Sample records for lithium ion battery

  1. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  2. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  3. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  5. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  6. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanbook is intended for lithium-ion scientists and engineersof the state of the Lithium-ion art and in this they have

  7. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

  8. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  9. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  10. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  11. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  12. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  13. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  14. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  15. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  16. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  17. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

  18. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  19. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  20. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30T23:59:59.000Z

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  1. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  2. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01T23:59:59.000Z

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  3. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  5. EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Lithium Ion Breakout Session Report EV Everywhere Batteries Workshop - Beyond Lithium Ion Breakout Session Report Breakout session presentation for the EV Everywhere Grand...

  6. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    -ion batteries like on the inside Anode Separator Cathode 500 nm 20 um20 um Anode: Graphite SeparatorMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

  7. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  8. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  9. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11T23:59:59.000Z

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  10. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

  11. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

  12. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  13. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  14. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  15. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  16. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  17. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyMaterials for Lithium Ion Batteries. Materials Matters. 7 4.to the Study of Lithium Ion Batteries. J. Solid State

  18. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of Variousare presented for lithium-ion cells and modules utilizingAdvisor utilizing lithium-ion batteries of the different

  19. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  20. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  1. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

  2. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode. J. Phys.Aluminum is used for lithium ion battery cathodes and alland copper is used for lithium ion battery anodes. After the

  3. High-discharge-rate lithium ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22T23:59:59.000Z

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  4. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    Solid Solutions: Coupled Lithium-Ion and Electron Mobility.lithium batteries, II. Lithium ion rechargeable batteries.1/4)Ni(3/4)O(2) for lithium-ion batteries. Electrochimica

  5. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  6. Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery

    E-Print Network [OSTI]

    Endres. William J.

    Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery Hessam.1063/1.3643035] Lithium-ion batteries are of great interest due to their high energy density, however, various safety properties, many applications are pos- sible.10,11 One is the electrolyte of the lithium-ion batteries, where

  7. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  8. Lithium-ion batteries having conformal solid electrolyte layers

    DOE Patents [OSTI]

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27T23:59:59.000Z

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  9. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    DOE Patents [OSTI]

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13T23:59:59.000Z

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  10. Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    García, R. Edwin

    Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries R. Edwin Garci´a,a, *,z microstructure. Experi- mental measurements are reproduced. Early models for lithium-ion batteries were developed Institute of Technology, Cambridge, Massachusetts 01239-4307, USA The properties of rechargeable lithium

  11. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    Studies of ionic liquids in lithium-ion battery test systemsobstacles for their use in lithium-ion batteries. However,devices. For rechargeable lithium-ion batteries, it is

  12. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    J. Newman, Advances in Lithium-Ion Batteries, ch. Modelingfor Overcharge Protection of Lithium-Ion Batteries Karen E.overcharge protec- tion for lithium-ion batteries. The model

  13. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE IN HYBRIDof high-power lithium-ion batteries for hybrid electricthe development of lithium-ion batteries for hybrid electric

  14. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Environmental Management (EM)

    Recycling Facilities Lithium-Ion Battery Recycling Facilities 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  15. Surface Modification Agents for Lithium-Ion Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Modification Agents for Lithium-Ion Batteries Technology available for licensing: A process to modify the surface of the active material used in an electrochemical device...

  16. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries High Energy Novel Cathode Alloy Automotive Cell Develop & evaluate...

  17. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable...

  18. Advanced Cathode Material Development for PHEV Lithium Ion Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Cathode Material Development for PHEV Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: High Energy Novel...

  19. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    on larger scales. Im- provement of the safety of lithium-ion batteries must occur if they are to be utilized in aqueous cells. However, the choice of a suitable anode material for an aqueous lithium-ion battery is moreSynthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion

  20. STUDIES ON THE ROLE OF THE SUBSTRATE INTERFACE FOR GERMANIUM AND SILICON LITHIUM ION BATTERY ANODES

    E-Print Network [OSTI]

    Florida, University of

    AND SILICON LITHIUM ION BATTERY ANODES235 SEM/FIB, microstructure characterization, and local electron atom probe........................................................................................................................16 1.1 Lithium Ion Batteries

  1. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness...

    Office of Environmental Management (EM)

    Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations This Clean...

  2. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01T23:59:59.000Z

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  3. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01T23:59:59.000Z

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  4. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    4 , natural graphite, lithium-ion battery, diagnosticsand efficiency of pouch lithium-ion cells for constant C/24 -BASED HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim,

  5. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–Material in Lithium Ion Batteries. Adv. Energy Mater. n/a–n/decomposition in lithium ion batteries: first-principles

  6. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    and J. Newman, Advances in Lithium-Ion Batteries, ch.Modeling of Lithium Batteries. Kluwer Academic Publishers,Protection of Lithium-Ion Batteries Karen E. Thomas-Alyea,

  7. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  8. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim, Azucenaof rechargeable lithium batteries for application in hybridin consumer-size lithium batteries, such as the synthetic

  9. The development of low cost LiFePO4-based high power lithium-ion batteries

    E-Print Network [OSTI]

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    study of rechargeable lithium batteries for application inin consumer-size lithium batteries, such as the synthetic4 -BASED HIGH POWER LITHIUM-ION BATTERIES Joongpyo Shim,

  10. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  11. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Rechargeable Sodium-Ion Batteries: Potential Alternatives toCurrent Lithium-Ion Batteries. Adv. Energy Mater. 2 (2012):J. , Rojo, T. Na-ion Batteries, Recent Advances and Present

  12. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    for ATD 18650 GEN 1 lithium ion cells, Revision 4, DecemberFAILURE MODES IN HIGH-POWER LITHIUM-ION BATTERIES FOR USE INdevelopment of high-power lithium-ion batteries for hybrid

  13. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    41 Analysis on Performances of Lithium-Ion Polymerenergy for the system and lithium-ion batteries will be usedFIVE Performance of Lithium-Ion Polymer Battery Introduction

  14. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    for a 2 V Rechargeable Lithium Battery. Journal of Thein a rechargeable lithium battery. Journal of Power Sourcesexception being the lithium-ion battery (Table 2.1). Table

  15. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes

    E-Print Network [OSTI]

    An, Kai

    2013-11-25T23:59:59.000Z

    THERMO-MECHANICAL BEHAVIOR OF LITHIUM-ION BATTERY ELECTRODES A Thesis by KAI AN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree... on the thermo-mechanical behavior of lithium ion battery electrodes. It presents a single particle model of random lattice spring elements coupled with solid phase Li-ion diffusion under active temperature effects. The thermal features are realized by solving...

  16. Thermo-mechanical Behavior of Lithium-ion Battery Electrodes 

    E-Print Network [OSTI]

    An, Kai

    2013-11-25T23:59:59.000Z

    Developing electric vehicles is widely considered as a direct approach to resolve the energy and environmental challenges faced by the human race. As one of the most promising power solutions to electric cars, the lithium ion battery is expected...

  17. Mixed Polyanion Glasses for Lithium Ion Battery Cathodes | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Polyanion Glasses for Lithium Ion Battery Cathodes May 06 2015 09:30 AM - 10:30 AM Andrew K. Kercher, Division Staff Materials Science and Technology Division Seminar...

  18. Composite Electrodes for Rechargeable Lithium-Ion Batteries ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composite Electrodes for Rechargeable Lithium-Ion Batteries Technology available for licensing: Electrodes having composite xLi2M'O3(1-x)LiMO2 structures in which an...

  19. Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive Microcapsules M. Baginska, B.J. Blaiszik, R.J. Merriman, J.S. Moore, N. R. Sottos, and S.R. White, University of...

  20. Fail Safe Design for Large Capacity Lithium-ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fail Safe Design for Large Capacity Lithium-ion Batteries NREL Commercialization & Tech Transfer Webinar March 27, 2011 Gi-Heon Kim gi-heon.kim@nrel.gov John Ireland, Kyu-Jin Lee,...

  1. Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life

    E-Print Network [OSTI]

    Zhou, Chongwu

    Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life Mingyuan Ge material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600 in energy storage has stimulated significant interest in lithium ion battery research. The lithium ion

  2. Sandia National Laboratories: lithium-ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion battery Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  3. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  4. Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries

    E-Print Network [OSTI]

    Moore, Charles J. (Charles Jacob)

    2012-01-01T23:59:59.000Z

    A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. ...

  5. Cubic Spline Regression for the Open-Circuit Potential Curves of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Cubic Spline Regression for the Open-Circuit Potential Curves of a Lithium-Ion Battery Qingzhi Guo-circuit potential OCP of an inter- calation electrode in a lithium-ion battery on the lithium concentra- tion reaction at an electrode in a lithium- ion battery depends exponentially on the difference between

  6. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

  7. he mobile world depends on lithium-ion batteries --today's ultimate

    E-Print Network [OSTI]

    Napp, Nils

    T he mobile world depends on lithium- ion batteries -- today's ultimate rechargeable energy store -- a performance roughly on a par with the best Li-ion batteries. His batteries are based on lithium­sulphur (Li is applied to reverse the electron flow, which also drives the lithium ions back. In a Li­S battery

  8. Diagnostic Evaluation of Detrimental Phenomena in High-Power Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kostecki, Robert; Lei, Jinglei; McLarnon, Frank; Shim, Joongpyo; Striebel, Kathryn

    2005-01-01T23:59:59.000Z

    Phenomena in High-Power Lithium-Ion Batteries RobertAbstract A pouch-type lithium-ion cell, with graphite anodewith model pouch-type lithium-ion cells, with graphite

  9. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    of ionic liquids in lithium-ion battery test systems J.battery point of view, it is essential that an ionic liquid – lithiumlead to battery short-out. The ionic-liquid / lithium-salt

  10. Intercalation dynamics in lithium-ion batteries

    E-Print Network [OSTI]

    Burch, Damian

    2009-01-01T23:59:59.000Z

    A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

  11. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01T23:59:59.000Z

    LIFE REDUCTION IN HIGH-POWER LITHIUM-ION BATTERIES RobertRaman, AFM Introduction Lithium-ion batteries are being

  12. Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a

    E-Print Network [OSTI]

    Control oriented 1D electrochemical model of lithium ion battery Kandler A. Smith a , Christopher D Available online 28 June 2007 Abstract Lithium ion (Li-ion) batteries provide high energy and power density dynamics (i.e. state of charge). Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery

  13. Modeling temperature distribution in cylindrical lithium ion batteries for use in electric vehicle cooling system design

    E-Print Network [OSTI]

    Jasinski, Samuel Anthony

    2008-01-01T23:59:59.000Z

    Recent advancements in lithium ion battery technology have made BEV's a more feasible alternative. However, some safety concerns still exist. While the energy density of lithium ion batteries has all but made them the ...

  14. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    E-Print Network [OSTI]

    Braatz, Richard D.

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, ...

  15. Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...

    Broader source: Energy.gov (indexed) [DOE]

    Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

  16. EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery...

    Office of Environmental Management (EM)

    0: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production Facilities near Detroit, MI EA-1690: A123 Systems, Inc., Automotive-Class Lithium-Ion Battery Production...

  17. Electrolytes for Use in High Energy Lithium-Ion Batteries with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range...

  18. Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Varahramyan

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Paper-Based Lithium-Ion Battery Nojan Aliahmad, Mangilal Agarwal, Sudhir Shrestha, and Kody Indianapolis (IUPUI), Indianapolis, IN 46202 Lithium-ion batteries have a wide range of applications including devices. Lithium titanium oxide (Li4Ti5O12), lithium magnesium oxide (LiMn2O4) and lithium cobalt oxide

  19. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01T23:59:59.000Z

    Graphite and LiCoO 2 are the most commonly employed negative and positive electrodes, respectively, for lithium ion batteries.

  20. Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented

    E-Print Network [OSTI]

    #12;Mechanics of Electrodes in Lithium-ion Batteries A dissertation presented by Kejie Zhao, Joost J. Vlassak Kejie Zhao Mechanics of Electrodes in Lithium-ion Batteries Abstract This thesis investigates the mechanical behavior of electrodes in Li-ion batteries. Each electrode in a Li-ion battery

  1. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Electrolyte Additives for PHEVEV Lithium-ion Battery Development of Advanced Electrolytes and Electrolyte Additives...

  2. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  3. 2012 Jonathan G. Lange IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING

    E-Print Network [OSTI]

    Braun, Paul

    1 ©2012 Jonathan G. Lange #12;1 IMPROVING LITHIUM-ION BATTERY POWER AND ENERGY DENSITIES USING ABSTRACT Lithium-ion batteries are commonly used as energy storage devices in a variety of applications. The cathode architectures and materials have a large influence on the performance of lithium-ion batteries

  4. Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Toward Real-Time Simulation of Physics Based Lithium-Ion Battery Models Venkat R. Subramanian Technological University, Cookeville, Tennessee 38505, USA Recent interest in lithium-ion batteries for electric on the computational efficiency of lithium-ion battery models. This paper presents an effective approach to simulate

  5. State of health and charge measurements in lithium-ion batteries using mechanical stress

    E-Print Network [OSTI]

    Arnold, Craig B.

    State of health and charge measurements in lithium-ion batteries using mechanical stress John 2014 Keywords: Mechanical stress Lithium-ion battery State of charge (SOC) State of health (SOH importance of state of health (SOH) and state of charge (SOC) measurement to lithium-ion battery systems

  6. Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon

    E-Print Network [OSTI]

    Zhou, Chongwu

    Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon, United States *S Supporting Information ABSTRACT: Recently, silicon-based lithium-ion battery anodes have for the next-generation lithium-ion batteries with enhanced capacity and energy density. KEYWORDS: Cost

  7. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models, Berkeley, California 94720-8168, USA Lithium-ion batteries are typically modeled using porous electrode the active materials of porous electrodes for a pseudo-two- dimensional model for lithium-ion batteries

  8. Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Comparison of Reduced Order Lithium-Ion Battery Models for Control Applications C. Speltino, D. Di Domenico, G. Fiengo and A. Stefanopoulou Abstract-- Lithium-ion batteries are the core of new plug (HEV). In most cases the lithium-ion battery performances play an important role in the vehicle energy

  9. Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions

    E-Print Network [OSTI]

    Subramanian, Venkat

    Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary of physics-based lithium-ion battery models to improve computational efficiency. While the additional steps, 2008. Published January 30, 2009. Mathematical modeling of lithium-ion batteries involves

  10. Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z

    E-Print Network [OSTI]

    Popov, Branko N.

