National Library of Energy BETA

Sample records for lithium polymer batteries

  1. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  2. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  3. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  4. Response of Lithium Polymer Batteries to Mechanical Loading

    E-Print Network [OSTI]

    Petta, Jason

    Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 #12;Outline · Motivation · Battery Structure · Testing and Results · Conclusions #12;Motivation · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery

  5. Polymer Electrolytes for High Energy Density Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2008 in Bethesda, Maryland. merit08balsara.pdf More Documents & Publications Polymers For Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced...

  6. Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work

    E-Print Network [OSTI]

    Langendoen, Koen

    Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby nickel metal and ni-cad batteries. But with this increase in battery life come potential hazards. Use batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

  7. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  8. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  9. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer battery, lithium-ion batteries, and lithium-basedElectrolyte For Lithium-Ion Rechargeable Batteries," LithiumK. Ozawa, "Lithium-ion Rechargeable Batteries with LiCo0 and

  10. Lithium Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. Polymer nanocomposites for lithium battery applications

    DOE Patents [OSTI]

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  13. Continuous process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.

    1998-05-12

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.

  14. Continuous process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    Chern, Terry Song-Hsing (Midlothian, VA); Keller, David Gerard (Baltimore, MD); MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01

    Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.

  15. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

  16. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Lithium-Ion Polymer Battery ..Performance of Lithium-Ion Polymer Battery Introduction Assolid state lithium-ion (Li-ion) battery were adhesively

  17. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01

    Newman, Advances in Lithium-Ion Batteries, ch. Modeling ofProtection of Lithium-Ion Batteries Karen E. Thomas-Alyea,protec- tion for lithium-ion batteries. The model shows how

  18. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  19. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01

    environment of the lithium- ion battery. The model, in bothlithium-ion batteries. The model shows how the cell is transformed upon overcharge from a battery

  20. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  1. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOE Patents [OSTI]

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  2. Highly Conductive Solvent-Free Polymer Electrolytes for Lithium Rechargeable Batteries

    SciTech Connect (OSTI)

    Robert Filler, Zhong Shi and Braja Mandal

    2004-10-21

    In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

  3. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    SciTech Connect (OSTI)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Pondicherry-605014 (India); Venkateswarlu, M. [R and D, Amaraja batteries, Thirupathi-517501 (India)

    2014-04-24

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup ?3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  4. Katech (Lithium Polymer) 4-Passenger NEV - Range and Battery Testing Report

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) received a Neighborhood Electric Vehicle (NEV) from the Korea Automotive Technology Institute (KATECH) for vehicle and battery characterization testing. The KATECH NEV (called the Invita) was equipped with a lithium polymer battery pack from Kokam Engineering. The Invita was to be baseline performance tested by AVTA’s testing partner, Electric Transportation Applications (ETA), at ETA’s contract testing facilities and test track in Phoenix, Arizona, to AVTA’s NEVAmerica testing specifications and procedures. Before and during initial constant speed range testing, the Invita battery pack experienced cell failures, and the onboard charger failed. A Kokamsupplied off-board charger was used in place of the onboard charger to successfully perform a constant speed range test on the Invita. The Invita traveled a total of 47.9 miles in 1 hour 47 minutes, consuming 91.3 amp-hours and 6.19 kilowatt-hours. The Kokam Engineering lithium polymer battery was also scheduled for battery pack characterization testing, including the C/3 energy capacity, dynamic stress, and peak power tests. Testing was stopped during the initial C/3 energy capacity test, however, because the battery pack failed to withstand cycling without cell failures. After the third discharge/charge sequence was completed, it was discovered that Cell 6 had failed, with a voltage reading of 0.5 volts. Cell 6 was replaced, and the testing sequence was restarted. After the second discharge/charge sequence was complete, it was discovered that Cell 1 had failed, with its voltage reading 0.2 volts. At this point it was decided to stop all battery pack testing. During the discharge cycles, the battery pack supplied 102.21, 94.34, and 96.05 amp-hours consecutively before Cell 6 failed. After replacing Cell 6, the battery pack supplied 98.34 and 98.11 amp-hours before Cell 1 failed. The Idaho National Laboratory managed these testing activities for the AVTA, as part of DOE’s FreedomCAR and Vehicle Technologies Program.

  5. MC-CAM Publications "Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries"

    E-Print Network [OSTI]

    Bigelow, Stephen

    Lithium Batteries" Katherine P. Barteau, Martin Wolffs, Nathaniel A. Lynd, Glenn H. Fredrickson, Edward J Nitride/Carbon Microfibers as Efficient and Stable Electrocatalysts for Li­ O2 Batteries" Jihee Park

  6. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  7. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    film lithium and lithium-ion batteries. Solid State Ionicselectrolytes for lithium-ion batteries. Advanced Materialsand side reactions in lithium-ion batteries. Journal of the

  8. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  9. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  10. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    E-Print Network [OSTI]

    Kim, Jun Young

    This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

  11. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  12. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  13. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  14. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    additive for lithium-ion batteries. Elec- trochemistryOptimization of Lithium-Ion Batteries PhD thesis (Universityfor Rechargeable Lithium-Ion Batteries. Journal of The

  15. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  16. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

  17. Solid polymeric electrolytes for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A.; Xu, Wu; Sun, Xiaoguang

    2006-03-14

    Novel conductive polyanionic polymers and methods for their preparion are provided. The polyanionic polymers comprise repeating units of weakly-coordinating anionic groups chemically linked to polymer chains. The polymer chains in turn comprise repeating spacer groups. Spacer groups can be chosen to be of length and structure to impart desired electrochemical and physical properties to the polymers. Preferred embodiments are prepared from precursor polymers comprising the Lewis acid borate tri-coordinated to a selected ligand and repeating spacer groups to form repeating polymer chain units. These precursor polymers are reacted with a chosen Lewis base to form a polyanionic polymer comprising weakly coordinating anionic groups spaced at chosen intervals along the polymer chain. The polyanionic polymers exhibit high conductivity and physical properties which make them suitable as solid polymeric electrolytes in lithium batteries, especially secondary lithium batteries.

  18. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,

  19. Better Lithium-Ion Batteries Are On The Way From Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss,...

  20. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  1. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  2. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  3. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

  5. Conductive polymeric compositions for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles A. (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  6. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  7. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01

    their use in lithium-ion batteries. However, applications atfor use in lithium-ion batteries. Thermal stabilities andFor rechargeable lithium-ion batteries, we require that any

  8. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  9. Lithium uptake data of lithium imprinted polymers

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Susanna Ventura

    2015-12-04

    Batch tests of lithium imprinted polymers of variable composition to assess their ability to extract lithium from synthetic brines at T=45C. Initial selectivity data are included

  10. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  11. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  12. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-Model for Aging of Lithium-Ion Battery Cells. Journal of The

  13. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. Actamaterials for lithium ion battery. Journal of Nanoparticle

  14. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01

    microdiffraction. Lithium ion batteries have made a greatthose used in lithium-ion batteries. Dynamic potentiometricrechargeable lithium ion batteries consist of many layers of

  15. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variouselectrodes for lithium-ion batteries, Journal of MaterialsAdvances in Lithium-Ion Batteries (Chapter 4), Kluwer

  16. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  17. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  18. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Pink, Robert J. (Pocatello, ID); Nelson, Lee O. (Idaho Falls, ID)

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  19. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  20. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2001-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

  1. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  2. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  3. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  6. Coated porous carbon cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Klett, James William [ORNL

    2008-01-01

    Coated porous carbon cathodes for automotive lithium batteries are being developed with the goal of overcoming the problems with capacity fade and poor thermal management in conventional polymer-bonded cathodes. The active cathode material (lithium iron phosphate nanoparticles) is carbon-bonded to the porous carbon support material. Cathodes have been developed with high specific energy and power and with good cycling behavior.

  7. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  8. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    materials for advanced lithium-ion batteries. J. Powersilicon nanowires for lithium ion battery anode with longal. High-performance lithium-ion anodes using a hierarchical

  9. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

  10. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  11. Manufacturing of Protected Lithium Electrodes for Advanced Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Protected Lithium Electrodes for Advanced Batteries Manufacturing of Protected Lithium Electrodes for Advanced Batteries PolyPlus Battery Company - Berkeley, CA A...

  12. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  13. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  14. Pacific Northwest National Laboratory collaboration with Moltech Corporation to manufacture lithium polymer batteries (C/PNL/061). Final project report

    SciTech Connect (OSTI)

    Affinito, J.D.

    1996-08-01

    It was shown that all 7 of the layers of Moltech`s Li polymer battery are compatible with simultaneous, in-line, vacuum deposition onto a flexible plastic substrate via PNNL`s PML and LML technology. All the materials, including Li, could be deposited in a single pass without melting the substrate. Two problems were encountered and are discussed.

  15. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  16. INTRODUCTION Among different types of rechargeable batteries, polymer

    E-Print Network [OSTI]

    Bahrami, Majid

    INTRODUCTION Among different types of rechargeable batteries, polymer lithium-ion (Li-ion) cells% per month), and long cycling life [1]. Such desired features have made Li-ion batteries one the most vehicles with Li- ion batteries in order to reduce or remove the contribution of internal combustion engine

  17. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Capacity, High Rate Lithium-Ion Battery Electrodes Utilizingas cathode materials for lithium ion battery. Electrochimica

  18. Jeff Chamberlain on Lithium-air batteries

    SciTech Connect (OSTI)

    Chamberlain, Jeff

    2009-01-01

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  19. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  20. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  1. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  2. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  3. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  4. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

  5. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    silicon nanowires for lithium ion battery anode with longfor high-performance lithium-ion battery anodes. Appl. Phys.as the anode for a lithium-ion battery with high coulombic

  6. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

  7. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    1/3 O 2 for advanced lithium-ion batteries. J. Power Sourcesof LiFePO4 based lithium ion batteries. Mater. Lett. 2007,negative electrode in lithium-ion batteries: AFM study in an

  8. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01

    for advanced lithium-ion batteries. J. Power Sources 174,composite anodes for lithium-ion batteries. J. Mater. Chem.cathode materials for lithium-ion batteries. J. Mater. Chem.

