National Library of Energy BETA

Sample records for lithium polymer batteries

  1. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  2. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  3. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  4. Polymers For Advanced Lithium Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es088_balsara_2011_o.pdf (682.79 KB) More Documents & Publications Development of Polymer Electrolytes for Advanced Lithium Batteries Polymers For Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries

  5. Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries Lawrence Berkeley ... have invented nanostructured gel polymer electrolytes for lithium ion batteries. ...

  6. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  7. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  8. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  9. Electronically conductive polymer binder for lithium-ion battery electrode

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  10. Polymer considerations in rechargeable lithium ion plastic batteries

    SciTech Connect (OSTI)

    Gozdz, A.S.; Tarascon, J.M.; Schmutz, C.N.; Warren, P.C.; Gebizlioglu, O.S.; Shokoohi, F.

    1995-07-01

    A series of polymers have been investigated in order to determine their suitability as ionically conductive binders of the active electrode materials and as hybrid electrolyte matrices in plastic lithium ion rechargeable batteries. Hybrid electrolyte films used in this study have been prepared by solvent casting using a 1:1 w/w mixture of the matrix polymer with 1 M LiPF{sub 6} in EC/PC. Based on electrochemical stability, mechanical strength, liquid electrolyte retention, and softening temperature, random copolymers of vinylidene fluoride containing ca. 12 mole % of hexafluoropropylene have been selected for this application.

  11. Polymer nanocomposites for lithium battery applications

    DOE Patents [OSTI]

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect (OSTI)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  14. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  15. New Polymer and Liquid Electrolytes for Lithium Batteries

    SciTech Connect (OSTI)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-03-29

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF{sub 3}SO{sub 3{sup -}}. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10{sup -3} Scm{sup -1}. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn{sub 2}O{sub 4} cells.

  16. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    SciTech Connect (OSTI)

    Corbus, D.; Hammel, C.J.

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  17. Continuous process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville

    1998-01-01

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  18. Continuous process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  19. Lithium battery

    SciTech Connect (OSTI)

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  20. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOE Patents [OSTI]

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  1. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    SciTech Connect (OSTI)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-04-24

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup −3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  2. Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these

  3. Lithium battery

    SciTech Connect (OSTI)

    Koch, V. R.

    1981-02-24

    An electrolyte for a rechargeable electrochemical cell featuring diethylether, a cosolvent, and a lithium salt is disclosed.

  4. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.' -Edited excerpt from Medical Applications of Non-medical ...

  5. Lithium Salt-doped, Gelled Polymer Electrolyte with a Nanoporous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium Salt-doped, Gelled Polymer Electrolyte with a ... electrolyte material for use in lithium ion batteries that exhibits better ion ...

  6. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J.

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  7. Hierarchically Structured Materials for Lithium Batteries (Journal...

    Office of Scientific and Technical Information (OSTI)

    Hierarchically Structured Materials for Lithium Batteries Citation Details In-Document Search Title: Hierarchically Structured Materials for Lithium Batteries Lithium-ion battery ...

  8. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; Shkrob, Ilya A.; Abraham, Daniel P.

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  9. High Conductivity Single-ion Cross-linked Polymers for Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Conductivity Single-ion Cross-linked Polymers for Lithium Batteries and Fuel Cells ... for use as membranes in lithium batteries, fuel cells, and electrochromic windows. ...

  10. Solid polymeric electrolytes for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  11. Lithium Iron Phosphate Composites for Lithium Batteries (IN-11...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries (IN-11-024) Low-Cost Phosphate Compounds Enhance Lithium Battery Performance Argonne National Laboratory Contact ANL About ...

  12. Better Lithium-Ion Batteries Are On The Way From Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss,...

  13. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  14. Cathode material for lithium batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Title: Cathode material for lithium batteries A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium ...

  15. Conductive polymeric compositions for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A.; Xu, Wu

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  16. Lithium uptake data of lithium imprinted polymers

    SciTech Connect (OSTI)

    Susanna Ventura

    2015-12-04

    Batch tests of lithium imprinted polymers of variable composition to assess their ability to extract lithium from synthetic brines at T=45C. Initial selectivity data are included

  17. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2015-01-13

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  18. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  19. Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryRechargeable lithium batteries are superior to ...

  20. Overcharge Protection Prevents Exploding Lithium Ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Overcharge Protection Prevents Exploding Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab scientists Guoying Chen and Thomas J. Richardson have invented a new type of separator membrane that prevents dangerous overcharge and overdischarge conditions in rechargeable lithium-ion batteries, i.e., exploding lithium ion batteries. This low cost separator, with electroactive polymers

  1. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  2. Lithium metal oxide electrodes for lithium cells and batteries...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium metal oxide electrodes for lithium cells and batteries A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in ...

  3. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOE Patents [OSTI]

    Kong, Peter C.; Pink, Robert J.; Nelson, Lee O.

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  4. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials ...

  5. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for high-power and high-energy lithium batteries ...

  6. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  7. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: ... Improving charge time and these other battery characteristics could significantly expand ...

  8. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  9. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  10. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  11. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  12. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  13. Lithium Redistribution in Lithium-Metal Batteries

    SciTech Connect (OSTI)

    Ferrese, A; Albertus, P; Christensen, J; Newman, J

    2012-01-01

    A model of a lithium-metal battery with a CoO2 positive electrode has been modeled in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. A finite-element approach was used to incorporate an intercalation positive electrode using superposition, electrode tabbing, transport using concentrated solution theory, as well as the net movement of the lithium electrode during cycling. From this model, it has been found that movement of lithium along the negative electrode/separator interface does occur during cycling and is affected by three factors: the cell geometry, the slope of the open-circuit-potential function of the positive electrode, and concentration gradients in both the solid and liquid phases in the cell. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.027210jes] All rights reserved.

  14. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect (OSTI)

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  15. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Broader source: Energy.gov (indexed) [DOE]

    Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes ...

  16. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  17. California Lithium Battery, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage

  18. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-next-generation_li-ion_b.pdf (136.48 KB) More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion

  19. Surface-Modified Active Materials for Lithium Ion Battery Electrodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability. Description The innovative process evaporates a thin polymer coating on the active materials' particles and mixes these coated particles

  20. Pacific Northwest National Laboratory collaboration with Moltech Corporation to manufacture lithium polymer batteries (C/PNL/061). Final project report

    SciTech Connect (OSTI)

    Affinito, J.D.

    1996-08-01

    It was shown that all 7 of the layers of Moltech`s Li polymer battery are compatible with simultaneous, in-line, vacuum deposition onto a flexible plastic substrate via PNNL`s PML and LML technology. All the materials, including Li, could be deposited in a single pass without melting the substrate. Two problems were encountered and are discussed.

  1. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  2. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  3. Design and simulation of lithium rechargeable batteries

    SciTech Connect (OSTI)

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of ...

  5. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  6. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  7. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  8. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  9. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  10. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  11. Lithium disulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  12. Self-Regulating, Nonflamable Rechargeable Lithium Batteries

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-06-23

    Rechargeable lithium batteries are superior to other rechargeable batteries due to their ability to store more energy per unit size and weight and to operate at higher voltages. The performance of lithium ion batteries available today, however, has been compromised by their tendency to overheat during operation. This condition, called “thermal runaway,” can melt the battery’s lithium metal and, in the most serious cases, result in explosive chemical reactions....

  13. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  14. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  15. Conductive polymeric compositions for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries. Inventors: ...

  16. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  17. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  18. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  19. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  20. Lithium ion batteries with titania/graphene anodes (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium ion batteries with titaniagraphene anodes Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to ...

  1. Lithium-ion batteries with intrinsic pulse overcharge protection...

    Office of Scientific and Technical Information (OSTI)

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries ...

  2. Functional electrolyte for lithium-ion batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Functional electrolyte for lithium-ion batteries Title: Functional electrolyte for lithium-ion batteries Functional electrolyte solvents include ...

  3. Methods for making anodes for lithium ion batteries (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Methods for making anodes for lithium ion batteries Title: Methods for making anodes for lithium ion batteries Methods for making composite anodes, ...

  4. Long life lithium batteries with stabilized electrodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Long life lithium batteries with stabilized electrodes Title: Long life lithium batteries with stabilized electrodes The present invention relates to ...

  5. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  6. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  7. Correlation of Lithium-Ion Battery Performance with Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlation of Lithium-Ion Battery Performance with Structural and Chemical ... Specifically, the surfaces of lithium-ion battery electrodes evolve simultaneously with ...

  8. Scientists Probe Lithium-Sulfur Batteries in Real Time - Joint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012, Videos Scientists Probe Lithium-Sulfur Batteries in Real Time Lithium-sulfur batteries are a promising technology that could some day power electric vehicles. Scientists ...

  9. Understanding Lithium-Sulfur Batteries at the Molecular Level...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 17, 2015, Accomplishments Understanding Lithium-Sulfur Batteries at the Molecular Level Conceived some 40 years ago, the lithium-sulfur battery can store, in theory, ...

  10. Beyond Lithium-Ion Batteries - Joint Center for Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Batteries beyondlithiumionbatterisaudio JCESR Director George Crabtree and Deputy Director Jeff Chamberlain discuss how JCESR will go beyond lithium ion batteries ...

  11. Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite CarbonTin Anodes for Lithium Ion Batteries Lawrence Berkeley National ... Applications and Industries Anodes for lithium ion batteries More InformationFOR MORE ...

  12. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  13. Ningbo Veken Battery Company | Open Energy Information

    Open Energy Info (EERE)

    search Name: Ningbo Veken Battery Company Place: China Product: Ningbo-based maker of Lithium polymer, aluminum-shell and lithium power batteries. References: Ningbo Veken Battery...

  14. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and ...

  15. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  16. Materials issues in lithium ion rechargeable battery technology

    SciTech Connect (OSTI)

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  17. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  18. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  19. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  20. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  1. Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Lithium-Ion Batteries Predictive computer models for lithium-ion battery performance under standard and potentially abusive conditions National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Design. Build. Test. Break. Repeat. Developing batteries is an expensive and time-intensive process. Testing costs the

  2. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Thursday, 24 April 2014 09:46 Lithium-ion ...

  3. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  4. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Thursday, 24 April 2014 09:46 Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant energy density if their graphite anodes were replaced with lithium metal anodes. But there's a major concern with substituting lithium-when the battery cycles, microscopic fibers of the lithium anodes ("dendrites")

  5. Lithium ion batteries based on nanoporous silicon

    SciTech Connect (OSTI)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  6. Guangzhou Fullriver Battery New Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Fullriver Battery New Technology Co, Ltd Place: China Product: China-based maker of Lithium Polymer and Lithium Iron batteries as well protection circuit modules and battery...

  7. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  8. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  9. A Lithium-Air Battery Based on Lithium Superoxide | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lithium-Air Battery Based on Lithium Superoxide January 20, 2016 Tweet EmailPrint ... However there have been no reports of a battery based on lithium superoxide (LiO2), ...

