National Library of Energy BETA

Sample records for lithium ion cells

  1. Rechargeable lithium-ion cell

    DOE Patents [OSTI]

    Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  2. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE ...

  3. Quantifying Cell-to-Cell Variations in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Santhanagopalan, S.; White, R. E.

    2012-01-01

    Lithium ion batteries have conventionally been manufactured in small capacities but large volumes for consumer electronics applications. More recently, the industry has seen a surge in the individual cell capacities, as well as the number of cells used to build modules and packs. Reducing cell-to-cell and lot-to-lot variations has been identified as one of the major means to reduce the rejection rate when building the packs as well as to improve pack durability. The tight quality control measures have been passed on from the pack manufactures to the companies building the individual cells and in turn to the components. This paper identifies a quantitative procedure utilizing impedance spectroscopy, a commonly used tool, to determine the effects of material variability on the cell performance, to compare the relative importance of uncertainties in the component properties, and to suggest a rational procedure to set quality control specifications for the various components of a cell, that will reduce cell-to-cell variability, while preventing undue requirements on uniformity that often result in excessive cost of manufacturing but have a limited impact on the cells performance.

  4. Reciprocal Lithium-ion Cell with Novel Lithium-Free Cathode and Pre-Lithiated Carbonaceus Anode

    SciTech Connect (OSTI)

    Ravdel, Boris

    2010-05-19

    Phase I of this program was focused mostly on the testing of pre-lithiated carbonaceous negative-electrode material as the source of the active lithium in lithium-ion cells coupled with "lithium-free" positive-electrode material. The secondary objective was na attempt to determine the ways of developing such as inexpense, stable, and environmentally benign "lithium-free" high-energy cathode material.

  5. Electrochemistry of KC{sub 8} in lithium-containing electrolytes and its use in lithium-ion cells

    SciTech Connect (OSTI)

    Tossici, R.; Berrettoni, M.; Rosolen, M.; Marassi, R.; Scrosati, B.

    1997-01-01

    The electrochemistry of KC{sub 8} in a lithium-containing ethylene carbonate-dimethylcarbonate electrolyte has been studied. The results show that upon oxidation KC{sub 8} irreversibly releases potassium ions and that during the following cathodic cycle, the residual graphite intercalates lithium reversibly and with fast rate up to a LiC{sub 6} composition. The results also show that a KC{sub 8} electrode can be used in lithium-ion cells in combination with partially lithiated or even with lithium-free cathodes. The maximum capacities (referred to the anode) that may be achieved are 372 and 279 mAh/g, respectively.

  6. Rate dependence of swelling in lithium-ion cells

    SciTech Connect (OSTI)

    Oh, KY; Siegel, JB; Secondo, L; Kim, SU; Samad, NA; Qin, JW; Anderson, D; Garikipati, K; Knobloch, A; Epureanu, BI; Monroe, CW; Stefanopoulou, A

    2014-12-01

    Swelling of a commercial 5 Ah lithium-ion cell with a nickel/manganese/cobalt-oxide cathode is investigated as a function of the charge state and the charge/discharge rate. In combination with sensitive displacement measurements, knowledge of the electrode configuration within this prismatic cell's interior allows macroscopic deformations of the casing to be correlated to electrochemical and mechanical transformations in individual anode/separator/cathode layers. Thermal expansion and interior charge state are both found to cause significant swelling. At low rates, where thermal expansion is negligible, the electrode sandwich dilates by as much as 1.5% as the charge state swings from 0% to 100% because of lithium-ion intercalation. At high rates a comparably large residual swelling was observed at the end of discharge. Thermal expansion caused by joule heating at high discharge rate results in battery swelling. The changes in displacement with respect to capacity at low rate correlate well with the potential changes known to accompany phase transitions in the electrode materials. Although the potential response changes minimally with the C-rate, the extent of swelling varies significantly, suggesting that measurements of swelling may provide a sensitive gauge for characterizing dynamic operating states. (C) 2014 Elsevier B.V. All rights reserved.

  7. Failure propagation in multi-cell lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  8. Failure propagation in multi-cell lithium ion batteries

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; Spangler, Scott W.

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module. Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.

  9. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect (OSTI)

    Babinec, Susan

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  10. Quantification of Lithium-ion Cell Thermal Runaway Energetics

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer; Langendorf, Jill Louise

    2016-01-01

    Much of what is known about lithium-ion cell thermal runaway energetics has been measured and extrapolated from data acquired on relatively small cells (< 3 Ah). This work is aimed at understanding the effects of cell size on thermal runaway energetics on cells from 3 to 50 Ah of both LiFePO4 (LFP) and LiNi0.80Co0.15Al0.05O2 (NCA) chemistries. Results show that for both LFP and NCA cells, the normalized heating rate (W/Ah) increases roughly linearly for cells from 3-38 Ah while the normalized total heat released (kJ/Ah) is relatively constant over that cell size range. The magnitude of the normalized heating rate is on the order of 2x greater for NCA relative to LFP chemistries for 2-3 Ah cells, while that difference is on the order of 10x for 30-40 Ah cells. The total normalized heat release is ~ 15-20% greater for NCA relative to LFP cells across the entire size range studied 3-38 Ah.

  11. Internal Short Circuits in Lithium-Ion Cells for PHEVs

    SciTech Connect (OSTI)

    Sriramulu, Suresh; Stringfellow, Richard

    2013-05-25

    Development of Plug-in Hybrid Electric Vehicles (PHEVs) has recently become a high national priority because of their potential to enable significantly reduced petroleum consumption by the domestic transportation sector in the relatively near term. Lithium-ion (Li-ion) batteries are a critical enabling technology for PHEVs. Among battery technologies with suitable operating characteristics for use in vehicles, Li-ion batteries offer the best combination of energy, power, life and cost. Consequently, worldwide, leading corporations and government agencies are supporting the development of Li-ion batteries for PHEVs, as well as the full spectrum of vehicular applications ranging from mild hybrid to all-electric. In this project, using a combination of well-defined experiments, custom designed cells and simulations, we have improved the understanding of the process by which a Li-ion cell that develops an internal short progresses to thermal runaway. Using a validated model for thermal runaway, we have explored the influence of environmental factors and cell design on the propensity for thermal runaway in full-sized PHEV cells. We have also gained important perspectives about internal short development and progression; specifically that initial internal shorts may be augmented by secondary shorts related to separator melting. Even though the nature of these shorts is very stochastic, we have shown the critical and insufficiently appreciated role of heat transfer in influencing whether a developing internal short results in a thermal runaway. This work should lead to enhanced perspectives on separator design, the role of active materials and especially cathode materials with respect to safety and the design of automotive cooling systems to enhance battery safety in PHEVs.

  12. Multi-Dimensional Electrochemical-Thermal Coupled Model of Large Format Cylindrical Lithium Ion Cells (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Smith, K.

    2007-10-01

    Presentation on 3-D modeling of lithium-ion cells used in plug-in hyybrid electric vehicle batteries. 3-D models provide better understanding of cell design, operation, and management.

  13. Rate-based degradation modeling of lithium-ion cells

    SciTech Connect (OSTI)

    E.V. Thomas; I. Bloom; J.P. Christophersen; V.S. Battaglia

    2012-05-01

    Accelerated degradation testing is commonly used as the basis to characterize battery cell performance over a range of stress conditions (e.g., temperatures). Performance is measured by some response that is assumed to be related to the state of health of the cell (e.g., discharge resistance). Often, the ultimate goal of such testing is to predict cell life at some reference stress condition, where cell life is defined to be the point in time where performance has degraded to some critical level. These predictions are based on a degradation model that expresses the expected performance level versus the time and conditions under which a cell has been aged. Usually, the degradation model relates the accumulated degradation to the time at a constant stress level. The purpose of this article is to present an alternative framework for constructing a degradation model that focuses on the degradation rate rather than the accumulated degradation. One benefit of this alternative approach is that prediction of cell life is greatly facilitated in situations where the temperature exposure is not isothermal. This alternative modeling framework is illustrated via a family of rate-based models and experimental data acquired during calendar-life testing of high-power lithium-ion cells.

  14. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect (OSTI)

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  15. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  16. Modeling Lithium Ion Battery Safety: Venting of Pouch Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Santhanagopalan, Shriram.; Yang, Chuanbo.; Pesaran, Ahmad

    2013-07-01

    This report documents the successful completion of the NREL July milestone entitled “Modeling Lithium-Ion Battery Safety - Complete Case-Studies on Pouch Cell Venting,” as part of the 2013 Vehicle Technologies Annual Operating Plan with the U.S. Department of Energy (DOE). This work aims to bridge the gap between materials modeling, usually carried out at the sub-continuum scale, and the

  17. Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms.

    SciTech Connect (OSTI)

    Abraham, D. P.; Dees, D. W.; Knuth, J.; Reynolds, E.; Gerald, R.; Hyung,Y.-E.; Belharouak, I.; Stoll, M.; Sammann, E.; MacLaren, S.; Haasch, R.; Twesten,R.; Sardela, M.; Battaglia, V.; Cairns, E.; Kerr, J.; Kerlau, M.; Kostecki, R.; Lei,J.; McCarthy, K.; McLarnon, F.; Reimer, J.; Richardson, T.; Ross, P.; Sloop,S.; Song, X.; Zhuang, V.; Balasubramanian, M.; McBreen, J.; Chung, K.-Y.; Yang, X.Q.; Yoon, W.-S.; Norin, L.

    2005-07-15

    The Advanced Technology Development (ATD) Program is a multilaboratory effort to assist industrial developers of high-power lithium-ion batteries overcome the barriers of cost, calendar life, abuse tolerance, and low-temperature performance so that this technology may be rendered practical for use in hybrid electric vehicles (HEVs). Included in the ATD Program is a comprehensive diagnostics effort conducted by researchers at Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Lawrence Berkeley National Laboratory (LBNL). The goals of this effort are to identify and characterize processes that limit lithium-ion battery performance and calendar life, and ultimately to describe the specific mechanisms that cause performance degradation. This report is a compilation of the diagnostics effort conducted since spring 2001 to characterize Generation 2 ATD cells and cell components. The report is divided into a main body and appendices. Information on the diagnostic approach, details from individual diagnostic techniques, and details on the phenomenological model used to link the diagnostic data to the loss of 18650-cell electrochemical performance are included in the appendices. The main body of the report includes an overview of the 18650-cell test data, summarizes diagnostic data and modeling information contained in the appendices, and provides an assessment of the various mechanisms that have been postulated to explain performance degradation of the 18650 cells during accelerated aging. This report is intended to serve as a ready reference on ATD Generation 2 18650-cell performance and provide information on the tools for diagnostic examination and relevance of the acquired data. A comprehensive account of our experimental procedures and resulting data may be obtained by consulting the various references listed in the text. We hope that this report will serve as a roadmap for the diagnostic analyses of other lithium-ion technologies being

  18. Lithium Source For High Performance Li-ion Cells

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Lithium Source For High Performance Li-ion Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Instability of Polyvinylidene Fluoride-Based Polymeric Binder in Lithium-Ion Cells: Final Report

    SciTech Connect (OSTI)

    Garcia, M.; Nagasubramanian, G.; Tallant, D.R.; Roth, E.P.

    1999-05-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 degree C involving the solid electrolyte interface (SEI) layer and the LiPF(6) salt in the electrolyte (EC-PC:DEC/IM LiPF(6)). These reactions could account for the thermal runaway observed in these cells beginning at 100 degree C. Exothermic reactions were also observed in the 200 degree C to 300 degree C region between the intercalated lithium anodes, the LiPF(6) salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 degree C to 400 degree C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 degree C and increased with the state of charge (decreasing Li content). The stability of the PVDF binder as a function of electrochemical cycling was studied using FTIR. The infrared spectra from the extracts of both electrodes indicate that PVDF is chemically modified by exposure to the lithium cell electrolyte (as well as electrochemical cycling) in conjunction with NMP extraction. Preconditioning of PVDF to dehydrohalogenation, which may be occurring by reaction with LiPf(6), makes the PVDF susceptible to attack by a range of nucleophiles.

  1. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  2. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    Energy Science and Technology Software Center (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model hasmore » to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.« less

  3. Electrochemical Thermal Network Model for Multi-Cell Lithium Ion Battery

    SciTech Connect (OSTI)

    2009-02-28

    Increasing the numbers and size of cells in a battery pack complicates electrical and thermal control of the system. In addition to keeping a battery pack in the optimal temperature range, maintaining temperature uniformity among all cells in a pack is important to prolong life and enhance safety. Electrical, electrochemical, and thermal responses of a lithium ion battery are closely coupled through macroscopic design factors of the cells and module or pack. The model has to resolve complex interaction between cell characteristics, pack design, and load conditions. Safe and durable battery pack design requires a battery thermal model that can be coupled with a battery performance more and/or safety model with good accuracy and simulation time. The model is proposed to be used for various technical purposes: Design optimization for safety and/or performance, On-board control.

  4. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations

    Broader source: Energy.gov [DOE]

    Manufacturing capacity for lithium-ion batteries (LIBs)—which power many consumer electronics and are increasingly used to power electric vehicles—is heavily concentrated in East Asia. To...

  5. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Broader source: Energy.gov (indexed) [DOE]

    Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Diagnostic studies on Li-battery cells and cell components Cell Fabrication Facility Team Production and ...

  6. Simulation of Electrolyte Composition Effects on High Energy Lithium-Ion Cells

    SciTech Connect (OSTI)

    K. Gering

    2014-09-01

    An important feature of the DUALFOIL model for simulation of lithium-ion cells [1,2] is rigorous accounting for non-ideal electrolyte properties. Unfortunately, data are available on only a few electrolytes [3,4]. However, K. Gering has developed a model for estimation of electrolyte properties [5] and recently generated complete property sets (density, conductivity, activity coefficient, diffusivity, transport number) as a function of temperature and salt concentration. Here we use these properties in an enhanced version of the DUALFOIL model called DISTNP, available in Battery Design Studio [6], to examine the effect of different electrolytes on cell performance. Specifically, the behavior of a high energy LiCoO2/graphite 18650-size cell is simulated. The ability of Battery Design Studio to si

  7. characterizing lithium-ion electrode microstructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterizing lithium-ion electrode microstructures - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers characterizing lithium-ion electrode ...

  8. High Conductivity Single-ion Cross-linked Polymers for Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Conductivity Single-ion Cross-linked Polymers for Lithium Batteries and Fuel Cells ... for use as membranes in lithium batteries, fuel cells, and electrochromic windows. ...

  9. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  10. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  11. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  12. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  13. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  14. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ion battery found in electronics like cell phones uses liquid electrolytes ...

  15. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate materials & ...

  16. Lithium formate ion clusters formation during electrospray ionization...

    Office of Scientific and Technical Information (OSTI)

    Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific ... LITHIUM; LITHIUM 3; LITHIUM IONS; MASS SPECTROSCOPY; MONOMERS; STABILITY; SYMMETRY Word ...

  17. Novel Lithium Ion Anode Structures: Overview of New DOE BATT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Anode Structures: Overview of New DOE BATT Anode Projects Novel Lithium Ion ... Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes

  18. Lithium Ion Conducting Ionic Electrolytes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium Ion Conducting ... electrolytes which combine lithium salts with high molecular weight anionic polymers. ...

  19. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Technology - High Voltage Electrolyte | Department of Energy Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion battery technology - high

  20. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  1. Evaluation Study for Large Prismatic Lithium-Ion Cell Designs Using Multi-Scale Multi-Dimensional Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2009-05-01

    Addresses battery requirements for electric vehicles using a model that evaluates physical-chemical processes in lithium-ion batteries, from atomic variations to vehicle interface controls.

  2. Electrochemical Lithium Ion Battery Performance Model

    Energy Science and Technology Software Center (OSTI)

    2007-03-29

    The Electrochemical Lithium Ion Battery Performance Model allows for the computer prediction of the basic thermal, electrical, and electrochemical performance of a lithium ion cell with simplified geometry. The model solves governing equations describing the movement of lithium ions within and between the negative and positive electrodes. The governing equations were first formulated by Fuller, Doyle, and Newman and published in J. Electrochemical Society in 1994. The present model solves the partial differential equations governingmore » charge transfer kinetics and charge, species, heat transports in a computationally-efficient manner using the finite volume method, with special consideration given for solving the model under conditions of applied current, voltage, power, and load resistance.« less

  3. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  4. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  5. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0ion with at least one ion being Mn or Ni, and where M' is one or more tetravalent ion. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  6. Nanocomposite Materials for Lithium Ion Batteries

    SciTech Connect (OSTI)

    2011-05-31

    Fact sheet describing development and application of processing and process control for nanocomposite materials for lithium ion batteries

  7. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  8. Lithium metal oxide electrodes for lithium cells and batteries...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium metal oxide electrodes for lithium cells and batteries A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in ...

  9. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

  10. Lithium ion conducting electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Liu, C.

    1996-04-09

    A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

  11. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Long, Dirk; Ireland, John; Pesaran, Ahmad; Darcy, Eric; Shoesmith, Mark; McCarthy, Ben

    2013-11-14

    NREL has developed a device to test one of the most challenging failure mechanisms of lithium-ion (Li-ion) batteries -- a battery internal short circuit. Many members of the technical community believe that this type of failure is caused by a latent flaw that results in a short circuit between electrodes during use. As electric car manufacturers turn to Li-ion batteries for energy storage, solving the short circuit problem becomes more important. To date, no reliable and practical method exists to create on-demand internal shorts in Li-ion cells that produce a response that is relevant to the ones produced by field failures. NREL and NASA have worked to establish an improved ISC cell-level test method that simulates an emergent internal short circuit, is capable of triggering the four types of cell internal shorts, and produces consistent and reproducible results. Internal short circuit device design is small, low-profile and implantable into Li-ion cells, preferably during assembly. The key component is an electrolyte-compatible phase change material (PCM). The ISC is triggered by heating the cell above PCM melting temperature (presently 40 degrees C – 60 degrees C). In laboratory testing, the activated device can handle currents in excess of 300 A to simulate hard shorts (< 2 mohms). Phase change from non-conducting to conducting has been 100% successful during trigger tests.