  9. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    Alloy design for lithium-ion battery anodes. J. Electrochem.advances in lithium ion battery materials. Electrochim. ActaO 2 cathode material for lithium ion battery: Dependence of

  10. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    negative electrode in lithium-ion batteries: AFM study in anJ. R. , Alloy design for lithium-ion battery anodes. J.Carbon materials for lithium-ion rechargeable batteries.

  11. Lithium disulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1988-01-01

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  12. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  13. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  14. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    abuse tolerant lithium-ion (Li-ion) batteries is an important step in electrifying the drive train and facilitating widespread adoption of HEVs and PHEVs. Nanocomposite...

  15. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  16. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  17. Nanocomposite Materials for Lithium-Ion Batteries | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposite Materials for Lithium-Ion Batteries Nanocomposite Materials for Lithium-Ion Batteries nanocompositematerialsliion.pdf More Documents & Publications Progress of DOE...

  18. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  19. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  20. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  1. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  2. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Office of Environmental Management (EM)

    Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

  3. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  5. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials...

  6. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing...

  7. 1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013 State of Charge Estimation of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery], a modeling approach for the scale-up of a lithium- ion polymer battery (LIPB) is reported. A comparison

  8. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-01-01

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  9. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  10. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  11. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  12. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Broader source: Energy.gov (indexed) [DOE]

    beyondlithiumionb.pdf More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries...

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery,...

  14. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  15. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical behaviors in lithium-ion batteries? · Current work ­ Mechanical behaviors the separator ­ How do we test

  16. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Thursday, 24 April 2014 09:46 Lithium-ion...

  17. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries/SVO batteries. A case study highlighting the rich chemistry and electrochemistry of the Li/SVO system providing

  18. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transpar- ent and have to be thick

  19. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  20. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01

    for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

  1. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES........................................................................................................................16 1.1 Lithium Ion Batteries...................................................................................17 1.1.2 Lithium Ion Battery Chemistry

  2. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principlesMaterials for Lithium-Ion Batteries. Adv. Funct. Mater. 23,

  3. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the differentin hybrids. Keywords: lithium-ion batteries, plug-in hybrid

  4. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  5. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  6. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  7. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  8. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyElectrode Materials for Lithium Ion Batteries. MaterialsTechniques to the Study of Lithium Ion Batteries. J. Solid

  9. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  10. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  11. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. ); Dowgiallo, E. ); Halpert, G. ); Matsuda, Y. ); Takehara, Z.I. )

    1993-01-01

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  12. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01

    05CH11231. References 1. Lithium Ion Batteries: FundamentalsExamination of Generation 2 Lithium-Ion Cells and AssessmentDevelopment Program for Lithium Ion Batteries, U.S.

  13. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy

  14. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  15. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  16. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered, “Li-Excess” Lithium-Ion Battery Electrode Materialthe surfaces of lithium-ion battery (LIB) electrodes evolve

  17. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  18. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  19. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  20. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Broader source: Energy.gov (indexed) [DOE]

    Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions...

  1. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  2. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K. (Ocean, NJ); Chin, Der-Tau (Winthrop, NY)

    1989-01-01

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  3. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-02-07

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  4. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  5. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  6. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery

    E-Print Network [OSTI]

    Endres. William J.

    Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam to observe the real-time nucleation and growth of the lithium fibers inside a nanoscale Li-ion battery. Our.1063/1.3643035] Lithium-ion batteries are of great interest due to their high energy density, however, various safety

  7. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  8. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  9. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

  10. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  11. Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa, and safety.1 Clearly, per- formance gains could be made if a dry, solid electrolyte were ex- ploited. Since When a lithium salt is added, the polymer becomes a solid electrolyte, behaving mechani- cally like

  12. Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell

    E-Print Network [OSTI]

    Goddard III, William A.

    Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell Hyung as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium- dioxygen

  13. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  14. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of Variousare presented for lithium-ion cells and modules utilizingAdvisor utilizing lithium-ion batteries of the different

  15. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan (Albuquerque, NM)

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  16. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  17. Description: Lithium batteries are used daily in our work

    E-Print Network [OSTI]

    Description: Lithium batteries are used daily in our work activities from flashlights, cell phones containing one SureFire 3-volt non-rechargeable 123 lithium battery and one Interstate 3-volt non-rechargeable 123 lithium battery. A Garage Mechanic had the SureFire flashlight in his shirt pocket with the lens

  18. 2008 Nature Publishing Group High-performance lithium battery

    E-Print Network [OSTI]

    Cui, Yi

    © 2008 Nature Publishing Group High-performance lithium battery anodes using silicon nanowires in lithium batteries have shown capacity fading and short battery lifetime due to pulverization and loss December 2007; doi:10.1038/nnano.2007.411 There is great interest in developing rechargeable lithium

  19. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  20. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  1. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  2. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Solid Solutions: Coupled Lithium-Ion and Electron Mobility.lithium batteries, II. Lithium ion rechargeable batteries.1/4)Ni(3/4)O(2) for lithium-ion batteries. Electrochimica

  4. Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries Donald R of Li to nearly unity in a solid polymer electrolyte, block copolymer materials have been prepared. Introduction The ideal electrolyte material for a solid-state battery would have the ionic conductivity

  5. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  6. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  7. Self-assembly of conformal polymer electrolyte film for lithium ion microbatteries

    E-Print Network [OSTI]

    Bieber, Christalee

    2007-01-01

    I apply the theory of polar and apolar intermolecular interactions to predict the behavior of combinations of common battery materials, specifically the cathode substrate lithium cobalt oxide (LCO) and the polymer separator ...

  8. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  9. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  10. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  11. High-discharge-rate lithium ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  12. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  13. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01

    HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim, Azucenaof rechargeable lithium batteries for application in hybridin consumer-size lithium batteries, such as the synthetic

  14. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    The UC Davis Emerging Lithium Battery Test Project, Report3 for the advanced lithium battery chemistries are based onwith ultracapacitors, the LTO lithium battery should be

  15. Rechargeable solid polymer electrolyte battery cell

    DOE Patents [OSTI]

    Skotheim, Terji (East Patchoque, NY)

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  16. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion

  17. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  18. Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    García, R. Edwin

    Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium-ion

  19. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  20. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  1. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01

    Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

  2. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–Material in Lithium Ion Batteries. Adv. Energy Mater. n/a–n/decomposition in lithium ion batteries: first-principles

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

  4. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    exception being the lithium-ion battery (Table 2.1). Tableconfiguration of a lithium-ion battery is shown in Figureof Nb 2 O 5 as a lithium-ion battery electrode and as an

  5. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    for vehicle applications. 2 Lithium-ion battery chemistriesThe lithium-ion battery technology used for consumerfrom EIG Figure 4: Lithium-ion battery modules for testing

  6. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousResults with Lithium-ion Batteries, paper presented at EET-performance of lithium-ion batteries of several chemistries

  7. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01

    MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

  8. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

  9. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01

    Silicon Solar Cells and Lithium-ion Batteries Using PrintedSilicon Solar Cells and Lithium-ion Batteries Using Printedfor the system and lithium-ion batteries will be used to

  10. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    1/3 O 2 for advanced lithium-ion batteries. Journal of Powerelectrodes for lithium-ion batteries. Journal of Materialsfor Advanced Lithium-Ion Batteries. Advanced Energy

  11. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    O(2) Cathodes for Lithium Ion Batteries: Understanding LocalO(2) compounds for lithium-ion batteries. Journal of PowerLiCoO(2) for lithium-ion batteries. Materials Science and

  12. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Charge Distribution in a Lithium Battery Electrode. J. Phys.Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  13. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    for a 2 V Rechargeable Lithium Battery. Journal of Thein a rechargeable lithium battery. Journal of Power Sourcesexception being the lithium-ion battery (Table 2.1). Table

  14. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    of LiFePO(4) as lithium battery cathode and comparison withImproved LiFePO(4) Lithium Battery Cathode. ElectrochemicalOptimized LiFePO(4) for lithium battery cathodes. Journal of

  15. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    of the different lithium battery chemistries are presentedMiller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy density

  16. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01

    grid storage. The lithium-ion battery is the most advancedtoday [1, 2]. A lithium-ion battery is comprised of adendrite formation in lithium metal battery systems [12, 14,

  17. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  18. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  19. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

  20. Correlation of Lithium-Ion Battery Performance with Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a...

  1. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries

    E-Print Network [OSTI]

    Hu, Yaoqin; Doeff, Marca M.; Kostecki, Robert; Finones, Rita

    2003-01-01

    LiFePO 4 in Lithium Batteries Yaoqin Hu,* Marca M. Doeff,*material in lithium ion batteries based on environmental and

  2. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    their use in lithium-ion batteries. However, applications atFor rechargeable lithium-ion batteries, it is required that

  3. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean...

  4. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  5. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for...