    Cycle Life Modeling of Lithium-Ion Batteries Gang Ning* and Branko N. Popov**,z Department and Newman4 made a first attempt to model the parasitic reactions in lithium-ion batteries by incorporating a solvent oxidation into a lithium-ion battery model. Spotnitz5 developed polynomial expressions

  11. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

  12. Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge

    E-Print Network [OSTI]

    Suo, Zhigang

    Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge, Massachusetts 02138 Evidence has accumulated recently that a high-capacity elec- trode of a lithium-ion battery in the particle is high, possibly leading to fracture and cavitation. I. Introduction LITHIUM-ION batteries

  13. Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery Simulations

    E-Print Network [OSTI]

    Reduction of Model Order Based on Proper Orthogonal Decomposition for Lithium-Ion Battery decomposition POD for a physics-based lithium-ion battery model. The methodology to obtain the proper orthogonal modes and to analyze their optimality is included. The POD-based ROM for a lithium-ion battery is used

  14. Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental identification and validation of an electrochemical model of a Lithium-Ion Battery an experimental parameter iden- tification and validation for an electrochemical lithium-ion battery model. The identification procedure is based on experimental data collected from a 6.8 Ah lithium-ion battery during charge

  15. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode

    E-Print Network [OSTI]

    Zhou, Chongwu

    Nano Res 1 Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode Titanium Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode JiepengRong,,§Xin Fang Oxide / Si Nanotube Arrays for Lithium-ion Battery Anode Jiepeng Rong,1,§ Xin Fang,1,§ Mingyuan Ge,1

  16. Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes Yun Jung as anode materials for lithium ion batteries. Using two clones, one for specificity (p8#9 virus) and one choice for lithium ion batteries, these noble metal/alloy nanowires serve as great model systems to study

  17. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo,

    E-Print Network [OSTI]

    Cui, Yi

    Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes Riccardo Ruffo, Seung Sae Hong as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance for higher specific energy lithium ion batteries for applications such as electric vehicles, next generation

  18. Journal of Power Sources 150 (2005) 229239 Analysis of capacity fade in a lithium ion battery

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Journal of Power Sources 150 (2005) 229­239 Analysis of capacity fade in a lithium ion battery determination of parameter values using a simple charge/discharge model of a Sony 18650 lithium ion battery; Lithium ion batteries 1. Introduction and motivation Theoverallperformanceofbatteriesdeterioratesovertime

  19. Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy

    E-Print Network [OSTI]

    Subramanian, Venkat

    Performance Characteristics of Cathode Materials for Lithium-Ion Batteries: A Monte Carlo Strategy to study the performance of cathode materials in lithium-ion batteries. The methodology takes into account. Published September 26, 2008. Lithium-ion batteries are state-of-the-art power sources1 for por- table

  20. AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS

    E-Print Network [OSTI]

    Peng, Huei

    AN OPEN-CIRCUIT-VOLTAGE MODEL OF LITHIUM-ION BATTERIES FOR EFFECTIVE INCREMENTAL CAPACITY ANALYSIS electrochemical properties and aging status. INTRODUCTION With the widespread use of lithium-ion batteries the com- plex battery physical behavior during the lithium-ion intercalac- tion/deintercalation process

  1. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries

    E-Print Network [OSTI]

    Zhu, Ting

    Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. Ã? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

  2. Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large reversible capacity and long-term cycle stability. KEYWORDS Lithium ion battery, silicon, nanotubes

  3. Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries (SOH) of cells. Index Terms--Lithium-ion batteries, Aging, EIS, State Of Charge, State Of Health, Fuzzy Logic System. I. INTRODUCTION Lithium ion secondary batteries are now being used in wide applications

  4. Towards a lithium-ion fiber battery

    E-Print Network [OSTI]

    Grena, Benjamin (Benjamin Jean-Baptiste)

    2013-01-01T23:59:59.000Z

    One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

  5. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  6. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21T23:59:59.000Z

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  7. Advanced titania nanostructures and composites for lithium ion battery

    E-Print Network [OSTI]

    Guo, John Zhanhu

    to the increasing demand of energy and shifting to the renewable energy resources, lithium ion batteries (LIBs) have been considered as the most prom- ising alternative and green technology for energy storage applied. Owing to its environmental benignity, availability, and stable structure, titanium dioxide (TiO2) is one

  8. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15T23:59:59.000Z

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  9. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of VariousMiller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology and

  10. A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System

    E-Print Network [OSTI]

    Popov, Branko N.

    A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System Godfrey those of high-energy battery systems such as lithium ion. Al- though advanced battery systems and double the performance of a battery/electrochemical capacitor-hybrid system has been developed. Simulation results

  11. Lithium ion batteries with titania/graphene anodes

    DOE Patents [OSTI]

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28T23:59:59.000Z

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  12. Chemical Shuttle Additives in Lithium Ion Batteries

    SciTech Connect (OSTI)

    Patterson, Mary

    2013-03-31T23:59:59.000Z

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

  13. Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery Fei YAO LPICM-École Polytechnique POLYTECHNIQUE Spécialité: Physique Par Fei YAO Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery #12;I ABSTRACT In this thesis work, carbon-based nanomaterials using as an anode for lithium ion

  14. Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles

    E-Print Network [OSTI]

    Sastry, Ann Marie

    Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode, as will be discussed later. Heat transfer analyses of lithium-ion batteries have stemmed from work on full cells.10-induced stress and heat generation inside Li-ion battery cathode LiMn2O4 particles under potentiodynamic control

  15. Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Efficient Reformulation of Solid-Phase Diffusion in Physics-Based Lithium-Ion Battery Models materials of porous electrodes for a rigorous pseudo-2D model for lithium-ion batteries. Concentration-ion battery models is the inclusion of solid phase diffusion in a second dimension r. It increases

  16. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    E-Print Network [OSTI]

    Shim, J.; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01T23:59:59.000Z

    Cathode for Lithium-Ion Batteries J. Shim a , A. Guerfi b ,material for Li rechargeable batteries because of low-cost,is a part of BATT (Batteries for Advanced Transportation

  17. Virus constructed iron phosphate lithium ion batteries in unmanned aircraft systems

    E-Print Network [OSTI]

    Kolesnikov-Lindsey, Rachel

    FePO? lithium ion batteries that have cathodes constructed by viruses are scaled up in size to examine potential for use as an auxiliary battery in the Raven to power the payload equipment. These batteries are assembled ...

  18. Diagnostic evaluation of power fade phenomena and calendar life reduction in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01T23:59:59.000Z

    HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki and FrankAFM Introduction Lithium-ion batteries are being seriously1.2 M LiPF 6 /graphite batteries for hybrid electric vehicle

  19. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    CHARACTERIZATION ON HIGHLY ORIENTED PYROLYTIC GRAPHITE cator of electrode passivation in realistic battery

  20. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  1. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio (>700 Wh/kg) cathode materials for lithium-ion batteries. 1 Introduction The widespread use of lithium-ion monoclinic phase).5 However, the field of lithium-ion batteries is very active, and a large number

  2. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic-ion batteries. Lithium transition metal phosphates such as LiFePO4,1 LiMnPO4,2 Li3V2(PO4)3 3 and LiVPO4F4 have

  3. Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High-Power Lithium-Ion Batteries For Use in Hybrid Electric Vehicles generated specifically for performance characterization of these batteries in HEV applications in contrast to the constant-current profiles typically used in the characterization of lithium-ion batteries for portable

  4. Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems

    E-Print Network [OSTI]

    Reconfiguration-Assisted Charging in Large-Scale Lithium-ion Battery Systems Liang He1 , Linghe, TX, USA ABSTRACT Large-scale Lithium-ion batteries are widely adopted in many systems and heterogeneous discharging con- ditions, cells in the battery system may have differ- ent statuses

  5. Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama

    E-Print Network [OSTI]

    Mathematical modeling of lithium-ion and nickel battery systems Parthasarathy M. Gomadama , John W of lithium and nickel battery systems developed at the University of South Carolina is presented. Models of Li/Li-ion batteries are reviewed that simulated the behavior of single electrode particles, single

  6. Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization

    E-Print Network [OSTI]

    Subramanian, Venkat

    Optimum Charging Profile for Lithium-ion Batteries to Maximize Energy Storage and Utilization Ravi applications, the ability to recharge quickly and efficiently is a critical requirement for a storage battery The optimal profile of charging current for a lithium-ion battery is estimated using dynamic optimization

  7. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect (OSTI)

    Ward, R.M.; Vaughey, J.T.

    2006-01-01T23:59:59.000Z

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  8. Electronically conductive polymer binder for lithium-ion battery electrode

    DOE Patents [OSTI]

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S; Zheng, Honghe

    2014-10-07T23:59:59.000Z

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  9. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    John Olson, PhD

    2004-07-21T23:59:59.000Z

    This project involved the synthesis of nanowire ã-MnO2 and characterization as cathode material for high-power lithium-ion batteries for EV and HEV applications. The nanowire synthesis involved the edge site decoration nanowire synthesis developed by Dr. Reginald Penner at UC Irvine (a key collaborator in this project). Figure 1 is an SEM image showing ã-MnO2 nanowires electrodeposited on highly oriented pyrolytic graphite (HOPG) electrodes. This technique is unique to other nanowire template synthesis techniques in that it produces long (>500 um) nanowires which could reduce or eliminate the need for conductive additives due to intertwining of fibers. Nanowire cathode for lithium-ion batteries with surface areas 100 times greater than conventional materials can enable higher power batteries for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The synthesis of the ã-MnO2 nanowires was successfully achieved. However, it was not found possible to co-intercalate lithium directly in the nanowire synthesis. Based on input from proposal reviewers, the scope of the project was altered to attempt the conversion into spinel LiMn2O4 nanowire cathode material by solid state reaction of the ã-MnO2 nanowires with LiNO3 at elevated temperatures. Attempts to perform the conversion on the graphite template were unsuccessful due to degradation of the graphite apparently caused by oxidative attack by LiNO3. Emphasis then shifted to quantitative removal of the nanowires from the graphite, followed by the solid state reaction. Attempts to quantitatively remove the nanowires by several techniques were unsatisfactory due to co-removal of excess graphite or poor harvesting of nanowires. Intercalation of lithium into ã-MnO2 electrodeposited onto graphite was demonstrated, showing a partial demonstration of the ã-MnO2 material as a lithium-ion battery cathode material. Assuming the issues of nanowires removal can be solved, the technique does offer potential for creating high-power lithium-ion battery cathode needed for advanced EV and HEVs. Several technical advancements will still be required to meet this goal, and are likely topics for future SBIR feasibility studies.

  10. Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence Brassart, Kejie Zhao, Zhigang Suo

    E-Print Network [OSTI]

    Suo, Zhigang

    Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries Laurence for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly rights reserved. 1. Introduction Rechargeable lithium-ion batteries are energy-storage systems of choice

  11. advanced lithium-ion batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: diesel engine, an electric motor, a Lithium-Ion battery, and an Eaton automated manual transmission. The electric motor, clutch, transmission, inverter,...

  12. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06T23:59:59.000Z

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  13. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05T23:59:59.000Z

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  14. Graphite Foams for Lithium-Ion Battery Current Collectors

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

    2007-01-01T23:59:59.000Z

    Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

  15. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  16. aqueous lithium-ion battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-Input Multi-Output (SIMIMO) Converter, Hybrid Fuel Cell-Lithium the average load power, a high power-density source (e.g., lithium ion batteries) the pulse peak power...

  17. Computational Research on Lithium Ion Battery Materials A Dissertation Submitted to the Graduate Faculty of

    E-Print Network [OSTI]

    Holzwarth, Natalie

    Computational Research on Lithium Ion Battery Materials by Ping Tang A Dissertation Submitted Research interest in lithium battery materials 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LiFePO4 battery material . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Why LiFePO4

  18. Highly - conductive cathode for lithium-ion battery using M13 phage - SWCNT complex

    E-Print Network [OSTI]

    Adams, Melanie Chantal

    2013-01-01T23:59:59.000Z

    Lithium-ion batteries are commonly used in portable electronics, and the rapid growth of mobile technology calls for an improvement in battery capabilities. Reducing the particle size of electrode materials in synthesis ...

  19. Design of a testing device for quasi-confined compression of lithium-ion battery cells

    E-Print Network [OSTI]

    Roselli, Eric (Eric J.)

    2011-01-01T23:59:59.000Z

    The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

  20. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective

    SciTech Connect (OSTI)

    Ramadesigan, V.; Northrop, P. W. C.; De, S.; Santhanagopalan, S.; Braatz, R. D.; Subramanian, Venkat R.

    2012-01-01T23:59:59.000Z

    The lithium-ion battery is an ideal candidate for a wide variety of applications due to its high energy/power density and operating voltage. Some limitations of existing lithium-ion battery technology include underutilization, stress-induced material damage, capacity fade, and the potential for thermal runaway. This paper reviews efforts in the modeling and simulation of lithium-ion batteries and their use in the design of better batteries. Likely future directions in battery modeling and design including promising research opportunities are outlined.

  1. Prediction of Multi-Physics Behaviors of Large Lithium-Ion Batteries During Internal and External Short Circuit (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Lee, K. J.; Chaney, L.; Smith, K.; Darcy, E.; Pesaran, A.; Darcy, E.

    2010-11-01T23:59:59.000Z

    This presentation describes the multi-physics behaviors of internal and external short circuits in large lithium-ion batteries.

  2. Redox shuttles for lithium ion batteries

    DOE Patents [OSTI]

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04T23:59:59.000Z

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  3. UV and EB Curable Binder Technology for Lithium Ion Batteries and UltraCapacitors

    SciTech Connect (OSTI)

    Voelker, Gary

    2012-04-30T23:59:59.000Z

    the basic feasibility of using UV curing technology to produce Lithium ion battery electrodes at speeds over 200 feet per minute has been shown. A unique set of UV curable chemicals were discovered that were proven to be compatible with a Lithium ion battery environment with the adhesion qualities of PVDF.

  4. A Stable Fluorinated and Alkylated Lithium Malonatoborate Salt for Lithium Ion Battery Application

    SciTech Connect (OSTI)

    Wan, Shun [ORNL; Jiang, Xueguang [ORNL; Guo, Bingkun [ORNL; Dai, Sheng [ORNL; Sun, Xiao-Guang [ORNL

    2015-01-01T23:59:59.000Z

    A new fluorinated and alkylated lithium malonatoborate salt, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), has been synthesized for lithium ion battery application. A 0.8 M LiBMFMB solution is obtained in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.). The new LiBMFMB based electrolyte exhibits good cycling stability and rate capability in LiNi0.5Mn1.5O4 and graphite based half-cells.

  5. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes Riccardo Ruffo a

    E-Print Network [OSTI]

    Cui, Yi

    Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes Riccardo Ruffo 2008 Available online xxxx Keywords: LiCoO2 Aqueous electrolyte LiNO3 Lithium-ion battery Cathode substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic

  6. Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Lithium-Ion battery State of Charge estimation with a Kalman Filter based on a electrochemical model Domenico Di Domenico, Giovanni Fiengo and Anna Stefanopoulou Abstract-- Lithium-ion battery hybrid electric vehicles (HEV). In most cases the lithium-ion battery performance plays an important role

  7. A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended Kalman filter

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive a SOC estimator for suitable for multiple lithium ion battery chemistries. Proved the system robustness of charge (SoC) of multiple types of lithium ion battery (LiB) cells with adaptive extended Kalman filter

  8. Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran, Branko N. Popov*

    E-Print Network [OSTI]

    Popov, Branko N.

    Capacity fade study of lithium-ion batteries cycled at high discharge rates Gang Ning, Bala Haran at high discharge rates. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lithium-ion batteries collectors can affect up to different degrees the capacity fade of lithium-ion batteries [1­5]. Quantifying

  9. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

  10. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  11. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  12. Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Liu, Hansan [ORNL; Bi, Zhonghe [ORNL; Sun, Xiao-Guang [ORNL; Unocic, Raymond R [ORNL; Paranthaman, Mariappan Parans [ORNL; Dai, Sheng [ORNL; Brown, Gilbert M [ORNL

    2011-01-01T23:59:59.000Z

    Mesoporous TiO2-B microsperes with a favorable material architecture are designed and synthesized for high power lithium ion batteries. This material, combining the advantages of fast lithium transport with a pseudocapacitive mechanism, adequate electrode-electrolyte contact and compact particle packing in electrode layer, shows superior high-rate charge-discharge capability and long-time cyclability for lithium ion batteries.

  13. Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Electrochemical Lithium Harvesting from Waste Li-ion Batteries Byron M. Wolfe III1 , Wen Chao Lee1 This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li

  14. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus [ORNL

    2014-01-01T23:59:59.000Z

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  15. High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cui, Yi

    Lithium-Ion Batteries Yuan Yang, Guangyuan Zheng, Sumohan Misra,§ Johanna Nelson,§ Michael F. Toney for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 as the cathode material for rechargeable lithium-ion batteries with high specific energy. INTRODUCTION

  16. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  17. Coated porous carbon cathodes for lithium ion batteries

    SciTech Connect (OSTI)

    Kercher, Andrew K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Klett, James William [ORNL

    2008-01-01T23:59:59.000Z

    Coated porous carbon cathodes for automotive lithium batteries are being developed with the goal of overcoming the problems with capacity fade and poor thermal management in conventional polymer-bonded cathodes. The active cathode material (lithium iron phosphate nanoparticles) is carbon-bonded to the porous carbon support material. Cathodes have been developed with high specific energy and power and with good cycling behavior.

  18. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

    1999-01-01T23:59:59.000Z

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  19. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12T23:59:59.000Z

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  20. Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

    2011-10-01T23:59:59.000Z

    There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

  1. On Uncertainty Quantification of Lithium-ion Batteries

    E-Print Network [OSTI]

    Hadigol, Mohammad; Doostan, Alireza

    2015-01-01T23:59:59.000Z

    In this work, a stochastic, physics-based model for Lithium-ion batteries (LIBs) is presented in order to study the effects of model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed uncertainty quantification (UQ) approach, based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobol' indices. Such information aids in designing more efficient and targeted quality control procedures, which consequently may result in reducing the LIB production cost. An LiC$_6$/LiCoO$_2$ cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates is considered to study the performance and accuracy of the proposed UQ approach. The results suggest that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance variability of the ce...

