Powered by Deep Web Technologies
Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Computational Fluid Dynamics Simulations of Raw Gas Composition from a Black Liquor Gasifier—Comparison with Experiments  

Science Journals Connector (OSTI)

Computational Fluid Dynamics Simulations of Raw Gas Composition from a Black Liquor Gasifier—Comparison with Experiments ... The black liquor spray was represented by 1003 discrete particles having a fitted Rosin Rammler distribution of power 2 and a characteristic size of 200 ?m. ... Additional PFR calculations were performed using different inlet gas compositions with similar results (not presented here), i.e. the Jones and Lindstedt model showed a significantly higher reformation rate of methane than GRI-Mech at gasification conditions in the medium temperature range (1150 < T < 1500 K). ...

Per Carlsson; Kristiina Iisa; Rikard Gebart

2011-07-05T23:59:59.000Z

2

Gasification of black liquor  

DOE Patents (OSTI)

A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

Kohl, Arthur L. (Woodland Hills, CA)

1987-07-28T23:59:59.000Z

3

Fuel nitrogen release during black liquor pyrolysis; Part 2: Comparisons between different liquors  

SciTech Connect

This continuation of earlier work reports fuel nitrogen release for black liquors at two temperatures during pyrolysis of single droplets in an oxygen-free environment. Approximately half of the 20--60% fuel nitrogen released was ammonia and half was molecular nitrogen. The total amount of fixed nitrogen released during pyrolysis was almost linearly proportional to the liquor nitrogen content. The yield of fixed nitrogen for birch liquors was significantly higher than for pine liquors, and the yield for bagasse liquor was extremely high.

Aho, K.; Nikkanen, S. (A. Ahlstrom Corp., Varkaus (Finland)); Hupa, M. (Abo Akademi Univ., Turku (Finland). Chemical Engineering Dept.)

1994-08-01T23:59:59.000Z

4

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

5

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

6

Kraft Liquor Corrosion Margaret Gorog  

E-Print Network (OSTI)

1 Kraft Liquor Corrosion Margaret Gorog Federal Way, WA Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute November 2014 · Brown Stock Corrosion · Alkaline Liquor Corrosion · Black Liquor Corrosion ­ Evaporators ­ Research · High Solids Black Liquor Corrosion of Stainless Steel

Das, Suman

7

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

8

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

9

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

10

End-of-Month Working Gas in  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The level of gas in storage at the end of the last heating season (March 31, 2000) was 1,150 billion cubic feet (Bcf), just above the 1995-1999 average of 1,139 Bcf. However, according to American Gas Association data, injection rates since April 1 have been below average, resulting in a 10-percent shortfall compared to the 5-year average for total stocks as of September 1. Net injections in August have been 10 percent below average. If net injections continue at 10 percent below historically average rates through the remainder of the refill season, gas inventories would be 2,750 Bcf on November 1, which is 8 percent below the 5-year average of about 3,000 Bcf. We are currently projecting that working gas will be between 2,800 and 2,900 Bcf at the end of October, entering the heating season

11

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

12

Philadelhia Gas Works (PGW) Doe Furnace Rule | Department of...  

Energy Savers (EERE)

Philadelhia Gas Works (PGW) Doe Furnace Rule Philadelhia Gas Works (PGW) Doe Furnace Rule DOE Furnace Rule More Documents & Publications Focus Series: Philadelphia Energyworks: In...

13

Federal Utility Partnership Working Group: Atlanta Gas Light...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Group: Atlanta Gas Light Resources Federal Utility Partnership Working Group: Atlanta Gas Light Resources Presentation-given at the April 2012 Federal Utility Partnership Working...

14

Black liquor combustion validated recovery boiler modeling, five-year report  

SciTech Connect

The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1996-08-01T23:59:59.000Z

15

Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930 86,773 86,048 87,257 87,558 88,012 87,924 85,137 81,930 1994 78,106 72,445 71,282 70,501 71,440 73,247 74,599 75,685 77,456 78,490 76,784 74,111 1995 70,612 68,618 67,929 68,727 70,007 72,146 75,063 78,268 79,364 78,810 75,764 70,513

16

Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 18,661 17,042 17,387 20,796 23,060 26,751 30,924 33,456 34,200 30,588 1991 24,821 19,663 16,425 15,850 17,767 18,744 22,065 26,710 31,199 37,933 35,015 30,071 1992 23,328 18,843 14,762 14,340 15,414 17,948 23,103 27,216 32,427 35,283 32,732 29,149 1993 23,702 18,626 15,991 17,160 18,050 20,109 24,565 29,110 33,303 34,605 32,707 30,052 1994 23,623 20,052 18,102 17,396 17,194 19,647 24,780 29,088 33,077 35,877 36,408 33,424 1995 27,732 21,973 19,542 18,899 19,227 21,026 23,933 27,541 31,972 36,182 36,647 31,830

17

Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884 55,215 61,028 60,752 38,314 31,086 1994 21,838 17,503 20,735 25,099 29,837 30,812 37,339 42,607 44,739 47,674 48,536 43,262 1995 32,938 27,069 23,018 27,735 34,699 36,337 40,488 41,240 47,530 50,166 40,729 32,224

18

Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 55,509 49,604 47,540 48,128 53,233 64,817 76,933 92,574 99,253 115,704 93,290 1991 59,383 54,864 49,504 47,409 53,752 61,489 64,378 67,930 78,575 89,747 80,663 82,273 1992 76,311 63,152 53,718 48,998 51,053 53,700 57,987 69,653 79,756 82,541 73,094 61,456 1993 44,893 33,024 27,680 26,796 46,806 58,528 64,198 75,616 89,955 92,825 87,252 76,184 1994 52,998 41,644 39,796 40,779 49,519 55,059 64,664 77,229 86,820 91,309 84,568 74,364 1995 59,292 47,263 37,998 39,071 48,761 60,148 65,093 65,081 81,654 93,880 90,905 73,982

19

Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000 865 863 1,178 1,112 1,202 1,809 1,890 1,890 1,780 1,638 1,434 1,349 2001 1,020 1,261 657 851 807 1,384 1,538 1,651 1,669 1,549 2,837 2,848 2002 2,435 2,119 1,849 2,106 2,206 2,076 2,326 2,423 2,423 1,863 2,259 2,117

20

Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 22,694 17,504 13,313 17,552 23,767 28,965 33,972 35,196 34,955 34,660 1991 26,266 24,505 17,544 16,115 17,196 21,173 25,452 30,548 35,254 36,813 37,882 36,892 1992 33,082 29,651 22,962 18,793 18,448 20,445 24,593 30,858 36,770 38,897 35,804 33,066 1993 28,629 23,523 21,015 17,590 20,302 24,947 28,113 31,946 36,247 34,224 30,426 29,254 1994 24,249 19,331 16,598 11,485 16,989 18,501 23,590 28,893 34,044 34,298 32,687 29,307 1995 24,948 21,446 16,467 12,090 14,043 19,950 25,757 29,774 32,507 33,707 35,418 30,063

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612 100,869 109,975 138,272 152,044 175,917 185,337 199,629 210,423 198,700 164,518 1994 121,221 77,055 76,162 95,079 123,190 143,437 161,081 170,434 191,319 203,562 186,826 161,202 1995 130,241 125,591 117,650 114,852 141,222 167,231 181,227 179,508 194,712 212,867 214,897 188,927

22

Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616 47,157 49,577 86,976 120,891 149,120 176,316 212,046 227,566 213,581 170,503 1994 112,054 93,499 80,056 101,407 134,333 155,279 184,802 207,383 230,726 239,823 235,775 197,145 1995 145,373 106,289 97,677 107,610 126,266 154,036 174,808 175,953 199,358 213,417 188,967 141,572

23

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

24

Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290 365 460 463 508 508 447 2004 344 293 281 312 345 391 454 509 514 539 527 486 2005 444 364 265 184 143 126 126 126 88 79 73 60 2006 52 52 44 44 44 44 44 44 44 44 44 44

25

Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 163,571 125,097 100,438 110,479 158,720 215,000 265,994 318,024 358,535 364,421 359,766 306,561 1991 194,349 153,061 137,579 147,399 174,145 196,678 219,025 254,779 297,531 315,601 305,179 272,103 1992 201,218 144,582 93,826 103,660 140,908 188,078 222,215 264,511 306,113 331,416 332,959 288,433 1993 217,967 120,711 66,484 89,931 133,866 187,940 233,308 272,685 320,921 334,285 328,073 278,791 1994 172,190 97,587 75,470 114,979 166,013 222,300 272,668 315,887 339,424 354,731 335,483 294,393 1995 232,561 139,624 111,977 124,790 168,112 221,731 253,442 290,185 338,021 355,887 311,749 236,656

26

Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201 133,273 148,416 222,106 303,407 386,359 468,790 534,882 568,552 516,491 426,536 1994 282,144 193,338 162,719 203,884 276,787 351,286 425,738 502,577 568,235 599,504 579,874 516,887 1995 410,946 298,325 247,016 245,903 299,050 364,569 438,995 492,773 545,157 577,585 511,573 392,896

27

Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 118,053 119,532 116,520 130,817 139,698 150,336 158,048 165,206 171,008 180,706 154,515 1991 111,225 106,204 111,759 125,973 140,357 150,549 151,393 156,066 166,053 169,954 144,316 133,543 1992 115,658 107,281 103,919 109,690 117,435 128,505 145,962 153,948 166,637 174,182 154,096 123,225 1993 46,462 26,472 19,429 30,902 49,259 67,110 82,104 95,435 111,441 118,880 101,220 86,381 1994 56,024 35,272 32,781 49,507 73,474 86,632 102,758 115,789 124,652 129,107 126,148 109,979 1995 86,312 72,646 62,779 67,245 83,722 96,319 103,388 101,608 113,587 126,287 116,265 92,617

28

Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914 59,772 61,281 10,707 8,936 6,562 1994 3,476 743 886 1,845 3,983 4,882 6,505 6,852 8,978 9,908 10,078 8,075 1995 6,063 5,068 4,138 3,940 4,583 5,449 3,881 4,059 4,443 3,676 2,078 485 1996 - - - - - 806 1,938 3,215 3,960 3,389 2,932 1,949

29

Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882 5,257 3,304 2,365 1,893 5,005 7,942 10,880 11,949 12,154 12,235 9,008 1991 6,557 6,453 3,509 6,342 7,864 10,580 12,718 12,657 12,652 14,112 15,152 14,694 1992 12,765 9,785 9,204 8,327 9,679 10,854 11,879 13,337 14,533 13,974 13,312 9,515 1993 6,075 2,729 3,958 4,961 9,491 10,357 12,505 13,125 15,508 13,348 9,567 11,274 1994 9,672 5,199 4,765 6,867 9,471 11,236 13,045 13,496 14,629 14,846 14,458 12,884 1995 10,750 8,520 8,267 8,500 11,070 12,622 14,035 13,764 16,258 16,158 16,224 12,869 1996 6,547 5,488 4,672 4,780 6,742 10,060 11,344 15,100 14,244 12,391 11,634 9,724

30

Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235 1,045 888 1,237 1,642 2,011 2,213 2,362 2,360 2,356 2,284 1995 1,771 1,294 1,037 990 1,321 1,584 1,890 2,121 2,362 2,368 2,365 2,110 1996 1,329 1,069 847 935 1,301 1,596 1,883 2,093 2,295 2,328 2,297 2,070

31

Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073 6,794 4,640 6,094 7,449 7,765 8,072 8,341 8,548 8,778 8,783 1995 8,200 7,921 7,879 7,608 8,230 8,221 8,210 8,559 9,022 9,145 9,311 8,981 1996 7,558 7,658 7,225 6,931 8,250 8,511 8,751 8,958 9,162 9,372 9,067 8,993

32

Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 1,309 844 534 742 1,055 1,364 1,553 1,894 2,218 2,349 2,255 1,897 1999 1,519 1,070 745 929 1,202 1,413 1,641 1,830 2,248 2,357 2,175 1,708 2000 998 843 814 1,063 1,642 1,848 2,066 2,215 2,223 2,594 2,242 1,529 2001 991 823 532 963 1,477 1,869 2,113 2,416 2,677 2,651 2,711 2,503 2002 2,029 1,356 968 1,090 1,627 1,899 2,181 2,322 2,631 2,838 2,559 2,065 2003 1,042 546 367 660 1,107 1,582 1,994 2,710 3,247 3,281 3,167 2,621 2004 1,570 1,195 865 1,024 1,706 1,990 2,188 2,925 3,253 4,115 4,082 3,077

33

Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 1,668 2,849 4,357 5,601 6,365 7,001 7,373 7,562 7,517 6,766 1991 5,691 4,726 2,959 1,980 2,694 4,248 5,706 6,798 7,472 7,811 7,834 7,347 1992 5,779 4,239 2,653 2,211 3,783 5,323 6,518 7,528 7,981 8,154 7,055 6,475 1993 4,557 3,161 2,433 2,007 3,651 4,949 6,130 7,172 7,750 8,240 7,509 6,406 1994 5,145 4,018 3,073 648 1,858 3,357 4,553 5,628 6,312 6,566 6,129 5,491 1995 3,814 3,429 2,989 3,856 5,035 6,069 6,765 6,765 7,251 7,251 7,193 6,371 1996 5,120 4,179 3,528 3,396 4,119 5,292 6,425 6,862 6,965 6,759 6,206 4,967

34

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

35

West Virginia Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593 41,670 46,361 84,672 111,540 131,113 150,292 170,597 176,189 162,821 129,738 1994 71,547 38,973 20,662 41,766 67,235 97,887 125,442 147,683 168,538 174,514 166,920 140,377 1995 96,574 55,283 43,199 48,420 72,781 96,991 120,021 128,965 146,728 161,226 138,140 98,925

36

Second AEO2014 Oil and Gas Working Group Meeting Summary  

Gasoline and Diesel Fuel Update (EIA)

TEAM EXPLORATION AND PRODUCTION and NATURAL GAS MARKETS TEAMS SUBJECT: Second AEO2014 Oil and Gas Working Group Meeting Summary (presented September 26, 2013) Attendees: Robert...

37

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

economics of black liquor gasifier/gas turbine cogenerationblack liquor and biomass gasifier/gas turbine technology".entrained flow booster gasifier in New Bern, North Carolina;

Kong, Lingbo

2014-01-01T23:59:59.000Z

38

A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report  

SciTech Connect

A wide variety of experimental techniques have been used in this work, and many of these have been developed completely or improved significantly in the course of the research done during this program. Therefore, it is appropriate to describe these techniques in detail as a reference for future workers so that the techniques can be used in future work with little additional effort or so that the results reported from this program can be compared better with future results from other work. In many cases, the techniques described are for specific analytical instruments. It is recognized that these may be superseded by future developments and improvements in instrumentation if a complete description of techniques used successfully in the past on other instrumentation is available. The total pulping and liquor preparation research work performed included chip and white liquor preparation, digestion, pulp washing, liquor and wash recovery, liquor sampling, weak liquor concentration in two steps to about 45--50% solids with an intermediate soap skimming at about 140F and 27--30% solids, determination of pulp yield and Kappa number, determination of total liquor solids, and a check on the total material balance for pulping. All other research was performed either on a sample of the weak black liquor (the combined black liquor and washes from the digester) or on the skimmed liquor that had been concentrated.

Fricke, A.L.; Zaman, A.A.; Stoy, M.O.; Schmidl, G.W.; Dong, D.J.; Speck, B.

1998-04-01T23:59:59.000Z

39

Proceedings of the black liquor research program review fifth meeting  

SciTech Connect

On June 14--17, 1988 the participants and invited guests of the Cooperative Program in Kraft Recovery gathered in Charleston, South Carolina, to review progress on four major black liquor research programs being executed at the Institute of Paper Chemistry, the University of Maine, the National Bureau of Standards, and the University of Florida. These programs include: (1) Black Liquor Properties; (2) Black Liquor Droplet Formation; (3) Black Liquor Nozzle Evaluation; and (4) Black Liquor Combustion. In addition to the objectives of previous meetings, this meeting made a direct attempt to gather ideas on how to improve our ability to move from new technology concepts to commercial implementation. Also attached is the agenda for the Charleston meeting. The first two days were involved with updates and reviews of the four major black liquor programs. A half day was spent discussing pathways to implementation and developing thoughts on what industry, DOE and academia could do to facilitate commercial implementation of the research results. This publication is a summary of the presentations made in Charleston and the industry responses to the research work. Readers are cautioned that the contents are in-progress updates on the status of the research and do not represent referred technical papers. Any questions regarding the content should be referred to the principal investigators of the project.

Not Available

1988-09-01T23:59:59.000Z

40

Philadelphia Gas Works: Who’s on First?  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—about the Philadelphia Gas Works (PGW) and its federal projects.

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815 27,780 16,330 1993 16,748 -23,871 -27,342 -13,729 -7,043 -138 11,093 8,174 14,808 2,868 -4,885 -9,642 1994 -45,776 -23,124 8,987 25,048 32,148 34,360 39,360 43,202 18,502 20,447 7,409 15,602 1995 60,371 42,037 36,507 9,811 2,098 -569 -19,226 -25,702 -1,403 1,156 -23,733 -57,737

42

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5 1.3 -0.3 -7.1 -8.1 -0.4 0.3 -7.1 -19.6 1996 -32.3 -32.6 -49.9 -39.0 -28.4 -18.3 -0.5 4.4 0.7 -0.2 3.9 26.8 1997 31.1 63.7 89.6 41.7 24.2 9.7 -4.5 -6.2 -2.2 -2.4 -0.3 -8.7 1998 5.7 9.8 22.4 52.3 49.3 32.7 23.0 11.1 3.1 4.1 12.5 17.6

43

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

44

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

45

CORN STEEP LIQUOR IN MICROBIOLOGY  

Science Journals Connector (OSTI)

...is a by-product of the corn wet-milling industry it would be insufficient...invention of much of the modern wet milling process, suggested corn steep liquor as a nutrient...general flowsheet of the corn wet-milling process; and to Dr. L...

R. Winston Liggett; H. Koffler

1948-12-01T23:59:59.000Z

46

Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80  

E-Print Network (OSTI)

Gas Flowmeter Calibrations with the Working Gas Flow Standard NIST Special Publication 250-80 John of Standards and Technology U. S. Department of Commerce #12;ii Table of Contents Gas Flowmeter Calibrations with the Working Gas Flow Standard .......................... i Abstract

47

Philadelphia Gas Works - Residential and Commercial Construction Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Commercial Construction Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) Philadelphia Gas Works - Residential and Commercial Construction Incentives Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Residential: $750 Commercial: $60,000 Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount '''Residential''' Residential Construction: $750 '''Commercial/Industrial''' 10% to 20% to 30% above code, $40/MMBtu first-year savings Philadelphia Gas Works (PGW) provides incentives to developers, home

48

Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

49

Biomass gasification project gets funding to solve black liquor safety and landfill problems  

SciTech Connect

This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

Black, N.P.

1991-02-01T23:59:59.000Z

50

How Gas Turbine Power Plants Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work How Gas Turbine Power Plants Work The combustion (gas) turbines being installed in many of today's natural-gas-fueled power plants are complex machines, but they basically involve three main sections: The compressor, which draws air into the engine, pressurizes it, and feeds it to the combustion chamber at speeds of hundreds of miles per hour. The combustion system, typically made up of a ring of fuel injectors that inject a steady stream of fuel into combustion chambers where it mixes with the air. The mixture is burned at temperatures of more than 2000 degrees F. The combustion produces a high temperature, high pressure gas stream that enters and expands through the turbine section. The turbine is an intricate array of alternate stationary and

51

Conceptual design of a black liquor gasification pilot plant  

SciTech Connect

In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

Kelleher, E. G.

