage in frequency regulation and other ancillary service applications. This includes an analysis of limited storage in frequency regulation applications in the Pennsylvania-New Jersey-Maryland Interconnection (PJM), as well as a case study of a lithium ion energy storage system installed in California.

2009-12-22T23:59:59.000Z

467

Lessons Learned from the Puerto Rico Battery Energy Storage System  

DOE Green Energy (OSTI)

The Puerto Rico Electric Power Authority (PREPA) installed a battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The Puerto Rico facility is presently the largest operating battery storage system in the world and has successfully provided frequency control, voltage regulation, and spinning reseme to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. However, the facility has suffered accelerated cell failures in the past year and PREPA is committed to restoring the plant to full capacity. This represents the first repowering of a large utility battery facility. PREPA and its vendors and contractors learned many valuable lessons during all phases of project development and operation, which are summarized in this paper.

Boyes, John D.; De Anda, Mindi Farber; Torres, Wenceslao

1999-08-11T23:59:59.000Z

468

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 and provided an additional 95.5 million in cost share to build the new 235,000 square foot battery factory capable of manufacturing high quantities of lithium-ion cells,...

469

Development of Planar Sodium-Beta Alumina Battery Modules for ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage: Materials, Systems, and Applications ... For broad market penetration, however, the SBB technologies need further improved ... Analysis of Cycling Induced Fatigue in Electrode Materials for Lithium Ion Batteries.

470

BatPaC - Battery Performance and Cost model - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

> BatPaC Home About BatPaC Download BatPaC Contact Us BatPaC: A Lithium-Ion Battery Performance and Cost Model for Electric-Drive Vehicles The recent penetration of...

471

Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina  

E-Print Network (OSTI)

;1. Introduction For lithium-ion batteries to widely power plug-in hybrid electric and all-electric vehicles (PHEVs-cell degradation during extended cycling. a r t i c l e i n f o Article history: Received 7 December 2012 Received

Spila, Timothy P.

472

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

473

Lessons Learned from the Puerto Rico Battery Energy Storage System  

DOE Green Energy (OSTI)

The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

1999-09-01T23:59:59.000Z

474

An ultra-compact and efficient Li-ion battery charger circuit for biomedical applications  

E-Print Network (OSTI)

This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger for wirelessly powered implantable medical devices. The charger presented here takes advantage of the tanh output current profile of an ...

Do Valle, Bruno Guimaraes

475

Virus-assembled flexible electrode-electrolyte interfaces for enhanced polymer-based battery applications  

Science Conference Proceedings (OSTI)

High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV-) assembled polytetrafluoroethylene (PTFE) nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. ...

Ayan Ghosh, Juchen Guo, Adam D. Brown, Elizabeth Royston, Chunsheng Wang, Peter Kofinas, James N. Culver

2012-01-01T23:59:59.000Z

476

45nm direct battery DC-DC converter for mobile applications  

E-Print Network (OSTI)

Portable devices use Lithium-ion batteries as the energy source due to their high energy density, long cycle life and low memory effects. With the aggressive downscaling of CMOS, it is becoming increasingly difficult to ...

Bandyopadhyay, Saurav

2010-01-01T23:59:59.000Z

477

Optical state-of-charge monitor for batteries  

DOE Patents (OSTI)

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

478

Battery Technology for Hybrid Vehicles Marshall Miller  

E-Print Network (OSTI)

Battery Technology for Hybrid Vehicles Marshall Miller May 13, 2008 H2 #12;Energy Storage Lithium-ion Batteries Battery manufact. Electrode chemistry Voltage range Ah Resist. mOhm Wh/kg W/kg 95 hydride 7.2-5.4 6.5 11.4 46 208 1.04 1.8 #12;Comparisons of Lithium Battery Chemistries Technology type

California at Davis, University of

479

Modeling of DFIG Wind Turbine and Lithium Ion Energy Storage System  

Science Conference Proceedings (OSTI)

The paper is aimed at describing the dynamic models of DFIG equipped wind turbine and Lithium Ion Energy System. The purpose of the energy storage system is to be coupled to the wind generation system in order to smooth its power output. Depending on ... Keywords: Renewable Generation, Embedded Generation, Wind Power, DFIG, Lithium Ion, Storage

Mattia Marinelli; Andrea Morini; Federico Silvestro

2010-02-01T23:59:59.000Z

480

Learning policies for battery usage optimization in electric vehicles  

Science Conference Proceedings (OSTI)

The high cost, limited capacity, and long recharge time of batteries pose a number of obstacles for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery with supercapacitors are currently one of the most ...