  10. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant energy density if their graphite anodes were replaced with lithium metal anodes. But there's a major concern with substituting lithium-when the battery cycles, microscopic fibers of the lithium anodes ("dendrites") form on the surface of the lithium electrode and spread across the electrolyte until they reach

  11. Solid-state lithium battery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. ...

  12. Novel Electrolytes for Lithium Ion Batteries (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Technical Report: Novel Electrolytes for Lithium Ion Batteries Citation Details In-Document Search Title: Novel Electrolytes for Lithium Ion ...

  13. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-01-01

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  14. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-02-07

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  15. Layered Electrodes for Lithium Cells and Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes Lowers cost to ...

  16. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  17. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Conference: Approaches to Evaluating and Improving Lithium-Ion Battery Safety. Citation ... presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in ...

  18. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details ... Language: English Subject: energy storage (including batteries and capacitors), defects, ...

  19. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell ...

  20. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Environmental Management (EM)

    EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 ...

  1. Electrolytes for Lithium Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Electrolytes for Lithium Ion Batteries DOE Grant Recipients Arizona ... the need for high-output, long-lasting rechargeable batteries has grown tremendously. ...

  2. Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries Lawrence Berkeley ... it desirable for use in rechargeable batteries, but its tendency to form dendrites has ...

  3. Sulfur@Carbon Cathodes for Lithium Sulfur Batteries > Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single Crystal Nanostructures for Batteries & PVs High Performance ...

  4. Lithium Metal Anodes for Rechargeable Batteries - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2014, Research Highlights Lithium Metal Anodes for Rechargeable Batteries (a) ... Li metal is an ideal anode material for rechargeable batteries beyond Li ion The review ...

  5. Following the Transient Reactions in Lithium-Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Following the Transient Reactions in Lithium-Sulfur Batteries Using an In Situ Nuclear ... cell electrochemical reactions in Li-S batteries using a microbattery design Interphase ...

  6. Flexible Thin Film Solid State Lithium Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are ...

  7. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory ... Technology Marketing Summary The demand for batteries to meet high-power and high-energy ...

  8. Surface Modification Agents for Lithium-Ion Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: ... and security of batteries Substantially reduces power fade and potential for explosions. ...

  9. Iron-lithium anode for thermal battery

    SciTech Connect (OSTI)

    Winchester, C.S.

    1987-06-23

    This patent describes a lithium anode for use in a thermal battery having a composite material comprising lithium and a particulate metal capable of being wetted by molten lithium, but only slightly or not alloyable with the lithium. The composite anode material is positioned adjacent a metal collector element the improvement comprising: a metal screen positioned between and substantially co-extensive with the anode composite and the metal collector element. The anode is thereby spaced apart from the element but is in electrical contact and the screen is electrically conductive.

  10. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  11. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  12. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold...

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in ... 8.0.1 show a lower "lowest unoccupied molecular orbital" for the new Berkeley Lab ...

  14. MultiLayer solid electrolyte for lithium thin film batteries...

    Office of Scientific and Technical Information (OSTI)

    Patent: MultiLayer solid electrolyte for lithium thin film batteries Citation Details In-Document Search Title: MultiLayer solid electrolyte for lithium thin film batteries A ...

  15. Lithium: Thionyl chloride battery state-of-the-art assessment...

    Office of Scientific and Technical Information (OSTI)

    Lithium: Thionyl chloride battery state-of-the-art assessment Citation Details In-Document Search Title: Lithium: Thionyl chloride battery state-of-the-art assessment You are ...

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries ... In a lithium-ion battery, charge moves from the cathode to the ... characterization, and simulation in a novel approach to ...

  17. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries ... In a lithium-ion battery, charge moves from the cathode to the ... characterization, and simulation in a novel approach to ...

  18. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good ...

  19. Solid Electrolyte: the Key for High-Voltage Lithium Batteries...

    Office of Scientific and Technical Information (OSTI)

    Solid Electrolyte: the Key for High-Voltage Lithium Batteries Citation Details In-Document Search Title: Solid Electrolyte: the Key for High-Voltage Lithium Batteries Authors: Li, ...

  20. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply ... As conventional lithium-ion batteries approach their theoretical energy-storage limits, ...

  1. Electrolyte additive for lithium rechargeable organic electrolyte battery

    SciTech Connect (OSTI)

    Behl, W.K.; Chin, D.T.

    1988-02-08

    This invention relates in general to a rechargeable lithium organic electrolyte battery and, in particular, to an electrolyte additive for such a battery that provides overcharge protection. Rechargeable lithium-organic electrolyte batteries are being developed to provide low-cost, high-energy-density power sources for communication, night vision and various other Army applications. Typically, a rechargeable lithium organic electrolyte battery includes a lithium anode, a cathode including compounds such as titanium disulfide, molybdenum oxide, molybdenum sulfide, vanadium oxide, vanadium sulfide, chromium oxide, etc an electrolyte solution including an inorganic lithium salt such as lithium hexafluoroarsenate, lithium perchlorate, etc.

  2. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  3. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - ...

  4. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  5. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  6. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  7. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  8. Ultralife Corporation formerly Ultralife Batteries Inc | Open...

    Open Energy Info (EERE)

    14513 Product: New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References:...

  9. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  10. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  11. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  12. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  13. High-discharge-rate lithium ion battery

    DOE Patents [OSTI]

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  14. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  15. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  16. Polymeric electrolytes for ambient temperature lithium batteries

    SciTech Connect (OSTI)

    Farrington, G.C. . Dept. of Materials Science and Engineering)

    1991-07-01

    A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

  17. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab

  18. A new family of salts for lithium secondary batteries

    SciTech Connect (OSTI)

    Baril, D.; Beranger, S.; Ravet, N.; Michot, C.; Armand, M.

    2000-07-01

    A novel family of salts suitable for lithium battery application was synthesized and characterized. These salts have a large delocalized anion whose charge is spread over a single SO{sub 2} and a phenyl ring. Remarkable properties were obtained for the lithium N-(3-trifluoromethyl phenyl) trifluoromethanesulfonamide salt or LiTFPTS. The electrochemical stability window is around 4.0 V and its conductivity in solid poly(ethylene oxide) or PEO is close to the one of the lithium perchlorate salt. Calorimetric analysis also showed that LiTFPTS behaves as a plasticizer since it hinders, to a certain extent, the PEO crystallization when it is used in a solid polymer matrix. Above all, its synthesis is quite straightforward and leads to potentially inexpensive salts as the starting amines are made commercially on a large scale.

  19. Rechargeable solid polymer electrolyte battery cell

    DOE Patents [OSTI]

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  20. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  1. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity New Insights into Oxygen's Role in Lithium Battery Capacity Print Monday, 11 July 2016 00:00 Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain

  2. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile

  3. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  4. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  5. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  6. New Insights into Oxygen's Role in Lithium Battery Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Insights into Oxygen's Role in Lithium Battery Capacity Print Researchers working at the ALS have recently made new discoveries in understanding the nature of charge storage in lithium-ion (Li-ion) batteries, opening up possibilities for new battery designs with significantly improved capacity. Looking at a popular Li-rich cathode material, the researchers used soft x-ray techniques to quantifiably explain oxygen's role in Li-ion charge capacity. Lithium: The Star of Battery Chemistry The

  7. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  8. Advanced Battery Factory | Open Energy Information

    Open Energy Info (EERE)

    Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in 1958. References: Advanced Battery Factory1 This...

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  11. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  12. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  14. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  15. Gel polymer electrolytes for batteries (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Gel polymer electrolytes for batteries Citation Details In-Document Search Title: Gel polymer electrolytes for batteries Nanostructured gel polymer electrolytes that have both high ...

  16. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  17. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  18. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion ... In a lithium-ion battery, charge moves from the cathode to the ... characterization, and simulation in a novel approach to ...

  19. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  20. Methods for making anodes for lithium ion batteries (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Methods for making anodes for lithium ion batteries Title: ... A laminated structure may be prepared from the tape and sintered to produce a porous ...

  1. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... this composite anode exhibits the best performance so far in lithium-ion batteries, while retaining an economical cost and compatibility with existing manufacturing ...

  2. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles FY 2011 Annual Progress Report for Energy Storage ...

  3. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Broader source: Energy.gov (indexed) [DOE]

    Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Diagnostic studies on Li-battery cells and cell components Cell Fabrication Facility Team Production and ...

  4. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & ...

  5. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes - Interfacial and Bulk Properties and Stability Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of ...

  6. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability ...

  7. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  8. Researchers Create Transparent Lithium-Ion Battery - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford and SLAC National Accelerator Laboratory researchers have invented a transparent lithium-ion battery that is also highly flexible. It is comparable in cost to regular ...

  9. Electrochemical Lithium Ion Battery Performance Model

    Energy Science and Technology Software Center (OSTI)

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore » charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  10. Polymers For Advanced Lithium Batteries

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean ...

  12. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  13. Quantifying the Promise of Lithium-Air Batteries for Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Air Batteries for Electric Vehicles Comparison of materials-to-systems analysis (main panel) and "active materials only" analysis (inset) of Li-O2 batteries for electric ...

  14. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  15. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  16. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  17. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile systems, electric vehicles in particular. Battery performance depends on the dynamics of

  18. Lithium ion batteries and their manufacturing challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  19. Toxicity of materials used in the manufacture of lithium batteries

    SciTech Connect (OSTI)

    Archuleta, M.M.

    1994-05-01

    The growing interest in battery systems has led to major advances in high-energy and/or high-power-density lithium batteries. Potential applications for lithium batteries include radio transceivers, portable electronic instrumentation, emergency locator transmitters, night vision devices, human implantable devices, as well as uses in the aerospace and defense programs. With this new technology comes the use of new solvent and electrolyte systems in the research, development, and production of lithium batteries. The goal is to enhance lithium battery technology with the use of non-hazardous materials. Therefore, the toxicity and health hazards associated with exposure to the solvents and electrolytes used in current lithium battery research and development is evaluated and described.

  20. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect (OSTI)

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  1. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  2. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric ...

  3. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries ...

  4. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  5. Electrophoretic NMR measurements of lithium transference numbers in polymer gel electrolytes

    SciTech Connect (OSTI)

    Dai, H.; Sanderson, S.; Davey, J.; Uribe, F.; Zawodzinski, T.A. Jr.

    1997-05-01

    Polymer gel electrolytes are of increasing interest for plastic lithium batteries largely because of their high room temperature conductivity. Several studies have probed their conductivity and electrochemical stability but very little work has been done related to lithium transference numbers. Lithium ion transference numbers, the net number of Faradays carried by lithium upon the passage of 1 Faraday of charge across a cell, are key figures of merit for any potential lithium battery electrolytes. The authors describe here their application of electrophoretic NMR (ENMR) to the determination of transference numbers of lithium ions in polymer gel electrolytes. Two types of polymer gel electrolytes were selected for this study: PAN/PC/EC/LiX and Kynar/PC/LiX. Results obtained for the two types of gels are compared and the effects of anion, polymer-ion interactions and ion-ion interactions on lithium transference numbers are discussed. Significant differences in the behavior of transference numbers with salt concentration are observed for the two types of gels. This may be due to the extent of interaction between the polymer and the ions. Implications for solid polymer electrolytes are discussed.