  2. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Miller, M. , Emerging Lithium-ion Battery Technologies forCharacteristics of Lithium-ion Batteries of Variousand Simulation Results with Lithium-ion Batteries, paper

  3. Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    Fracture of electrodes in lithium-ion batteries caused by fast charging Kejie Zhao, Matt Pharr; published online 8 October 2010 During charging or discharging of a lithium-ion battery, lithium batteries.3 A lithium-ion battery contains an electrolyte and two electrodes. Each electrode is an atomic

  4. Optimization of a Single Lithium-ion Battery Cell with a Gradient-based Algorithm , Wenbo Dua

    E-Print Network [OSTI]

    Papalambros, Panos

    Optimization of a Single Lithium-ion Battery Cell with a Gradient-based Algorithm Nansi Xuea for optimal cell designs are independent of discharge rate. Keywords Lithium ion battery Porous electrode for automating the design of lithium-ion cells to maximize cell energy density while meeting specific power

  5. Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

  6. Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lithium-ion battery performance. Last August, Dow Kokam was awarded a 4.9 million Energy Department grant and unveiled its new R&D center in October. In 2009, Dow Kokam was...

  7. Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries

    E-Print Network [OSTI]

    Meng, Shirley Y.

    Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

  8. Development of a representative volume element of lithium-ion batteries for thermo-mechanical integrity

    E-Print Network [OSTI]

    Hill, Richard Lee, Sr

    2011-01-01T23:59:59.000Z

    The importance of Lithium-ion batteries continues to grow with the introduction of more electronic devices, electric cars, and energy storage. Yet the optimization approach taken by the manufacturers and system designers ...

  9. Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis

    E-Print Network [OSTI]

    Meier, Joseph D. (Joseph David)

    2013-01-01T23:59:59.000Z

    A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

  10. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Braatz, Richard D.

    Many researchers have worked to develop methods to analyze and characterize capacity fade in lithium-ion batteries. As a complement to approaches to mathematically model capacity fade that require detailed understanding ...

  11. Microstructural effects on capacity-rate performance of vanadium oxide cathodes in lithium-ion batteries

    E-Print Network [OSTI]

    Davis, Robin M. (Robin Manes)

    2005-01-01T23:59:59.000Z

    Vanadium oxide thin film cathodes were analyzed to determine whether smaller average grain size and/or a narrower average grain size distribution affects the capacity-rate performance in lithium-ion batteries. Vanadium ...

  12. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    lithium-ion battery is the most advanced rechargeable battery technology in use today. These batteries

  13. Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy

    E-Print Network [OSTI]

    Zhou, Chongwu

    Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high Since Sony rst commercialized lithium ion batteries in the early 1990s, the market for lithium ion of the great success of lithium ion battery technology developed for portable electronic devices, higher

  14. Fracture and debonding in lithium-ion batteries with electrodes of hollow coreeshell nanostructures

    E-Print Network [OSTI]

    Suo, Zhigang

    . In particular, silicon anodes of such coreeshell nano- structures have been cycled thousands of times failure modes in a coated-hollow electrode particle. -ion batteries Fracture Debonding Silicon a b s t r a c t In a novel design of lithium-ion batteries, hollow

  15. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries of the composite. The composite material has been studied for specific discharge capacity, coulombic efficiency for the Li-ion battery. Of various carbon materials that have been tried, graphite is favored because it (i

  16. Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries

    E-Print Network [OSTI]

    Popov, Branko N.

    Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries Basker Sandia National Laboratories, Albuquerque, New Mexico, USA Tin-graphite composites have been developed as an alternate anode material for Li-ion batteries using an autocatalytic deposition technique. The specific

  17. Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,

    E-Print Network [OSTI]

    Batteries (LIB) are one of the most promising class of next generation energy storage devices, which canElastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion the charging/discharging which otherwise lead to in efficient battery operation. The cyclically charging

  18. Commuter simulation of lithium-ion battery performance in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.; Henriksen, G. L.; Amine, K.

    2000-12-04T23:59:59.000Z

    In this study, a lithium-ion battery was designed for a hybrid electric vehicle, and the design was tested by a computer program that simulates driving of a vehicle on test cycles. The results showed that the performance goals that have been set for such batteries by the Partnership for a New Generation of Vehicles are appropriate. The study also indicated, however, that the heat generation rate in the battery is high, and that the compact lithium-ion battery would probably require cooling by a dielectric liquid for operation under conditions of vigorous vehicle driving.

  19. Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles

    E-Print Network [OSTI]

    Fu, Haitao

    2009-01-01T23:59:59.000Z

    In this thesis report, both quantitative and qualitative approaches are used to provide a comprehensive analysis of lithium ion (Li-ion) batteries for plug-in hybrid electric vehicle (PHEV) and battery electric vehicle ...

  20. Electronic transport in Lithium Nickel Manganese Oxide, a high-voltage cathode material for Lithium-Ion batteries

    E-Print Network [OSTI]

    Ransil, Alan Patrick Adams

    2013-01-01T23:59:59.000Z

    Potential routes by which the energy densities of lithium-ion batteries may be improved abound. However, the introduction of Lithium Nickel Manganese Oxide (LixNi1i/2Mn3/2O4, or LNMO) as a positive electrode material appears ...

  1. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect (OSTI)

    Trulove, Paul C; Foley, Matthew P

    2013-03-14T23:59:59.000Z

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-Ã?Â?Ã?Â?salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  2. Maxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB charger, Lithium Ion USB charger, NiMH USB charger, USB battery

    E-Print Network [OSTI]

    Allen, Jont

    charger, Lithium Ion USB charger, NiMH USB charger, USB battery charger, charging batteries from USB, and cabling. An overview of nickel metal hydride (NiMH) and lithium battery technologies, charging methodsMaxim > App Notes > BATTERY MANAGEMENT INTERFACE CIRCUITS Keywords: USB, USB Charger, Li+ USB

  3. Inelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost J. Vlassak, and Zhigang Suoa

    E-Print Network [OSTI]

    in commercial lithium-ion batteries for both cathodes e.g., LiCoO2 and anodes e.g., graphite . By contrastInelastic hosts as electrodes for high-capacity lithium-ion batteries Kejie Zhao, Matt Pharr, Joost for high-capacity lithium-ion batteries. Upon absorbing lithium, silicon swells several times its volume

  4. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    DOE Patents [OSTI]

    2013-10-08T23:59:59.000Z

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  5. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L [ORNL; Li, Jianlin [ORNL; Daniel, Claus [ORNL

    2014-01-01T23:59:59.000Z

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  6. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  7. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles for perfor- mance characterization of these batteries in HEV applications in contrast to the constant microscopy, atomic force microscopy, gas chromatography, etc., were used to characterize the anode, cathode

  8. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    Linden, D. , Handbook of Batteries. 2nd ed. 1995, New York:rechargeable lithium batteries. Nature, 2001. 414(6861): p.of rechargeable lithium batteries, I. Lithium manganese

  9. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    of LiFePO(4) as lithium battery cathode and comparison withImproved LiFePO(4) Lithium Battery Cathode. ElectrochemicalOptimized LiFePO(4) for lithium battery cathodes. Journal of

  10. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    SciTech Connect (OSTI)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01T23:59:59.000Z

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  11. Integrated Lithium-Ion Battery Model Encompassing Multi-Physics in Varied Scales: An Integrated Computer Simulation Tool for Design and Development of EDV Batteries (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.; Pesaran, A.

    2011-01-01T23:59:59.000Z

    This presentation discusses the physics of lithium-ion battery systems in different length scales, from atomic scale to system scale.

  12. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15T23:59:59.000Z

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  13. Optimization of Acetylene Black Conductive Additive and Polyvinylidene Difluoride Composition for High Power Rechargeable Lithium-Ion Cells

    E-Print Network [OSTI]

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-01-01T23:59:59.000Z

    Lithium-Ion Battery; Electrode Design; Polymer Composite. Introduction Lithium-ion rechargeable batteries

  14. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    of ultracapacitors or even lithium-ion batteries. This isof ultracapacitors or even lithium-ion batteries. This isand Simulation Results with Lithium-ion Batteries. EET-2008

  15. Power and capacity fade mechanism of LiNi0.8Co0.15Al0.0502 composite cathodes in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2003-01-01T23:59:59.000Z

    LIFE REDUCTION IN HIGH-POWER LITHIUM-ION BATTERIES RobertRaman, AFM Introduction Lithium-ion batteries are being

  16. Development of a constitutive model predicting the point of short-circuit within lithium-ion battery cells

    E-Print Network [OSTI]

    Campbell, John Earl, Jr

    2012-01-01T23:59:59.000Z

    The use of Lithium Ion batteries continues to grow in electronic devices, the automotive industry in hybrid and electric vehicles, as well as marine applications. Such batteries are the current best for these applications ...

  17. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  18. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  19. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  20. Developments in lithium-ion battery technology in the Peoples Republic of China.

    SciTech Connect (OSTI)

    Patil, P. G.; Energy Systems

    2008-02-28T23:59:59.000Z

    Argonne National Laboratory prepared this report, under the sponsorship of the Office of Vehicle Technologies (OVT) of the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy, for the Vehicles Technologies Team. The information in the report is based on the author's visit to Beijing; Tianjin; and Shanghai, China, to meet with representatives from several organizations (listed in Appendix A) developing and manufacturing lithium-ion battery technology for cell phones and electronics, electric bikes, and electric and hybrid vehicle applications. The purpose of the visit was to assess the status of lithium-ion battery technology in China and to determine if lithium-ion batteries produced in China are available for benchmarking in the United States. With benchmarking, DOE and the U.S. battery development industry would be able to understand the status of the battery technology, which would enable the industry to formulate a long-term research and development program. This report also describes the state of lithium-ion battery technology in the United States, provides information on joint ventures, and includes information on government incentives and policies in the Peoples Republic of China (PRC).

  1. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with

    E-Print Network [OSTI]

    Qi, Limin

    Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries structures, lithium-ion batteries ABSTRACT A general method for facile kinetics-controlled growth of aligned foil, as well as many other inert substrates such as fluoride-doped tin oxide (FTO), Si, graphite

  2. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode

    E-Print Network [OSTI]

    Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode Yancheng Zhang and a graphite negative electrode were cycled nonintrusively at high power 5C rate and elevated temperature 40°C of lithium- ion batteries for electric vehicles EVs and hybrid EVs HEVs . Substantial research has been

  3. Characterization of high-power lithium-ion cells-performance and diagnostic analysis

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    by an arrow. Key words: Lithium ion battery, diagnostics,Development Program for Lithium-Ion Batteries: Handbook ofTechnology Development For Lithium- Ion Batteries: Gen 2

  4. Model Reformulation and Design of Lithium-ion Batteries

    E-Print Network [OSTI]

    Subramanian, Venkat

    -ion chemistry has been identified as a good candidate for high-power/high-energy secondary batteries implantable cardiovascular defibrillators (ICDs) operating at 10 mA current to hybrid vehicles requiring, these models have not been employed for parameter estimation or dynamic optimization of operating conditions

  5. Conflicting Roles Of Nickel In Controlling Cathode Performance In Lithium-ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Belharouak, Ilias; Genc, Arda; Wang, Zhiguo; Wang, Dapeng; Amine, Khalil; Gao, Fei; Zhou, Guangwen; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2012-09-17T23:59:59.000Z

    A variety of approaches are being made to enhance the performance of lithium ion batteries. Incorporating multi-valence transition metal ions into metal oxide cathodes has been identified as an essential approach to achieve the necessary high voltage and high capacity. However, the fundamental mechanism that limits their power rate and cycling stability remains unclear. The power rate strongly depends on the lithium ion drift speed in the cathode. Crystallographically, these transition metal-based cathodes frequently have a layered structure. In the classic wisdom, it is accepted that lithium ion travels swiftly within the layers moving out/in of the cathode during the charge/discharge. Here, we report the unexpected discovery of a thermodynamically driven, yet kinetically controlled, surface modification in the widely explored lithium nickel manganese oxide cathode material, which may inhibit the battery charge/discharge rate. We found that during cathode synthesis and processing before electrochemical cycling in the cell nickel can preferentially move along the fast diffusion channels and selectively segregate at the surface facets terminated with a mix of anions and cations. This segregation essentially blocks the otherwise fast out/in pathways for lithium ions during the charge/discharge. Therefore, it appears that the transition metal dopant may help to provide high capacity and/or high voltage, but can be located in a “wrong” location that blocks or slows lithium diffusion, limiting battery performance. In this circumstance, limitations in the properties of Li-ion batteries using these cathode materials can be determined more by the materials synthesis issues than by the operation within the battery itself.

  6. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  7. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  8. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  9. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  10. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

  11. Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    by the calcination temperatures. As cathode materials for lithium ion batteries, the Na1.25V3O8 nanobelts synthesized.25V3O8 nanobelts are promising cathode materials for secondary lithium batteries. KEYWORDS: sodium vanadium oxide, nanobelts, sol-gel, lithium-ion batteries, long-term stability 1. INTRODUCTION Because

  12. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOE Patents [OSTI]

    Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  13. Abstract--This paper describes experimental results aiming at analyzing lithium-ion batteries performances

    E-Print Network [OSTI]

    Boyer, Edmond

    electrochemical impedance spectroscopy (EIS) measurements on new and aged cells. A climatic test chamber is used. To follow such a characteristic, electrochemical impedance spectroscopy (EIS) measurements on Saft lithium ion batteries are carried out. EIS measurements interest both electrochemical and electrical

  14. Doped LiFePO? cathodes for high power density lithium ion batteries

    E-Print Network [OSTI]

    Bloking, Jason T. (Jason Thompson), 1979-

    2003-01-01T23:59:59.000Z

    Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode ...

  15. Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method

    E-Print Network [OSTI]

    Papalambros, Panos

    Design of a Lithium-ion Battery Pack for PHEV Using a Hybrid Optimization Method Nansi Xue1 vehicle applications using a hybrid numerical optimization method that combines multiple individual is applied to minimize the mass, volume and material costs. The optimized pack design satisfies the energy

  16. Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries

    E-Print Network [OSTI]

    Limthongkul, Pimpa, 1975-

    2002-01-01T23:59:59.000Z

    There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

  17. Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries

    E-Print Network [OSTI]

    UG-36 Edge-Enriched Graphitic Anodes by KOH Activation for Higher Rate Capability Lithium Ion Batteries D. Zakhidov,1,2 R. Sugamata,3 T. Yasue,3 T. Hayashi,3 Y. A. Kim,3 and M. Endo4 1 for Exotic Nanocarbons (JST), Shinshu University, Nagano, Japan\\ Natural graphite is the most commercially

  18. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regressionq

    E-Print Network [OSTI]

    Peng, Huei

    On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis-board battery state-of-health (SOH) monitoring framework is proposed. 2013 Accepted 5 February 2013 Available online 11 February 2013 Keywords: Electric vehicles Lithium

  19. Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns*, Ruthvik Basavaraj**, Venkatasailanathan Ramadesigan***, Folarin Latinwo**, Ravi N. Methekar***,

    E-Print Network [OSTI]

    Subramanian, Venkat

    Identification of Dominant Mechanisms for Capacity Fade of Lithium-Ion Batteries Nancy A. Burns- + 6C LixC6 Lithium-ion battery, chemistry and reactions Electric motor Engine Fuel tank Electric candidate for high-power/high-energy secondary batteries and commercial batteries of up to 75 Ah have been

  20. 1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013 State of Charge Estimation of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery accurate battery state of charge (SOC) estimation method for electric drive vehicles is developed based

  1. Fail-Safe Design for Large Capacity Lithium-Ion Battery Systems

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.; Ireland, J.; Pesaran, A.

    2012-07-15T23:59:59.000Z

    A fault leading to a thermal runaway in a lithium-ion battery is believed to grow over time from a latent defect. Significant efforts have been made to detect lithium-ion battery safety faults to proactively facilitate actions minimizing subsequent losses. Scaling up a battery greatly changes the thermal and electrical signals of a system developing a defect and its consequent behaviors during fault evolution. In a large-capacity system such as a battery for an electric vehicle, detecting a fault signal and confining the fault locally in the system are extremely challenging. This paper introduces a fail-safe design methodology for large-capacity lithium-ion battery systems. Analysis using an internal short circuit response model for multi-cell packs is presented that demonstrates the viability of the proposed concept for various design parameters and operating conditions. Locating a faulty cell in a multiple-cell module and determining the status of the fault's evolution can be achieved using signals easily measured from the electric terminals of the module. A methodology is introduced for electrical isolation of a faulty cell from the healthy cells in a system to prevent further electrical energy feed into the fault. Experimental demonstration is presented supporting the model results.