  6. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing...

  7. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  8. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Hu, Qichao

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

  9. Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries

    E-Print Network [OSTI]

    Moore, Charles J. (Charles Jacob)

    2012-01-01

    A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

  10. Si composite electrode with Li metal doping for advanced lithium-ion battery

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  11. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  12. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  14. Ionic liquids for rechargeable lithium batteries

    SciTech Connect (OSTI)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  15. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  16. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  17. Long life lithium batteries with stabilized electrodes

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  18. MultiLayer solid electrolyte for lithium thin film batteries

    DOE Patents [OSTI]

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  19. Silver manganese oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  20. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    liquids in lithium-ion battery test systems J. Salminen a,a detrimental effect on battery performance. Introductionat 25 o C, sufficient for battery applications. The measured

  1. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    B. Dunn. "Low-potential lithium-ion reactivity of vanadiumMn 1/3 O 2 for advanced lithium-ion batteries. Journal ofMn, Ni, Co) electrodes for lithium-ion batteries. Journal of

  2. Factors influencing the discharge characteristics of Na0.44MnO2-based positive electrode materials for rechargeable lithium batteries

    E-Print Network [OSTI]

    Doeff, M.M.

    2011-01-01

    for Rechargeable Lithium Batteries Marca M. Doeff, Kwang-For Rechargeable Lithium Batteries Marca M. Doefr*, Kwang-FOR RECHARGEABLE LITHIUM BATTERIES Marca M. Doeff * , Kwang-

  3. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  4. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01

    and its application to battery electrodes. Chapter 7 -Application in Lithium Battery Electrodes. Angew. Chem. Int.9 Figure 1.9. Schematic of a traditional lithium-ion battery

  5. Solid polymer battery electrolyte and reactive metal-water battery

    DOE Patents [OSTI]

    Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

    2000-01-01

    In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

  6. Analysis of Impedance Response in Lithium-ion Battery Electrodes 

    E-Print Network [OSTI]

    Cho, Seongkoo

    2013-12-04

    formation due to diffusion induced stress can aggravate the aging of the electrode. These mechanisms of deterioration are primary contributors on limiting the durability of Lithium-ion battery (LIB). In addition, an composition of insertion materials...

  7. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee,...

  8. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes 

    E-Print Network [OSTI]

    An, Kai

    2013-11-25

    Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

  9. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...

    Broader source: Energy.gov (indexed) [DOE]

    million in Recovery Act funding to help expand its Charlotte operations and build a new lithium-ion battery separator facility in Concord. With the help of Recovery Act-funded...

  10. Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microcapsules M. Baginska, B.J. Blaiszik, R.J. Merriman, J.S. Moore, N. R. Sottos, and S.R. White, University of...

  11. Chemo-mechanics of lithium-ion battery electrodes

    E-Print Network [OSTI]

    Di Leo, Claudio V

    2015-01-01

    Mechanical deformation plays a crucial role both in the normal operation of a Lithium-Ion battery, as well as in its degradation and ultimate failure. This thesis addresses the theoretical formulation, numerical implementation, ...

  12. Cubic Spline Regression for the Open-Circuit Potential Curves of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Cubic Spline Regression for the Open-Circuit Potential Curves of a Lithium-Ion Battery Qingzhi Guo-circuit potential OCP of an inter- calation electrode in a lithium-ion battery on the lithium concentra- tion reaction at an electrode in a lithium- ion battery depends exponentially on the difference between

  13. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Suo, Zhigang

    Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

  14. MAXIMUM POWER ESTIMATION OF LITHIUM-ION BATTERIES ACCOUNTING FOR THERMAL AND ELECTRICAL CONSTRAINTS

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    MAXIMUM POWER ESTIMATION OF LITHIUM-ION BATTERIES ACCOUNTING FOR THERMAL AND ELECTRICAL CONSTRAINTS on the maximum deliverable power is essential to protect lithium-ion batteries from over- charge Terminal voltage Voc Open circuit voltage of a battery 1 INTRODUCTION Lithium-ion batteries have been used

  15. With a new type of lithium battery that has been developed at TU

    E-Print Network [OSTI]

    Langendoen, Koen

    When charging and discharging the battery lithium ions and electrons should be able to move easilyWith a new type of lithium battery that has been developed at TU Delft electric cars can drive thick without reducing the performance of the battery: recharging the battery, where lithium needs

  16. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    E-Print Network [OSTI]

    Cai, Long

    A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes Nian Liu1 lithium-ion batteries and in more recent Li­O2 and Li­S batteries as a replacement for the dendrite to the level of commercial lithium-ion batteries (3.7 mAh cm22 ). Particle fracture and loss of electrical

  17. he mobile world depends on lithium-ion batteries --today's ultimate

    E-Print Network [OSTI]

    Napp, Nils

    T he mobile world depends on lithium- ion batteries -- today's ultimate rechargeable energy store -- a performance roughly on a par with the best Li-ion batteries. His batteries are based on lithium­sulphur (Li is applied to reverse the electron flow, which also drives the lithium ions back. In a Li­S battery

  18. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Li, Teng

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric of lithium- assisted welding between physically contacted silicon nano- wires (SiNWs) induced by electrochemical lithiation and delithiation. This electrochemical weld between two SiNWs demonstrates facile

  19. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    of ultracapacitors or even lithium-ion batteries. This isof ultracapacitors or even lithium-ion batteries. This isResults with Lithium-ion Batteries. EET-2008 European Ele-

  20. Factors influencing the discharge characteristics of Na0.44MnO2-based positive electrode materials for rechargeable lithium batteries

    E-Print Network [OSTI]

    Doeff, M.M.

    2011-01-01

    in rechargeable lithium battery configurations. 1,2,3 Theseprior to use in a lithium battery configuration,. Partial

  1. Towards standardizing the measurement of electrochemical properties of solid state electrolytes in lithium batteries.

    SciTech Connect (OSTI)

    Dees, D. W.; Henriksen, G. L.

    1999-05-06

    The purpose of this paper is to stimulate thought and discussion in the technical community on standardization of the experimental determination of the pertinent electrochemical properties of solid electrolytes in lithium batteries. This standardization is needed for comparison and modeling of solid electrolytes in a practical lithium battery. The appropriate electrochemical properties include transport, thermodynamic, and physical parameters that generally depend on concentration and temperature. While it is beyond the scope of this work to put forward definitive measurement techniques for all types of solid electrolytes, it is hoped that comparisons between various techniques to examine a dissolved binary lithium salt in a dry polymer solvent will lead to improved understanding and methodology for examining solid electrolytes.

  2. Non-aqueous electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  3. P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing

    SciTech Connect (OSTI)

    J. Francfort

    2006-06-01

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

  4. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely that the next step will be accomplished through a combination of joint venture partnering and licensing of the technology.

  5. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01

    IN HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki andAFM Introduction Lithium-ion batteries are being seriously

  6. Rechargeable Aluminum Batteries with Conducting Polymers as Active...

    Office of Scientific and Technical Information (OSTI)

    Rechargeable Aluminum Batteries with Conducting Polymers as Active Cathode Materials. Citation Details In-Document Search Title: Rechargeable Aluminum Batteries with Conducting...

  7. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  8. Neutron and X-ray scattering experiments on lithium polymer electrolytes

    SciTech Connect (OSTI)

    Saboungi, M.L.; Price, D.L.

    1997-09-01

    The authors are carrying out structural, dynamical and transport measurements of lithium polymer electrolytes, in order to provide information needed to improve the performance of secondary lithium battery systems. Microscopically, they behave as liquids under conditions of practical interest. Development of batteries based on these materials has focused on rechargeable systems with intercalation/insertion cathodes and lithium or lithium-containing materials as anodes. The electrolytes are generally composites of a polyethylene oxide (PEO) or another modified polyether and a salt such as LiClO{sub 4}, LiAsF{sub 6} or LiCF{sub 3}SO{sub 3}. Research on electrolyte materials for lithium batteries has focused on synthesis, characterization, and development of practical devices. Some characterization work has been carried out to determine the properties of the ion polymer and ion interactions, principally through spectroscopic, thermodynamic and transport measurements. It is generally believed that ionic conduction is a property of the amorphous phase of these materials. It is also believed that ion association, ion polymer interactions and local relaxations of the polymer strongly influence the ionic mobility. However, much about the nature of the charge carriers, the ion association processes, and the ion polymer interactions and the role that these play in the ionic conductivity of the electrolytes remains unknown. The authors have initiated a combined experimental and theoretical study of the structure and dynamics of lithium polymer electrolytes. They plan to investigate the effects of the polymer host on ion solvation and the attendant effects of ion pairing, which affect the ionic transport in these systems.

  9. Redox polymer electrodes for advanced batteries

    DOE Patents [OSTI]

    Gregg, Brian A. (Golden, CO); Taylor, A. Michael (Golden, CO)

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  10. Bubbles Help Break Energy Storage Record for Lithium Air-Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in PNNL's lithium-air battery research. "This will greatly reduce production costs and increase the adoptability." Although the battery is achieving the highest level of energy...

  11. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01

    polymer electrolyte, consisting of a nonaqueous carbonateand dimethyl carbonate (DMC). The polymer matrix is a random

  12. Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy...

  13. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    E-Print Network [OSTI]

    Braatz, Richard D.

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, ...

  14. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries

    E-Print Network [OSTI]

    Oh, Dahyun

    Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

  15. Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design

    E-Print Network [OSTI]

    Jasinski, Samuel Anthony

    2008-01-01

    Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

  16. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes -...