1987-08-01T23:59:59.000Z

52

Working on new gas turbine cycle for heat pump drive  

E-Print Network (OSTI)

Working on new gas turbine cycle for heat pump drive FILE COPY TAP By Irwin Stambler, Field Editor, is sized for a 10-ton heat pump system - will be scaled to power a commercial product line ranging from 7 of the cycle- as a heat pump drive for commercial installations. Company is testing prototype gas turbine

Oak Ridge National Laboratory

53

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

54

Highly Energy Efficient Directed Green Liquor Utilization (D...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

55

Chapter 2 - Black Liquor Gasification  

Science Journals Connector (OSTI)

Black liquor gasification (BLG) is being considered primarily as an option for production of biofuels in recent years due to the focus on the transport sector’s high oil dependence and climate impact. BLG may be performed either at low temperatures or at high temperatures, based on whether the process is conducted above or below the melting temperature range of the spent pulping chemicals. The development of various BLG technologies—SCA-Billerud process, the Copeland recovery process, Weyerhaeuser’s process, the St. Regis hydropyrolysis process, the Texaco process, VTT’s circulating fluidized bed BLG process, Babcock and Wilcox’s bubbling fluidized bed gasification process, NSP process (Ny Sodahus Process), DARS (Direct Alkali Recovery System) process, BLG with direct causticization, Manufacturing and Technology Conversion International fluidized bed gasification, Chemrec gasification, catalytic hydrothermal gasification of black liquor—is discussed in this chapter. The two main technologies under development are pressurized gasification and atmospheric gasification, being commercialized by Chemrec AB and ThermoChem Recovery International, respectively.

Pratima Bajpai

2014-01-01T23:59:59.000Z

56

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr; Alireza Rezaie

2003-12-01T23:59:59.000Z

57

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and were functionally-graded to give the best combination of thermal, mechanical and physical properties and chemical stability; and are relatively inexpensive, reliable repair materials. Material development was divided into 2 tasks: Task 1 was development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2 was finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

2005-12-01T23:59:59.000Z

58

REFRACTORY FOR BLACK LIQUOR GASIFIERS  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr.; Alireza Rezaie

2003-12-01T23:59:59.000Z

59

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

William L. Headrick Jr; Alireza Rezaie

2003-08-01T23:59:59.000Z

60

Refractory for Black Liquor Gasifiers  

SciTech Connect

The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

Robert E. Moore; William L. Headrick; Alireza Rezaie

2003-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Philadelphia Gas Works - Residential and Small Business Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Residential and Small Business Equipment Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program Philadelphia Gas Works - Residential and Small Business Equipment Rebate Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Start Date 4/1/2011 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler (Purchase prior to 02/17/12): $1000 Boiler (Purchase 02/17/12 or after): $2000 Furnace (Purchase prior to 02/17/12): $250 Furnace (Purchase prior to 02/17/12): $500

62

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

63

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

64

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

65

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

66

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

December 19, 2013 December 19, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through September 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

67

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

November 7, 2013 November 7, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through August 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

68

Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions  

SciTech Connect

Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

Aho, K.; Vakkilainen, E. (A. Ahistrom Corp., Varkaus (Finland)); Hupa, M. (Abo Akademi Univ., Turku (Finland). Chemical Engineering Dept.)

1994-05-01T23:59:59.000Z

69

Catalysts for Oxidation of Mercury in Flue Gas - Energy Innovation...  

NLE Websites -- All DOE Office Websites (Extended Search)

those for selective catalytic reduction (SCR)), scrubbing liquors, flue gas or coal additives, combustion modifications, barrier discharges, and ultraviolet radiation....

70

A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 2  

SciTech Connect

Experimental effort for the program to evaluate physical properties of kraft black liquors is now proceeding well. Experimental work includes pulping, liquor analysis, lignin purification and characterization, vapor-liquid equilibria, heat capacity, heats of solution and combustion, and viscosity measurements. Measurement of thermal conductivity has not yet begun. Collection of the data necessary for development of generalized correlations is proceeding, but will require about two more years. The digester is operating very well. It is now possible to operate the digester as a closed, rotating reactor or as a batch reactor with liquor circulation. When operated with liquor circulation, temperatures within the chip bed can be monitored during cooking. Cooking is reproducible, and cooks are being performed to produce liquors for experimental studies. The digester could be further modified to permit us to conduct rapid exchange batch pulping or to permit us to simulate continuous pulping. Liquors to be used in experimental studies are concentrated in our large scale evaporator or in our small scale evaporator. The large scale evaporator is used to concentrate liquors to about 50% solids for storage and for use in studies requiring high solids liquors. The small scale evaporator is used for preparing final samples to as high as 85% solids and for measuring vapor-liquid equilibria. Liquors are now routinely analyzed to determine all components, except higher molecular weight organic acids and extractives. Lignin determination by uv-visible means has been improved. Lignin purification from black liquor has been improved and lignin molecular weights are determined routinely. Work on lignin molecular weight distribution is still not satisfactory, but recent developments holds promise.

Fricke, A.L.

1990-12-01T23:59:59.000Z

71

AGA Western Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116 333,134 322,501 282,392 1997 216,113 179,067 171,563 184,918 227,756 273,507 306,641 330,075 351,975 363,189 350,107 263,455 1998 211,982 163,084 150,923 155,766 206,048 254,643 281,422 305,746 346,135 379,917 388,380 330,906

72

,"U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (MMcf)" Working Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5410us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5410us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:28 PM"

73

,"U.S. Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (MMcf)" Working Gas (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Non-Salt Underground Storage - Working Gas (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5510us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5510us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:32 PM"

74

Chapter 4 - Obstacles to Implementation of Black Liquor Gasification  

Science Journals Connector (OSTI)

Obstacles hindering the commercialization of black liquor gasification are discussed. The most important of them include financial risks, protection of the gasifier, increase in the causticizing demand, tar condensation, hot gas cleanup, and steam deficit. Gasification system demands significant capital investment. The high temperature and pressure and the alkaline conditions create aggressive environment. Protection from an aggressive environment is very important in the operation of a gasifier because it determines the lifetime and hence the feasibility of gasification as a technology as a whole.

Pratima Bajpai

2014-01-01T23:59:59.000Z

75

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

76

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

77

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

78

AGA Eastern Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243 1,192,952 1,456,355 1,695,873 1,838,842 1,664,539 1,423,793 1997 965,310 711,444 521,508 539,750 735,527 985,803 1,230,970 1,474,855 1,702,601 1,816,709 1,706,526 1,416,580 1998 1,108,737 878,420 669,205 772,790 1,017,260 1,248,564 1,462,360 1,644,247 1,797,048 1,918,157 1,878,225 1,630,559

79

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network (OSTI)

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

80

Recovering Soaps and Greases from Wool-Scouring liquors  

Science Journals Connector (OSTI)

Recovering Soaps and Greases from Wool-Scouring liquors ... A NEW process, illustrated in the accompanying flowsheet, has been devised for recovering soaps and greases from waste wool-scouring liquors. ...

C.H.S. TUPHOLME

1939-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lower 48 States Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Lower 48 States Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 1,985 38,541 -75,406 -222,622 -232,805 -210,409 -190,434 -133,607 -91,948 -46,812 73,978 350,936 2012 778,578 852,002 1,047,322 994,769 911,345 800,040 655,845 556,041 481,190 406,811 271,902 259,915 2013 -216,792 -360,517 -763,506 -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013

82

U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) U.S. Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 2,034,000 1974 NA NA NA NA NA NA NA NA NA 2,403,000 NA 2,050,000 1975 NA NA NA NA NA NA NA NA 2,468,000 2,599,000 2,541,000 2,212,000 1976 1,648,000 1,444,000 1,326,000 1,423,000 1,637,000 1,908,000 2,192,000 2,447,000 2,650,000 2,664,000 2,408,000 1,926,000 1977 1,287,000 1,163,000 1,215,000 1,427,000 1,731,000 2,030,000 2,348,000 2,599,000 2,824,000 2,929,000 2,821,000 2,475,000 1978 1,819,000 1,310,000 1,123,000 1,231,000 1,491,000 1,836,000 2,164,000 2,501,000 2,813,000 2,958,000 2,927,000 2,547,000

83

Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Iowa Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,086 66,477 61,296 61,444 65,918 70,653 76,309 82,236 85,955 89,866 87,913 73,603 1991 71,390 60,921 57,278 59,014 63,510 74,146 79,723 86,294 97,761 109,281 101,166 86,996 1992 67,167 54,513 50,974 53,944 62,448 70,662 82,259 93,130 103,798 112,898 103,734 83,223 1993 18,126 8,099 5,896 10,189 16,993 25,093 35,988 46,332 58,949 64,538 57,880 40,257 1994 21,994 12,505 9,508 11,414 16,978 23,485 33,733 44,726 56,420 65,515 60,945 43,175 1995 22,656 11,780 7,447 6,865 10,632 18,717 28,858 43,748 55,435 62,560 51,890 36,857

84

Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 321,678 314,918 308,955 347,344 357,995 370,534 383,549 377,753 378,495 396,071 402,265 365,396 1991 279,362 271,469 271,401 289,226 303,895 323,545 327,350 329,102 344,201 347,984 331,821 316,648 1992 284,571 270,262 264,884 267,778 286,318 298,901 320,885 338,320 341,156 345,459 324,873 288,098 1993 165,226 149,367 141,472 157,250 183,990 198,041 207,344 220,032 216,071 222,798 210,181 194,014 1994 143,701 103,889 111,945 135,634 168,679 181,683 207,232 226,641 248,857 261,209 266,958 235,718 1995 215,449 192,489 184,914 206,178 228,388 238,593 238,850 234,779 254,339 265,781 248,336 200,382

85

Lower 48 States Total Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Lower 48 States Total Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,305,843 1,721,875 1,577,007 1,788,480 2,186,855 2,529,647 2,775,346 3,019,155 3,415,698 3,803,828 3,842,882 3,462,021 2012 2,910,007 2,448,810 2,473,130 2,611,226 2,887,060 3,115,447 3,245,201 3,406,134 3,693,053 3,929,250 3,799,215 3,412,910 2013 2,693,215 2,088,293 1,709,624 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

86

The Physics Analysis of a Gas Attenuator with Argon as a Working Gas  

SciTech Connect

A gas attenuator is an important element of the LCLS facility. The attenuator must operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. S. Shen has recently carried out a detailed design study of the attenuator based on the use of nitrogen as a working gas. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues, not the design features.

Ryutov,, D.D.

2010-12-07T23:59:59.000Z

87

Chapter 5 - Environmental Impact of Black Liquor Gasification  

Science Journals Connector (OSTI)

Environmental impact of black liquor gasification (BLG) is discussed. Biofuels from a BLG process excel in terms of well-to-wheel carbon dioxide emission reduction and energy efficiency. Forest biorefinery utilizing gasification (in a black liquor gasification combined cycle (BLGCC) configuration) rather than a Tomlinson boiler is predicted to produce significantly fewer pollutant emissions due to the intrinsic characteristics of the BLGCC technology. Syngas cleanup conditioning removes a considerable amount of contaminants and gas turbine combustion is more efficient and complete than boiler combustion. Also, there could be reductions in pollutant emissions and hazardous wastes resulting from cleaner production of chemicals and fuels that are now manufactured using fossil energy resources. Production of power, fuels, chemicals, and other products from biomass resources creates a net zero generation of carbon dioxide as plants are renewable carbon sinks. BLG whether conducted at high or low temperatures is still superior to the current recovery boiler combustion technology. Implementation of IGCC power plants will cause net savings in cooling water requirements and net reductions in wastewater discharges. The most significant environmental impact caused by BLG will occur in air emissions. The overall reduction of Total reduced sulphur (TRS) gases using gasification technology will also reduce odor, which will improve public acceptance of pulp and paper mills, particularly in populated areas.

Pratima Bajpai

2014-01-01T23:59:59.000Z

88

Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment  

SciTech Connect

The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that droplets on the order 200-300 microns can be expected, and that higher liquor flow will result in be

Kevin Whitty

2008-06-30T23:59:59.000Z

89

U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas (Million Cubic Feet) Working Gas (Million Cubic Feet) U.S. Natural Gas Salt Underground Storage - Working Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 47,455 36,864 41,979 49,646 58,678 56,813 63,882 64,460 70,583 72,447 73,277 69,641 1995 72,965 64,476 58,510 66,025 73,529 78,437 76,026 63,026 80,949 87,711 83,704 71,638 1996 58,880 47,581 37,918 56,995 62,439 71,476 70,906 75,927 84,962 88,061 87,029 85,140 1997 57,054 49,490 55,865 58,039 73,265 79,811 65,589 66,536 77,598 93,020 95,180 82,610 1998 69,390 68,851 63,549 80,476 82,711 83,080 90,544 92,319 83,365 115,709 118,521 104,104 1999 82,043 77,133 67,758 77,908 94,436 101,788 95,521 102,210 111,680 115,048 116,495 99,921

90

New York Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) New York Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 35,239 28,083 24,437 26,484 32,304 42,192 50,845 59,950 66,681 69,508 68,996 59,183 1991 38,557 30,227 25,695 29,076 35,780 43,534 51,822 60,564 69,005 73,760 68,941 61,246 1992 49,781 35,441 23,732 26,771 36,307 45,716 57,152 66,993 72,724 76,134 72,836 56,289 1993 43,019 26,790 16,578 20,740 30,875 41,858 51,917 54,363 63,952 65,899 62,563 53,140 1994 40,502 26,320 17,867 26,755 35,465 47,773 56,880 65,819 70,776 72,168 69,544 60,807 1995 46,883 32,592 26,685 27,192 35,773 47,125 54,358 62,641 71,561 73,249 63,560 45,810

91

New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) New Mexico Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,085 11,213 10,893 12,718 8,903 13,496 17,077 20,270 21,829 24,996 26,006 23,472 1991 20,026 18,023 15,855 8,701 11,626 14,635 15,689 13,734 16,376 16,270 16,031 16,988 1992 14,969 14,258 13,522 11,923 11,828 12,369 10,270 12,215 13,412 15,976 14,938 15,350 1993 12,704 8,540 8,417 5,490 8,195 9,416 9,685 7,367 8,356 10,544 7,832 7,914 1994 4,952 3,973 3,588 3,256 4,025 4,716 5,087 5,306 8,708 10,826 10,274 9,735 1995 7,590 7,588 8,025 8,247 9,470 10,575 10,593 9,503 10,022 10,057 8,980 7,490 1996 6,178 4,942 4,250 3,871 4,212 4,219 4,193 4,308 5,444 5,866 5,030 4,605

92

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -114 -943 -336 775 774 774 773 -107 103 55 -146 1,291 1991 -410 79 -1,227 -201 487 592 893 913 620 617 807 1,083 1992 -216 381 1,107 542 286 333 304 220 216 189 -18 -13 1993 393 -220 -975 -996 -374 -69 -233 -135 -136 -112 -226 -70 1994 -245 1,036 1,842 -1,862 -1,456 -552 -338 -348 -285 -294 58 -85 1995 598 848 1,085 2,969 2,136 772 445 487 680 597 533 197 1996 -642 -262 -655 -677 21 290 541 398 140 226 -244 12 1997 309 461 -279 -42 -162 -311 -119 55 90 95 607 453

93

Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler  

SciTech Connect

This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

1999-05-31T23:59:59.000Z

94

Climate VISION: Private Sector Initiatives: Oil and Gas: Work...  

Office of Scientific and Technical Information (OSTI)

Work Plans API has developed a work plan based on API's commitment letter and the Climate Challenge Program which addresses the overall elements of the Climate VISION program...

95

Regeneration of FGD waste liquors: Production of ammonium and potassium sulfate mixed fertilizer. Quarterly technical report, July 1993--September 1993  

SciTech Connect

Regeneration of the Fe{sup II}-EDTA scrubbing liquors for simultaneous removal of SO{sub 2} and NO{sub x} in flue gas involves removing the nitrogen-sulfur (N-S) compounds accumulated in the liquor. In this paper, the authors investigated a simple regeneration process which selectively precipitates the N-S compounds as potassium salts and then hydrolyzes them to yield ammonium/potassium sulfate as a marketable byproduct. They believe this is the first report on precipitation and hydrolysis characteristics of the N-S compounds in actual waste scrubbing liquor. Precipitation of the N-S compounds was achieved by adding K{sub 2}SO{sub 4} to the scrubbing liquor. Effects of the amount of added K{sub 2}SO{sub 4} on the amount of removed N-S compounds, precipitated crystals, and the potassium left over in the scrubbing liquor were studied. Hydrolysis of the precipitated N-S compounds to ammonium sulfate was performed in a sulfuric acid environment. Effects of acidity, concentration of N-S compounds, and temperature on the hydrolysis are discussed. Analysis of the observed hydrolysis pattern showed that the reaction proceeded following first order kinetics in terms of N-S compound concentration.

Randolph, A.D.; Kwon, T.M.

1993-12-01T23:59:59.000Z

96

Oregon Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Oregon Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -30,641 13,186 6,384 -1,434 1,227 -3,129 3,399 2,573 2,606 1,953 968 1,423 1991 1,986 2,360 1,291 -869 -1,664 -1,353 -659 -203 99 250 317 582 1992 89 -487 -305 231 1,089 1,075 811 730 509 343 -779 -872 1993 -1,222 -1,079 -221 -204 -131 -374 -387 -356 -231 86 454 -69 1994 587 858 640 -1,359 -1,793 -1,593 -1,578 -1,544 -1,438 -1,674 -1,380 -915 1995 -1,331 -589 -83 3,208 3,177 2,713 2,212 1,136 939 685 1,065 880 1996 1,306 751 539 -460 -916 -777 -340 97 -286 -492 -987 -1,405

97

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,714 -2,484 2,221 9,026 9,501 3,159 1,926 1,511 539 1,182 1,803 9,892 1991 10,604 5,727 4,873 6,047 4,879 3,728 -584 -3,344 -2,211 -1,535 -10,107 -9,904 1992 -2,980 443 -1,846 -7,642 -6,984 -4,083 -1,435 -2,987 -1,706 -4,499 3,130 1,793 1993 5,569 -864 -4,596 -2,260 694 -12 478 3,249 2,672 1,131 -20,850 -21,299 1994 -24,589 -21,355 -12,019 -10,157 -12,687 -15,926 -14,545 -12,608 -16,289 -13,079 10,221 12,176 1995 11,100 9,566 2,283 2,636 4,862 5,526 3,149 -1,367 2,792 2,492 -7,807 -11,038

98

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,275 18,043 13,193 1,851 5,255 9,637 5,108 8,495 9,773 7,534 9,475 11,984 1991 -9,933 -7,259 454 6,145 6,270 3,648 2,744 1,010 -13 7,942 -12,681 -9,742 1992 -9,345 -8,466 -9,599 -19,126 -16,878 -15,372 -13,507 -9,010 -7,228 -7,653 -6,931 -18,707 1993 -51,572 -52,876 -51,081 -40,760 -41,229 -40,132 -39,867 -44,533 -43,110 -44,873 -36,080 -34,184 1994 -6,101 -1,289 8,929 5,795 -3,558 -6,807 -4,948 -4,181 -3,006 -678 -77 11,376 1995 20,962 7,104 -805 -3,970 -29,257 -30,038 -32,571 -35,022 -40,472 -36,406 -41,858 -53,433

99

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437 -17,034 -19,377 -21,219 -23,373 -24,811 -24,628 -25,093 -24,213 -22,944 -22,384 -19,989 1994 -18,713 -19,954 -18,358 -17,429 -15,333 -12,802 -12,658 -11,874 -10,555 -9,434 -8,353 -7,819 1995 -7,494 -3,827 -3,353 -1,774 -1,433 -1,101 464 2,584 1,908 321 -1,020 -3,599

100

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,315 40,513 43,111 18,628 12,189 2,033 47 -10,549 -21,072 -9,288 -13,355 -8,946 1991 -42,316 -43,449 -37,554 -58,118 -54,100 -46,988 -56,199 -48,651 -34,294 -48,087 -70,444 -48,747 1992 5,209 -1,207 -6,517 -21,448 -17,577 -24,644 -6,465 9,218 -3,044 -2,525 -6,948 -28,550 1993 -119,345 -120,895 -123,412 -110,528 -102,328 -100,860 -113,541 -118,288 -125,086 -122,661 -114,692 -94,084 1994 -21,524 -45,478 -29,527 -21,615 -15,311 -16,358 -113 6,609 32,786 38,411 56,777 41,703 1995 71,748 88,600 72,969 70,544 59,709 56,910 31,618 8,138 5,482 4,572 -18,623 -35,336