  12. Optimization of Acetylene Black Conductive Additive andPolyvinylidene Difluoride Composition for High Power RechargeableLithium-Ion Cells

    SciTech Connect (OSTI)

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-07-01

    Fundamental electrochemical methods were applied to study the effect of the acetylene black (AB) and the polyvinylidene difluoride (PVDF) polymer binder on the performance of high-power designed rechargeable lithium ion cells. A systematic study of the AB/PVDF long-range electronic conductivity at different weight ratios is performed using four-probe direct current tests and the results reported. There is a wide range of AB/PVDF ratios that satisfy the long-range electronic conductivity requirement of the lithium-ion cathode electrode; however, a significant cell power performance improvement is observed at small AB/PVDF composition ratios that are far from the long-range conductivity optimum of 1 to 1.25. Electrochemical impedance spectroscopy (EIS) tests indicate that the interfacial impedance decreases significantly with increase in binder content. The hybrid power pulse characterization results agree with the EIS tests and also show improvement for cells with a high PVDF content. The AB to PVDF composition plays a significant role in the interfacial resistance. We believe the higher binder contents lead to a more cohesive conductive carbon particle network that results in better overall all local electronic conductivity on the active material surface and hence reduced charge transfer impedance.

  13. An Investigation of the Effect of Graphite Degradation on the Irreversible Capacity in Lithium-ion Cells

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Hardwick, Laurence J.; Marcinek, Marek; Beer, Leanne; Kerr, John B.; Kostecki, Robert

    2008-03-03

    The effect of surface structural damage on graphitic anodes, commonly observed in tested Li-ion cells, was investigated. Similar surface structural disorder was artificially induced in Mag-10 synthetic graphite anodes using argon-ion sputtering. Raman microscopy, scanning electron microscopy (SEM) and Brunauer Emmett Teller (BET) measurements confirmed that Ar-ion sputtered Mag-10 electrodes display similar degree of surface degradation as the anodes from tested Li-ion cells. Artificially modified Mag-10 anodes showed double the irreversible charge capacity during the first formation cycle, compared to fresh un-altered anodes. Impedance spectroscopy and Fourier transform infrared (FTIR) spectroscopy on surface modified graphite anodes indicated the formation of a thicker and slightly more resistive SEI layer. Gas chromatography/mass spectroscopy (GC/MS) analysis of solvent extracts from the electrodes detected the presence of new compounds with M{sub w} on the order of 1600 g mol{sup -1} for the surface modified electrode with no evidence of elevated M{sub w} species for the unmodified electrode. The structural disorder induced in the graphite during long-term cycling maybe responsible for the slow and continuous SEI layer reformation, and consequently, the loss of reversible capacity due to the shift of lithium inventory in cycled Li-ion cells.

  14. Processes for making dense, spherical active materials for lithium-ion cells

    DOE Patents [OSTI]

    Kang, Sun-Ho; Amine, Khalil

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  15. Computer-Aided Optimization of Macroscopic Design Factors for Lithium-Ion Cell Performance and Life (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G. H.; Pesaran, A.

    2010-04-01

    Electric-drive vehicles enabled by power- and energy-dense batteries promise to improve vehicle efficiency and help reduce society's dependence on fossil fuels. Next generation plug-in hybrid vehicles and battery electric vehicles may also enable vehicles to be powered by electricity generated from clean, renewable resources; however, to increase the commercial viability of such vehicles, the cost, performance and life of the vehicles batteries must be further improved. This work illustrates a virtual design process to optimize the performance and life of large-format lithium ion batteries. Beginning with material-level kinetic and transport properties, the performance and life of multiple large-format cell designs are evaluated, demonstrating the impact of macroscopic design parameters such as foil thickness, tab location, and cell size and shape under various cycling conditions. Challenges for computer-aided engineering of large-format battery cells, such as competing requirements and objectives, are discussed.

  16. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  17. Protective shells may boost silicon lithium-ion batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective shells may boost silicon lithium-ion batteries By Sarah Schlieder * August 5, 2015 Tweet EmailPrint Imagine a cell a phone that charges in less than an hour and lasts...

  18. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  19. Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries | Argonne National Laboratory Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a negative electrode for nonaqueous lithium electrochemical cells and batteries Enhances stability at a reduced cost. Materials operate by lithium insertion, metal displacement reactions, or both. Materials have higher volumetric and gravimetric capacity, and improve battery

  20. Tuning chargedischarge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new unit cell breathing mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during chargedischarge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metalmetal bonding is used to explain such abnormal behaviour and a generalized hypothesis is developed. The expansion of MM bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking MO as controlling factor in normal materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  1. Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung-Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao-Qing

    2014-12-18

    For LiMO2 (M=Co, Ni, Mn) cathode materials, lattice parameters, a(b), contract during charge. Here we report such changes in opposite directions for lithium molybdenum trioxide (Li2MoO3). A ‘unit cell breathing’ mechanism is proposed based on crystal and electronic structural changes of transition metal oxides during charge-discharge. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of the metal-metal bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking metal-oxygen bond as controlling factor in ‘normal’ materials. The cation mixing caused by migration of molybdenum ions at higher oxidation state provides the benefits of reducing the c expansion range in the early stage of charging and suppressing the structure collapse at high voltage charge. These results may open a new strategy for designing layered cathode materials for high energy density lithium-ion batteries.

  2. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more » The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  3. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  4. Advanced Lithium Ion Battery Technologies - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Advanced Lithium Ion Battery Technologies Lawrence ... improved battery life when used in the fabrication of negative silicon electrodes. ...

  5. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  6. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    SciTech Connect (OSTI)

    Xavier, MA; Trimboli, MS

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.

  7. Batteries - Beyond Lithium Ion Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g.

  8. Preparation of lithium-ion battery anodes using lignin (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Preparation of lithium-ion battery anodes using lignin Citation Details In-Document Search Title: Preparation of lithium-ion battery anodes using lignin Authors:...

  9. Novel Electrolytes for Lithium Ion Batteries Lucht, Brett L 25...

    Office of Scientific and Technical Information (OSTI)

    Electrolytes for Lithium Ion Batteries Lucht, Brett L 25 ENERGY STORAGE We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have...

  10. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  11. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  12. Lithium ion batteries with titania/graphene anodes (Patent) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium ion batteries with titaniagraphene anodes Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to ...

  13. Functional electrolyte for lithium-ion batteries (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Functional electrolyte for lithium-ion batteries Title: Functional electrolyte for lithium-ion batteries Functional electrolyte solvents include ...

  14. Methods for making anodes for lithium ion batteries (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Methods for making anodes for lithium ion batteries Title: Methods for making anodes for lithium ion batteries Methods for making composite anodes, ...

  15. Novel Electrolytes for Lithium Ion Batteries (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Technical Report: Novel Electrolytes for Lithium Ion Batteries Citation Details In-Document Search Title: Novel Electrolytes for Lithium Ion ...

  16. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  17. Correlation of Lithium-Ion Battery Performance with Structural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlation of Lithium-Ion Battery Performance with Structural and Chemical ... Specifically, the surfaces of lithium-ion battery electrodes evolve simultaneously with ...

  18. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    Performance Lithium-ion Battery Anodes Vehicle Technologies Office Merit Review 2014: Wiring Up Silicon Nanostructures for High Energy Lithium-Ion Battery Anodes Vehicle ...

  19. Beyond Lithium-Ion Batteries - Joint Center for Energy Storage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Batteries beyondlithiumionbatterisaudio JCESR Director George Crabtree and Deputy Director Jeff Chamberlain discuss how JCESR will go beyond lithium ion batteries ...

  20. Nanocomposite Carbon/Tin Anodes for Lithium Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocomposite CarbonTin Anodes for Lithium Ion Batteries Lawrence Berkeley National ... Applications and Industries Anodes for lithium ion batteries More InformationFOR MORE ...

  1. Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Electrolyte Enables Stable Graphite Anodes in Lithium Ion Batteries Lawrence ... Coulombic Efficiency for Lithium Ion Batteries," Journal of the Electrochemical ...

  2. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National ... Researchers have developed a new technology to advance the life of lithium-ion batteries. ...

  3. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011

  4. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2012

  5. Lithium Ion Electrode Production NDE and QC Considerations |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Electrode Production NDE and QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, ...

  6. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries ...

  7. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  8. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  9. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; Howard, Jason N.; Hallmark, Jerald A.

    2016-01-01

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicatemore » that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.« less

  10. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

    SciTech Connect (OSTI)

    Wang, Hsin; Simunovic, Srdjan; Maleki, Hosein; Howard, Jason N.; Hallmark, Jerald A.

    2016-01-01

    The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25", 0.5", 1", 2" and 3" diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicate that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. As a result, the short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators.

  11. Performance and degradation evaluation of five different commercial lithium-ion cells

    SciTech Connect (OSTI)

    Striebel, Kathryn A.; Shim, Joongpyo

    2004-04-20

    The initial performance of five different types of Li-ion rechargeable batteries, from Quallion Corp, UltraLife Battery and Toshiba, was measured and compared. Cell characterization included variable-rate constant-current cycling, various USDOE pulse-test protocols and full-spectrum electrochemical impedance spectroscopy. Changes in impedance and capacity were monitored during electrochemical cycling under various conditions, including constant-current cycling over 100 percent DOD at a range of temperature and pulse profile cycling over a very narrow range of DOD at room temperature. All cells were found to maintain more than 80 percent of their rated capacity for more than 400 constant current 100 percent DOD cycles. The power fade (or impedance rise) of the cells varied considerably. New methods for interpreting the pulse resistance data were evaluated for their usefulness in interpreting performance mechanism as a function of test protocol and cell design.

  12. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  13. Lithium ion batteries based on nanoporous silicon

    SciTech Connect (OSTI)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  14. Materials issues in lithium ion rechargeable battery technology

    SciTech Connect (OSTI)

    Doughty, D.H.

    1995-07-01

    Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

  15. Lithium-ion batteries with intrinsic pulse overcharge protection...

    Office of Scientific and Technical Information (OSTI)

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries ...

  16. Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Lithium-Ion Batteries Predictive computer models for lithium-ion battery performance under standard and potentially abusive conditions National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Design. Build. Test. Break. Repeat. Developing batteries is an expensive and time-intensive process. Testing costs the

  17. Layered electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Vaughey, John T.; Kahaian, Arthur J.; Kim, Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  18. Lithium ion batteries and their manufacturing challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  19. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  20. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wan, Shun; Jiang, Xueguang; Guo, Bingkun; Dai, Sheng; Goodenough, John B.; Sun, Xiao-Guang

    2015-04-27

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  1. Dow Kokam Lithium Ion Battery Production Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt006_es_pham_2011_p.pdf (566.72 KB) More Documents & Publications Dow/Kokam Cell/Battery Production Facilities Dow Kokam Lithium Ion Battery

  2. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide

    Office of Environmental Management (EM)

    Operating Temperature Range | Department of Energy Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es026_smart_2013_p.pdf (1.73 MB) More Documents & Publications Electrolytes for Use in High Energy Lithium-Ion Batteries with

  3. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  4. Materials and Processing for Lithium-Ion batteries

    SciTech Connect (OSTI)

    Daniel, Claus

    2008-01-01

    Lithium ion battery technology is projected to be the leapfrog technology for the electrification of the drivetrain and to provide stationary storage solutions to enable the effective use of renewable energy sources. The technology is already in use for low-power applications such as consumer electronics and power tools. Extensive research and development has enhanced the technology to a stage where it seems very likely that safe and reliable lithium ion batteries will soon be on board hybrid electric and electric vehicles and connected to solar cells and windmills. However, safety of the technology is still a concern, service life is not yet sufficient, and costs are too high. This paper summarizes the state of the art of lithium ion battery technology for nonexperts. It lists materials and processing for batteries and summarizes the costs associated with them. This paper should foster an overall understanding of materials and processing and the need to overcome the remaining barriers for a successful market introduction.

  5. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C. Austen; Xu, Kang; Liu, Changle

    1996-01-01

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

  6. Lithium ion conducting ionic electrolytes

    DOE Patents [OSTI]

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  7. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good...

  8. Nanostructured Anodes for Lithium-Ion Batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Find More Like This Return to Search Nanostructured Anodes for Lithium-Ion Batteries New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold...

  9. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in ... 8.0.1 show a lower "lowest unoccupied molecular orbital" for the new Berkeley Lab ...

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries ... In a lithium-ion battery, charge moves from the cathode to the ... characterization, and simulation in a novel approach to ...

  11. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries ... In a lithium-ion battery, charge moves from the cathode to the ... characterization, and simulation in a novel approach to ...

  12. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion ... In a lithium-ion battery, charge moves from the cathode to the ... characterization, and simulation in a novel approach to ...

  13. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good ...

  14. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  15. Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+H+ Exchange in Aqueous Solutions Title: Excellent Stability of a Lithium-Ion-Conducting Solid ...

  16. Solid-state Inorganic Lithium-Ion Conductors - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Solid-state Inorganic Lithium-Ion Conductors ... milling system for preparation of electrodes for use in a solid state lithium-ion battery. ...

  17. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt020_es_coy_2012_p.pdf (1.72 MB) More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  18. Mitigating Performance Degradation of High-Energy Lithium-Ion Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Novel Phosphazene Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Design of Safer High-Energy Density Materials for Lithium-Ion Cells

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500Wh/L

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Novel Phosphazene Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Novel Phosphazene Compounds for Enhancing Electrolyte Stability and Safety of Lithium-ion Cells

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Implantation, Activation, Characterization and Prevention/Mitigation of Internal Short Circuits in Lithium-Ion Cells

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect (OSTI)

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  7. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and ...

  8. Solid lithium ion conducting electrolytes and methods of preparation

    SciTech Connect (OSTI)

    Narula, Chaitanya K.; Daniel, Claus

    2015-11-19

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  9. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  10. Air breathing lithium power cells

    DOE Patents [OSTI]

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  11. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal Models for Battery Crush; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram; Sahraei, Elham; Wierzbiki, Tom

    2015-06-15

    Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. The challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.

  12. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M.; Rohan, James F.; Foo, Conrad C.; Pasquariello, David M.

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  13. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  14. High Power Performance Lithium Ion Battery - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search High Power Performance Lithium Ion Battery Lawrence Berkeley National Laboratory Contact LBL About This Technology Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Hybrid Pulse Power Characterization Test (HPPC) results for 3 coin cells of various AB:PVDF ratios. Technology Marketing SummaryGao Liu and colleagues at Berkeley Lab have

  15. Solid lithium-ion electrolyte (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    uses in lithium batteries, electrochromic devices and other electrochemical applications. ... conductivity; suitable; lithium; batteries; electrochromic; devices; ...

  16. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media - Joint Center for Energy Storage Research October 24, 2014, Research Highlights Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification using Mercury Amalgams as In Situ Electrochemical Probes in Nonaqueous Media Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion transfer processes at an electroactive surface. Detection of Li+, Na+ and K+ is possible. Scientific Achievement

  17. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter

    SciTech Connect (OSTI)

    Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL

    2015-03-15

    This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.

  18. EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Report | Department of Energy Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree OHare, Chicago, IL. report_out-next-generation_li-ion_b.pdf (136.48 KB) More Documents & Publications EV Everywhere Batteries Workshop - Beyond Lithium Ion

  19. Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries

    Energy Science and Technology Software Center (OSTI)

    2006-06-29

    Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less

  20. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  1. High-discharge-rate lithium ion battery

    DOE Patents [OSTI]

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  2. Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-ion...

  3. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald ... of mul,ple cells, controls, thermal management, and physical protec,on. 19 Regional ...

  4. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  5. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes

    SciTech Connect (OSTI)

    Arora, P.; Doyle, M.; White, R.E.

    1999-10-01

    Two major issues facing lithium-ion battery technology are safety and capacity grade during cycling. A significant amount of work has been done to improve the cycle life and to reduce the safety problems associated with these cells. This includes newer and better electrode materials, lower-temperature shutdown separators, nonflammable or self-extinguishing electrolytes, and improved cell designs. The goal of this work is to predict the conditions for the lithium deposition overcharge reaction on the negative electrode (graphite and coke) and to investigate the effect of various operating conditions, cell designs and charging protocols on the lithium deposition side reaction. The processes that lead to capacity fading affect severely the cycle life and rate behavior of lithium-ion cells. One such process is the overcharge of the negative electrode causing lithium deposition, which can lead to capacity losses including a loss of active lithium and electrolyte and represents a potential safety hazard. A mathematical model is presented to predict lithium deposition on the negative electrode under a variety of operating conditions. The Li{sub x}C{sub 6} {vert{underscore}bar} 1 M LiPF{sub 6}, 2:1 ethylene carbonate/dimethyl carbonate, poly(vinylidene fluoride-hexafluoropropylene) {vert{underscore}bar} LiMn{sub 2}O{sub 4} cell is simulated to investigate the influence of lithium deposition on the charging behavior of intercalation electrodes. The model is used to study the effect of key design parameters (particle size, electrode thickness, and mass ratio) on the lithium deposition overcharge reaction. The model predictions are compared for coke and graphite-based negative electrodes. The cycling behavior of these cells is simulated before and after overcharge to understand the hazards and capacity fade problems, inherent in these cells, can be minimized.