  17. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, David O. (Oak Ridge, TN)

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  18. Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization

    E-Print Network [OSTI]

    Subramanian, Venkat

    Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization sources such as lithium-ion batteries have had significant improvements in design, modeling, and operating

  19. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  20. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,

    E-Print Network [OSTI]

    Cui, Yi

    Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance for higher specific energy lithium ion batteries for applications such as electric vehicles, next generation

  1. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

  2. Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery an experimental parameter iden- tification and validation for an electrochemical lithium-ion battery model. The identification procedure is based on experimental data collected from a 6.8 Ah lithium-ion battery during charge

  3. Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z

    E-Print Network [OSTI]

    Popov, Branko N.

    Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

  4. Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications C. Speltino, D. Di Domenico, G. Fiengo and A. Stefanopoulou Abstract-- Lithium-ion batteries are the core of new plug (HEV). In most cases the lithium-ion battery performances play an important role in the vehicle energy

  5. Ether sulfones with additives for electrolytes in rechargeable lithium ion batteries

    E-Print Network [OSTI]

    Angell, C. Austen

    Ether sulfones with additives for electrolytes in rechargeable lithium ion batteries Xiao-Guang Sun in rechargeable lithium ion battery [1-5]. In a previous publication [6] we described a series of ether sulfones electrolytes, can yield lithium button cells ?batteries with very favorable characteristics. (Refs to VC

  6. Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations

    E-Print Network [OSTI]

    Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery decomposition POD for a physics-based lithium-ion battery model. The methodology to obtain the proper orthogonal modes and to analyze their optimality is included. The POD-based ROM for a lithium-ion battery is used

  7. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles. Manuscript submitted May 15, 2000; revised manuscript received January 15, 2001. Lithium-ion batteries effort by the U.S. Department of Energy to aid the development of lithium-ion batteries for hybrid

  8. Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles

    E-Print Network [OSTI]

    Sastry, Ann Marie

    Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode sur- faces in postmortem analysis of batteries.5-7 Stress generation results from lithium-ion, as will be discussed later. Heat transfer analyses of lithium-ion batteries have stemmed from work on full cells.10

  9. Journal of Power Sources 150 (2005) 229239 Analysis of capacity fade in a lithium ion battery

    E-Print Network [OSTI]

    2005-01-01

    Journal of Power Sources 150 (2005) 229­239 Analysis of capacity fade in a lithium ion battery determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery; Lithium ion batteries 1. Introduction and motivation Theoverallperformanceofbatteriesdeterioratesovertime

  10. 2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING

    E-Print Network [OSTI]

    Braun, Paul

    1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

  11. Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes

    E-Print Network [OSTI]

    Cui, Yi

    Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes Hui Wu, Guangyuan ABSTRACT: Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long materials for lithium-ion batteries (Li-ion).1,2 In particular, they have focused on conversion oxides,1

  12. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models, Berkeley, California 94720-8168, USA Lithium-ion batteries are typically modeled using porous electrode the active materials of porous electrodes for a pseudo-two- dimensional model for lithium-ion batteries

  13. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode

    E-Print Network [OSTI]

    Zhou, Chongwu

    Nano Res 1 Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode Titanium Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode JiepengRong,,§Xin Fang Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode Jiepeng Rong,1,§ Xin Fang,1,§ Mingyuan Ge,1

  14. Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions

    E-Print Network [OSTI]

    Subramanian, Venkat

    Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary of physics-based lithium-ion battery models to improve computational efficiency. While the additional steps, 2008. Published January 30, 2009. Mathematical modeling of lithium-ion batteries involves

  15. Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method

    E-Print Network [OSTI]

    Papalambros, Panos

    Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 Abstract This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy- brid, volume or material cost. Keywords: Lithium-ion, Optimization, Hybrid vehicle, Battery pack design

  16. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles Lithium-ion batteries are a fast-growing technology that is attractive for use in portable electronics of lithium-ion batteries for hybrid electric vehicle (HEV) applications. The ATD Program is a joint effort

  17. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

    E-Print Network [OSTI]

    Zhu, Ting

    Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. Ó 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

  18. Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models Venkat R. Subramanian Technological University, Cookeville, Tennessee 38505, USA Recent interest in lithium-ion batteries for electric on the computational efficiency of lithium-ion battery models. This paper presents an effective approach to simulate

  19. AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS

    E-Print Network [OSTI]

    Peng, Huei

    AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS electrochemical properties and aging status. INTRODUCTION With the widespread use of lithium-ion batteries the com- plex battery physical behavior during the lithium-ion intercalac- tion/deintercalation process

  20. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  1. Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy

    E-Print Network [OSTI]

    Subramanian, Venkat

    Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

  2. Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances

    E-Print Network [OSTI]

    Boyer, Edmond

    Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

  3. Electrochimica Acta 45 (2000) 25952609 Mathematical modeling of secondary lithium batteries

    E-Print Network [OSTI]

    2000-01-01

    Electrochimica Acta 45 (2000) 2595­2609 Mathematical modeling of secondary lithium batteries, 20 December 1999 Abstract Modeling of secondary lithium batteries is reviewed in this paper. The models available to simulate the electrochemical and thermal behavior of secondary lithium batteries

  4. Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds

    E-Print Network [OSTI]

    Arnold, Craig B.

    ) The lithium ion battery, a preferred energy storage technology, is limited by its volumetric and gravimetric. INTRODUCTION The lithium ion battery has become the energy storage me- dium of choice for almost allSilicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible

  5. Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow

    E-Print Network [OSTI]

    Wang, Chao-Yang

    Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries

  6. Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a

    E-Print Network [OSTI]

    Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a , Christopher D Available online 28 June 2007 Abstract Lithium ion (Li-ion) batteries provide high energy and power density dynamics (i.e. state of charge). Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery

  7. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials

    E-Print Network [OSTI]

    Cho, Jaephil

    Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials Hyesun materials for lithium batteries were prepared using KIT-6 and SBA-15 SiO2 templates as an anode material for lithium batteries due to its high capacity (>600 mAh gÀ1 ) compared with graphite

  8. Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes Yun Jung as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study

  9. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Cui, Yi

    Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery dominate commercial lithium battery applications in which the major consideration is the specific energy. The use of aqueous electrolytes in lithium battery systems was pioneered by the Dahn group,7-10 which

  10. Proton-Induced Dysfunction Mechanism of Cathodes in an Aqueous Lithium Ion Battery

    E-Print Network [OSTI]

    Gong, Xingao

    Proton-Induced Dysfunction Mechanism of Cathodes in an Aqueous Lithium Ion Battery Qiang Shu, Long: The proton-induced dysfunction mechanism of cathodes in aqueous lithium ion batteries is investigated of the Li+ and H+ in the solution. Lithium ion batteries (LIBs) have been proved to be com- mercially

  11. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  12. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  13. Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy

    E-Print Network [OSTI]

    Milgram, Paul

    Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices materials during the charging/discharging process. However, in previous graphene based LIB battery research

  14. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  15. Gel polymer electrolytes for batteries

    DOE Patents [OSTI]

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  16. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart

  17. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smartA

  18. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smartAA

  19. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL; Liang, Chengdu [ORNL

    2015-01-01

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  20. A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System

    E-Print Network [OSTI]

    Popov, Branko N.

    A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System Godfrey those of high-energy battery systems such as lithium ion. Al- though advanced battery systems and double the performance of a battery/electrochemical capacitor-hybrid system has been developed. Simulation results

  1. Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented

    E-Print Network [OSTI]

    #12;Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented by Kejie Zhao, Joost J. Vlassak Kejie Zhao Mechanics of Electrodes in Lithium-ion Batteries Abstract This thesis investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery

  2. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with

    E-Print Network [OSTI]

    Qi, Limin

    Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries structures, lithium-ion batteries ABSTRACT A general method for facile kinetics-controlled growth of aligned material for lithium-ion batteries. 1 Introduction Lithium-ion batteries (LIBs) have been considered

  3. Facile Synthesis of Free-Standing Silicon Membranes with Three-Dimensional Nanoarchitecture for Anodes of Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    for Anodes of Lithium Ion Batteries Fan Xia, Seong Been Kim, Huanyu Cheng, Jung Min Lee, Taeseup Song that is capable of accommodating the large volume changes associated with lithiation in lithium ion battery-performance lithium ion batteries. KEYWORDS: Silicon, lithium ion batteries, 3D membrane, volume expansion The demand

  4. Lithium battery electrodes with ultra-thin alumina coatings

    DOE Patents [OSTI]

    Se-Hee, Lee; George, Steven M.; Cavanagh, Andrew S.; Yoon Seok, Jung; Dillon, Anne C.

    2015-11-24

    Electrodes for lithium batteries are coated via an atomic layer deposition process. The coatings can be applied to the assembled electrodes, or in some cases to particles of electrode material prior to assembling the particles into an electrode. The coatings can be as thin as 2 .ANG.ngstroms thick. The coating provides for a stable electrode. Batteries containing the electrodes tend to exhibit high cycling capacities.

  5. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Rechargeable Sodium-Ion Batteries: Potential Alternatives toCurrent Lithium-Ion Batteries. Adv. Energy Mater. 2 (2012):J. , Rojo, T. Na-ion Batteries, Recent Advances and Present

  6. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    E-Print Network [OSTI]

    Shim, J.; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01

    Cathode for Lithium-Ion Batteries J. Shim a , A. Guerfi b ,material for Li rechargeable batteries because of low-cost,is a part of BATT (Batteries for Advanced Transportation

  7. Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems

    E-Print Network [OSTI]

    Kolesnikov-Lindsey, Rachel

    FePO? lithium ion batteries that have cathodes constructed by viruses are scaled up in size to examine potential for use as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled ...