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -10,362 -8,989 -8,480 -6,853 -3,138 -3,221 -2,686 -2,091 824 166 -307 3,561 1991 -6,300 -645 -100 -132 5,625 8,255 -439 -9,003 -13,999 -9,506 -35,041 -11,017 1992 16,928 8,288 4,215 1,589 -2,700 -7,788 -6,391 1,723 1,181 -7,206 -7,569 -20,817 1993 -31,418 -30,129 -26,038 -22,202 -4,247 4,828 6,211 5,963 10,199 10,284 14,158 14,727 1994 8,105 8,620 12,116 13,982 2,713 -3,469 465 1,613 -3,134 -1,516 -2,683 -1,820 1995 6,294 5,619 -1,798 -1,708 -758 5,090 429 -12,148 -5,167 2,571 6,337 -382

102

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 1,533 1999 210 227 211 187 147 49 88 -64 30 8 -80 -189 2000 -521 -228 69 134 440 435 425 385 -24 236 67 -179 2001 -7 -19 -282 -100 -165 21 46 202 453 58 469 975 2002 1,038 533 436 127 151 30 68 -94 -46 187 -153 -439 2003 -987 -810 -600 -430 -520 -317 -187 388 616 443 608 557 2004 528 649 498 364 599 408 194 216 6 834 916 456 2005 201 391 -60 22 -116 -186 -62 -780 -679 -910 1,097 1,608 2006 3,081 2,559 3,389 3,163 2,744 2,220 2,009 2,014 2,869 2,415 531 784

103

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -862 -85 724 658 416 -1,091 -1,477 -807 2,724 -222 -1,505 5,333 1991 4,470 4,339 1,613 1,801 727 1,324 628 202 -123 -686 1,727 2,620 1992 900 -745 -1,784 -3,603 -1,779 -745 -328 -176 -219 356 579 -1,431 1993 153 742 1,488 1,891 777 -736 -1,464 -2,133 -1,700 -270 -379 -1,170 1994 -4,444 -2,565 -113 1,629 1,482 1,771 2,779 2,519 1,569 658 -517 1,249 1995 5,583 3,808 3,166 1,674 1,629 2,195 -93 -369 129 -488 -247 -2,056 1996 -3,630 -2,064 -3,459 -3,286 -3,097 -2,473 -372 315 -34 394 -346 1,808

104

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,295 -2,048 303 1,673 2,267 2,054 632 690 1,081 1,169 1,343 2,765 1991 2,450 1,002 -617 -1,537 -1,372 -2,052 -995 -41 274 4,477 815 -517 1992 -1,493 -820 -1,663 -1,510 -2,353 -796 1,038 506 1,229 -2,650 -2,283 -922 1993 374 -217 1,229 2,820 2,636 2,160 1,462 1,893 876 -679 -25 903 1994 -79 1,426 2,111 236 -856 -462 215 -22 -226 1,272 3,701 3,372 1995 4,108 1,921 1,440 1,503 2,033 1,379 -847 -1,547 -1,105 305 239 -1,594 1996 -2,809 -931 -2,059 -2,296 -2,608 -2,010 -508 2,016 1,499 -9 283 1,806

105

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2,696 -5,556 -4,018 -2,430 -2,408 3,493 3,414 4,058 11,806 19,414 13,253 13,393 1992 -4,224 -6,407 -6,304 -5,070 -1,061 -3,484 2,536 6,836 6,037 3,618 2,568 -3,773 1993 -49,040 -46,415 -45,078 -43,755 -45,456 -45,569 -46,271 -46,798 -44,848 -48,360 -45,854 -42,967 1994 3,868 4,407 3,612 1,225 -15 -1,608 -2,255 -1,606 -2,529 977 3,064 2,918 1995 662 -725 -2,062 -4,549 -6,346 -4,768 -4,875 -978 -985 -2,955 -9,054 -6,318 1996 -2,596 -433 -1,982 -2,204 -5,609 -6,677 -4,290 -5,912 -4,983 -1,206 3,642 151

106

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 701 995 446 26 639 1,368 2,249 3,219 1,102 2,496 892 1991 -1,225 1,811 40 2,493 3,883 3,621 1,685 1,583 1,282 1,616 2,927 2,233 1992 6,816 5,146 5,417 2,679 1,253 -728 -859 310 1,516 2,085 -2,078 -3,827 1993 -4,453 -6,128 -1,947 -1,204 1,853 4,502 3,520 1,087 -522 -4,673 -5,378 -3,812 1994 -4,380 -4,192 -4,417 -6,105 -3,313 -6,446 -4,523 -3,052 -2,203 74 2,261 53 1995 699 2,115 -131 605 -2,947 1,448 2,167 881 -1,537 -592 2,731 756 1996 -3,583 -1,460 -1,587 1,297 1,828 892 223 -114 831 -332 -2,174 183

107

West Virginia Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) West Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,093 -693 -375 128 493 786 2 -447 -512 -333 -99 1,138 1991 6,825 -2,677 -1,109 134 -3,564 -4,731 -6,487 -12,806 -17,650 -17,773 -28,530 -34,101 1992 -15,454 -21,567 -46,663 -52,768 -43,995 -42,430 -35,909 -27,164 -22,183 -12,950 -7,815 22,584 1993 24,960 9,394 9,292 12,636 27,031 36,232 34,023 34,755 41,628 34,399 26,968 -14,222 1994 -40,501 -30,621 -21,008 -4,595 -17,438 -13,653 -5,670 -2,609 -2,058 -1,674 4,099 10,639 1995 25,027 16,310 22,537 6,655 5,546 -896 -5,421 -18,718 -21,810 -13,288 -28,780 -41,453

108

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -4,944 -5,851 -5,300 -3,038 -4,576 -4,057 77 1,820 2,686 6,478 7,515 9,209 1991 7,941 6,810 4,962 -4,017 2,723 1,139 -1,388 -6,536 -5,453 -8,726 -9,976 -6,483 1992 -5,057 -3,765 -2,333 3,222 202 -2,266 -5,420 -1,519 -2,964 -294 -1,093 -1,638 1993 -2,265 -5,717 -5,105 -6,433 -3,632 -2,953 -584 -4,847 -5,056 -5,431 -7,107 -7,436 1994 -7,752 -4,567 -4,829 -2,234 -4,170 -4,700 -4,598 -2,062 352 281 2,443 1,820 1995 2,638 3,615 4,436 4,991 5,445 5,859 5,506 4,197 1,314 -768 -1,294 -2,244

109

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 10,464 17,383 22,644 -158 -24,807 1992 -21,205 -18,174 -17,028 -17,433 -15,973 -21,203 -22,672 -16,614 -16,409 -16,981 -10,425 -16,165 1993 -16,925 -24,778 -32,596 -36,290 -19,699 -4,049 12,259 23,601 37,502 33,152 26,345 20,728 1994 8,768 26,882 32,899 51,830 47,357 34,388 35,682 31,067 18,680 12,257 22,195 26,643 1995 33,319 12,790 17,621 6,203 -8,067 -1,243 -9,994 -31,430 -31,368 -26,406 -46,809 -55,574

110

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -525 -558 -653 -568 -437 -289 -114 76 566 493 1,000 1,188 1991 482 1,359 1,901 1,461 980 1,611 1,437 1,173 -147 -1,122 -1,494 -1,591 1992 -23,715 -25,067 -25,923 -26,121 -26,362 -27,771 -28,829 -30,471 -30,725 -31,860 -31,627 -33,317 1993 -9,841 -10,219 -9,773 -9,196 -8,590 -7,100 -6,215 -4,763 -4,433 -2,461 -3,475 -1,939 1994 834 524 1,455 1,850 2,436 1,126 195 143 389 396 2,707 3,074 1995 723 2,101 128 -1,538 -2,661 -1,884 -1,303 -1,135 -665 -416 -680 -807 1996 -1,225 -2,881 -2,568 -1,148 1,099 1,302 1,744 832 -482 -1,417 -3,593 -5,063

111

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -72 452 283 -1,858 -801 699 -1,353 41 108 1,167 -1,339 1991 -2,326 1,196 205 3,977 26,799 5,575 4,775 1,778 703 1,958 2,917 5,687 1992 6,208 3,332 5,695 1,986 1,815 275 -839 679 1,880 -138 -1,840 -5,179 1993 -6,689 -7,057 -5,245 -3,367 -188 -497 627 -212 975 -626 -3,745 1,760 1994 3,597 2,471 806 1,906 -20 879 539 371 -878 1,499 4,890 1,609 1995 1,078 3,321 3,503 1,633 1,599 1,386 990 268 1,628 1,312 1,767 -15 1996 -4,203 -3,033 -3,595 -3,720 -4,328 -2,562 -2,690 1,336 -2,014 -3,767 -4,591 -3,144

112

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 305,000 1974 NA NA NA NA NA NA NA NA NA NA NA 16,000 1975 NA NA NA NA NA NA NA NA NA 196,000 NA 162,000 1976 NA NA NA NA NA NA NA NA 182,000 65,000 -133,000 -286,000 1977 -361,000 -281,000 -111,000 4,000 94,000 122,000 156,000 152,000 174,000 265,000 413,000 549,000 1978 532,000 147,000 -92,000 -196,000 -240,000 -194,000 -184,000 -98,000 -11,000 29,000 106,000 72,000 1979 71,000 39,000 113,000 104,000 128,000 114,000 120,000 127,000 107,000 121,000 118,000 207,000

113

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,596 507 381 -2,931 -46 -596 -311 -234 178 167 7,030 9,898 1991 19,571 17,816 10,871 17,001 13,713 16,734 12,252 11,416 8,857 5,742 -6,023 -8,607 1992 -14,527 -26,506 -45,308 -51,996 -46,282 -36,996 -26,224 -22,672 -22,086 -18,888 -11,177 -16,353 1993 -11,967 -21,375 -21,809 -21,634 -20,069 -20,488 -16,719 -11,806 -1,499 -5,717 -13,058 -21,422 1994 -39,036 -30,048 -9,070 4,162 7,033 5,081 8,939 7,976 3,961 7,543 16,019 30,397 1995 36,925 34,571 29,611 9,077 7,499 9,345 6,077 2,682 -942 -2,597 -22,632 -39,593

114

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -67 -133 -30 123 233 669 826 998 743 933 994 633 1997 156 40 226 203 337 -48 -197 -301 -376 -242 -356 405 1998 185 181 -92 24 -103 427 374 288 -376 -14 230 91 1999 29 103 39 -69 257 -156 88 -31 772 82 214 164 2000 63 175 802 599 219 615 462 381 -131 -196 -533 -430 2001 155 398 -521 -260 -395 -413 -352 -239 -111 -89 1,403 1,499 2002 1,415 858 1,192 1,255 1,399 692 788 772 755 314 -578 -731 2003 -2,107 -1,207 -476 304 1,194 2,067 2,346 2,392 3,132 4,421 4,005 3,823

115

Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine Shoemaker  

E-Print Network (OSTI)

Title: Working Together in Shale Gas Policy Hosts: Todd Cowen, Teresa Jordan and Christine and environmental groups. The Shale Gas Roundtable of the Institute of Politics at the University of Pittsburgh produced a report with several recommendations dealing especially with shale gas research, water use

Angenent, Lars T.

116

Government works with technology to boost gas output/usage  

SciTech Connect

Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

Nicoll, H. [Dow Chemical Co., Houston, TX (United States). GAS/SPEC Technology Group

1996-10-01T23:59:59.000Z

117

How the Simplification of Work Can Degrade Safety: A Gas Company Case Study  

E-Print Network (OSTI)

How the Simplification of Work Can Degrade Safety: A Gas Company Case Study Hortense Blazsin.guarnieri @ mines-paristech.fr christophe.martin @ mines-paristech.fr Abstract. Work is focused on a gas company that wishes to develop a better understanding of its safety culture and identify potential enhancement

Paris-Sud XI, Université de

118

Mississippi Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0 10.5 16.3 17.9 8.4 -3.2 6.2 5.2 -16.1 -25.5 1996 -25.7 -20.7 -31.6 -29.8 -36.9 -21.2 -9.3 8.1 9.4 9.4 21.0 38.5 1997 33.4 39.7 105.3 64.1 71.0 44.2 10.9 -1.2 -5.3 -6.4 1.9 -7.4 1998 6.1 2.0 -13.3 -3.6 -8.6 -10.1 5.8 7.1 -4.2 10.9 11.9 23.7

119

Indiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Indiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 11.0 5.4 -3.6 -8.8 -7.2 -9.9 -4.3 -0.2 0.9 13.4 2.4 -1.7 1992 -6.0 -4.2 -10.1 -9.5 -13.2 -4.2 4.7 1.9 3.9 -7.0 -6.5 -3.1 1993 1.6 -1.2 8.3 19.7 17.1 12.0 6.3 7.0 2.7 -1.9 -0.1 3.1 1994 -0.3 7.7 13.2 1.4 -4.7 -2.3 0.9 -0.1 -0.7 3.7 11.3 11.2 1995 17.4 9.6 8.0 8.6 11.8 7.0 -3.4 -5.3 -3.3 0.8 0.7 -4.8 1996 -10.1 -4.2 -10.5 -12.2 -13.6 -9.6 -2.1 7.3 4.7 0.0 0.8 5.7 1997 5.1 6.0 13.3 1.9 2.2 -0.6 -6.1 -12.4 -8.9 -7.0 -6.5 -9.3 1998 0.6 3.3 -5.1 6.1 8.3 -0.3 -0.9 -0.2 -0.4 -0.8 2.9 3.4

120

California Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) California Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 13,690 18,121 8,849 5,853 7,132 14,219 18,130 10,561 13,390 31,974 19,181 9,703 1991 6,425 26,360 4,734 4,680 6,001 17,198 26,493 26,589 17,703 3,011 -3,286 14,947 1992 -6,546 -23,935 -22,706 -29,553 -29,442 -31,729 -31,331 -21,662 -2,945 7,561 4,600 -28,127 1993 -18,888 -21,388 7,592 2,646 4,145 -4,114 5,805 2,657 2,580 3,170 1,004 23,856 1994 14,332 -10,557 -24,707 -14,896 -15,082 -8,607 -14,837 -14,903 -8,310 -6,861 -11,874 -3,316 1995 9,020 48,536 41,487 19,773 18,032 23,794 20,147 9,074 3,393 9,305 28,072 27,725

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Maryland Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Maryland Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 103.9 379.8 71.8 60.5 13.1 20.1 7.2 1.8 -0.9 -4.6 13.4 22.0 1992 10.3 -13.6 -46.2 -75.4 -28.4 -9.4 -3.5 -1.5 -1.6 2.5 4.0 -9.9 1993 1.6 15.7 71.7 160.6 17.3 -10.3 -16.3 -18.7 -12.6 -1.8 -2.5 -8.9 1994 -45.2 -46.8 -3.2 53.1 28.2 27.5 36.9 27.2 13.4 4.6 -3.5 10.5 1995 103.8 130.7 91.8 35.6 24.2 26.7 -0.9 -3.1 1.0 -3.2 -1.7 -15.6 1996 -33.1 -30.7 -52.3 -51.6 -37.0 -23.8 0.0 0.0 -0.3 2.7 -2.5 16.3 1997 -3.8 -5.7 -21.1 -23.6 -25.2 -29.3 -27.9 -19.8 -9.3 -3.7 4.9 1.1 1998 39.5 61.5 119.5 179.6 87.5 54.4 63.0 38.2 13.2 4.1 3.6 -1.8

122

U.S. Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) U.S. Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA 17.6 1974 NA NA NA NA NA NA NA NA NA NA NA 0.8 1975 NA NA NA NA NA NA NA NA NA 8.2 NA 7.9 1976 NA NA NA NA NA NA NA NA 7.4 2.5 -5.2 -12.9 1977 -21.9 -19.5 -8.4 0.3 5.7 6.4 7.1 6.2 6.6 9.9 17.2 28.5 1978 41.3 12.6 -7.6 -13.7 -13.9 -9.6 -7.8 -3.8 -0.4 1.0 3.8 2.9 1979 3.9 3.0 10.1 8.4 8.6 6.2 5.5 5.1 3.8 4.1 4.0 8.1 1980 23.0 37.3 29.0 26.7 23.4 17.9 13.3 8.6 6.1 3.5 -0.6 -3.6 1981 -7.4 -1.5 2.3 4.3 -1.1 -2.0 -1.1 1.0 1.7 1.9 5.8 6.1 1982 1.4 -2.0 -1.7 -5.0 2.9 5.2 5.7 4.0 3.1 3.6 3.4 9.0

123

Virginia Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Virginia Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 16.1 26.9 39.6 25.2 13.9 3.6 5.7 -3.4 1.3 0.3 -3.5 -10.0 2000 -34.3 -21.3 9.2 14.4 36.6 30.7 25.9 21.0 -1.1 10.0 3.1 -10.5 2001 -0.7 -2.3 -34.6 -9.4 -10.1 1.1 2.2 9.1 20.4 2.2 20.9 63.8 2002 104.8 64.7 81.8 13.2 10.2 1.6 3.2 -3.9 -1.7 7.0 -5.6 -17.5 2003 -48.6 -59.7 -62.0 -39.4 -32.0 -16.7 -8.6 16.7 23.4 15.6 23.8 27.0 2004 50.7 118.7 135.4 55.0 54.1 25.8 9.7 8.0 0.2 25.4 28.9 17.4

124

Colorado Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Colorado Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.5 8.0 0.2 18.3 29.2 20.6 7.1 5.5 3.8 4.6 8.4 6.4 1992 25.9 21.0 30.9 16.6 7.3 -3.4 -3.4 1.0 4.3 5.7 -5.5 -10.4 1993 -13.5 -20.7 -8.5 -6.4 10.0 22.0 14.3 3.5 -1.4 -12.0 -15.0 -11.5 1994 -15.3 -17.8 -21.0 -34.7 -16.3 -25.8 -16.1 -9.6 -6.1 0.2 7.4 0.2 1995 2.9 10.9 -0.8 5.3 -17.3 7.8 9.2 3.0 -4.5 -1.7 8.4 2.6 1996 -14.4 -6.8 -9.6 10.7 13.0 4.5 0.0 0.0 2.6 -1.0 -6.1 0.6 1997 15.7 -0.6 19.6 -8.7 10.6 9.4 9.1 10.7 13.9 12.4 3.0 -2.1 1998 1.5 1.9 -7.3 5.5 7.3 -0.1 -5.5 -0.6 1.5 8.0 23.7 18.0

125

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -484 -13 300 294 -712 -349 -288 393 1,101 972 1,011 1,114 1991 3,318 2,144 1,258 2,592 3,476 1,343 977 614 2,324 4,252 -55 2,063 1992 11,224 5,214 -1,963 -2,306 527 2,182 5,330 6,430 3,719 2,374 3,894 -4,958 1993 -6,762 -8,650 -7,154 -6,031 -5,432 -3,859 -5,235 -12,631 -8,772 -10,235 -10,273 -3,149 1994 -2,517 -470 1,289 6,015 4,590 5,915 4,963 11,457 6,824 6,269 6,981 7,667 1995 6,381 6,272 8,818 437 309 -648 -2,521 -3,178 786 1,081 -5,984 -14,997 1996 -14,592 -13,733 -14,382 -13,026 -10,421 -9,742 -4,162 368 -1,791 -848 2,368 11,761

126

Illinois Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Illinois Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.2 -4.0 0.3 4.2 3.5 1.7 1.1 0.4 0.0 2.4 -3.8 -3.3 1992 -4.2 -4.8 -6.4 -12.6 -9.2 -7.2 -5.6 -3.3 -2.3 -2.3 -2.2 -6.6 1993 -24.0 -31.6 -36.3 -30.7 -24.7 -20.2 -17.4 -16.7 -14.3 -13.7 -11.6 -12.9 1994 -3.7 -1.1 10.0 6.3 -2.8 -4.3 -2.6 -1.9 -1.2 -0.2 0.0 4.9 1995 13.3 6.3 -0.8 -4.1 -24.0 -19.8 -17.7 -16.0 -15.8 -12.9 -15.3 -22.1 1996 -32.4 -34.1 -42.5 -37.1 -6.6 -2.1 2.0 3.5 5.3 3.1 3.2 8.3 1997 15.3 24.7 33.5 27.3 14.8 7.4 3.9 3.6 2.9 2.4 8.6 5.5 1998 12.9 22.3 23.5 24.2 18.8 14.7 8.2 4.3 2.2 2.3 -0.8 0.8

