National Library of Energy BETA

Sample records for lithium-ion batteries technology

  1. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  2. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  3. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  5. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  6. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  7. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  8. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  10. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

  11. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-Model for Aging of Lithium-Ion Battery Cells. Journal of The

  12. Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    García, R. Edwin

    Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium-ion

  13. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  14. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  15. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    materials for advanced lithium-ion batteries. J. Powersilicon nanowires for lithium ion battery anode with longal. High-performance lithium-ion anodes using a hierarchical

  16. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

  17. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  18. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  19. Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-ion...

  20. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for...

  1. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing...

  2. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  3. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    abuse tolerant lithium-ion (Li-ion) batteries is an important step in electrifying the drive train and facilitating widespread adoption of HEVs and PHEVs. Nanocomposite...

  4. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

  5. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    silicon nanowires for lithium ion battery anode with longfor high-performance lithium-ion battery anodes. Appl. Phys.as the anode for a lithium-ion battery with high coulombic

  6. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

  7. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    1/3 O 2 for advanced lithium-ion batteries. J. Power Sourcesof LiFePO4 based lithium ion batteries. Mater. Lett. 2007,negative electrode in lithium-ion batteries: AFM study in an

  8. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,composite anodes for lithium-ion batteries. J. Mater. Chem.cathode materials for lithium-ion batteries. J. Mater. Chem.

  9. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. ActaO 2 cathode material for lithium ion battery: Dependence of

  10. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    negative electrode in lithium-ion batteries: AFM study in anJ. R. , Alloy design for lithium-ion battery anodes. J.Carbon materials for lithium-ion rechargeable batteries.

  11. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  12. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    E-Print Network [OSTI]

    Braatz, Richard D.

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, ...

  13. Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design

    E-Print Network [OSTI]

    Jasinski, Samuel Anthony

    2008-01-01

    Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

  14. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  15. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  16. Nanocomposite Materials for Lithium-Ion Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocompositematerialsliion.pdf More Documents & Publications Progress of DOE...

  17. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  18. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  19. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  20. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  1. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

  2. Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models Venkat R. Subramanian Technological University, Cookeville, Tennessee 38505, USA Recent interest in lithium-ion batteries for electric on the computational efficiency of lithium-ion battery models. This paper presents an effective approach to simulate

  3. Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds

    E-Print Network [OSTI]

    Arnold, Craig B.

    ) The lithium ion battery, a preferred energy storage technology, is limited by its volumetric and gravimetric. INTRODUCTION The lithium ion battery has become the energy storage me- dium of choice for almost allSilicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  5. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical behaviors in lithium-ion batteries? · Current work ­ Mechanical behaviors the separator ­ How do we test

  6. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  7. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  8. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES........................................................................................................................16 1.1 Lithium Ion Batteries...................................................................................17 1.1.2 Lithium Ion Battery Chemistry

  9. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principlesMaterials for Lithium-Ion Batteries. Adv. Funct. Mater. 23,

  10. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the differentin hybrids. Keywords: lithium-ion batteries, plug-in hybrid

  11. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

  12. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  13. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyElectrode Materials for Lithium Ion Batteries. MaterialsTechniques to the Study of Lithium Ion Batteries. J. Solid

  14. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  15. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  16. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  17. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transpar- ent and have to be thick

  18. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  19. 1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013 State of Charge Estimation of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery], a modeling approach for the scale-up of a lithium- ion polymer battery (LIPB) is reported. A comparison

  20. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variousare presented for lithium-ion cells and modules utilizingAdvisor utilizing lithium-ion batteries of the different

  1. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  2. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  3. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  4. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered, “Li-Excess” Lithium-Ion Battery Electrode Materialthe surfaces of lithium-ion battery (LIB) electrodes evolve

  5. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  6. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  7. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  8. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  11. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  12. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  13. Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy

    E-Print Network [OSTI]

    Zhou, Chongwu

    Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high Since Sony rst commercialized lithium ion batteries in the early 1990s, the market for lithium ion of the great success of lithium ion battery technology developed for portable electronic devices, higher

  14. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  15. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  16. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  17. High-discharge-rate lithium ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  18. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  19. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  20. Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    , anisotropic expansion A dvanced energy storage technologies are critically important for the operationArrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large

  1. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  2. Design of a testing device for quasi-confined compression of lithium-ion battery cells

    E-Print Network [OSTI]

    Roselli, Eric (Eric J.)

    2011-01-01

    The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

  3. Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex

    E-Print Network [OSTI]

    Adams, Melanie Chantal

    2013-01-01

    Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis ...

  4. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect (OSTI)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  5. Correlation of Lithium-Ion Battery Performance with Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a...

  6. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    exception being the lithium-ion battery (Table 2.1). Tableconfiguration of a lithium-ion battery is shown in Figureof Nb 2 O 5 as a lithium-ion battery electrode and as an

  7. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01

    MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

  8. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

  9. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Silicon Solar Cells and Lithium-ion Batteries Using PrintedSilicon Solar Cells and Lithium-ion Batteries Using Printedfor the system and lithium-ion batteries will be used to

  10. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    1/3 O 2 for advanced lithium-ion batteries. Journal of Powerelectrodes for lithium-ion batteries. Journal of Materialsfor Advanced Lithium-Ion Batteries. Advanced Energy

  11. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    O(2) Cathodes for Lithium Ion Batteries: Understanding LocalO(2) compounds for lithium-ion batteries. Journal of PowerLiCoO(2) for lithium-ion batteries. Materials Science and

  12. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01

    Newman, Advances in Lithium-Ion Batteries, ch. Modeling ofProtection of Lithium-Ion Batteries Karen E. Thomas-Alyea,protec- tion for lithium-ion batteries. The model shows how

  13. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  14. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Solid Solutions: Coupled Lithium-Ion and Electron Mobility.lithium batteries, II. Lithium ion rechargeable batteries.1/4)Ni(3/4)O(2) for lithium-ion batteries. Electrochimica

  15. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    their use in lithium-ion batteries. However, applications atFor rechargeable lithium-ion batteries, it is required that

  16. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean...

  17. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01

    05CH11231. References 1. Lithium Ion Batteries: FundamentalsExamination of Generation 2 Lithium-Ion Cells and AssessmentDevelopment Program for Lithium Ion Batteries, U.S.

  18. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    B. Dunn. "Low-potential lithium-ion reactivity of vanadiumMn 1/3 O 2 for advanced lithium-ion batteries. Journal ofMn, Ni, Co) electrodes for lithium-ion batteries. Journal of

  19. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  20. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  1. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  2. Analysis of Impedance Response in Lithium-ion Battery Electrodes 

    E-Print Network [OSTI]

    Cho, Seongkoo

    2013-12-04

    formation due to diffusion induced stress can aggravate the aging of the electrode. These mechanisms of deterioration are primary contributors on limiting the durability of Lithium-ion battery (LIB). In addition, an composition of insertion materials...

  3. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee,...

  4. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes 

    E-Print Network [OSTI]

    An, Kai

    2013-11-25

    Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

  5. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Broader source: Energy.gov (indexed) [DOE]

    million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded...

  6. Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microcapsules M. Baginska, B.J. Blaiszik, R.J. Merriman, J.S. Moore, N. R. Sottos, and S.R. White, University of...

  7. Chemo-mechanics of lithium-ion battery electrodes

    E-Print Network [OSTI]

    Di Leo, Claudio V

    2015-01-01

    Mechanical deformation plays a crucial role both in the normal operation of a Lithium-Ion battery, as well as in its degradation and ultimate failure. This thesis addresses the theoretical formulation, numerical implementation, ...

  8. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–Material in Lithium Ion Batteries. Adv. Energy Mater. n/a–n/decomposition in lithium ion batteries: first-principles

  9. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Charge Distribution in a Lithium Battery Electrode. J. Phys.Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  10. MAXIMUM POWER ESTIMATION OF LITHIUM-ION BATTERIES ACCOUNTING FOR THERMAL AND ELECTRICAL CONSTRAINTS

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    MAXIMUM POWER ESTIMATION OF LITHIUM-ION BATTERIES ACCOUNTING FOR THERMAL AND ELECTRICAL CONSTRAINTS on the maximum deliverable power is essential to protect lithium-ion batteries from over- charge Terminal voltage Voc Open circuit voltage of a battery 1 INTRODUCTION Lithium-ion batteries have been used

  11. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01

    IN HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki andAFM Introduction Lithium-ion batteries are being seriously

  12. Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy...

  13. Better Lithium-Ion Batteries Are On The Way From Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss,...

  14. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01

    environment of the lithium- ion battery. The model, in bothlithium-ion batteries. The model shows how the cell is transformed upon overcharge from a battery

  15. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  16. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    liquids in lithium-ion battery test systems J. Salminen a,a detrimental effect on battery performance. Introductionat 25 o C, sufficient for battery applications. The measured

  17. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes -...

  18. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

  19. Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization

    E-Print Network [OSTI]

    Subramanian, Venkat

    Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization sources such as lithium-ion batteries have had significant improvements in design, modeling, and operating

  20. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  1. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,

    E-Print Network [OSTI]

    Cui, Yi

    Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance for higher specific energy lithium ion batteries for applications such as electric vehicles, next generation

  2. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

  3. Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery an experimental parameter iden- tification and validation for an electrochemical lithium-ion battery model. The identification procedure is based on experimental data collected from a 6.8 Ah lithium-ion battery during charge

  4. Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z

    E-Print Network [OSTI]

    Popov, Branko N.

    Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

  5. Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications C. Speltino, D. Di Domenico, G. Fiengo and A. Stefanopoulou Abstract-- Lithium-ion batteries are the core of new plug (HEV). In most cases the lithium-ion battery performances play an important role in the vehicle energy

  6. Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations

    E-Print Network [OSTI]

    Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery decomposition POD for a physics-based lithium-ion battery model. The methodology to obtain the proper orthogonal modes and to analyze their optimality is included. The POD-based ROM for a lithium-ion battery is used

  7. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

  8. Cubic Spline Regression for the Open-Circuit Potential Curves of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Cubic Spline Regression for the Open-Circuit Potential Curves of a Lithium-Ion Battery Qingzhi Guo-circuit potential OCP of an inter- calation electrode in a lithium-ion battery on the lithium concentra- tion reaction at an electrode in a lithium- ion battery depends exponentially on the difference between

  9. Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles

    E-Print Network [OSTI]

    Sastry, Ann Marie

    Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode sur- faces in postmortem analysis of batteries.5-7 Stress generation results from lithium-ion, as will be discussed later. Heat transfer analyses of lithium-ion batteries have stemmed from work on full cells.10

  10. Journal of Power Sources 150 (2005) 229239 Analysis of capacity fade in a lithium ion battery

    E-Print Network [OSTI]

    2005-01-01

    Journal of Power Sources 150 (2005) 229­239 Analysis of capacity fade in a lithium ion battery determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery; Lithium ion batteries 1. Introduction and motivation Theoverallperformanceofbatteriesdeterioratesovertime

  11. 2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING

    E-Print Network [OSTI]

    Braun, Paul

    1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

  12. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes

    E-Print Network [OSTI]

    Cui, Yi

    Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes Hui Wu, Guangyuan ABSTRACT: Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long materials for lithium-ion batteries (Li-ion).1,2 In particular, they have focused on conversion oxides,1