  6. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  7. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  8. Ionic liquids for rechargeable lithium batteries

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  9. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Kang, Sun-Ho; Thackeray, Michael M.

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  10. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  11. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  12. Lithium-Ion Battery Teacher Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B

  13. Batteries - Beyond Lithium Ion Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g.

  14. Long life lithium batteries with stabilized electrodes

    DOE Patents [OSTI]

    Amine, Khalil; Liu, Jun; Vissers, Donald R.; Lu, Wenquan

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  15. Silver manganese oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  16. Novel Electrolytes for Lithium Ion Batteries (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Novel Electrolytes for Lithium Ion Batteries Citation Details In-Document Search Title: Novel Electrolytes for Lithium Ion Batteries We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have

  17. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K.; Peterson, Eric S.; Stewart, Frederick F.

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  18. Development and In Situ Characterization of New Electrolyte and Electrode materials for Rechargeable Lithium Batteries

    SciTech Connect (OSTI)

    Yang, X -Q; Xing, X K; Daroux, M

    2000-01-03

    The object of this project is to develop new electrolyte and cathode materials for rechargeable lithium batteries, especially for lithium ion and lithium polymer batteries. Enhancing performance, reducing cost, and replacing toxic materials by environmentally benign materials, are strategic goals of DOE in lithium battery research. This proposed project will address these goals on two important material studies, namely the new electrolytes and new cathode materials. For the new electrolyte materials, aza based anion receptors as additives, organic lithium salts and plasticizers which have been developed by BNL team under Energy Research programs of DOE, will be evaluated by Gould for potential use in commercial battery cells. All of these three types of compounds are aimed to enhance the conductivity and lithium transference number of lithium battery electrolytes and reduce the use of toxic salts in these electrolytes. BNL group will be working closely with Gould to further develop these compounds for commercialization. For the cathode material studies, BNL efforts wi U be focused on developing new superior characterization methclds, especially in situ techniques utilize the unique user facility of DOE at BNL, namely the National Synchrotrons Light Source (NSLS). In situ x-ray absorption and x-ray diftlaction spectroscopy will be used to study the relationship between performance and the electronic and structural characteristics of intercalation compounds such as LiNi02, LiCo02, and LiMn204 spinel. The study will be focused on LiMn204 spinel materials. Gould team will contribute their expertise in choosing the most promising compounds, providing overall performance requirements, and will use the results of this study to guide their procedure for quality control. The knowledge gained through this project will not only benefit Gould and BNL, but will be very valuable to the scientific community in

  19. Bullith Batteries AG | Open Energy Information

    Open Energy Info (EERE)

    Batteries AG Place: Ismaning, Germany Zip: 85737 Product: Batteries producer using the lithium-polymer technology. Coordinates: 48.22727, 11.676305 Show Map Loading map......

  20. TCL Hyperpower Batteries Inc | Open Energy Information

    Open Energy Info (EERE)

    Batteries, Inc Place: China Product: China-based subsidiary of TCL Group, they make Lithium Polymer, NiMH and Primary batteries, primarily for smaller devices. References: TCL...

  1. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with ...

  2. Protective shells may boost silicon lithium-ion batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective shells may boost silicon lithium-ion batteries By Sarah Schlieder * August 5, 2015 Tweet EmailPrint Imagine a cell a phone that charges in less than an hour and lasts...

  3. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    Electrolyte Properties (Technical Report) | SciTech Connect Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties Citation Details In-Document Search Title: Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the

  4. Methods for Preparing Materials for Lithium Ion Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Methods for Preparing Materials for Lithium Ion Batteries Technology available for licensing: Process for the preparation of transition metal particles with a gradient concentration from core to the outer layers As applied to Lithium Ion batteries gradient cathode material allows for high energy and improved safety Enables high capacity Ni center with Mn outer layer for improved safety and stability IN-10-036 US 8591774B2 Availability: Technology available for license to

  5. Nanotube composite anode materials improve lithium-ion battery performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-09-034) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Nanotube composite anode materials improve lithium-ion battery performance (ANL-09-034) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Rechargeable lithium-ion batteries are a critical technology for many applications, including consumer electronics and electric vehicles. As the demand for hybrid and

  6. Anode Materials for Lithium Ion Batteries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anode Materials for Lithium Ion Batteries Technology available for licensing: Composite anode material for Lithium Ion Battery High reversible capacity and improved cyclability with minimal volume change with cycling IN-10-013 US 9054373B2 Availability: Technology available for license to organizations with commercial interest. Collaborative research is available under a Cooperative Research and Development Agreement (CRADA). Contact: 800-627-2596; partners@anl.gov PDF icon Anode Materials

  7. Lithium-Ion Battery Recycling Issues | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pmp_05_gaines.pdf (566.25 KB) More Documents & Publications International Collaboration With a Case Study in Assessment of Worlds Supply of Lithium Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6

  8. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  9. Modeling the Performance and Cost of Lithium-Ion Batteries for...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory for lithium-ion battery packs used in automotive transportation. ... calculated by accounting for every step in the lithium-ionbattery manufacturing process. ...

  10. Evaluation of lithium-ion synergetic battery pack as battery charger

    SciTech Connect (OSTI)

    Davis, A.; Salameh, Z.M.; Eaves, S.S.

    1999-09-01

    A new battery configuration technique and accompanying control circuitry, termed a Synergetic Battery Pack (SBP), is designed to work with Lithium batteries, and can be used as both an inverter for an electric vehicle AC induction motor drive and a battery charger. In this paper, the authors compare the performance of the Synergetic Battery Pack as a battery charger with several simple conventional battery charging circuits via computer simulation. The factors of comparison were power factor, harmonic distortion, and circuit efficiency. The simulations showed that the SBP is superior to the conventional charging circuits since the power factor is unity and harmonic distortion is negligible.

  11. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt006_es_pham_2011_p.pdf (566.72 KB) More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  12. Negative Electrodes Improve Safety in Lithium Cells and Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability capability. A new class of intermetallic material for the negative electrode that offers a significantly higher volumetric and gravimetric capacity and improves battery stability and safety. PDF icon negative_electrodes

  13. High Voltage Electrolyte for Lithium Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es113_amine_2011_p.pdf (246.67 KB) More Documents & Publications High Voltage Electrolyte for Lithium Batteries Vehicle Technologies Office Merit Review 2015: Fluorinated Electrolyte for 5-V Li-Ion Chemistry High Voltage Electrolytes for Li-ion Batteries

  14. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt020_es_coy_2012_p.pdf (1.72 MB) More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  15. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  16. Non-aqueous electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  17. Rechargeable Aluminum Batteries with Conducting Polymers as Positive...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Rechargeable Aluminum Batteries with Conducting Polymers as Positive Electrodes. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  18. Rechargeable aluminum batteries with conducting polymers as positive...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rechargeable aluminum batteries with conducting polymers as positive electrodes. Citation Details In-Document Search Title: Rechargeable aluminum batteries with ...

  19. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Conference: Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with ...

  20. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  1. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  2. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  3. Materials and Processing for Lithium-Ion batteries

    SciTech Connect (OSTI)

    Daniel, Claus

    2008-01-01

    Lithium ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Citation Details In-Document Search Title: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220

  5. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Energy Savers [EERE]

    0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production ...

  6. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using a new approach, the team built a graphene membrane for use in lithium-air batteries, ... recently built a novel graphene membrane that could produce a lithium-air battery ...

  7. Electrolytes for Use in High Energy Lithium-Ion Batteries with...

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with ...

  8. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  9. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key partsa positive and negative electrode and an electrolytethat exchange ions to store and release electricity. Using different materials for these components changes a batterys chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  10. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: PolyPlus is developing the worlds first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithiumbased negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the batterys reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  11. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Bubbles Help Break Energy Storage Record for Lithium Air-Batteries Foam-base graphene keeps oxygen flowing in batteries that holds promise for electric vehicles January 25, 2012 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Using a new approach, the team built a graphene membrane for use in lithium-air batteries, which could, one day, replace conventional batteries in electric vehicles. Resembling coral, this porous graphene material

  12. Polysulfide-Blocking Polymer Membrane for Li-S Batteries - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 3, 2015, Research Highlights Polysulfide-Blocking Polymer Membrane for Li-S Batteries The microporous network allows the passage of smaller moieties such as solvent molecules, LiTFSI, and lithium ions while forbidding the passage of larger polysulfides (Li2Sx). Scientific Achievement Polymers of Intrinsic Microporosity are harnessed as an ion-selective membrane, effectively blocking polysulfide crossover due to its microporous molecular-sieving network.

  13. Gel polymer electrolytes for batteries

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  14. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  15. Understanding the Ultimate Battery Chemistry: Rechargeable Lithium/Air |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility The electronic charge density of a lithium oxide (Li2O) nanoparticle consists of 1500 atoms obtained from Density Functional Theory simulation. Kah Chun Lau (MSD, ANL), Aaron Knoll (MCS, ANL), Larry A Curtiss (MSD/CNM, ANL). Understanding the Ultimate Battery Chemistry: Rechargeable Lithium/Air PI Name: Jack Wells PI Email: wellsjc@ornl.gov Institution: Oak Ridge National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 25 Million Year:

  16. Electrode Structures and Surfaces for Lithium Batteries | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Structures and Surfaces for Lithium Batteries Technology available for licensing: Lithium-metal-oxide electrode materials with modified surfaces to protect the materials from highly oxidizing potentials in the cells and from other undesirable effects, such as electrolyte oxidation, oxygen loss, and/or dissolution A low-cost manufacturing method. Improves stability of composite electrode structures. PDF icon electrode_structures

  17. Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliant Glass-Polymer Hybrid Single Ion-ConductingElectrolytes for Lithium Batteries ... excellent electrochemical stability, and limit the dissolution of lithium polysulfides. ...