127

Minnesota Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 15.0 -0.3 -19.3 -19.7 -9.3 -1.7 -4.1 -2.7 -5.2 -8.5 6.3 1992 8.7 18.6 1.8 -25.1 -13.0 -11.2 -9.4 -1.0 0.5 1.8 5.3 -1.4 1993 1.3 -17.1 -29.0 -19.2 -19.0 -13.4 -5.9 -7.8 -2.5 1.2 -1.7 -7.0 1994 -16.3 -4.2 19.8 7.9 8.4 10.5 6.2 9.4 4.5 0.7 3.9 16.7 1995 23.8 4.8 -0.7 11.5 6.8 -3.5 -6.0 -4.1 0.0 0.3 0.4 -7.6 1996 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.8 -1.7 -2.9 -1.9 1997 11.5 27.8 39.0 29.2 13.8 12.4 12.3 7.6 3.7 2.3 3.5 14.6 1998 30.1 26.3 11.2 -4.8 -22.3 -26.4 -23.9 -19.0 -11.9 -4.1 -0.3 -18.6

128

Arkansas Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Arkansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -4.4 -8.3 -11.6 -14.2 -13.7 -14.5 -14.1 -18.0 -20.2 -20.4 -25.8 -30.6 1992 -22.4 -25.3 -26.8 -25.8 -27.1 -23.8 -18.0 -10.3 -5.1 -6.0 -1.3 1.0 1993 1.6 -2.9 -4.6 -5.4 -14.6 -17.3 -27.6 -34.0 -37.6 -37.9 -42.3 -48.2 1994 -63.6 -74.6 -86.5 -87.0 -71.6 -60.3 -47.2 -35.4 -31.0 -29.2 -21.3 -6.6 1995 17.7 53.9 163.4 177.6 64.0 80.9 96.0 105.5 99.3 96.9 80.2 20.9 1996 -23.6 -51.7 -97.8 -92.0 -31.2 -23.8 -31.6 -36.6 -21.2 -16.7 -17.7 8.9 1997 22.6 54.8 3,707.8 830.5 36.2 47.9 57.3 62.7 46.5 34.5 36.1 21.2

129

Wyoming Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Wyoming Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0.9 2.6 3.7 2.8 1.8 3.0 2.5 2.0 -0.2 -1.8 -2.5 -2.7 1992 -43.8 -46.9 -48.5 -48.7 -48.6 -49.4 -49.4 -50.6 -50.1 -51.9 -53.3 -58.2 1993 -32.4 -36.0 -35.5 -33.5 -30.9 -25.0 -21.0 -16.0 -14.5 -8.3 -12.5 -8.1 1994 4.1 2.9 8.2 10.1 12.7 5.3 0.8 0.6 1.5 1.5 11.2 14.0 1995 3.4 11.3 0.7 -7.6 -12.3 -8.4 -5.5 -4.5 -2.5 -1.5 -2.5 -3.2 1996 -5.5 -13.9 -13.3 -6.2 5.8 6.3 7.8 3.5 -1.9 -5.2 -13.7 -20.9 1997 -28.6 -33.1 -34.9 -38.1 -41.3 -35.8 -27.4 -18.7 -11.1 -9.6 -6.5 -5.2 1998 -4.6 1.6 0.9 -10.6 -7.1 2.5 -1.3 -4.6 -3.6 0.4 12.4 16.6

130

Texas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Texas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.2 -13.8 -12.2 -16.7 -15.1 -12.7 -14.7 -12.9 -9.1 -12.1 -17.5 -13.3 1992 1.9 -0.4 -2.4 -7.4 -5.8 -7.6 -2.0 2.8 -0.9 -0.7 -2.1 -9.0 1993 -41.9 -44.7 -46.6 -41.3 -35.7 -33.7 -35.4 -35.0 -36.7 -35.5 -35.3 -32.7 1994 -13.0 -30.4 -20.9 -13.7 -8.3 -8.3 -0.1 3.0 15.2 17.2 27.0 21.5 1995 49.9 85.3 65.2 52.0 35.4 31.3 15.3 3.6 2.2 1.8 -7.0 -15.0 1996 -39.6 -55.6 -63.2 -60.9 -56.4 -52.4 -54.0 -45.4 -36.2 -30.4 -29.0 -23.9 1997 -22.9 -11.1 43.9 42.6 36.6 44.1 39.4 29.5 14.7 19.6 15.0 -3.0 1998 10.4 54.6 29.7 45.6 40.4 30.3 52.1 51.3 37.5 31.2 44.1 72.7

131

Michigan Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Michigan Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 12.0 12.8 14.6 30.2 17.0 11.7 5.0 -0.7 -6.8 -2.6 -11.4 -14.2 1992 -8.1 -14.1 -31.6 -37.7 -28.9 -21.6 -14.9 -8.9 1.2 -1.2 1.1 -2.0 1993 -7.5 -20.7 -25.8 -17.2 -1.0 3.7 5.2 7.6 6.1 6.7 6.2 7.4 1994 -4.8 -0.4 22.1 37.4 24.6 15.8 10.2 7.2 6.2 5.4 12.3 21.2 1995 45.7 54.3 51.8 20.6 8.0 3.8 3.1 -2.0 -4.1 -3.7 -11.8 -24.0 1996 -36.3 -39.8 -47.6 -41.4 -32.3 -22.7 -17.5 -9.7 -4.1 -0.9 -0.2 9.0 1997 16.9 31.2 41.0 40.5 23.5 15.4 11.0 6.8 3.1 0.2 1.9 3.7 1998 17.4 33.0 41.3 43.7 44.2 36.0 22.0 14.2 6.0 4.5 11.4 17.1

132

Ohio Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Ohio Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19.5 22.4 15.4 23.1 14.3 14.4 9.1 7.4 5.2 3.1 -3.3 -5.5 1992 -12.1 -27.3 -55.6 -57.4 -42.1 -27.9 -17.8 -13.7 -12.2 -10.0 -6.4 -11.0 1993 -11.3 -30.2 -60.3 -56.1 -31.6 -21.4 -13.8 -8.2 -0.9 -3.4 -7.9 -16.2 1994 -41.7 -61.0 -63.3 24.5 16.2 6.8 8.5 6.1 2.5 4.6 10.6 27.3 1995 67.7 179.6 562.8 43.0 14.8 11.6 5.3 1.9 -0.6 -1.5 -13.5 -28.0 1996 -36.6 -54.9 -83.2 -46.6 -20.6 -7.3 -0.6 4.2 6.7 8.8 9.2 20.8 1997 11.5 50.2 163.8 -2.8 8.0 4.9 2.0 2.8 2.3 -0.2 6.1 3.3 1998 43.1 60.2 92.8 193.9 65.5 24.3 15.1 8.6 5.6 7.5 12.7 20.9

133

Iowa Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Iowa Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -3.6 -8.4 -6.6 -4.0 -3.7 4.9 4.5 4.9 13.7 21.6 15.1 18.2 1992 -5.9 -10.5 -11.0 -8.6 -1.7 -4.7 3.2 7.9 6.2 3.3 2.5 -4.3 1993 -73.0 -85.1 -88.4 -81.1 -72.8 -64.5 -56.2 -50.3 -43.2 -42.8 -44.2 -51.6 1994 21.3 54.4 61.3 12.0 -0.1 -6.4 -6.3 -3.5 -4.3 1.5 5.3 7.2 1995 3.0 -5.8 -21.7 -39.9 -37.4 -20.3 -14.5 -2.2 -1.7 -4.5 -14.9 -14.6 1996 -11.5 0.0 -26.6 -32.1 -52.8 -35.7 -14.9 -13.5 -9.0 -1.9 7.0 0.4 1997 5.1 11.2 76.8 72.4 129.0 65.0 16.6 4.6 3.7 -1.1 8.3 16.8 1998 15.2 41.6 15.6 34.6 25.3 14.9 48.5 17.4 12.0 8.3 9.4 4.7

134

Oklahoma Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5 35.8 13.9 11.2 0.6 -12.2 -8.9 -2.2 -7.8 -15.8 1996 -31.5 -51.7 -63.0 -57.6 -49.9 -45.9 -42.1 -26.5 -18.0 -15.4 -23.0 -27.6 1997 -28.4 -3.5 62.3 59.0 49.7 32.7 17.2 5.5 0.1 6.6 12.9 11.8 1998 34.3 61.5 15.9 41.1 37.9 45.5 53.2 46.9 37.6 31.0 46.7 62.1

135

Kansas Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kansas Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.6 -1.2 -0.2 -0.3 11.7 15.5 -0.7 -11.7 -15.1 -9.6 -30.3 -11.8 1992 28.5 15.1 8.5 3.4 -5.0 -12.7 -9.9 2.5 1.5 -8.0 -9.4 -25.3 1993 -41.2 -47.7 -48.5 -45.3 -8.3 9.0 10.7 8.6 12.8 12.5 19.4 24.0 1994 18.1 26.1 43.8 52.2 5.8 -5.9 0.7 2.1 -3.5 -1.6 -3.1 -2.4 1995 11.9 13.5 -4.5 -4.2 -1.5 9.2 0.7 -15.7 -6.0 2.8 7.5 -0.5 1996 -22.8 -19.2 -23.4 -13.2 -16.5 -13.8 -4.8 7.7 -4.5 -10.7 -22.9 -23.0 1997 -0.9 -1.0 19.1 6.4 12.1 9.5 -2.4 2.6 9.6 12.4 23.3 28.2 1998 26.0 30.6 4.0 18.0 34.9 19.3 33.7 29.6 20.8 18.7 25.3 28.3

136

Tennessee Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Tennessee Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1998 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1999 43.0 55.3 41.7 61.2 59.6 131.5 70.6 38.1 29.2 25.1 16.0 8.6 2000 5.3 -3.2 12.8 21.0 16.7 -19.5 -34.7 -42.4 -50.4 -50.8 -41.4 -27.6 2001 -9.8 9.3 8.4 8.3 41.3 71.7 80.1 97.0 109.6 99.9 12.1 -3.5 2002 3.9 15.1 32.5 54.2 19.0 -2.5 -9.0 -17.3 -22.6 -28.6 -14.4 -14.2 2003 -37.6 -54.6 -65.2 -72.4 -65.7 -53.4 -40.1 -24.0 -23.2 -15.3 -0.8 -12.8 2004 -15.0 -0.5 24.1 74.4 61.1 82.6 24.4 10.6 11.2 6.1 3.7 8.9

137

Alabama Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Alabama Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 221.1 244.8 179.6 64.8 86.8 112.2 130.5 1997 36.2 10.9 111.7 57.1 68.4 -5.0 -17.0 -19.4 -19.9 -12.1 -19.0 36.2 1998 31.5 45.0 -21.4 4.3 -12.4 46.2 38.7 23.0 -24.8 -0.8 15.1 6.0 1999 3.8 17.6 11.5 -11.9 35.3 -11.6 6.5 -2.0 67.7 4.7 12.2 10.2 2000 7.9 25.4 213.4 116.8 22.2 51.5 32.4 25.3 -6.9 -10.7 -27.1 -24.2 2001 17.9 46.2 -44.2 -23.4 -32.8 -23.0 -18.6 -12.6 -6.3 -5.4 97.8 111.1 2002 138.8 68.1 181.5 147.4 173.3 50.0 51.2 46.8 45.2 20.3 -20.4 -25.7 2003 -86.5 -57.0 -25.7 14.4 54.1 99.5 100.8 98.7 129.2 237.3 177.3 180.6

138

Montana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5 1995 -9.6 -5.3 -4.7 -2.5 -2.0 -1.5 0.6 3.4 2.5 0.4 -1.3 -4.9 1996 -9.0 -11.4 -16.2 -18.1 -20.7 -19.2 -18.0 -16.9 -13.6 -13.4 -16.2 -17.7 1997 -18.5 -20.5 -19.6 -21.9 -19.3 -20.3 -20.1 -20.8 -22.7 -23.8 -22.5 -20.6

139

Utah Natural Gas in Underground Storage - Change in Working Gas from Same  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,258 1,922 -2,167 -243 10 2,672 -2,738 -4,873 -6,032 -7,692 -923 338 1992 -6,698 -535 4,172 3,577 4,237 4,004 2,095 84 -3,541 -5,140 1,162 1,110 1993 -850 -4,870 -7,443 -9,206 -6,521 -660 270 742 2,661 8,010 4,211 6,489 1994 7,656 4,514 6,002 8,910 9,109 5,722 6,012 6,934 10,321 7,849 7,551 8,609 1995 5,458 10,271 8,870 8,362 6,546 8,164 11,552 10,230 4,613 2,012 5,484 -708 1996 -5,185 -10,201 -9,074 -10,256 -8,313 -7,322 -7,566 -7,192 -6,606 -8,327 -14,146 -13,483 1997 -10,123 -4,260 296 2,223 969 2,109 3,330 4,725 5,811 8,139 10,145 6,148

140

Louisiana Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0 6.1 -6.0 -0.8 -5.4 -15.2 -13.6 -11.0 -19.9 -28.2 1996 -31.0 -28.8 -47.1 -50.7 -48.5 -47.6 -37.5 -19.6 -12.8 -11.9 -14.6 -6.4 1997 -14.5 -14.9 61.5 61.3 62.8 54.4 24.7 7.8 3.7 7.4 13.1 7.3 1998 40.7 86.3 35.5 55.9 46.9 35.0 42.0 40.1 22.5 26.5 40.7 56.9

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New Mexico Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New Mexico Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 65.7 60.7 45.6 -31.6 30.6 8.4 -8.1 -32.2 -25.0 -34.9 -38.4 -27.6 1992 -25.3 -20.9 -14.7 37.0 1.7 -15.5 -34.5 -11.1 -18.1 -1.8 -6.8 -9.6 1993 -15.1 -40.1 -37.8 -54.0 -30.7 -23.9 -5.7 -39.7 -37.7 -34.0 -47.6 -48.4 1994 -61.0 -53.5 -57.4 -40.7 -50.9 -49.9 -47.5 -28.0 4.2 2.7 31.2 23.0 1995 53.3 91.0 123.6 153.3 135.3 124.2 108.2 79.1 15.1 -7.1 -12.6 -23.1 1996 -18.6 -34.9 -47.0 -53.1 -55.5 -60.1 -60.4 -54.7 -45.7 -41.7 -44.0 -38.5 1997 -33.5 -29.5 0.6 10.4 4.4 10.4 13.4 27.8 18.1 14.5 24.1 19.8

142

New York Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) New York Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9.4 7.6 5.1 9.8 10.8 3.2 1.9 1.0 3.5 6.1 -0.1 3.5 1992 29.1 17.2 -7.6 -7.9 1.5 5.0 10.3 10.6 5.4 3.2 5.6 -8.1 1993 -13.6 -24.4 -30.1 -22.5 -15.0 -8.4 -9.2 -18.9 -12.1 -13.4 -14.1 -5.6 1994 -5.8 -1.8 7.8 29.0 14.9 14.1 9.6 21.1 10.7 9.5 11.2 14.4 1995 15.8 23.8 49.4 1.6 0.9 -1.4 -4.4 -4.8 1.1 1.5 -8.6 -24.7 1996 -31.2 -42.1 -53.7 -47.7 -29.0 -20.4 -7.4 0.8 -1.8 -1.2 3.8 25.9 1997 23.3 57.3 67.6 58.2 25.1 3.5 -0.3 -3.1 -5.1 -5.3 -2.6 -2.0 1998 13.7 23.0 38.5 46.2 37.9 33.6 18.6 6.4 6.6 9.4 15.5 25.9

143

Washington Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Washington Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -26.2 22.8 6.2 168.1 -141.5 111.4 60.1 16.3 5.9 16.1 23.8 63.1 1992 94.7 51.6 162.3 31.3 23.1 2.6 -6.6 5.4 14.9 -1.0 -12.1 -35.2 1993 -52.4 -72.1 -57.0 -40.4 -1.9 -4.6 5.3 -1.6 6.7 -4.5 -28.1 18.5 1994 59.2 90.5 20.4 38.4 -0.2 8.5 4.3 2.8 -5.7 11.2 51.1 14.3 1995 11.1 63.9 73.5 23.8 16.9 12.3 7.6 2.0 11.1 8.8 12.2 -0.1 1996 -39.1 -35.6 -43.5 -43.8 -39.1 -20.3 -19.2 9.7 -12.4 -23.3 -28.3 -24.4 1997 25.9 17.4 -31.4 -31.5 35.7 28.4 19.3 -17.0 3.9 13.8 20.4 11.4 1998 30.6 2.6 2.4 -47.6 -38.3 -33.5 -34.2 0.1 -2.9 -3.1 3.0 3.4

144

Nebraska Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Nebraska Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.7 -5.8 -6.6 -6.0 -2.9 -1.8 0.4 -0.5 -0.8 -1.8 -1.9 0.3 1992 0.9 1.0 2.4 1.3 -1.4 -0.5 3.6 5.9 6.3 6.3 2.5 0.6 1993 -2.8 -4.7 -6.6 -5.9 -3.3 -1.9 -0.9 0.2 0.7 -82.3 -84.6 -88.0 1994 -93.2 -98.5 -98.2 -96.2 -92.3 -91.2 -88.8 -88.5 -85.3 -7.5 12.8 23.1 1995 74.4 582.5 367.3 113.6 15.1 11.6 -40.3 -40.8 -50.5 -62.9 -79.4 -94.0 1996 -100.0 -100.0 -100.0 -100.0 -100.0 -85.2 -50.1 -20.8 -10.9 -7.8 41.1 301.9 1997 0.0 0.0 0.0 0.0 0.0 193.8 26.0 6.0 13.6 34.7 51.4 79.3 1998 188.1 377.6 104.3 6.6 14.8 -1.5 28.0 9.9 2.4 8.9 -0.1 -7.9

145

Kentucky Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2 7.3 3.3 6.6 5.5 -4.6 -8.7 1996 -14.5 -16.8 -24.3 -29.4 -33.2 -22.0 -13.0 -5.9 -3.8 -3.6 0.9 5.3 1997 5.8 15.5 27.1 28.5 28.0 13.5 3.6 -0.7 -1.1 -0.7 0.2 -3.1 1998 7.5 5.2 -1.0 3.5 9.7 9.1 12.7 12.8 7.3 9.4 12.3 14.5

146

Reducing NO[sub x] emissions from magnesium sulfite liquor boilers  

SciTech Connect

The Current design of liquor-combustion boilers is reviewed, along with options for lowering exhaust-gas emissions, particularly NOx. In many cases, modern boilers are being operated at or near optimal conditions for minimum NOx emissions. Possible upgrades to further reduce NOx emissions include addition of a selective noncatalytic reduction step, design modifications to lower the sectional load, a flue-gas recirculation system, and air staging. Calculated and experimental results show that these applications can lower NOx emissions by 40% or more.