  6. Imaging Heterogeneous Ion Transfer: Lithium Ion Quantification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantitative micro- and nano- probes were used for the in situ imaging of alkaline ion ... Implementation of technique onto a 120 nm nano-Hg electrode shows promising for battery ...

  7. Lithium Ion Electrode Production NDE and QC Considerations | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lithium Ion Electrode Production NDE and QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, Oak Ridge National Laboratory, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. Lithium Ion Electrode Production NDE and QC Considerations (1.1 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Roll-to-Roll

  8. Overcharge Protection Prevents Exploding Lithium Ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Overcharge Protection Prevents Exploding Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab scientists Guoying Chen and Thomas J. Richardson have invented a new type of separator membrane that prevents dangerous overcharge and overdischarge conditions in rechargeable lithium-ion batteries, i.e., exploding lithium ion batteries. This low cost separator, with electroactive polymers

  9. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    for Linking Ion Solvation and Lithium Battery Electrolyte Properties Henderson, Wesley 25 ENERGY STORAGE battery, electrolyte, solvation, ionic association battery, electrolyte,...

  10. Lithium Ion Solvation and Intercalation at Anode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Interface from First Principles Citation Details In-Document Search Title: Lithium Ion Solvation and Intercalation at Anode-Electrolyte Interface from First ...

  11. Analysis of Molecular Clusters in Simulations of Lithium-Ion...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Analysis of Molecular Clusters in Simulations of Lithium-Ion Battery Electrolytes. Citation Details In-Document Search Title: Analysis of Molecular Clusters in ...

  12. Student Winners Announced in Solar, Hydrogen and Lithium Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three lithium-ion design trophies based on technology, ... Schools, Greeley, "Battery 1," second place; and The ... Academy, "Tommy the Tesla," first place; Lincoln ...

  13. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon...

    Office of Scientific and Technical Information (OSTI)

    Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current ...

  14. Methods for making anodes for lithium ion batteries (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Methods for making anodes for lithium ion batteries Title: ... A laminated structure may be prepared from the tape and sintered to produce a porous ...

  15. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... this composite anode exhibits the best performance so far in lithium-ion batteries, while retaining an economical cost and compatibility with existing manufacturing ...

  16. Lithium Ion Solvation and Intercalation at Anode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Intercalation at Anode-Electrolyte Interface from First Principles Authors: Ong, M T ; Lordi, V ; Draeger, E W ; Pask, J E Publication Date: ...

  17. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Authors: Ong, M T ; Verners, O ; Draeger, E ...

  18. Nanoscale Imaging of Lithium Ion Distribution During In Situ...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Nanoscale Imaging of Lithium Ion Distribution ... energy storage (including batteries and capacitors), hydrogen and fuel ...

  19. Approaches to Evaluating and Improving Lithium-Ion Battery Safety...

    Office of Scientific and Technical Information (OSTI)

    Conference: Approaches to Evaluating and Improving Lithium-Ion Battery Safety. Citation ... presentation at the Advanced Automotive Batteries Conference held February 4-8, 2013 in ...

  20. Additional capacities seen in metal oxide lithium-ion battery...

    Office of Scientific and Technical Information (OSTI)

    Additional capacities seen in metal oxide lithium-ion battery electrodes Citation Details ... Language: English Subject: energy storage (including batteries and capacitors), defects, ...

  1. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast ...

  2. How Voltage Drops are Manifested by Lithium Ion Configurations...

    Office of Scientific and Technical Information (OSTI)

    Title: How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in ... Subject: bio-inspired, energy storage (including batteries and capacitors), defects, ...

  3. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab

  4. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Environmental Management (EM)

    EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 ...

  5. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic ...

  6. Electrolytes for Lithium Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Electrolytes for Lithium Ion Batteries DOE Grant Recipients Arizona ... the need for high-output, long-lasting rechargeable batteries has grown tremendously. ...

  7. Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ceramic-Metal Composites for Electrodes of Lithium Ion Batteries Lawrence Berkeley ... it desirable for use in rechargeable batteries, but its tendency to form dendrites has ...

  8. Flexible Thin Film Solid State Lithium Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are ...

  9. CUBICON Materials that Outperform Lithium-Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CUBICON Materials that Outperform Lithium-Ion Batteries Brookhaven National Laboratory ... Technology Marketing Summary The demand for batteries to meet high-power and high-energy ...

  10. Surface Modification Agents for Lithium-Ion Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: ... and security of batteries Substantially reduces power fade and potential for explosions. ...

  11. Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li+H+ Exchange in Aqueous Solutions Citation Details In-Document Search Title: Excellent ...

  12. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress...

  13. Researchers Create Transparent Lithium-Ion Battery - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford and SLAC National Accelerator Laboratory researchers have invented a transparent lithium-ion battery that is also highly flexible. It is comparable in cost to regular ...

  14. Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries by Capacity in 2014 | Department of Energy 1: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014 Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014 SUBSCRIBE to the Fact of the Week Japan produced about 2 gigawatt-hours (GWh) of automotive lithium-ion battery cells in 2014, which is more than any other country/region. In 2014, China had the greatest potential for increased production with

  15. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee, Ahmad Pesaran Kandler Smith kandler.smith@nrel.gov Source: A123 Source: GM NATIONAL RENEWABLE ENERGY LABORATORY Challenges for Large LIB Systems 2 * Li-ion batteries are flammable, require expensive manufacturing to reduce defects * Small-cell protection devices do not work for large systems * Difficult to detect

  16. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean ...

  17. Model for the Fabrication of Tailored Materials for Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model for the Fabrication of Tailored Materials for Lithium-Ion Batteries Technology available for licensing: Safe, stable and high-capacity cathodes for lithium-ion batteries ...

  18. Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-Cross-Linked Gel Polymer Electrolytes for Lithium Ion Batteries Lawrence Berkeley ... have invented nanostructured gel polymer electrolytes for lithium ion batteries. ...

  19. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies ...

  20. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    SciTech Connect (OSTI)

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-02-28

    High-power lithium-ion cells for transportation applications are being developed and studied at Argonne National Laboratory. The current generation of cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based cathodes, graphite-based anodes, and LiPF6-based electrolytes show loss of capacity and power during accelerated testing at elevated temperatures. Negative electrode samples harvested from some cells that showed varying degrees of power and capacity fade were examined by X-ray photoelectron spectroscopy (XPS). The samples exhibited a surface film on the graphite, which was thicker on samples from cells that showed higher fade. Furthermore, solvent-based compounds were dominant on samples from low power fade cells, whereas LiPF{sub 6}-based products were dominant on samples from high power fade cells. The effect of sample rinsing and air exposure is discussed. Mechanisms are proposed to explain the formation of compounds suggested by the XPS data.

  1. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  2. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  3. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  4. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  5. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  6. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of

  7. Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approach | Argonne National Laboratory Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable lithium-ion cells and batteries synthesized by using a novel alternative approach Lowers battery pack cost. Layered cathode material contains low-cost manganese, which operates at high rate and high voltage and results in a high-energy-density battery with improved stability. PDF icon

  8. Students to race their innovative solar, hydrogen and lithium ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model cars Saturday - News Releases | NREL Students to race their innovative solar, hydrogen and lithium ion battery model cars Saturday May 10, 2012 Middle school students from around the state will participate in the Junior Solar Sprint, Hydrogen Fuel Cell, and Lithium Ion Battery car competitions on Saturday, May 12, at Dakota Ridge High School in Littleton. Sponsored by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), the competitions give students the

  9. Lithium-Ion Battery Teacher Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Ion Battery Teacher Workshop 2012 2 2 screw eyes 2 No. 14 rubber bands 2 alligator clips 1 plastic gear font 2 steel axles 4 nylon spacers 2 Pitsco GT-R Wheels 2 Pitsco GT-F Wheels 2 balsa wood sheets 1 No. 280 motor Also: Parts List 3 Tools Required 1. Soldering iron 2. Hobby knife or coping saw 3. Glue gun 4. Needlenose pliers 5. 2 C-clamps 6. Ruler 4 1. Using a No. 2 pencil, draw Line A down the center of a balsa sheet. Making the Chassis 5 2. Turn over the balsa sheet and draw Line B

  10. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 5_es_wise_2012_p.pdf (321.02 KB) More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production FY 2011 Annual Progress Report for Energy Storage R&D

  11. Thin film method of conducting lithium-ions

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-11-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  12. Thin film method of conducting lithium-ions

    DOE Patents [OSTI]

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-11-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  13. Multi-Node Thermal System Model for Lithium-Ion Battery Packs: Preprint

    SciTech Connect (OSTI)

    Shi, Ying; Smith, Kandler; Wood, Eric; Pesaran, Ahmad

    2015-09-14

    Temperature is one of the main factors that controls the degradation in lithium ion batteries. Accurate knowledge and control of cell temperatures in a pack helps the battery management system (BMS) to maximize cell utilization and ensure pack safety and service life. In a pack with arrays of cells, a cells temperature is not only affected by its own thermal characteristics but also by its neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs. neighbors, the cooling system and pack configuration, which increase the noise level and the complexity of cell temperatures prediction. This work proposes to model lithium ion packs thermal behavior using a multi-node thermal network model, which predicts the cell temperatures by zones. The model was parametrized and validated using commercial lithium-ion battery packs.

  14. Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials

    SciTech Connect (OSTI)

    Wood, III, D. L.; Yoon, S.

    2012-10-25

    The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, which is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.

  15. Better Lithium-Ion Batteries Are On The Way From Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Ion Batteries A Better Lithium-ion Battery on the Way Simulations Reveal How New Polymer Absorbs Eight Times the Lithium of Current Designs September 23, 2011 Paul Preuss,...

  16. Ternary compound electrode for lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  17. Ternary compound electrode for lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  18. Lithium based electrochemical cell systems having a degassing...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium based electrochemical cell systems having a degassing agent A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an ...

  19. Novel Electrolytes for Lithium Ion Batteries (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Novel Electrolytes for Lithium Ion Batteries Citation Details In-Document Search Title: Novel Electrolytes for Lithium Ion Batteries We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have

  20. Lithium-Ion Battery Recycling Issues | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pmp_05_gaines.pdf (566.25 KB) More Documents & Publications International Collaboration With a Case Study in Assessment of Worlds Supply of Lithium Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6

  1. Electrode for a lithium cell

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  2. Multi-layered, chemically bonded lithium-ion and lithium/air...

    Office of Scientific and Technical Information (OSTI)

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and ...

  3. Modeling the Performance and Cost of Lithium-Ion Batteries for...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory for lithium-ion battery packs used in automotive transportation. ... calculated by accounting for every step in the lithium-ionbattery manufacturing process. ...

  4. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less

  5. Engineering Heteromaterials to Control Lithium Ion Transport Pathways

    SciTech Connect (OSTI)

    Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.

    2015-12-21

    Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.

  6. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  7. Final Progress Report for Linking Ion Solvation and Lithium Battery

    Office of Scientific and Technical Information (OSTI)

    Electrolyte Properties (Technical Report) | SciTech Connect Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties Citation Details In-Document Search Title: Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the

  8. Methods for Preparing Materials for Lithium Ion Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Methods for Preparing Materials for Lithium Ion Batteries Technology available for licensing: Process for the preparation of transition metal particles with a gradient concentration from core to the outer layers As applied to Lithium Ion batteries gradient cathode material allows for high energy and improved safety Enables high capacity Ni center with Mn outer layer for improved safety and stability IN-10-036 US 8591774B2 Availability: Technology available for license to

  9. Lithium Ion Electrode Production NDE and QC Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop 2 Presentation name Lithium Ion Electrode Production QC State-of-the-Art * In-Line Measurement - Conventional in-line thickness and/or areal weight by beta transmission gauge: * Thickness measurement precision of ±0.2% over 2-1000 µm * But expensive equipment (several hundred thousand dollars or more) * And ionizing radiation hazard

  10. Nanotube composite anode materials improve lithium-ion battery performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-09-034) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Nanotube composite anode materials improve lithium-ion battery performance (ANL-09-034) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Rechargeable lithium-ion batteries are a critical technology for many applications, including consumer electronics and electric vehicles. As the demand for hybrid and

  11. Anode Materials for Lithium Ion Batteries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anode Materials for Lithium Ion Batteries Technology available for licensing: Composite anode material for Lithium Ion Battery High reversible capacity and improved cyclability with minimal volume change with cycling IN-10-013 US 9054373B2 Availability: Technology available for license to organizations with commercial interest. Collaborative research is available under a Cooperative Research and Development Agreement (CRADA). Contact: 800-627-2596; partners@anl.gov PDF icon Anode Materials

  12. Surface-Modified Active Materials for Lithium Ion Battery Electrodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Active Materials for Lithium Ion Battery Electrodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab researcher Gao Liu has developed a new fabrication technique for lithium ion battery electrodes that lowers binder cost without sacrificing performance and reliability. Description The innovative process evaporates a thin polymer coating on the active materials' particles and mixes these coated particles

  13. Non-aqueous electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  14. Silicon nanowires used as the anode of a lithium-ion battery

    SciTech Connect (OSTI)

    Prosini, Pier Paolo; Rufoloni, Alessandro; Rondino, Flaminia; Santoni, Antonino

    2015-06-23

    In this paper the synthesis and characterization of silicon nanowires to be used as the anode of a lithium-ion battery cell are reported. The nanowires were synthesized by CVD and characterized by SEM. The nanostructured material was used as an electrode in a lithium cell and its electrochemical properties were investigated by galvanostatic charge/discharge cycles at C/10 rate as a function of the cycle number and at various rates as a function of the charge current. The electrode was then coupled with a LiFePO{sub 4} cathode to fabricate a lithium-ion battery cell and the cell performance evaluated by galvanostatic charge/discharge cycles.

  15. Lithium fluoride ion source experiments on PBFA II

    SciTech Connect (OSTI)

    Bieg, K.W.; Pregenzer, A.L.; Woodworth, J.R.; Lockner, T.R.; Johnson, D.J.; Gerber, R.A.; Bailey, J.E.; Kensek, R.P.; Leeper, R.J.; Maenchen, J.E.

    1989-01-01

    Lithium fluoride, field-enhanced ion source experiments are being performed on PBFA II. The source consists of a thin coating of LiF on a microscopically rough substrate. Diagnostics to measure ion beam energy, purity, and transport include electrical monitors, Faraday cups, nuclear activation, ion pinhole camera, Rutherford magnetic spectrograph, and shadowbox aperture array, With PBFA II operating at three-quarters energy, the source has produced 16 TW of ion power and 550 kJ of ion energy with 70% diode efficiency. Over 26 kJ of lithium beam energy has been focused to the diode center axis with a peak energy density of about 1.3 kJ/cm/sup 2/. PICDIAG simulations of the lithium focus indicate the intrinsic source divergence is about 45 mrad with a 20-..mu..m-grade porous stainless steel substrate. 13 refs., 4 figs.

  16. Lithium fluoride ion source experiments on PBFA II

    SciTech Connect (OSTI)

    Bieg, K.W.; Pregenzer, A.L.; Woodworth, J.R.; Lockner, T.R.; Johnson, D.J.; Gerber, R.A.; Bailey, J.E.; Kensek, R.P.; Leeper, R.J.; Maenchen, J.E.; Mehlhorn, T.A.; Olson, R.E.; Ruiz, C.L.; Stygar, W.A. )

    1990-01-01

    Lithium fluoride, field-enhanced ion source experiments are being performed on PBFA II. The source consists of a thin coating of LiF on a microscopically rough substrate. Diagnostics to measure ion beam energy, purity, and transport include electrical monitors, Faraday cups, nuclear activation, ion pinhole camera, Rutherford magnetic spectrograph, and shadowbox aperture array. With PBFA II operating at three-quarters energy, the source has produced 16 TW of ion power and 550 kJ of ion energy with 70% diode efficiency. Over 26 kJ of lithium beam energy has been focused to the diode center axis with a peak energy density of about 1.3 kJ/cm{sup 2} . PICDIAG simulations of the lithium focus indicate the intrinsic source divergence is about 45 mrad with a 20-{mu}m-grade porous stainless-steel substrate.

  17. Layered Electrodes for Lithium Cells and Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes Lowers cost to ...

  18. Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications

    SciTech Connect (OSTI)

    Liao, Chen; Han, Kee Sung; Baggetto, Loic; Hillesheim, Daniel A; Custelcean, Radu; Lee, Dr. Eun-Sung; Guo, Bingkun; Bi, Zhonghe; Jiang, Deen; Veith, Gabriel M; Hagaman, Edward {Ed} W; Brown, Gilbert M; Bridges, Craig A; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Dai, Sheng; Sun, Xiao-Guang

    2014-01-01

    A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

  19. Glass for sealing lithium cells

    DOE Patents [OSTI]

    Leedecke, C.J.

    1981-08-28

    Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

  20. High capacity anode materials for lithium ion batteries

    DOE Patents [OSTI]

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  1. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  2. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Energy Savers [EERE]

    0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production ...

  3. Electrolytes for Use in High Energy Lithium-Ion Batteries with...

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with ...

  4. Beyond Lithium-ion is Part of the Dream | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond Lithium-ion is Part of the Dream Title Beyond Lithium-ion is Part of the Dream Publication Type Journal Article Year of Publication 2014 Journal Batteries International...

  5. JCESR: Moving Beyond Lithium-Ion (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: JCESR: Moving Beyond Lithium-Ion Citation Details In-Document Search Title: JCESR: Moving Beyond Lithium-Ion You are accessing a document from the Department of Energy's ...

  6. JCESR: Moving Beyond Lithium-Ion (Other) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Other: JCESR: Moving Beyond Lithium-Ion Citation Details In-Document Search Title: JCESR: Moving Beyond Lithium-Ion The Joint Center for Energy Storage Research (JCESR; http:...