  2. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01T23:59:59.000Z

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  3. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    the lithium- transition metal electrostatic interaction. Thecation electrostatic interactions. 1 Lithium ions occupy theinteractions or by inhibiting the complete removal of lithium

  4. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  5. Corrosion of lithium-ion battery current collectors

    SciTech Connect (OSTI)

    Braithwaite, J.W.; Gonzales, A.; Nagasubramanian, G.; Lucero, S.J.; Peebles, D.E.; Ohlhausen, J.A.; Cieslak, W.R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

    1999-02-01T23:59:59.000Z

    The primary current-collector materials being used in lithium-ion cells are susceptible to environmental degradation: aluminum to pitting corrosion and copper to environmentally assisted cracking. Localized corrosion occurred on bare aluminum electrodes during simulated ambient-temperature cycling in an excess of electrolyte. The highly oxidizing potential associated with the positive-electrode charge condition was the primary factor. The corrosion mechanism differed from the pitting typically observed in aqueous electrolytes because each site was filled with a mixed metal/metal-oxide product, forming surface mounds or nodules. Electrochemical impedance spectroscopy was shown to be an effective analytical tool for characterizing the corrosion behavior of aluminum under these conditions. Based on X-ray photoelectron spectroscopy analyses, little difference existed in the composition of the surface film on aluminum and copper after immersion or cycling in LiPF{sub 6} electrolytes made with two different solvent formulations. Although Li and P were the predominant adsorbed surface species, the corrosion resistance of aluminum may simply be due to its native oxide. Finally, copper was shown to be susceptible to environmental cracking at or near the lithium potential when specific metallurgical conditions existed (work hardening and large grain size).

  6. Power and capacity fade mechanism of LiNi0.8Co0.15Al0.0502 composite cathodes in high-power lithium-ion batteries

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2003-01-01T23:59:59.000Z

    HIGH-POWER LITHIUM-ION BATTERIES Robert Kostecki and FrankAFM Introduction Lithium-ion batteries are being seriously1.2 M LiPF 6 /graphite batteries for hybrid electric vehicle

  7. Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing

    E-Print Network [OSTI]

    Mueller, Tim

    Cathode materials with structure similar to the mineral tavorite have shown promise for use in lithium-ion batteries, but this class of materials is relatively unexplored. We use high-throughput density-functional-theory ...

  8. Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density

    E-Print Network [OSTI]

    Subramanian, Venkat

    of energy density. optimization of design parameters. such as implantable cardiovascular defibrillators (ICDs) to high power/high energy applications such as hybrid carsModel-based simultaneous optimization of multiple design parameters for lithium-ion batteries

  9. Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer

    E-Print Network [OSTI]

    Subramanian, Venkat

    Kinetic Monte Carlo Simulation of Surface Heterogeneity in Graphite Anodes for Lithium-Ion Batteries: Passive Layer Formation Ravi N. Methekar,a,* Paul W. C. Northrop,a Kejia Chen,b Richard D. Braatz fade, and cycle life of Li-ion secondary batteries. In this paper, Kinetic Monte Carlo (KMC) simulation

  10. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect (OSTI)

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20T23:59:59.000Z

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  11. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

  12. Graphdiyne as a high-capacity lithium ion battery anode material

    SciTech Connect (OSTI)

    Jang, Byungryul; Koo, Jahyun; Park, Minwoo; Kwon, Yongkyung; Lee, Hoonkyung, E-mail: hkiee3@konkuk.ac.kr [School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)] [School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hosik [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)] [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Nam, Jaewook [School of Chemical Engineering, Sungkyunkwan University, Suwon 300 (Korea, Republic of)] [School of Chemical Engineering, Sungkyunkwan University, Suwon 300 (Korea, Republic of)

    2013-12-23T23:59:59.000Z

    Using the first-principles calculations, we explored the feasibility of using graphdiyne, a 2D layer of sp and sp{sup 2} hybrid carbon networks, as lithium ion battery anodes. We found that the composite of the Li-intercalated multilayer ?-graphdiyne was C{sub 6}Li{sub 7.31} and that the calculated voltage was suitable for the anode. The practical specific/volumetric capacities can reach up to 2719?mAh?g{sup ?1}/2032?mAh?cm{sup ?3}, much greater than the values of ?372?mAh?g{sup ?1}/?818?mAh?cm{sup ?3}, ?1117?mAh?g{sup ?1}/?1589?mAh?cm{sup ?3}, and ?744?mAh?g{sup ?1} for graphite, graphynes, and ?-graphdiyne, respectively. Our calculations suggest that multilayer ?-graphdiyne can serve as a promising high-capacity lithium ion battery anode.

  13. A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation and State-of-Health Monitoring $

    E-Print Network [OSTI]

    Peng, Huei

    A Unified Open-Circuit-Voltage Model of Lithium-ion Batteries for State-of-Charge Estimation. Keywords: Electric vehicles, Lithium-ion batteries, Open-Circuit-Voltage, State-of-Charge, State is widely used for characterizing battery properties under different conditions. It contains important

  14. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  15. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  16. Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Journal of Power Sources 160 (2006) 662­673 Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles Kandler Smith, Chao-Yang Wang Electrochemical Engine Center-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative

  17. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    on the overall performance of Li-ion batteries and EDLCs. SWNTs were incorporated into the anode of the Lithium carbon in the EDLC to act as conductors. An EDLC containing no SWNT was the control. Activated carbon secondary batteries ·High voltage (3.6 V) ·No memory effect ·lightweight EDLCs ·High power density ·High

  18. Lithium-ion battery diagnostic and prognostic techniques

    DOE Patents [OSTI]

    Singh, Harmohan N.

    2009-11-03T23:59:59.000Z

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  19. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  20. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  1. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy

  2. The lithium-ion battery industry for electric vehicles

    E-Print Network [OSTI]

    Kassatly, Sherif (Sherif Nabil)

    2010-01-01T23:59:59.000Z

    Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

  3. Hierarchically Structured Materials for Lithium Batteries. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric...

  4. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

  5. Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte

    E-Print Network [OSTI]

    Holtz, Megan E; Gunceler, Deniz; Gao, Jie; Sundararaman, Ravishankar; Schwarz, Kathleen A; Arias, Tomás A; Abruña, Héctor D; Muller, David A

    2013-01-01T23:59:59.000Z

    A major challenge in the development of new battery materials is understanding their fundamental mechanisms of operation and degradation. Their microscopically inhomogeneous nature calls for characterization tools that provide operando and localized information from individual grains and particles. Here we describe an approach that images the nanoscale distribution of ions during electrochemical charging of a battery in a transmission electron microscope liquid flow cell. We use valence energy-loss spectroscopy to track both solvated and intercalated ions, with electronic structure fingerprints of the solvated ions identified using an ab initio non-linear response theory. Equipped with the new electrochemical cell holder, nanoscale spectroscopy and theory, we have been able to determine the lithiation state of a LiFePO4 electrode and surrounding aqueous electrolyte in real time with nanoscale resolution during electrochemical charge and discharge. We follow lithium transfer between electrode and electrolyte a...

  6. Advanced Surface and Microstructural Characterization of Natural Graphite Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Gallego, Nidia C [ORNL] [ORNL; Contescu, Cristian I [ORNL] [ORNL; Meyer III, Harry M [ORNL] [ORNL; Howe, Jane Y [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Payzant, E Andrew [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Yoon, Steve [A123 Systems, Inc.] [A123 Systems, Inc.; Denlinger, Matthew [A123 Systems, Inc.] [A123 Systems, Inc.; Wood III, David L [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Natural graphite powders were subjected to a series of thermal treatments in order to improve the anode irreversible capacity loss (ICL) and capacity retention during long-term cycling of lithium ion batteries. A baseline thermal treatment in inert Ar or N2 atmosphere was compared to cases with a proprietary additive to the furnace gas environment. This additive substantially altered the surface chemistry of the natural graphite powders and resulted in significantly improved long-term cycling performance of the lithium ion batteries over the commercial natural graphite baseline. Different heat-treatment temperatures were investigated ranging from 950-2900 C with the intent of achieving the desired long-term cycling performance with as low of a maximum temperature and thermal budget as possible. A detailed summary of the characterization data is also presented, which includes X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and temperature-programed desorption mass spectroscopy (TPD-MS). This characterization data was correlated to the observed capacity fade improvements over the course of long-term cycling at high charge-discharge rates in full lithium-ion coin cells. It is believed that the long-term performance improvements are a result of forming a more stable solid electrolyte interface (SEI) layer on the anode graphite surfaces, which is directly related to the surface chemistry modifications imparted by the proprietary gas environment during thermal treatment.

  7. Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wu, H

    2011-08-18T23:59:59.000Z

    Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

  8. Some comments on the Butler-Volmer equation for modeling Lithium-ion batteries

    E-Print Network [OSTI]

    Ramos, A M

    2015-01-01T23:59:59.000Z

    In this article the Butler-Volmer equation used in describing Lithium-ion (Li-ion) batteries is discussed. First, a complete mathematical model based on a macro-homogeneous approach developed by Neuman is presented. Two common mistakes found in the literature regarding a sign in a boundary conditions and the use of the transfer coefficient are mentioned. The paper focuses on the form of the Butler-Volmer equation in the model. It is shown how practical problems can be avoided by taking care in the form used, particularly to avoid difficulties when the solid particle in the electrodes approaches a fully charged or discharged state or the electrolyte gets depleted. This shows that the open circuit voltage and the exchange current density must depend on the lithium concentration in both the solid and the electrolyte in a particular way at the extremes of the concentration ranges.

  9. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    of the different lithium battery chemistries are presentedMiller, M. , Emerging Lithium-ion Battery Technologies forMid-size Full (1) Lithium-ion battery with an energy density

  10. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    grid storage. The lithium-ion battery is the most advancedtoday [1, 2]. A lithium-ion battery is comprised of adendrite formation in lithium metal battery systems [12, 14,

  11. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08T23:59:59.000Z

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  12. Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications

    SciTech Connect (OSTI)

    Liao, Chen [ORNL] [ORNL; Han, Kee Sung [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Hillesheim, Daniel A [ORNL] [ORNL; Custelcean, Radu [ORNL] [ORNL; Lee, Dr. Eun-Sung [University of Texas at Austin] [University of Texas at Austin; Guo, Bingkun [ORNL] [ORNL; Bi, Zhonghe [ORNL] [ORNL; Jiang, Deen [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Hagaman, Edward {Ed} W [ORNL; Brown, Gilbert M [ORNL] [ORNL; Bridges, Craig A [ORNL] [ORNL; Paranthaman, Mariappan Parans [ORNL] [ORNL; Manthiram, Arumugam [University of Texas at Austin] [University of Texas at Austin; Dai, Sheng [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

  13. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16T23:59:59.000Z

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  14. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  15. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

  16. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  17. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  18. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    SciTech Connect (OSTI)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14T23:59:59.000Z

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  19. Layered cathode materials for lithium ion rechargeable batteries

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2007-04-17T23:59:59.000Z

    A number of materials with the composition Li.sub.1+xNi.sub..alpha.Mn.sub..beta.Co.sub..gamma.M'.sub..delta.O.sub.2-- zF.sub.z (M'=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, .alpha. is between about 0.2 and 0.6, .beta. is between about 0.2 and 0.6, .gamma. is between about 0 and 0.3, .delta. is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling.

  20. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  1. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A.

    2011-10-20T23:59:59.000Z

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on cost and energy density from changes in cell capacity, parallel cell groups, and manufacturing capabilities are easily assessed with the model. New proposed materials may also be examined to translate bench-scale values to the design of full-scale battery packs providing realistic energy densities and prices to the original equipment manufacturer. The model will be openly distributed to the public in the year 2011. Currently, the calculations are based in a Microsoft{reg_sign} Office Excel spreadsheet. Instructions are provided for use; however, the format is admittedly not user-friendly. A parallel development effort has created an alternate version based on a graphical user-interface that will be more intuitive to some users. The version that is more user-friendly should allow for wider adoption of the model.

  2. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  3. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  4. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    SciTech Connect (OSTI)

    Mehta, Apurva; Stanford Synchrotron Radiation Lightsource; Doeff, Marca M.; Chen, Guoying; Cabana, Jordi; Richardson, Thomas J.; Mehta, Apurva; Shirpour, Mona; Duncan, Hugues; Kim, Chunjoong; Kam, Kinson C.; Conry, Thomas

    2013-04-30T23:59:59.000Z

    We describe the use of synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) techniques to probe details of intercalation/deintercalation processes in electrode materials for Li ion and Na ion batteries. Both in situ and ex situ experiments are used to understand structural behavior relevant to the operation of devices.

  5. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries

    E-Print Network [OSTI]

    Hu, Yaoqin; Doeff, Marca M.; Kostecki, Robert; Finones, Rita

    2003-01-01T23:59:59.000Z

    LiFePO 4 in Lithium Batteries Yaoqin Hu,* Marca M. Doeff,*material in lithium ion batteries based on environmental and

  6. Electrocatalysts for Nonaqueous Lithium–Air Batteries:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

  7. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01T23:59:59.000Z

    Protection for 4 V Lithium Batteries at High Rates and LowRechargeable lithium batteries are known for their highBecause lithium ion batteries are especially susceptible to

  8. On the well-posedness of a mathematical model for Lithium-ion batteries

    E-Print Network [OSTI]

    Angel Manuel Ramos

    2015-05-29T23:59:59.000Z

    In this article we discuss the well-posedness of a mathematical model that is used in the literature for the simulation of Lithium-ion (Li-ion) batteries. First, a mathematical model based on a macro-homogeneous approach is presented, following previous works. Then it is showed, from a physical and a mathematical point of view, that a boundary condition widely used in the literature is not correct. Although these errors could be just sign typos (that can be explained as carelessness over d/d$x$ versus d/d$n$, with $n$ the outward unit vector) and authors using this model probably use the correct boundary condition when they solve it in order to do simulations, readers should be aware of the right choice. Therefore, the deduction of the correct boundary condition and a mathematical study of the well-posedness of the corresponding problem is carried out here.

  9. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries

    E-Print Network [OSTI]

    Leung, Kevin; Foster, Michael E; Ma, Yuguang; del la Hoz, Julibeth M Martinez; Sai, Na; Balbuena, Perla B

    2014-01-01T23:59:59.000Z

    Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implication...

  10. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode

    E-Print Network [OSTI]

    Angell, C. Austen

    Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including 2014 Available online 27 March 2014 Keywords: Lithium ion battery Sulfone-based electrolytes High t In an extension of our previous studies of sulfone-containing electrolytes for lithium batteries, we report tests

  11. Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman Filter

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Experimental Validation of a Lithium-Ion Battery State of Charge Estimation with an Extended Kalman unobservable conditions as discussed in [3] and allow the application of an extended Kalman Filter (EKF) from Kalman Filter (EKF) based on the averaged model and the performance is shown experimentally in a 10 cell

  12. Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries

    E-Print Network [OSTI]

    Ceder, Gerbrand

    controlling these two properties is the mag- nitude of interaction between the active and the inactiveElectrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries C. Y. Wang,a, * Y. S. Meng,b, * G. Ceder,c, *,z and Y. Lia,d,z a Advanced Materials

  13. Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea

    E-Print Network [OSTI]

    Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph study of the LiPF6±EC:EMC electrolyte. The effect of different variables on its thermal stability was evaluated: salt (LiPF6) concentration effect, solvents, EC:EMC ratios, and heating rates. Hermetically

  14. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Batteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Batterybatteries with Nano-Li4Ti5O12 electrodes, Advanced Automotive Battery and Ultracapacitor Conference, Third International Symposium on Large Lithium-ion Battery

  15. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01T23:59:59.000Z

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  16. A hyperbolic problem with non-local constraint describing ion-rearrangement in a model for ion-lithium batteries

    E-Print Network [OSTI]

    Stefano Scrobogna; Juan J. L. Velázquez

    2015-02-20T23:59:59.000Z

    In this paper we study the Fokker-Plank equation arising in a model which describes the charge and discharge process of ion-lithium batteries. In particular we focus our attention on slow reaction regimes with non-negligible entropic effects, which triggers the mass-splitting transition. At first we prove that the problem is globally well-posed. After that we prove a stability result under some hypothesis of improved regularity and a uniqueness result for the stability under some additional condition of

  17. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  18. Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Harrison, Katharine L [University of Texas at Austin; Bridges, Craig A [ORNL; Segre, C [Illinois Institute of Technology; VernadoJr, C Daniel [University of Texas at Austin; Applestone, Danielle [University of Texas at Austin; Bielawski, Christopher W [University of Texas at Austin; Paranthaman, Mariappan Parans [ORNL; Manthiram, Arumugam [University of Texas at Austin

    2014-01-01T23:59:59.000Z

    The theoretical capacity of LiVOPO4 could be increased from 159 to 318 mAh/g with the insertion of a second Li+ ion into the lattice to form Li2VOPO4, significantly enhancing the energy density of lithium-ion batteries. The changes accompanying the second Li+ insertion into -LiVOPO4 and -LiVOPO4 are presented here at various degrees of lithiation, employing both electrochemical and chemical lithiation. Inductively coupled plasma, X-ray absorption spectroscopy, and Fourier transform spectroscopy measurements indicate that a composition of Li2VOPO4 could be realized with an oxidation state of V3+ by the chemical lithiation process. The accompanying structural changes are evidenced by X-ray and neutron powder diffraction. Spectroscopic and diffraction data collected with the chemically lithiated samples as well as diffraction data on the electrochemically lithiated samples reveal that significant amount of lithium can be inserted into -LiVOPO4 before a more dramatic structural change occurs. In contrast, lithiation of -LiVOPO4 is more consistent with the formation of a two-phase mixture throughout most of the lithiation range. The phases observed with the ambient-temperature lithiation processes presented here are significantly different from those reported in the literature.