  13. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models, Berkeley, California 94720-8168, USA Lithium-ion batteries are typically modeled using porous electrode the active materials of porous electrodes for a pseudo-two- dimensional model for lithium-ion batteries

  14. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode

    E-Print Network [OSTI]

    Zhou, Chongwu

    Nano Res 1 Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode Titanium Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode JiepengRong,,§Xin Fang Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode Jiepeng Rong,1,§ Xin Fang,1,§ Mingyuan Ge,1

  15. Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions

    E-Print Network [OSTI]

    Subramanian, Venkat

    Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary of physics-based lithium-ion battery models to improve computational efficiency. While the additional steps, 2008. Published January 30, 2009. Mathematical modeling of lithium-ion batteries involves

  16. Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method

    E-Print Network [OSTI]

    Papalambros, Panos

    Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

  17. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Suo, Zhigang

    Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

  18. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

    E-Print Network [OSTI]

    Zhu, Ting

    Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

  19. AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS

    E-Print Network [OSTI]

    Peng, Huei

    AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS electrochemical properties and aging status. INTRODUCTION With the widespread use of lithium-ion batteries the com- plex battery physical behavior during the lithium-ion intercalac- tion/deintercalation process

  20. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  1. Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy

    E-Print Network [OSTI]

    Subramanian, Venkat

    Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

  2. Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances

    E-Print Network [OSTI]

    Boyer, Edmond

    Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

  3. Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a

    E-Print Network [OSTI]

    Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a , Christopher D Available online 28 June 2007 Abstract Lithium ion (Li-ion) batteries provide high energy and power density dynamics (i.e. state of charge). Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery

  4. Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes Yun Jung as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study

  5. Proton-Induced Dysfunction Mechanism of Cathodes in an Aqueous Lithium Ion Battery

    E-Print Network [OSTI]

    Gong, Xingao

    Proton-Induced Dysfunction Mechanism of Cathodes in an Aqueous Lithium Ion Battery Qiang Shu, Long: The proton-induced dysfunction mechanism of cathodes in aqueous lithium ion batteries is investigated of the Li+ and H+ in the solution. Lithium ion batteries (LIBs) have been proved to be com- mercially

  6. Non-aqueous electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  7. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart

  8. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smartA

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smartAA

  10. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  11. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with

    E-Print Network [OSTI]

    Qi, Limin

    Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries structures, lithium-ion batteries ABSTRACT A general method for facile kinetics-controlled growth of aligned material for lithium-ion batteries. 1 Introduction Lithium-ion batteries (LIBs) have been considered

  12. Facile Synthesis of Free-Standing Silicon Membranes with Three-Dimensional Nanoarchitecture for Anodes of Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    for Anodes of Lithium Ion Batteries Fan Xia, Seong Been Kim, Huanyu Cheng, Jung Min Lee, Taeseup Song that is capable of accommodating the large volume changes associated with lithiation in lithium ion battery-performance lithium ion batteries. KEYWORDS: Silicon, lithium ion batteries, 3D membrane, volume expansion The demand

  13. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion

  14. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon in energy storage has stimulated significant interest in lithium ion battery research. The lithium ionPorous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge

  15. Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery Fei YAO LPICM-École Polytechnique POLYTECHNIQUE Spécialité: Physique Par Fei YAO Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery #12;I ABSTRACT In this thesis work, carbon-based nanomaterials using as an anode for lithium ion

  16. Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries

    E-Print Network [OSTI]

    Lithium Ion Batteries D. Zakhidov,1,2 R. Sugamata,3 T. Yasue,3 T. Hayashi,3 Y. A. Kim,3 and M. Endo4 1 successful anode for lithium ion batteries due to its low cost, safety, and ease of fabrication, but higher are expected to surpass conventional graphite anodes due to larger number of edges for lithium ion

  17. Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy

    E-Print Network [OSTI]

    Milgram, Paul

    Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices materials during the charging/discharging process. However, in previous graphene based LIB battery research

  18. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  19. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect (OSTI)

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  20. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  1. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  2. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  3. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  4. A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System

    E-Print Network [OSTI]

    Popov, Branko N.

    A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System Godfrey those of high-energy battery systems such as lithium ion. Al- though advanced battery systems and double the performance of a battery/electrochemical capacitor-hybrid system has been developed. Simulation results

  5. Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented

    E-Print Network [OSTI]

    #12;Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented by Kejie Zhao, Joost J. Vlassak Kejie Zhao Mechanics of Electrodes in Lithium-ion Batteries Abstract This thesis investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery

  6. he mobile world depends on lithium-ion batteries --today's ultimate

    E-Print Network [OSTI]

    Napp, Nils

    T he mobile world depends on lithium- ion batteries -- today's ultimate rechargeable energy store -- a performance roughly on a par with the best Li-ion batteries. His batteries are based on lithium­sulphur (Li is applied to reverse the electron flow, which also drives the lithium ions back. In a Li­S battery

  7. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  8. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    to 1) - a New Cathode Material for Batteries of High- Energyefforts to develop new high-energy materials such as silicon

  9. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    when exploring new materials for high-energy lithium ionA new cathode material for batteries of high energy density.

  10. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Graphite and LiCoO 2 are the most commonly employed negative and positive electrodes, respectively, for lithium ion batteries.

  11. Electrolytes for Use in High Energy Lithium-Ion Batteries with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range 2012 DOE Hydrogen and Fuel Cells Program...

  12. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  13. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  14. Electronically conductive polymer binder for lithium-ion battery electrode

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  15. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  16. Ether sulfones with additives for electrolytes in rechargeable lithium ion batteries

    E-Print Network [OSTI]

    Angell, C. Austen

    Ether sulfones with additives for electrolytes in rechargeable lithium ion batteries Xiao-Guang Sun in rechargeable lithium ion battery [1-5]. In a previous publication [6] we described a series of ether sulfones electrolytes, can yield lithium button cells ?batteries with very favorable characteristics. (Refs to VC

  17. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries; Irreversible capacity; Anode material; Lithium-ion batteries 1. Introduction To ensure long cycle life for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

  18. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models materials of porous electrodes for a rigorous pseudo-2D model for lithium-ion batteries. Concentration in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One

  19. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  20. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery

    E-Print Network [OSTI]

    Endres. William J.

    Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our.1063/1.3643035] Lithium-ion batteries are of great interest due to their high energy density, however, various safety

  1. Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including present day portable consumer electronics and large-scale energy storage. Realization of these batteries

  2. Intercalation dynamics in lithium-ion batteries

    E-Print Network [OSTI]

    Burch, Damian

    2009-01-01

    A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

  3. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  4. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Rechargeable Sodium-Ion Batteries: Potential Alternatives toCurrent Lithium-Ion Batteries. Adv. Energy Mater. 2 (2012):J. , Rojo, T. Na-ion Batteries, Recent Advances and Present

  5. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    E-Print Network [OSTI]

    Shim, J.; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01

    Cathode for Lithium-Ion Batteries J. Shim a , A. Guerfi b ,material for Li rechargeable batteries because of low-cost,is a part of BATT (Batteries for Advanced Transportation

  6. Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems

    E-Print Network [OSTI]

    Kolesnikov-Lindsey, Rachel

    FePO? lithium ion batteries that have cathodes constructed by viruses are scaled up in size to examine potential for use as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled ...

  7. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    for a 2 V Rechargeable Lithium Battery. Journal of Thein a rechargeable lithium battery. Journal of Power Sourcesexception being the lithium-ion battery (Table 2.1). Table

  8. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  9. It's getting hot in here : temperature gradients in lithium-ion battery packs

    E-Print Network [OSTI]

    Niewood, Benjamin

    2015-01-01

    A 5 channel, 40A battery cycler was constructed for the purpose of carrying out thermal studies on Lithium-ion battery packs. Boston Power Swing Key 442 battery blocks were tested to determine the magnitude of the temperature ...

  10. Towards a lithium-ion fiber battery

    E-Print Network [OSTI]

    Grena, Benjamin (Benjamin Jean-Baptiste)

    2013-01-01

    One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

  11. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

  12. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  13. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect (OSTI)

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low?temperature heat treatment process for natural graphite based anode materials for high?capacity and long?cycle?life lithium ion batteries. Three major problems currently plague state?of?the?art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat?treated well in excess of 2000°C. Because of this high?temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state?of?the?art anodes based on artificial graphites, which is only about 200?350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell?voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat?treated to a substantially lower temperature (as low as 1000?1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post?treatment processes were developed that are amenable to scaling to automotive quantities.

  14. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  15. Bifunctional Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Lithium-Ion Battery Recycling Facilities

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01

    HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim, Azucenaof rechargeable lithium batteries for application in hybridin consumer-size lithium batteries, such as the synthetic

  18. Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

    2010-11-01

    This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

  19. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

  20. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

    E-Print Network [OSTI]

    Cui, Yi

    Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasing storage capacity (theoretical values of 4200 vs 372 mAh/g for graphite). How- ever, the insertion

  1. Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

  2. Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea

    E-Print Network [OSTI]

    Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph scanning calorimeter; Lithium ion batteries; Electrolyte; Thermal stability; Decomposition 1. Introduction Despite the improvement and developments in safety of the lithium ion batteries (PTC, CID, shutdown

  3. Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random microstructures of lithium-ion battery anodes, which can serve as input for the simulations. We introduce the use; 1. Introduction Lithium-ion batteries used in electric vehicles need to fulfill a number

  4. Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman-- In this paper an averaged electrochemical lithium- ion battery model, presented and discussed in [2] and [3 estimation. I. INTRODUCTION Lithium-ion batteries play an important role in the area of hybrid vehicle design

  5. Role of Surface Oxides in the Formation of Solid-Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Webb, Lauren J.

    for Lithium-Ion Batteries Kjell W. Schroder,,,§ Anthony G. Dylla,,§ Stephen J. Harris, Lauren J. Webb electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits of the SEI. KEYWORDS: lithium-ion batteries, solid-electrolyte interphase, SEI, TOF-SIMS, XPS, PCA 1

  6. Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer

    E-Print Network [OSTI]

    Subramanian, Venkat

    , but was lower at later cycles. The temperature that optimizes the active surface in a lithium-ion battery. Published February 14, 2011. Rechargeable lithium-ion batteries have been extensively used in mobile-discharge rate. The lithium-ion battery is also promising for electric (plug-in and hybrid) vehicles

  7. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter

  8. Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract-- Lithium-ion battery hybrid electric vehicles (HEV). In most cases the lithium-ion battery performance plays an important role

  9. Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density

    E-Print Network [OSTI]

    Subramanian, Venkat

    Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries Keywords: Lithium-ion batteries Model-based design Optimization Physics based reformulated model a b s t r for porous electrodes that are commonly used in advanced batteries such as lithium-ion systems. The approach

  10. Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo

    E-Print Network [OSTI]

    Suo, Zhigang

    Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

  11. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

  12. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode

    E-Print Network [OSTI]

    Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been- face, which is critical to the cycle life and calendar life of lithium- ion batteries.1,2 Unfortunately

  13. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  14. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  15. Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overcoming...

  16. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  17. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  18. Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Stanford University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wiring up silicon...

  19. Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

  1. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  2. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  3. Vehicle Technologies Office Merit Review 2015: Low?Cost, High?Capacity Lithium Ion Batteries through Modified Surface and Microstructure

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low?cost, high?capacity...