  7. Argonne OutLoud: JCESR Goes Beyond the Lithium Ion Frontier ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCESR Goes Beyond the Lithium Ion Frontier (Nov. 14, 2013) Share At the end of November ... million Energy Innovation Hub to develop next-generation batteries beyond lithium ion. ...

  8. Winners for NREL's 25th Solar and Lithium Ion Car Races - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winners for NREL's 25th Solar and Lithium Ion Car Races May 16, 2015 Sixty-three teams ... today for the 25th Annual Junior Solar Sprint and Lithium Ion Battery car competitions. ...

  9. Winners for NREL's 24th Solar and Lithium Ion Car Races - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winners for NREL's 24th Solar and Lithium Ion Car Races May 17, 2014 Indy-500-style ... Solar Sprint and Lithium Ion Battery car competitions for Colorado's middle schoolers. ...

  10. Vehicle Technologies Office Merit Review 2014: Development of Large Format Lithium Ion Cells with Higher Energy Density

    Broader source: Energy.gov [DOE]

    Presentation given by XALT Energy LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of large format...

  11. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es025_zhang_2011_p.pdf (443.82 KB) More Documents & Publications Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced Electrolyte

  12. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  13. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan; Liang, Chengdu

    2015-01-01

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  14. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and themore » electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.« less

  15. Lithium-Sulfur Batteries: from Liquid to Solid Cells?

    SciTech Connect (OSTI)

    Lin, Zhan; Liang, Chengdu

    2014-11-11

    Lithium-sulfur (Li-S) batteries supply a theoretical specific energy 5 times higher than that of lithium-ion batteries (2,500 vs. ~500 Wh kg-1). However, the insulating properties and polysulfide shuttle effects of the sulfur cathode and the safety concerns of the lithium anode in liquid electrolytes are still key limitations to practical use of traditional Li-S batteries. In this review, we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with the conventional liquid cells. Then, we introduce the most recent progresses in the liquid systems, including the sulfur positive electrodes, the lithium negative electrodes, and the electrolytes and binders. We discuss the significance of investigating electrode reaction mechanisms in liquid cells using in-situ techniques to monitor the compositional and morphological changes. By moving from the traditional liquid cells to recent solid cells, we discuss the importance of this game-changing shift with positive advances in both solid electrolytes and electrode materials. Finally, the opportunities and perspectives for future research on Li-S batteries are presented.

  16. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  17. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  18. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  19. Lithium based electrochemical cell systems having a degassing agent

    DOE Patents [OSTI]

    Hyung, Yoo-Eup; Vissers, Donald R.; Amine, Khalil

    2012-05-01

    A lithium based electrochemical cell system includes a positive electrode; a negative electrode; an electrolyte; and a degassing agent.

  20. Internal Short Circuit Device for Improved Lithium-Ion Battery Design -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Internal Short Circuit Device for Improved Lithium-Ion Battery Design National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication NREL Internal Short Circuit (ISC) Fact Sheet (321 KB) Technology Marketing Summary Energy storage cells (also referred to herein as "cells" or "batteries") sold for

  1. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  2. Anodic oxidation of sulfide ions in molten lithium fluoride

    SciTech Connect (OSTI)

    Lloyd, C.L.; Gilbert, J.B. II . Applied Research Lab.)

    1994-10-01

    The study of sulfur and sulfide oxidation in molten salt systems is of current interest in high energy battery, and metallurgical applications. Cyclic voltammetry experiments have been performed on lithium sulfide in a lithium fluoride electrolyte at 1,161 K using a graphite working electrode and a platinum quasi-reference electrode. Two distinct oxidation mechanisms are observed for the sulfide ions. The first oxidation produces sulfur and at a higher potential a disulfide species is proposed to have formed. Both oxidations appear to be reversible and diffusion controlled.

  3. Thin film method of conducting lithium-ions (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    uses in lithium batteries, electrochromic devices and other electrochemical applications. ... conductivity; suitable; lithium; batteries; electrochromic; devices; ...

  4. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  5. In the OSTI Collections: Lithium-ion Batteries | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Lithium-ion batteries have high energy per unit of volume and mass, and other chemical ... Pure lithium is, in fact, the lightest and most energy-efficient material for the ...

  6. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  7. Purification of lithium salts by CSA continuous countercurrent ion exchange

    SciTech Connect (OSTI)

    Higgins, I.R. )

    1986-12-01

    A Continuous Countercurrent Ion Exchange (CCIX) process was developed for extraction of low levels of sodium, potassium, iron, and nickel from strong solutions of lithium chloride and lithium hydroxide. This study was done on a two-inch diameter CSA, Inc. CCIX pilot unit. A standard 8% cross-linked cation exchange resin was used. The feed was either 2[und M] LiCl or 2[und M] LiOH. The trace levels of contaminants had a slightly higher affinity for the resin than lithium and extracted 90% or better. Residual lithium on the resin was scrubbed of with KOH to render a lithium loss of less than 1% in the waste. Contaminants were stripped from the resin with 3[und M] HCl. Zinc was one metal that was not extracted because it formed an anionic chloride complex. However zinc and certain other metals were extracted with high efficiency using strong-base type resin. Other resins are available for efficient extraction of many other metal contaminants, but the alkali metals, Na and K, were dependent on the CCIX common cation exchange system.

  8. Metal-organic frameworks for lithium ion batteries and supercapacitors

    SciTech Connect (OSTI)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  9. Prospects for reducing the processing cost of lithium ion batteries

    SciTech Connect (OSTI)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  10. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  11. Prospects for reducing the processing cost of lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  12. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Broader source: Energy.gov (indexed) [DOE]

    Liquids for Lithium Battery Electrolytes Inexpensive, Nonfluorinated (or Partially Fluorinated) Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes ...

  13. Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors with Improved

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability - Energy Innovation Portal Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors with Improved Stability Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummarySwitchable mirrors are a new generation of electrochromic windows that can alternate between a reflecting state and a transparent or absorbing state when a small voltage is applied. These energy saving devices have advantages over traditional absorbing electrochromics for

  14. Modified carbon black materials for lithium-ion batteries

    DOE Patents [OSTI]

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  15. John B. Goodenough, Cathode Materials, and Rechargeable Lithium-ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries John B. Goodenough, Cathode Materials, and Rechargeable Lithium-ion Batteries Resources with Additional Information * Awards * Patents John B. Goodenough Photo Credit: Courtesy of The University of Texas at Austin Cockrell School of Engineering On September 17, 2009, U.S. Energy Secretary Steven Chu named John B. Goodenough as a winner of the Enrico Fermi Award ' in recognition for his lasting contributions to materials science and technology, especially the science underlying

  16. Nanocomposite Materials for Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Commercialization A123 Systems Inc., the primary industrial partner on the project and one of the leading Li-ion battery developers in the United States, is enabling and ...

  17. Optimal charging profiles for mechanically constrained lithium-ion batteries

    SciTech Connect (OSTI)

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  18. Analyzing system safety in lithium-ion grid energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less

  19. Analyzing system safety in lithium-ion grid energy storage

    SciTech Connect (OSTI)

    Rosewater, David; Williams, Adam

    2015-10-08

    As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

  20. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21

    This project involved the synthesis of nanowire -MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing -MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the -MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the -MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into -MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the -MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high

  1. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide

    Broader source: Energy.gov (indexed) [DOE]

    Operating Temperature Range | Department of Energy 26_smart_2012_o.pdf (1.75 MB) More Documents & Publications Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

  2. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  3. Development of a high-power lithium-ion battery.

    SciTech Connect (OSTI)

    Jansen, A. N.

    1998-09-02

    Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.

  4. High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office...

    Office of Science (SC) Website

    Significance and Impact This anode design holds a greater charge than conventional lithium-ion anodes and chargesdischarges more rapidly while maintaining mechanical stability. ...

  5. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives Electrolytes - Advanced ...

  6. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

  7. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect (OSTI)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  8. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The modelmore » development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.« less

  9. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, Sreekanth; Turner, John A.; Allu, Srikanth; Elwasif, Wael R.; Kalnaus, Sergiy; Simunovic, Srdjan; Kumar, Abhishek; Billings, Jay Jay; Wang, Hsin; Nanda, Jagjit

    2015-08-19

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. In this paper we describe a new, open source computational framework for Lithium-ion battery simulations that is designed to support a variety of model types and formulations. This framework has been used to create three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. The model development and validation are supported by experimental methods such as IR-imaging, X-ray tomography and micro-Raman mapping.

  10. Lithium-Ion Battery Recycling Facilities

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Bifunctional Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Bifunctional Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Bifunctional Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies

    SciTech Connect (OSTI)

    Vijayakumar, M.; Hu, Jian Z.

    2013-10-15

    To analyze the lithium ion interaction with realistic graphene surfaces, we carried out dispersion corrected DFT-D3 studies on graphene with common point defects and chemisorbed oxygen containing functional groups along with defect free graphene surface. Our study reveals that, the interaction between lithium ion (Li+) and graphene is mainly through the delocalized π electron of pure graphene layer. However, the oxygen containing functional groups pose high adsorption energy for lithium ion due to the Li-O ionic bond formation. Similarly, the point defect groups interact with lithium ion through possible carbon dangling bonds and/or cation-π type interactions. Overall these defect sites render a preferential site for lithium ions compared with pure graphene layer. Based on these findings, the role of graphene surface defects in lithium battery performance were discussed.

  15. Modeling of early age loss of lithium ions from pore solution of cementitious systems treated with lithium nitrate

    SciTech Connect (OSTI)

    Kim, Taehwan Olek, Jan

    2015-01-15

    Addition of lithium nitrate admixture to the fresh concrete mixture helps to minimize potential problems related to alkali-silica reaction. For this admixture to function as an effective ASR control measure, it is imperative that the lithium ions remain in the pore solution. However, it was found that about 50% of the originally added lithium ions are removed from the pore solution during early stages of hydration. This paper revealed that the magnitude of the Li{sup +} ion loss is highly dependent on the concentration of Li{sup +} ions in the pore solution and the hydration rate of the cementitious systems. Using these findings, an empirical model has been developed which can predict the loss of Li{sup +} ions from the pore solution during the hydration period. The proposed model can be used to investigate the effects of mixture parameters on the loss of Li{sup +} ions from the pore solution of cementitious system.

  16. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the batterys components to free up more space within the cell for storage.

  17. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  18. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  19. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C; Contescu, Cristian I; Meyer III, Harry M; Howe, Jane Y; Meisner, Roberta Ann; Payzant, E Andrew; Lance, Michael J; Yoon, Steve; Denlinger, Matthew; Wood III, David L

    2014-01-01

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  20. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability ...

  1. Electronically conductive polymer binder for lithium-ion battery electrode

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  2. Polymer considerations in rechargeable lithium ion plastic batteries

    SciTech Connect (OSTI)

    Gozdz, A.S.; Tarascon, J.M.; Schmutz, C.N.; Warren, P.C.; Gebizlioglu, O.S.; Shokoohi, F.

    1995-07-01

    A series of polymers have been investigated in order to determine their suitability as ionically conductive binders of the active electrode materials and as hybrid electrolyte matrices in plastic lithium ion rechargeable batteries. Hybrid electrolyte films used in this study have been prepared by solvent casting using a 1:1 w/w mixture of the matrix polymer with 1 M LiPF{sub 6} in EC/PC. Based on electrochemical stability, mechanical strength, liquid electrolyte retention, and softening temperature, random copolymers of vinylidene fluoride containing ca. 12 mole % of hexafluoropropylene have been selected for this application.

  3. Intermetallic Electrodes Improve Safety and Performance in Lithium-ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Energy Innovation Portal Intermetallic Electrodes Improve Safety and Performance in Lithium-ion Batteries Argonne National Laboratory Contact ANL About This Technology <span style="font-family: &quot;Cambria&quot;,&quot;serif&quot;; font-size: 12pt; mso-fareast-font-family: Cambria; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;"><em><font

  4. Composite Electrodes for Rechargeable Lithium-Ion Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Electrodes for Rechargeable Lithium-Ion Batteries Technology available for licensing: Electrodes having composite xLi2M'O3*(1-x)LiMO2 structures in which an electrochemically inactive Li2M'O3 component is integrated with an electrochemically active LiMO2 component to provide improved structural and electrochemical stability. Has superior cost features compared with current state-of-the-art LiCoO2 electrodes. Offers high rate of charge/discharge and structural stability

  5. Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

    2010-11-01

    This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

  6. Fact #921: April 18, 2016 Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014- Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Japan Produced the Most Automotive Lithium-ion Batteries by Capacity in 2014

  7. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  8. JCESR: Moving Beyond Lithium-Ion - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 16, 2014, Videos JCESR: Moving Beyond Lithium-Ion This video entitled, "JCESR: Moving Beyond Lithium-Ion," gives an overview of JCESR's goals and its vision to transform transportation and the electricity grid with high-performance, low cost energy storage.

  9. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for lithium-ion batteries Compatible with current battery technologies Provides overcharge protection, increased safety and long-term stability PDF icon redox_shuttles_overcharge

  10. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes

    SciTech Connect (OSTI)

    Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph; Woehrle, Thomas; Lux, Simon; Tschech, Matthias; Polzin, Bryant J.; Ha, Seungbum; Long, Brandon R.; Wu, Qingliu; Lu, Wenquan; Dees, Dennis W.; Jansen, Andrew N.

    2016-01-01

    Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm2 unless additional precautions have been made to avoid deleterious side reaction.

  11. Silicon-Nanowire Based Lithium Ion Batteries for Vehicles With Double the Energy Density

    SciTech Connect (OSTI)

    Stefan, Ionel; Cohen, Yehonathan

    2015-03-31

    Amprius researched and developed silicon nanowire anodes. Amprius then built and delivered high-energy lithium-ion cells that met the project’s specific energy goal and exceeded the project’s energy density goal. But Amprius’ cells did not meet the project’s cycle life goal, suggesting additional manufacturing process development is required. With DOE support, Amprius developed a new anode material, silicon, and a new anode structure, nanowire. During the project, Amprius also began to develop a new multi-step manufacturing process that does not involve traditional anode production processes (e.g. mixing, drying and calendaring).

  12. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  13. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  14. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    SciTech Connect (OSTI)

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chong M.; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-level outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  15. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; et al

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-levelmore » outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. We find the low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.« less

  16. Inward Lithium-Ion Breathing of Hierarchically Porous Silicon Anodes

    SciTech Connect (OSTI)

    Xiao, Qiangfeng; Gu, Meng; Yang, Hui; Li, Bing; Zhang, Cunman; Liu, Yang; Liu, Fang; Dai, Fang; Yang, Li; Liu, Zhongyi; Xiao, Xingcheng; Liu, Gao; Zhao, Peng; Zhang, Sulin; Wang, Chong M.; Lu, Yunfeng; Cai, Mei

    2015-11-05

    Silicon has been identified as one of the most promising candidates as anode for high performance lithium-ion batteries. The key challenge for Si anodes is the large volume change induced chemomechanical fracture and subsequent rapid capacity fading upon cyclic charge and discharge. Improving capacity retention thus critically relies on smart accommodation of the volume changes through nanoscale structural design. In this work, we report a novel fabrication method for hierarchically porous Si nanospheres (hp-SiNSs), which consist of a porous shell and a hollow core. Upon charge/discharge cycling, the hp-SiNSs accommodate the volume change through reversible inward expansion/contraction with negligible particle-level outward expansion. Our mechanics analysis revealed that such a unique volume-change accommodation mechanism is enabled by the much stiffer modulus of the lithiated layer than the unlithiated porous layer and the low flow stress of the porous structure. Such inward expansion shields the hp-SiNSs from fracture, opposite to the outward expansion in solid Si during lithiation. Lithium ion battery assembled with this new nanoporous material exhibits high capacity, high power, long cycle life and high coulombic efficiency, which is superior to the current commercial Si-based anode materials. The low cost synthesis approach reported here provides a new avenue for the rational design of hierarchically porous structures with unique materials properties.

  17. New Path Forward for Next-Generation Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Path Forward for Next-Generation Lithium-Ion Batteries New Path Forward for Next-Generation Lithium-Ion Batteries Berkeley Lab researchers shed light on how lithium-rich cathodes work, opening the door to higher capacity batteries. May 30, 2016 Julie Chao, JHChao@lbl.gov, (510) 486-6491 Ceder group LBNL A new study by Berkeley Lab researchers Dong-Hwa Seo, Alex Urban, Jinhyuk Lee, and Gerd Ceder (from left) sheds light on how lithium-rich cathodes work, opening the door to higher capacity

  18. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    SciTech Connect (OSTI)

    Oladeji, I.; Wood, D. L.; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  19. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOE Patents [OSTI]

    Bates, John B.

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  20. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  1. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  2. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  3. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R; Sun, Xiao-Guang; Sacci, Robert L; Adamczyk, Leslie A; Alsem, Daan Hein; Dai, Sheng; Dudney, Nancy J; More, Karren Leslie

    2014-01-01

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  4. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOE Patents [OSTI]

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  5. Method for producing a secondary lithium cell comprising a heat-sensitive protective mechanism

    DOE Patents [OSTI]

    Ullrich, Matthias; Bechtold, Dieter; Rabenstein, Heinrich; Brohm, Thomas

    2003-01-01

    A method for producing a secondary lithium cell which has at least one lithium-cycling negative electrode, at least one lithium-intercalating positive electrode, at least one separator disposed between the positive and the negative electrode, and a nonaqueous lithium ion-conducting electrolyte. The method is carried out by the electrodes and/or the separator being coated, by means of electrostatic powder coating, with wax particles which are insoluble in the electrolyte and have a melting temperature of from about 50 to about 150 .degree. C. and a mean particle size of from about 6 to about 20 .mu.m, the amount of wax being between about 0.5 and about 2.5 mg/cm.sup.2 of electrode area.