  8. It's getting hot in here : temperature gradients in lithium-ion battery packs

    E-Print Network [OSTI]

    Niewood, Benjamin

    2015-01-01

    A 5 channel, 40A battery cycler was constructed for the purpose of carrying out thermal studies on Lithium-ion battery packs. Boston Power Swing Key 442 battery blocks were tested to determine the magnitude of the temperature ...

  9. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    batteries are leading candidates to play an important role in the transition to a renewableBatteries by William Rodgers Hudson Doctor of Philosophy in Chemistry University of California, Berkeley Professor Jeffrey Long, Chair Increasing interest in renewable

  10. Electrode materials and lithium battery systems

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Belharouak, Ilias (Westmont, IL); Liu, Jun (Naperville, IL)

    2011-06-28

    A material comprising a lithium titanate comprising a plurality of primary particles and secondary particles, wherein the average primary particle size is about 1 nm to about 500 nm and the average secondary particle size is about 1 .mu.m to about 4 .mu.m. In some embodiments the lithium titanate is carbon-coated. Also provided are methods of preparing lithium titanates, and devices using such materials.

  11. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    lithium iron phosphates. Electrochemistry Communications 4,C. and Armand, M. Electrochemistry of liquids vs. solids:Journal of Applied Electrochemistry 25, Shin, J. H. ,

  12. New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron microscopy, electrochemical and X-ray absorption studies

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 New nanocrystalline manganese oxides as cathode materials for lithium batteries : electron: manganese oxide, lithium batteries, nanomaterials Corresponding author: Pierre Strobel, tel. 33 476 887 940 with lithium iodide in aqueous medium at room temperature. Transmission electron microscopy (TEM) showed

  13. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect (OSTI)

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  14. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  15. PHYSICAL REVIEW B 84, 205446 (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery

    E-Print Network [OSTI]

    Ceder, Gerbrand

    2011-01-01

    of lithium peroxide in the lithium-air battery Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder* Department) The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific-air battery systems have the potential to provide significantly higher specific energies than current lithium

  16. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01

    polymer photoresists by scanning transmission x-ray microscopy. Journal of Vacuum Science and Technology

  17. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  18. Coating of porous carbon for use in lithium air batteries

    SciTech Connect (OSTI)

    Amine, Khalil; Lu, Jun; Du, Peng; Lei, Yu; Elam, Jeffrey W

    2015-04-14

    A cathode includes a carbon material having a surface, the surface having a first thin layer of an inert material and a first catalyst overlaying the first thin layer, the first catalyst including metal or metal oxide nanoparticles, wherein the cathode is configured for use as the cathode of a lithium-air battery.

  19. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  20. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01

    to 1) - a New Cathode Material for Batteries of High- Energyefforts to develop new high-energy materials such as silicon

  1. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  2. Layered electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  3. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

  4. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon in energy storage has stimulated significant interest in lithium ion battery research. The lithium ionPorous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge

  5. Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery Fei YAO LPICM-École Polytechnique POLYTECHNIQUE Spécialité: Physique Par Fei YAO Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery #12;I ABSTRACT In this thesis work, carbon-based nanomaterials using as an anode for lithium ion

  6. Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries

    E-Print Network [OSTI]

    Lithium Ion Batteries D. Zakhidov,1,2 R. Sugamata,3 T. Yasue,3 T. Hayashi,3 Y. A. Kim,3 and M. Endo4 1 successful anode for lithium ion batteries due to its low cost, safety, and ease of fabrication, but higher are expected to surpass conventional graphite anodes due to larger number of edges for lithium ion

  7. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  8. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    SciTech Connect (OSTI)

    Ferrese, A; Newman, J

    2014-04-11

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasi steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.

  9. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    Weidner, John W.

    Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W of lithium and nickel battery systems developed at the University of South Carolina is presented. Models of Li/Li-ion batteries are reviewed that simulated the behavior of single electrode particles, single

  10. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries; Irreversible capacity; Anode material; Lithium-ion batteries 1. Introduction To ensure long cycle life for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

  11. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models materials of porous electrodes for a rigorous pseudo-2D model for lithium-ion batteries. Concentration in the solid phase. Introduction Physics based Li-ion battery models use porous electrode theory. One

  12. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  13. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Sulfur Batteries Guangyuan Zheng, Qianfan Zhang, Judy J. Cha, Yuan Yang, Weiyang Li, Zhi Wei Seh, and Yi lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent progress in addressing the various problems of sulfur cathodes, lithium sulfur batteries still exhibit

  14. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high not well understood. In this Article, these changes in Li-S batteries are studied in operando by X

  15. Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including present day portable consumer electronics and large-scale energy storage. Realization of these batteries

  16. Computational Research on Lithium Ion Battery Materials A Dissertation Submitted to the Graduate Faculty of

    E-Print Network [OSTI]

    Holzwarth, Natalie

    Computational Research on Lithium Ion Battery Materials by Ping Tang A Dissertation Submitted Research interest in lithium battery materials 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LiFePO4 battery material . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Why LiFePO4

  17. Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo

    E-Print Network [OSTI]

    Suo, Zhigang

    Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

  18. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio (>700 Wh/kg) cathode materials for lithium-ion batteries. 1 Introduction The widespread use of lithium compounds. Testing previously known lithium-containing compounds for battery properties can lead

  19. Intercalation dynamics in lithium-ion batteries

    E-Print Network [OSTI]

    Burch, Damian

    2009-01-01

    A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

  20. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  1. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  2. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOE Patents [OSTI]

    Bates, John B. (Oak Ridge, TN)

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  3. Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials

    DOE Patents [OSTI]

    Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

    2014-02-04

    Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

  4. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  5. High elastic modulus polymer electrolytes suitable for preventing...

    Office of Scientific and Technical Information (OSTI)

    High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries Citation Details In-Document Search Title: High elastic modulus polymer...

  6. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  7. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  8. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

  9. Phase transitions in insertion electrodes for lithium batteries

    SciTech Connect (OSTI)

    Thackeray, M. M.

    2000-02-02

    Phase transitions that occur during lithium insertion into layered and framework structures are discussed in the context of their application as positive and negative electrodes in lithium-ion batteries. The discussion is focused on the two-dimensional structures of graphite, LiNi{sub 1{minus}x}M{sub x}O{sub 2} (M = Co, Ti and Mg), and Li{sub 1.2}V{sub 3}O{sub 8}; examples of framework structures with a three-dimensional interstitial space for Li{sup +}-ion transport include the spinel oxides and intermetallic compounds with zinc-blende-type structures. The phase transitions are discussed in terms of their tolerance to lithium insertion and extraction and to the chemical stability of the electrodes in the cell environment.

  10. Graphite Foams for Lithium-Ion Battery Current Collectors

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

    2007-01-01

    Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

  11. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01

    when exploring new materials for high-energy lithium ionA new cathode material for batteries of high energy density.

  12. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Graphite and LiCoO 2 are the most commonly employed negative and positive electrodes, respectively, for lithium ion batteries.

  13. Electrolytes for Use in High Energy Lithium-Ion Batteries with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range 2012 DOE Hydrogen and Fuel Cells Program...

  14. Towards a lithium-ion fiber battery

    E-Print Network [OSTI]

    Grena, Benjamin (Benjamin Jean-Baptiste)

    2013-01-01

    One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

  15. The Science of Electrode Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  16. Design of a testing device for quasi-confined compression of lithium-ion battery cells

    E-Print Network [OSTI]

    Roselli, Eric (Eric J.)

    2011-01-01

    The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

  17. Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex

    E-Print Network [OSTI]

    Adams, Melanie Chantal

    2013-01-01

    Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis ...

  18. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  19. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01

    were used as the solid electrolyte. The SEO was synthesizedDilemma in Solid Polymer Electrolytes for RechargeableBattery Assembly Solid polymer electrolyte was pressed to

  20. How to Obtain Reproducible Results for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-01-01

    The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

  1. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect (OSTI)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  2. Lithium-titanium-oxide anodes for lithium batteries

    DOE Patents [OSTI]

    Vaughey, John T. (Elmhurst, IL); Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Jansen, Andrew N. (Bolingbrook, IL); Chen, Chun-hua (Westmont, IL)

    2001-01-01

    A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0battery comprising an plurality of cells, electrically connected, each cell comprising a negative electrode, an electrolyte and a positive electrode, the negative electrode consisting of the spinel-type structure disclosed.

  3. Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2009-05-01

    Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

  4. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect (OSTI)

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low?temperature heat treatment process for natural graphite based anode materials for high?capacity and long?cycle?life lithium ion batteries. Three major problems currently plague state?of?the?art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat?treated well in excess of 2000°C. Because of this high?temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state?of?the?art anodes based on artificial graphites, which is only about 200?350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell?voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat?treated to a substantially lower temperature (as low as 1000?1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post?treatment processes were developed that are amenable to scaling to automotive quantities.

  5. On the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium Concentration in Operational Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    . INTRODUCTION Accurate estimates of Lithium Ion Battery State of Charge (SOC) are critical for constraining of the critical limitations of Lithium ion batteries is the rate at which they can safely be charged

  6. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  7. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  8. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  9. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Xiao, Xingcheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Wang, Chong M.