  18. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan; Liang, Chengdu

    2015-01-01

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  19. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less

  20. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  1. High capacity anode materials for lithium ion batteries

    DOE Patents [OSTI]

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  2. Long Life Lithium Batteries with Stabilized Electrodes | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Long Life Lithium Batteries with Stabilized Electrodes Technology available for licensing: Non-aqueous electrolytes with stabilization additives for improved calendar and cycle life of batteries Additives enable excellent specific power and energy and extended calendar life Work across broad temperature range with minimal or no capacity loss IN-03-047 US 7968235B2 US 8551661B2 Availability: Technology available for license to organizations with commercial interest. Collaborative

  3. Lithium battery electrodes with ultra-thin alumina coatings

    SciTech Connect (OSTI)

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  4. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan; Liu, Zengcai; Fu, Wujun; Dudney, Nancy J; Liang, Chengdu

    2013-01-01

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  5. Electrode materials and lithium battery systems

    DOE Patents [OSTI]

    Amine, Khalil; Belharouak, Ilias; Liu, Jun

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  6. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect (OSTI)

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  7. Fitting the Lithium-Sulfur Battery with a New Membrane - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research October 22, 2015, Accomplishments Fitting the Lithium-Sulfur Battery with a New Membrane The lithium-sulfur battery has higher energy storage capacity and lower cost than lithium ion. But there is a serious stumbling block. Polysulfides form in the cathode during battery cycling and pass through the membrane to contaminate the lithium metal anode. This results in a rapid decline in performance. JCESR researchers appear to have found a solution to the problem - the

  8. Solid electrolyte: The key for high-voltage lithium batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Juchuan; Ma, Cheng; Chi, Miaofang; Liang, Chengdu; Dudney, Nancy J.

    2014-10-14

    A solid-state high-voltage (5 V) lithium battery is demonstrated to deliver a cycle life of 10 000 with 90% capacity retention. Furthermore, the solid electrolyte enables the use of high-voltage cathodes and Li anodes with minimum side reactions, leading to a high Coulombic efficiency of 99.98+%.

  9. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  10. Coating of porous carbon for use in lithium air batteries

    DOE Patents [OSTI]

    Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W

    2015-04-14

    A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.

  11. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  12. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  13. Cathode material for lithium batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material. Inventors: Park, Sang-Ho ; Amine, Khalil Issue Date: 2015-01-13 ...

  14. Layered electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Vaughey, John T.; Kahaian, Arthur J.; Kim, Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  15. Multi-component intermetallic electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  16. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  17. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  18. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  19. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    SciTech Connect (OSTI)

    Ferrese, A; Newman, J

    2014-04-11

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasi steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.

  20. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries Compatible with current battery technologies Provides overcharge protection, increased safety and long-term stability PDF icon redox_shuttles_overcharge

  1. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect (OSTI)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  2. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Commercialization A123 Systems Inc., the primary industrial partner on the project and one of the leading Li-ion battery developers in the United States, is enabling and ...

  3. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  4. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  5. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  6. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  7. In the OSTI Collections: Lithium-ion Batteries | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Lithium-ion batteries have high energy per unit of volume and mass, and other chemical ... Pure lithium is, in fact, the lightest and most energy-efficient material for the ...

  8. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOE Patents [OSTI]

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  9. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect (OSTI)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  10. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee, Ahmad Pesaran Kandler Smith kandler.smith@nrel.gov Source: A123 Source: GM NATIONAL RENEWABLE ENERGY LABORATORY Challenges for Large LIB Systems 2 * Li-ion batteries are flammable, require expensive manufacturing to reduce defects * Small-cell protection devices do not work for large systems * Difficult to detect

  11. Inhibiting voltage suppression in lithium/fluorinated carbon batteries

    SciTech Connect (OSTI)

    Shia, G.A.; Nalewajek, D.; Pyszczek, M.F.

    1988-12-13

    This patent describes a lithium/fluorinated carbon battery having a reduced initial voltage suppression which comprises the incorporation in the battery cathode of fluorinated carbon which has been reacted with a compound selected from the group consisting of a Group IA metal-alkyl compound and a Group IA metal-aryl compound, which Group IA metal-aryl compound has at least 10 carbon atoms, until surface fluorine on the fluorinated carbon has been stripped and alkyl or aryl groups from the Group IA metal-alkyl compound or Group IA metal-aryl compound are substituted for surface fluorine atoms.

  12. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide

    Broader source: Energy.gov (indexed) [DOE]

    Operating Temperature Range | Department of Energy 26_smart_2012_o.pdf (1.75 MB) More Documents & Publications Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

  13. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide

    Office of Environmental Management (EM)

    Operating Temperature Range | Department of Energy Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es026_smart_2013_p.pdf (1.73 MB) More Documents & Publications Electrolytes for Use in High Energy Lithium-Ion Batteries with

  14. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  15. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (OSTI)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  16. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  17. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire -MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing -MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the -MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the -MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into -MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the -MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high

  18. Development of High Energy Lithium-Sulfur Batteries

    Broader source: Energy.gov (indexed) [DOE]

    High Energy Lithium-Sulfur Batteries Jun Liu and Dongping Lu Pacific Northwest National Laboratory 2016 DOE Vehicle Technologies Program Review June 6-10, 2016 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #ES282 1 1 2 Overview Timeline * Start date: Oct. 2012 * End date: Sept. 2017 * Percent complete: 80% Budget * Total project funding - DOE share 100% * Funding received in FY15: $400k * Funding for FY16: $400k Barriers *

  19. Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance Technology available for licensing: Li4Ti5O12 spinel is a promising alternative to graphite electrodes with enhanced conductivity, voltage and energy density. Enhanced stability at lower cost Li4Ti5O12 spinel is a promising alternative to graphite electrodes with enhanced conductivity, voltage and energy density PDF icon LTO_anodes

  20. Modified carbon black materials for lithium-ion batteries

    DOE Patents [OSTI]

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  1. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Technology Marketing SummaryGao Liu and colleagues at Berkeley Lab have

  2. Thin-film lithium batteries highlighted at OSTI | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    The Department of Energy's Oak Ridge National Laboratory (ORNL) has developed just such a high-performance thin-film lithium battery for a variety of technological applications. ...

  3. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  4. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

  5. Phase transitions in insertion electrodes for lithium batteries

    SciTech Connect (OSTI)

    Thackeray, M. M.

    2000-02-02

    Phase transitions that occur during lithium insertion into layered and framework structures are discussed in the context of their application as positive and negative electrodes in lithium-ion batteries. The discussion is focused on the two-dimensional structures of graphite, LiNi{sub 1{minus}x}M{sub x}O{sub 2} (M = Co, Ti and Mg), and Li{sub 1.2}V{sub 3}O{sub 8}; examples of framework structures with a three-dimensional interstitial space for Li{sup +}-ion transport include the spinel oxides and intermetallic compounds with zinc-blende-type structures. The phase transitions are discussed in terms of their tolerance to lithium insertion and extraction and to the chemical stability of the electrodes in the cell environment.

  6. A lithium electrode with a zinc substrate for secondary batteries

    SciTech Connect (OSTI)

    Matsuda, Y.; Katsuma, H.; Morita, M.

    1983-03-01

    The development of a lithium secondary battery using an organic electrolyte has been actively pursued in recent years. An efficient Li electrode is required to realize such rechargeable batteries. Some Li negatives with metal substrates have been proposed in order to obtain good efficiency of chargedischarge cycling. Especially, it is worth noting that high coulombic efficiency was achieved with an Al substrate, which forms an alloy with deposited Li during the charging period. Previously, the authors pointed out the importance of the correlation between the alloy formation of the substrate metal and the charge-discharge efficiency on the substrate. It was also found that Zn, as well as Al, is a promising substrate for secondary lithium electrodes. This paper shows the charge-discharge characteristics of the Li electrode with a Zn substrate in propylene carbonate solution containing lithium tetrafluoroborate (LiBF/sub 4/) or lithium perchlorate (LiClO/sub 4/). The results are briefly discussed by comparing the characteristics with those for the Al substrate.

  7. Room-temperature lithium metal battery closer to reality > EMC2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room-temperature lithium metal battery closer to reality February 3rd, 2016 By Tom ... The relative non-conductivity and brittleness of such barriers, however, means the battery ...

  8. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  9. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  10. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  11. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  12. Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approach | Argonne National Laboratory Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable lithium-ion cells and batteries synthesized by using a novel alternative approach Lowers battery pack cost. Layered cathode material contains low-cost manganese, which operates at high rate and high voltage and results in a high-energy-density battery with improved stability. PDF icon

  13. Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2009-05-01

    Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

  14. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect (OSTI)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  15. Lithium-titanium-oxide anodes for lithium batteries

    DOE Patents [OSTI]

    Vaughey, John T. (Elmhurst, IL); Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Jansen, Andrew N. (Bolingbrook, IL); Chen, Chun-hua (Westmont, IL)

    2001-01-01

    A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0battery comprising an plurality of cells, electrically connected, each cell comprising a negative electrode, an electrolyte and a positive electrode, the negative electrode consisting of the spinel-type structure disclosed.

  16. Polymer Electrolytes for Advanced Lithium Batteries

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  17. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; Roberts, Scott A.; Barringer, David A.; Snyder, Chelsea M.; Janvrin, Madison R.; Apblett, Christopher A.

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  18. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  19. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Xiao, Xingcheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Wang, Chong M.

    2014-01-14

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  20. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  1. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  2. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect (OSTI)

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  3. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  4. Zhuhai Hange Battery Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhuhai Hange Battery Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a...

  5. Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

    2010-11-01

    This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

  6. Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014- Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014

  7. Lithium and lithium ion batteries towards micro-applications: a review

    SciTech Connect (OSTI)

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel S.; Ferrara, Seth A.; Deng, Zhiqun; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  8. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  9. Negative electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  10. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  11. Alan MacDiarmid, Conductive Polymers, and Plastic Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information * Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It

  12. New Path Forward for Next-Generation Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Path Forward for Next-Generation Lithium-Ion Batteries New Path Forward for Next-Generation Lithium-Ion Batteries Berkeley Lab researchers shed light on how lithium-rich cathodes work, opening the door to higher capacity batteries. May 30, 2016 Julie Chao, JHChao@lbl.gov, (510) 486-6491 Ceder group LBNL A new study by Berkeley Lab researchers Dong-Hwa Seo, Alex Urban, Jinhyuk Lee, and Gerd Ceder (from left) sheds light on how lithium-rich cathodes work, opening the door to higher capacity

  13. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  14. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  15. Lithium/fluorinated carbon battery with no voltage delay

    SciTech Connect (OSTI)

    Tung, H.S.; Friedland, D.J.; Sukornick, B.; Mc Curry, L.E.; Eibeck, R.E.; Lockyer, G.D.

    1987-07-21

    A method is described for producing an improved fluorinated carbon, for use as a cathode active material in a lithium fluorinated carbon battery, which inhibits initial voltage delay upon discharge, which comprises: (a) introducing a comminuted carbon into a static bed reactor; (b) foring a bed of the carbon to a depth of at least 0.5 cm; and (c) subjecting the carbon bed to a fluorination reaction under controlled reaction time with fluorine to produce an inhomogeneous fluorinated carbon product and until the carbon attains a weight gain of at least 10 percent.

  16. Impedance studies for separators in rechargeable lithium batteries

    SciTech Connect (OSTI)

    Laman, F.C.; Gee, M.A.; Denovan, J. )

    1993-04-01

    Melting of separators, causing closure of separator pores, will result in a strong reduction in current flow. When this process is initiated at the appropriate time it can prevent thermal runaway of lithium batteries during electrical abuse. For this reason, a separator can act as an internal safety device. The effective depends on a number of separator parameters such as melting temperature, rate of pore fusion, and dimensional stability temperature. Measurement of the electrical impedance of electrolyte-filled separators and separator combinations in the temperature range from room temperature to 200 C can be used to determine these parameters.