Stefano Ermon; Yexiang Xue; Carla Gomes; Bart Selman

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "lithium-ion battery learn" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ME 5xx: Modeling and Control of Batteries Instructors: Hosam Fathy and Anna Stefanopoulou  

E-Print Network (OSTI)

and cost Target, Current technology status Chapter 2: Lithium Ion Battery Materials, Structure, OperationME 5xx: Modeling and Control of Batteries Instructors: Hosam Fathy and Anna Stefanopoulou Course statement: This course covers battery modeling, control and diagnostic methodologies associated to battery

Stefanopoulou, Anna

482

Battery research at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

Thackeray, M.M.

1997-10-01T23:59:59.000Z

483

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

484

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

485

Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-Ion porous electrode.  

SciTech Connect

Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}, used as the active material in a lithium-ion battery porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10{sup -10} cm{sup 2} s{sup -1} at 3.85 V. The lithium diffusion coefficient values obtained from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study.

Dees, D. W.; Kawauchi, S.; Abraham, D. P.; Prakash, J.; Chemical Sciences and Engineering Division; Toyota Central R& D Labs Inc.; Illinois Inst. of Tech.

2009-04-01T23:59:59.000Z

486

Lessons learned in acquiring new regulations for shipping advanced electric vehicle batteries  

DOE Green Energy (OSTI)

In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy established its ad hoc EV Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced EV battery technologies and facilitate the removal of these barriers. A Shipping Sub-Working Group (SSWG) was formed to address the regulatory issues associated with the domestic and international shipment of these new battery technologies. The SSWG invites major industrial developers of advanced battery technologies to join as members and work closely with appropriate domestic and international regulatory authorities to develop suitable regulations and procedures for the safe transport of these new battery technologies. This paper describes the domestic and international regulatory processes for the transport of dangerous goods; reviews the status of shipping regulations for sodium-beta and lithium batteries; and delineates the lessons learned to date in this process. The sodium-beta battery family was the first category of advanced EV batteries to be addressed by the SSWG. It includes both sodium/sulfur and sodium/metal chloride batteries. Their efforts led to the establishment of a UN number (UN 3292) in the UN Recommendations, for cold cells and batteries, and establishment of a US Department of Transportation general exemption (DOT-E-10917) covering cold and hot batteries, as well as cold cells. The lessons learned for sodium-beta batteries, over the period of 1990--94, are now being applied to the development of regulations for shipping a new generation of lithium battery technologies (lithium-polymer and lithium-aluminum/iron sulfide batteries).

Henriksen, G. [Argonne National Lab., IL (United States); Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Altemos, E.A. [Winston and Strawn, Washington, DC (United States)

1994-12-01T23:59:59.000Z

487

Study on Intelligent Control Strategy of Battery-Electric Bus Based on the Fuzzy Comprehensive Evaluation Method  

Science Conference Proceedings (OSTI)

How to use the lithium-ion power battery effectively, how to improve the discharging efficiency and the cycle-life of the power battery is a hotspot of research in battery-electric vehicle(BEV) field. The fuzzy comprehensive evaluation method is used ... Keywords: battery-electric bus, CAN-bus, control strategy, fuzzy comprehensive evaluation method

Lin Cheng; Zhou Hui; Sun Fengchun; Nan Jinrui

2009-05-01T23:59:59.000Z

488

Battery Factory Bringing Jobs to Jacksonville | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Factory Bringing Jobs to Jacksonville Factory Bringing Jobs to Jacksonville Battery Factory Bringing Jobs to Jacksonville April 30, 2010 - 2:10pm Addthis A rendering of Saft’s lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft A rendering of Saft's lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy The Saft lithium-ion battery plant under construction in Jacksonville, Fla., is expected to pump hundreds of high-paying jobs into the city's economy while boosting its green credentials. Construction on the factory is expected to wrap up in 2012 and cost $191 million. Saft was awarded $95.5 million in Recovery Act funds and $20.2 million in financial incentives from Jacksonville and the state.

489

Lessons Learned: Battery-Electric Transit-Bus Opportunity Charging  

Science Conference Proceedings (OSTI)

This document details the results of a study of battery-electric bus opportunity charging. This document is an interim report pending conclusion of further experiments with at least one other rapid-charging system and battery type.