Bobik, M. (Austrian Energy and Environment, Graz (Austria))

1993-01-01T23:59:59.000Z

147

Missouri Natural Gas in Underground Storage - Change in Working Gas from  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Missouri Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -5.1 1.4 -20.3 -2.8 6.8 8.3 12.5 12.3 7.8 7.6 9.9 13.8 1992 -2.8 6.5 23.0 7.8 3.7 4.3 3.8 2.6 2.5 2.2 -0.2 -0.1 1993 5.3 -3.5 -16.4 -13.3 -4.7 -0.9 -2.8 -1.6 -1.6 -1.3 -2.5 -0.8 1994 -3.1 17.2 37.2 -28.6 -19.3 -6.9 -4.2 -4.1 -3.3 -3.3 0.7 -1.0 1995 7.9 12.0 16.0 64.0 35.0 10.4 5.7 6.0 8.2 7.0 6.1 2.2 1996 -7.8 0.0 -8.3 -8.9 0.0 0.0 6.6 0.0 1.6 2.5 -2.6 0.1 1997 4.1 6.0 -3.9 -0.6 -2.0 -3.7 -1.4 0.6 1.0 1.0 6.7 5.0 1998 14.2 10.6 23.2 23.5 10.9 7.6 2.1 0.1 2.0 1.8 1.8 -1.8 1999 1.3 -2.4 0.6 1.5 4.1 5.7 5.7 4.0 3.8 3.7 3.3 6.0

148

Demonstration of Black Liquor Gasification at Big Island  

SciTech Connect

This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

Robert DeCarrera

2007-04-14T23:59:59.000Z

149

Cogeneration of electricity and refrigeration by work-expanding pipeline gas  

SciTech Connect

The process for the cogeneration of electricity and commercially saleable refrigeration by expanding pressurized pipeline gas with the performance of work is described which comprises: injecting methanol into the pipeline gas; passing the pipeline gas containing the methanol through a turbo-expander coupled to an electrical generator to reduce the pressure of the pipeline gas at least 100 psi but not reducing the pressure enough to drop the temperature of the resulting cold expanded gas below about - 100/sup 0/F; separating aqueous methanol condensate from the cold expanded gas and introducing the condensate into a distillation column for separation into discard water and recycle methanol for injection into the pipeline gas; recovering the saleable refrigeration from the cold expanded gas; adding reboiler heat to the distillation column in an amount required to warm the expanded gas after the recovery of the saleable refrigeration therefrom to a predetermined temperature above 32/sup 0/F; and passing the expanded gas after the recovery of the saleable refrigeration therefrom in heat exchange with methanol vapor rising to the top of the distillation column to condense the methanol vapor so that liquid methanol is obtained partly for reflux in the distillation column and partly for the recycle methanol and simultaneously the expanded gas is warmed to the predetermined temperature above 32/sup 0/F.

Markbreiter, S.J.; Dessanti, D.J.

1987-12-08T23:59:59.000Z

150

Production of ammonium sulfate fertilizer from FGD waste liquors. First quarterly technical report, [January--March 1995  

SciTech Connect

Hydrolysis of Nitrogen-Sulfur Containing Compounds (N-SCC) derived from desulfurization liquors was carried out at high temperature and pressure with varying sulfuric acid concentration in order to determine the influence of temperature and acid concentration on time required for complete hydrolysis. An ammonia specific electrode (gas sensing) was used to monitor the concentration of ammonium ion in the hydrolyzed liquor. The results indicated a large shortening of time for complete hydrolysis of the Ca salt of N-SCC but varying acid concentration did influence the rate of hydrolysis. Since the physical-chemical analysis of the N-SCC obtained by re-liming the waste scrubbing liquor (containing the Fe-EDTA complex) was found to contain a high quantity of sodium, the N-SCC is believed to be a double salt of calcium and sodium. The final product, (NH{sub 4}){sub 2}SO{sub 4}, was obtained in experimentation using an evaporative crystallizer. The clean hydrolyzed liquor was neutralized with a strong NH{sub 2} solution before the final crystallization of (NH{sub 4}){sub 2}SO{sub 4}.

Randolph, A.D.; Mukhopadhyay, S.; Unrau, E.

1995-08-01T23:59:59.000Z

151

Pilot scale gasification of spent cooking liquor from sodium sulfite based delignification  

Science Journals Connector (OSTI)

This paper describes a pilot scale high pressure entrained flow gasification experiment with spent cooking liquor from a sodium sulfite based delignification process in the DP-1 black liquor gasifier in Piteĺ, Sweden. Approximately 92 tons of sulfite ...

Erik Furusjö; Ragnar Stare; Ingvar Landälv; Patrik Löwnertz

2014-11-17T23:59:59.000Z

152

Deregulating UK Gas and Electricity Markets: How is Competition Working for  

NLE Websites -- All DOE Office Websites (Extended Search)

Deregulating UK Gas and Electricity Markets: How is Competition Working for Deregulating UK Gas and Electricity Markets: How is Competition Working for Residential Consumers? Speaker(s): Catherine Waddams Date: April 15, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Chris Marnay Retail gas and electricity prices were deregulated in the UK in April 2002, following introduction of retail choice for residential consumers between 1996 and 1999. We use information from consumer surveys, including a panel survey over three years, to analyse consumer attitudes and behaviour. In particular we explore how awareness changed, whether those who were actively considering switching in one wave of the survey had actually done so by the next round, whether individuals become willing to switch for smaller price gains as the markets matured, and how expectations

153

This work was supported by the USDepartment of Energy, UnconventionalGas Recovery Research Program.  

E-Print Network (OSTI)

#12;This work was supported by the USDepartment of Energy, UnconventionalGas Recovery Research the world's first Hot Dry Rock geothermalenergyextractionsystemat FentonHill,New Mexico. The system-specifiedtools should be capableof operatingfor sustained periodsin hot wells; have automaticgain controland

154

CHAMPAIGN-URBANA FOOD AND LIQUOR GUIDE 1. Introduction  

E-Print Network (OSTI)

(217) 352-7467. Excellent Mexican and Latin American- influenced food. Service can be a bit slowCHAMPAIGN-URBANA FOOD AND LIQUOR GUIDE 1. Introduction This is a short, incomplete, and personally. It is standard to tip 15-20% for reasonable service. A indicates a place that we like, and indicates a place we

Athreya, Jayadev

155

Report on the WORKSHOP ON COMMERCIALIZATION OF BLACK LIQUOR  

E-Print Network (OSTI)

!iers have not seen convIncIng evidence of cycle (BLGCC) and biomass-gasifier/combined market opportunity -Denny Hunter gasification/combined cycle technology, sufficient Weyerhaeuser Company research exists for Key ideas from the workshop... commercializing black liquor gasifier/ combined Techno~og~ supp

156

A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report  

SciTech Connect

The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

Fricke, A.L.; Zaman, A.A.

1998-05-01T23:59:59.000Z

157

Method and apparatus for removing non-condensible gas from a working fluid in a binary power system  

DOE Patents (OSTI)

Apparatus for removing non-condensible gas from a working fluid utilized in a thermodynamic system comprises a membrane having an upstream side operatively connected to the thermodynamic system so that the upstream side of the membrane receives a portion of the working fluid. The first membrane separates the non-condensible gas from the working fluid. A pump operatively associated with the membrane causes the portion of the working fluid to contact the membrane and to be returned to the thermodynamic system.

Mohr, Charles M. (Idaho Falls, ID); Mines, Gregory L. (Idaho Falls, ID); Bloomfield, K. Kit (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

158

Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions  

E-Print Network (OSTI)

The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

Bin Zhang; Jay P. Mayfield

2014-01-19T23:59:59.000Z

159

Work distribution of an expanding gas and transverse energy production in relativistic heavy ion collisions  

E-Print Network (OSTI)

The work distribution of an expanding extreme relativistic gas is shown to be a gamma distribution with a different shape parameter as compared with its non-relativistic counterpart. This implies that the shape of the transverse energy distribution in relativistic heavy ion collisions depends on the particle contents during the evolution of the hot and dense matter. Therefore, transverse energy fluctuations provide additional insights into the Quark-Gluon Plasma produced in these collisions.

Zhang, Bin

2013-01-01T23:59:59.000Z

160

Black liquor gasification. Phase 2 final report  

SciTech Connect

The experimental work included 23 bench-scale tests in a 6-in.-diameter gasifier and two extended runs in a 33-in.-ID pilot-scale unit. The two pilot-scale runs included 26 test periods, each evaluated separately. The engineering analysis work consisted primarily of the correlation of test results and the development of a computer model describing the gasification process. 4 refs., 13 figs., 23 tabs.

Kohl, A.L.; Barclay, K.M.; Stewart, A.E.; Estes, G.R.

1984-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Control of scale in flue gas scrubbers  

SciTech Connect

This patent describes a flue gas desulfurization system in which sulfur dioxide-containing flue gas is passed in countercurrent flow with an aqueous calcium-bearing scrubbing liquor whereby the sulfur dioxide is removed from the flue gas by being absorbed by the scrubbing liquor and converted to calcium sulfite and/or calcium sulfate. The improvement of minimizing the formation of calcium scale on the surfaces of the system comprises maintaining in the scrubbing liquor about 0.1-25 ppm of a 1:1 diisobutylene-maleic anhydride copolymer having an average molecular weight of 11000. The copolymer is incorporated in the scrubbing liquor as a 10-15% aqueous dispersion.

Thomas, P.A.; Dewitt-Dick, D.B.

1987-06-02T23:59:59.000Z

162

,"U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Capacity (MMcf)" Salt Caverns Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Salt Caverns Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacws_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacws_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

163

,"U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (MMcf)" Acquifers Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Acquifers Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwa_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwa_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

164

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

165

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

166

Low Prandtl number gas mixtures as a working fluid in a thermoacoustic refrigerator  

Science Journals Connector (OSTI)

Prandtl number (Pr) is the dimensionless ratio of kinematicviscosity to thermal diffusivity and is about 0.7 for most ideal gases. This value can be lowered significantly by mixing two gas species having molecular weights that are very different resulting in a minimum Pr of 0.22 for He?Xe mixtures. This can be used to minimize the nuisance effect of viscous shear losses for a thermoacousticrefrigerator as well as for other types of heat engines. The principle of thermoacousticheat transport will be briefly discussed [J. Wheatley T. Hofler G. W. Swift and A. Migliori J. Acoust. Soc. Am. 74 153–170 (1983)]. However changing the viscosity of the working fluid also changes the details of the acoustic velocity distribution thereby modifying the basic thermoacousticheat transport mechanism. Measurements indicate that this effect may be more important than the simple reduction of viscons shear losses. [Work supported by the Office of Naval Research and the Office of Naval Technology.

M. Suzalla; T. Hofler; S. L. Garrett

1988-01-01T23:59:59.000Z

167

The Effect of Working Gas Admixture, Applied Voltage and Pressure on Focusing Time Parameter in the APF Plasma Focus Device  

Science Journals Connector (OSTI)

In the present research the effects of key parameters, applied voltage, working gas composition and pressure, on the focusing time in the APF plasma focus device are investigated. Pure nitrogen (N2) and three vol...

A. Roomi; M. Habibi

2012-06-01T23:59:59.000Z

168

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 156,161 158,351 126,677 101,609 72,294 83,427 33,855 -43,870 -34,609 -17,003 -75,285 -121,212 1996 -180,213 -191,939 -220,847 -233,967 -253,766 -260,320 -246,398 -159,895 -134,327 -127,911 -138,359 -86,091 1997 -55,406 -14,740 101,915 102,564 121,784 132,561 86,965 58,580 38,741 67,379 80,157 28,119 1998 77,255 135,784 65,355 130,979 148,718 138,540 205,160 215,060 166,834 187,302 246,104 273,754

169

Associations between Beer, Wine, and Liquor Consumption and Lung Cancer Risk: A Meta-analysis  

Science Journals Connector (OSTI)

...literature on beer, wine, and liquor intake and...alcoholic beverage (beer, wine, or liquor) and lung...per bottle, 150 mL of wine per glass, and 40 mL...beverage could potentially increase the risk of lung cancer...alcoholic beverages, and quality of smoking adjustment...

Chun Chao

2007-11-01T23:59:59.000Z

170

MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University of Tennessee Georgia Tech SURF 2010 Fellow  

E-Print Network (OSTI)

MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University Goodman Introduction In the papermaking industry, black liquor recovery boilers burn black liquor into the superheater region of the boiler, where the salt-deposit, or smelt, forms a scale on the superheater tubes.1

Li, Mo

171

work  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE THE U.S. DEPARTMENT OF ENERGY'S WORKING CAPITAL FUND U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES OCTOBER 1998 AUDIT REPORT CR-B-99-01 MEMORANDUM FOR THE DIRECTOR, BUSINESS MANAGEMENT STAFF FROM: William S. Maharay Acting Manager, Capital Regional Audit Office, Office of Inspector General SUBJECT: INFORMATION : Audit Report on the Department's Working Capital Fund BACKGROUND The Department established the Working Capital Fund (Fund) in January 1996 as a financial management tool for charging the costs of common services provided at Headquarters to Departmental program offices. The objectives in establishing the Fund were to increase efficiency of the Department's operations, improve management of administrative services

172

AGA Producing Region Natural Gas in Underground Storage - Change in Working  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) AGA Producing Region Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 -32.80 -42.10 -53.10 -51.10 -47.60 -43.40 -38.60 -25.20 -18.80 -16.70 -19.80 -15.60 1997 -15.00 -5.60 52.10 45.80 43.50 39.10 22.20 12.30 6.70 10.60 14.30 6.00 1998 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.30 55.40 1999 56.40 52.20 46.30 24.20 18.80 19.30 8.80 0.30 5.30 -3.80 0.00 0.00 2000 -14.80 -32.50 -28.30 -30.80 -35.70 -34.40 -30.70 -30.60 -28.40 -22.30 -28.90 -46.70 2001 -38.30 -35.20 -37.70 -12.80 9.80 25.20 31.70 43.40 46.40 30.90 52.60 127.30 2002 127.50 140.90 136.10 82.90 59.20 34.80 18.30 10.40 3.10 -0.50 -14.40 -23.90

173

Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)  

SciTech Connect

This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

1998-08-01T23:59:59.000Z

174

Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994  

SciTech Connect

During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

1994-03-01T23:59:59.000Z

175

Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream  

DOE Patents (OSTI)

The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

Li, Jian (Marietta, GA); Chai, Xin Sheng (Atlanta, GA); Zhu, Junyoung (Marietta, GA)

2008-06-24T23:59:59.000Z

176

Performance of the Gas Gain Monitoring system of the CMS RPC muon detector and effective working point fine tuning  

E-Print Network (OSTI)

The Gas Gain Monitoring (GGM) system of the Resistive Plate Chamber (RPC) muon detector in the Compact Muon Solenoid (CMS) experiment provides fast and accurate determination of the stability in the working point conditions due to gas mixture changes in the closed loop recirculation system. In 2011 the GGM began to operate using a feedback algorithm to control the applied voltage, in order to keep the GGM response insensitive to environmental temperature and atmospheric pressure variations. Recent results are presented on the feedback method used and on alternative algorithms.

S. Colafranceschi; L. Benussi; S. Bianco; L. Passamonti; D. Piccolo; D. Pierluigi; A. Russo; G. Saviano; C. Vendittozzi; M. Abbrescia; A. Aleksandrov; U. Berzano; C. Calabria; C. Carrillo; A. Colaleo; V. Genchev; P. Iaydjiev; M. Kang; K. S. Lee; F. Loddo; S. K. Park; G. Pugliese; M. Maggi; S. Shin; M. Rodozov; M. Shopova; G. Sultanov; P. Verwillingen

2012-09-18T23:59:59.000Z

177

Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors  

SciTech Connect

This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

Gary Blythe; John Currie; David DeBerry

2008-03-31T23:59:59.000Z

178

Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal  

E-Print Network (OSTI)

with a vent to enable mine gas outflow in specific conditions. Measurements stations were installed on mine conditions. Some parts of the basin are under gas capture stations influence. This is not the case in "La1 Impact of mine closure and access facilities on gas emissions from old mine workings to surface

Boyer, Edmond

179

Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery  

SciTech Connect

MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of the conversion of Na{sub 2}CO{sub 3} to (high sodium) titanates during gasification of black liquor in the presence of (low sodium) titanates or TiO{sub 2} (Task 2). MTCI/ThermoChem tested the performance and operability of the combined technology of steam reforming and direct causticization in their Process Development Unit (PDU) (Task 3). The specific objectives were: (1) to investigate how split sulfidity and polysulfide (+ AQ) pulping can be used to increase pulp fiber yield and properties compared to conventional kraft pulping; (2) to determine the economics of black liquor gasification combined with these pulping technologies in comparison with conventional kraft pulping and black liquor recovery; (3) to determine the effect of operating conditions on the kinetics of the titanate-based direct causticization reaction during black liquor gasification at relatively low temperatures ({le} 750 C); (4) to determine the mechanism of particle agglomeration during gasification of black liquor in the presence of titanates at relatively low temperatures ({le} 750 C); and (5) to verify performance and operability of the combined technology of steam reforming and direct causticization of black liquor in a pilot scale fluidized bed test facility.

Adriaan van Heiningen

2007-06-30T23:59:59.000Z

180

Improved Materials for High-Temperature Black Liquor Gasification  

SciTech Connect

The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the refractory material systems identified for lining material applications may be applicable for use in this

Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

2006-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Production of ammonium sulfate fertilizer from FGD waste liquors. Quarterly technical report, October 1, 1994--December 31, 1994  

SciTech Connect

During this quarterly period, an experimental investigation was performed to study the precipitation kinetics and hydrolysis characteristics of calcium imido disulfonate crystals (CaADS). The CaADS crystals were precipitated by a metathetical reaction of lime, supplied by Dravo Lime Co., with flue gas desulfurization (FGD) scrubber waste liquor. Before approaching for the continuous Double Draw-Off (DDO) crystallization studies, the influence of a Dravo lime slurry on the precipitation characteristics of N-S compounds will be established. A series of N-S compound batch crystallization studies were completed in a wide range of pH (7.0--9.0), and the influence of pH on the amount of lime required, as well as the amount of precipitate obtained, was investigated. Although the amount of precipitate increased with increase in solution pH, the safe or optimum pH for the precipitation of CaADS lies in the vicinity of 8.2 to 8.3. For studying the crystallization characteristics of CaADS crystals, a bench scale 7.0 liter DDO crystallizer was built. DDO crystallizer is found to be superior compared to Mixed Suspension Mixed Product Removal (MSMPR) crystallizer. The precipitated crystals were analyzed for elemental composition by chemical analysis. The crystals were also examined under optical microscope for their morphological features. The present studies confirmed our prediction that N-S compounds in the waste liquor can be precipitated by a reaction with lime slurry. The precipitated crystals were mostly calcium imido disulfonate.

Randolph, A.D.; Mukhopadhyay, S.; Unrau, E.

1994-12-31T23:59:59.000Z

182

NETL: News Release - DOE Opens Competition for Black Liquor/Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

January 7, 2000 January 7, 2000 DOE Opens Competition for Black Liquor/Biomass Gasification Program Intended to Boost Efficiency, Reduce Greenhouse Gases from Pulp and Paper Mills A new competition begun this week by the Department of Energy could make the pulp and paper mills of the 21st century cleaner and more energy efficient by demonstrating improved technologies to convert their spent cooking liquor streams into new sources of energy. The advanced processes would also simultaneously recover and recycle pulping chemicals. MORE INFO Download the solicitation The department's National Energy Technology Laboratory has issued a call for projects to demonstrate advanced ways to gasify the black liquor or biomass of pulp and paper mills. The gases can be more easily cleaned of

183

Black liquor gasification combined cycle with Co2 capture – Technical and economic analysis  

Science Journals Connector (OSTI)

Abstract The pulp and paper sector is intensive in the use of energy, and presents a high participation in the industrial context, specially based in the black liquor, a renewable source generated in the pulp process. Black liquor gasification is not still completely dominated; however, it has the potential of becoming an important alternative for the pulp and paper sector. In this article, the traditional steam cycle based on chemical recovery and biomass boilers associated to backpressure/extraction turbine is compared to black liquor gasification combined cycle schemes, associated to biomass boiler, considering the technical and economic attractiveness of capturing and sequestering CO2. Results show that despite its interesting exergetic efficiency, the adoption CO2 capture system for BLGCC did not prove to be attractive under the prescribed conditions without major incentive.

Elzimar Tadeu de Freitas Ferreira; José Antonio Perrella Balestieri

2014-01-01T23:59:59.000Z

184

Formation of fuel NO[sub x] during black-liquor combustion  

SciTech Connect

Fuel NOx and thermal NOx were measured in combustion gases from black liquors in two laboratory furnaces. Combustion at 950 C in air (8% O[sub 2]) produced NOx concentrations of 40-80ppm. Combustion at 950 C in synthetic air containing no nitrogen (21% 0[sub 2] in Ar) produced the same result, demonstrating that all of the NOx produced during combustion at 950 C was fuel NOx. Formation of fuel NOx increased moderately with increasing temperature in the range of 800-1,000 C, but temperature sensitivity of fuel NOx was much less than that of thermal NOx. The results imply that the major source of NOx in recovery furnace emissions is the fuel NOx in recovery furnace formed by conversion of liquor-bound nitrogen during combustion. This is consistent with thermal NOx theory, which postulates that black-liquor combustion temperatures are too low to generate significant amounts of thermal NOx.