  4. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  5. Optimization of a Single Lithium-ion Battery Cell with a Gradient-based Algorithm , Wenbo Dua

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimization of a Single Lithium-ion Battery Cell with a Gradient-based Algorithm Nansi Xuea for optimal cell designs are independent of discharge rate. Keywords Lithium ion battery Porous electrode for automating the design of lithium-ion cells to maximize cell energy density while meeting specific power

  6. Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2009-05-01

    Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

  7. Graphite Foams for Lithium-Ion Battery Current Collectors

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

    2007-01-01

    Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

  8. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  9. Lithium Ion Electrode Production NDE and QC Considerations |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Secondary Batteries Vehicle Technologies Office Merit Review 2015: Electrode Coating Defect Analysis and Processing NDE for High-Energy Lithium-Ion Batteries Roll-to-Roll...

  10. On Uncertainty Quantification of Lithium-ion Batteries

    E-Print Network [OSTI]

    Hadigol, Mohammad; Doostan, Alireza

    2015-01-01

    In this work, a stochastic, physics-based model for Lithium-ion batteries (LIBs) is presented in order to study the effects of model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed uncertainty quantification (UQ) approach, based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobol' indices. Such information aids in designing more efficient and targeted quality control procedures, which consequently may result in reducing the LIB production cost. An LiC$_6$/LiCoO$_2$ cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates is considered to study the performance and accuracy of the proposed UQ approach. The results suggest that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance variability of the ce...

  11. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis

    E-Print Network [OSTI]

    Meier, Joseph D. (Joseph David)

    2013-01-01

    A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

  12. Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity

    E-Print Network [OSTI]

    Hill, Richard Lee, Sr

    2011-01-01

    The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

  13. Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries

    E-Print Network [OSTI]

    Davis, Robin M. (Robin Manes)

    2005-01-01

    Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

  14. Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries

    E-Print Network [OSTI]

    Moore, Charles J. (Charles Jacob)

    2012-01-01

    A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

  15. Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

  16. Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery

    E-Print Network [OSTI]

    Hua, Xiao; Robert, Rosa; Du, Lin-Shu; Wiaderek, Kamila M.; Leskes, Michal; Chapman, Karena W.; Chupas, Peter J.; Grey, Clare P.

    2014-06-11

    Conversion materials for lithium ion batteries have recently attracted considerable attention due to their exceptional specific capacities. Some metal fluorides, such as CuF2, are promising candidates for cathode materials owing to their high...

  17. Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

  18. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Braatz, Richard D.

    Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

  19. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  20. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    a Loan and Grant to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No Significant Impact...

  1. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    electrodes, full cells and batteries (sets of full cells) under a variety of operating conditions (e and batteries (sets of full cells) to simulate various operating conditions like cyclic voltammetry, constantMathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W

  2. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    Weidner, John W.

    Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W of lithium and nickel battery systems developed at the University of South Carolina is presented. Models of Li/Li-ion batteries are reviewed that simulated the behavior of single electrode particles, single

  3. Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries Basker as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific have been studied as anodes for the Li-ion battery. Carbon based anodes have many desirable properties

  4. Computational Research on Lithium Ion Battery Materials A Dissertation Submitted to the Graduate Faculty of

    E-Print Network [OSTI]

    Holzwarth, Natalie

    Computational Research on Lithium Ion Battery Materials by Ping Tang A Dissertation Submitted Research interest in lithium battery materials 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LiFePO4 battery material . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Why LiFePO4

  5. High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

  6. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive 48128, USA h i g h l i g h t s Proposed a dynamic universal battery model based on second-order RC a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness

  7. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio (>700 Wh/kg) cathode materials for lithium-ion batteries. 1 Introduction The widespread use of lithium compounds. Testing previously known lithium-containing compounds for battery properties can lead

  8. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double Layer on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium is used because of its high surface area. Lithium-ion Batteries ·Higher energy density than other

  9. Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Suo, Zhigang

    Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium batteries.3 A lithium-ion battery contains an electrolyte and two electrodes. Each electrode is an atomic

  10. Power and capacity fade mechanism of LiNi0.8Co0.15Al0.0502 composite cathodes in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2003-01-01

    IN HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki andAFM Introduction Lithium-ion batteries are being seriously

  11. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  12. Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity

    E-Print Network [OSTI]

    Qu, Hang; Tang, Yufeng; Semenikihin, Oleg; Skorobogatiy, Maksim

    2015-01-01

    A flexible, light weight and high conductivity current collector is the key element that enables fabrication of high performance flexible lithium ion battery. Here we report a thin, light weight and flexible lithium ion battery that uses graphite paper enhanced with a nano-sized metallic layers as the current collector, LiFePO4 and Li4Ti5O12 as the cathode and anode materials, and PE membrane soaked in LiPF6 as a separator. Using thin and flexible graphite paper as a substrate for the current collector instead of a rigid and heavy metal foil enables us to demonstrate a very thin Lithium-Ion Battery into ultra-thin (total thickness including encapsulation layers of less than 250 {\\mu}m) that is also light weight and highly flexible.

  13. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq

    E-Print Network [OSTI]

    Peng, Huei

    On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium-ion and life cycle. In this paper, we focus on the identification of Li-ion battery capacity fading

  14. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    E-Print Network [OSTI]

    Kim, Jun Young

    This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

  15. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

  16. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Suo, Zhigang

    Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume strength. © 2011 American Institute of Physics. doi:10.1063/1.3525990 Lithium-ion batteries

  17. Facile and Green Preparation for the Formation of MoO2GO Composites as Anode Material for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    as an anode material for lithium-ion batteries, the MoO2-GO composites exhibited an improved storage capacity for lithium-ion batteries. 1. INTRODUCTION With the fast-growing demand on petroleum resources and gaseous cycling life, and environmental benignity, lithium- ion batteries (LIBs) have been regarded as one

  18. Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized vanadium oxide, nanobelts, sol-gel, lithium-ion batteries, long-term stability 1. INTRODUCTION Because of their high energy density, long life cycle, environmentally benign, lithium ion batteries (LIBs) have been

  19. High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage

    E-Print Network [OSTI]

    High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large, United States *S Supporting Information ABSTRACT: Hybrid magnesium-lithium-ion batteries (MLIBs magnesium-lithium-ion batteries (MLIBs), energy storage, Coulombic efficiency, dendrite-free magnesium

  20. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    in commercial lithium-ion batteries for both cathodes e.g., LiCoO2 and anodes e.g., graphite . By contrastInelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume

  1. PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using. INTRODUCTION Lithium-ion battery is the core of new plug-in hybrid- electrical vehicles (PHEV) as well transient loads [22]. The importance of lithium-ion battery has grown in the past years. Based

  2. Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles

    E-Print Network [OSTI]

    Fu, Haitao

    2009-01-01

    In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

  3. Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells

    E-Print Network [OSTI]

    Campbell, John Earl, Jr

    2012-01-01

    The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

  4. Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

    2011-01-01

    This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

  5. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Turner, John A; Allu, Srikanth; Elwasif, Wael R; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-01-01

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  6. High Performance Silicon Monoxide (SiO) Electrode for Next Generation Lithium Ion Batteries

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-02-27

    Berkeley Lab’s High Performance Silicon Monoxide Electrode has a capacity retention of more than 90% after ~500 cycles, which translates into a ~20% improvement over the limited energy density of conventional graphite anode-based lithium-ion batteries, enabling next-generation mobile electronics and electric/plug-in vehicles....

  7. Doped LiFePO? cathodes for high power density lithium ion batteries

    E-Print Network [OSTI]

    Bloking, Jason T. (Jason Thompson), 1979-

    2003-01-01

    Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

  8. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  9. Si composite electrode with Li metal doping for advanced lithium-ion battery

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  10. Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z

    E-Print Network [OSTI]

    Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z Premanand Ramadass model of solvent diffusion describing the growth of solid-electrolyte inter- faces SEIs in Li-ion cells incorporating carbon anodes. The model assumes that a reactive solvent component diffuses through the SEI

  11. Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns*, Ruthvik Basavaraj**, Venkatasailanathan Ramadesigan***, Folarin Latinwo**, Ravi N. Methekar***,

    E-Print Network [OSTI]

    Subramanian, Venkat

    Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns- + 6C LixC6 Lithium-ion battery, chemistry and reactions Electric motor Engine Fuel tank Electric, military, mobile applications, and space. Lithium-ion chemistry has been identified as the preferred

  12. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  13. Vehicle Technologies Office Merit Review 2015: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about utilization of UV or...

  14. Vehicle Technologies Office Merit Review 2014: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the utilization of UV...

  15. Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing

    E-Print Network [OSTI]

    Mueller, Tim

    Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory ...

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing...

  17. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    into the battery market. Therefore the standard carbonaceouselectric vehicle demand market in our modern life, the

  18. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  19. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; Shih, Orion; Rizzuto, Anthony M.; Borodin, Oleg; Harris, Stephen J.; Prendergast, David; Saykally, Richard J.

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte.more »By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less

  20. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  1. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect (OSTI)

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large?scale electroless deposition and photonic annealing processes associated with making all?solid?state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de?emphasized the importance of annealing of the solid?state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All?solid?state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all?solid?state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid?state electrolyte layers currently require about 30?60 minutes at 700?800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all?solid?state lithium ion batteries are only suited for small?scale, low?power cells and involve high?temperature vacuum techniques. Stabilized LiNixMnyCozAl1?x?y?zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this high?voltage (i.e. 5 V) cathode material was the focus of the project. ORNL had also shown in prior work that photonic annealing can be used to anneal conventionally coated cathode metal oxide structures into the active crystalline phase. Planar Energy Devices also had demonstrated SPEED with solid electrolyte layers consisting of LiGaAlSPO4 prior to the start of the project.

  2. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Offices DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are...

  3. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in Pasadena, CA...

  4. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    Mellor-Crummey, John

    The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have on their respective efficiencies. We will measure the current capacity of the Li-ion battery and the capacitance

  5. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    SciTech Connect (OSTI)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead–acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling and ensure that economical and sustainable options are available at the end of the batteries' useful life.

  6. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead–acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmore »ensure that economical and sustainable options are available at the end of the batteries' useful life.« less

  7. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  8. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn?O?). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn?O? as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  9. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  10. Lithium-ion battery diagnostic and prognostic techniques

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  11. A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring $

    E-Print Network [OSTI]

    Peng, Huei

    A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important

  12. Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium the electrodes to deform. An electrode is often composed of small active particles in a matrix. If the battery

  13. The lithium-ion battery industry for electric vehicles

    E-Print Network [OSTI]

    Kassatly, Sherif (Sherif Nabil)

    2010-01-01

    Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

  14. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Coated porous carbon cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Klett, James William [ORNL

    2008-01-01

    Coated porous carbon cathodes for automotive lithium batteries are being developed with the goal of overcoming the problems with capacity fade and poor thermal management in conventional polymer-bonded cathodes. The active cathode material (lithium iron phosphate nanoparticles) is carbon-bonded to the porous carbon support material. Cathodes have been developed with high specific energy and power and with good cycling behavior.

  16. 1614 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 4, MAY 2014 The State of Charge Estimation of Lithium-Ion

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer Jun Xu, Student Member, IEEE--With the development of electric drive vehicles (EDVs), the state-of-charge (SOC) estimation for lithium-ion (Li of lithium-ion batteries in EDVs. The structure of the proposed PI observer is analyzed, and the con

  17. Vehicle Technologies Office Merit Review 2015: Electrode Coating Defect Analysis and Processing NDE for High-Energy Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrode...