  19. Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries

    SciTech Connect (OSTI)

    Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2012-01-01T23:59:59.000Z

    Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

  20. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  1. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  2. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  3. Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries Anqiang Pan a,b

    E-Print Network [OSTI]

    Cao, Guozhong

    Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries Anqiang Pan a in three dimensions. Three reversible lithium ions can be totally extracted from the lattice of Li3V2(PO4 structure and a curved one-dimensional channel for lithium-ion diffusion, monoclinic Li3V2(PO4)3 provides

  4. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

  5. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.of LiCoi/3Nii/ Mn 02 for lithium-ion batteries," Chem.Mni/ 0 for advanced lithium-ion batteries," J. Power

  6. Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL] [ORNL; Sun, Xiao-Guang [ORNL] [ORNL; Sacci, Robert L [ORNL] [ORNL; Adamczyk, Leslie A [ORNL] [ORNL; Alsem, Daan Hein [Hummingbird Scientific] [Hummingbird Scientific; Dai, Sheng [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; More, Karren Leslie [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

  7. Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST)

    E-Print Network [OSTI]

    Nanowire Lithium-Ion Battery P R O J E C T L E A D E R : Alec Talin (NIST) C O L L A B O R A T O R To fabricate a single nanowire Li-ion battery and observe it charging and discharging. K E Y A C C O M P L I S H M E N T S Designed, fabricated, and tested complete Li-ion nanowire batteries measuring

  8. Failure modes in high-power lithium-ion batteries for use inhybrid electric vehicles

    SciTech Connect (OSTI)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-06-22T23:59:59.000Z

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi{sub 0.8}Co{sub 0.2}O{sub 2} cathode and DEC-EC-LiPF{sub 6} electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF{sub 6} salt in the electrolyte at elevated temperature.

  9. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Barnes, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01T23:59:59.000Z

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn?O?). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn?O? as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  10. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

    2012-06-21T23:59:59.000Z

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  11. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08T23:59:59.000Z

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  12. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries

    E-Print Network [OSTI]

    Kevin Leung; Susan B. Rempe; Michael E. Foster; Yuguang Ma; Julibeth M. Martinez del la Hoz; Na Sai; Perla B. Balbuena

    2014-01-17T23:59:59.000Z

    Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implications of these reactions to silicon-anode based LIB are discussed.

  13. A disiloxane-functionalized phosphonium-based ionic liquid as electrolyte for lithium-ion batteries

    SciTech Connect (OSTI)

    Weng, Wei [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Lu, Jun [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.; Amine, Khalil [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Div.

    2011-01-01T23:59:59.000Z

    A disiloxane-functionalized ionic liquid based on a phosphonium cation and a bis(trifluoromethylsulfonyl)imide (TFSI) anion was synthesized and characterized. This new ionic liquid electrolyte showed good stability with a lithium transition metal oxide cathode and a graphite anode in lithium ion cells.

  14. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  15. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  16. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

    1995-06-20T23:59:59.000Z

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

  17. Structural micro-porous carbon anode for rechargeable lithium-ion batteries

    DOE Patents [OSTI]

    Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

    1995-01-01T23:59:59.000Z

    A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

  18. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2008-08-31T23:59:59.000Z

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  19. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  20. Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

  1. Vehicle Technologies Office Merit Review 2015: Daikin Advanced Lithium Ion Battery Technology ? High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  2. Vehicle Technologies Office Merit Review 2015: Lithium-Ion Battery Production and Recycling Materials Issues

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-ion...

  3. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    E-Print Network [OSTI]

    Kim, Jun Young

    This paper describes the fabrication of novel modified polyethylene (PE) membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer ...

  4. Vehicle Technologies Office Merit Review 2014: Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte

    Broader source: Energy.gov [DOE]

    Presentation given by Daikin America at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Daikin advanced lithium ion...

  5. Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y. Sun, S. X. Du, H.-J. Gao, and S. B. Zhang

    E-Print Network [OSTI]

    Gao, Hongjun

    Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang, Y. Y of electrode nanomaterials in lithium-ion battery: The effects of surface stress J. Appl. Phys. 112, 103507://apl.aip.org/about/rights_and_permissions #12;Organic salts as super-high rate capability materials for lithium-ion batteries Y. Y. Zhang,1,2 Y

  6. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect (OSTI)

    Liao, Chen [ORNL; Shao, Nan [ORNL; Bell, Jason R [ORNL; Guo, Bingkun [ORNL; Luo, Huimin [ORNL; Jiang, Deen [ORNL; Dai, Sheng [ORNL

    2013-01-01T23:59:59.000Z

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  7. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  8. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  9. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Xiao, Jie; Gu, Meng; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang

    2014-03-15T23:59:59.000Z

    Li-rich, Mn-rich (LMR) layered composite, for example, Li[Li0.2Ni0.2Mn0.6]O2, has attracted extensive interests because of its highest energy density among all cathode candidates for lithium ion batteries (LIB). However, capacity degradation and voltage fading are the major challenges associated with this series of layered composite, which plagues its practical application. Herein, we demonstrate that anion receptor, tris(pentafluorophenyl)borane ((C6F5)3B, TPFPB), substantially enhances the cycling stability and alleviates the voltage degradation of LMR. In the presence of 0.2 M TPFPB, Li[Li0.2Ni0.2Mn0.6]O2 shows capacity retention of 81% after 300 cycles. It is proposed that TPFPB effectively confines the highly active oxygen species released from structural lattice through its strong coordination ability and high oxygen solubility. The electrolyte decomposition caused by the oxygen species attack is therefore largely mitigated, forming reduced amount of byproducts on the cathode surface. Additionally, other salts such as insulating LiF derived from electrolyte decomposition are also soluble in the presence of TPFPB. The collective effects of TPFPB mitigate the accumulation of parasitic reaction products and stabilize the interfacial resistances between cathode and electrolyte during extended cycling, thus significantly improving the cycling performance of Li[Li0.2Ni0.2Mn0.6]O2.

  10. Fused ring and linking groups effect on overcharge protection for lithium-ion batteries.

    SciTech Connect (OSTI)

    Weng, W.; Zhang, Z.; Redfern, P. C.; Curtiss, L. A.; Amine, K.

    2011-02-01T23:59:59.000Z

    The derivatives of 1,3-benzodioxan (DBBD1) and 1,4-benzodioxan (DBBD2) bearing two tert-butyl groups have been synthesized as new redox shuttle additives for overcharge protection of lithium-ion batteries. Both compounds exhibit a reversible redox wave over 4 V vs Li/Li{sup +} with better solubility in a commercial electrolyte (1.2 M LiPF{sub 6}) dissolved in ethylene carbonate/ethyl methyl carbonate (EC/EMC 3/7) than the di-tert-butyl-substituted 1,4-dimethoxybenzene (DDB). The electrochemical stability of DBBD1 and DBBD2 was tested under charge/discharge cycles with 100% overcharge at each cycle in MCMB/LiFePO{sub 4} and Li{sub 4}Ti{sub 5}O{sub 12}/LiFePO{sub 4} cells. DBBD2 shows significantly better performance than DBBD1 for both cell chemistries. The structural difference and reaction energies for decomposition have been studied by density functional calculations.

  11. Transformation from hollow carbon octahedra to compressed octahedra and their use in lithium-ion batteries

    SciTech Connect (OSTI)

    Mei, Tao; Li, Na; Li, Qianwen; Xing, Zheng; Tang, Kaibin; Zhu, Yongchun [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)] [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qian, Yitai, E-mail: ytqian@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China) [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Shen, Xiaoyan [Jiangsu Highstar Battery Manufacturing CO., LTD (China)] [Jiangsu Highstar Battery Manufacturing CO., LTD (China)

    2012-06-15T23:59:59.000Z

    Graphical abstract: Schematic illustration of the transformation process from hollow carbon octahedra into deflated balloon-like compressed hollow carbon octahedra ?. Highlights: ? We demonstrate the in situ template synthesis of hollow carbon octahedra. ? The shell thickness of hollow carbon octahedra is only 2.5 nm. ? Morphology transformation could be realized by extending of reaction time. ? The hollow structures show reversible capacity as 353 mAh g{sup ?1} after 100 cycles. -- Abstract: Hollow carbon octahedra with an average size of 300 nm and a shell thickness of 2.5 nm were prepared by a reaction starting from ferrocene and Mg(CH{sub 3}COO){sub 2}·4H{sub 2}O at 700 °C for 10 h. They became compressed and turned into deflated balloon-like octahedra when the reaction time was increased to 16 h. It was proposed that the gas pressure generated during the reaction process induced the transformation from broken carbon hollow octahedra into deflated balloon-like compressed octahedra. X-ray powder diffraction and Raman spectroscopy indicate that the as-obtained carbon products possess a graphitic structure and high-resolution transmission electron microscopy images indicate that they have low crystallinity. Their application as an electrode shows reversible capacity of 353 mAh g{sup ?1} after 100 cycles in the charge/discharge experiments of secondary lithium ion batteries.

  12. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect (OSTI)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01T23:59:59.000Z

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  13. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0ion with at least one ion being Mn or Ni, and where M' is one or more tetravalent ion. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  14. Celgard US Manufacturing Facilities Initiative for Lithium-ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator FY 2012 Annual Progress Report for Energy Storage R&D...

  15. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Hu, Qichao

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

  16. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

    E-Print Network [OSTI]

    Cai, Long

    A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes Nian Liu1 lithium-ion batteries and in more recent Li­O2 and Li­S batteries as a replacement for the dendrite to the level of commercial lithium-ion batteries (3.7 mAh cm22 ). Particle fracture and loss of electrical

  17. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect (OSTI)

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08T23:59:59.000Z

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  18. Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

    2014-10-01T23:59:59.000Z

    The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

  19. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A.; Williford, Ralph E.; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01T23:59:59.000Z

    The entropy changes (?S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  20. Cyanoethylated compounds as additives in lithium/lithium batteries

    DOE Patents [OSTI]

    Nagasubramanian, Ganesan (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    The power loss of lithium/lithium ion battery cells is significantly reduced, especially at low temperatures, when about 1% by weight of an additive is incorporated in the electrolyte layer of the cells. The usable additives are organic solvent soluble cyanoethylated polysaccharides and poly(vinyl alcohol). The power loss decrease results primarily from the decrease in the charge transfer resistance at the interface between the electrolyte and the cathode.

  1. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  2. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  3. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

  4. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

  5. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  6. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    SciTech Connect (OSTI)

    Wilcox, James D.

    2008-12-18T23:59:59.000Z

    The development of advanced lithium-ion batteries is key to the success of many technologies, and in particular, hybrid electric vehicles. In addition to finding materials with higher energy and power densities, improvements in other factors such as cost, toxicity, lifetime, and safety are also required. Lithium transition metal oxide and LiFePO{sub 4}/C composite materials offer several distinct advantages in achieving many of these goals and are the focus of this report. Two series of layered lithium transition metal oxides, namely LiNi{sub 1/3}Co{sub 1/3-y}M{sub y}Mn{sub 1/3}O{sub 2} (M=Al, Co, Fe, Ti) and LiNi{sub 0.4}Co{sub 0.2-y}M{sub y}Mn{sub 0.4}O{sub 2} (M = Al, Co, Fe), have been synthesized. The effect of substitution on the crystal structure is related to shifts in transport properties and ultimately to the electrochemical performance. Partial aluminum substitution creates a high-rate positive electrode material capable of delivering twice the discharge capacity of unsubstituted materials. Iron substituted materials suffer from limited electrochemical performance and poor cycling stability due to the degradation of the layered structure. Titanium substitution creates a very high rate positive electrode material due to a decrease in the anti-site defect concentration. LiFePO{sub 4} is a very promising electrode material but suffers from poor electronic and ionic conductivity. To overcome this, two new techniques have been developed to synthesize high performance LiFePO{sub 4}/C composite materials. The use of graphitization catalysts in conjunction with pyromellitic acid leads to a highly graphitic carbon coating on the surface of LiFePO{sub 4} particles. Under the proper conditions, the room temperature electronic conductivity can be improved by nearly five orders of magnitude over untreated materials. Using Raman spectroscopy, the improvement in conductivity and rate performance of such materials has been related to the underlying structure of the carbon films. The combustion synthesis of LiFePO4 materials allows for the formation of nanoscale active material particles with high-quality carbon coatings in a quick and inexpensive fashion. The carbon coating is formed during the initial combustion process at temperatures that exceed the thermal stability limit of LiFePO{sub 4}. The olivine structure is then formed after a brief calcination at lower temperatures in a controlled environment. The carbon coating produced in this manner has an improved graphitic character and results in superior electrochemical performance. The potential co-synthesis of conductive carbon entities, such as carbon nanotubes and fibers, is also briefly discussed.

  7. Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Barsukov, Igor V.

    2002-12-10T23:59:59.000Z

    Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

  8. Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.

    SciTech Connect (OSTI)

    Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

    2012-01-01T23:59:59.000Z

    A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

  9. Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Cho, Jaephil

    Highly Reversible Li-Ion Intercalating MoP2 Nanoparticle Cluster Anode for Lithium Rechargeable nanoparticle clusters have quite reversible lithium-ion insertion and extraction, showing the first discharge lithium reactions, i MPn LixMPn simple Li-ion interca- lation and ii MPn M LixM + LixP alloying followed

  10. The Lithium-Ion Cell: Model, State Of Charge Estimation

    E-Print Network [OSTI]

    Schenato, Luca

    The Lithium-Ion Cell: Model, State Of Charge Estimation and Battery Management System Tutor degradation mechanisms of a Li-ion cell based on LiCoO2", Journal of Power Sources #12;Lithium ions and e and Y. Fuentes. Computer simulations of a lithium-ion polymer battery and implications for higher

  11. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials

    E-Print Network [OSTI]

    Ceder, Gerbrand

    Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion-ion systems. Introduction Rechargeable lithium-ion (Li-ion) batteries1­4 have become a mainstay of the digital), much research has targeted the development and optimization of lithium-ion batteries, in particular

  12. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15T23:59:59.000Z

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  13. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries

    E-Print Network [OSTI]

    Oh, Dahyun

    Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes ...

  14. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    SciTech Connect (OSTI)

    Sasidharan, Manickam [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)] [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan); Gunawardhana, Nanda [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)] [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki, E-mail: yoshio@cc.saga-u.ac.jp [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)] [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)] [Department of Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjo-machi, Saga 840-8502 (Japan)

    2012-09-15T23:59:59.000Z

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup ?1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ? Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ? Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ? Nanostructured electrode delivers high capacity of 172 mAh g{sup ?1} after 250 cycles. ? The electrode maintains the structural integrity and excellent cycling stability. ? Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ?29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup ?1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup ?1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.