Nichols, K.M. (Weyerhaeuser Paper Co., Tacoma, WA (United States)); Lien, S.J. (Inst. of Paper Science and Technology, Atlanta, GA (United States))

1993-03-01T23:59:59.000Z

185

The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline com-  

E-Print Network (OSTI)

gas hydrates. Gas hydrates are crystalline com- pounds that are often encountered in oil and gas briefly present the hydrate crystalline structure and the role of hydrates in oil-and gas industry the industrial contexts where they appear, we shall cite : hydrate plugs obstructing oil- or gas

Boyer, Edmond

186

Project Information Form Project Title Working toward a policy framework for reducing greenhouse gas  

E-Print Network (OSTI)

Provided (by each agency or organization) US DOT $37,874 Total Project Cost $37,874 Agency ID or ContractProject Information Form Project Title Working toward a policy framework for reducing greenhouse of Research Project This white paper is concerned with a preliminary investigation of the extent to which

California at Davis, University of

187

Fast high-pressure freezing of protein crystals in their mother liquor  

Science Journals Connector (OSTI)

Protein crystals were vitrified using high-pressure freezing in their mother liquor at 210 MPa and 77 K without cryoprotectants or oil coating. The method was successfully applied to photosystem II, which is representative of a membrane protein with a large unit cell and weak crystal contacts.

Burkhardt, A.

2012-03-31T23:59:59.000Z

188

Oil palm vegetation liquor: a new source of phenolic bioactives Ravigadevi Sambanthamurthi1  

E-Print Network (OSTI)

Oil palm vegetation liquor: a new source of phenolic bioactives Ravigadevi Sambanthamurthi1 *, Yew , Krishnan Subramaniam5 , Soon-Sen Leow1 , Kenneth C. Hayes6 and Mohd Basri Wahid1 1 Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang Selangor, Malaysia 2 Malaysian Palm Oil

Sinskey, Anthony J.

189

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2008 2009 2010 2011 2012 View History U.S. 4,211,193 4,327,844 4,410,224 4,483,650 4,576,356 2008-2012 Alabama 20,900 20,900 25,150 27,350 27,350 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 296,318 303,761 303,500 302,385 302,962 2008-2012 Indiana 32,769 32,157 32,982 33,024 33,024 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 119,260 119,339 123,190 123,225 123,343 2008-2012 Kentucky

190

Total Working Gas Capacity  

Gasoline and Diesel Fuel Update (EIA)

12,178 2012-2014 California 374,296 374,296 374,296 374,296 374,296 374,296 2012-2014 Colorado 60,582 60,582 60,582 60,582 60,582 63,774 2012-2014 Illinois 303,312 303,312...

191

Interrelated Effects of Aeration and Mixed Liquor Fractions on Membrane Fouling for Submerged Membrane Bioreactor Processes in Wastewater Treatment  

Science Journals Connector (OSTI)

Interrelated Effects of Aeration and Mixed Liquor Fractions on Membrane Fouling for Submerged Membrane Bioreactor Processes in Wastewater Treatment ... using hollow fibers was applied to wastewater treated by the activated-sludge process. ...

Fengshen Fan; Hongde Zhou

2007-02-21T23:59:59.000Z

192

Framework and systematic functional criteria for integrated work processes in complex assets: a case study on integrated planning in offshore oil and gas production industry  

Science Journals Connector (OSTI)

Improving the efficiency and cost-effectiveness of the oil and gas (O&G) production process is considered as a critical timely need. The core work processes in particular are targeted for considerable improvements. In this context, development related to integrated planning (IP) is seen as one of the major bases for developing collaborative work processes connecting offshore production and onshore support system. With feasible benefits, for instance, relating to reduction of non-working time, less work repetition, reduction of reduction in production losses, better resource utilisation, etc., a systematic and a complete IP system is today seen as an attractive solution for integrating complex operations and to work smarter. This paper, based on a case study from North Sea oil and gas production environment, describes the systematic functional criteria required as the basis for developing a fully functional IP system.

Yu Bai; Jayantha P. Liyanage

2012-01-01T23:59:59.000Z

193

Black Liquor Gasification Process Review and Status Update  

E-Print Network (OSTI)

facilities (0.2 tph) focused on developing pressurized gasifiers. Their work is complemented by research at VIT (The Technical Research Centre of Finland) who have a 0.2 tph pressurized fluid bed test facility. The purpose of this paper is to describe...

Brown, C.

194

Burden distribution control for maintaining the central gas flow at No. 1 blast furnace in Pohang Works  

SciTech Connect

The causes for temperature lowering at the upper shaft center in Pohang No. 1 blast furnace were investigated. The test operation with charging notch change in the actual blast furnace and with a 1/12 scale model to Pohang No. 1 blast furnace were carried out in order to improve central gas flow in the shaft. Finally, rebuilding of the lower bunker interior was performed using the results of model experiments. It was confirmed that the main reason for the gas temperature lowering at the upper shaft center was the smaller particle size at center than the wall according to the discharging characteristics of center feed bunker with stone box. The central gas flow could be secured through modifying the stone box in the bunker.

Jung, S.K.; Lee, Y.J.; Suh, Y.K.; Ahn, T.J.; Kim, S.M. [Pohang Iron and Steel Co. Ltd. (Korea, Republic of). Technical Research Labs.

1995-12-01T23:59:59.000Z

195

Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities  

SciTech Connect

A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

MM Hall

2006-01-31T23:59:59.000Z

196

Material Characterization and Analysis for Selection of Refractories Used in Black Liquor Gasification  

SciTech Connect

Black liquor gasification provides the pulp and paper industry with a technology which could potentially replace recovery boilers with equipment that could reduce emissions and, if used in a combined cycle system, increase the power production of the mill allowing it to be a net exporter of electrical power. In addition, rather than burning the syngas produced in a gasifier, this syngas could be used to produce higher value chemicals or fuels. However, problems with structural materials such as the refractory lining of the reactor vessel have caused unplanned shutdowns and resulted in component replacement much sooner than originally planned. Through examination of exposed materials, laboratory corrosion tests and cooperative efforts with refractory manufacturers, many refractory materials issues in high-temperature black liquor gasification have been addressed and optimized materials have been selected for this application. In this paper, an updated summary of the characterization and analysis techniques used for refractory screening and selection will be discussed along with characteristic results from these methods which have led to the selection of optimized materials for both the hot-face and back-up linings used in this application.

Hemrick, James Gordon [ORNL; Keiser, James R [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

2010-01-01T23:59:59.000Z

197

portation and Greenhouse Gas (MUNTAG) model is a macroscopic, highly aggregate model that works at the municipal level and solely  

E-Print Network (OSTI)

identifies the following four sectors: buildings; trans- portation and land use; energy supply; and municipal GHG inventory. This work is part of a project to write a guide called Getting to Car- bon Neutral

Illinois at Chicago, University of

198

Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress  

SciTech Connect

Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF{sub 3} for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF{sub 3}, planning and preparation for experiments to assess hazard of rapid reaction of ClF{sub 3} and hydrated UO{sub 2}F{sub 2} or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material.

Simmons, D.W.; Munday, E.B.

1995-05-01T23:59:59.000Z

199

Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports  

SciTech Connect

Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

2006-10-01T23:59:59.000Z

200

Reductive burning of high-yield spent pulping liquors by the addition of pulverized coal  

SciTech Connect

This paper reports on the reductive burning of high-yield spent pulping liquors which can be accomplished by the addition of pulverized coal to increase the heat content and generate the proper reducing conditions. Samples from a 78%-yield sodium bisulfite pulping process employing a hardwood furnish were mixed with 10-50% pulveriized coal and burned at 950[degrees]C under reducing conditions in a box furnace. Even in these uncontrolled combustion conditions 76. 5% of the sulfur found in the soluble portion of the smelt was converted from lignousulfonates to useful sulfide ion. For the remainder of the sulfur, analyses determined it to be 19. 5% as sulfite ion, 3. 1% as thiosulfate ion, and 0.9% as sulfate ion.

Sell, N.J.; Norman, J.C. (Natural and Applied Sciences, Univ. of Wisconsin-Green Bay, Green Bay, WI (United States))

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum  

SciTech Connect

Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

Hensman, Carl, E., P.h.D; Baker, Trevor

2008-06-16T23:59:59.000Z

202

Advanced separation technology for flue gas cleanup. Topical report  

SciTech Connect

The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [and others

1995-01-01T23:59:59.000Z

203

Gasification behavior of carbon residue in bed solids of black liquor gasifier  

SciTech Connect

Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

Preto, Fernando; Zhang, Xiaojie (Frank); Wang, Jinsheng [CANMET Energy Technology Centre, Natural Resources (Canada)

2008-07-15T23:59:59.000Z

204

Working Gas Capacity of Aquifers  

U.S. Energy Information Administration (EIA) Indexed Site

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

205

Working Gas Capacity of Aquifers  

Gasoline and Diesel Fuel Update (EIA)

96,950 396,092 364,228 363,521 367,108 2008-2012 96,950 396,092 364,228 363,521 367,108 2008-2012 Alabama 0 2012-2012 Arkansas 0 2012-2012 California 0 0 2009-2012 Colorado 0 2012-2012 Illinois 244,900 252,344 216,132 215,017 215,594 2008-2012 Indiana 19,978 19,367 19,437 19,479 19,215 2008-2012 Iowa 87,350 87,414 90,613 91,113 90,313 2008-2012 Kansas 0 2012-2012 Kentucky 6,629 6,629 6,629 6,629 6,629 2008-2012 Louisiana 0 2012-2012 Michigan 0 2012-2012 Minnesota 2,000 2,000 2,000 2,000 2,000 2008-2012 Mississippi 0 2012-2012 Missouri 11,276 3,040 3,656 6,000 6,000 2008-2012 Montana 0 2012-2012 New Mexico 0 2012-2012 New York 0 2012-2012 Ohio 0 2012-2012 Oklahoma 31 2012-2012 Oregon 0 2012-2012 Pennsylvania 942 2012-2012 Tennessee 0 2012-2012 Texas 0 2012-2012 Utah 948 948 939 939 948 2008-2012

206

The intoxicating brew of black liquor and son of black liquor: Deciphering the tax planning, research, policy and financial statement implications of tax credits via financial reporting income tax disclosures  

Science Journals Connector (OSTI)

In 2007, a change in the law regarding the alternative fuel mixture credit opened the door for paper mills to qualify a byproduct of paper manufacturing, black liquor, as a fuel eligible for the credit. The credit is a refundable credit of $0.50 per gallon. Paper mills can produce hundreds of millions of gallons of black liquor per year and qualified for the credit in 2009. In addition, in 2010 the IRS determined that these firms qualified for the cellulosic biofuels producer credit. Paper mill companies could amend their 2009 tax returns and swap their alternative fuel mixture credits for cellulosic biofuels producer credits worth $1.01 per gallon. The catch was that the alternative fuels mixture credit was refundable; the cellulosic biofuels producer credit was nonrefundable. This paper provides a series of mini cases exploring the tax planning, tax research, tax policy and financial statement implications of Packaging Corporation of America’s use of the alternative fuel mixture tax credit and subsequent amendment of its 2009 tax return in 2010 to swap its alternative fuel mixture tax credits for cellulosic biofuel producer credits. These cases may be directed for use in either upper-division undergraduate courses or graduate courses.

Beth B. Kern

2012-01-01T23:59:59.000Z

207

Fundamental study of black liquor gasification kinetics using a pressurized entrained-flow reactor (PEFR). Quarterly progress report for the period July 1999 to September 1999  

SciTech Connect

The goal of the program is to identify the optimal operating window for black liquor gasification. The goals during this year are to prepare the PEFR for operation, conduct a series of preliminary screening tests to bracket BLG operating conditions, and develop a process model that can guide identification of the optimal operating window.

NONE

1999-10-29T23:59:59.000Z

208

Method for estimation of the average local working temperatures and the residual resource of metal coatings of gas-turbine blades  

Science Journals Connector (OSTI)

A new method is proposed for estimation of the average local operating temperatures and the residual service life (resource) of protective MCrAlY metal coatings of gas-turbine blades after a certain time of opera...

P. G. Krukovskii; K. A. Tadlya

2007-05-01T23:59:59.000Z

209

Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill  

Science Journals Connector (OSTI)

Four residues generated in a Kraft, pulp and paper plant, were characterized by X-ray fluorescence spectroscopy (XFA), powder X-ray diffraction (XRD), thermogravimmetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR). A quantitative phase composition model, that accounts for the observed data and for the physico-chemical conditions of formation, was postulated for each material. Emphasis was given on the identification of the mineral components of each material. The green liquor dregs and the lime mud contain Calcite and Gipsite. The slaker grits contains Calcite, Portlandite, Pirssonite, Larnite and Brucite. The Calcite phase, present in the dregs and in the lime mud, has small amounts of magnesium replacing calcium. The wood ash contains Quartz as the major crystalline mineral phase.

Fernanda Machado Martins; Joaniel Munhoz Martins; Luiz Carlos Ferracin; Carlos Jorge da Cunha

2007-01-01T23:59:59.000Z

210

Natural Gas Transmission and Distribution Module  

U.S. Energy Information Administration (EIA) Indexed Site

31, 2012, Washington, DC Major assumption changes for AEO2013 Oil and Gas Working Group Natural Gas Transmission and Distribution Module DRAFT WORKING GROUP PRESENTATION DO NOT...

211

Natural Gas Rules (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Natural Resources administers the rules that govern natural gas exploration and extraction in the state. DNR works with the Louisiana Department of Environmental...

212

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

force majeure declared December 17 at its Totem storage field, Colorado Interstate Gas Pipeline (CIG) reported that it anticipates repair work to be complete around February 12,...

213

Reversible Acid Gas Capture  

SciTech Connect

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2009-08-01T23:59:59.000Z

214

Reversible Acid Gas Capture  

ScienceCinema (OSTI)

Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

Dave Heldebrant

2012-12-31T23:59:59.000Z

215

Work Permit # 51012MZ5 Work Order# '  

E-Print Network (OSTI)

Confined Space· 0 Ergonomics· 0 Material Handling o ,Beryllium· 0 Electrical 0 Hydraulic o Safety Harness o Electrical Working Hot o Electrical Noise 0 Potential to Cause aFalse Alarm o QiCombustible Gas o IHSurvey Dosimeter o LockoutITagout o Spill potential o Self-reading Pencil Dosimeter o Impair Fire Protection

Homes, Christopher C.

216

Work Breakdown Structure and Plant/Equipment Designation System Numbering Scheme for the High Temperature Gas- Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect

This white paper investigates the potential integration of the CTC work breakdown structure numbering scheme with a plant/equipment numbering system (PNS), or alternatively referred to in industry as a reference designation system (RDS). Ideally, the goal of such integration would be a single, common referencing system for the life cycle of the CTC that supports all the various processes (e.g., information, execution, and control) that necessitate plant and equipment numbers be assigned. This white paper focuses on discovering the full scope of Idaho National Laboratory (INL) processes to which this goal might be applied as well as the factors likely to affect decisions about implementation. Later, a procedure for assigning these numbers will be developed using this white paper as a starting point and that reflects the resolved scope and outcome of associated decisions.

Jeffrey D Bryan

2009-09-01T23:59:59.000Z

217

Gas-turbine power stations on associated gas by Motor Sich OJSC  

Science Journals Connector (OSTI)

Wide introduction of gas-turbine power stations working on associated oil gas is topical for Russia. Designing and operational ... ) and EG-6000 (6.0 MW) gas-turbine power stations on associated oil gas manufactu...

P. A. Gorbachev; V. G. Mikhailutsa

2011-12-01T23:59:59.000Z

218

How Fuel Cells Work | Department of Energy  

Energy Savers (EERE)

Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and...

219

Summary for Policymakers IPCC Fourth Assessment Report, Working Group III  

E-Print Network (OSTI)

this introduction: • Greenhouse gas (GHG) emission trends •2. Global greenhouse gas (GHG) emissions have grown sinceincrease in atmospheric GHG concentrations [1.3; Working

2007-01-01T23:59:59.000Z

220

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.

Weinbrecht, J.F.

1992-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recirculating rotary gas compressor  

DOE Patents (OSTI)

A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.

Weinbrecht, John F. (601 Oakwood Loop, NE., Albuquerque, NM 87123)

1992-01-01T23:59:59.000Z

222

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

223

Working Gas Volume Change from Year Ago  

U.S. Energy Information Administration (EIA) Indexed Site

-753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 -753,656 -616,126 -473,386 -308,388 -195,536 -128,134 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States -767,663 -631,403 -489,573 -325,475 -214,105 -148,588 2011-2013 Alabama 131 998 -1,015 -975 -35 2,852 1996-2013 Arkansas -1,386 -1,403 -1,240 -1,239 -1,024 -1,050 1990-2013 California -6,702 -5,997 -10,684 274 24,044 28,854 1990-2013 Colorado -2,531 537 892 1,473 1,528 1,179 1990-2013 Illinois -11,767 -14,974 -8,820 -7,918 -12,002 -6,916 1990-2013 Indiana -4,126 -2,948 -2,927 -2,773 -1,025 -212 1990-2013 Iowa -6,614 -1,173 3,389 6,425 6,747 3,169 1991-2013 Kansas -38,081 -31,497 -26,449 -17,344 -10,369 -9,217 1990-2013 Kentucky -26,238 -26,922 -21,826 -15,927 -14,959 -12,801 1990-2013

224

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 21.3 -15.2 -9.5 -5.7 -3.5 -2.9 1973-2013 Alaska NA NA NA NA NA NA 2013-2013 Lower 48 States -21.9 -15.7 -10.0 -6.3 -4.0 -3.5 2011-2013 Alabama 5.0 -4.8 -4.5 -0.2 15.5 -12.0 1996-2013 Arkansas -42.1 -34.7 -31.2 -24.4 -23.7 -23.0 1991-2013 California -2.0 -3.3 0.1 7.9 9.3 3.4 1991-2013 Colorado 2.8 3.6 4.7 3.9 2.6 3.0 1991-2013 Illinois -16.5 -7.4 -5.2 -6.3 -3.1 -3.2 1991-2013 Indiana -21.2 -17.8 -14.8 -5.0 -0.9 -5.2 1991-2013 Iowa -6.2 16.6 24.3 16.6 5.2 -1.8 1991-2013 Kansas -38.9 -29.7 -17.9 -10.2 -8.3 -7.6 1991-2013 Kentucky -30.6 -24.1 -17.7 -15.8 -12.7 -10.5 1991-2013 Louisiana -26.6 -21.0 -10.2 -4.3 -2.3 1.0 1991-2013 Maryland -40.2 -26.0 -17.1 -4.8 1.5 0.8 1991-2013 Michigan -35.7 -26.7 -19.2 -13.9 -9.7 -6.9 1991-2013

225

Working Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013 Indiana 8,965 10,955 13,533 15,951 19,622 22,817 1990-2013 Iowa 11,615 17,696 23,768 32,853 47,421 64,102 1990-2013 Kansas 35,397 49,412 62,747 79,590 91,430 101,169 1990-2013 Kentucky 52,985 61,078 68,847 74,285 79,656 88,369 1990-2013 Louisiana 212,975 235,835 263,701 296,375 315,517 342,981 1990-2013

226

Philadelphia Gas Works – Home Rebates Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

PGW’s Home Rebates program is available for residential customers within the PGW service territory. See the web site above for complete program details.

227

Working Gas % Change from Year Ago  

Gasoline and Diesel Fuel Update (EIA)

-26.2 -21.7 -19.9 1991-2014 California -60.5 -48.4 -37.4 -28.5 -25.9 -19.7 1991-2014 Colorado 2.3 16.0 12.8 12.6 6.8 1.9 1991-2014 Illinois -6.9 -11.6 -4.6 -2.6 0.3 1.8...