  18. Vehicle Technologies Office Merit Review 2015: IR Thermography as a Non-Destructive Evaluation (NDE) Tool for Lithium-Ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about IR thermography...

  19. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  20. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  1. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  2. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  3. Approach to make macroporous metal sheets as current collectors for lithium-ion batteries

    SciTech Connect (OSTI)

    Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Li, Xiaohong S.; Bennett, Wendy D.; Bonham, Charles C.; Zhang, Jiguang

    2010-05-05

    A new approach and simple method is described to produce macroporous metal sheet as current collector for anode in lithium ion battery. This method, based on slurry blending, tape casting, sintering, and reducing of metal oxides, produces a uniform, macroporous metal sheet. Silicon film sputter-coated on such porous copper substrate shows much higher capacity and longer cycle life than on smooth Cu foil. This methodology produces very limited wastes and is also adaptable to many other materials. It is easy for industrial scale production.

  4. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  5. Development of Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Expanding U.S.-based Lithium-ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Layered cathode materials for lithium ion rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  9. for Lithium Ion Batteries Dunn, Jennifer B.; James, Christine...

    Office of Scientific and Technical Information (OSTI)

    Gallagher, Kevin Argonne National Laboratory (ANL) USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Vehicle Technology United States 2014-09-30 English...

  10. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es006gardner2011p.pdf More Documents & Publications Advanced...

  11. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  12. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10??m were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  13. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  14. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode

    E-Print Network [OSTI]

    Angell, C. Austen

    Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including 2014 Available online 27 March 2014 Keywords: Lithium ion battery Sulfone-based electrolytes High in the performance (safety, energy density, and power) of the standard lithium ion batteries e which approach

  15. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es006gardner2010o.pdf More Documents &...

  16. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming, E-mail: zhouyiming@njnu.edu.cn; Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup ?1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup ?1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup ?1})

  17. Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Barsukov, Igor V.

    2002-12-10

    Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

  18. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn?O? Single Crystals for High Performance Lithium-Ion Batteries

    E-Print Network [OSTI]

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-10-06

    Bicontinuous hierarchically porous Mn?O? single crystals (BHP-Mn?O?-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn?O?-SCs...

  19. Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries

    E-Print Network [OSTI]

    Ransil, Alan Patrick Adams

    2013-01-01

    Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

  20. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  1. Some comments on the Butler-Volmer equation for modeling Lithium-ion batteries

    E-Print Network [OSTI]

    Ramos, A M

    2015-01-01

    In this article the Butler-Volmer equation used in describing Lithium-ion (Li-ion) batteries is discussed. First, a complete mathematical model based on a macro-homogeneous approach developed by Neuman is presented. Two common mistakes found in the literature regarding a sign in a boundary conditions and the use of the transfer coefficient are mentioned. The paper focuses on the form of the Butler-Volmer equation in the model. It is shown how practical problems can be avoided by taking care in the form used, particularly to avoid difficulties when the solid particle in the electrodes approaches a fully charged or discharged state or the electrolyte gets depleted. This shows that the open circuit voltage and the exchange current density must depend on the lithium concentration in both the solid and the electrolyte in a particular way at the extremes of the concentration ranges.

  2. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries

    E-Print Network [OSTI]

    Leung, Kevin; Foster, Michael E; Ma, Yuguang; del la Hoz, Julibeth M Martinez; Sai, Na; Balbuena, Perla B

    2014-01-01

    Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implication...

  3. On the well-posedness of a mathematical model for Lithium-ion batteries

    E-Print Network [OSTI]

    Angel Manuel Ramos

    2015-05-29

    In this article we discuss the well-posedness of a mathematical model that is used in the literature for the simulation of Lithium-ion (Li-ion) batteries. First, a mathematical model based on a macro-homogeneous approach is presented, following previous works. Then it is showed, from a physical and a mathematical point of view, that a boundary condition widely used in the literature is not correct. Although these errors could be just sign typos (that can be explained as carelessness over d/d$x$ versus d/d$n$, with $n$ the outward unit vector) and authors using this model probably use the correct boundary condition when they solve it in order to do simulations, readers should be aware of the right choice. Therefore, the deduction of the correct boundary condition and a mathematical study of the well-posedness of the corresponding problem is carried out here.

  4. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  5. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    of the different lithium battery chemistries are presentedMiller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy density

  6. Technological assessment and evaluation of high power batteries and their commercial values

    E-Print Network [OSTI]

    Teo, Seh Kiat

    2006-01-01

    Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

  7. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    SciTech Connect (OSTI)

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; Shih, Orion; Rizzuto, Anthony M.; Borodin, Oleg; Harris, Stephen J.; Prendergast, David; Saykally, Richard J.

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte. By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.

  8. Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation

    E-Print Network [OSTI]

    Northrop, Paul W. C.

    Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

  9. Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y. Sun, S. X. Du, H.-J. Gao, and S. B. Zhang

    E-Print Network [OSTI]

    Gao, Hongjun

    Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y of electrode nanomaterials in lithium-ion battery: The effects of surface stress J. Appl. Phys. 112, 103507://apl.aip.org/about/rights_and_permissions #12;Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang,1,2 Y

  10. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    Wilcox, James D.

    2008-12-18

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

  11. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries

    E-Print Network [OSTI]

    Kevin Leung; Susan B. Rempe; Michael E. Foster; Yuguang Ma; Julibeth M. Martinez del la Hoz; Na Sai; Perla B. Balbuena

    2014-01-17

    Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implications of these reactions to silicon-anode based LIB are discussed.

  12. Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Harrison, Katharine L; Bridges, Craig A; Segre, C; VernadoJr, C Daniel; Applestone, Danielle; Bielawski, Christopher W; Paranthaman, Mariappan Parans; Manthiram, Arumugam

    2014-01-01

    The theoretical capacity of LiVOPO4 could be increased from 159 to 318 mAh/g with the insertion of a second Li+ ion into the lattice to form Li2VOPO4, significantly enhancing the energy density of lithium-ion batteries. The changes accompanying the second Li+ insertion into -LiVOPO4 and -LiVOPO4 are presented here at various degrees of lithiation, employing both electrochemical and chemical lithiation. Inductively coupled plasma, X-ray absorption spectroscopy, and Fourier transform spectroscopy measurements indicate that a composition of Li2VOPO4 could be realized with an oxidation state of V3+ by the chemical lithiation process. The accompanying structural changes are evidenced by X-ray and neutron powder diffraction. Spectroscopic and diffraction data collected with the chemically lithiated samples as well as diffraction data on the electrochemically lithiated samples reveal that significant amount of lithium can be inserted into -LiVOPO4 before a more dramatic structural change occurs. In contrast, lithiation of -LiVOPO4 is more consistent with the formation of a two-phase mixture throughout most of the lithiation range. The phases observed with the ambient-temperature lithiation processes presented here are significantly different from those reported in the literature.

  13. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2014-03-15

    Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

  14. Transformation from hollow carbon octahedra to compressed octahedra and their use in lithium-ion batteries

    SciTech Connect (OSTI)

    Mei, Tao; Li, Na; Li, Qianwen; Xing, Zheng; Tang, Kaibin; Zhu, Yongchun [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)] [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qian, Yitai, E-mail: ytqian@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China) [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Shen, Xiaoyan [Jiangsu Highstar Battery Manufacturing CO., LTD (China)] [Jiangsu Highstar Battery Manufacturing CO., LTD (China)

    2012-06-15

    Graphical abstract: Schematic illustration of the transformation process from hollow carbon octahedra into deflated balloon-like compressed hollow carbon octahedra ?. Highlights: ? We demonstrate the in situ template synthesis of hollow carbon octahedra. ? The shell thickness of hollow carbon octahedra is only 2.5 nm. ? Morphology transformation could be realized by extending of reaction time. ? The hollow structures show reversible capacity as 353 mAh g{sup ?1} after 100 cycles. -- Abstract: Hollow carbon octahedra with an average size of 300 nm and a shell thickness of 2.5 nm were prepared by a reaction starting from ferrocene and Mg(CH{sub 3}COO){sub 2}·4H{sub 2}O at 700 °C for 10 h. They became compressed and turned into deflated balloon-like octahedra when the reaction time was increased to 16 h. It was proposed that the gas pressure generated during the reaction process induced the transformation from broken carbon hollow octahedra into deflated balloon-like compressed octahedra. X-ray powder diffraction and Raman spectroscopy indicate that the as-obtained carbon products possess a graphitic structure and high-resolution transmission electron microscopy images indicate that they have low crystallinity. Their application as an electrode shows reversible capacity of 353 mAh g{sup ?1} after 100 cycles in the charge/discharge experiments of secondary lithium ion batteries.

  15. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gapsmore »in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.« less

  16. Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes

    E-Print Network [OSTI]

    graphite foam (UGF), loaded with lithium iron phosphate (LFP), as a cathode in a lithium ion battery in lithium ion batteries. Moreover, preparation of the UGF electrode was facile, cost-dimensional electrode, conductive network, lithium ion battery Advanced battery technologies are known to suffer from

  17. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  18. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect (OSTI)

    Liao, Chen [ORNL; Shao, Nan [ORNL; Bell, Jason R [ORNL; Guo, Bingkun [ORNL; Luo, Huimin [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2013-01-01

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  19. Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator

    E-Print Network [OSTI]

    Singh, Jayant K.

    -based nanocomposite material for lithium-ion electrolyte battery separator Ajit K. Sharma a , Prateek Khare a , Jayant with the web of carbon microfibers and carbon nanofibers is developed as lithium (Li)-ion electrolyte battery acetate to produce polyvinyl alcohol gel, ball-milling of the surfactant dispersed carbon micro

  20. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  1. Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperature or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic

    E-Print Network [OSTI]

    Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperature for Lithium-Ion Battery Solid Electrolytes Ting Yang Advisor: Dr. Candace K. Chan July 11, 2012; 2:00 PM; ISTB was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium

  2. Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models

    SciTech Connect (OSTI)

    Suthar, B; Northrop, PWC; Braatz, RD; Subramanian, VR

    2014-07-30

    This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery by restricting the intercalation-induced stresses to a pre-determined limit estimated using a pseudo 2-dimensional (P2D). model. This paper focuses on the problem of maximizing the charge stored in a given time while restricting capacity fade due to intercalation-induced stresses. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage or CC-CV) are not derived by considering capacity fade mechanisms, which are not only inefficient in terms of life-time usage of the batteries but are also slower by not taking into account the changing dynamics of the system. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

  3. Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

    2014-10-01

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

  4. A disiloxane-functionalized phosphonium-based ionic liquid as electrolyte for lithium-ion batteries

    SciTech Connect (OSTI)

    Weng, Wei [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Lu, Jun [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.

    2011-01-01

    A disiloxane-functionalized ionic liquid based on a phosphonium cation and a bis(trifluoromethylsulfonyl)imide (TFSI) anion was synthesized and characterized. This new ionic liquid electrolyte showed good stability with a lithium transition metal oxide cathode and a graphite anode in lithium ion cells.