  6. Lithium and lithium ion batteries towards micro-applications: a review

    SciTech Connect (OSTI)

    Wang, Yuxing; Liu, Bo; Li, Qiuyan; Cartmell, Samuel S.; Ferrara, Seth A.; Deng, Zhiqun; Xiao, Jie

    2015-07-01

    Batteries employing lithium chemistry have been intensively investigated because of their high energy attributes which may be deployed for vehicle electrification and large-scale energy storage applications. Another important direction of battery research for micro-electronics, however, is relatively less discussed in the field but growing fast in recent years. This paper reviews chemistry and electrochemistry in different microbatteries along with their cell designs to meet the goals of their various applications. The state-of-the-art knowledge and recent progress of microbatteries for emerging micro-electronic devices may shed light on the future development of microbatteries towards high energy density and flexible design.

  7. Lithium / Sulfur Cells with Long Cycle Life and High Specific...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Sulfur Cells with Long Cycle Life and High Specific Energy Lawrence Berkeley ... Song, M-K., Zhang, Y., Cairns, E.J., "A long-life, high-rate lithiumsulfur cell: a ...

  8. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Facilities near Detroit, MI | Department of Energy 0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI April 1, 2010 EA-1690: Final Environmental Assessment For a Loan and Grant to A123 Systems, Inc., for Vertically Integrated Mass Production of Automotive-Class Lithium-Ion Batteries April 20, 2010 EA-1690: Finding of No

  9. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect (OSTI)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  10. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect (OSTI)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S.; Park, Sang -Jae

    2015-10-06

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. An overviewFunctional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    SciTech Connect (OSTI)

    Liu, Hua Kun

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: Nanomaterials play important role for lithium rechargeable batteries. Nanostructured materials increase the capacitance of supercapacitors. Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

  13. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Yang, Li; Zhang, Hanjun; Driscoll, Peter; Lucht, Brett; Kerr, John

    2011-09-30

    A new class of lithium salts of malonatoborate anions has been synthesized. These six-membered-ring salts provided slightly lower ionic conductivity than that of LiBOB and LiBF4. Nevertheless, compared with LiBOB and LiPF6, the lowered ring strains in the malonatoborate structures and reduced numbers of fluorine atoms in the molecules was found to enhance the thermal and water stabilities and compatibilities of these salts with ether solvents. Small amount LiDMMDFB when used as an additive, was found to stabilize LiPF6 in carbonate electrolytes at 80°C for one month. Employing LiMDFB as the electrolyte in Li/Li cells and full cells, large interfacial impedances were observed on lithium metal and the cathode. Moreover, the large impedances are at least partially attributed to the acidic hydrogen atoms in the malonate structure. This issue can be addressed by replacing the acidic atoms with methyl groups.

  14. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  15. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  16. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Broader source: Energy.gov [DOE]

    This Clean Energy Manufacturing Analysis Center report is intended to provide credible, objective analysis regarding the regional competitiveness contexts of manufacturing lithium-­ion batteries ...

  17. Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy ... and Innovation at Events Across the Nation A123 Systems Moves From the Lab to the Assembly ...

  18. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study highlights the U.S. foothold in automotive lithium-ion battery (LIB) production, globally. U.S.-based manufacturers comprise 17% of global production capacity. With increasing demand for...

  19. Lithium-boron anodes in nitrate thermal battery cells

    SciTech Connect (OSTI)

    McManis III, G. E.; Fletcher, A. N.; Miles, M. H.

    1985-08-13

    A thermally activated electrochemical cell utilizes a lithium-boron anode and a molten nitrate electrolyte selected from the group consisting of lithium nitrate, a mixture of lithium nitrate and sodium nitrate, a mixture of lithium nitrate and potassium nitrate, and a mixture of lithium nitrate and sodium nitrate with potassium nitrate, to provide improved cell electrical performance. The electrolyte is contained on a fiberglass separator and the electrolyte adjacent to the cathode may contain silver nitrate as well. Current densities over 300 mA/cm/sup 2/ with a usable temperature range of over 150/sup 0/ C. have been obtained. Anode open circuit potentials of about 3.2 V were found with little polarization at 100 mA/cm/sup 2/ and with very slight polarization at 300 mA/cm/sup 2/.

  20. Lithium-Ion Battery with Higher Charge Capacity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Lithium-Ion Battery with Higher Charge Capacity University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Zirconate Based Cathode Material Lithium-ion batteries (LIBs) typically use a cobalt compound as the cathode material. Cobalt oxides are relatively expensive and scarce. An innovative zirconate-based cathode material developed at the University of Minnesota has the potential

  1. Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Carolina | Department of Energy Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 - 3:15pm Addthis Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Secretary Chu joins local officials and dignitaries for Celgard's ribbon-cutting. | Photo courtesy of Celgard Niketa Kumar Niketa Kumar Public Affairs

  2. Surface-Modified Copper Current Collector for Lithium Ion Battery Anode -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Copper Current Collector for Lithium Ion Battery Anode Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A team of Berkeley Lab researchers led by Gao Liu has developed an innovative approach to improve the adhesion of anode laminate to copper current collectors in lithium ion batteries. This nanotechnology directly addresses delamination of graphite anode material from the collectors, a common result of cyclical

  3. Graphite fiber as a positive electrode of rechargeable lithium cells

    SciTech Connect (OSTI)

    Matsuda, Y.; Katsuma, H.; Morita, M.

    1984-01-01

    Graphite compounds have gained interest as possible positive electrodes for rechargeable lithium cells. Their charge-discharge characteristics have been studied in organic electrolytic solutions such as sulfolane dimethylsulfite, and propylene carbonate.

  4. Multiscale modeling and characterization for performance and safety of lithium-ion batteries

    SciTech Connect (OSTI)

    Pannala, S. Turner, J. A.; Allu, S.; Elwasif, W. R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J. J.; Wang, H.; Nanda, J.

    2015-08-21

    Lithium-ion batteries are highly complex electrochemical systems whose performance and safety are governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. Gaining an understanding of the role of these processes as well as development of predictive capabilities for design of better performing batteries requires synergy between theory, modeling, and simulation, and fundamental experimental work to support the models. This paper presents the overview of the work performed by the authors aligned with both experimental and computational efforts. In this paper, we describe a new, open source computational environment for battery simulations with an initial focus on lithium-ion systems but designed to support a variety of model types and formulations. This system has been used to create a three-dimensional cell and battery pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical safety aspects under adverse conditions. This paper also provides an overview of the experimental techniques to obtain crucial validation data to benchmark the simulations at various scales for performance as well as abuse. We detail some initial validation using characterization experiments such as infrared and neutron imaging and micro-Raman mapping. In addition, we identify opportunities for future integration of theory, modeling, and experiments.

  5. Process for manufacturing a lithium alloy electrochemical cell

    DOE Patents [OSTI]

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  6. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 3 Electrochemistry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  7. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 1 Baseline Protocols and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  8. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 2 Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  9. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Trulove, Paul C; Foley, Matthew P

    2013-03-14

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-????salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  10. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.

  11. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  12. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  13. Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells

    SciTech Connect (OSTI)

    Delnick, F.M.

    1991-04-05

    Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl{sub 2} and SO{sub 2}Cl{sub 2} electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl{sub 2} and Li/SO{sub 2}Cl{sub 2} batteries.

  14. Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells

    DOE Patents [OSTI]

    Delnick, Frank M.

    1993-01-01

    Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl.sub.2 and SO.sub.2 Cl.sub.2 electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl.sub.2 and Li/SO.sub.2 Cl.sub.2 batteries.

  15. Chloromethyl chlorosulfate as a voltage delay inhibitor in lithium cells

    DOE Patents [OSTI]

    Delnick, F.M.

    1993-04-13

    Chloromethyl chlorosulfate (CMCS) is used as a passive film growth inhibitor in electrochemical cells to minimize voltage delay and low-voltage discharge. Film growth on lithium anodes is significantly diminished when CMCS is added to SOCl[sub 2] and SO[sub 2]Cl[sub 2] electrolytes of lithium batteries. The CMCS also has the effect of extending the shelf-life of Li/SOCl[sub 2] and Li/SO[sub 2]Cl[sub 2] batteries.

  16. Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation

    SciTech Connect (OSTI)

    Lee, Sanghun Park, Sung Soo

    2013-08-15

    Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The coreshell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. The unit-cell parameters from experimental studies are reproduced by the coreshell model. Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

  17. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  18. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect (OSTI)

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  19. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect (OSTI)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  20. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key partsa positive and negative electrode and an electrolytethat exchange ions to store and release electricity. Using different materials for these components changes a batterys chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  1. Catching Lithium Ions in Action in a Battery Electrode | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Catching Lithium Ions in Action in a Battery Electrode Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 10.01.12 Catching Lithium

  2. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect (OSTI)

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  3. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wonchang

    2010-05-18

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  4. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells

    SciTech Connect (OSTI)

    Moy, Derek; Manivannan, A.; Narayanan, S. R.

    2014-11-04

    The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term “shuttle current”), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). We present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. As a result, we expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.

  5. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells

    SciTech Connect (OSTI)

    Moy, Derek [Univ. of Southern California, Los Angeles, CA (United States). Loker Hydrocarbon Research Institute.; Manivannan, A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Narayanan, S. R. [Univ. of Southern California, Los Angeles, CA (United States). Loker Hydrocarbon Research Institute.

    2014-11-01

    The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term shuttle current), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). We present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. We expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.

  6. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moy, Derek; Manivannan, A.; Narayanan, S. R.

    2014-11-04

    The shuttling of polysulfide ions between the electrodes in a lithium-sulfur battery is a major technical issue limiting the self-discharge and cycle life of this high-energy rechargeable battery. Although there have been attempts to suppress the shuttling process, there has not been a direct measurement of the rate of shuttling. We report here a simple and direct measurement of the rate of the shuttling (that we term “shuttle current”), applicable to the study of any type of lithium-sulfur cell. We demonstrate the effectiveness of this measurement technique using cells with and without lithium nitrate (a widely-used shuttle suppressor additive). Wemore » present a phenomenological analysis of the shuttling process and simulate the shuttle currents as a function of the state-of-charge of a cell. We also demonstrate how the rate of decay of the shuttle current can be used to predict the capacity fade in a lithium-sulfur cell due to the shuttle process. As a result, we expect that this new ability to directly measure shuttle currents will provide greater insight into the performance differences observed with various additives and electrode modifications that are aimed at suppressing the rate of shuttling of polysulfide ions and increasing the cycle life of lithium-sulfur cells.« less

  7. From Rice Paddies to the Road: Transforming Rice Husks into Lithium-ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anodes for Plug-in Electric Vehicles | Department of Energy From Rice Paddies to the Road: Transforming Rice Husks into Lithium-ion Anodes for Plug-in Electric Vehicles From Rice Paddies to the Road: Transforming Rice Husks into Lithium-ion Anodes for Plug-in Electric Vehicles April 27, 2016 - 10:15am Addthis Rice hulls and other samples used for demonstrating the capabilities of the Energy Department's National Renewable Energy Laboratory (NREL) Rapid Biomass Analysis System. Researchers

  8. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  9. Calendar Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  10. Cycle Life Studies of Advanced Technology Development Program Gen 1 Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wright, Randy Ben; Motloch, Chester George

    2001-03-01

    This report presents the test results of a special calendar-life test conducted on 18650-size, prototype, lithium-ion battery cells developed to establish a baseline chemistry and performance for the Advanced Technology Development Program. As part of electrical performance testing, a new calendar-life test protocol was used. The test consisted of a once-per-day discharge and charge pulse designed to have minimal impact on the cell yet establish the performance of the cell over a period of time such that the calendar life of the cell could be determined. The calendar life test matrix included two states of charge (i.e., 60 and 80%) and four temperatures (40, 50, 60, and 70°C). Discharge and regen resistances were calculated from the test data. Results indicate that both discharge and regen resistance increased nonlinearly as a function of the test time. The magnitude of the discharge and regen resistance depended on the temperature and state of charge at which the test was conducted. The calculated discharge and regen resistances were then used to develop empirical models that may be useful to predict the calendar life or the cells.

  11. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  12. Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles

    SciTech Connect (OSTI)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-06-22

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

  13. Negative Electrodes Improve Safety in Lithium Cells and Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability capability. A new class of intermetallic material for the negative electrode that offers a significantly higher volumetric and gravimetric capacity and improves battery stability and safety. PDF icon negative_electrodes

  14. Si composite electrode with Li metal doping for advanced lithium-ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent

    2015-12-15

    A silicon electrode is described, formed by combining silicon powder, a conductive binder, and SLMP.TM. powder from FMC Corporation to make a hybrid electrode system, useful in lithium-ion batteries. In one embodiment the binder is a conductive polymer such as described in PCT Published Application WO 2010/135248 A1.

  15. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  16. Argonne OutLoud: Energy Storage - JCESR Goes Beyond the Lithium Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier - Joint Center for Energy Storage Research November 18, 2013, Videos Argonne OutLoud: Energy Storage - JCESR Goes Beyond the Lithium Ion Frontier Director George Crabtree discusses a new paradigm for battery research, integrating discovery science, battery design and pre-commercial prototyping in one interactive organization. This talk presents the vision and strategy of JCESR

  17. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  18. Lithium Balance | Open Energy Information

    Open Energy Info (EERE)

    Balance Jump to: navigation, search Name: Lithium Balance Place: Copenhagen, Denmark Product: Lithium ion battery developer. References: Lithium Balance1 This article is a stub....

  19. Surface-Coating Regulated Lithiation Kinetics and Degradation in Silicon Nanowires for Lithium Ion Battery

    SciTech Connect (OSTI)

    Luo, Langli; Yang, Hui; Yan, Pengfei; Travis, Jonathan J.; Lee, Younghee; Liu, Nian; Piper, Daniela M.; Lee, Se-Hee; Zhao, Peng; George, Steven M.; Zhang, Jiguang; Cui, Yi; Zhang, Sulin; Ban, Chunmei; Wang, Chong M.

    2015-05-26

    Silicon (Si)-based materials hold promise as the next-generation anodes for high-energy lithium (Li)-ion batteries. Enormous research efforts have been undertaken to mitigate the chemo-mechanical failure due to the large volume changes of Si during lithiation and delithiation cycles. It has been found nanostructured Si coated with carbon or other functional materials can lead to significantly improved cyclability. However, the underlying mechanism and comparative performance of different coatings remain poorly understood. Herein, using in situ transmission electron microscopy (TEM) through a nanoscale half-cell battery, in combination with chemo-mechanical simulation, we explored the effect of thin (~5 nm) alucone and Al2O3 coatings on the lithiation kinetics of Si nanowires (SiNWs). We observed that the alucone coating leads to a “V-shaped” lithiation front of the SiNWs , while the Al2O3 coating yields an “H-shaped” lithiation front. These observations indicate that the difference between the Li surface diffusivity and bulk diffusivity of the coatings dictates lithiation induced morphological evolution in the nanowires. Our experiments also indicate that the reaction rate in the coating layer can be the limiting step for lithiation and therefore critically influences the rate performance of the battery. Further, the failure mechanism of the Al2O3 coated SiNWs was also explored. Our studies shed light on the design of high capacity, high rate and long cycle life Li-ion batteries.

  20. A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Life, High-Rate LithiumSulfur Cell: A Multifaceted Approach to Enhancing Cell Performance Min-Kyu Song, , Yuegang Zhang,* ,, and Elton J. Cairns* ,, The...

  1. Mechanochemical approaches to employ silicon as a lithium-ion battery anode

    SciTech Connect (OSTI)

    Shimoi, Norihiro Bahena-Garrido, Sharon; Tanaka, Yasumitsu; Qiwu, Zhang

    2015-05-15

    Silicon is essential as an active material in lithium-ion batteries because it provides both high-charge and optimal cycle characteristics. The authors attempted to realize a composite by a simple mechanochemical grinding approach of individual silicon (Si) particles and copper monoxide (CuO) particles to serve as an active material in the anode and optimize the charge-discharge characteristics of a lithium-ion battery. The composite with Si and CuO allowed for a homogenous dispersion with nano-scale Si grains, nano-scale copper-silicon alloy grains and silicon monoxide oxidized the oxide from CuO. The authors successfully achieved the synthesis of an active composite unites the structural features of an active material based on silicon composite as an anode in Li-ion battery with high capacity and cyclic reversible charge properties of 3256 mAh g{sup −1} after 200 cycles.

  2. A study of perfluorocarboxylate ester solvents for lithium ion battery electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fears, Tyler M; Sacci, Robert L; Winiarz, Jeffrey; Kaiser, Helmut; Taub, H.; Veith, Gabriel M

    2015-01-01

    Several high-purity methyl perfluorocarboxylates were prepared (>99.5% purity by mole) and investigated as potential fluorine-rich electrolyte solvents in Li-ion batteries. The most conductive electrolyte, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl perfluoroglutarate (PF5M2) (ionic conductivity 1.87 102 mS cm1), is investigated in Si thin-film half-cells. The solid-electrolyteinterphase (SEI) formed by the PF5M2 electrolyte is composed of similar organic and inorganic moieties and at comparable concentrations as those formed by ethylene carbonate/dimethyl carbonate electrolytes containing LiPF6 and LiTFSI salts. However, the SEI formed by the PF5M2 electrolyte undergoes reversible electrochemical defluorination, contributing to the reversible capacity of the cell and compensatingmore » in part for capacity fade in the Si electrode. While far from ideal these electrolytes provide an opportunity to further develop predictions of suitable fluorinated molecules for use in battery solvents.« less

  3. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  4. Purification of lithium salts by CSA continuous countercurrent ion exchange. Final report

    SciTech Connect (OSTI)

    Higgins, I.R.