228

Working Gas Capacity of Salt Caverns  

U.S. Energy Information Administration (EIA) Indexed Site

230,456 271,785 312,003 351,017 488,268 2008-2012 230,456 271,785 312,003 351,017 488,268 2008-2012 Alabama 11,900 11,900 16,150 16,150 16,150 2008-2012 Arkansas 0 2012-2012 California 0 2012-2012 Colorado 0 2012-2012 Illinois 0 2012-2012 Indiana 0 2012-2012 Kansas 375 375 375 375 375 2008-2012 Kentucky 0 2012-2012 Louisiana 57,630 84,487 100,320 111,849 200,702 2008-2012 Maryland 0 2012-2012 Michigan 2,154 2,150 2,159 2,159 2,159 2008-2012 Mississippi 43,292 43,758 56,928 62,932 100,443 2008-2012 Montana 0 2012-2012 Nebraska 0 2012-2012 New Mexico 0 2012-2012 New York 1,450 1,450 1,450 1,450 0 2008-2012 Ohio 0 2012-2012 Oklahoma 0 2012-2012 Oregon 0 2012-2012 Pennsylvania 0 2012-2012 Tennessee 0 2012-2012 Texas 109,655 123,664 130,621 152,102 164,439 2008-2012 Utah 0 2012-2012 Virginia

229

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

230

End of Month Working  

Gasoline and Diesel Fuel Update (EIA)

The level of gas in storage at the end of the last heating season (March The level of gas in storage at the end of the last heating season (March 31, 2000) was 1,150 billion cubic feet (Bcf), just above the 1995-1999 average of 1,139 Bcf. Underground working gas storage levels are currently about 8-9 percent below year-ago levels. In large part, this is because injection rates since April 1 have been below average. Storage injections picked up recently due to warm weather in the last half of October. The month of November is generally the last month available in the year for injections into storage. A cold November would curtail net injections into storage. If net injections continue at average levels this winter, we project that storage levels will be low all winter, reaching a level of 818 Bcf at the end of March, the lowest level since 1996

231

Treatment of nitrous off-gas from dissolution of sludges  

SciTech Connect

Several configurations have been reviewed for the NO{sub x} removal of dissolver off-gas. A predesign has been performed and operating conditions have been optimized. Simple absorption columns seems to be sufficient. NHC is in charge of the treatment of sludges containing mainly uranium dioxide and metallic uranium. The process is based on the following processing steps a dissolution step to oxidize the pyrophoric materials and to dissolve radionuclides (uranium, plutonium, americium and fission products), a solid/liquid separation to get rid of the insoluble solids (to be disposed at ERDF), an adjustment of the acid liquor with neutronic poisons, and neutralization of the acid liquor with caustic soda. The dissolution step generates a flow of nitrous fumes which was evaluated in a previous study. This NO{sub x} flow has to be treated. The purpose of this report is to study the treatment process of the nitrous vapors and to 0482 perform a preliminary design. Several treatment configurations are studied and the most effective process option with respect to the authorized level of discharge into atmosphere is discussed. As a conclusion, recommendations concerning the unit preliminary design are given.

Flament, T.A.

1998-08-25T23:59:59.000Z

232

Vermont Gas- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Vermont Gas (VGS) offers two energy efficiency programs for commercial customers: the WorkPlace New Construction Program and the WorkPlace Equipment Replacement and Retrofit Program.

233

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network (OSTI)

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

234

Corn steep liquor and fermented ammoniated condensed whey as protein sources for lactating cows and yearling heifers grazing winter native range  

SciTech Connect

Corn steep liquor (CSL) and fermented ammoniated condensed whey (FACW) were compared to cottonseed meal (CSM) as protein sources for wintering 61 lactating first-calf Hereford heifers and 32 yearling Hereford heifers on native range. Cattle were allotted by weight and individually fed 6 days per week for 12 weeks one of four protein treatments: negative control (NC), positive control (PC), CSL and FACW to provide .7, 1.5, .15 and 1.5 lb crude protein (CP) per day, respectively, to the lacating heifers and .2, .4, .4 and .4lb cP per day, respectively, to the yearling heifers. CMS was supplied in the CSL and FACW treatments at the same level as in the negative control. Lactating heifers fed the NC lost more (P less than .005) weight and body condition (120 lb and 1.6 units) than those fed the PC (45.8 lb and .9 units). Weight and condition losses were similar (P more than .05) for lactating heifers fed PC, CSL and FACW. Yearling heifers fed the NC lost more (P less than .005) weight than those fed the PC (49.4 vs 10.6 lb). Yearling heifers fed CSL and FACW gained more (P less than .005) weight than those fed the PC (17.6 and 9.3 vs - 10.6 lb). Feeding CSL resulted in signficantly lower rumen pH, lower ruminal acetate and higher ruminal butyrate, isovalerate and caproate levels than did feeding either control. Supplementing with FACW produced significantly lower rumen pH, higher rumen ammonia and soluble carbohydrate levels, lower ruminal acetate, and higher ruminal propionate and butyrate concentrations than did either control supplement. Corn steep liquor and FDCW appear to be effective protein sources for cows and heifers grazing winter native range.

Wagner, J.J.; Lusby, K.S.; Horn, G.W.; Dvorak, M.J.

1982-06-01T23:59:59.000Z

235

EIA - All Natural Gas Analysis  

Gasoline and Diesel Fuel Update (EIA)

All Natural Gas Analysis All Natural Gas Analysis 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) U.S Natural Gas Imports and Exports: 2009 This report provides an overview of U.S. international natural gas trade in 2009. Natural gas import and export data, including liquefied natural gas (LNG) data, are provided through the year 2009 in Tables SR1-SR9. Categories: Imports & Exports/Pipelines (Released, 9/28/2010, Html format)

236

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, May 19, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 11, 2011) Natural gas prices fell across the board as oil prices dropped steeply along with most other major commodities. At the Henry Hub, the natural gas spot price fell 36 cents from $4.59 per million Btu (MMBtu) on Wednesday, May 4, to $4.23 per MMBtu on Wednesday, May 11. At the New York Mercantile Exchange, the price of the near-month natural gas contract (June 2011) dropped almost 9 percent, falling from $4.577 per MMBtu last Wednesday to $4.181 yesterday. Working natural gas in storage rose by 70 billion cubic feet (Bcf) to 1,827 Bcf, according to EIAÂ’s Weekly Natural Gas Storage Report.

237

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2010 at 2:00 P.M. 2, 2010 at 2:00 P.M. Next Release: Thursday, July 29, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 21, 2010) Natural gas prices rose across market locations in the lower 48 States during the report week. The Henry Hub natural gas spot price rose 31 cents, or 7 percent, during the week, averaging $4.70 per million Btu (MMBtu) yesterday, July 21. At the New York Mercantile Exchange (NYMEX), the price of the August 2010 natural gas futures contract for delivery at the Henry Hub rose about 21 cents, or 5 percent, ending the report week at $4.513 per MMBtu. Working natural gas in storage increased to 2,891 billion cubic feet (Bcf) as of Friday, July 16, according to EIAÂ’s Weekly Natural Gas Storage

238

Natural Gas  

Science Journals Connector (OSTI)

30 May 1974 research-article Natural Gas C. P. Coppack This paper reviews the world's existing natural gas reserves and future expectations, together with natural gas consumption in 1972, by main geographic...

1974-01-01T23:59:59.000Z

239

Going To Work: Work Relationships  

E-Print Network (OSTI)

One of a worker's top goals should be to develop good relationships with coworkers and supervisers. This publication discusses five general rules for building good relationships at work and offers advice on handling criticism....

Hoffman, Rosemarie

2000-07-20T23:59:59.000Z

240

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Effective Date: 11/05/13 WP 12-IS.01-6 Revision 10 Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls Cognizant Section: Industrial Safety/Industrial Hygiene Approved By: Tom Ferguson Working Copy Industrial Safety Program - Visitor, Vendor, User, Tenant, and Subcontractor Safety Controls WP 12-IS.01-6, Rev. 10 2 TABLE OF CONTENTS CHANGE HISTORY SUMMARY ..................................................................................... 7 ACRONYMS AND ABBREVIATIONS ............................................................................. 8 1.0 INTRODUCTION 1 ............................................................................................... 10 2.0 VISITORS ........................................................................................................... 11

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Working Copy  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/WIPP-99-2286 Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan Revision 7 U.S. Department of Energy December 2013 This document supersedes DOE/WIPP-99-2286, Rev. 6. Working Copy Waste Isolation Pilot Plant Environmental Notification or Reporting Implementation Plan DOE/WIPP-99-2286, Rev. 7 2 TABLE OF CONTENTSCHANGE HISTORY SUMMARY .............................................. 3 ACRONYMS AND ABBREVIATIONS ............................................................................ 4 1.0 INTRODUCTION .................................................................................................. 6 2.0 NOTIFICATION OR REPORTING REQUIREMENTS AND COMMITMENTS ..... 7

242

Natural Gas Issues and Trends - Record winter withdrawals create...  

Gasoline and Diesel Fuel Update (EIA)

withdrawals create summer storage challenges Released: June 12, 2014 On June 6, a net natural gas storage injection of 107 billion cubic feet (Bcf) brought natural gas working...

243

Water-saving liquid-gas conditioning system  

DOE Patents (OSTI)

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

244

Work Address:  

NLE Websites -- All DOE Office Websites (Extended Search)

BO SAULSBURY BO SAULSBURY Work Address: Home Address: Oak Ridge National Laboratory 12952 Buckley Road National Transportation Research Center Knoxville, TN 37934 Building NTRC-2, Room 118 (865) 288-0750 Oak Ridge, TN 37831-6479 (865) 574-4694 saulsburyjw@ornl.gov Technical Specialties: Land use planning Environmental and socioeconomic impact assessment National Environmental Policy Act (NEPA) project management Vehicle fuel economy Education: 1986 B. A., History (minors in English and Business), The University of Tennessee 1989 M. S., Planning, The University of Tennessee (Thesis title: Land Use Compatibility Planning for Airfield Environs: Intergovernmental Cooperation to Protect Land Users From the Effects of Aircraft Operations)

245

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, April 28, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 20, 2011) Natural gas prices rose at most market locations during the week, as consumption increased. The Henry Hub spot price increased 19 cents from $4.14 per million Btu (MMBtu) on Wednesday, April 13 to $4.33 per MMBtu on Wednesday, April 20. Futures prices behaved similar to spot prices; at the New York Mercantile Exchange, the price of the near-month natural gas contract (May 2011) rose from $4.141 per MMBtu to $4.310 per MMBtu. Working natural gas in storage rose to 1,654 billion cubic feet (Bcf) as of Friday, April 15, according to EIAÂ’s Weekly Natural Gas

246

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 5, 2009 Next Release: July 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 24, 2009) Natural gas spot prices generally declined this report week (June 17-24), with the largest decreases generally occurring in the western half of the country. During the report week, the Henry Hub spot price decreased by $0.19 per million Btu (MMBtu) to $3.80. At the New York Mercantile Exchange (NYMEX), futures prices for natural gas decreased as prices for most energy products fell amid concerns over the economy. The natural gas futures contract for July delivery decreased by 49 cents per MMBtu on the week to $3.761. Working gas in underground storage as of last Friday, June 19, is

247

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, June 30, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 22, 2011) Natural gas prices fell slightly at most market locations from Wednesday, June 15 to Wednesday, June 22. The Henry Hub price fell 10 cents from $4.52 per million Btu (MMBtu) last Wednesday to $4.42 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the July 2011 near-month futures contract fell by 26 cents, or about 6 percent, from $4.58 last Wednesday to $4.32 yesterday. Working natural gas in storage rose to 2,354 this week, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

248

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

249

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

250

Gas Turbines  

Science Journals Connector (OSTI)

When the gas turbine generator was introduced to the power generation ... fossil-fueled power plant. Twenty years later, gas turbines were established as an important means of ... on utility systems. By the early...

Jeffrey M. Smith

1996-01-01T23:59:59.000Z

251

Gas Turbines  

Science Journals Connector (OSTI)

... the time to separate out the essentials and the irrelevancies in a text-book. The gas ...gasturbine ...

H. CONSTANT

1950-10-21T23:59:59.000Z

252

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

253

Gas from Veggies  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas from Veggies Gas from Veggies Name: Julie Location: N/A Country: N/A Date: N/A Question: Im doing my science experiment to see if the processing of food produces gas. I was told that you do this by getting the vegitables, grounding them up, mixing them with vinegar and putting it in a test tube and then place a balloon over it to see if gas is produced. First I tried mixing the foods (Im using canned, frozen and fresh broccoli first to see if it works) with the vinegar and put it in a test tube and I placed a balloon over it but no gas was produced. I then tried it again in heat and again in the cold and it still wouldnt work. I tried the experiment again and pureed the broccoli and mixed it with the vinegar, put the balloon over it and still no gas was produced. What could I be doing wrong? Im using 5% acidity vineger because that's the only kind I could find. Do I need a stronger one? Where can I get a stronger one? How much vinegar should I be using? How much of the broccoli should I be using? Do I have to do something to the broccoli first? Please try to answer my questions I really need help.

254

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

255

California Natural Gas Number of Gas and Gas Condensate Wells...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

256

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

257

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

258

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

259

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

260

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

262

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

263

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

264

Illinois Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

265

Missouri Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

266

Mississippi Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

267

Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

268

Natural gas monthly, August 1996  

SciTech Connect

This analysis presents the most recent data on natural gas prices, supply, and consumption from the Energy Information Administration (EIA). The presentation of the latest monthly data is followed by an update on natural gas markets. The markets section examines the behavior of daily spot and futures prices based on information from trade press, as well as regional, weekly data on natural gas storage from the American Gas Association (AGA). This {open_quotes}Highlights{close_quotes} closes with a special section comparing and contrasting EIA and AGA storage data on a monthly and regional basis. The regions used are those defined by the AGA for their weekly data collection effort: the Producing Region, the Consuming Region East, and the Consuming Region West. While data on working gas levels have tracked fairly closely between the two data sources, differences have developed recently. The largest difference is in estimates of working gas levels in the East consuming region during the heating season.

NONE

1996-08-01T23:59:59.000Z

269

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2009 6, 2009 Next Release: July 23, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 15, 2009) Natural gas spot prices rose during the week in all trading locations. Price increases ranged between 6 cents and 48 cents per million Btu (MMBtu), with the biggest increases occurring in the Rocky Mountain region. During the report week, the spot price at the Henry Hub increased 15 cents or 5 percent to $3.37 per MMBtu. At the New York Mercantile Exchange (NYMEX), the natural gas near-month contract (August 2009) decreased 7 cents to $3.283 per MMBtu from $3.353 the previous week. During its tenure as the near-month contract, the August 2009 contract has lost 66 cents. As of Friday, July 10, 2009, working gas in storage rose to 2,886

270

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, August 18, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 10, 2011) Natural gas prices fell across the board this week, likely in response to cooling temperatures as well as weak economic news. The Henry Hub spot price fell 17 cents from $4.26 per million Btu (MMBtu) last Wednesday, August 3, to $4.09 per MMBtu yesterday, August 10. At the New York Mercantile Exchange, the price of the near-month contract (September 2011) fell by $0.087 per MMBtu, from $4.090 last Wednesday to $4.003 yesterday. Working natural gas in storage was 2,783 Bcf as of Friday, August 5, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

271

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 26, 2011) Natural gas spot prices were soft at all domestic pricing points. The Henry Hub price fell 8 cents per million Btu (MMBtu) (about 1.7 percent) for the week ending January 26, to $4.40 per MMBtu. The West Texas Intermediate crude oil spot price settled at $86.15 per barrel ($14.85 per MMBtu), on Wednesday, January 26. This represents a decrease of $4.70 per barrel, or $0.81 per MMBtu, from the previous Wednesday. Working natural gas in storage fell to 2,542 billion cubic feet (Bcf) as of Friday, January 21, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The

272

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIAÂ’s Weekly Natural Gas Storage

273

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2011 at 2:00 P.M. 1, 2011 at 2:00 P.M. Next Release: Thursday, July 28, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 20, 2011) Responding to extremely hot weather this week, natural gas prices moved up at market locations across the lower 48 States. The spot price at the Henry Hub increased 21 cents from $4.43 per million Btu (MMBtu) last Wednesday, July 13, to $4.64 per MMBtu yesterday, July 20. At the New York Mercantile Exchange, the price of the near-month futures contract (August 2011) increased from $4.403 per MMBtu to $4.500 per MMBtu. Working natural gas in storage rose to 2,671 billion cubic feet (Bcf) as of Friday, July 15, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

274

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, March 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 9, 2011) Natural gas spot prices remained soft at nearly all domestic pricing points. The Henry Hub price rose an insignificant 2 cents per million Btu (MMBtu) (0.5 percent) for the week ending March 9, to $3.81 per MMBtu. Working natural gas in storage fell to 1,674 billion cubic feet (Bcf) as of Friday, March 4, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 71 Bcf, with storage volumes positioned 32 Bcf above year-ago levels. At the New York Mercantile Exchange (NYMEX), the April 2011 natural

275

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, March 4, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 24, 2010) Natural gas prices declined across the board, continuing a downward trend from the previous week. The Henry Hub natural gas spot price closed at $4.91 per million Btu (MMBtu) on Wednesday, February 24, a decline of about 10 percent from $5.47 per MMBtu on February 17. At the New York Mercantile Exchange (NYMEX), the futures contract for March 2010 delivery, which expired yesterday, fell 11 percent on the week, from $5.386 per MMBtu to $4.816 per MMBtu. With an implied net withdrawal of 172 billion cubic feet (Bcf), working gas in storage decreased to 1,853 Bcf as of Friday, February 19,

276

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

277

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2011 at 2:00 P.M. 8, 2011 at 2:00 P.M. Next Release: Thursday, May 5, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 27, 2011) Mild temperatures coupled with continued strong domestic production resulted in natural gas cash market prices dropping modestly at nearly all domestic pricing points over the week. The lone exception was the Henry Hub price which rose a token 2 cents per million Btu (MMBtu) (0.5 percent) to $4.35 per MMBtu on April 27. Working natural gas in storage rose to 1,685 billion cubic feet (Bcf) as of Friday, April 22, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 31 Bcf, with storage volumes positioned

278

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1 at 2:00 P.M. 1 at 2:00 P.M. Next Release: Thursday, November 17, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 9, 2011) Continuing its recent trend of languishing below the $4 per million Btu (MMBtu) mark, the Henry Hub natural gas spot price oscillated this week, and posted an overall net increase of 16 cents, from $3.39 per MMBtu last Wednesday, November 2, to $3.55 per MMBtu yesterday, November 9. At the New York Mercantile Exchange, the price of the near-month (December 2011) natural gas futures contract fell from $3.749 per MMBtu last Wednesday to $3.652 per MMBtu yesterday. Working natural gas in storage rose to 3,831 billion cubic feet (Bcf) as of Friday, November 4, according to EIAÂ’s Weekly Natural Gas

279

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, March 3, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 23, 2011) Natural gas spot prices were soft again at nearly all domestic pricing points. The Henry Hub price fell 10 cents per million Btu (MMBtu) (2.5 percent) for the week ending February 23, to $3.83 per MMBtu. Working natural gas in storage fell to 1,830 billion cubic feet (Bcf) as of Friday, February 18, according to the Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied draw for the week was 81 Bcf, with storage volumes shifting to 48 Bcf below year-ago levels. At the New York Mercantile Exchange (NYMEX), the March 2011 natural

280

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, March 10, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 2, 2011) Natural gas prices showed continued relative weakness during the report week. The spot price at the Henry Hub fell from $3.83 per million Btu (MMBtu) on February 23 to $3.79 per MMBtu on March 2. At the New York Mercantile Exchange (NYMEX), the March 2011 futures contract expired at $3.793 per MMBtu, having declined about 12 percent during its tenure as the near-month contract. Working natural gas in storage fell to 1,745 Bcf as of Friday, February 25, according to EIAÂ’s Weekly Natural Gas Storage Report. The spot price of the West Texas Intermediate (WTI) crude oil

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIAÂ’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

282

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5 to Wednesday, December 12) 5 to Wednesday, December 12) Released: December 13 Next release: December 20, 2007 · Natural gas spot and futures prices increased this report week (Wednesday to Wednesday, December 5-12), as cooler temperatures in much of the country increased demand for space heating. On the week the Henry Hub spot price increased $0.18 per million Btu (MMBtu) to $7.22. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for January delivery rose about 22 cents per MMBtu on the week to $7.408. · Working gas in storage is well above the 5-year average for this time year, indicating a healthy supply picture as the winter heating season progress. As of Friday, December 7, working gas in storage was 3,294 Bcf, which is 8.5 percent above the 5-year (2002-2006) average.