    2014-01-14

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  10. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  11. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  12. Negative electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  13. The Lithium-Ion Cell: Model, State Of Charge Estimation

    E-Print Network [OSTI]

    Schenato, Luca

    The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher. Di Domenico, A. Stefanopoulou, and G. Fiengo., Reduced Order Lithium-ion Battery Electrochemical

  14. Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

    2010-11-01

    This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

  15. Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

  16. Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea

    E-Print Network [OSTI]

    Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph scanning calorimeter; Lithium ion batteries; Electrolyte; Thermal stability; Decomposition 1. Introduction Despite the improvement and developments in safety of the lithium ion batteries (PTC, CID, shutdown

  17. Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random microstructures of lithium-ion battery anodes, which can serve as input for the simulations. We introduce the use; 1. Introduction Lithium-ion batteries used in electric vehicles need to fulfill a number

  18. Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman-- In this paper an averaged electrochemical lithium- ion battery model, presented and discussed in [2] and [3 estimation. I. INTRODUCTION Lithium-ion batteries play an important role in the area of hybrid vehicle design

  19. Role of Surface Oxides in the Formation of Solid-Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Webb, Lauren J.

    for Lithium-Ion Batteries Kjell W. Schroder,,,§ Anthony G. Dylla,,§ Stephen J. Harris, Lauren J. Webb electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits of the SEI. KEYWORDS: lithium-ion batteries, solid-electrolyte interphase, SEI, TOF-SIMS, XPS, PCA 1

  20. Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer

    E-Print Network [OSTI]

    Subramanian, Venkat

    , but was lower at later cycles. The temperature that optimizes the active surface in a lithium-ion battery. Published February 14, 2011. Rechargeable lithium-ion batteries have been extensively used in mobile-discharge rate. The lithium-ion battery is also promising for electric (plug-in and hybrid) vehicles

  1. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter

  2. Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract-- Lithium-ion battery hybrid electric vehicles (HEV). In most cases the lithium-ion battery performance plays an important role

  3. Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density

    E-Print Network [OSTI]

    Subramanian, Venkat

    Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries Keywords: Lithium-ion batteries Model-based design Optimization Physics based reformulated model a b s t r for porous electrodes that are commonly used in advanced batteries such as lithium-ion systems. The approach

  4. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

  5. High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

  6. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode

    E-Print Network [OSTI]

    Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been- face, which is critical to the cycle life and calendar life of lithium- ion batteries.1,2 Unfortunately

  7. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    The Effect of Single Walled Carbon Nanotubes on Lithium- Ion Batteries and Electric Double Layer on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium is used because of its high surface area. Lithium-ion Batteries ·Higher energy density than other

  8. Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    , anisotropic expansion A dvanced energy storage technologies are critically important for the operationArrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large

  9. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes

    E-Print Network [OSTI]

    Cui, Yi

    Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasing storage capacity (theoretical values of 4200 vs 372 mAh/g for graphite). How- ever, the insertion

  10. SnO2 Filled Mesoporous Tin Phosphate High Capacity Negative Electrode for Lithium Secondary Battery

    E-Print Network [OSTI]

    Cho, Jaephil

    SnO2 Filled Mesoporous Tin Phosphate High Capacity Negative Electrode for Lithium Secondary Battery insulators, and optics.1-6 On the other hand, their applications to electrode materials in lithium secondary batteries have received little attention because of the very limited candidates.7,8 Recently

  11. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  12. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  13. Solid state thin film battery having a high temperature lithium alloy anode

    DOE Patents [OSTI]

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  14. The structural design of electrode materials for high energy lithium batteries.

    SciTech Connect (OSTI)

    Thackeray, M.; Chemical Sciences and Engineering Division

    2007-01-01

    Lithium batteries are used to power a diverse range of applications from small compact devices, such as smart cards and cellular telephones to large heavy duty devices such as uninterrupted power supply units and electric- and hybrid-electric vehicles. This paper briefly reviews the approaches to design advanced materials to replace the lithiated graphite and LiCoO{sub 2} electrodes that dominate today's lithium-ion batteries in order to increase their energy and safety. The technological advantages of lithium batteries are placed in the context of water-based- and high-temperature battery systems.

  15. Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries

    E-Print Network [OSTI]

    Ransil, Alan Patrick Adams

    2013-01-01

    Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

  16. Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Suo, Zhigang

    Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium batteries.3 A lithium-ion battery contains an electrolyte and two electrodes. Each electrode is an atomic

  17. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  18. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect (OSTI)

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  19. Ab initio treatment of electron correlations in polymers: Lithium hydride chain and beryllium hydride polymer

    E-Print Network [OSTI]

    Birkenheuer, Uwe

    Ab initio treatment of electron correlations in polymers: Lithium hydride chain and berylliumH and beryllium hydride Be2H4 . First, employing a Wannier-function-based approach, the systems are studiedH and the beryllium hydride polymer Be2H4 . As a simple, but due to its ionic character, non- trivial model polymer

  20. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01

    7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

  1. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  2. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    electrodes, full cells and batteries (sets of full cells) under a variety of operating conditions (e and batteries (sets of full cells) to simulate various operating conditions like cyclic voltammetry, constantMathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W

  3. Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries Basker as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific have been studied as anodes for the Li-ion battery. Carbon based anodes have many desirable properties

  4. Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

  5. Flight Path and Wing Optimization of Lithium-Air Battery Powered Passenger Aircraft

    E-Print Network [OSTI]

    Alonso, Juan J.

    in the design of electrically-driven aircraft, particularly in the case of fuel cells and batteries.5­7 One to implement vis. a vis. fuel cells, in particular, liquid hydrogen fuel cells. However, present-day batteryFlight Path and Wing Optimization of Lithium-Air Battery Powered Passenger Aircraft J. Michael Vegh

  6. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  7. California: Conducting Polymer Binder Boosts Storage Capacity...

    Broader source: Energy.gov (indexed) [DOE]

    Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a focus on enabling smaller,...

  8. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Scientific and Technical Information (OSTI)

    Voltage Solid Polymer Batteries for Electric Drive Vehicles Eitouni, Hany; Yang, Jin; Pratt, Russell; Wang, Xiao; Grape, Ulrik The purpose of this project was for Seeo to develop a...

  9. On Uncertainty Quantification of Lithium-ion Batteries

    E-Print Network [OSTI]

    Hadigol, Mohammad; Doostan, Alireza

    2015-01-01

    In this work, a stochastic, physics-based model for Lithium-ion batteries (LIBs) is presented in order to study the effects of model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed uncertainty quantification (UQ) approach, based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobol' indices. Such information aids in designing more efficient and targeted quality control procedures, which consequently may result in reducing the LIB production cost. An LiC$_6$/LiCoO$_2$ cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates is considered to study the performance and accuracy of the proposed UQ approach. The results suggest that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance variability of the ce...

  10. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  11. Optimization of a Single Lithium-ion Battery Cell with a Gradient-based Algorithm , Wenbo Dua

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimization of a Single Lithium-ion Battery Cell with a Gradient-based Algorithm Nansi Xuea for optimal cell designs are independent of discharge rate. Keywords Lithium ion battery Porous electrode for automating the design of lithium-ion cells to maximize cell energy density while meeting specific power

  12. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Chen, Zonghai (Downers Grove, IL); Wang, Qingzheng (San Jose, CA)

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  13. Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

    2011-01-01

    This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

  14. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01

    2000). Costs of Lithium-Ion Batteries for Vehicles, (ANL/Lithium ion Batteries 2.1.1 Lithium versus Lithium ion Batteries Lithium systems

  15. Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  16. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis

    E-Print Network [OSTI]

    Meier, Joseph D. (Joseph David)

    2013-01-01

    A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

  17. Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity

    E-Print Network [OSTI]

    Hill, Richard Lee, Sr

    2011-01-01

    The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

  18. Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries

    E-Print Network [OSTI]

    Davis, Robin M. (Robin Manes)

    2005-01-01

    Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

  19. Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

  20. Comprehensive Study of the CuF2 Conversion Reaction Mechanism in a Lithium Ion Battery

    E-Print Network [OSTI]

    Hua, Xiao; Robert, Rosa; Du, Lin-Shu; Wiaderek, Kamila M.; Leskes, Michal; Chapman, Karena W.; Chupas, Peter J.; Grey, Clare P.

    2014-06-11

    Conversion materials for lithium ion batteries have recently attracted considerable attention due to their exceptional specific capacities. Some metal fluorides, such as CuF2, are promising candidates for cathode materials owing to their high...

  1. Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

  2. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Braatz, Richard D.

    Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

  3. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  4. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for Electric Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Envia Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries...

  5. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    a Loan and Grant to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No Significant Impact...

  6. Vehicle Technologies Office Merit Review 2015: High Energy Lithium Batteries for PHEV Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Envia at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy lithium batteries for PHEV...