    1986-12-01

    A Continuous Countercurrent Ion Exchange (CCIX) process was developed for extraction of low levels of sodium, potassium, iron, and nickel from strong solutions of lithium chloride and lithium hydroxide. This study was done on a two-inch diameter CSA, Inc. CCIX pilot unit. A standard 8% cross-linked cation exchange resin was used. The feed was either 2{und M} LiCl or 2{und M} LiOH. The trace levels of contaminants had a slightly higher affinity for the resin than lithium and extracted 90% or better. Residual lithium on the resin was scrubbed of with KOH to render a lithium loss of less than 1% in the waste. Contaminants were stripped from the resin with 3{und M} HCl. Zinc was one metal that was not extracted because it formed an anionic chloride complex. However zinc and certain other metals were extracted with high efficiency using strong-base type resin. Other resins are available for efficient extraction of many other metal contaminants, but the alkali metals, Na and K, were dependent on the CCIX common cation exchange system.

  5. Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

    2014-10-01

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

  6. Development of Electrolytes for Lithium-ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Yardney) * D. Abraham (ANL) * M. Smart (NASA JPL) * V. Battaglia (LBNL) Partners ... ion battery electrolytes. * M. Smart (NASA JPL, National Lab, ABRT Program): ...

  7. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Environmental Management (EM)

    Li-ion technologies have not demonstrated sufficient grid-scale energy storage feasibility. ... Energy storage can reduce power fluctuations, enhance system flexibility, and enable ...

  8. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung; Lee, Hosik; Nam, Jaewook

    2013-12-23

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  9. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  10. Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Broader source: Energy.gov (indexed) [DOE]

    GROUP Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Marshall C. Smart B. V. Ratnakumar, F. C. Krause, C. Huang, L. D. Whitcanack , J. Soler , and W. C. West, Jet Propulsion Laboratory, California Institute of Technology DOE-ABR/BATT Annual Meeting Review Arlington, Virginia May 14, 2013 Project ID = ES026 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 ELECTROCHEMICAL TECHNOLOGIES GROUP 2

  11. Correlation of Lithium-Ion Battery Performance with Structural and Chemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformations | Stanford Synchrotron Radiation Lightsource Correlation of Lithium-Ion Battery Performance with Structural and Chemical Transformations Wednesday, April 30, 2014 Chemical evolution and structural transformations in a material directly influence characteristics relevant to a wide range of prominent applications including rechargeable batteries for energy storage. Structural and/or chemical rearrangements at surfaces determine the way a material interacts with its environment,

  12. In the OSTI Collections: Lithium-ion Batteries | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information Lithium-ion Batteries View Past "In the OSTI Collections" Articles. Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Chemistry Economics Invention References Research Organizations Reports available through OSTI's SciTech Connect Patent available through OSTI's DOepatents Additional References An electric battery of any kind has two electrodes made of different materials, each

  13. Lithium Ion Electrode Production NDE and QC Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ion Electrode In-Line NDE * Low-cost IR laser thickness measurement (can be done in ... secondary battery electrodes by in-line laser caliper and IR thermography methods," ...

  14. Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Zhou, Hui; Upreti, Shailesh; Chernova, Natasha A.; Hautier, Geoffroy; Ceder, Gerbrand; Whittingham, M. Stanley

    2015-10-15

    The mixed-metal phases, (Li{sub 2}Mn{sub 1-y}Fe{sub y}P{sub 2}O{sub 7}, 0 {le} y {le} 1), were synthesized using a 'wet method', and found to form a solid solution in the P2{sub 1}/a space group. Both thermogravimetric analysis and magnetic susceptibility measurements confirm the 2+ oxidation state for both the Mn and Fe. The electrochemical capacity improves as the Fe concentration increases, as do the intensities of the redox peaks of the cyclic voltammogram, indicating higher lithium-ion diffusivity in the iron phase. The two Li{sup +} ions in the three-dimensional tunnel structure of the pyrophosphate phase allows for the cycling of more than one lithium per redox center. Cyclic voltammograms show a second oxidation peak at 5 V and 5.3 V, indicative of the extraction of the second lithium ion, in agreement with ab initio computation predictions. Thus, electrochemical capacities exceeding 200 Ah/kg may be achieved if a stable electrolyte is found.

  15. Lithium battery

    SciTech Connect (OSTI)

    Koch, V. R.

    1981-02-24

    An electrolyte for a rechargeable electrochemical cell featuring diethylether, a cosolvent, and a lithium salt is disclosed.

  16. Lithium-ion battery diagnostic and prognostic techniques

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  17. Surface nanostructuring and optical activation of lithium fluoride crystals by ion beam irradiation

    SciTech Connect (OSTI)

    Mussi, V.; Granone, F.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Marolo, T.; Montereali, R.M.

    2006-03-06

    We present results on simultaneous nanostructuring and optical activation of lithium fluoride crystals by 800 eV off-normal Ar{sup +} sputtering at different ion doses. The samples were studied by atomic force microscopy and optical spectroscopy. After ion irradiation smoothening of the initial random roughness is achieved and well-defined self-organized ripple structures appear, having a mean periodicity of 30 nm and a mean height of 3 nm. The simultaneous optical activation of the irradiated samples is due to the stable formation of electronic defects with intense photoluminescence in the visible spectral range.

  18. Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

    2011-01-01

    This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

  19. Nanocomposite Materials for Lithium-Ion Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    nanocomposite_materials_li_ion.pdf (508.08 KB) More Documents & Publications Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage R&D Annual Progress Report Energy Storage R&D and ARRA

  20. Lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    SciTech Connect (OSTI)

    Burns, E.J.T.; Woodworth, J.R.; Bieg, K.W.; Mehlhorn, T.A.; Stygar, W.A.; Sweeney, M.A.

    1988-01-01

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child--Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm/sup 2/ of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium.

  1. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  2. Internal Short Circuit Device Helps Improve Lithium-Ion Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    some failures simply result in the cells getting very hot, in extreme cases cells go into thermal runaway, igniting the device in which they are installed. The most publicized...

  3. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  5. Expanding U.S.-based Lithium-ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Metal-Based, High-Capacity Lithium-Ion Anodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Development of Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Development of Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. Vertically Integrated Mass Production of Automotive Class Lithium Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Development of Electrolytes for Lithium-ion Batteries

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Expanding U.S.-based Lithium-ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Negative electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  14. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  15. Advanced Cathode Material Development for PHEV Lithium Ion Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    Energy catalysts and supports for PEM fuel cells, was given by Mark Debe of 3M at a February 2007 meeting on new fuel cell projects. new_fc_debe_3m.pdf (145.42 KB) More Documents & Publications Advanced Cathode Catalysts Light Weight, Low Cost PEM Fuel Cell Stacks Durable Catalysts for Fuel Cell Protection during Transient Conditions

    catalysts, was given by Piotr Zelenay of Los Alamos National laboratory at a February 2007 meeting on new fuel cell projects. new_fc_zelenay_lanl.pdf

  16. Pyroelectric field assisted ion migration induced by ultraviolet laser irradiation and its impact on ferroelectric domain inversion in lithium niobate crystals

    SciTech Connect (OSTI)

    Ying, C. Y. J.; Mailis, S.; Daniell, G. J.; Steigerwald, H.; Soergel, E.

    2013-08-28

    The impact of UV laser irradiation on the distribution of lithium ions in ferroelectric lithium niobate single crystals has been numerically modelled. Strongly absorbed UV radiation at wavelengths of 244–305 nm produces steep temperature gradients which cause lithium ions to migrate and result in a local variation of the lithium concentration. In addition to the diffusion, here the pyroelectric effect is also taken into account which predicts a complex distribution of lithium concentration along the c-axis of the crystal: two separated lithium deficient regions on the surface and in depth. The modelling on the local lithium concentration and the subsequent variation of the coercive field are used to explain experimental results on the domain inversion of such UV treated lithium niobate crystals.

  17. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-Ion porous electrode.

    SciTech Connect (OSTI)

    Dees, D. W.; Kawauchi, S.; Abraham, D. P.; Prakash, J.; Chemical Sciences and Engineering Division; Toyota Central R&D Labs Inc.; Illinois Inst. of Tech.

    2009-04-01

    Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}, used as the active material in a lithium-ion battery porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10{sup -10} cm{sup 2} s{sup -1} at 3.85 V. The lithium diffusion coefficient values obtained from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study.

  18. Uniform hierarchical SnS microspheres: Solvothermal synthesis and lithium ion storage performance

    SciTech Connect (OSTI)

    Fang, Zhen Wang, Qin; Wang, Xiaoqing; Fan, Fan; Wang, Chenyan; Zhang, Xiaojun

    2013-11-15

    Graphical abstract: - Highlights: Uniform hierarchical SnS microspheres via solvothermal reaction. The formation process was investigated in detail. The obtained hierarchical SnS microspheres exhibit superior capacity (1650 mAh g{sup ?1}) when used as lithium battery for the hierarchical microsphere structure. - Abstract: Hierarchical SnS microspheres have been successfully synthesized by a mild solvothermal process using poly(vinylpyrrolidone) as surfactant in this work. The morphology and composition of the microspheres were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of reaction parameters, such as sulfur sources, reaction temperature and the concentration of PVP, on the final morphology of the products are investigated. On the basis of time-dependent experiments, the growth mechanism has also been proposed. The specific surface area of the 3D hierarchitectured SnS microspheres were investigated by using nitrogen adsorption and desorption isotherms. Lithium ion storage performances of the synthesized materials as anodes for Lithium-ion battery were investigated in detail and it exhibits excellent electrochemical properties.

  19. Vehicle Technologies Office Merit Review 2016: Lithium Dendrite Prevention for Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  20. Lithium ion battery with improved safety (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate ...

  1. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt009esrumierz2012

  2. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt009esrumierz2011

  3. Electrodeposited porous metal oxide films with interconnected nanoparticles applied as anode of lithium ion battery

    SciTech Connect (OSTI)

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2014-12-15

    Highlights: Highly porous NiO film is prepared by a co-electrodeposition method. Porous NiO film is composed of interconnected nanoparticles. Porous structure is favorable for fast ion/electron transfer. Porous NiO film shows good lithium ion storage properties. - Abstract: Controllable synthesis of porous metal oxide films is highly desirable for high-performance electrochemical devices. In this work, a highly porous NiO film composed of interconnected nanoparticles is prepared by a simple co-electrodeposition method. The nanoparticles in the NiO film have a size ranging from 30 to 100 nm and construct large-quantity pores of 20120 nm. As an anode material for lithium ion batteries, the highly porous NiO film electrode delivers a high discharge capacity of 700 mA h g{sup ?1} at 0.2 C, as well as good high-rate performance. After 100 cycles at 0.2 C, a specific capacitance of 517 mA h g{sup ?1} is attained. The good electrochemical performance is attributed to the interconnected porous structure, which facilitates the diffusion of ion and electron, and provides large reaction surface area leading to improved performance.

  4. American Lithium Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Lithium Energy Corp Jump to: navigation, search Name: American Lithium Energy Corp Place: San Marcos, California Zip: 92069 Product: California-based developer of lithium ion...

  5. Hierarchically Structured Materials for Lithium Batteries (Journal...

    Office of Scientific and Technical Information (OSTI)

    Hierarchically Structured Materials for Lithium Batteries Citation Details In-Document Search Title: Hierarchically Structured Materials for Lithium Batteries Lithium-ion battery ...

  6. High Performance Binderless Electrodes for Rechargeable Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Performance Binderless Electrodes for Rechargeable Lithium Batteries National ... Electrode for fast-charging Lithium Ion Batteries, Accelerating Innovation Webinar ...

  7. Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate

    DOE Patents [OSTI]

    Singh, R.N.; Dusek, J.T.

    1979-12-27

    A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

  8. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles - SECOND EDITION

    SciTech Connect (OSTI)

    Nelson, Paul A.; Gallagher, Kevin G.; Bloom, Ira D.; Dees, Dennis W.

    2012-01-01

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publicly available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publicly peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on

  9. Lithium-aluminum-iron electrode composition

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  10. Vertically Integrated Mass Production of Automotive Class Lithium Ion

    Broader source: Energy.gov (indexed) [DOE]

    Batteries | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt018_es_alvarez_2012_p.pdf (244.54

  11. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan

    1999-01-01

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  12. Approach to make macroporous metal sheets as current collectors for lithium-ion batteries

    SciTech Connect (OSTI)

    Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Li, Xiaohong S.; Bennett, Wendy D.; Bonham, Charles C.; Zhang, Jiguang

    2010-05-05

    A new approach and simple method is described to produce macroporous metal sheet as current collector for anode in lithium ion battery. This method, based on slurry blending, tape casting, sintering, and reducing of metal oxides, produces a uniform, macroporous metal sheet. Silicon film sputter-coated on such porous copper substrate shows much higher capacity and longer cycle life than on smooth Cu foil. This methodology produces very limited wastes and is also adaptable to many other materials. It is easy for industrial scale production.

  13. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; An, Seong Jin

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi0.5Mn0.3Co0.2O2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  14. Anodes Improve Safety and Performance in Lithium-ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Anodes Improve Safety and Performance in Lithium-ion Batteries Argonne National Laboratory Contact ANL About This Technology <span style="font-family: &quot;Cambria&quot;,&quot;serif&quot;; font-size: 12pt; mso-fareast-font-family: Calibri; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language:

  15. Quantitative cleaning characterization of a lithium-fluoride ion diode

    SciTech Connect (OSTI)

    Menge, P.R.; Cuneo, M.E.

    1997-04-01

    An ion source cleaning testbed was created to test plasma-cleaning techniques, and to provide quantitative data on plasma-cleaning protocols prior to implementation on the SABRE accelerator. The testbed was designed to resolve issues regarding the quantity of contaminants absorbed by the anode source (LiF), and the best cleaning methodology. A test chamber was devised containing a duplicate of the SABRE diode. Radio-frequency (RF) power was fed to the anode, which was isolated from ground and thus served as the plasma discharge electrode. RF plasma discharges in 1--3 mtorr of Ar with 10% O{sub 2} were found to provide the best cleaning of the LiF surface. X-ray photoelectron spectroscopy (XPS) showed that the LiF could accrue dozens of monolayers of carbon just by sitting in a 2 {times} 10{sup {minus}5} vacuum for 24 h. Tests of various discharge cleaning protocols indicated that 15 min of an Ar/O{sub 2} discharge was sufficient to reduce this initial 13--45 monolayers of carbon impurities to 2--4 monolayers. Rapid recontamination of the LiF was also observed. Up to ten monolayers of carbon returned in 2 min after termination of the plasma discharge and subsequent pumping back to the 10{sup {minus}5} torr range. Heating of the LiF also was found to provide anode cleaning. Application of heating combined with plasma cleaning provided the highest cleaning rates.

  16. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    SciTech Connect (OSTI)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  17. Magnetism in LithiumOxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithiumoxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithiumoxygen batteries. We demonstrate that the major discharge product formed in the lithiumoxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  18. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  19. Cell design for lithium alloy/metal sulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1985-01-01

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  20. Improved cell design for lithium alloy/metal sulfide battery

    DOE Patents [OSTI]

    Kaun, T.D.

    1984-03-30

    The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.

  1. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  2. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  3. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias; Amine, Khalil

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  4. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    SciTech Connect (OSTI)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using leadacid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling and ensure that economical and sustainable options are available at the end of the batteries' useful life.

  5. The future of automotive lithium-ion battery recycling: Charting a sustainable course

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaines, Linda

    2014-12-01

    This paper looks ahead, beyond the projected large-scale market penetration of vehicles containing advanced batteries, to the time when the spent batteries will be ready for final disposition. It describes a working system for recycling, using leadacid battery recycling as a model. Recycling of automotive lithium-ion (Li-ion) batteries is more complicated and not yet established because few end-of-life batteries will need recycling for another decade. There is thus the opportunity now to obviate some of the technical, economic, and institutional roadblocks that might arise. The paper considers what actions can be started now to avoid the impediments to recycling andmoreensure that economical and sustainable options are available at the end of the batteries' useful life.less

  6. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-11-01

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  7. Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Harrison, Katharine L; Bridges, Craig A; Segre, C; VernadoJr, C Daniel; Applestone, Danielle; Bielawski, Christopher W; Paranthaman, Mariappan Parans; Manthiram, Arumugam

    2014-01-01

    The theoretical capacity of LiVOPO4 could be increased from 159 to 318 mAh/g with the insertion of a second Li+ ion into the lattice to form Li2VOPO4, significantly enhancing the energy density of lithium-ion batteries. The changes accompanying the second Li+ insertion into -LiVOPO4 and -LiVOPO4 are presented here at various degrees of lithiation, employing both electrochemical and chemical lithiation. Inductively coupled plasma, X-ray absorption spectroscopy, and Fourier transform spectroscopy measurements indicate that a composition of Li2VOPO4 could be realized with an oxidation state of V3+ by the chemical lithiation process. The accompanying structural changes are evidenced by X-ray and neutron powder diffraction. Spectroscopic and diffraction data collected with the chemically lithiated samples as well as diffraction data on the electrochemically lithiated samples reveal that significant amount of lithium can be inserted into -LiVOPO4 before a more dramatic structural change occurs. In contrast, lithiation of -LiVOPO4 is more consistent with the formation of a two-phase mixture throughout most of the lithiation range. The phases observed with the ambient-temperature lithiation processes presented here are significantly different from those reported in the literature.