  15. Porous Co{sub 3}O{sub 4} nanorods as anode for lithium-ion battery with excellent electrochemical performance

    SciTech Connect (OSTI)

    Guo, Jinxue; Chen, Lei; Zhang, Xiao, E-mail: zhx1213@126.com; Chen, Haoxin

    2014-05-01T23:59:59.000Z

    In this manuscript, porous Co{sub 3}O{sub 4} nanorods are prepared through a two-step approach which is composed of hydrothermal process and heating treatment as high performance anode for lithium-ion battery. Benefiting from the porous structure and 1-dimensional features, the product becomes robust and exhibits high reversible capability, good cycling performance, and excellent rate performance. - Graphical abstract: 1D porous Co{sub 3}O{sub 4} nanostructure as anode for lithium-ion battery with excellent electrochemical performance. - Highlights: • A two-step route has been applied to prepare 1D porous Co{sub 3}O{sub 4} nanostructure. • Its porous feature facilitates the fast transport of electron and lithium ion. • Its porous structure endows it with capacities higher than its theoretical capacity. • 1D nanostructure can tolerate volume changes during lithation/delithiation cycles. • It exhibits high capacity, good cyclability and excellent rate performance.

  16. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials...

  17. Investigation of layered intergrowth LixMyMn1-yO2+z (M=Ni,Co,Al) compounds as positive electrodes for Li-ion batteries

    E-Print Network [OSTI]

    Dolle, M.; Hollingsworth, J.; Richardson, T.J.; Doeff, M.M.

    2003-01-01T23:59:59.000Z

    as Positive Electrodes for Li-ion Batteries M. Dollé,* J.layered manganese oxide electrodes for lithium batteries.Keywords: Lithium batteries, layered manganese oxides,

  18. PSM: Lithium-Ion Battery State of Charge (SOC) and Critical Surface Charge (CSC) Estimation using an Electrochemical Model-driven

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    modeling is connected with the hybrid vehicle design, scale-up, optimization and control issues of Hybrid characteristics to be widely used in the hybrid vehicles, thanks to its best energy-to-weight ratios, no memory. INTRODUCTION Lithium-ion battery is the core of new plug-in hybrid- electrical vehicles (PHEV) as well

  19. [11] Cui L, Hu L, Choi JW, Cui Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.

    E-Print Network [OSTI]

    for anodes of lithium ion batteries. ACS Nano 2010;4:3671­8. [12] Krivchenko VA, Pilevsky AA, Rakhimov AT, Seleznev BV, Suetin NV, Timofeyev MA, et al. Nanocrystalline graphite: promising material for high current-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. Chem Phys

  20. NiO nanowall array prepared by a hydrothermal synthesis method and its enhanced electrochemical performance for lithium ion batteries

    SciTech Connect (OSTI)

    Cao, F., E-mail: caofenghz@126.com [Department of Chemistry, Huzhou Teachers College, Huzhou, 313000 (China); Pan, G.X.; Tang, P.S.; Chen, H.F. [Department of Chemistry, Huzhou Teachers College, Huzhou, 313000 (China)

    2013-03-15T23:59:59.000Z

    Graphical abstract: Self-supported NiO nanowall array is fabricated by a facile hydrothermal synthesis method and exhibits noticeable Li ion battery performance with good cycle life and high capacity. Highlights: ? NiO nanowall array is prepared by a hydrothermal synthesis method. ? NiO nanowall array with high capacity as anode material for Li ion battery. ? Nanowall array structure is favorable for fast ion/electron transfer. - Abstract: Free-standing quasi-single-crystalline NiO nanowall array is successfully fabricated via a simple hydrothermal synthesis method. The as-prepared NiO film exhibits a highly porous nanowall structure composed of many interconnected nanoflakes with thicknesses of ?20 nm. The NiO nanowalls arrange vertically to the substrate resulting in the formation of extended porous net-like structure with pores of 30–300 nm. As anode material for lithium ion batteries, the quasi-single-crystalline NiO nanowall array exhibits pretty good electrochemical performances with high capacity, weaker polarization, higher coulombic efficiency and better cycling performance as compared to the dense polycrystalline NiO film. The quasi-single-crystalline NiO nanowall array presents an initial coulombic efficiency of 76% and good cycling life with a capacity of 564 mAh g{sup ?1} at 0.5 A g{sup ?1} after 50 cycles, higher than that of the dense polycrystalline NiO film (358 mAh g{sup ?1}). The enhanced performance is due to the unique nanowall array structure providing faster ion/electron transport and better morphological stability.

  1. The Effect of Single Walled Carbon Nanotubes on Lithium-Ion Batteries and Electric Double Layer Capacitors

    E-Print Network [OSTI]

    Mellor-Crummey, John

    into the anode of the Li-ion battery and the electrodes of the EDLC to observe the effects it would have and resistance of the EDLC. If the use of SWNT also improves these devices, it would be evidence that Li-ion batteries and EDLCs are excellent options for more efficient commercial energy storage. Li-ion batteries

  2. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  3. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13T23:59:59.000Z

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  4. Better Lithium-Ion Batteries Are On The Way From Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find MoreLawrence BerkeleyWater SavingsLithium-Ion

  5. An Investigation of the Effect of Graphite Degradation on the Irreversible Capacity in Lithium-ion Cells

    E-Print Network [OSTI]

    Hardwick, Laurence

    2008-01-01T23:59:59.000Z

    graphite anodes suffer severe surface structural damage upon prolonged cycling in rechargeable lithium-ion batteries.

  6. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  7. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1-x)Li2M'O3 in which 0ion with an average trivalent oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  8. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  9. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23T23:59:59.000Z

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0ion with an average trivalent oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  10. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  11. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  12. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    SciTech Connect (OSTI)

    Zhou, Yong-Ning [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Ma, Jun [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Nam, Kyung -Wan [Dongguk Univ., Seoul (Korea, Republic of); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Wang, Zhaoxiang [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Yang, Xiao -Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  13. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Ma, Jun [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry; Gu, Lin [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Nam, Kyung -Wan [Dongguk Univ., Seoul (Korea, Republic of); Chen, Liquan [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Wang, Zhaoxiang [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Yang, Xiao -Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Chemistry

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials. The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.

  14. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Yong-Ning; Ma, Jun; Hu, Enyuan; Yu, Xiqian; Gu, Lin; Nam, Kyung -Wan; Chen, Liquan; Wang, Zhaoxiang; Yang, Xiao -Qing

    2014-11-18T23:59:59.000Z

    Through a systematic study of lithium molybdenum trioxide (Li2MoO3), a new ‘unit cell breathing’ mechanism is introduced based on both crystal and electronic structural changes of transition metal oxide cathode materials during charge–discharge: For widely used LiMO2 (M = Co, Ni, Mn), lattice parameters, a and b, contracts during charge. However, for Li2MoO3, such changes are in opposite directions. Metal–metal bonding is used to explain such ‘abnormal’ behaviour and a generalized hypothesis is developed. The expansion of M–M bond becomes the controlling factor for a(b) evolution during charge, in contrast to the shrinking M–O as controlling factor in ‘normal’ materials.more »The cation mixing caused by migration of Mo ions at higher oxidation state provides the benefits of reducing the c expansion range in early stage of charging and suppressing the structure collapse at high voltage charge. These results open a new strategy for designing and engineering layered cathode materials for high energy density lithium-ion batteries.« less

  15. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect (OSTI)

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Wu, Zhangxiong [Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia); Asiri, Abdullah M. [Chemistry Department and The Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Zhao, Dongyuan, E-mail: dyzhao@fudan.edu.cn [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China); Department of Chemical Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-11-01T23:59:59.000Z

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ?2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  16. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes

    SciTech Connect (OSTI)

    Li, Xiaolin; Gu, Meng; Hu, Shenyang Y.; Kennard, Rhiannon; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Sailor, Michael J.; Zhang, Jiguang; Liu, Jun

    2014-07-08T23:59:59.000Z

    Nanostructured silicon is a promising anode material for high performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here, we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 micron) mesoporous silicon sponge (MSS) prepared by the scalable anodization method can eliminate the pulverization of the conventional bulk silicon and limit particle volume expansion at full lithiation to ~30% instead of ~300% as observed in bulk silicon particles. The MSS can deliver a capacity of ~750 mAh/g based on the total electrode weight with >80% capacity retention over 1000 cycles. The first-cycle irreversible capacity loss of pre-lithiated MSS based anode is only <5%. The insight obtained from MSS also provides guidance for the design of other materials that may experience large volume variation during operations.

  17. Bis(fluoromalonato)borate (BFMB) Anion Based Ionic Liquid As an Additive for Lithium-Ion Battery Electrolytes

    SciTech Connect (OSTI)

    Sun, Xiao-Guang [ORNL] [ORNL; Liao, Chen [ORNL] [ORNL; Baggetto, Loic [ORNL] [ORNL; Guo, Bingkun [ORNL] [ORNL; Unocic, Raymond R [ORNL] [ORNL; Veith, Gabriel M [ORNL] [ORNL; Dai, Sheng [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. However, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. Here we report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. In addition, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

  18. Hydrothermal synthesis of flowerlike SnO{sub 2} nanorod bundles and their application for lithium ion battery

    SciTech Connect (OSTI)

    Wen, Zhigang, E-mail: xh168688@126.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China); Zheng, Feng, E-mail: fzheng@mail.csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yu, Hongchun; Jiang, Ziran [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Liu, Kanglian [Department of Chemistry and Chemical Engineering, Qiannan Normal College for Nationalities, Duyun 558000 (China)

    2013-02-15T23:59:59.000Z

    SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. Field-emission scanning electron microscopy and transmission electron microscopy images showed that the as-prepared flowerlike SnO{sub 2} nanorod bundles consist of tetragonal nanorods with size readily tunable. Their electrochemical properties and application as anode for lithium-ion battery were evaluated by galvanostatic discharge–charge testing and cycle voltammetry. SnO{sub 2} nanorod flowers possess improved discharge capacity of 694 mA h g{sup ?1} up to 40th cycle at 0.1 C. - Highlights: ? The flowerlike SnO{sub 2} nanorod bundles were synthesized by hydrothermal method. ? SnO{sub 2} nanorod bundles with tunable size by controlling concentration of SnCl{sub 4}. ? A probable formation mechanism of SnO{sub 2} nanorod bundles has been proposed.

  19. Tailored Recovery of Carbons from Waste Tires for Enhanced Performance as Anodes in Lithium-ion Batteries

    SciTech Connect (OSTI)

    Naskar, Amit K [ORNL; Bi, [ORNL; Saha, Dipendu [ORNL; Chi, Miaofang [ORNL; Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL

    2014-01-01T23:59:59.000Z

    Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm, reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.

  20. Parameter Estimation and Model Discrimination for a Lithium-Ion Cell

    E-Print Network [OSTI]

    interest in the modeling of the lithium-ion battery ever since this battery was first com- mercialized.1-18 This interest has been fueled by the combination of the fast growing lithium-ion battery market and the desire of a lithium- ion battery measured over a wide range of rates. Single-Particle Model This single-particle model

  1. Lithium Ion Production NDE

    E-Print Network [OSTI]

    Lithium Ion Electrode Production NDE and QC Considerations David Wood, Debasish Mohanty, Jianlin Li, and Claus Daniel 12/9/13 EERE Quality Control Workshop #12;2 Presentation name Lithium Ion Electrode to be meaningful and provide electrode and cell QC. #12;3 Presentation name New Directions in Lithium Ion Electrode

  2. Lithium ion sources

    E-Print Network [OSTI]

    Roy, Prabir K.

    2014-01-01T23:59:59.000Z

    HIFAN 1866 Lithium ion sources by Prabir K. Roy, Wayne G.No. DE-AC02-05CH11231. Lithium ion sources Prabir K. RoyUSA Abstract A 10.9 cm diameter lithium alumino-silicate ion

  3. A Model Reduction Framework for Efficient Simulation of Li-Ion Batteries

    E-Print Network [OSTI]

    of degradation processes in lithium-ion batteries, the modelling of cell dynamics at the mircometer scale lithium-ion batteries is the deposition of metallic lithium at the negative battery electrode (LiA Model Reduction Framework for Efficient Simulation of Li-Ion Batteries Mario Ohlberger Stephan

  4. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    batteries for vehicle applications. Unfortunately the graphite/graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (graphite/NiCoMn chemistry. In general, it seems possible to design high power batteries (

  5. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25T23:59:59.000Z

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  6. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01T23:59:59.000Z

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  7. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    DOE Patents [OSTI]

    Manthiram, Arumugam; Choi, Wonchang

    2010-05-18T23:59:59.000Z

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn2-y-zLiyMzO4 oxide with NH4HF2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  8. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    material prepared by molten- salt synthesis. Journal ofthe sodium for lithium in a molten salt. 13 The large ionic

  9. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  10. Internal Short Circuit Device Helps Improve Lithium-Ion Battery Design (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    NREL's emulation tool helps manufacturers ensure the safety and reliability of electric vehicle batteries.

  11. On the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium Concentration in Operational Cells

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    On the Accuracy and Simplifications of Battery Models using In Situ Measurements of Lithium the Lithium concentration in an operating Lithium Iron Phosphate (LFP) pouch cell battery with typical. INTRODUCTION Accurate estimates of Lithium Ion Battery State of Charge (SOC) are critical for constraining

  12. Novel Redox Shuttles for Overcharge Protection of Lithium-Ion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Redox Shuttles for Overcharge Protection of Lithium-Ion Batteries Technology available for licensing: Electrolytes containing novel redox shuttles (electron transporters) for...

  13. JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

  14. Stability of aluminum in low-temperature lithium-ion battery electrolytes. Progress report, October 1997--September 1998

    SciTech Connect (OSTI)

    Behl, W.K.; Plichta, E.J.

    1999-03-01T23:59:59.000Z

    The authors investigated the stability of aluminum at the high positive potentials encountered during the charging of lithium-ion cells. The electrolyte in these cells consists of solutions of lithium hexafluorophosphate and lithium methide in binary- and ternary-solvent mixtures of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate. They performed the investigations with the controlled potential coulometry technique. They found that a protective surface film was formed on aluminum electrodes in these solutions and that this film protected the electrodes from further corrosion. The protective surface film was found to break down in lithium methide solutions at 4.25 V versus a lithium reference electrode, and this resulted in increased corrosion of the aluminum electrodes at higher potentials. In contrast to lithium methide solutions, the protective surface film formed on aluminum electrodes in lithium hexafluorophosphate solutions was found to be quite stable and did not break down at potentials up to [approximately]5 V.

  15. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31T23:59:59.000Z

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  16. Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation

    E-Print Network [OSTI]

    Northrop, Paul W. C.

    Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

  17. ForPeerReview A Validation Study of Lithium-ion Cell Constant C-Rate

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    ForPeerReview A Validation Study of Lithium-ion Cell Constant C-Rate Discharge Simulation and Engineering, Engineering and Public Policy Keywords: Battery Design Studio®, Lithium-ion, Battery Performance

  18. accumulateurs lithium-ion au: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Lithium Ion Battery Electrodes Texas A&M University - TxSpace Summary: Lithium ion battery systems are promising solutions to current energy storage needs due to their high...

  19. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program...

  20. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

  1. Comparisons of short carbon nanotubes containing conductive additives of cathode for lithium ion batteries

    SciTech Connect (OSTI)

    Zhang, Qingtang, E-mail: zhqt137@163.com [School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041 (China); Wang, Xiaomei; Lu, Wenjiang; Tang, Fuling [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Guo, Junhong [School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Yu, Weiyuan [School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (China); Qu, Meizhen; Yu, Zuolong [Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041 (China)

    2013-08-01T23:59:59.000Z

    Graphical abstract: - Highlights: • Short carbon nanotubes (SCNT) containing conductive additives were used. • SCNT/graphite powder (GP) mixture is better than SCNT/mesoporous carbon mixture. • SCNT connect many isolated GP particles to form a more valid conductive network. • SCNT absorb some electrolyte solution allowing quick electrochemical reactions. - Abstract: Short carbon nanotubes (SCNT) containing conductive additives, i.e. SCNT/graphite powder (GP) mixture (SCNTGP) and SCNT/mesoporous carbon (MC) mixture (SCNTMC) were employed as conductive additives for LiCoO{sub 2} cathode. GP and MC have similar particle size, but GP has lower specific surface area and higher electronic conductivity. Electrochemical measurements indicate that SCNTGP is more effective in improving the electrochemical performance of LiCoO{sub 2} composite cathode under the same conditions. The reason is described as follows. SCNT connect the isolated GP particles to form a more valid conductive network. In addition, SCNT has a certain specific mesoporous surface area, which can absorb some electrolyte solution and then provide buffer lithium ions for quick electrochemical reactions. Consequently, the combination of these two factors would be responsible to the improvement in the electrochemical performance of the SCNTGP loaded cathode.