  5. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    film lithium and lithium-ion batteries. Solid State Ionicselectrolytes for lithium-ion batteries. Advanced Materialsand side reactions in lithium-ion batteries. Journal of the

  6. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

  7. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  8. Porous Co{sub 3}O{sub 4} nanorods as anode for lithium-ion battery with excellent electrochemical performance

    SciTech Connect (OSTI)

    Guo, Jinxue; Chen, Lei; Zhang, Xiao Chen, Haoxin

    2014-05-01

    In this manuscript, porous Co{sub 3}O{sub 4} nanorods are prepared through a two-step approach which is composed of hydrothermal process and heating treatment as high performance anode for lithium-ion battery. Benefiting from the porous structure and 1-dimensional features, the product becomes robust and exhibits high reversible capability, good cycling performance, and excellent rate performance. - Graphical abstract: 1D porous Co{sub 3}O{sub 4} nanostructure as anode for lithium-ion battery with excellent electrochemical performance. - Highlights: • A two-step route has been applied to prepare 1D porous Co{sub 3}O{sub 4} nanostructure. • Its porous feature facilitates the fast transport of electron and lithium ion. • Its porous structure endows it with capacities higher than its theoretical capacity. • 1D nanostructure can tolerate volume changes during lithation/delithiation cycles. • It exhibits high capacity, good cyclability and excellent rate performance.

  9. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for...

  10. Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST)

    E-Print Network [OSTI]

    Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST) C O L L A B O R A T O R To fabricate a single nanowire Li-ion battery and observe it charging and discharging. K E Y A C C O M P L I S H M E N T S Designed, fabricated, and tested complete Li-ion nanowire batteries measuring

  11. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Sacci, Robert L [ORNL] [ORNL; Adamczyk, Leslie A [ORNL] [ORNL; Alsem, Daan Hein [Hummingbird Scientific] [Hummingbird Scientific; Dai, Sheng [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; More, Karren Leslie [ORNL] [ORNL

    2014-01-01

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  12. Optimization of Acetylene Black Conductive Additive and Polyvinylidene Difluoride Composition for High Power Rechargeable Lithium-Ion Cells

    E-Print Network [OSTI]

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-01-01

    G. M. Ehrlich, Lithium-ion Batteries, 3rd ed ed. (McGraw-Introduction Lithium-ion rechargeable batteries are a prime

  13. The Lithium-Ion Cell: Model, State Of Charge Estimation

    E-Print Network [OSTI]

    Schenato, Luca

    The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher. Di Domenico, A. Stefanopoulou, and G. Fiengo., Reduced Order Lithium-ion Battery Electrochemical

  14. Comprehensive Study of the Conversion Reaction Mechanism for CuF2 as a Cathode Material for Lithium-ion Batteries

    E-Print Network [OSTI]

    Jackson, Sophie

    Comprehensive Study of the Conversion Reaction Mechanism for CuF2 as a Cathode Material for Lithium-ion Batteries Xiao Hua1,2, Rosa Robert1, Lin-Shu Du2, Kamila M. Wiaderek3, Michal Leskes1, Karena W. Chapman3

  15. Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance Lithium Ion Batteries

    E-Print Network [OSTI]

    Lin, Zhiqun

    Partially Crystalline Zn2GeO4 Nanorod/Graphene Composites as Anode Materials for High Performance-step hydrothermal processing. Crystalline and amorphous regions were found to coexist in a single Zn2GeO4 nanorod then utilized as anodes for lithium ion batteries (LIBs). Intriguingly, partially crystalline ZGC containing 10

  16. [11] Cui L, Hu L, Choi JW, Cui Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.

    E-Print Network [OSTI]

    for anodes of lithium ion batteries. ACS Nano 2010;4:3671­8. [12] Krivchenko VA, Pilevsky AA, Rakhimov AT, Seleznev BV, Suetin NV, Timofeyev MA, et al. Nanocrystalline graphite: promising material for high current-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem Phys

  17. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F.; Bandhauer, Todd; Garimella, Srinivas

    2012-01-01

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  18. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    microdiffraction. Lithium ion batteries have made a greatthose used in lithium-ion batteries. Dynamic potentiometricrechargeable lithium ion batteries consist of many layers of

  19. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variouselectrodes for lithium-ion batteries, Journal of MaterialsAdvances in Lithium-Ion Batteries (Chapter 4), Kluwer

  20. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    2000). Costs of Lithium-Ion Batteries for Vehicles, (ANL/Lithium ion Batteries 2.1.1 Lithium versus Lithium ion Batteries Lithium systems

  1. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

  2. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  3. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  4. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  5. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes

    SciTech Connect (OSTI)

    Li, Xiaolin; Gu, Meng; Hu, Shenyang Y.; Kennard, Rhiannon; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Sailor, Michael J.; Zhang, Jiguang; Liu, Jun

    2014-07-08

    Nanostructured silicon is a promising anode material for high performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here, we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 micron) mesoporous silicon sponge (MSS) prepared by the scalable anodization method can eliminate the pulverization of the conventional bulk silicon and limit particle volume expansion at full lithiation to ~30% instead of ~300% as observed in bulk silicon particles. The MSS can deliver a capacity of ~750 mAh/g based on the total electrode weight with >80% capacity retention over 1000 cycles. The first-cycle irreversible capacity loss of pre-lithiated MSS based anode is only <5%. The insight obtained from MSS also provides guidance for the design of other materials that may experience large volume variation during operations.

  6. Hydrothermal synthesis of flowerlike SnO{sub 2} nanorod bundles and their application for lithium ion battery

    SciTech Connect (OSTI)

    Wen, Zhigang, E-mail: xh168688@126.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China); Zheng, Feng, E-mail: fzheng@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yu, Hongchun; Jiang, Ziran [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Kanglian [Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China)

    2013-02-15

    SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup ?1} up to 40th cycle at 0.1 C. - Highlights: ? The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ? SnO{sub 2} nanorod bundles with tunable size by controlling concentration of SnCl{sub 4}. ? A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.

  7. Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL] [ORNL; Liao, Chen [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

    2014-01-01

    Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

  8. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  9. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  10. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

  11. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (

  12. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    of LiFePO(4) as lithium battery cathode and comparison withImproved LiFePO(4) Lithium Battery Cathode. ElectrochemicalOptimized LiFePO(4) for lithium battery cathodes. Journal of

  13. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01

    for advanced lithium ion batteries. Materials Science andin high voltage lithium ion batteries: A joint experimentalof rechargeable lithium-ion batteries after prolonged

  14. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wonchang

    2010-05-18

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  15. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-11-01

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  16. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    2000) Costs of Lithium-Ion Batteries for Vehicles. Report,for High-Power Lithium-Ion Batteries. J. Power Sources 128:in High-Power Lithium-Ion Batteries. J. Electrochem. Soc.

  17. Layered Li1+x(Ni0.425Mn0.425Co0.15)1xO2 Positive Electrode Materials for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Boyer, Edmond

    Layered Li1+x(Ni0.425Mn0.425Co0.15)1­xO2 Positive Electrode Materials for Lithium-Ion Batteries range decreased with overlithiation Keywords : Although LiCoO2 is suitable for the lithium-ion battery electrochemical performances. Recently lithium-rich manganese-based materials such as Li[NixLi(1/3­2x/3)Mn(2/3­x/3

  18. Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

  19. An Investigation of the Effect of Graphite Degradation on the Irreversible Capacity in Lithium-ion Cells

    E-Print Network [OSTI]

    Hardwick, Laurence

    2008-01-01

    graphite anodes suffer severe surface structural damage upon prolonged cycling in rechargeable lithium-ion batteries.

  20. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. Roya source of ?100 mA lithium ion current for the Neutralized

  1. Battery State Estimation for a Single Particle Model with Electrolyte Dynamics

    E-Print Network [OSTI]

    Moura, Scott J; Bribiesca Argomedo, Federico; Klein, Reinhardt; Mirtabatabaei, Anahita; Krstic, Miroslav

    2015-01-01

    and G. Fiengo, “Lithium-Ion Battery State of Charge andestimation of the lithium-ion battery using an adaptiveelectrochemical model for lithium ion battery on electric

  2. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of PowerWhite, and R. T. Long, Lithium-Ion Batteries Hazard and Use

  3. Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties

    E-Print Network [OSTI]

    Cao, Guozhong

    Three-Dimensional Coherent Titania-Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage mesoporous structure, lithium ion batteries INTRODUCTION Lithium ion batteries (LIBs) have been regarded to be a electrochemically active with a capacity of about 0.6 lithium ion in LixTiO2 at 1.78 V vs Li/Li+ . TiO2-B

  4. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    SciTech Connect (OSTI)

    Naskar, Amit K; Bi,; Saha, Dipendu; Chi, Miaofang; Bridges, Craig A; Paranthaman, Mariappan Parans

    2014-01-01

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

  5. Implications of Rapid Charging and Chemo-Mechanical Degradation in Lithium-Ion Battery Electrodes 

    E-Print Network [OSTI]

    Hasan, Mohammed Fouad

    2014-04-23

    Li-ion batteries, owing to their unique characteristics with high power and energy density, are broadly considered a leading candidate for vehicle electrification. A pivotal performance drawback of the Li-ion batteries manifests in the lengthy...

  6. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    to integrate thin-film solar cells and batteries (2)methods for thin-film solar cells and batteries (4) Developamorphous silicon thin-film solar cell. Part number TX3-25

  7. Comparisons of short carbon nanotubes containing conductive additives of cathode for lithium ion batteries

    SciTech Connect (OSTI)

    Zhang, Qingtang, E-mail: zhqt137@163.com [School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041 (China); Wang, Xiaomei; Lu, Wenjiang; Tang, Fuling [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Guo, Junhong [School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Yu, Weiyuan [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Qu, Meizhen; Yu, Zuolong [Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041 (China)

    2013-08-01

    Graphical abstract: - Highlights: • Short carbon nanotubes (SCNT) containing conductive additives were used. • SCNT/graphite powder (GP) mixture is better than SCNT/mesoporous carbon mixture. • SCNT connect many isolated GP particles to form a more valid conductive network. • SCNT absorb some electrolyte solution allowing quick electrochemical reactions. - Abstract: Short carbon nanotubes (SCNT) containing conductive additives, i.e. SCNT/graphite powder (GP) mixture (SCNTGP) and SCNT/mesoporous carbon (MC) mixture (SCNTMC) were employed as conductive additives for LiCoO{sub 2} cathode. GP and MC have similar particle size, but GP has lower specific surface area and higher electronic conductivity. Electrochemical measurements indicate that SCNTGP is more effective in improving the electrochemical performance of LiCoO{sub 2} composite cathode under the same conditions. The reason is described as follows. SCNT connect the isolated GP particles to form a more valid conductive network. In addition, SCNT has a certain specific mesoporous surface area, which can absorb some electrolyte solution and then provide buffer lithium ions for quick electrochemical reactions. Consequently, the combination of these two factors would be responsible to the improvement in the electrochemical performance of the SCNTGP loaded cathode.

  8. Optimization of Acetylene Black Conductive Additive and Polyvinylidene Difluoride Composition for High Power Rechargeable Lithium-Ion Cells

    E-Print Network [OSTI]

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-01-01

    7), A365 G. M. Ehrlich, Lithium-ion Batteries, 3rd ed ed. (High Power Rechargeable Lithium-Ion Cells G. Liu a,z , H.local environment. (A) lithium-ion mass transfer in the

  9. Structure, morphology and reaction mechanisms of novel electrode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Hua, Xiao

    2015-01-06

    transforming back to CuF2, leading to negligible capacities in subsequent cycles and making this material challenging to use in a rechargeable battery....