1999-12-10T23:59:59.000Z

490

In-situ Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and Opportunities  

SciTech Connect

The critical challenge facing the lithium ion battery development is the basic understanding of the structural evolution during the cyclic operation of the battery and the consequence of the structural evolution on the properties of the battery. Although transmission electron microscopy (TEM) and spectroscopy have been evolved to a stage such that it can be routinely used to probe into both the structural and chemical composition of the materials with a spatial resolution of a single atomic column, a direct in-situ TEM observation of structural evolution of the materials in lithium ion battery during the dynamic operation of the battery has never been reported. This is related to three factors: high vacuum operation of a TEM; electron transparency requirement of the region to be observed, and the difficulties dealing with the liquid electrolyte of lithium ion battery. In this paper, we report the results of exploring the in-situ TEM techniques for observation of the interface in lithium ion battery during the operation of the battery. A miniature battery was fabricated using a nanowire and an ionic liquid electrolyte. The structure and chemical composition of the interface across the anode and the electrolyte was studied using TEM imaging, electron diffraction, and electron energy loss spectroscopy. In addition, we also explored the possibilities of carrying out in-situ TEM studies of lithium ion batteries with a solid state electrolyte.

Wang, Chong M.; Xu, Wu; Liu, Jun; Choi, Daiwon; Arey, Bruce W.; Saraf, Laxmikant V.; Zhang, Jiguang; Yang, Zhenguo; Thevuthasan, Suntharampillai; Baer, Donald R.; Salmon, Norman

2010-08-01T23:59:59.000Z

491

FBIS report. Science and technology. Japan: Latest battery technology development, November 27, 1995  

Science Conference Proceedings (OSTI)

;Table of Contents: Latest Battery Technology Development; Development Status of Solid Oxide Fuel Cells; Diverse Applications of Polymer Electrolyte Fuel Cell; Development Status of On-Board EV Batteries; Development Status of Electric Power Batter System; Development Status of Redox Flow-Type Batteries; Development Status, Future Outlook on Electrolyte Materials; Development Status of Cathode Materials; Development Status of Anode Materials; Development Status, Future Outlook of Lithium Ion Battery Separators; Development Status of Polymer Battery; Characteristics, Future Prospects of Disulfide Battery.

NONE

1995-11-27T23:59:59.000Z

492

Large-scale battery system modeling and analysis for emerging electric-drive vehicles  

Science Conference Proceedings (OSTI)

Emerging electric-drive vehicles demonstrate the potential for significant reduction of petroleum consumption and greenhouse gas emissions. Existing electric-drive vehicles typi- cally include a battery system consisting of thousands of Lithium-ion battery ... Keywords: analysis, battery system model, electric-drive vehicles

Kun Li; Jie Wu; Yifei Jiang; Zyad Hassan; Qin Lv; Li Shang; Dragan Maksimovic

2010-08-01T23:59:59.000Z

493

Guidance on the use of Lithium Batteries in NERC Version 1.0 8th  

E-Print Network (OSTI)

a lithium or lithium ion battery fire. · Use plenty of water as a fine spray to swamp and wash away spiltGuidance on the use of Lithium Batteries in NERC Version 1.0 8th March 2007 1. Introduction Lithium. There are several types of lithium batteries but they are all high energy power sources and all are potentially

Edinburgh, University of

494

AvAilAble for licensing Battery overcharge protection, increased safety and long-term stability.  

E-Print Network (OSTI)

AvAilAble for licensing Battery overcharge protection, increased safety and long-term stability of lithium-ion batteries. The electrolytes can be alkali metal salts or polar aprotic solvents of overcharge tolerance--the dangerous voltage of the battery will never be reached even when over

Kemner, Ken

495

`TVLSI-00029-2003.R1 An Analytical Model for Predicting the Remaining Battery  

E-Print Network (OSTI)

`TVLSI-00029-2003.R1 1 An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng Rong, Student Member, IEEE and Massoud Pedram, Fellow, IEEE Abstract -- Predicting the residual energy of the battery source that powers a portable electronic device is imperative in designing

Pedram, Massoud

496

Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes  

E-Print Network (OSTI)

Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes Hongbin Yao materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials

Cui, Yi

497

AvAilAble for licensing Increased battery capacity, safety, stability and reliability at lower cost.  

E-Print Network (OSTI)

cost. The Invention A composite material suitable for use in an anode for a lithium-ion battery and reliability; Lowers battery cost; and Could exceed the technical specifications for electrified vehicles AvAilAble for licensing Increased battery capacity, safety, stability and reliability at lower

Kemner, Ken

498

Switching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b  

E-Print Network (OSTI)

of automobiles. The propulsion solutions for EVs are based on hybrid or fully battery powered electric vehiclesSwitching algorithms for extending battery life in Electric Vehicles Ron Adany a,*, Doron Aurbach b 27 December 2012 Keywords: Electric Vehicles (EV) Switching algorithms Battery life Lithium ion

Kraus, Sarit

499

Argonne Transportation - Lithium Battery Technology Patents  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

500

Optical State-of-Change Monitor for Lead-Acid Batteries  

DOE Patents (OSTI)

A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cdl or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

Weiss, Jonathan D.

1998-07-24T23:59:59.000Z