  2. Recent advances in lithium ion technology

    SciTech Connect (OSTI)

    Levy, S.C.

    1995-01-01T23:59:59.000Z

    Lithium ion technology is based on the use of lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells (1) and in 1983 for ambient temperature systems (2) it was not until Sony Energytech announced a new lithium ion rechargeable cell containing a lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these cells have the high energy density, high voltage and fight weight of metallic lithium systems plus a very long cycle life, but without the disadvantages of dendrite formation on charge and the safety considerations associated with metallic lithium.

  3. Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    E-Print Network [OSTI]

    Ridgway, Paul

    2010-01-01T23:59:59.000Z

    graphite formulations in particular, are the current standard for lithium-ion anodes for electric vehicle batteries(

  4. Electrochemical and microstructural studies of AlPO?-nanoparticle coated LiCoO? for lithium-ion batteries

    E-Print Network [OSTI]

    Appapillai, Anjuli T. (Anjuli Tara)

    2006-01-01T23:59:59.000Z

    AlPO?-nanoparticle coated LiCoO? is studied as a positive electrode for lithium rechargeable batteries for a high-voltage charge limit of 4.7V. To understand the role of the coating in transport phenomena and in deintercalation ...

  5. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    Performance for Lithium Batteries,” J. Electrochem. Soc. ,developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of Power

  6. Lithium disulfide battery

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1988-01-01T23:59:59.000Z

    A negative electrode limited secondary electrochemical cell having dense FeS.sub.2 positive electrode operating exclusively on the upper plateau, a Li alloy negative electrode and a suitable lithium-containing electrolyte. The electrolyte preferably is 25 mole percent LiCl, 38 mole percent LiBr and 37 mole percent KBr. The cell may be operated isothermally.

  7. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  8. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Power Systems Laboratory and performs research and teaches graduate courses on advanced electric driveline technologies, specializing in batteries, ultracapacitors, fuel cells and hybrid vehicle

  9. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    initial and life cycle costs of the battery. This paper hasbattery chemistries have the potential for longer cycle life which on a life cycle cost

  10. High Performance Batteries Based on Hybrid Magnesium and Lithium Chemistry

    SciTech Connect (OSTI)

    Cheng, Yingwen; Shao, Yuyan; Zhang, Jiguang; Sprenkle, Vincent L.; Liu, Jun; Li, Guosheng

    2014-01-01T23:59:59.000Z

    Magnesium and lithium (Mg/Li) hybrid batteries that combine Mg and Li electrochemistry, consisting of a Mg anode, a lithium-intercalation cathode and a dual-salt electrolyte with both Mg2+ and Li+ ions, were constructed and examined in this work. Our results show that hybrid (Mg/Li) batteries were able to combine the advantages of Li-ion and Mg batteries, and delivered outstanding rate performance (83% for capacities at 15C and 0.1C) and superior cyclic stability (~5% fade after 3000 cycles).

  11. Diagnostic Evaluation of Detrimental Phenomena in High-PowerLithium-Ion Batteries

    SciTech Connect (OSTI)

    Kostecki, Robert; Lei, Jinglei; McLarnon, Frank; Shim, Joongpyo; Striebel, Kathryn

    2005-11-01T23:59:59.000Z

    A pouch-type lithium-ion cell, with graphite anode and LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode, was cycled at C/2 over 100% depth of discharge (DOD) at ambient temperature. The LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} composite cathode was primarily responsible for the significant impedance rise and capacity fade observed in that cell. The processes that led to this impedance rise were assessed by investigating the cathode surface electronic conductance, surface structure, composition, and state of charge at the microscopic level with the use of local probe techniques. Raman microscopy mapping of the cathode surface provided evidence that the state of charge of individual LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particles was non-uniform despite the deep discharge at the end of cell testing. Current-sensing atomic force microscopy imaging revealed that the cathode surface electronic conductance diminished significantly in the tested cells. Loss of contact of active material particles with the carbon matrix and thin film formation via electrolyte decomposition not only led to LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} particle isolation and contributed to cathode interfacial charge-transfer impedance but also accounted for the observed cell power and capacity loss.

  12. Stress evolution and capacity fade in constrained lithium-ion pouch cells

    E-Print Network [OSTI]

    Arnold, Craig B.

    28 June 2013 Accepted 30 June 2013 Available online 13 July 2013 Keywords: Lithium-ion battery stress on lithium-ion battery life are investigated by monitoring the stack pressure and capacity investigating the various competing aging mechanisms that occur in lithium-ion batteries such as SEI growth

  13. On the Coupling Between Stress and Voltage in Lithium Ion Pouch Cells

    E-Print Network [OSTI]

    Arnold, Craig B.

    based on intercalation materials. Keywords: load cell, force sensor, lithium-ion battery, intercalation material, mechanical stress coupling 1. INTRODUCTION Lithium-ion batteries are complex has been the subject of numerous studies of lithium-ion batteries13­17 . The expansion of pouch cells

  14. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01T23:59:59.000Z

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  15. Anodes for rechargeable lithium batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories News Events Find More Like This Return to Search Anodes for rechargeable lithium batteries United States Patent Patent Number: 6,528,208 Issued: March 4, 2003...

  16. In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries

    SciTech Connect (OSTI)

    He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

    2014-10-27T23:59:59.000Z

    Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

  17. Towards First Principles prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Leung, Kevin

    2013-01-01T23:59:59.000Z

    In lithium ion batteries, Li+ intercalation and processes associated with passivation of electrodes are governed by applied voltages, which are in turn associated with free energy changes of Li+ transfer (Delta G_t) between the solid and liquid phases. Using ab initio molecular dynamics (AIMD) and thermodynamic integration techniques, we compute Delta G_t for the virtual transfer of a Li+ from a LiC(6) anode slab, with pristine basal planes exposed, to liquid ethylene carbonate confined in a nanogap. The onset of delithiation, at Delta G_t=0, is found to occur on LiC(6) anodes with negatively charged basal surfaces. These negative surface charges are evidently needed to retain Li+ inside the electrode, and should affect passivation ("SEI") film formation processes. Fast electrolyte decomposition is observed at even larger electron surface densities. By assigning the experimentally known voltage (0.1 V vs. Li+/Li metal) to the predicted delithiation onset, an absolute potential scale is obtained. This enables ...

  18. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Fei; Xu, Wu; Choi, Daiwon; Wang, Wei; Li, Xiaolin; Engelhard, Mark H.; Chen, Xilin; Yang, Zhenguo; Zhang, Jiguang

    2012-04-27T23:59:59.000Z

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life. After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.

  19. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  1. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

  3. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  4. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    battery configuration. Lead-acid batteries do not shuttleincluding lead-acid, nickel-based, and lithium-ion batteries

  5. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    Solar Energy Materials and Solar Cells, vol. 93, 2009, pp.Solar energy materials and solar cells, vol. 91, 2007, pp.to integrate thin-film solar cells and batteries (2)

  6. Designing Safe Lithium-Ion Battery Packs Using Thermal Abuse Models (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Smith, K.; Darcy, E.

    2008-12-01T23:59:59.000Z

    NREL and NASA developed a thermal-electrical model that resolves PTC and cell behavior under external shorting, now being used to evaluate safety margins of battery packs for spacesuit applications.

  7. Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation

    SciTech Connect (OSTI)

    Lee, Sanghun, E-mail: sh0129.lee@samsung.com; Park, Sung Soo, E-mail: sung.s.park@samsung.com

    2013-08-15T23:59:59.000Z

    Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The core–shell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: • Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. • The unit-cell parameters from experimental studies are reproduced by the core–shell model. • Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. • It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

  8. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01T23:59:59.000Z

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  9. Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    than the conventional lithium ion batteries based on metal oxide cathodes and graphite anodes Sulfur Batteries Guangyuan Zheng, Qianfan Zhang, Judy J. Cha, Yuan Yang, Weiyang Li, Zhi Wei Seh, and Yi lithium sulfur batteries, due to their high specific energy and relatively low cost. Despite recent

  10. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01T23:59:59.000Z

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  11. innovati nNREL Enhances the Performance of a Lithium-Ion Battery Cathode

    E-Print Network [OSTI]

    potential environmental and safety issues. The search for a replacement cathode material has led to lithium, the chemical reaction of the anode with the electrolyte causes electrons to enter the wire, moving throughFePO4 is due to the particular geometry of its electronic struc- ture--in technical terms, it has

  12. The development of low cost LiFePO4-based high power lithium-ion batteries

    SciTech Connect (OSTI)

    Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

    2003-11-25T23:59:59.000Z

    The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

  13. Optimization of Acetylene Black Conductive Additive and Polyvinylidene Difluoride Composition for High Power Rechargeable Lithium-Ion Cells

    E-Print Network [OSTI]

    Liu, G.; Zheng, H.; Battaglia, V.S.; Simens, A.S.; Minor, A.M.; Song, X.

    2007-01-01T23:59:59.000Z

    7), A365 G. M. Ehrlich, Lithium-ion Batteries, 3rd ed ed. (High Power Rechargeable Lithium-Ion Cells G. Liu a,z , H.local environment. (A) lithium-ion mass transfer in the

  14. An Investigation of the Effect of Graphite Degradation on the Irreversible Capacity in Lithium-ion Cells

    E-Print Network [OSTI]

    Hardwick, Laurence

    2008-01-01T23:59:59.000Z

    the Irreversible Capacity in Lithium-ion Cells Laurence J.cycling in rechargeable lithium-ion batteries. 3,4,5 This isaffect significantly lithium-ion cell long-term behaviour.

  15. Revealing lithium-silicide phase transformations in nano-structured silicon based lithium ion batteries via in-situ NMR spectroscopy

    E-Print Network [OSTI]

    Ogata, K.; Salager, E.; Kerr, C. J.; Fraser, A. E.; Ducati, C.; Morris, A. J.; Hofmann, S.; Grey, C. P.

    2014-02-03T23:59:59.000Z

    Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being...

  16. Solid lithium ion conducting electrolytes and methods of preparation

    DOE Patents [OSTI]

    Narula, Chaitanya K; Daniel, Claus

    2013-05-28T23:59:59.000Z

    A composition comprised of nanoparticles of lithium ion conducting solid oxide material, wherein the solid oxide material is comprised of lithium ions, and at least one type of metal ion selected from pentavalent metal ions and trivalent lanthanide metal ions. Solution methods useful for synthesizing these solid oxide materials, as well as precursor solutions and components thereof, are also described. The solid oxide materials are incorporated as electrolytes into lithium ion batteries.

  17. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

    2008-06-24T23:59:59.000Z

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  18. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

    2012-01-31T23:59:59.000Z

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  19. Anode material for lithium batteries

    DOE Patents [OSTI]

    Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

    2011-04-05T23:59:59.000Z

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  20. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

  1. Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles

    E-Print Network [OSTI]

    Burke, Andy; Zhao, Hengbing

    2010-01-01T23:59:59.000Z

    7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

  2. Lithium-Sulfur Batteries: Development of High Energy Lithium-Sulfur Cells for Electric Vehicle Applications

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    BEEST Project: Sion Power is developing a lithium-sulfur (Li-S) battery, a potentially cost-effective alternative to the Li-Ion battery that could store 400% more energy per pound. All batteries have 3 key parts—a positive and negative electrode and an electrolyte—that exchange ions to store and release electricity. Using different materials for these components changes a battery’s chemistry and its ability to power a vehicle. Traditional Li-S batteries experience adverse reactions between the electrolyte and lithium-based negative electrode that ultimately limit the battery to less than 50 charge cycles. Sion Power will sandwich the lithium- and sulfur-based electrode films around a separator that protects the negative electrode and increases the number of charges the battery can complete in its lifetime. The design could eventually allow for a battery with 400% greater storage capacity per pound than Li-Ion batteries and the ability to complete more than 500 recharge cycles.

  3. Solid composite electrolytes for lithium batteries

    DOE Patents [OSTI]

    Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

    2000-01-01T23:59:59.000Z

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  4. Olivine electrode engineering impact on the electrochemical performance of lithium-ion batteries.

    SciTech Connect (OSTI)

    Lu, W.; Jansen, A.; Dees, D.; Henriksen, G.; Chemical Sciences and Engineering Division

    2010-08-01T23:59:59.000Z

    High energy and power density lithium iron phosphate was studied for hybrid electric vehicle applications. This work addresses the effects of porosity in a composite electrode using a four-point probe resistivity analyzer, galvanostatic cycling, and electrochemical impedance spectroscopy (EIS). The four-point probe result indicates that the porosity of composite electrode affects the electronic conductivity significantly. This effect is also observed from the cell's pulse current discharge performance. Compared to the direct current (dc) methods used, the EIS data are more sensitive to electrode porosity, especially for electrodes with low porosity values.

  5. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  6. LiMn{sub 2}O{sub 4} nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries

    SciTech Connect (OSTI)

    Lin, Binghui; Yin, Qing; Hu, Hengrun; Lu, Fujia [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Xia, Hui, E-mail: xiahui@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing, Jiangsu 210094 (China); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2014-01-15T23:59:59.000Z

    Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite has been successfully synthesized by a one-step hydrothermal method without post-heat treatment. In the nanocomposite, LiMn{sub 2}O{sub 4} nanoparticles of 10–30 nm in size are well crystallized and homogeneously anchored on the graphene nanosheets. The graphene nanosheets not only provide a highly conductive matrix for LiMn{sub 2}O{sub 4} nanoparticles but also effectively reduce the agglomeration of LiMn{sub 2}O{sub 4} nanoparticles. The nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite exhibited greatly improved electrochemical performance in terms of specific capacity, cycle performance, and rate capability compared with the bare LiMn{sub 2}O{sub 4} nanoparticles. The superior electrochemical performance of the nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets nanocomposite makes it promising as cathode material for high-performance lithium-ion batteries. - Graphical abstract: Nanocrystalline LiMn{sub 2}O{sub 4}/graphene nanosheets (GNS) nanocomposite exhibit superior cathode performance for lithium-ion batteries compared to the bare LiMn{sub 2}O{sub 4} nanoparticles. Display Omitted - Highlights: • LiMn{sub 2}O{sub 4}/graphene nanocomposite is synthesized by a one-step hydrothermal method. • LiMn{sub 2}O{sub 4} nanoparticles are uniformly anchored on the graphene nanosheets. • The nanocomposite exhibits excellent cathode performance for lithium-ion batteries.

  7. Fe{sub 3}O{sub 4}–CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries

    SciTech Connect (OSTI)

    Guo, Qixun, E-mail: qxguo@xmu.edu.cn; Guo, Pengfei; Li, Juntao, E-mail: jtli@xmu.edu.cn; Yin, Hao; Liu, Jie; Xiao, Feilong; Shen, Daoxiang; Li, Ning

    2014-05-01T23:59:59.000Z

    Fe{sub 3}O{sub 4}–CNTs nanocomposites with a particle size of ?80 nm have been synthesized through an organic-free hydrothermal synthesis strategy by using Sn(OH){sub 6}{sup 2?} as an inorganic dispersant, and served as anode materials of lithium ion batteries. Nano-sized and micro-sized Fe{sub 3}O{sub 4} without CNTs have also been prepared for comparison. The cycle performances of the as-obtained Fe{sub 3}O{sub 4} are highly size-dependent. The Fe{sub 3}O{sub 4}–CNTs nanocomposites can deliver reversible discharge capacity of ?700 mA h/g at a current density of 50 mA/g after 50 cycles. The discharge capacity of the micro-sized Fe{sub 3}O{sub 4} decreased to 171 mA h/g after 50 cycles. Our work not only provides new insights into the inorganic dispersant assisted hydrothermal synthesis of metal oxides nanocrystals but also gives guidance for finding new nanocomposites as anode materials of lithium ion batteries. - Graphical abstract: Fe{sub 3}O{sub 4}–CNTs nanocomposites have been prepared through an inorganic dispersant assisted hydrothermal synthesis strategy, and served as anode materials of lithium ion batteries with enhanced performance. - Highlights: • Sn(OH){sub 6}{sup 2?} is a good inorganic dispersant for the hydrothermal synthesis of nano Fe{sub 3}O{sub 4}. • The cycle performances of nano Fe{sub 3}O{sub 4} anode are much better than that of micro Fe{sub 3}O{sub 4} anode. • Compositing CNTs can enhance the cycle performances of nano Fe{sub 3}O{sub 4} anode.