  17. Composite Electrodes for Rechargeable Lithium-Ion Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Electrodes for Rechargeable Lithium-Ion Batteries Technology available for licensing: Electrodes having composite xLi2M'O3*(1-x)LiMO2 structures in which an electrochemically inactive Li2M'O3 component is integrated with an electrochemically active LiMO2 component to provide improved structural and electrochemical stability. Has superior cost features compared with current state-of-the-art LiCoO2 electrodes. Offers high rate of charge/discharge and structural stability

  18. Method of inhibiting voltage suppression lithium/fluorinated carbon batteries

    SciTech Connect (OSTI)

    Shia, G.A.; Friedland, D.J.

    1987-08-11

    An improved lithium/fluorinated carbon battery is described wherein the cathode comprises a blend of at least two different CF/sub x/ compositions which are derived from petroleum-based coke products which have been prepared by heat treatment at a temperature between about 800/sup 0/C and 2,0006/sup 0/C: (a) a bulk CF/sub x/ and (b) an additive CF/sub x/ and wherein from about 0.5 percent to about 50 percent of (b) is characterized as having a closed circuit voltage of at least 150 mV above the plateau voltage of the bulk CF/sub x/ and a specific capacity above 600 mAH/g. A method is also described for the elimination of suppression of the closed circuit voltage of a Li/CF/sub x/ battery during the initial part of its discharge.

  19. Long life lithium batteries with stabilized electrodes

    DOE Patents [OSTI]

    Amine, Khalil; Liu, Jun; Vissers, Donald R; Lu, Wenquan

    2015-04-21

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In certain electrolytes, the alkali metal salt is a bis(chelato)borate and the additives include substituted or unsubstituted linear, branched or cyclic hydrocarbons comprising at least one oxygen atom and at least one aryl, alkenyl or alkynyl group. In other electrolytes, the additives include a substituted aryl compound or a substituted or unsubstituted heteroaryl compound wherein the additive comprises at least one oxygen atom. There are also provided methods of making the electrolytes and batteries employing the electrolytes. The invention also provides for electrode materials. Cathodes of the present invention may be further stabilized by surface coating the particles of the spinel or olivine with a material that can neutralize acid or otherwise lessen or prevent leaching of the manganese or iron ions. In some embodiments the coating is polymeric and in other embodiments the coating is a metal oxide such as ZrO.sub.2, TiO.sub.2, ZnO, WO.sub.3, Al.sub.2O.sub.3, MgO, SiO.sub.2, SnO.sub.2 AlPO.sub.4, Al(OH).sub.3, a mixture of any two or more thereof.

  20. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  1. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect (OSTI)

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  2. Failure propagation in multi-cell lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  3. Failure propagation in multi-cell lithium ion batteries

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module. Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.

  4. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  5. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  6. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  7. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Voltage Solid Polymer Batteries for Electric Drive Vehicles Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik The purpose of this project was for Seeo to develop a...

  8. Advanced Battery Technologies Inc ABAT | Open Energy Information

    Open Energy Info (EERE)

    Product: China-based developer, manufacturer and distributer of rechargeable polymer lithium-ion (PLI) batteries. Coordinates: 45.363708, 126.314621 Show Map Loading map......

  9. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Facilities near Detroit, MI | Department of Energy 0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI April 1, 2010 EA-1690: Final Environmental Assessment For a Loan and Grant to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No

  10. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    SciTech Connect (OSTI)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  11. Solid lithium-ion electrolyte (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    uses in lithium batteries, electrochromic devices and other electrochemical applications. ... conductivity; suitable; lithium; batteries; electrochromic; devices; ...

  12. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil; Chen, Zonghai; Wang, Qingzheng

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  13. Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

    2011-01-01

    This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

  14. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Broader source: Energy.gov [DOE]

    This Clean Energy Manufacturing Analysis Center report is intended to provide credible, objective analysis regarding the regional competitiveness contexts of manufacturing lithium-­ion batteries ...

  15. To bolster lithium battery life, add a little salt > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Genius Award' In This Section EMC2 News Archived News Stories To bolster lithium battery life, add a little salt August 13th, 2014 By Blaine Friedlander Archer Lu...

  16. Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy ... and Innovation at Events Across the Nation A123 Systems Moves From the Lab to the Assembly ...

  17. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envia Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  18. 7Li MRI of Li batteries reveals location of microstructural lithium...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: 7Li MRI of Li batteries reveals location of microstructural lithium Citation Details In-Document Search Title: 7Li MRI of Li ...

  19. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study highlights the U.S. foothold in automotive lithium-ion battery (LIB) production, globally. U.S.-based manufacturers comprise 17% of global production capacity. With increasing demand for...

  20. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  1. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  2. Lithium-Ion Battery with Higher Charge Capacity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium-Ion Battery with Higher Charge Capacity University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Zirconate Based Cathode Material Lithium-ion batteries (LIBs) typically use a cobalt compound as the cathode material. Cobalt oxides are relatively expensive and scarce. An innovative zirconate-based cathode material developed at the University of Minnesota has the potential

  3. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Carolina | Department of Energy Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs

  4. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    SciTech Connect (OSTI)

    Fenton, Kyle R.; Nagasubramanian, Ganesan; Staiger, Chad L.; Pratt, III, Harry D.; Rempe, Susan B.; Leung, Kevin; Chaudhari, Mangesh I.; Anderson, Travis Mark

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  5. Students to race their innovative solar, hydrogen and lithium ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model cars Saturday - News Releases | NREL Students to race their innovative solar, hydrogen and lithium ion battery model cars Saturday May 10, 2012 Middle school students from around the state will participate in the Junior Solar Sprint, Hydrogen Fuel Cell, and Lithium Ion Battery car competitions on Saturday, May 12, at Dakota Ridge High School in Littleton. Sponsored by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the competitions give students the

  6. Surface-Modified Copper Current Collector for Lithium Ion Battery Anode -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Copper Current Collector for Lithium Ion Battery Anode Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A team of Berkeley Lab researchers led by Gao Liu has developed an innovative approach to improve the adhesion of anode laminate to copper current collectors in lithium ion batteries. This nanotechnology directly addresses delamination of graphite anode material from the collectors, a common result of cyclical

  7. Methods for the analysis of lithium-silicon, iron disulfide thermal battery materials

    SciTech Connect (OSTI)

    Krall, P.R.

    1985-09-30

    Analytical methods for the characterization of the lithium-silicon/iron disulfide thermal battery materials have been developed and evaluated. The standard procedures being used for the quality control testing of the battery materials are described in this report. These procedures are based on both classical chemical methods and instrumental methods of analysis. The materials characterized include lithium-silicon alloy, iron disulfide, catholyte material, separator material, calcium disilicide, depolarizer-electrolyte-binder material, electrolyte and electrolyte binder material.

  8. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect (OSTI)

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  9. High elastic modulus polymer electrolytes suitable for preventing...

    Office of Scientific and Technical Information (OSTI)

    electrolytes suitable for preventing thermal runaway in lithium batteries Citation Details In-Document Search Title: High elastic modulus polymer electrolytes suitable for ...

  10. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Broader source: Energy.gov (indexed) [DOE]

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  11. Materials and mechanisms of high temperature lithium sulfide batteries

    SciTech Connect (OSTI)

    Kaun, T.D.; Hash, M.C.; Henriksen, G.L.; Jansen, A.N.; Vissers, D.R.

    1994-05-01

    New materials have encouraged development of bipolar Li-Al/FeS{sub 2} batteries for electric vehicle (EV) applications. Current technology employs a two-phase Li-alloy negative electrode low-melting, LiCl-rich LiCl-LiBr-KBr molten salt electrolyte, and either an FeS or an upper-plateau (UP) FeS{sub 2} positive electrode. These components are assembled in a sealed bipolar battery configuration. Use of the two-phase Li-alloy ({alpha} + {beta} Li-Al and Li{sub 5}Al{sub 5}Fe{sub 2}) negative electrode provides in situ overcharge tolerance that renders the bipolar design viable. Employing LiCl-rich LiCl-LiBr-KBr electrolyte in ``electrolyte-starved`` calls achieves low-burdened cells, that possess low area-specific impedance; comparable to that of flooded cells using LiCl-LiBr-KBr eutectic electrolyte. The combination of dense UP FeS{sub 2} electrodes and low-melting electrolyte produces a stable and reversible couple, achieving over 1000 cycle life in flooded cells, with high power capabilities. In addition, a family of stable sulfide ceramic/sealant materials was developed that produce high-strength bonds between a variety of metals and ceramics, which renders lithium/iron suffide bipolar stacks practical. Bipolar Li-Al/FeS{sub 2} cells and four-cell stacks using these seals are being built and tested in the 13 cm diameter size for EV applications. To date, Li-Al/FeS{sub 2} cells have attained 400 W/kg power at 80% DOD and 180 Wh/kg energy at the 30 W/kg rate. When cell performance characteristics are used to model full-scale EV and hybrid vehicle (HV) batteries, they are projected to meet or exceed the performance requirements for a large variety of EV and HV applications. Efficient production and application of Li-alloys and Li-salt electrolyte are critical to approaching battery cost objectives.

  12. ZhuHai Coslight Battery Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co., Ltd. Place: China Product: China-based subsidiary of the Coslight Group making Lithium Ion Polymer Batteries. References: ZhuHai Coslight Battery Co., Ltd.1 This article...

  13. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  14. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Trulove, Paul C; Foley, Matthew P

    2013-03-14

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-????salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  15. JCESR Scientific Sprints - Better Polymers for Better Batteries - Joint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Energy Storage Research February 19, 2016, Videos JCESR Scientific Sprints - Better Polymers for Better Batteries JCESR supplements its traditional project management approach with scientific "Sprints." The sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can react electrochemically

  16. Thin film method of conducting lithium-ions (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    uses in lithium batteries, electrochromic devices and other electrochemical applications. ... conductivity; suitable; lithium; batteries; electrochromic; devices; ...

  17. Prospects for reducing the processing cost of lithium ion batteries

    SciTech Connect (OSTI)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  18. Quantifying Cell-to-Cell Variations in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Santhanagopalan, S.; White, R. E.

    2012-01-01

    Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

  19. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  20. Prospects for reducing the processing cost of lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  1. A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. 3: Synthesis and properties of some lithium organoborates

    SciTech Connect (OSTI)

    Barthel, J.; Buestrich, R.; Carl, E.; Gores, H.J.