  7. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive 48128, USA h i g h l i g h t s Proposed a dynamic universal battery model based on second-order RC a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness

  8. Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim* and Nina MahootcheianAsl

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Waste-Lithium-Liquid (WLL) Flow Battery for Stationary Energy Storage Applications Youngsik Kim. The harvested Li metal could then be an energy source for Li-Liquid flow batteries by using water as the cathode in a Waste-Lithium-Liquid (WLL) flow battery that can be used in a stationary energy storage application. Li

  9. Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy

    E-Print Network [OSTI]

    Zhou, Chongwu

    Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high Since Sony rst commercialized lithium ion batteries in the early 1990s, the market for lithium ion of the great success of lithium ion battery technology developed for portable electronic devices, higher

  10. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Suo, Zhigang

    Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume strength. © 2011 American Institute of Physics. doi:10.1063/1.3525990 Lithium-ion batteries

  11. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    in commercial lithium-ion batteries for both cathodes e.g., LiCoO2 and anodes e.g., graphite . By contrastInelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume

  12. Polymer graphite composite anodes for Li-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph analysis #12;TGA analysis of polymer composite SFG10 samples -0.0 150.0 300.0 450.0 600.0 750.0 900-discharge curves of polymer composite SFG10 samples 0 200 400 600 800 Specific Capacity (mAh/g) 0.0 1.0 2.0 3.0 4

  13. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures

    SciTech Connect (OSTI)

    Huang, C; Xiao, J; Shao, YY; Zheng, JM; Bennett, WD; Lu, DP; Saraf, LV; Engelhard, M; Ji, LW; Zhang, J; Li, XL; Graff, GL; Liu, J

    2014-01-09

    Lithium-sulphur batteries have high theoretical energy density and potentially low cost, but significant challenges such as severe capacity degradation prevent its widespread adoption. Here we report a new design of lithium-sulphur battery using electrically connected graphite and lithium metal as a hybrid anode to control undesirable surface reactions on lithium. Lithiated graphite placed in front of the lithium metal functions as an artificial, self-regulated solid electrolyte interface layer to actively control the electrochemical reactions and minimize the deleterious side reactions, leading to significant performance improvements. Lithium-sulphur cells incorporating this hybrid anodes deliver capacities of >800 mAhg(-1) for 400 cycles at a high rate of 1,737mAg(-1), with only 11% capacity fade and a Coulombic efficiency >99%. This simple hybrid concept may also provide scientific strategies for protecting metal anodes in other energy-storage devices.

  14. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01

    and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

  15. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optimizing better battery materials. A Battery of Tests for Better Batteries The prosaic battery has often been overlooked as little more than an afterthought in a consumer-driven...

  16. Elaboration and Characterization of a Free Standing LiSICON Membrane for Aqueous Lithium-Air Battery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -sur-Loing, France Abstract In order to develop a LISICON separator for an aqueous lithium-air battery, a thin an important ohmic loss contribution which limits the power performance of a lithium-air battery. Keywords: Metal-air battery, Lithium anode, Li2O - Al2O3 - TiO2 - P2O5 system, LiPON, Solid electrolyte 1

  17. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-Ion Polymer Battery Cell Manufacturing Plant in USA Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. Materials and mechanisms of high temperature lithium sulfide batteries

    SciTech Connect (OSTI)

    Kaun, T.D.; Hash, M.C.; Henriksen, G.L.; Jansen, A.N.; Vissers, D.R.

    1994-05-01

    New materials have encouraged development of bipolar Li-Al/FeS{sub 2} batteries for electric vehicle (EV) applications. Current technology employs a two-phase Li-alloy negative electrode low-melting, LiCl-rich LiCl-LiBr-KBr molten salt electrolyte, and either an FeS or an upper-plateau (UP) FeS{sub 2} positive electrode. These components are assembled in a sealed bipolar battery configuration. Use of the two-phase Li-alloy ({alpha} + {beta} Li-Al and Li{sub 5}Al{sub 5}Fe{sub 2}) negative electrode provides in situ overcharge tolerance that renders the bipolar design viable. Employing LiCl-rich LiCl-LiBr-KBr electrolyte in ``electrolyte-starved`` calls achieves low-burdened cells, that possess low area-specific impedance; comparable to that of flooded cells using LiCl-LiBr-KBr eutectic electrolyte. The combination of dense UP FeS{sub 2} electrodes and low-melting electrolyte produces a stable and reversible couple, achieving over 1000 cycle life in flooded cells, with high power capabilities. In addition, a family of stable sulfide ceramic/sealant materials was developed that produce high-strength bonds between a variety of metals and ceramics, which renders lithium/iron suffide bipolar stacks practical. Bipolar Li-Al/FeS{sub 2} cells and four-cell stacks using these seals are being built and tested in the 13 cm diameter size for EV applications. To date, Li-Al/FeS{sub 2} cells have attained 400 W/kg power at 80% DOD and 180 Wh/kg energy at the 30 W/kg rate. When cell performance characteristics are used to model full-scale EV and hybrid vehicle (HV) batteries, they are projected to meet or exceed the performance requirements for a large variety of EV and HV applications. Efficient production and application of Li-alloys and Li-salt electrolyte are critical to approaching battery cost objectives.

  19. Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Barsukov, Igor V.

    2002-12-10

    Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

  20. Power and capacity fade mechanism of LiNi0.8Co0.15Al0.0502 composite cathodes in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2003-01-01

    IN HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki andAFM Introduction Lithium-ion batteries are being seriously

  1. Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles

    E-Print Network [OSTI]

    Fu, Haitao

    2009-01-01

    In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

  2. Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells

    E-Print Network [OSTI]

    Campbell, John Earl, Jr

    2012-01-01

    The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

  3. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammels, A.F.

    1987-08-04

    A solvated electron lithium negative electrode is described containing: containment means holding a solution of lithium dissolved in liquid ammonia to form a solvated electron solution, the solvated electron solution contacting a lithium intercalating membrane and providing lithium to the intercalating membrane during discharge and accepting it from the intercalating membrane during charge.

  4. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    2000) Costs of Lithium-Ion Batteries for Vehicles. Report,for High-Power Lithium-Ion Batteries. J. Power Sources 128:in High-Power Lithium-Ion Batteries. J. Electrochem. Soc.

  5. Buried anode lithium thin film battery and process for forming the same

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2004-10-19

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  6. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Trulove, Paul C; Foley, Matthew P

    2013-03-14

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-Ã?Â?Ã?Â?salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  7. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  8. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Turner, John A; Allu, Srikanth; Elwasif, Wael R; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-01-01

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing...

  10. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  11. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  12. Facile and Green Preparation for the Formation of MoO2GO Composites as Anode Material for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    as an anode material for lithium-ion batteries, the MoO2-GO composites exhibited an improved storage capacity for lithium-ion batteries. 1. INTRODUCTION With the fast-growing demand on petroleum resources and gaseous cycling life, and environmental benignity, lithium- ion batteries (LIBs) have been regarded as one

  13. Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized vanadium oxide, nanobelts, sol-gel, lithium-ion batteries, long-term stability 1. INTRODUCTION Because of their high energy density, long life cycle, environmentally benign, lithium ion batteries (LIBs) have been

  14. High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage

    E-Print Network [OSTI]

    High Areal Capacity Hybrid Magnesium-Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large, United States *S Supporting Information ABSTRACT: Hybrid magnesium-lithium-ion batteries (MLIBs magnesium-lithium-ion batteries (MLIBs), energy storage, Coulombic efficiency, dendrite-free magnesium

  15. Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium the electrodes to deform. An electrode is often composed of small active particles in a matrix. If the battery

  16. PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using. INTRODUCTION Lithium-ion battery is the core of new plug-in hybrid- electrical vehicles (PHEV) as well transient loads [22]. The importance of lithium-ion battery has grown in the past years. Based

  17. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq

    E-Print Network [OSTI]

    Peng, Huei

    On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium-ion and life cycle. In this paper, we focus on the identification of Li-ion battery capacity fading

  18. Simulation of NMR Fermi contact shifts for Lithium battery materials: the need of an efficient hybrid functional approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Simulation of NMR Fermi contact shifts for Lithium battery materials: the need of an efficient shift calculations for assisting structural characterization of battery materials, we propose to use them at no additional computational cost. In this paper, NMR Fermi contact shifts for lithium

  19. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage

    E-Print Network [OSTI]

    Cui, Yi

    A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage Yuan Yang,a Guangyuan Zhengb and Yi Cui*ac Large-scale energy storage represents a key challenge for renewable energy develop a new lithium/ polysulfide (Li/PS) semi-liquid battery for large-scale energy storage

  20. Wednesday, October 17th Bourns A265 1:40-2:30pm To realize the next generation rechargeable lithium batteries, it is critical to use novel electrode

    E-Print Network [OSTI]

    lithium batteries, it is critical to use novel electrode materials with higher lithium storage capacity. In this presentation, a number of novel lithium battery electrode materials including silicon anode, tin anode, and sulfur cathode will be presented. Silicon (Si) and tin (Sn) possess very high lithium storage capacities

  1. Lithium Doping of Single-Walled Carbon Nanotubes for Battery and Semiconductor Applications Kevin Donaher, Columbia University, Georgia Institute of Technology SURF 2010 Fellow

    E-Print Network [OSTI]

    Li, Mo

    Lithium Doping of Single-Walled Carbon Nanotubes for Battery and Semiconductor Applications Kevin. This process forms the basis of the graphite anode used in lithium-ion batteries. However, current lithium Jang, Mentor: Wonsang Koh Abstract The properties of lithium doped (5,5) metallic and (8

  2. Process For Cutting Polymers Electrolyte Multi-Layer Batteries And Batteries Obtained Thereby

    DOE Patents [OSTI]

    Gauthier, Michel (La Prairie, CA); Lessard, Ginette (Longueuil, CA); Dussault, Gaston (St-Benoit-de-Mirabel, CA); Rouillard, Roger (Beloeil, CA); Simoneau, Martin (Montreal, CA); Miller, Alan Paul (Woodbury, MN)

    2003-09-09

    A stacking of battery laminate is prepared, each battery consisting of anode, polymer electrolyte, cathode films and possibly an insulating film, under conditions suitable to constitute a rigid monoblock assembly, in which the films are unitary with one another. The assembly obtained is thereafter cut in predetermined shape by using a mechanical device without macroscopic deformation of the films constituting the assembly and without inducing permanent short circuits. The battery which is obtained after cutting includes at least one end which appears as a uniform cut, the various films constituting the assembly having undergone no macroscopic deformation, the edges of the films of the anode including an electronically insulating passivation film.