  10. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    s First Law of Electrochemistry: How Context Develops NewKnowledge. Electrochemistry: Past and Present 32–47 (1989).Density Batteries. Electrochemistry: Past and Present 543–

  11. Modeling the Performance and Cost of Lithium-Ion Batteries for...

    Office of Scientific and Technical Information (OSTI)

    to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. less Authors: Nelson, Paul A. 1 ;...

  12. Diagnostic Evaluation of Detrimental Phenomena in High-PowerLithium-Ion Batteries

    SciTech Connect (OSTI)

    Kostecki, Robert; Lei, Jinglei; McLarnon, Frank; Shim, Joongpyo; Striebel, Kathryn

    2005-11-01

    A pouch-type lithium-ion cell, with graphite anode and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode, was cycled at C/2 over 100% depth of discharge (DOD) at ambient temperature. The LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} composite cathode was primarily responsible for the significant impedance rise and capacity fade observed in that cell. The processes that led to this impedance rise were assessed by investigating the cathode surface electronic conductance, surface structure, composition, and state of charge at the microscopic level with the use of local probe techniques. Raman microscopy mapping of the cathode surface provided evidence that the state of charge of individual LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particles was non-uniform despite the deep discharge at the end of cell testing. Current-sensing atomic force microscopy imaging revealed that the cathode surface electronic conductance diminished significantly in the tested cells. Loss of contact of active material particles with the carbon matrix and thin film formation via electrolyte decomposition not only led to LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particle isolation and contributed to cathode interfacial charge-transfer impedance but also accounted for the observed cell power and capacity loss.

  13. Towards First Principles prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Leung, Kevin

    2013-01-01

    In lithium ion batteries, Li+ intercalation and processes associated with passivation of electrodes are governed by applied voltages, which are in turn associated with free energy changes of Li+ transfer (Delta G_t) between the solid and liquid phases. Using ab initio molecular dynamics (AIMD) and thermodynamic integration techniques, we compute Delta G_t for the virtual transfer of a Li+ from a LiC(6) anode slab, with pristine basal planes exposed, to liquid ethylene carbonate confined in a nanogap. The onset of delithiation, at Delta G_t=0, is found to occur on LiC(6) anodes with negatively charged basal surfaces. These negative surface charges are evidently needed to retain Li+ inside the electrode, and should affect passivation ("SEI") film formation processes. Fast electrolyte decomposition is observed at even larger electron surface densities. By assigning the experimentally known voltage (0.1 V vs. Li+/Li metal) to the predicted delithiation onset, an absolute potential scale is obtained. This enables ...

  14. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more »The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  15. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Fei; Xu, Wu; Choi, Daiwon; Wang, Wei; Li, Xiaolin; Engelhard, Mark H.; Chen, Xilin; Yang, Zhenguo; Zhang, Jiguang

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life. After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.

  16. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  17. In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries

    SciTech Connect (OSTI)

    He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

    2014-11-25

    Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

  18. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  19. Advanced Lithium Ion Battery Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advancedenzyme mixturesLight Source

  20. Design and fabrication of retrofit e-bike powertrain and custom lithium-ion battery pack

    E-Print Network [OSTI]

    Wang, Helena

    2015-01-01

    A chopper-style bicycle was converted to a functional e-bike with electric powertrain, involving a hub motor, a custom power source, and throttle speed control. A custom battery pack was designed to meet system performance ...

  1. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    J. -M. Electrical energy storage for the grid: a battery ofCorey, G. Energy Storage for the Electricity Grid: Benefitsparticularly into grid-level energy storage. Chapter 10.

  2. Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

    2008-12-01

    NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

  3. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  4. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  5. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast...

  6. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  7. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1995-01-01

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  8. Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries

    E-Print Network [OSTI]

    Limthongkul, Pimpa, 1975-

    2002-01-01

    There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

  9. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect (OSTI)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  10. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    SciTech Connect (OSTI)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  11. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology. This breakthrough membrane technology addresses market...

  12. Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    E-Print Network [OSTI]

    Ridgway, Paul

    2010-01-01

    graphite formulations in particular, are the current standard for lithium-ion anodes for electric vehicle batteries(

  13. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

    E-Print Network [OSTI]

    Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruña, Héctor D; Muller, David A

    2013-01-01

    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

  14. As one of the most promising materials for high capacity electrode in next generation of lithium ion batteries, silicon has attracted great deal of attention in recent years. Advanced

    E-Print Network [OSTI]

    Doctoral Defense Mechanics of Silicon Electrodes in Lithium Ion Batteries Yonghao An Advisor: Prof. Hanqing ion batteries, silicon has attracted great deal of attention in recent years. AdvancedAs one of the most promising materials for high capacity electrode in next generation of lithium

  15. Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion

    E-Print Network [OSTI]

    Qi, Limin

    Branched CNT@SnO2 nanorods@carbon hierarchical heterostructures for lithium ion batteries with high used as an anode material in lithium ion batteries, the branched CNT@SnO2@C heterostructures exhibited of the 1D mesocrystalline SnO2 nanorods. Introduction Lithium ion batteries (LIBs) have become

  16. LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries

    SciTech Connect (OSTI)

    Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2014-01-15

    Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

  17. Fe{sub 3}O{sub 4}–CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries

    SciTech Connect (OSTI)

    Guo, Qixun, E-mail: qxguo@xmu.edu.cn; Guo, Pengfei; Li, Juntao, E-mail: jtli@xmu.edu.cn; Yin, Hao; Liu, Jie; Xiao, Feilong; Shen, Daoxiang; Li, Ning

    2014-05-01

    Fe{sub 3}O{sub 4}–CNTs nanocomposites with a particle size of ?80 nm have been synthesized through an organic-free hydrothermal synthesis strategy by using Sn(OH){sub 6}{sup 2?} as an inorganic dispersant, and served as anode materials of lithium ion batteries. Nano-sized and micro-sized Fe{sub 3}O{sub 4} without CNTs have also been prepared for comparison. The cycle performances of the as-obtained Fe{sub 3}O{sub 4} are highly size-dependent. The Fe{sub 3}O{sub 4}–CNTs nanocomposites can deliver reversible discharge capacity of ?700 mA h/g at a current density of 50 mA/g after 50 cycles. The discharge capacity of the micro-sized Fe{sub 3}O{sub 4} decreased to 171 mA h/g after 50 cycles. Our work not only provides new insights into the inorganic dispersant assisted hydrothermal synthesis of metal oxides nanocrystals but also gives guidance for finding new nanocomposites as anode materials of lithium ion batteries. - Graphical abstract: Fe{sub 3}O{sub 4}–CNTs nanocomposites have been prepared through an inorganic dispersant assisted hydrothermal synthesis strategy, and served as anode materials of lithium ion batteries with enhanced performance. - Highlights: • Sn(OH){sub 6}{sup 2?} is a good inorganic dispersant for the hydrothermal synthesis of nano Fe{sub 3}O{sub 4}. • The cycle performances of nano Fe{sub 3}O{sub 4} anode are much better than that of micro Fe{sub 3}O{sub 4} anode. • Compositing CNTs can enhance the cycle performances of nano Fe{sub 3}O{sub 4} anode.

  18. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore »oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  19. Ab initio Molecular Dynamics Simulations of the Initial Stages of Solid-electrolyte Interphase Formation on Lithium Ion Battery Graphitic Anodes

    E-Print Network [OSTI]

    Leung, Kevin; 10.1039/B925853A

    2010-01-01

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  20. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Wiring up Silicon Nanoparticles for High Performance Lithium-ion Battery Anodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries

    SciTech Connect (OSTI)

    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

    2011-01-24

    Graphene-modified LiFePO{sub 4} composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO{sub 4} nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO{sub 4} primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO{sub 4} nanoparticles and graphene sheets was beneficial for Li{sup +} diffusion. The composite cathode material could deliver a capacity of 70 mAh g{sup -1} at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

  7. CHARACTERIZATION OF LOW-FLAMMABILITY ELECTROLYTES FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    Sergiy V. Sazhin; Mason K. Harrup; Kevin L. Gering

    2011-04-01

    In an effort to develop low-flammability electrolytes for a new generation of Li-ion batteries, we have evaluated physical and electrochemical properties of electrolytes with two proprietary phosphazene additives. We have studied performance quantities including conductivity, viscosity, flash point, and electrochemical window of electrolytes as well as formation of solid electrolyte interphase (SEI) films. In the course of study, the necessity for a simple method of SEI characterization was realized. Therefore, a new method and new criteria were developed and validated on 10 variations of electrolyte/electrode substrates. Based on the summation of determined physical and electrochemical properties of phosphazene-based electrolytes, one structure of phosphazene compound was found better than the other. This capability helps to direct our further synthetic work in phosphazene chemistry.

  8. High-Volume Manufacturing of LiPF6, A Critical Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt014esoleary2012...

  9. High-Volume Manufacturing of LiPF6, A Critical Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt014esoleary2011...

  10. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes Utilization of UV or EB Curing Technology to Significantly Reduce...

  11. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  12. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  13. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    and load forecasts in demand side, energy bill managementforecast information. Lithium-ion batteries are not a financially viable storage technology in demand side, energy

  14. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer battery, lithium-ion batteries, and lithium-basedElectrolyte For Lithium-Ion Rechargeable Batteries," LithiumK. Ozawa, "Lithium-ion Rechargeable Batteries with LiCo0 and

  15. Mesoporous Block Copolymer Battery Separators

    E-Print Network [OSTI]

    Wong, David Tunmin

    2012-01-01

    L. C. , R. , Costs of Lithium-Ion Batteries for Vehicles. Inpast two decades, lithium-ion batteries have emerged as anMore recently, lithium-ion batteries have been employed in

  16. Stress evolution and capacity fade in constrained lithium-ion pouch cells

    E-Print Network [OSTI]

    Arnold, Craig B.

    Stress evolution and capacity fade in constrained lithium-ion pouch cells John Cannarella, Craig B 28 June 2013 Accepted 30 June 2013 Available online 13 July 2013 Keywords: Lithium-ion battery stress on lithium-ion battery life are investigated by monitoring the stack pressure and capacity

  17. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  18. Pulsed field gradient magnetic resonance measurements of lithium-ion diffusion

    E-Print Network [OSTI]

    Krsulich, Kevin D

    2014-01-01

    The transport of lithium ions between the electrolyte-electrode interface and the electrode bulk is an essential and presently rate limiting process in the high-current operation of lithium-ion batteries. Despite their ...

  19. Beyond Lithium-ion is Part of the Dream | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond Lithium-ion is Part of the Dream Title Beyond Lithium-ion is Part of the Dream Publication Type Journal Article Year of Publication 2014 Journal Batteries International...

  20. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  1. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  6. Vehicle Technologies Office Merit Review 2015: A Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications Silicon Nanostructure-based Technology for Next Generation Energy Storage...

  7. Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Hailiang Wang,,

    E-Print Network [OSTI]

    Cui, Yi

    Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries Hailiang Wang hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery-cost, and environ- mentally friendly anode for lithium ion batteries. Our growth-on- graphene approach should offer

  8. Electrochemical performance of polyaniline coated LiMn{sub 2}O{sub 4} cathode active material for lithium ion batteries

    SciTech Connect (OSTI)

    ?ahan, Halil Dokan, Fatma K?l?c Ayd?n, Abdülhamit Özdemir, Burcu Özdemir, Nazl? Patat, ?aban

    2013-12-16

    LiMn{sub 2}O{sub 4} compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn{sub 2}O{sub 4} particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g{sup ?1}) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn{sub 2}O{sub 4} was significantly improved by the polaniline coating.