    1996-11-01

    Synthesis, analysis, and purification of new lithium salts for lithium batteries, lithium bis[tetrafluoro-1,2-benzene-diolato(2-)-O,O{prime}]borate and lithium bis[2,3-naphthalenediolato(2-)-O,O{prime}]borate are described, and the results of electrochemical studies of these salts and of lithium bis[3-fluoro-1,2-benzenediolato(2-)-O,O{prime}]borate, in propylene carbonate are reported. The effect of the electron-withdrawing substituent fluorine results in an increase of the electrochemical window by 0.1 V/fluorine per one chelate ligand. The slope, which can be calculated from the linear correlation of the highest occupied molecular orbital energies with anodic oxidation potentials is {minus}3.0 eV/V, a value equal to that known for aryl borates and fluoroaryl borates.

  2. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  3. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  4. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists at Argonne National Laboratory are leading efforts to revolutionize battery technology with the design and development of new battery materials for electrolytes, ...

  5. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  6. Process For Cutting Polymers Electrolyte Multi-Layer Batteries And Batteries Obtained Thereby

    DOE Patents [OSTI]

    Gauthier, Michel; Lessard, Ginette; Dussault, Gaston; Rouillard, Roger; Simoneau, Martin; Miller, Alan Paul

    2003-09-09

    A stacking of battery laminate is prepared, each battery consisting of anode, polymer electrolyte, cathode films and possibly an insulating film, under conditions suitable to constitute a rigid monoblock assembly, in which the films are unitary with one another. The assembly obtained is thereafter cut in predetermined shape by using a mechanical device without macroscopic deformation of the films constituting the assembly and without inducing permanent short circuits. The battery which is obtained after cutting includes at least one end which appears as a uniform cut, the various films constituting the assembly having undergone no macroscopic deformation, the edges of the films of the anode including an electronically insulating passivation film.

  7. Density functional and neutron diffraction studies of lithium polymer electrolytes.

    SciTech Connect (OSTI)

    Baboul, A. G.

    1998-06-26

    The structure of PEO doped with lithium perchlorate has been determined using neutron diffraction on protonated and deuterated samples. The experiments were done in the liquid state. Preliminary analysis indicates the Li-O distance is about 2.0 {angstrom}. The geometries of a series of gas phase lithium salts [LiCF{sub 3}SO{sub 3}, Li(CF{sub 3}SO{sub 2}){sub 2}N, Li(CF{sub 3}SO{sub 2}){sub 2}CH, LiClO{sub 4}, LiPF{sub 6}, LiAsF{sub 6}] used in polymer electrolytes have been optimized at B3LYP/6-31G(d) density functional level of theory. All local minima have been identified. For the triflate, imide, methanide, and perchlorate anions, the lithium cation is coordinated to two oxygens and have binding energies of ca 141 kcal/mol at the B3LYP/6-311+G(3df,2p)/B3LYP/6-31G* level of theory. For the hexafluoroarsenate and hexafluorophosphate the lithium cation is coordinated to three oxygens and have binding energies of ca. 136 kcal/mol.

  8. Anodes for Rechargeable Lithium-Sulfur Batteries - Joint Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Research 0, 2015, Research Highlights Anodes for Rechargeable Lithium-Sulfur Batteries Recent developments on the protection of the Li metal anode in Li-S batteries are reviewed. Scientific Achievement Recent developments on the protection of the Li metal anode in Li-S batteries are reviewed. The degradation mechanism of Li metal anode in Li-S batteries were analyzed and discussed. Various strategies used to minimize the corrosion of the Li anode and to mitigate the effect of the

  9. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  10. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  11. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  12. Catching Lithium Ions in Action in a Battery Electrode | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Catching Lithium Ions in Action in a Battery Electrode Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.12 Catching Lithium

  13. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  14. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect (OSTI)

    Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre Kurchatov Institute (Russian Federation)

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  15. California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

  16. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  17. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    SciTech Connect (OSTI)

    Arora, P.; Doyle, M.; White, R.E.

    1999-10-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li{sub x}C{sub 6} {vert{underscore}bar} 1 M LiPF{sub 6}, 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) {vert{underscore}bar} LiMn{sub 2}O{sub 4} cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized.

  18. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    SciTech Connect (OSTI)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  19. A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. 2: Conductivity of lithium organoborates in dimethoxyethane and propylene carbonate

    SciTech Connect (OSTI)

    Barthel, J.; Buestrich, R.; Carl, E.; Gores, H.J.

    1996-11-01

    A conductivity study is carried out on lithium bis[1,2 benzenediolato (2-)-O,O{prime}]borate and on lithium bis[3-fluoro-1,2-benzenediolato(2-)-O,O{prime}]borate in dimethoxyethane and propylene carbonate from infinite dilution to saturation in the temperature range 228 < T (K) < 308. The electron-drawing fluorine substituent produces a decrease of the association constant by a factor of about three for PC-based solutions and 5.5 for solutions in dimethoxyethane. The increase in the maximum of conductivity by about 30% (propylene carbonate) and about 80% (dimethoxyethane), independent of temperature, reveals the effect of ion-ion interaction on the conductivity maximum, with the solvent permittivity, viscosity, and ionic radii remaining unchanged. Synthesis, analysis, and purification of lithium bis[3-fluoro-1,2-benzenediolato(2-)O,O{prime}]borate, which is a candidate for lithium batteries, is described.

  20. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    SciTech Connect (OSTI)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using leadacid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling and ensure that economical and sustainable options are available at the end of the batteries' useful life.

  1. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    Energy Science and Technology Software Center (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model hasmore » to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.« less

  2. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using leadacid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmoreensure that economical and sustainable options are available at the end of the batteries' useful life.less

  3. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    SciTech Connect (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model has to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.

  4. Internal Short Circuit Device for Improved Lithium-Ion Battery Design -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Internal Short Circuit Device for Improved Lithium-Ion Battery Design National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication NREL Internal Short Circuit (ISC) Fact Sheet (321 KB) Technology Marketing Summary Energy storage cells (also referred to herein as "cells" or "batteries") sold for

  5. Correlation of Lithium-Ion Battery Performance with Structural and Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformations | Stanford Synchrotron Radiation Lightsource Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a material directly influence characteristics relevant to a wide range of prominent applications including rechargeable batteries for energy storage. Structural and/or chemical rearrangements at surfaces determine the way a material interacts with its environment,

  6. In the OSTI Collections: Lithium-ion Batteries | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Lithium-ion Batteries View Past "In the OSTI Collections" Articles. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Chemistry Economics Invention References Research Organizations Reports available through OSTI's SciTech Connect Patent available through OSTI's DOepatents Additional References An electric battery of any kind has two electrodes made of different materials, each

  7. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lowers battery pack cost. Layered cathode material contains low-cost manganese, which operates at high rate and high voltage and results in a high-energy-density battery with ...

  8. JCESR Scientific Sprints - Better Polymers for Better Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Better Polymers for Better Batteries Share Topic Energy Energy usage Energy storage Argonne National Laboratory leads the Joint Center for Energy Storage Research (JCESR), a major collaborative research partnership with the goal of developing next-generation energy storage technologies. JCESR supplements its traditional project management approach with scientific "Sprints." The Sprint described in this video involved a multidisciplinary team from Argonne, the

  9. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  10. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  11. Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Copper-tin Electrodes Improve Capacity and Cycle Life for Lithium Batteries Argonne National Laboratory Contact ANL About This Technology TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling performance (right)<br /> <br type="_moz" /> TEM and XRD of a Copper-Tin Material Used in Li Batteries (left), and cycling

  12. EERE Success Story—California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

  13. Lithium-boron anodes in nitrate thermal battery cells

    SciTech Connect (OSTI)

    McManis III, G. E.; Fletcher, A. N.; Miles, M. H.

    1985-08-13

    A thermally activated electrochemical cell utilizes a lithium-boron anode and a molten nitrate electrolyte selected from the group consisting of lithium nitrate, a mixture of lithium nitrate and sodium nitrate, a mixture of lithium nitrate and potassium nitrate, and a mixture of lithium nitrate and sodium nitrate with potassium nitrate, to provide improved cell electrical performance. The electrolyte is contained on a fiberglass separator and the electrolyte adjacent to the cathode may contain silver nitrate as well. Current densities over 300 mA/cm/sup 2/ with a usable temperature range of over 150/sup 0/ C. have been obtained. Anode open circuit potentials of about 3.2 V were found with little polarization at 100 mA/cm/sup 2/ and with very slight polarization at 300 mA/cm/sup 2/.

  14. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect (OSTI)

    Wang, Bin; Alhassan, Saeed M.; Pantelides, Sokrates T

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  15. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    SciTech Connect (OSTI)

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the

  16. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es025_zhang_2011_p.pdf (443.82 KB) More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  17. Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes | Department of Energy es089_kerr_2011_o.pdf (1.23 MB) More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes Electrolytes - Interfacial and Bulk Properties and Stability

  18. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  19. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, Frank M.; Even, Jr., William R.; Sylwester, Alan P.; Wang, James C. F.; Zifer, Thomas

    1995-01-01

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  20. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOE Patents [OSTI]

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  1. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  2. An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  3. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement

    SciTech Connect (OSTI)

    Yu, XW; Manthiram, A

    2015-01-01

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (similar to 2.7 V) of the S/S-n(2-) (4 <= n <= 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  4. Silicon nanowires used as the anode of a lithium-ion battery

    SciTech Connect (OSTI)

    Prosini, Pier Paolo; Rufoloni, Alessandro; Rondino, Flaminia; Santoni, Antonino

    2015-06-23

    In this paper the synthesis and characterization of silicon nanowires to be used as the anode of a lithium-ion battery cell are reported. The nanowires were synthesized by CVD and characterized by SEM. The nanostructured material was used as an electrode in a lithium cell and its electrochemical properties were investigated by galvanostatic charge/discharge cycles at C/10 rate as a function of the cycle number and at various rates as a function of the charge current. The electrode was then coupled with a LiFePO{sub 4} cathode to fabricate a lithium-ion battery cell and the cell performance evaluated by galvanostatic charge/discharge cycles.

  5. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  6. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  7. Mechanochemical approaches to employ silicon as a lithium-ion battery anode

    SciTech Connect (OSTI)

    Shimoi, Norihiro Bahena-Garrido, Sharon; Tanaka, Yasumitsu; Qiwu, Zhang

    2015-05-15

    Silicon is essential as an active material in lithium-ion batteries because it provides both high-charge and optimal cycle characteristics. The authors attempted to realize a composite by a simple mechanochemical grinding approach of individual silicon (Si) particles and copper monoxide (CuO) particles to serve as an active material in the anode and optimize the charge-discharge characteristics of a lithium-ion battery. The composite with Si and CuO allowed for a homogenous dispersion with nano-scale Si grains, nano-scale copper-silicon alloy grains and silicon monoxide oxidized the oxide from CuO. The authors successfully achieved the synthesis of an active composite unites the structural features of an active material based on silicon composite as an anode in Li-ion battery with high capacity and cyclic reversible charge properties of 3256 mAh g{sup −1} after 200 cycles.

  8. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  9. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smith kandler.smith@nrel.gov Source: A123 Source: GM NATIONAL RENEWABLE ENERGY ... Electrical Current Paths in LIBs 4 1) Battery Electric Power Delivery: Charging...