  8. Porous Si spheres encapsulated in carbon shells with enhanced anodic performance in lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Hui; Wu, Ping Shi, Huimin; Lou, Feijian; Tang, Yawen; Zhou, Tongge; Zhou, Yiming Lu, Tianhong

    2014-07-01

    Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance in term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})

  9. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  10. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect (OSTI)

    Shurygin, R. V., E-mail: regulxx@rambler.ru; Morozov, D. Kh. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 2030% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of

  11. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect (OSTI)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  12. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    SciTech Connect (OSTI)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong; Islam, Md Tariqul; Noveron, Juan C.; Ramabadran, Navaneet

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  13. Production of lithium positive ions from LiF thin films on the anode in PBFA II

    SciTech Connect (OSTI)

    Green, T.A.; Stinnett, R.W.; Gerber, R.A.

    1995-09-01

    The production of positive lithium ions using a lithium-fluoride-coated stainless steel anode in the particle beam fusion accelerator PBFA II is considered from both the experimental and theoretical points of view. It is concluded that the mechanism of Li{sup +} ion production is electric field desorption from the tenth-micron-scale crystallites which compose the columnar growth of the LiF thin film. The required electric field is estimated to be of the order of 5 MV/cm. An essential feature of the mechanism is that the crystallites are rendered electronically conducting through electron-hole pair generation by MeV electron bombardment of the thin film during the operation of the diode. It is proposed that the ion emission mechanism is an electronic conductivity analogue to that discovered by Rollgen for lithium halide crystallites which were rendered ionically conducting by heating to several hundred degrees Celsius. Since an electric field desorption mechanism cannot operate if a surface flashover plasma has formed and reduced the anode electric field to low values, the possibility of flashover on the lithium fluoride coated anode of the PBFA II Li{sup +} ion source is studied theoretically. It is concluded with near certainty that flashover does not occur.

  14. Observations of Oxygen Ion Behavior in the Lithium-Based Electrolytic Reduction of Uranium Oxide

    SciTech Connect (OSTI)

    Steven D. Herrmann; Shelly X. Li; Brenda E. Serrano-Rodriguez

    2009-09-01

    Parametric studies were performed on a lithium-based electrolytic reduction process at bench-scale to investigate the behavior of oxygen ions in the reduction of uranium oxide for various electrochemical cell configurations. Specifically, a series of eight electrolytic reduction runs was performed in a common salt bath of LiCl 1 wt% Li2O. The variable parameters included fuel basket containment material (i.e., stainless steel wire mesh and sintered stainless steel) and applied electrical charge (i.e., 75 150% of the theoretical charge for complete reduction of uranium oxide in a basket to uranium metal). Samples of the molten salt electrolyte were taken at regular intervals throughout each run and analyzed to produce a time plot of Li2O concentrations in the bulk salt over the course of the runs. Following each run, the fuel basket was sectioned and the fuel was removed. Samples of the fuel were analyzed for the extent of uranium oxide reduction to metal and for the concentration of salt constituents, i.e., LiCl and Li2O. Extents of uranium oxide reduction ranged from 43 70% in stainless steel wire mesh baskets and 8 33 % in sintered stainless steel baskets. The concentrations of Li2O in the salt phase of the fuel product from the stainless steel wire mesh baskets ranged from 6.2 9.2 wt%, while those for the sintered stainless steel baskets ranged from 26 46 wt%. Another series of tests was performed to investigate the dissolution of Li2O in LiCl at 650 C across various cathode containment materials (i.e., stainless steel wire mesh, sintered stainless steel and porous magnesia) and configurations (i.e., stationary and rotating cylindrical baskets). Dissolution of identical loadings of Li2O particulate reached equilibrium within one hour for stationary stainless steel wire mesh baskets, while the same took several hours for sintered stainless steel and porous magnesia baskets. Rotation of an annular cylindrical basket of stainless steel wire mesh

  15. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect (OSTI)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  16. An electrochemical cell for in operando studies of lithium/sodium batteries using a conventional x-ray powder diffractometer

    SciTech Connect (OSTI)

    Shen, Yanbin; Pedersen, Erik E.; Christensen, Mogens; Iversen, Bo B.

    2014-10-15

    An electrochemical cell has been designed for powder X-ray diffraction studies of lithium ion batteries (LIB) and sodium ion batteries (SIB) in operando with high time resolution using a conventional powder X-ray diffractometer. The cell allows for studies of both anode and cathode electrode materials in reflection mode. The cell design closely mimics that of standard battery testing coin cells and allows obtaining powder X-ray diffraction patterns under representative electrochemical conditions. In addition, the cell uses graphite as the X-ray window instead of beryllium, and it is easy to operate and maintain. Test examples on lithium insertion/extraction in two spinel-type LIB electrode materials (Li{sub 4}Ti{sub 5}O{sub 12} anode and LiMn{sub 2}O{sub 4} cathode) are presented as well as first results on sodium extraction from a layered SIB cathode material (Na{sub 0.84}Fe{sub 0.56}Mn{sub 0.44}O{sub 2})

  17. Dynamics of lithium ions in borotellurite mixed former glasses: Correlation between the characteristic length scales of mobile ions and glass network structural units

    SciTech Connect (OSTI)

    Shaw, A.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-28

    We have studied the mixed network former effect on the dynamics of lithium ions in borotellurite glasses in wide composition and temperature ranges. The length scales of ion dynamics, such as characteristic mean square displacement and spatial extent of sub-diffusive motion of lithium ions have been determined from the ac conductivity and dielectric spectra, respectively, in the framework of linear response theory. The relative concentrations of different network structural units have been determined from the deconvolution of the FTIR spectra. A direct correlation between the ion dynamics and the characteristic length scales and the relative concentration of BO{sub 4} units has been established for different compositions of the borotellurite glasses.

  18. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    SciTech Connect (OSTI)

    Naskar, Amit K; Bi,; Saha, Dipendu; Chi, Miaofang; Bridges, Craig A; Paranthaman, Mariappan Parans

    2014-01-01

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

  19. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stershic, Andrew; Simunovic, Srdjan; Nanda, Jagjit

    2015-01-01

    Electrode microstructure and processing can strongly influence lithium-ion battery performance such as capacity retention, power, and rate. Battery electrodes are multi-phase composite structures wherein conductive diluents and binder bond active material to a current collector. The structure and response of this composite network during repeated electrochemical cycling directly affects battery performance characteristics. We propose the fabric tensor formalism for describing the structure and evolution of the electrode microstructure. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Fabric tensor analysis is applied to experimental data-sets for positivemore » electrode made of lithium nickel manganese cobalt oxide, captured by X-ray tomography for several compositions and consolidation pressures. We show that fabric tensors capture the evolution of inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode. The fabric tensor analysis is also applied to Discrete Element Method (DEM) simulations of electrode microstructures using spherical particles with size distributions from the tomography. These results do not follow the experimental trends, which indicates that the particle size distribution alone is not a sufficient measure for the electrode microstructures in DEM simulations.« less

  20. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    SciTech Connect (OSTI)

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast

  1. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  2. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect (OSTI)

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  3. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  4. Multiscale Multiphysics Lithium-Ion Battery Model with Multidomain Modular Framework

    SciTech Connect (OSTI)

    Kim, G. H.

    2013-01-01

    Lithium-ion batteries (LIBs) powering recent wave of personal ubiquitous electronics are also believed to be a key enabler of electrification of vehicle powertrain on the path toward sustainable transportation future. Over the past several years, National Renewable Energy Laboratory (NREL) has developed the Multi-Scale Multi-Domain (MSMD) model framework, which is an expandable platform and a generic modularized flexible framework resolving interactions among multiple physics occurring in varied length and time scales in LIB[1]. NREL has continued to enhance the functionality of the framework and to develop constituent models in the context of the MSMD framework responding to U.S. Department of Energy's CAEBAT program objectives. This talk will introduce recent advancements in NREL's LIB modeling research in regards of scale-bridging, multi-physics integration, and numerical scheme developments.

  5. Diagnostic Studies on Lithium Battery Cells and Cell Components

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  7. Advanced Lithium Power Inc ALP | Open Energy Information

    Open Energy Info (EERE)

    Lithium Power Inc ALP Jump to: navigation, search Name: Advanced Lithium Power Inc (ALP) Place: Vancouver, British Columbia, Canada Product: They develop lithium ion and advanced...

  8. Intercalation Kinetics and Ion Mobility in Electrode Materials for Advanced Lithium Ion Batteries

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  9. A three-dimensional carbon nano-network for high performance lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gapsmore » in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.« less

  10. A three-dimensional carbon nano-network for high performance lithium ion batteries

    SciTech Connect (OSTI)

    Tian, Miao; Wang, Wei; Liu, Yang; Jungjohann, Katherine L.; Thomas Harris, C.; Lee, Yung -Cheng; Yang, Ronggui

    2014-11-20

    Three-dimensional (3D) network structure has been envisioned as a superior architecture for lithium ion battery (LIB) electrodes, which enhances both ion and electron transport to significantly improve battery performance. Herein, a 3D carbon nano-network is fabricated through chemical vapor deposition of carbon on a scalably manufactured 3D porous anodic alumina (PAA) template. As a demonstration on the applicability of 3D carbon nano-network for LIB electrodes, the low conductivity active material, TiO2, is then uniformly coated on the 3D carbon nano-network using atomic layer deposition. High power performance is demonstrated in the 3D C/TiO2 electrodes, where the parallel tubes and gaps in the 3D carbon nano-network facilitates fast Li ion transport. A large areal capacity of ~0.37 mAh·cm–2 is achieved due to the large TiO2 mass loading in the 60 µm-thick 3D C/TiO2 electrodes. At a test rate of C/5, the 3D C/TiO2 electrode with 18 nm-thick TiO2 delivers a high gravimetric capacity of ~240 mAh g–1, calculated with the mass of the whole electrode. A long cycle life of over 1000 cycles with a capacity retention of 91% is demonstrated at 1C. In this study, the effects of the electrical conductivity of carbon nano-network, ion diffusion, and the electrolyte permeability on the rate performance of these 3D C/TiO2 electrodes are systematically studied.

  11. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    SciTech Connect (OSTI)

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; Meng, Ying Shirley; Stevenson, Keith J.; Alvarado, Judith

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.

  12. The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; Meng, Ying Shirley; Stevenson, Keith J.; Alvarado, Judith

    2015-08-03

    Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less

  13. The Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-ion Composite

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Liu, G.; Zheng, H.; Kim, S.; Deng, Y.; Minor, A.M.; Song, X.; Battaglia, V.S.

    2008-08-07

    Fundamental electrochemical methods, cell performance tests, and physical characterization tests such as electron microscopy were used to study the effects of levels of the inert materials (acetylene black (AB), a nano-conductive additive, and polyvinylidene difluoride (PVDF), a polymer binder) on the power performance of lithium-ion composite cathodes. The electronic conductivity of the AB/PVDF composites at different compositions was measured with a four-point probe direct current method. The electronic conductivity was found to increase rapidly and plateau at a AB:PVDF ratio 0.2:1 (by weight), with 0.8:1 being the highest conductivity composition. AB:PVDF compositions along the plateau of 0.2:1, 0.4:1, 0.6:1 and 0.8:1 were investigated. Electrodes of each of those compositions were fabricated with different fractions of AB/PVDF to active material. It was found that at the 0.8:1 AB:PVDF, the rate performance improved with increases in the AB/PVDF loading, whereas at the 0.2:1 AB:PVDF, the rate performance improved with decreases in the AB/PVDF loading. The impedance of electrodes made with 0.6:1 AB:PVDF was low and relatively invariant.

  14. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell phones, laptops, medical devices, and cars. As conventional lithium-ion batteries approach their theoretical energy-storage limits, new technologies are emerging to address the long-term energy-storage improvements needed for mobile

  15. Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Broader source: Energy.gov (indexed) [DOE]

    Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Marshall C. Smart B. V. Ratnakumar, W. C. West, L. D. Whitcanack, C. Huang, J. Soler, and F. C. Krause Jet Propulsion Laboratory, California Institute of Technology DOE-BATT Review Meeting Washington, D. C. May 9, 2011 Project ID = ES026 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 ELECTROCHEMICAL TECHNOLOGIES GROUP 2 Overview * Start Date =

  16. Development of Novel Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range

    Broader source: Energy.gov (indexed) [DOE]

    in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Marshall C. Smart B. V. Ratnakumar, W. C. West, L. D. Whitcanack, and F. C. Krause Jet Propulsion Laboratory, California Institute of Technology DOE-BATT Review Meeting Washington, D. C. June 7, 2010 Project ID = ES026 This presentation does not contain any proprietary, confidential, or otherwise restricted information 1 ELECTROCHEMICAL TECHNOLOGIES GROUP 2 Overview * Start Date = October 2009 * End Date = October 2014 *

  17. Imara Corp formerly Lion Cells | Open Energy Information

    Open Energy Info (EERE)

    Cells) Place: Menlo Park, California Zip: 94025 Product: California-based developer of lithium-ion battery technologies formerly known as Lion Cells. References: Imara Corp...

  18. Ultrathin Li3VO4 Nanoribbon/Graphene Sandwich-Like Nanostructures with Ultrahigh Lithium ion Storage Properties

    SciTech Connect (OSTI)

    Lu, Pei-Jun; Liu, Jun N.; Liang, Shuquan; Liu, Jun; Wang, W. J.; Lei, Ming; Tang, Shasha; Yang, Qian

    2015-03-01

    Two-dimensional (2D) "graphene-like" inorganic materials, because of the short lithium ion diffusion path and unique 2D carrier pathways, become a new research focus of the lithium storages. Some "graphene-like" binary compounds, such as, MnO2, MoS2 and VO2 ultrathin nanosheets, have been synthesized by a peeling method, which also exhibit enhanced lithium storage performances. However, it still remains a great challenge to synthesize widely-used lithium-containing ternary oxides with "graphene-like" nanostructures, because the lithium-containing ternary oxides, unlike ternary layered double hydroxides (LDH), are very hard to be directly peeled. Herein, we successfully synthesized ultrathin Li3VO4 nanoribbons with a thickness of about 3 nm by transformation from ultrathin V2O5•xH2O nanoribbons, moreover, we achieved the preparation of ultrathin Li3VO4 nanoribbon@graphene sandwich-like nanostructures (LVO/G) through a layer-by-layer assembly method. The unique sandwich-like nanostructures shows not only a high specific reversible capacitance (up to 452.5 mA h•g-1 after 200 cycles) but also an excellent cycling performance (with more than 299.2 mA h•g-1 of the capacity at 10 C after 1000 cycles) as well as very high rate capability. Such template strategy, using "graphene-like" binary inorganic nanosheets as templates to synthesize lithium-containing ternary oxide nanosheets, may be extended to prepare other ternary oxides with "graphene-like" nanostructures

  19. Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Juchuan; Zhang, Qinglin; Xiao, Xingcheng; Cheng, Yang -Tse; Liang, Chengdu; Dudney, Nancy J.

    2015-10-18

    The intercalation compounds are generally considered as ideal electrode materials for lithium-ion batteries thanks to their minimum volume expansion and fast lithium ion diffusion. However, cracking still occurs in those compounds and has been identified as one of the critical issues responsible for their capacity decay and short cycle life, although the diffusion-induced stress and volume expansion are much smaller than those in alloying-type electrodes. Here, we designed a thin-film model system that enables us to tailor the cation ordering in LiNi0.5Mn1.5O4 spinels and correlate the stress patterns, phase evolution, and cycle performances. Surprisingly, we found that distinct reaction pathsmore » cause negligible difference in the overall stress patterns but significantly different cracking behaviors and cycling performances: 95% capacity retention for disordered LiNi0.5Mn1.5O4 and 48% capacity retention for ordered LiNi0.5Mn1.5O4 after 2000 cycles. We were able to pinpoint that the extended solid-solution region with suppressed phase transformation attributed to the superior electrochemical performance of disordered spinel. Furthermore, this work envisions a strategy for rationally designing stable cathodes for lithium-ion batteries through engineering the atomic structure that extends the solid-solution region and suppresses phase transformation.« less

  20. Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries

    SciTech Connect (OSTI)

    Li, Juchuan; Zhang, Qinglin; Xiao, Xingcheng; Cheng, Yang -Tse; Liang, Chengdu; Dudney, Nancy J.

    2015-10-18

    The intercalation compounds are generally considered as ideal electrode materials for lithium-ion batteries thanks to their minimum volume expansion and fast lithium ion diffusion. However, cracking still occurs in those compounds and has been identified as one of the critical issues responsible for their capacity decay and short cycle life, although the diffusion-induced stress and volume expansion are much smaller than those in alloying-type electrodes. Here, we designed a thin-film model system that enables us to tailor the cation ordering in LiNi0.5Mn1.5O4 spinels and correlate the stress patterns, phase evolution, and cycle performances. Surprisingly, we found that distinct reaction paths cause negligible difference in the overall stress patterns but significantly different cracking behaviors and cycling performances: 95% capacity retention for disordered LiNi0.5Mn1.5O4 and 48% capacity retention for ordered LiNi0.5Mn1.5O4 after 2000 cycles. We were able to pinpoint that the extended solid-solution region with suppressed phase transformation attributed to the superior electrochemical performance of disordered spinel. Furthermore, this work envisions a strategy for rationally designing stable cathodes for lithium-ion batteries through engineering the atomic structure that extends the solid-solution region and suppresses phase transformation.

  1. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    nnovative M anufacturing and M aterials for Low -Cost Lithium -I on Batteries This presentation does not contain any proprietary, confidential, or otherwise restricted information...

  2. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    SciTech Connect (OSTI)

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; Kim, Gi -Heon; Mukherjee, Partha P.

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constant voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.

  3. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; Kim, Gi -Heon; Mukherjee, Partha P.