  9. Fe{sub 2}O{sub 3} nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries

    SciTech Connect (OSTI)

    Angelucci, Marco; Frau, Eleonora; Betti, Maria Grazia [Dipartimento di Fisica, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Mura, Francesco [Department of Fundamental and Applied Sciences for Engineering, Universita di Roma La Sapienza, Via A. Scarpa 14/16, I - 00161 Roma (Italy); Panero, Stefania [Dipartimento di Chimica, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Mariani, Carlo [Dipartimento di Fisica, CNISM, CNIS, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy)

    2014-06-19

    Iron Oxides nanostructures are very promising systems for new generation of anode material for Lithium-Ion batteries because of their high capacity associated to their surface area. A core-level photoemission study of Fe{sub 2}O{sub 3} nanowires deposited on highly-oriented pyrolitic graphite (HOPG) under Li exposure is presented. The Fe-2p, Fe-3p, and Li-1s core-level lineshape evolution upon Li exposure in ultra-high-vacuum conditions clearly brings to light the Fe ion reduction from fully trivalent to prevalently divalent at saturation. Furthermore, the graphite substrate allows allocation of a large amount of Li ions surrounding the iron-oxide nanowires, opening a new scenario towards the use of graphene for improving the ionic charge exchange.

  10. The development of low cost LiFePO4-based high power lithium-ion batteries

    SciTech Connect (OSTI)

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-11-25

    The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

  11. Mechanical characterization of lithium-ion battery micro components for development of homogenized and multilayer material models

    E-Print Network [OSTI]

    Miller, Kyle M. (Kyle Mark)

    2014-01-01

    The overall battery research of the Impact and Crashworthiness Laboratory (ICL) at MIT has been focused on understanding the battery's mechanical properties so that individual battery cells and battery packs can be ...

  12. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atfor use in lithium-ion batteries. Thermal stabilities andFor rechargeable lithium-ion batteries, we require that any

  13. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01

    in High-Power Lithium-Ion Batteries for Use in Hybridas Cathodes for Lithium-Ion Batteries. Chem. Mater. 2011,seen in magnesium or lithium ion batteries would operate at

  14. Hybrid nanostructure designs facilitated by M13 virus for lithium ion battery and lithium air battery electrodes

    E-Print Network [OSTI]

    Oh, Dahyun

    2014-01-01

    The development of technology and population growth will demand 56 percent increase of the energy consumption in 30 years. An efficient energy storage system will be necessary to meet these increased needs to deliver and ...

  15. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  16. Atomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability

    E-Print Network [OSTI]

    Cao, Guozhong

    strong interests in pushing its application in large mobile devices, e.g., hybrid vehicles.1,2 The advan National Center for Nanomaterials Technology, Pohang University of Science and Technology, Pohang, South.1116/1.3664115] I. INTRODUCTION Lithium-ion batteries become the focus of rechargeable batteries in the new decade

  17. Parameter Estimation and Model Discrimination for a Lithium-Ion Cell

    E-Print Network [OSTI]

    -18 This interest has been fueled by the combination of the fast growing lithium-ion battery market and the desireParameter Estimation and Model Discrimination for a Lithium-Ion Cell Shriram Santhanagopalan parameters using nonlinear regression from experimental charge/ discharge curves of a lithium-ion cell

  18. On the Coupling Between Stress and Voltage in Lithium Ion Pouch Cells

    E-Print Network [OSTI]

    Arnold, Craig B.

    On the Coupling Between Stress and Voltage in Lithium Ion Pouch Cells John Cannarellaa, Collen Z in a commercial lithium-ion pouch cell. This coupling is characterized through measurements of a coupling factor based on intercalation materials. Keywords: load cell, force sensor, lithium-ion battery, intercalation

  19. Short communication Internal resistance matching for parallel-connected lithium-ion cells

    E-Print Network [OSTI]

    Bazant, Martin Z.

    Short communication Internal resistance matching for parallel-connected lithium-ion cells a c t When assembling lithium-ion cells into functional battery packs, it is common to connect lithium ion cells are connected in parallel and cycled at high rate, matching of internal resistance

  20. An analytical electro-thermal model for Lithium-ion Maryam Yazdanpour*

    E-Print Network [OSTI]

    Bahrami, Majid

    An analytical electro-thermal model for Lithium-ion Batteries Maryam Yazdanpour* , Peyman Taheri with lithium-ion chemistry are the preferred candidate to power hybrid and electric vehicles (HEVs), due (around 5% per month), and long cycling life [1]. Nonetheless, thermal management of large-scale lithium-ion

  1. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes

    SciTech Connect (OSTI)

    Hu Yingying, E-mail: yyhu@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Huang Xintang, E-mail: xthuang@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Wang Kai; Liu Jinping; Jiang Jian; Ding Ruimin; Ji Xiaoxu; Li Xin [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China)

    2010-03-15

    Three-dimensional (3D) dendrite-shaped CuO hollow micro/nanostructures have been prepared via a Kirkendall-effect-based approach for the first time and have been demonstrated as a high-performance anode material for lithium-ion batteries. The as-prepared hollow structures were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electrochemical properties. A CuO hollow structure composed of nanocubes outside and a dense film inside was selected as a typical example of the optimized design; it exhibited significantly improved cyclability at a current rate of 0.5 C, with the average Coulombic efficiency of {approx}97.0% and 57.9% retention of the discharge capacity of the second cycle after 50 cycles. The correlation between the structure features of the hollow CuO and their electrochemical behavior was discussed in detail. Smaller size of primary structure and larger internal space of electrode materials are crucial to better electrochemical performance. This work represents that Kirkendall effect is a promising method to fabricate excellent hollow electrode materials for Li-ion batteries. - Graphical abstract: SEM images of 3D dendrite-shaped CuO hollow micro/nanostructures prepared via a Kirkendall-effect-based approach have been shown. The as-prepared CuO electrode exhibited significantly improved cyclability for Li-ion batteries.

  2. Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications: Aging mechanism identification

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications dependence of aging of lithium ion batteries. Considered the conditions of path dependence specific October 2014 Available online 13 October 2014 Keywords: Lithium-ion battery Path dependence Thermal aging

  3. Utilizing environmental friendly iron as a substitution element in spinel structured cathode materials for safer high energy lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong -Min; Liu, Yijin; Liu, Jue; Yu, Xiqian; Zhou, Yong -Ning; Zhou, Jigang; Khalifah, Peter; Ariyoshi, Kingo; Nam, Kyung -Wan; et al

    2015-12-03

    Suppressing oxygen release from lithium ion battery cathodes during heating is a critical issue for the improvement of the battery safety characteristics because oxygen can exothermically react with the flammable electrolyte and cause thermal runaway. Previous studies have shown that oxygen release can be reduced by the migration of transition metal cations from octahedral sites to tetrahedral sites during heating. Such site-preferred migration is determined by the electronic structure of cations. In addition, taking advantage of the unique electronic structure of the environmental friendly Fe, this is selected as substitution element in a high energy density material LiNi0.5Mn1.5O4 to improvemore »the thermal stability. The optimized LiNi0.33Mn1.33Fe0.33O4 material shows significantly improved thermal stability compared with the unsubstituted one, demonstrated by no observed oxygen release at temperatures as high as 500°C. Due to the electrochemical contribution of Fe, the high energy density feature of LiNi0.5Mn1.5O4 is well preserved.« less

  4. Nonlinear Predictive Energy Management of Residential Buildings with Photovoltaics & Batteries

    E-Print Network [OSTI]

    Sun, Chao; Sun, Fengchun; Moura, Scott J

    2015-01-01

    system and second-life lithium-ion battery energy storage. Atrade-off between lithium-ion battery aging and economicIncorporating an empirical lithium-ion battery capacity loss

  5. Microfabricated thin-film batteries : technology and potential applications

    E-Print Network [OSTI]

    Greiner, Julia

    2006-01-01

    High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

  6. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  7. Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,

    E-Print Network [OSTI]

    Batteries (LIB) are one of the most promising class of next generation energy storage devices, which can producing more reliable and promising LIB based clean energy storage devices. The CR-AFM (Contact Resonance

  8. Hybrid CuO/SnO{sub 2} nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    SciTech Connect (OSTI)

    Xing, G. Z.; Wang, Y.; Wong, J. I.; Shi, Y. M.; Huang, Z. X.; Yang, H. Y.; Li, S.

    2014-10-06

    Hybrid CuO/SnO{sub 2} nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO{sub 2} nanostructures, hybrid CuO/SnO{sub 2} nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO{sub 2} nanocomposites deliver a specific capacity of 718 mA h g{sup ?1} at a current density of 500?mA g{sup ?1} even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO{sub 2} nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO{sub 2} nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  9. Effect of Porosity on the Capacity Fade of a Lithium-Ion Godfrey Sikha,* Branko N. Popov,** and Ralph E. White***,z

    E-Print Network [OSTI]

    Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery Theory Godfrey Sikha,* Branko N of a lithium-ion battery. It includes the changes in the porosity of the material due to the reversible the capacity fade in a lithium-ion battery based on the unwanted parasitic reaction that consumes Li along

  10. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  11. One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries

    SciTech Connect (OSTI)

    Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

    2013-10-15

    Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup ?1} after 50 cycles @100 mA g{sup ?1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

  12. Dual Phase Li4 Ti5O12–TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12–TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12–TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  13. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  14. Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure

    E-Print Network [OSTI]

    Cao, Guozhong

    Improved Lithium Ion Behavior Properties of TiO2@Graphitic-like Carbon Core@Shell Nanostructure Min Intercalation Electrochemistry Capacitance Lithium Ion batteries A B S T R A C T We demonstrate TiO2@graphitic on the electrode surface and enhanced lithium ion intercalation, leading to lower charge transfer resistance

  15. Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure

    E-Print Network [OSTI]

    Holzwarth, Natalie

    Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic conduction. The high thermal stability, significant lithium ion conductivity, and environmental stability make Li2SnS3 a promising new solid-state electrolyte for lithium ion batteries. 1. INTRODUCTION

  16. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousResults with Lithium-ion Batteries, paper presented at EET-performance of lithium-ion batteries of several chemistries

  17. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01

    Mn 02 for lithium-ion batteries," Chem. Lett. , [3]0 for advanced lithium-ion batteries," J. Power Sources,Mni/ 0 for Advanced Lithium-Ion Batteries," J. Electrochem.

  18. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01

    2x/3Mn2/3-x/3]O2 for Lithium-Ion Batteries. Electrochemicalfor advanced lithium-ion batteries. Journal of Powerfor high-power lithium-ion batteries. Electrochimica Acta,

  19. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01

    13]); (d) 48 lithium ion battery modules in Nissan Leafhighly toxic. In 1991, lithium-ion battery was introduced byThree main types of lithium ion battery have been developed

  20. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01

    Lithium Ion Battery..of OCV on SOC for a Lithium Ion battery is shown in figure 1of OCV on SOC for a Lithium Ion Battery In EV application,

  1. Electrochemical and microstructural studies of AlPO?-nanoparticle coated LiCoO? for lithium-ion batteries

    E-Print Network [OSTI]

    Appapillai, Anjuli T. (Anjuli Tara)

    2006-01-01

    AlPO?-nanoparticle coated LiCoO? is studied as a positive electrode for lithium rechargeable batteries for a high-voltage charge limit of 4.7V. To understand the role of the coating in transport phenomena and in deintercalation ...