  8. Silver manganese oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09T23:59:59.000Z

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  9. Ab initio Molecular Dynamics Simulations of the Initial Stages of Solid-electrolyte Interphase Formation on Lithium Ion Battery Graphitic Anodes

    E-Print Network [OSTI]

    Leung, Kevin; 10.1039/B925853A

    2010-01-01T23:59:59.000Z

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  10. Thermal analysis of the Ultralife SSS{trademark} lithium ion solid polymer battery with high energy anode for dual use applications

    SciTech Connect (OSTI)

    Hollandsworth, R.P.; Isaacson, M. [Lockheed Martin Missile and Space, Palo Alto, CA (United States). Advanced Technology Center; Cuellar, E.A.; Read, J.A. [Ultralife Batteries, Inc., Newark, NY (United States)

    1997-12-31T23:59:59.000Z

    The thermal properties of the Ultralife SSS{trademark} Lithium Ion Battery are investigated, with cell laminate thermal stability and heat capacity reported, as well as thermal calorimetry performed upon a cell stack having an initial capacity of 12.476 Ah during charge and discharge cycling at temperatures of 3, 10, 20, and 40 C. Thermal energy represents 3.7 and 7.8% of total energy with discharge currents of 2 and 5 A, represents 3.6 and 7.3% of total energy respectively. The major contributor to thermal performance during charge/discharge cycling is the cell impedance.

  11. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01T23:59:59.000Z

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  12. Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery

    Broader source: Energy.gov (indexed) [DOE]

    Li-ion Cell Performance: For conventional electrolyte (for example 1.2M LiPF 6 ECEMC 37), the SEI additive is the performance improver. Artificial SEI forms prior the...

  13. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    in Secondary Lithium Batteries Guoying Chen, Karen E.protection agents in lithium batteries is relatively new,rechargeable lithium batteries with a variety of different

  14. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  15. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01T23:59:59.000Z

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  16. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

  17. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

  18. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

  19. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    E-Print Network [OSTI]

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-01-01T23:59:59.000Z

    Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

  20. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  1. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01T23:59:59.000Z

    Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

  2. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

  3. How Voltage Drops are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes

    E-Print Network [OSTI]

    Leung, Kevin

    2015-01-01T23:59:59.000Z

    Battery electrode surfaces are generally coated with electronically insulating solid films of thickness 1-50 nm. Both electrons and Li+ can move at the electrode-surface film interface in response to the voltage, which adds complexity to the "electric double layer" (EDL). We apply Density Functional Theory (DFT) to investigate how the applied voltage is manifested as changes in the EDL at atomic lengthscales, including charge separation and interfacial dipole moments. Illustrating examples include Li(3)PO(4), Li(2)CO(3), and Li(x)Mn(2)O(4) thin-films on Au(111) surfaces under ultrahigh vacuum conditions. Adsorbed organic solvent molecules can strongly reduce voltages predicted in vacuum. We propose that manipulating surface dipoles, seldom discussed in battery studies, may be a viable strategy to improve electrode passivation. We also distinguish the computed potential governing electrons, which is the actual or instantaneous voltage, and the "lithium cohesive energy" based voltage governing Li content widely...

  4. Local-probe studies of degradation of composite LiNi0.8Co 0.15Al0.05O2 cathodes in high-power lithium-ion cells

    E-Print Network [OSTI]

    Kostecki, Robert; McLarnon, Frank

    2004-01-01T23:59:59.000Z

    2 Cathodes in High-Power Lithium-Ion Cells Robert Kostecki *from commercial lithium-ion batteries. The extraordinaryat the surface of lithium-ion battery cathodes are underway.

  5. Fe{sub 2}O{sub 3} nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries

    SciTech Connect (OSTI)

    Angelucci, Marco; Frau, Eleonora; Betti, Maria Grazia [Dipartimento di Fisica, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Mura, Francesco [Department of Fundamental and Applied Sciences for Engineering, Universita di Roma La Sapienza, Via A. Scarpa 14/16, I - 00161 Roma (Italy); Panero, Stefania [Dipartimento di Chimica, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy); Mariani, Carlo [Dipartimento di Fisica, CNISM, CNIS, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma (Italy)

    2014-06-19T23:59:59.000Z

    Iron Oxides nanostructures are very promising systems for new generation of anode material for Lithium-Ion batteries because of their high capacity associated to their surface area. A core-level photoemission study of Fe{sub 2}O{sub 3} nanowires deposited on highly-oriented pyrolitic graphite (HOPG) under Li exposure is presented. The Fe-2p, Fe-3p, and Li-1s core-level lineshape evolution upon Li exposure in ultra-high-vacuum conditions clearly brings to light the Fe ion reduction from fully trivalent to prevalently divalent at saturation. Furthermore, the graphite substrate allows allocation of a large amount of Li ions surrounding the iron-oxide nanowires, opening a new scenario towards the use of graphene for improving the ionic charge exchange.

  6. Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.

    SciTech Connect (OSTI)

    Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

    2010-01-01T23:59:59.000Z

    Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

  7. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

    2013-05-01T23:59:59.000Z

    This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

  8. High-Power Electrodes for Lithium-Ion Batteries | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »FundingGlenn6-7,Heavy-Ions|Science

  9. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10T23:59:59.000Z

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  10. Novel Laser-Based Manufacturing of nano-LiFePO4-Based Materials for High Power Li Ion Batteries

    E-Print Network [OSTI]

    Horne, Craig R.; Jaiswal, Abhishek; Chang, On; Crane, S.; Doeff, Marca M.; Wang, Emile

    2006-01-01T23:59:59.000Z

    II “Olivines in Lithium Batteries” The Beckman Institute,for High Power Li Ion Batteries C.R. Horne 1 , A. Jaiswal

  11. Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Lin, Zhan [ORNL] [ORNL; Liu, Zengcai [ORNL] [ORNL; Fu, Wujun [ORNL] [ORNL; Dudney, Nancy J [ORNL] [ORNL; Liang, Chengdu [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Given the great potential for improving the energy density of state-of-the-art lithium-ion batteries by a factor of 5, a breakthrough in lithium-sulfur (Li-S) batteries will have a dramatic impact in a broad scope of energy related fields. Conventional Li-S batteries that use liquid electrolytes are intrinsically short-lived with low energy efficiency. The challenges stem from the poor electronic and ionic conductivities of elemental sulfur and its discharge products. We report herein lithium polysulfidophosphates (LPSP), a family of sulfur-rich compounds, as the enabler of long-lasting and energy-efficient Li-S batteries. LPSP have ionic conductivities of 3.0 10-5 S cm-1 at 25 oC, which is 8 orders of magnitude higher than that of Li2S (~10-13 S cm-1). The high Li-ion conductivity of LPSP is the salient characteristic of these compounds that impart the excellent cycling performance to Li-S batteries. In addition, the batteries are configured in an all-solid state that promises the safe cycling of high-energy batteries with metallic lithium anodes.

  12. Pulsed field gradient magnetic resonance measurements of lithium-ion diffusion

    E-Print Network [OSTI]

    Krsulich, Kevin D

    2014-01-01T23:59:59.000Z

    The transport of lithium ions between the electrolyte-electrode interface and the electrode bulk is an essential and presently rate limiting process in the high-current operation of lithium-ion batteries. Despite their ...

  13. Self-Organized Amorphous TiO2 Nanotube Arrays on Porous Ti Foam for Rechargeable Lithium and Sodium Ion Batteries

    SciTech Connect (OSTI)

    Bi, Zhonghe [ORNL; Paranthaman, Mariappan Parans [ORNL; Menchhofer, Paul A [ORNL; Dehoff, Ryan R [ORNL; Bridges, Craig A [ORNL; Chi, Miaofang [ORNL; Guo, Bingkun [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2013-01-01T23:59:59.000Z

    Self-organized amorphous TiO2 nanotube arrays (NTAs) were successfully fabricated on both Ti foil and porous Ti foam through electrochemical anodization techniques. The starting Ti foams were fabricated using ARCAM s Electron Beam Melting (EBM) technology. The TiO2 NTAs on Ti foam were used as anodes in lithium ion batteries; they exhibited high capacities of 103 Ahcm-2 at 10 Acm-2 and 83 Ahcm-2 at 500 Acm-2, which are two to three times higher than those achieved on the standard Ti foil, which is around 40 Ahcm-2 at 10 Acm-2 and 24 Ahcm-2 at 500 Acm-2, respectively. This improvement is mainly attributed to higher surface area of the Ti foam and higher porosity of the nanotube arrays layer grown on the Ti foam. In addition, a Na-ion half-cell composed of these NTAs anodes and Na metal showed a self-improving specific capacity upon cycling at 10 Acm-2. These results indicate that TiO2 NTAs grown on Ti porous foam are promising electrodes for Li-ion or Na-ion rechargeable batteries.

  14. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K. (Ocean, NJ); Chin, Der-Tau (Winthrop, NY)

    1989-01-01T23:59:59.000Z

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  15. Electrolyte additive for lithium rechargeable organic electrolyte battery

    DOE Patents [OSTI]

    Behl, Wishvender K.; Chin, Der-Tau

    1989-02-07T23:59:59.000Z

    A large excess of lithium iodide in solution is used as an electrolyte adive to provide overcharge protection for a lithium rechargeable organic electrolyte battery.

  16. Layered Electrodes for Lithium Cells and Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Layered Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes Lowers...

  17. Electrode Structures and Surfaces for Lithium Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures and Surfaces for Lithium Batteries Technology available for licensing: Lithium-metal-oxide electrode materials with modified surfaces to protect the materials from...

  18. Atomic layer deposition of Al2O3 on V2O5 xerogel film for enhanced lithium-ion intercalation stability

    E-Print Network [OSTI]

    Cao, Guozhong

    .1116/1.3664115] I. INTRODUCTION Lithium-ion batteries become the focus of rechargeable batteries in the new decade in hybrid vehicles requires high discharge capacity which current lithium-ion batteries do not have. Worldwide research has been carried out to improve the intercalation capabilities of lithium-ion battery

  19. Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    for high-energy lithium battery applications. 1. Introduction Energy storage and conversion have sources.1­6 Lithium-ion batteries are considered to be the most promising energy-storage systemsNanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium

  20. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Energy Savers [EERE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  1. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  2. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  3. Thin film method of conducting lithium-ions

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-11-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  4. Thin film method of conducting lithium-ions

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-11-10T23:59:59.000Z

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O-CeO{sub 2}-SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  5. Dual Phase Li4 Ti5O12–TiO2 Nanowire Arrays As Integrated Anodes For High-rate Lithium-ion Batteries

    SciTech Connect (OSTI)

    Liao, Jin; Chabot, Victor; Gu, Meng; Wang, Chong M.; Xiao, Xingcheng; Chen, Zhongwei

    2014-08-19T23:59:59.000Z

    Lithium titanate (Li4Ti5O12) is well known as a zero strain material inherently, which provides excellent long cycle stability as a negative electrode for lithium ion batteries. However, the low specific capacity (175 mA h g?1) limits it to power batteries although the low electrical conductivity is another intrinsic issue need to be solved. In this work, we developed a facile hydrothermal and ion-exchange route to synthesize the self-supported dual-phase Li4Ti5O12–TiO2 nanowire arrays to further improve its capacity as well as rate capability. The ratio of Li4Ti5O12 to TiO2 in the dual phase Li4Ti5O12–TiO2 nanowire is around 2:1. The introduction of TiO2 into Li4Ti5O12 increases the specific capacity. More importantly, by interface design, it creates a dual-phase nanostructure with high grain boundary density that facilitates both electron and Li ion transport. Compared with phase-pure nanowire Li4Ti5O12 and TiO2 nanaowire arrays, the dual-phase nanowire electrode yielded superior rate capability (135.5 at 5 C, 129.4 at 10 C, 120.2 at 20 C and 115.5 mA h g?1 at 30 C). In-situ transmission electron microscope clearly shows the near zero deformation of the dual phase structure, which explains its excellent cycle stability.

  6. Accepted Manuscript Investigation of path dependence in commercial lithium-ion cells for pure electric bus

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    management in EV applications. Keywords: Lithium-ion battery; Path dependence; Thermal aging; Degradation emissions, advanced lithium-ion battery systems are currently being developed for electrical vehicles (EVs need to provide more realistic and accurate State of Health estimations for batteries in electric

  7. Mechanical characterization of lithium-ion battery micro components for development of homogenized and multilayer material models

    E-Print Network [OSTI]

    Miller, Kyle M. (Kyle Mark)

    2014-01-01T23:59:59.000Z

    The overall battery research of the Impact and Crashworthiness Laboratory (ICL) at MIT has been focused on understanding the battery's mechanical properties so that individual battery cells and battery packs can be ...

  8. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    E-Print Network [OSTI]

    Marcinek, M.

    2008-01-01T23:59:59.000Z

    Meeting on Lithium Batteries, Biarritz, France, June 18–23,Thin-Film Anodes for Li-ion Batteries M. Marcinek, L. J.Sn/C anodes for lithium batteries. Thin layers of graphitic

  9. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26T23:59:59.000Z

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  10. Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell

    E-Print Network [OSTI]

    Goddard III, William A.

    Toward a Lithium-"Air" Battery: The Effect of CO2 on the Chemistry of a Lithium-Oxygen Cell Hyung as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium- dioxygen

  11. Electrochemical performance of polyaniline coated LiMn{sub 2}O{sub 4} cathode active material for lithium ion batteries

    SciTech Connect (OSTI)

    ?ahan, Halil, E-mail: halil@erciyes.edu.tr; Dokan, Fatma K?l?c, E-mail: halil@erciyes.edu.tr; Ayd?n, Abdülhamit, E-mail: halil@erciyes.edu.tr; Özdemir, Burcu, E-mail: halil@erciyes.edu.tr; Özdemir, Nazl?, E-mail: halil@erciyes.edu.tr; Patat, ?aban, E-mail: halil@erciyes.edu.tr [Department of Chemistry, Science Faculty, Erciyes University, Kayseri, 38039 (Turkey)

    2013-12-16T23:59:59.000Z

    LiMn{sub 2}O{sub 4} compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800°C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn{sub 2}O{sub 4} particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g{sup ?1}) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn{sub 2}O{sub 4} was significantly improved by the polaniline coating.

  12. The structural design of electrode materials for high energy lithium batteries.

    SciTech Connect (OSTI)

    Thackeray, M.; Chemical Sciences and Engineering Division

    2007-01-01T23:59:59.000Z

    Lithium batteries are used to power a diverse range of applications from small compact devices, such as smart cards and cellular telephones to large heavy duty devices such as uninterrupted power supply units and electric- and hybrid-electric vehicles. This paper briefly reviews the approaches to design advanced materials to replace the lithiated graphite and LiCoO{sub 2} electrodes that dominate today's lithium-ion batteries in order to increase their energy and safety. The technological advantages of lithium batteries are placed in the context of water-based- and high-temperature battery systems.

  13. 2008 Nature Publishing Group High-performance lithium battery

    E-Print Network [OSTI]

    Cui, Yi

    © 2008 Nature Publishing Group High-performance lithium battery anodes using silicon nanowires in lithium batteries have shown capacity fading and short battery lifetime due to pulverization and loss December 2007; doi:10.1038/nnano.2007.411 There is great interest in developing rechargeable lithium

  14. Description: Lithium batteries are used daily in our work

    E-Print Network [OSTI]

    Description: Lithium batteries are used daily in our work activities from flashlights, cell phones containing one SureFire 3-volt non-rechargeable 123 lithium battery and one Interstate 3-volt non-rechargeable 123 lithium battery. A Garage Mechanic had the SureFire flashlight in his shirt pocket with the lens

  15. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28T23:59:59.000Z

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  16. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    SciTech Connect (OSTI)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03T23:59:59.000Z

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  17. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  18. Modeling of Nonuniform Degradation in Large-Format Li-ion Batteries (Poster)

    SciTech Connect (OSTI)

    Smith, K.; Kim, G. H.; Pesaran, A.

    2009-06-01T23:59:59.000Z

    Shows results of an empirical model capturing effects of both storage and cycling and developed the lithium ion nickel cobalt aluminum advanced battery chemistry.

  19. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  20. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01T23:59:59.000Z

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.