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  4. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    SciTech Connect (OSTI)

    Polat, B. D.; Eryilmaz, O. L.; Keles, O; Erdemir, A; Amine, Khalil

    2015-10-22

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g-1 capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g-1 (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g-1 as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g-1 capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.

  5. SnCo–CMK nanocomposite with improved electrochemical performance for lithium-ion batteries

    SciTech Connect (OSTI)

    Zeng, Lingxing; Deng, Cuilin; Zheng, Cheng; Qiu, Heyuan; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2015-11-15

    Highlights: • The SnCo–CMK nanocomposite was synthesized using mesoporous carbon as nano-reactor. • Ultrafine SnCo nanoparticles distribute both inside and outside of mesopore channels. • The SnCo–CMK nanocomposite is an alternative anode material for Li-ion intercalation. • A high reversible capacity of 562 mAh g{sup −1} is maintained after 60 cycles at 100 mA g{sup −1}. - Abstract: In the present work, SnCo–CMK nanocomposite was successfully synthesized for the first time via a simple nanocasting route by using mesoporous carbon as nano-reactor. The nanocomposite was then characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TG), N{sub 2} adsorption–desorption, scanning and transmission electron microscopy (SEM/TEM) respectively. Furthermore, the SnCo–CMK nanocomposite exhibited large reversible capacities, excellent cycling stability and enhanced rate capability when employed as an anode material for lithium-ion batteries. A large reversible capacity of 562 mA h g{sup −1} was obtained after 60 cycles at a current density of 0.1 A g{sup −1} which is attributed to the structure of ‘meso-nano’ SnCo–CMK composite. This unique structure ensures the intimate contact between CMK and SnCo nanoparticles, buffers the large volume expansion and prevents the aggregation of the SnCo nanoparticles during cycling, leading to the excellent cycling stability and enhanced rate capability.

  6. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect (OSTI)

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  7. Influence of lithium salts on the discharge chemistry of Li-air cells

    SciTech Connect (OSTI)

    Veith, Gabriel M; Nanda, Jagjit; Delmau, Laetitia Helene; Dudney, Nancy J

    2012-01-01

    In this work we show that the use of a high boiling point ether solvent (tetraglyme) promotes the formation of Li2O2 in a lithium-air cell. In addition, another major constituent in the discharge product of a Li-air cell contains halides, from the lithium salt, and the tetraglyme used as the solvent. This information is critical to the development of Li-air electrolytes which are stable and promote the formation of the desired Li2O2 products.

  8. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    SciTech Connect (OSTI)

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed of nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.

  9. Unconventional irreversible structural changes in a high-voltage Li–Mn-rich oxide for lithium-ion battery cathodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, Debasish; Sefat, Athena S.; Payzant, E. Andrew; Li, Jianlin; Wood, David L.; Daniel, Claus

    2015-02-19

    Making all-electric vehicles (EVs) commonplace in transportation applications will require affordable high-power and high-energy-density lithium-ion batteries (LIBs). The quest for suitable cathode materials to meet this end has currently plateaued with the discovery of high-voltage (≥4.7 V vs. Li+), high capacity (~250 mAh/g) lithium–manganese-rich (LMR) layered composite oxides. In spite of the promise of LMR oxides in high-energy-density LIBs, an irreversible structural change has been identified in this work that is governed by the formation of a ‘permanent’ spin-glass type magnetically frustrated phase indicating a dominant AB2O4 (A = Li, B = Mn) type spinel after a short-term lithium deintercalationmore » (charging) and intercalation (discharging) process. Furthermore, reduction of transition metal (Mn) ions from the 4+ state (pristine LMR) to 3+ (cycled LMR), which alters the intercalation redox chemistry and suggests the presence of ‘unfilled’ lithium vacancies and/or oxygen vacancies in the lattice after cycling, has presented a major stumbling block. Finally, these situations result in both loss of capacity and fading of the voltage profile, and these combined effects significantly reduce the high energy density over even short-term cycling.« less

  10. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; Roberts, Scott A.; Barringer, David A.; Snyder, Chelsea M.; Janvrin, Madison R.; Apblett, Christopher A.

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  11. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  12. Lithium Energy Japan | Open Energy Information

    Open Energy Info (EERE)

    Energy Japan Jump to: navigation, search Name: Lithium Energy Japan Place: Kyoto, Japan Zip: 6018520 Product: Kyoto-based developer, manufacturer and seller of large lithium-ion...

  13. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    Wilcox, James D.

    2008-12-18

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the

  14. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Lithium-Ion Battery Electrodes Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes ...

  15. Surface Modification Agents Increase Safety, Security of Lithium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Modification Agents Increase Safety, Security of Lithium-Ion Batteries New Process to Modify the Surface of the Active Material Used in Lithium-Ion Batteries Argonne ...

  16. Lithium Salt-doped, Gelled Polymer Electrolyte with a Nanoporous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium Salt-doped, Gelled Polymer Electrolyte with a ... electrolyte material for use in lithium ion batteries that exhibits better ion ...

  17. Morphological effects on the electrochemical performance of lithium-rich layered oxide cathodes, prepared by electrospinning technique, for lithium-ion battery applications

    SciTech Connect (OSTI)

    Min, Ji Won; Kalathil, Abdul Kareem; Yim, Chul Jin; Im, Won Bin

    2014-06-01

    Li-rich Li{sub 1.2}Ni{sub 0.17}Co{sub 0.17}Mn{sub 0.5}O{sub 2} cathode materials were synthesized by electrospinning technique with different polymers, and their structural, morphological, and electrochemical performances were investigated. It was found that the electrospinning process leads to the formation of a fiber and flower-like morphology, by using different polymers and heat treatment conditions. The nanostructured morphology provided these materials with high initial discharge capacity. The cycling stability was improved with agglomerated nano-particles, as compared with porous materials. - Highlights: • Fiber and flower-like Li-rich cathode was synthesized by simple electrospinning. • Polymer dependent morphology and electrochemical performance was investigated. • Well-organized porous structure facilitates the diffusion of lithium ions. • Technique could be applicable to other cathode materials as well.

  18. Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature

    SciTech Connect (OSTI)

    Shim, Joongpyo; Kostecki, Robert; Richardson, Thomas; Song, Xiangyun; Striebel, Kathryn A.

    2002-06-21

    Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100 percent DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65 percent of its initial capacity after 140 cycles at 60 degrees C compared to only 4 percent loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65 percent, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

  19. U.S. DOE FreedomCAR and Vehicle Technologies Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Interim Report

    SciTech Connect (OSTI)

    Jon P. Christophersen; Chet Motloch; Ira D. Bloom; Vince Battaglia; Ganesan Nagasubramanian; Tien Q. Duong

    2003-02-01

    The Advanced Technology Development Program is currently evaluating the performance of the second generation of Lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells consist of a baseline chemistry and one variant chemistry. These cells were distributed over a matrix consisting of three states-of-charge (SOC) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar-life cells are clamped at an opencircuit voltage corresponding to 60% SOC and undergo a once-per-day pulse profile. The cycle-life cells are continuously pulsed using a profile that is centered around 60% SOC. The accelerated-life cells are following the calendar-life test procedures, but using the cycle-life pulse profile. Life testing is interrupted every four weeks for reference performance tests (RPTs), which are used to quantify changes in capacity, resistance, and power. The RPTs consist of a C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy at 60% SOC. Capacity-, power-, and electrochemical impedance spectroscopy-based performance results are reported.

  20. X-ray absorption spectroscopy of LiBF 4 in propylene carbonate. A model lithium ion battery electrolyte

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Jacob W.; Lam, Royce K.; Sheardy, Alex T.; Shih, Orion; Rizzuto, Anthony M.; Borodin, Oleg; Harris, Stephen J.; Prendergast, David; Saykally, Richard J.

    2014-08-20

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li+ ion in this model electrolyte.more » By generating linear combinations of the computed spectra of Li+-associating and free PC molecules and comparing to the experimental spectrum, we find a Li+–solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.« less

  1. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery

    SciTech Connect (OSTI)

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anode for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)

  2. 3D Thermal and Electrochemical Model for Spirally Wound Large Format Lithium-ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Kim, G. H.; Smith, K.

    2010-10-14

    In many commercial cells, long tabs at both cell sides, leading to uniform potentials along the spiral direction of wound jelly rolls, are rarely seen because of their high manufacturing cost. More often, several metal strips are welded at discrete locations along both current collector foils. With this design, the difference of electrical potentials is easily built up along current collectors in the spiral direction. Hence, the design features of the tabs, such as number, location and size, can be crucial factors for spiral-shaped battery cells. This paper presents a Li-ion battery cell model having a 3-dimensional spiral mesh involving a wound jellyroll structure. Further results and analysis will be given regarding impacts of tab location, number, and size.

  3. Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... these numbers do not include the Tesla "gigafactory", which at the announced 35 GWh manufacturing capacity will significantly alter the global manufacturing landscape (Tesla 2016). ...

  4. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemica...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o Link mechanical to ECT model * Summary and Future work 3 Introduction * Battery performance, cost, and safety must be further improved for larger market share of HEVsPEVs and ...

  5. Polyester Separators for Lithium-ion Cells: Improving Thermal...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC04-94AL85000 Resource Type: Journal Article Resource Relation: Journal Name: Proposed for publication in Advanced Energy Materials. Research Org: Sandia ...

  6. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion

    SciTech Connect (OSTI)

    Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.; Huq, Ashfia; Payzant, E. Andrew; Wood, David L.; Daniel, Claus

    2014-09-30

    Discovery of high-voltage layered lithium-and manganese-rich (LMR) composite oxide electrode has dramatically enhanced the energy density of current Li-ion energy storage systems. However, practical usage of these materials is currently not viable because of their inability to maintain a consistent voltage profile (voltage fading) during subsequent charge-discharge cycles. This report rationalizes the cause of this voltage fade by providing the evidence of layer to spinel-like (LSL) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 LMR composite oxide. By employing neutron powder diffraction, and temperature dependent magnetic susceptibility, we show that LSL structural rearrangement in LMR oxide occurs through a tetrahedral cation intermediate via: i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct →LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTM oct → LiLitet]; and ii) migration of Mn from the octahedral sites of the transition metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct MnLitet MnLioct)]. The findings opens the door to the potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide cathodes by manipulating the composition/structure for practical use in high-energy-density lithium-ion batteries.

  7. Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohanty, Debasish; Li, Jianlin; Abraham, Daniel P.; Huq, Ashfia; Payzant, E. Andrew; Wood, David L.; Daniel, Claus

    2014-09-30

    Discovery of high-voltage layered lithium-and manganese-rich (LMR) composite oxide electrode has dramatically enhanced the energy density of current Li-ion energy storage systems. However, practical usage of these materials is currently not viable because of their inability to maintain a consistent voltage profile (voltage fading) during subsequent charge-discharge cycles. This report rationalizes the cause of this voltage fade by providing the evidence of layer to spinel-like (LSL) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 LMR composite oxide. By employing neutron powder diffraction, and temperature dependent magnetic susceptibility, we show that LSL structural rearrangement in LMR oxide occurs through a tetrahedral cationmore » intermediate via: i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct →LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTM oct → LiLitet]; and ii) migration of Mn from the octahedral sites of the transition metal layer to the permanent octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct MnLitet MnLioct)]. The findings opens the door to the potential routes to mitigate this atomic restructuring in the high-voltage LMR composite oxide cathodes by manipulating the composition/structure for practical use in high-energy-density lithium-ion batteries.« less

  8. Porous Co{sub 3}O{sub 4} nanorods as anode for lithium-ion battery with excellent electrochemical performance

    SciTech Connect (OSTI)

    Guo, Jinxue; Chen, Lei; Zhang, Xiao Chen, Haoxin

    2014-05-01

    In this manuscript, porous Co{sub 3}O{sub 4} nanorods are prepared through a two-step approach which is composed of hydrothermal process and heating treatment as high performance anode for lithium-ion battery. Benefiting from the porous structure and 1-dimensional features, the product becomes robust and exhibits high reversible capability, good cycling performance, and excellent rate performance. - Graphical abstract: 1D porous Co{sub 3}O{sub 4} nanostructure as anode for lithium-ion battery with excellent electrochemical performance. - Highlights: • A two-step route has been applied to prepare 1D porous Co{sub 3}O{sub 4} nanostructure. • Its porous feature facilitates the fast transport of electron and lithium ion. • Its porous structure endows it with capacities higher than its theoretical capacity. • 1D nanostructure can tolerate volume changes during lithation/delithiation cycles. • It exhibits high capacity, good cyclability and excellent rate performance.

  9. Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries -- A Control Perspective: Preprint

    SciTech Connect (OSTI)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    2015-07-29

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under different levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.

  10. Synthesis of rock-salt type lithium borohydride and its peculiar Li{sup +} ion conduction properties

    SciTech Connect (OSTI)

    Miyazaki, R.; Maekawa, H.; Takamura, H.

    2014-05-01

    The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH{sub 4,} known for its super Li{sup +} ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH{sub 4}, more suitable to the high rate condition. We synthesized the H.P. form of LiBH{sub 4} under ambient pressure by doping LiBH{sub 4} with the KI lattice by sintering. The formation of a KI - LiBH{sub 4} solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li{sup +} conductor despite its small Li{sup +} content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the Parasitic Conduction Mechanism. This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  11. Localization of vacancies and mobility of lithium ions in Li{sub 2}ZrO{sub 3} as obtained by {sup 6,7}Li NMR

    SciTech Connect (OSTI)

    Baklanova, Ya. V., E-mail: baklanovay@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation); Arapova, I. Yu.; Buzlukov, A.L.; Gerashenko, A.P.; Verkhovskii, S.V.; Mikhalev, K.N. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 Kovalevskaya str., 620990 Ekaterinburg (Russian Federation); Denisova, T.A.; Shein, I.R.; Maksimova, L.G. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation)

    2013-12-15

    The {sup 6,7}Li NMR spectra and the {sup 7}Li spinlattice relaxation rate were measured on polycrystalline samples of Li{sub 2}ZrO{sub 3}, synthesized at 1050 K and 1300 K. The {sup 7}Li NMR lines were attributed to corresponding structural positions of lithium Li1 and Li2 by comparing the EFG components with those obtained in the first-principles calculations of the charge density in Li{sub 2}ZrO{sub 3}. For both samples the line width of the central {sup 7}Li transition and the spinlattice relaxation time decrease abruptly at the temperature increasing above ?500 K, whereas the EFG parameters are averaged (??{sub Q}?=42 (5) kHz) owing to thermally activated diffusion of lithium ions. - Graphical abstract: Path of lithium ion hopping in lithium zirconate Li{sub 2}ZrO{sub 3}. - Highlights: Polycrystalline samples Li{sub 2}ZrO{sub 3} with monoclinic crystal structure synthesized at different temperatures were investigated by {sup 6,7}Li NMR spectroscopy. Two {sup 6,7}Li NMR lines were attributed to the specific structural positions Li1 and Li2. The distribution of vacancies was clarified for both lithium sites. The activation energy and pathways of lithium diffusion in Li{sub 2}ZrO{sub 3} were defined.

  12. Relation between the overpotentials and structures of graphite fluoride electrode in nonaqueous lithium cell

    SciTech Connect (OSTI)

    Watanabe, N.; Hagiwara, R.; Nakajima, T.

    1984-09-01

    A study was made of the relation between the cathode overpotentials and structures of two kinds of graphite fluorides, (CF)n and (C2F)n in a nonaqueous lithium battery. The overpotential of (CF)n electrode decreased with increasing interlayer spacing and decreasing thickness of the crystallite along the C axis. However, it was found that the overpotential of (C2F)n electrode primarily depended on the amount of the defects which would be present in the form of polynuclear aromatic carbon rings in (C2F)n. The defects in (C2F)n would give the short circuiting paths for the transfer of a lithium ion in diffusion layer. The higher discharge potential of (C2F)n than that of (CF)n was mainly attributed to the effect of the defects contained in (C2F)n. 17 references.

  13. Design and simulation of lithium rechargeable batteries

    SciTech Connect (OSTI)

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  14. Thin-Film Lithium-Based Electrochromic Devices - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Thin-Film Lithium-Based Electrochromic Devices ... For lithium-based electrochromic cells, the electrolyte contains mobile lithium which ...

  15. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. The flexible electrode exhibited a high discharge capacity without conductive additives. Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  16. Optimal Charging Profiles with Minimal Intercalation-Induced Stresses for Lithium-Ion Batteries Using Reformulated Pseudo 2-Dimensional Models

    SciTech Connect (OSTI)

    Suthar, B; Northrop, PWC; Braatz, RD; Subramanian, VR

    2014-07-30

    This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery by restricting the intercalation-induced stresses to a pre-determined limit estimated using a pseudo 2-dimensional (P2D). model. This paper focuses on the problem of maximizing the charge stored in a given time while restricting capacity fade due to intercalation-induced stresses. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage or CC-CV) are not derived by considering capacity fade mechanisms, which are not only inefficient in terms of life-time usage of the batteries but are also slower by not taking into account the changing dynamics of the system. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.

  17. National Alliance for Advanced Transportation Battery Cell Manufacture...

    Open Energy Info (EERE)

    Manufacture Product: US-based consortium formed to research, develop, and mass produce lithium ion batteries. References: National Alliance for Advanced Transportation Battery Cell...

  18. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  19. Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary Batteries | Department of Energy 3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es165_wood_2013_p.pdf (4.5 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Roll-to-Roll Electrode Processing NDE for Advanced Lithium Secondary Batteries Lithium Ion Electrode Production NDE and QC Considerations Roll-to-Roll Electrode Processing and Materials NDE for Advanced Lithium Secondary

  20. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.