  10. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This is illustrated no more clearly than in Michigan and North Carolina. Last week, Secretary Chu toured the A123 Systems advanced battery manufacturing facility in Romulus, ...

  11. Redox shuttles for lithium ion batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    batteries and electronic devices. Inventors: Weng, Wei ; Zhang, Zhengcheng ; Amine, Khalil Issue Date: 2014-11-04 OSTI Identifier: 1163213 Assignee: UChicago Argonne, LLC ...

  12. EV Everywhere Batteries Workshop- Beyond Lithium Ion Breakout Session Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  13. Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of doped mesoporous carbon and elemental sulfur at a temperature inside a stainless steel vessel, which was used in lithiumsulfur batteries that were tested in ...

  14. Development of Electrolytes for Lithium-ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Yardney) * D. Abraham (ANL) * M. Smart (NASA JPL) * V. Battaglia (LBNL) Partners ... ion battery electrolytes. * M. Smart (NASA JPL, National Lab, ABRT Program): ...

  15. Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells

    Broader source: Energy.gov [DOE]

    Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

  16. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... perhaps the most striking discovery is lithium iron phosphate (LiFePO4 or simply LFP). ... (green) diffuse into and out of the olivine framework through a one-dimensional channel. ...

  17. Non-aqueous electrolytes for lithium-air batteries

    DOE Patents [OSTI]

    Amine, Khalil; Chen, Zonghai; Zhang, Zhengcheng

    2016-06-07

    A lithium-air cell includes a negative electrode; an air positive electrode; and a non-aqueous electrolyte which includes an anion receptor that may be represented by one or more of the formulas. ##STR00001##

  18. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, S. Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-08-21

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.

  19. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The secret to the newly-designed anode is a tailored polymer that conducts electricity and ... At top, spectra of a series of polymers obtained with soft x-ray absorption spectroscopy ...

  20. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  1. High Performance Binderless Electrodes for Rechargeable Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Binderless Electrodes for Rechargeable Lithium Batteries National ... Electrode for fast-charging Lithium Ion Batteries, Accelerating Innovation Webinar ...

  2. Lithium-ion battery diagnostic and prognostic techniques

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  3. Evaluation of two lower-melting electrolytes in lithium silicon/iron disulfide thermal batteries

    SciTech Connect (OSTI)

    Morella, A.T.

    1991-08-02

    Two new thermal battery electrolyte materials were investigated with the intent of extending the life of lithium silicon/iron disulfide [Li(Si)/FeS{sub 2}] thermal batteries. These new electrolyte materials freeze at a lower temperature than the standard electrolyte, which should extend the life of the thermal batteries in which they are used. Sandia National Laboratories (SNL), Albuquerque requested that the GE Neutron Devices (GEND) Power Sources Engineering group evaluate these new electrolytes in 40 MC3575 thermal batteries and compare the performance to an established data base. It was found that the batteries using the lower-melting electrolytes performed equal to or better than the batteries in the data base using the standard LiCl/KCl electrolyte at the same test conditions. The usage of these electrolytes increased the battery life, suppressed the voltage spikes, reduced heat requirements, shortened battery stack heights, and produced faster rise times. All of these improvements would merit further investigation of the new electrolyte materials.

  4. Nanotube Arrays for Advanced Lithium-ion Batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IT industries by 2020. The growing market segments are searching for battery technology that can increase the power and energy densities as well as provide a higher cycle count. ...

  5. Development of a high-power lithium-ion battery.

    SciTech Connect (OSTI)

    Jansen, A. N.

    1998-09-02

    Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.

  6. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  7. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect (OSTI)

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  8. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Broader source: Energy.gov (indexed) [DOE]

    GROUP Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Marshall C. Smart B. V. Ratnakumar, F. C. Krause, C. Huang, L. D. Whitcanack , J. Soler , and W. C. West, Jet Propulsion Laboratory, California Institute of Technology DOE-ABR/BATT Annual Meeting Review Arlington, Virginia May 14, 2013 Project ID = ES026 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 ELECTROCHEMICAL TECHNOLOGIES GROUP 2

  9. Carbons for lithium batteries prepared using sepiolite as an inorganic template

    DOE Patents [OSTI]

    Sandi, Giselle (Wheaton, IL); Winans, Randall E. (Downers Grove, IL); Gregar, K. Carrado (Naperville, IL)

    2000-01-01

    A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.

  10. Following the Transient Reactions in Lithium-Sulfur Batteries Using an In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Situ Nuclear Magnetic Resonance (NMR) Technique - Joint Center for Energy Storage Research 18, 2015, Research Highlights Following the Transient Reactions in Lithium-Sulfur Batteries Using an In Situ Nuclear Magnetic Resonance (NMR) Technique (a) NMR spectra as a function of time during charge-discharge. Peaks 1 to 4 reflect change of concentrations of different polysulfide species. Peaks 5 to 6 reflect the formation of microstructures on Li anodes. (b) Formation of a thick SEI layer on Li

  11. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  12. Effects of the electrolyte composition on the electrode characteristics of rechargeable lithium batteries

    SciTech Connect (OSTI)

    Morita, Masayuki; Ishikawa, Masashi; Matsuda, Yoshiharu

    1995-12-31

    A variety of organic solvent-based electrolytes have been studied for ambient temperature, rechargeable lithium (ion) batteries. The ionic behavior of the electrolyte system was investigated through conductivity measurements. The electrochemical characteristics of carbon-based materials (carbon fiber and graphite) as the negative electrode were examined in different compositions of the organic electrolytes. The electrolyte composition as well as the structure of the electrode material greatly influenced the charge/discharge profiles of the electrode.

  13. Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    nanocomposite_materials_li_ion.pdf (508.08 KB) More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Energy Storage R&D and ARRA

  14. Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications

    SciTech Connect (OSTI)

    Liao, Chen; Han, Kee Sung; Baggetto, Loic; Hillesheim, Daniel A; Custelcean, Radu; Lee, Dr. Eun-Sung; Guo, Bingkun; Bi, Zhonghe; Jiang, Deen; Veith, Gabriel M; Hagaman, Edward {Ed} W; Brown, Gilbert M; Bridges, Craig A; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Dai, Sheng; Sun, Xiao-Guang

    2014-01-01

    A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

  15. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    SciTech Connect (OSTI)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  16. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  17. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  18. Lithium oxide in the Li(Si)/FeS/sub 2/ thermal battery system

    SciTech Connect (OSTI)

    Searcy, J.Q.; Neiswander, P.A.; Armijo, J.R.; Bild, R.W.

    1981-11-01

    The formation of lithium oxide (Li/sub 2/O) in Li(Si)/FeS/sub 2/ thermal batteries during the required shelf life of twenty-five years has been identified in previous work as a reaction deleterious to thermal battery performance. This paper gives the results of a study designed to determine performance degradation caused by Li/sub 2/O and to determine an acceptable level of Li/sub 2/O that can be used to define required dryness of battery parts and allowable leak rates. Pellets preconditioned with Li/sub 2/O were used in single cells or in batteries. Their performance was compared with discharges made using pellets with no Li/sub 2/O added. The actual Li/sub 2/O present in anode pellets at various stages during fabrication was determined by using 14 MeV neutron activation analysis. Results are reported. This work shows that thermal battery production controls should be designed in such a manner that not more than 15 wt.% of the Li(Si) is oxidized at the end of the desired self life. Furthermore, the formation of a Li/sub 2/O layer equivalent to the oxidation of 6.0 wt.% of the anode on the surface facing the current collector must be prevented. Battery designers must allow for a drop in coulombic efficiency as the Li(Si) reacts, and the effect on performance of Li/sub 2/O in the separator must be considered.

  19. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures

    SciTech Connect (OSTI)

    Huang, Cheng; Xiao, Jie; Shao, Yuyan; Zheng, Jianming; Bennett, Wendy D.; Lu, Dongping; Saraf, Laxmikant V.; Engelhard, Mark H.; Ji, Liwen; Zhang, Jiguang; Li, Xiaolin; Graff, Gordon L.; Liu, Jun

    2014-01-09

    Lithium-sulfur (Li-S) batteries have recently attracted extensive attention due to the high theoretical energy density and potential low cost. Even so, significant challenges prevent widespread adoption, including continuous dissolution and consumption of active sulfur during cycling. Here we present a fundamentally new design using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on the anode. The lithiated graphite placed in front of the lithium metal functions as an artificial self-regulated solid electrolyte interface (SEI) layer to actively control the electrochemical reaction while minimizing the deleterious side reactions on the surface and bulk lithium metal. Continuous corrosion and contamination of lithium anode by dissolved polysulfides is largely mitigated. Excellent electrochemical performance has been observed. Li-S cell incorporating the hybrid design retain a capacity of more than 800 mAh g-1 for 400 cycles, corresponding to only 11% fade and a Coulombic efficiency above 99%. This simple hybrid concept may also provide new lessons for protecting metal anodes in other energy storage devices.

  20. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  1. Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode

    DOE Patents [OSTI]

    Gilbert, Marian; Kaun, Thomas D.

    1984-01-01

    A method of making a negative electrode, the electrode made thereby and a secondary electrochemical cell using the electrode. Silicon powder is mixed with powdered electroactive material, such as the lithium-aluminum eutectic, to provide an improved electrode and cell.

  2. Development of Polymer Electrolytes for Advanced Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  4. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  5. Long-Range Electric Vehicle Batteries: High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: In a battery, metal ions move between the electrodes through the electrolyte in order to store energy. Envia Systems is developing new silicon-based negative electrode materials for Li-Ion batteries. Using this technology, Envia will be able to produce commercial EV batteries that outperform todays technology by 2-3 times. Many other programs have attempted to make anode materials based on silicon, but have not been able to produce materials that can withstand charge/discharge cycles multiple times. Envia has been able to make this material which can successfully cycle hundreds of times, on a scale that is economically viable. Today, Envias batteries exhibit world-record energy densities.

  6. Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Henderson, Wesley

    2014-08-29

    The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties-determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

  7. Alan MacDiarmid, Conductive Polymers, and Plastic Batteries

    Office of Scientific and Technical Information (OSTI)

    ... Two key measures of a battery's suitability for automotive application are the power ... Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar ...

  8. Protective coating on positive lithium-metal-oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

    2006-05-23

    A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

  9. Layered cathode materials for lithium ion rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho; Amine, Khalil

    2007-04-17

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  10. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  11. Cell design for lithium alloy/metal sulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1985-01-01

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  12. Improved cell design for lithium alloy/metal sulfide battery

    DOE Patents [OSTI]

    Kaun, T.D.

    1984-03-30

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  13. Manufacturing of Protected Lithium Electrodes for Advanced Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium ... Solving these problems would boost domestic battery manufacturing in this globally ...