  3. High energy density lithium-oxygen secondary battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1989-02-07

    A high energy density lithium-oxygen secondary cell is described comprising a lithium-containing negative electrode; a lithium ion conducting molten salt electrolyte contacting the negative electrode; an oxygen ion conducting solid electrolyte contacting and containing the molten salt electrolyte; and an oxygen redox positive electrode contacting the oxygen ion conducting solid electrolyte.

  4. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01

    into the battery market. Therefore the standard carbonaceouselectric vehicle demand market in our modern life, the

  5. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore »oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  6. Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity

    E-Print Network [OSTI]

    Qu, Hang; Tang, Yufeng; Semenikihin, Oleg; Skorobogatiy, Maksim

    2015-01-01

    A flexible, light weight and high conductivity current collector is the key element that enables fabrication of high performance flexible lithium ion battery. Here we report a thin, light weight and flexible lithium ion battery that uses graphite paper enhanced with a nano-sized metallic layers as the current collector, LiFePO4 and Li4Ti5O12 as the cathode and anode materials, and PE membrane soaked in LiPF6 as a separator. Using thin and flexible graphite paper as a substrate for the current collector instead of a rigid and heavy metal foil enables us to demonstrate a very thin Lithium-Ion Battery into ultra-thin (total thickness including encapsulation layers of less than 250 {\\mu}m) that is also light weight and highly flexible.

  7. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  8. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  9. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect (OSTI)

    Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  10. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  11. Protein-Polymer Nanomaterials for Therapeutic Applications

    E-Print Network [OSTI]

    Matsumoto, Nicholas Masao

    2014-01-01

    of Nanowires for Lithium Ion Battery Electrodes. Scienceof Nanowires for Lithium Ion Battery Electrodes. Science

  12. It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers

    E-Print Network [OSTI]

    window technology research and applied it to a solid-state, thin-film lithium battery. The researchers knew that lithium batteries tended to degrade quickly because the fragile lithium metal anode to protect the battery. "Buried-Anode"Technology Leads to Advanced Lithium Batteries A technology developed

  13. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    SciTech Connect (OSTI)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead–acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling and ensure that economical and sustainable options are available at the end of the batteries' useful life.

  14. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using lead–acid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmore »ensure that economical and sustainable options are available at the end of the batteries' useful life.« less

  15. All-solid-state proton battery using gel polymer electrolyte

    SciTech Connect (OSTI)

    Mishra, Kuldeep, E-mail: mishkuldeep@gmail.com [Department of Applied Science and Humanities, ABES Engineering College, Ghaziabad-201009, India and Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India); Pundir, S. S.; Rai, D. K. [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307 (India)

    2014-04-24

    A proton conducting gel polymer electrolyte system; PMMA+NH{sub 4}SCN+EC/PC, has been prepared. The highest ionic conductivity obtained from the system is 2.5 × 10?4 S cm{sup ?1}. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO{sub 4}?7H{sub 2}O anode and MnO{sub 2} cathode. The open circuit voltage of the battery is 1.4 V and the highest energy density is 5.7 W h kg?1 for low current drain.

  16. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    graphite/NiCoMn chemistry. In general, it is possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (Batteries tested -manufacturers, technology, and characteristics Manufacturer K2 EIG A123 Technology type Iron phosphate Iron phosphate Iron phosphate Iron Phosphate Graphite/

  17. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    Mellor-Crummey, John

    The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have on their respective efficiencies. We will measure the current capacity of the Li-ion battery and the capacitance

  18. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    SciTech Connect (OSTI)

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

  19. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    SciTech Connect (OSTI)

    Wang, Bin; Alhassan, Saeed M.; Pantelides, Sokrates T

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  20. High Performance Silicon Monoxide (SiO) Electrode for Next Generation Lithium Ion Batteries

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2015-02-27

    Berkeley Lab’s High Performance Silicon Monoxide Electrode has a capacity retention of more than 90% after ~500 cycles, which translates into a ~20% improvement over the limited energy density of conventional graphite anode-based lithium-ion batteries, enabling next-generation mobile electronics and electric/plug-in vehicles....

  1. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  2. Doped LiFePO? cathodes for high power density lithium ion batteries

    E-Print Network [OSTI]

    Bloking, Jason T. (Jason Thompson), 1979-

    2003-01-01

    Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

  3. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1995-01-01

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  4. Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries

    E-Print Network [OSTI]

    Limthongkul, Pimpa, 1975-

    2002-01-01

    There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

  5. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  6. Monomer-Capped Tin Metal Nanoparticles for Anode Materials in Lithium Secondary Batteries

    E-Print Network [OSTI]

    Cho, Jaephil

    Monomer-Capped Tin Metal Nanoparticles for Anode Materials in Lithium Secondary Batteries Mijung Graphite can store 372 mAh/g corresponding to LiC6, and tin can store 970 mAh/g corresponding to Li4.4Sn close to graphite. The reason for failure is believed to be the inhomogeneous volume expansion

  7. Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z

    E-Print Network [OSTI]

    Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells Harry J. Ploehn,z Premanand Ramadass model of solvent diffusion describing the growth of solid-electrolyte inter- faces SEIs in Li-ion cells incorporating carbon anodes. The model assumes that a reactive solvent component diffuses through the SEI

  8. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  9. High energy density, thin-lm, rechargeable lithium batteries for marine eld operations

    E-Print Network [OSTI]

    Sadoway, Donald Robert

    High energy density, thin-®lm, rechargeable lithium batteries for marine ®eld operations Biying for marines in ®eld operations. With projected practical energy densities exceeding 300 Wh/kg, low safety dimensions are projected to have energy densities exceeding 350 Wh/kg and power densities exceeding 560 W

  10. A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement

    SciTech Connect (OSTI)

    Yu, XW; Manthiram, A

    2015-01-01

    Liquid-phase polysulfide catholytes are attracting much attention in lithium-sulfur (Li-S) batteries as they provide a facile dispersion and homogeneous distribution of the sulfur active material in the conductive matrix. However, the organic solvents used in lithium-polysulfide (Li-PS) batteries play an important role and have an impact on the physico-chemical characteristics of polysulfides. For instance, significantly higher voltages (similar to 2.7 V) of the S/S-n(2-) (4 <= n <= 8) redox couple are observed in Li-PS batteries with dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents. Accordingly, high power Li-PS batteries are presented here with the catholyte prepared with NMP solvent and operated with the highly reversible sulfur/long-chain polysulfide redox couple. On the other hand, a remarkable cyclability enhancement of the Li-PS battery is observed with the long-chain, ether-based tetraglyme (TEGDME) solvent. The voltage enhancement and the cyclability enhancement of the Li-PS batteries are attributed to the solvation effect, viscosity, and volatility of the solvents. Finally, highly concentrated polysulfide catholytes are successfully synthesized, with which high energy density Li-PS batteries are demonstrated by employing a multi-walled carbon nanotube (MWCNT) fabric electrode.

  11. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  12. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  13. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  14. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Broader source: Energy.gov (indexed) [DOE]

    Offices DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are...

  15. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in Pasadena, CA...

  16. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intermetallic material for the negative electrode that offers a significantly higher volumetric and gravimetric capacity and improves battery stability and safety. PDF icon...

  17. Dendrimer-Encapsulated Ruthenium Nanoparticles as Catalysts for Lithium-O2 Batteries

    SciTech Connect (OSTI)

    Bhattacharya, Priyanka; Nasybulin, Eduard N.; Engelhard, Mark H.; Kovarik, Libor; Bowden, Mark E.; Li, Shari; Gaspar, Daniel J.; Xu, Wu; Zhang, Jiguang

    2014-12-01

    Dendrimer-encapsulated ruthenium nanoparticles (DEN-Ru) have been used as catalysts in lithium-O2 batteries for the first time. Results obtained from UV-vis spectroscopy, electron microscopy and X-ray photoelectron spectroscopy show that the nanoparticles synthesized by the dendrimer template method are ruthenium oxide instead of metallic ruthenium reported earlier by other groups. The DEN-Ru significantly improve the cycling stability of lithium (Li)-O2 batteries with carbon black electrodes and decrease the charging potential even at low catalyst loading. The monodispersity, porosity and large number of surface functionalities of the dendrimer template prevent the aggregation of the ruthenium nanoparticles making their entire surface area available for catalysis. The potential of using DEN-Ru as stand-alone cathode materials for Li-O2 batteries is also explored.

  18. Optimization of Lithium Iron Phosphate Battery Charging and Performance

    E-Print Network [OSTI]

    Misic, Aleksandar

    The goal of this project is to efficiently and safely charge a 5kWh battery pack in 15 minutes. Since the project is still in progress, this report describes experiments on a 56Wh battery. Experiments were performed to ...

  19. Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

  20. Synthesis and Characterization of Polymer Nanocomposites for Energy Applications 

    E-Print Network [OSTI]

    Park, Wonchang

    2011-10-21

    Polymer nanocomposites are used in a variety of applications due to their good mechanical properties. Specifically, better performance of lithium ion batteries and thermal interface material can be obtained by using conductive materials and polymer...