  2. Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries

    SciTech Connect (OSTI)

    Mustansar Abbas, Syed; Tajammul Hussain, Syed; Ali, Saqib; Ahmad, Nisar; Ali, Nisar; Abbas, Saghir; Ali, Zulfiqar

    2013-06-15

    CuO-doped NiO (CuNiO) with porous hexagonal morphology is fabricated via a modified in-situ co-precipitation method and its nanocomposite is prepared with carbon nanotubes (CNTs). The electrochemical properties of CuNiO/CNT nanocomposite are investigated by cyclic voltammetry (CV), galvanostatic charge–discharge tests and electrochemical impedance spectroscopy (EIS). Since Cu can both act as conductor and a catalyst, the CuNiO/CNT nanocomposite exhibits higher initial coulombic efficiency (82.7% of the 2nd cycle) and better capacity retention (78.6% on 50th cycle) than bare CuNiO (78.9% of the 2nd cycle), CuO/CNT (76.8% of the 2nd cycle) and NiO/CNT (77.7% of the 2nd cycle) at the current density of 100 mA /g. This high capacity and good cycling ability is attributed to the partial substitution of Cu{sup +2} for Ni{sup +2}, resulting in an increase of holes concentration, and therefore improved p-type conductivity along with an intimate interaction with CNTs providing large surface area, excellent conduction, mechanical strength and chemical stability. - Graphical abstract: The porous CuNiO/CNT nanocomposite synthesized via a modified co-precipitation method in combination with subsequent calcination was applied in the negative electrode materials for lithium-ion batteries and exhibited high electrochemical performance. - Highlights: • CuO doped NiO/CNTs nano composite is achieved via a simple co-precipitation method. • Monodispersity, shape and sizes of sample particles is specifically controlled. • Good quality adhesion between CNTs and CuNiO is visible from TEM image. • High electrochemical performance is achieved. • Discharge capacity of 686 mA h/g after 50 cycles with coulombic efficiency (82.5%)

  3. How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes

    E-Print Network [OSTI]

    Leung, Kevin

    2015-01-01

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the "electric double layer" (EDL). We apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic lengthscales, including charge separation and interfacial dipole moments. Illustrating examples include Li(3)PO(4), Li(2)CO(3), and Li(x)Mn(2)O(4) thin-films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the "lithium cohesive energy" based voltage governing Li content widely...

  4. AbstractFirst-principles models that incorporate all of the key physics that affect the internal states of a lithium-ion

    E-Print Network [OSTI]

    Subramanian, Venkat

    states of a lithium-ion battery are in the form of coupled nonlinear PDEs. While these models are very systems (BMS) to design and implement better monitoring and control strategies. I. INTRODUCTION Lithium-ion are the main issues that need to be addressed in order to use a lithium-ion battery efficiently and safely

  5. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    of ultracapacitors or even lithium-ion batteries. This isof ultracapacitors or even lithium-ion batteries. This isResults with Lithium-ion Batteries. EET-2008 European Ele-

  6. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    show that Lithium- ion batteries can be a financially viablethe price at which Lithium-ion batteries become financiallyinstalled cost for Lithium-ion batteries of a) $600/kWh, $

  7. Rubber meets the road with new ORNL carbon, battery technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goal is to scale up the recovery process and demonstrate applications as anodes for lithium-ion batteries in large-format pouch cells. ORNL researchers' goal is to scale up...

  8. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01

    Control of Lithium-Ion Batteries”, Control Systems, IEEE,is one type of Lithium-Ion batteries with voltage around

  9. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  10. Combustion synthesized nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode for lithium-ion batteries

    SciTech Connect (OSTI)

    Nathiya, K.; Bhuvaneswari, D.; Gangulibabu; Kalaiselvi, N.

    2012-12-15

    Graphical abstract: Nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C compound has been synthesized using a novel corn assisted combustion (CAC) method, wherein the composite prepared at 850 °C is found to exhibit superior physical and electrochemical properties than the one synthesized at 800 °C (Fig. 1). Despite the charge disproportionation of V{sup 4+} and a possible solid solution behavior of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode upon insertion and de-insertion of Li{sup +} ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V (Fig. 2). An appreciable specific capacity of 174 mAh g{sup ?1} with an excellent columbic efficiency (99%) and better capacity retention upon high rate applications have been exhibited by Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode, thus demonstrating the feasibility of CAC method in preparing the title compound to best suit with the needs of lithium battery applications. Display Omitted Highlights: ? Novel corn assisted combustion method has been used to synthesize Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C. ? Corn is a cheap and eco benign combustible fuel to facilitate CAC synthesis. ? Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C exhibits an appreciable specific capacity of 174 mAh g{sup ?1} (C/10 rate). ? Currently observed columbic efficiency of 99% is better than the reported behavior. ? Suitability of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode up to 10C rate is demonstrated. -- Abstract: Nanocrystalline Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C composite synthesized using a novel corn assisted combustion method at 850 °C exhibits superior physical and electrochemical properties than the one synthesized at 800 °C. Despite the charge disproportionation of V{sup 4+} and a possible solid solution behavior of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} cathode upon insertion and extraction of Li{sup +} ions, the structural stability of the same is appreciable, even with the extraction of third lithium at 4.6 V. An appreciable specific capacity of 174 mAh g{sup ?1} and better capacity retention upon high rate applications have been exhibited by Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode, thus demonstrating the suitability of the same for lithium-ion battery applications.

  11. SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Sun, Hongyu [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com [Nanomaterials Research Group (NRG), Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Luo, Jun [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Shi, Yingying; Shen, Wanci [Laboratory of Advanced Materials, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-01-01

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes. It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup ?1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup ?1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ?510 mA h g{sup ?1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.

  12. Mathematical modeling of lithium-ion intercalation particles and their electrochemical dynamics

    E-Print Network [OSTI]

    Zeng, Yi, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    Lithium-ion battery is a family of rechargeable batteries with increasing importance that is closely related to everyone's daily life. However, despite its enormously wide applications in numerous areas, the mechanism of ...

  13. Control-oriented modeling and adaptive parameter estimation of a lithium ion intercalation cell

    E-Print Network [OSTI]

    Bi, Pierre (Pierre Yanhe)

    2015-01-01

    Battery management systems using parameter and state estimators based on electrochemical models for Lithium ion cells, are promising efficient use and safety of the battery. In this thesis, two findings related to ...

  14. An electrical network model for computing current distribution in a spirally wound lithium ion cell

    E-Print Network [OSTI]

    Patnaik, Somani

    2012-01-01

    Lithium ion batteries are the most viable option for electric vehicles but they still have significant limitations. Safety of these batteries is one of the concerns that need to be addressed when they are used in mainstream ...

  15. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  16. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  17. A study of the relationship between lithium ion transport and structure and dynamic behavior in polyethylene oxide-melt/LiClO4 battery electrolytes.

    SciTech Connect (OSTI)

    Selser, James C

    2009-07-07

    An experimental study of the canonical SPE (“solid” polymer electrolyte) for rechargeable “rocking chair” lithium/polymer batteries, viz. LiClO4 dissolved in molten poly(ethylene oxide) (PEO), was carried out under DOE grant FG02-04ER15573. In this study, an improved understanding was obtained of the relationship between lithium ion transport and polymer behavior in these SPEs. Among other applications, these sturdy temperature-tolerant and powerful light-weight batteries would be used in electric and electric-hybrid vehicles to reduce greenhouse gas emissions, to store unused electrical energy for peak demand loads and as compact, light-weight energy sources for aircraft and spacecraft. During the period of the grant, the American/Canadian partnership company “Avestor” fabricated and successfully demonstrated a telecommunications application of shoe-box sized batteries and representatives from Avestor visited our research lab at UNLV. They found our results interesting and relevant to their work and invited us to visit Avestor and present a talk about our efforts at UNLV. Unfortunately Avestor (who was scheduled to build a battery production facility in Apex, Nevada just North of Las Vegas) folded before the visit could be made. In the grant work, two well characterized PEO samples having molar masses distinctly below and distinctly above the melt entanglement molar mass were used and three laser light scattering techniques employed as the principal noninvasive methods of investigating liquid poly(ethylene oxide) (PEO)/LiClO4 SPEs. These investigations considered the effects of temperature, dissolved salt concentration and scattering wavevector on SPE behavior. Classical or “static” light scattering and the dynamic light scattering techniques of photon correlation spectroscopy (PCS) and Fabry-Perot interferometry (FPI) were used to study SPE static, low frequency and high frequency dynamic behaviors, respectively. Static measurements provided information about system structure while low frequency results provided information about slower (0.1-10s) more global behavior and high frequency results provided information about faster (~10-11s) more local behavior. In addition, viscometry, rheometry and thermal analysis provided vital complementary results. It was found that liquid PEO/lithium salt solutions for both PEO molar masses are random transient physical networks with measureable network and intra-network relaxation times using PCS and FPI. Thus novel and informative results addressing both large scale and small scale behavior were obtained. For example, the high sensitivity of liquid PEO electrolytes to the presence of presumably undesirable trace amounts of residual water and/or methanol was clearly evident in PCS measurements. In “unentangled” melts the activation energies for diffusive relaxation in liquid PEO/lithium salt electrolytes measured using PCS and the activation energies for viscous flow in these systems determined by viscometry were identical while thermal analyses detected no phase transitions for these systems. These results reinforced an earlier assumption that the liquid PEO/LiClO4 system is a liquid polymer “bimorph” (to our knowledge the first of its kind to be reported) with the network comprising one form of the polymer while the second form corresponds to that of a viscous damping liquid. At a given temperature, FPI characteristic relaxation times for local, between-chain motions were consistent with PCS results so that increases with increasing salt concentration were accompanied by increases in the elastic modulus and corresponding increases in system stiffness. Note that corresponding decreases in polymer segmental mobility are accompanied by reduced ion diffusivity. For entangled melts, PCS network relaxations were again observed and these systems were also considered to be bimorphs even though diffusion activation energies were distinctly larger than viscous flow activation energies - a difference attributed to the effects of entanglement. Moreover, SLS measurement

  18. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01

    AF. Comparisons of Lithium-ion Batteries and UltracapacitorsResults with Lithium-ion Batteries. EET- 2008 European Ele-Comparisons with Lithium- ion Batteries for Hybrid vehicle

  19. Theoretical Analysis of Stresses in a Lithium Ion Cell Sindhuja Renganathan,a,

    E-Print Network [OSTI]

    Meeting of the Society, May 24­29, 2009. Lithium ion based rechargeable batteries LIBs have become oneTheoretical Analysis of Stresses in a Lithium Ion Cell Sindhuja Renganathan,a, * Godfrey Sikha process in a dual porous insertion electrode cell sandwich comprised of lithium cobalt oxide and carbon

  20. Engineering nanostructured electrodes away from equilibrium for lithium-ion Yanyi Liu, Dawei Liu, Qifeng Zhang and Guozhong Cao*

    E-Print Network [OSTI]

    Cao, Guozhong

    Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries Yanyi Liu chapter. His specific research project is focused on nanostructured elec- trodes for efficient lithium ion materials, Li-ion batteries have achieved significant progress in energy storage performance since