  14. Sulfur-carbon nanocomposites and their application as cathode materials in lithium-sulfur batteries

    SciTech Connect (OSTI)

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2015-05-05

    The invention is directed in a first aspect to a sulfur-carbon composite material comprising: (i) a bimodal porous carbon component containing therein a first mode of pores which are mesopores, and a second mode of pores which are micropores; and (ii) elemental sulfur contained in at least a portion of said micropores. The invention is also directed to the aforesaid sulfur-carbon composite as a layer on a current collector material; a lithium ion battery containing the sulfur-carbon composite in a cathode therein; as well as a method for preparing the sulfur-composite material.

  15. Approach to make macroporous metal sheets as current collectors for lithium-ion batteries

    SciTech Connect (OSTI)

    Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Li, Xiaohong S.; Bennett, Wendy D.; Bonham, Charles C.; Zhang, Jiguang

    2010-05-05

    A new approach and simple method is described to produce macroporous metal sheet as current collector for anode in lithium ion battery. This method, based on slurry blending, tape casting, sintering, and reducing of metal oxides, produces a uniform, macroporous metal sheet. Silicon film sputter-coated on such porous copper substrate shows much higher capacity and longer cycle life than on smooth Cu foil. This methodology produces very limited wastes and is also adaptable to many other materials. It is easy for industrial scale production.

  16. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  17. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; An, Seong Jin

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  18. Anodes Improve Safety and Performance in Lithium-ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Anodes Improve Safety and Performance in Lithium-ion Batteries Argonne National Laboratory Contact ANL About This Technology <span style="font-family: &quot;Cambria&quot;,&quot;serif&quot;; font-size: 12pt; mso-fareast-font-family: Calibri; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language:

  19. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  20. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; et al

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-Smore » cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.« less

  1. Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric; Pan, Huilin; Lv, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Z. D.; Liaw, Bor Y.; Yu, Xiqian; Yang, Xiao-Qing; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-01-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge processes follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials and the electrochemical characteristics of the cell, it is revealed that the chemical and electrochemical reactions in Li-S cell are driving each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new perspectives to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  2. Direct Observation of Sulfur Radicals as Reaction Media in lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Jianming; Walter, Eric D.; Pan, Huilin; Lu, Dongping; Zuo, Pengjian; Chen, Honghao; Deng, Zhiqun; Liaw, Bor Yann; Yu, Xiqian; Yang, Xiaoning; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2014-12-09

    Lithium sulfur (Li-S) battery has been regaining tremendous interest in recent years because of its attractive attributes such as high gravimetric energy, low cost and environmental benignity. However, it is still not conclusively known how polysulfide ring/chain participates in the whole cycling and whether the discharge and charge process follow the same pathway. Herein, we demonstrate the direct observation of sulfur radicals by using in situ electron paramagnetic resonance (EPR) technique. Based on the concentration changes of sulfur radicals at different potentials, it is revealed that the chemical and electrochemical reactions in Li-S cell are driven each other to proceed through sulfur radicals, leading to two completely different reaction pathways during discharge and charge. The proposed radical mechanism may provide new insights to investigate the interactions between sulfur species and the electrolyte, inspiring novel strategies to develop Li-S battery technology.

  3. Polyamidoamine Dendrimer-Based Binders for High-Loading Lithium-Sulfur Battery Cathodes

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Nandasiri, Manjula I.; Lv, Dongping; Schwarz, Ashleigh M.; Darsell, Jens T.; Henderson, Wesley A.; Tomalia, Donald A.; Liu, Jun; Zhang, Jiguang; Xiao, Jie

    2016-01-01

    Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems because of their ultra high theoretical specific energy. To realize the practical application of Li-S batteries, however, a high S active material loading is essential (>70 wt% in the carbon-sulfur (C-S) composite cathode and >2 mg cm-2 in the electrode). A critical challenge to achieving this high capacity in practical electrodes is the dissolution of the longer lithium polysulfide reaction intermediates in the electrolyte (resulting in loss of active material from the cathode and contamination of the anode due to the polysulfide shuttle mechanism). The binder material used for the cathode is therefore crucial as this is a key determinant of the bonding interactions between the active material (S) and electronic conducting support (C), as well as the maintenance of intimate contact between the electrode materials and current collector. The battery performance can thus be directly correlated with the choice of binder, but this has received only minimal attention in the relevant Li-S battery published literature. Here, we investigated the application of polyamidoamine (PAMAM) dendrimers as functional binders in Li-S batteries—a class of materials which has been unexplored for electrode design. By using dendrimers, it is demonstrated that high S loadings (>4 mg cm-2) can be easily achieved using "standard" (not specifically tailored) materials and simple processing methods. An exceptional electrochemical cycling performance was obtained (as compared to cathodes with conventional linear polymeric binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR)) with >100 cycles and 85-98% capacity retention, thus demonstrating the significant utility of this new binder architecture which exhibits critical physicochemical properties and flexible nanoscale design parameters (CNDP's).

  4. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    SciTech Connect (OSTI)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  5. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    SciTech Connect (OSTI)

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  6. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect (OSTI)

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  7. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Yang, Li; Zhang, Hanjun; Driscoll, Peter; Lucht, Brett; Kerr, John

    2011-09-30

    A new class of lithium salts of malonatoborate anions has been synthesized. These six-membered-ring salts provided slightly lower ionic conductivity than that of LiBOB and LiBF4. Nevertheless, compared with LiBOB and LiPF6, the lowered ring strains in the malonatoborate structures and reduced numbers of fluorine atoms in the molecules was found to enhance the thermal and water stabilities and compatibilities of these salts with ether solvents. Small amount LiDMMDFB when used as an additive, was found to stabilize LiPF6 in carbonate electrolytes at 80°C for one month. Employing LiMDFB as the electrolyte in Li/Li cells and full cells, large interfacial impedances were observed on lithium metal and the cathode. Moreover, the large impedances are at least partially attributed to the acidic hydrogen atoms in the malonate structure. This issue can be addressed by replacing the acidic atoms with methyl groups.

  8. Lithium Balance | Open Energy Information

    Open Energy Info (EERE)

    Balance Jump to: navigation, search Name: Lithium Balance Place: Copenhagen, Denmark Product: Lithium ion battery developer. References: Lithium Balance1 This article is a stub....

  9. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Hui; Wu, Ping Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  10. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  11. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  12. Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries

    SciTech Connect (OSTI)

    Kim, Sung-Wook; Pereira, Nathalie; Chernova, Natasha A.; Omenya, Fredrick; Gao, Peng; Whittingham, M. Stanley; Amatucci, Glenn G.; Su, Dong; Wang, Feng

    2015-08-24

    Mixed-anion oxyfluorides (i.e., FeOxF2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution. Yet, it is still unclear how the mixed anions impact the local phase transformation and structural stability of oxyfluorides during cycling due to the complexity of electrochemical reactions, involving both lithium intercalation and conversion. Herein, we investigated the local chemical and structural ordering in FeO0.7F1.3 at length scales spanning from single particles to the bulk electrode, via a combination of electron spectrum-imaging, magnetization, electrochemistry, and synchrotron X-ray measurements. The FeO0.7F1.3 nanoparticles retain a FeF2-like rutile structure but chemically heterogeneous, with an F-rich core covered by thin O-rich shell. Upon lithiation the O-rich rutile phase is transformed into Li—Fe—O(—F) rocksalt that has high lattice coherency with converted metallic Fe, a feature that may facilitate the local electron and ion transport. The O-rich rocksalt is highly stable over lithiation/delithiation and thus advantageous to maintain the integrity of the particle, and due to its predominant distribution on the surface, it is expected to prevent the catalytic interaction of Fe with electrolyte. Our findings of the structural origin of cycling stability in oxyfluorides may provide insights into developing viable high-energy electrodes for lithium batteries.

  13. Structure Stabilization by Mixed Anions in Oxyfluoride Cathodes for High-Energy Lithium Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Sung-Wook; Pereira, Nathalie; Chernova, Natasha A.; Omenya, Fredrick; Gao, Peng; Whittingham, M. Stanley; Amatucci, Glenn G.; Su, Dong; Wang, Feng

    2015-08-24

    Mixed-anion oxyfluorides (i.e., FeOxF2-x) are an appealing alternative to pure fluorides as high-capacity cathodes in lithium batteries, with enhanced cyclability via oxygen substitution. Yet, it is still unclear how the mixed anions impact the local phase transformation and structural stability of oxyfluorides during cycling due to the complexity of electrochemical reactions, involving both lithium intercalation and conversion. Herein, we investigated the local chemical and structural ordering in FeO0.7F1.3 at length scales spanning from single particles to the bulk electrode, via a combination of electron spectrum-imaging, magnetization, electrochemistry, and synchrotron X-ray measurements. The FeO0.7F1.3 nanoparticles retain a FeF2-like rutile structuremore » but chemically heterogeneous, with an F-rich core covered by thin O-rich shell. Upon lithiation the O-rich rutile phase is transformed into Li—Fe—O(—F) rocksalt that has high lattice coherency with converted metallic Fe, a feature that may facilitate the local electron and ion transport. The O-rich rocksalt is highly stable over lithiation/delithiation and thus advantageous to maintain the integrity of the particle, and due to its predominant distribution on the surface, it is expected to prevent the catalytic interaction of Fe with electrolyte. Our findings of the structural origin of cycling stability in oxyfluorides may provide insights into developing viable high-energy electrodes for lithium batteries.« less

  14. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    SciTech Connect (OSTI)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  15. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; Yoshii, Kazuki; Tsuda, Tetsuya; Dai, Sheng

    2015-10-22

    Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.

  16. Lithium/Manganese Dioxide (Li/MnO(2)) Battery Performance Evaluation: Final Report

    SciTech Connect (OSTI)

    Ingersoll, D.; Clark, N.H.

    1999-04-01

    In February 1997, under the auspices of the Product Realization Program, an initiative to develop performance models for lithium/manganese dioxide-based batteries began. As a part of this initiative, the performance characteristics of the cells under a variety of conditions were determined, both for model development and for model validation. As a direct result of this work, it became apparent that possible Defense Program (DP) uses for batteries based on this cell chemistry existed. A larger effort aimed at mapping the performance envelope of this chemistry was initiated in order to assess the practicality of this cell chemistry, not only for DP applications, but also for other uses. The work performed included an evaluation of the cell performance as a function of a number of variables, including cell size, manufacturer, current, pulse loads, constant current loads, safety, etc. In addition, the development of new evaluation techniques that would apply to any battery system, such as those related to reliability assessments began. This report describes the results of these evaluations.

  17. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  18. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect (OSTI)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  19. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes

    SciTech Connect (OSTI)

    Song, Jiangxuan; Gordin, Mikhail L.; Xu, Terrence; Chen, Shuru; Yu, Zhaoxin; Sohn, Hiesang; Lu, Jun; Ren, Yang; Duan, Yuhua; Wang, Donghai

    2015-03-27

    Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAhg-1after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca.6 mAhcm-2) with a high sulfur loading of approximately 5 mgcm-2, which is ideal for practical applications of the lithium–sulfur batteries.

  20. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect (OSTI)

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.