283

Gas-phase chemical dynamics  

SciTech Connect

Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.

Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

284

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

285

How NIF Works  

SciTech Connect

The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

2009-07-30T23:59:59.000Z

286

How NIF Works  

ScienceCinema (OSTI)

The National Ignition Facility, located at Lawrence Livermore National Laboratory, is the world's largest laser system... 192 huge laser beams in a massive building, all focused down at the last moment at a 2 millimeter ball containing frozen hydrogen gas. The goal is to achieve fusion... getting more energy out than was used to create it. It's never been done before under controlled conditions, just in nuclear weapons and in stars. We expect to do it within the next 2-3 years. The purpose is threefold: to create an almost limitless supply of safe, carbon-free, proliferation-free electricity; examine new regimes of astrophysics as well as basic science; and study the inner-workings of the U.S. stockpile of nuclear weapons to ensure they remain safe, secure and reliable without the need for underground testing. More information about NIF can be found at:

None

2010-09-01T23:59:59.000Z

287

Optimization of the gas production rate by marginal cost analysis: Influence of the sales gas pressure, gas price and duration of gas sales contract  

Science Journals Connector (OSTI)

Abstract The development of a gas field requires accurate planning, but the gas production rate is one of the main challenges in determining the feasibility of a gas project. An optimum gas production rate is determined not only by the gas reserve and reservoir characteristics but also by the consumer's requirements of the sales gas pressure, duration of the gas sales contract and gas price. This paper presents a gas production optimization model based on the marginal cost approach to maximize economic profit using a case study in the Donggi gas field. The results reveal that increasing the sales gas pressure and gas price raises the optimum gas production rate and increases the maximum profit; meanwhile, increasing the duration of a gas sales contract will reduce the optimum gas production rate and reduce or increase the maximum profit depending on the gas reserve and reservoir characteristics. This work clearly shows the relationship between the user's requirements and optimum gas production rate, which is an important piece of information for negotiating the gas price and planning production.

Suprapto Soemardan; Widodo Wahyu Purwanto; Arsegianto

2014-01-01T23:59:59.000Z

288

Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets  

E-Print Network (OSTI)

Hale of the Energy Information Administration for supporting and reviewing this work. Keywords: Natural Gas

Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

2005-01-01T23:59:59.000Z

289

(Gas discharges and applications)  

SciTech Connect

The traveler attended the Ninth International Conference on Gas Discharges and Their Applications, which was held in Venice, Italy, on September 19--23, 1988; presented two papers, (1) Ion Chemistry in SF{sub 6} Corona'' and (2) Production of S{sub 2}F{sub 10} by SF{sub 6} Spark Discharge''; and participated in numerous discussions with conference participants on gas discharges related to his work on SF{sub 6}. The traveler visited the Centre de Physique Atomique at the University Paul Sabatier in Toulouse, France, to discuss with Dr. J. Casanovas his work on SF{sub 6} decomposition. Following that visit, the traveler visited the Laboratoire de Photoelectricite at the University of Dijon to discuss with Dr. J.-P. Goudonnet his work on surface studies and on the use of tunneling electron spectroscopy for the chemical analysis of surfaces.

Sauers, I.

1988-10-04T23:59:59.000Z

290

DOE - Office of Legacy Management -- Morgantown Ordnance Works...  

Office of Legacy Management (LM)

(NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Morgantown Ordnance Works...

291

NREL: Climate Neutral Research Campuses - Flexible Work Strategies  

NLE Websites -- All DOE Office Websites (Extended Search)

These strategies can be used to reduce energy consumption and greenhouse gas (GHG) emissions. The following outlines conditions when and where flexible work schedules...

292

Power control system for a hot gas engine  

DOE Patents (OSTI)

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

293

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

294

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

295

How Minds Work Working & Episodic Memory  

E-Print Network (OSTI)

1 How Minds Work Working & Episodic Memory Stan Franklin Computer Science Division & Institute for Intelligent Systems The University of Memphis #12;HMW: Working and Episodic Memory 2 Memory Systems #12;HMW: Working and Episodic Memory 3 #12;HMW: Working and Episodic Memory 4 Percept · Result of filtering

Memphis, University of

296

The Gas Flow from the Gas Attenuator to the Beam Line  

SciTech Connect

The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

Ryutov, D.D.

2010-12-03T23:59:59.000Z

297

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Oil Wells (MMcf)","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)","Missouri Natural...

298

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 at 2:00 P.M. 3, 2009 at 2:00 P.M. Next Release: Thursday, November 19, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 11, 2009) With little impact on production in the Gulf of Mexico from Hurricane Ida and moderate temperatures in many parts of the country, natural gas spot prices decreased sharply this report week (November 4-11). The Henry Hub spot price decreased by $0.90 to $3.59 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also moved lower as the threat of an interruption in supplies from the hurricane passed. The futures contract for December delivery decreased by $0.22 on the report week to $4.503 per MMBtu. Working gas in underground storage as of last Friday (November 6) is

299

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

, 2010 at 2:00 P.M. , 2010 at 2:00 P.M. Next Release: Thursday, April 8, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 31, 2010) Natural gas spot prices fell almost across the board, as mild weather moved into most areas in the lower 48 States. The Henry Hub price fell by 9 cents, from $4.02 per million Btu (MMBtu) on Wednesday, March 24, to $3.93 per MMBtu yesterday (March 31). At the New York Mercantile Exchange (NYMEX), the April 2010 contract expired on Monday, March 29, at $3.842 per MMBtu. The May 2010 contract ended trading yesterday at $3.869 per MMBtu, a decline of about 29 cents from its closing price of $4.154 per MMBtu on March 24. Inventories of working natural gas in storage rose to 1,638 billion

300

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, July 7, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 29, 2011) Nearly all pricing points were down slightly for the week on light weather load despite an end-week rally anticipating warmer weather for the approaching July 4th holiday weekend. The Henry Hub price decreased 2 cents per million Btu (MMBtu) over the week (0.5 percent) to close at $4.40 per MMBtu on June 29. Working natural gas in storage rose last week to 2,432 billion cubic feet (Bcf) as of Friday, June 24, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 78 Bcf, leaving storage volumes

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2011 at 2:00 P.M. 5, 2011 at 2:00 P.M. Next Release: Thursday, September 22, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 14, 2011) A touch of autumn in the air combined with hopes for the eventual return of winter was likely the catalyst enabling natural gas prices to recapture the $4 mark this week despite an environment of negative consumption fundamentals and continued strong production. At the New York Mercantile Exchange (NYMEX), the October 2011 natural gas contract advanced 9.9 cents per million Btu (MMBtu) to close at $4.039 per MMBtu over the week. The Henry Hub price oscillated in a similar but narrow range before closing up 5 cents for the week at $4.01 per MMBtu on September 14. Working natural gas in storage rose last week to 3,112 billion cubic

302

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, May 26, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, May 18, 2011) The threat of shut-in production arising from lower Mississippi River flooding likely sent prices up temporarily at nearly all domestic pricing points over the week but the gains failed to stick. The Henry Hub price lost a modest 7 cents per million Btu (MMBtu) (1.9 percent) to close at $4.15 per MMBtu on May 18. Working natural gas in storage rose to 1,919 billion cubic feet (Bcf) as of Friday, May 13, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 92 Bcf, leaving storage volumes

303

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2009 3, 2009 Next Release: July 30, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 22, 2009) Natural gas spot prices rose this report week, as prices for energy products generally increased and the economic outlook improved. During the report week, the Henry Hub spot price increased by $0.12 per million Btu (MMBtu) to $3.49. At the New York Mercantile Exchange (NYMEX), futures prices increased significantly. The price of the futures contract for August delivery closed yesterday, July 22, at $3.793 per MMBtu, more than 50 cents higher than the closing price the previous Wednesday. Working gas in underground storage as of Friday, July 17, is estimated to have been 2,952 billion cubic feet (Bcf), which is 18.4

304

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, June 23, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 15, 2011) The past week was characterized by passing of the earlier weekÂ’s heat wave. The Henry Hub price decreased 31 cents per million Btu (MMBtu) for the week (6.4 percent) to close at $4.52 per MMBtu on June 15. During the midst of the heat wave, working natural gas in storage last week rose to 2,256 billion cubic feet (Bcf) as of Friday, June 10, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 69 Bcf, leaving storage volumes positioned 275 Bcf below year-ago levels.

305

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2010 at 2:00 P.M. 8, 2010 at 2:00 P.M. Next Release: Thursday, December 2, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 17, 2010) Natural gas spot prices fell modestly at nearly all domestic pricing points, likely because expectations for colder weather were slow in materializing and storage levels rose again. The Henry Hub price fell 23 cents (about 6 percent) for the week ending November 17, to $3.77 per million Btu (MMBtu). The West Texas Intermediate crude oil spot price settled at $80.43 per barrel ($13.87 per MMBtu), on Wednesday, November 17. This represents a decrease of $7.34 per barrel, or $1.27 per MMBtu, from the previous Wednesday. Working natural gas in storage set another new all-time record

306

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2009 0, 2009 Next Release: August 27, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, August 19, 2009) Natural gas spot prices declined this report week (August 12-19), with the largest decreases generally occurring in the western half of the country. The Henry Hub spot price decreased by $0.34 to $3.02 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased as supplies continued to be viewed as more than adequate to address near-term demand, including heating-related demand increases this winter. The futures contract for September delivery decreased by $0.36 on the week to $3.12 per MMBtu. Working gas in underground storage as of last Friday is estimated to

307

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, October 13, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 5, 2011) Like autumn leaves floating down to earth, natural gas prices dropped decidedly from their $4 support branch this past week. In a whirlwind of generally unsupportive market fundamentals, the Henry Hub price closed down 25 cents for the week to $3.63 per million British thermal units (MMBtu) on October 5. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract dropped nearly 23 cents per MMBtu to close at $3.570 per MMBtu over the week. Working natural gas in storage rose last week to 3,409 billion cubic feet (Bcf) as of Friday, September 30, according to the U.S. Energy

308

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2009 at 2:00 P.M. 5, 2009 at 2:00 P.M. Next Release: October 22, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 14, 2009) Natural gas spot prices increased this report week (October 7-14) as a cold-air mass moved over major consuming areas of the country, including the populous Northeast. The Henry Hub spot price increased by $0.12 to $3.82 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices decreased significantly after increasing for 5 consecutive weeks. The futures contract for November delivery decreased by $0.47 per MMBtu on the week to $4.436. Working gas in underground storage as of last Friday (October 9) is estimated to have been 3,716 billion cubic feet (Bcf), a record high

309

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2010 at 2:00 P.M. 7, 2010 at 2:00 P.M. Next Release: Thursday, October 14, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 6, 2010) Natural gas spot prices fell at most pricing point locations across the board in the lower 48 States as demand fell. The price at the Henry Hub fell 25 cents, or about 7 percent, since last Wednesday, September 29, from $3.81 per million Btu (MMBtu) to $3.56 per MMBtu. The West Texas Intermediate crude oil spot price settled at $83.21 per barrel, or $14.35 per MMBtu, on Wednesday, October 6. This represents an increase of $5.36 per barrel, or $0.92 per MMBtu, from the previous Wednesday. Working natural gas in storage increased to 3,499 billion cubic feet

310

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, June 9, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 1, 2011) The past week was marked by two distinct trading markets — “before” and “after” the Memorial Day holiday. Cash markets were listless going into the holiday weekend but escalated Tuesday following an early heat wave that drifted into the East. The Henry Hub price advanced 27 cents per million Btu (MMBtu) for the week (6.2 percent) to close at $4.63 per MMBtu on June 1. Just prior to the heat wave, working natural gas in storage last week rose to 2,107 billion cubic feet (Bcf) as of Friday, May 27, according to the U.S. Energy Information Administration’s (EIA) Weekly Natural Gas

311

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

20, 2011 at 2:00 P.M. 20, 2011 at 2:00 P.M. Next Release: Thursday, October 27, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 19, 2011) Natural gas prices posted modest net gains at most market locations across the lower 48 States. The Henry Hub spot price increased from $3.54 per million Btu (MMBtu) last Wednesday, October 12, to $3.58 per MMBtu yesterday, October 19. Intra-week trading showed strong rallies followed by quick retreats. At the New York Mercantile Exchange, the price of the near-month futures contract (November 2011) gained about 10 cents on the week from $3.489 per MMBtu last Wednesday to $3.586 per MMBtu yesterday. Working natural gas in storage rose to 3,624 billion cubic feet (Bcf) as of Friday, October 14, according to EIAÂ’s Weekly Natural Gas

312

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

5, 2010 at 2:00 P.M. 5, 2010 at 2:00 P.M. Next Release: Thursday, July 22, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, July 14, 2010) Natural gas prices moved significantly lower at market locations across the lower 48 States during the report week. The Henry Hub spot price averaged $4.39 per million Btu (MMBtu) in trading yesterday, July 14, decreasing $0.37 compared with the previous Wednesday. At the New York Mercantile Exchange (NYMEX), the price of the futures contract for August delivery at the Henry Hub decreased in 4 out the 5 trading sessions during the report week. The near-month contract settled yesterday at $4.31 per MMBtu, about $0.26 lower than the previous Wednesday. As of Friday, July 9, working gas in underground storage was 2,840

313

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

314

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

315

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

316

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

317

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

318

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

319

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

320

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

322

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

323

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

324

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

325

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

326

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

327

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

328

Gas vesicles.  

Science Journals Connector (OSTI)

...in the suspending water, of concentration...MPa and balances the atmospheric pressure. Note that...versely, liquid water could not form by condensation inside the gas vesicle...presumably surrounded by water on all sides. At...

A E Walsby

1994-03-01T23:59:59.000Z

329

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

330

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on March 29, 2007) 2, 2007 (next release 2:00 p.m. on March 29, 2007) As the bitter cold has evolved to more moderate temperatures, natural gas spot prices have eased through most of the country. During the report week (Wednesday-Wednesday, March 14-21), the Henry Hub spot price declined 4 cents per MMBtu to $6.82. At the New York Mercantile Exchange (NYMEX), prices for futures contracts were slightly higher, as increases Tuesday and yesterday (March 20 and 21) more than offset decreases that occurred in the 3 previous trading days. The futures contract for April delivery, which is the first contract following the current heating season, increased 7.7 cents per MMBtu on the week to $7.160. Relatively high levels of natural gas in working storage and decreasing prices for competing fuels likely contributed to falling natural gas spot prices this week. Working gas in storage as of Friday, March 16, was 1,533 Bcf, which is 18.5 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.17 per barrel on the week to $56.98, or $9.82 per MMBtu.

331

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

16 (next release 2:00 p.m. on February 23, 2006) 16 (next release 2:00 p.m. on February 23, 2006) Winter-like conditions in much of the East this past weekend transitioned to above-normal temperatures, contributing to a further decline in natural gas spot prices this week (Wednesday, February 8 - Wednesday, February 15). On the week the Henry Hub spot price declined 57 cents per MMBtu to $7.31. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant declines. The futures contract for March delivery, which is the last contract for the current heating season, declined 66.9 cents per MMBtu on the week to $7.066. Relatively high levels of natural gas in working storage and falling prices for competing fuels likely contributed to falling natural gas prices this week. Working gas in storage as of Friday, February 10, was 2,266 Bcf, which is 43.9 percent above the 5-year (2001-2005) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $4.90 per barrel on the week to $57.61, or $9.93 per MMBtu.

332

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on July 19, 2007) 2, 2007 (next release 2:00 p.m. on July 19, 2007) Natural gas spot prices increased during this holiday-shortened report week (Thursday-Wednesday, July 5-11) as weather-related demand emerged in response to the hottest temperatures to date this year in the Northeast and Midwest. On the week, the Henry Hub spot price increased 36 cents per MMBtu, or 5.7 percent, to $6.65. At the New York Mercantile Exchange (NYMEX), the story was slightly different with the contract price for August delivery decreasing to $6.600 per MMBtu, which was 1.8 cents lower than last Thursday's (July 5) closing price. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,627 Bcf as of Friday, July 7. This level of working gas in underground storage is 16.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.77 per barrel on the week to $72.58 per barrel. On a Btu basis, the crude oil price is now nearly double the price of natural gas at $12.51 per MMBtu. The relative difference in pricing can have a large effect on demand (mostly in the industrial sector and power plants).

333

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

14, 2007 (next release 2:00 p.m. on June 21, 2007) 14, 2007 (next release 2:00 p.m. on June 21, 2007) Natural gas spot and futures prices decreased this week (Wednesday-Wednesday, June 6-13) as weather-related demand was limited amid close-to-normal temperatures for this time of year. Easing prices also likely resulted in part from reduced supply uncertainty in response to the amount of natural gas in underground storage (mostly for use during the winter heating season but also available for periods of hot weather in the summer). Supplies from international sources have grown considerably this spring, as imports of liquefied natural gas (LNG) have increased markedly even as natural gas supplies from Canada (transported by pipeline) likely have decreased. On the week, the Henry Hub spot price decreased 23 cents per MMBtu, or 2.9 percent, to $7.60. At the New York Mercantile Exchange (NYMEX), the contract for July delivery decreased 47.2 cents per MMBtu on the week to a daily settlement of $7.608 yesterday (June 13). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,255 Bcf as of Friday, June 8, reflecting an implied net injection of 92 Bcf. This level of working gas in underground storage is 19.3 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $0.20 per barrel on the week to $66.17 per barrel, or $11.41 per MMBtu.

334

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

335

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

336

Ground Gas Handbook  

Science Journals Connector (OSTI)

...pathways of least resistance to gas transport, and applications are discussed, such as migrating landfill gas emissions, also from leaking landfill gas collection systems, as well as natural gas and oil-field gas leakage from abandoned production...

Allen W Hatheway

337

E-Print Network 3.0 - active gas handling Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

geopolitics of gas working paper series THE BELARUS CONNECTION: EXPORTING RUSSIAN GAS TO GERMANY... AND POLAND david victor and nadejda makarova victor 12;The Belarus Connection:...

338

Gas Delivered  

Gasoline and Diesel Fuel Update (EIA)

. Average . Average Price of Natural Gas Delivered to Residential Consumers, 1980-1996 Figure 1980 1982 1984 1986 1988 1990 1992 1994 1996 0 2 4 6 8 10 0 40 80 120 160 200 240 280 320 Dollars per Thousand Cubic Feet Dollars per Thousand Cubic Meters Nominal Dollars Constant Dollars Sources: Nominal dollars: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Constant dollars: Prices were converted to 1995 dollars using the chain-type price indexes for Gross Domestic Product (1992 = 1.0) as published by the U. S. Department of Commerce, Bureau of Economic Analysis. Residential: Prices in this publication for the residential sector cover nearly all of the volumes of gas delivered. Commercial and Industrial: Prices for the commercial and industrial sectors are often associated with

339

Gas-dynamic characteristics of a noise and heat insulating jacket on a gas turbine in a gas pumping plant on emergency disconnection of the cooling fans  

Science Journals Connector (OSTI)

The paper discusses the operation of a gas turbine plant (GTP) when the fans in ... NHJ by a fan. The operation of gas-pumping plant involves working with brief (10 ... describing the motion of an ideal thermally...

P. V. Trusov; D. A. Charntsev; I. R. Kats…

2008-09-01T23:59:59.000Z

340

Work Force Retention Work Group Charter  

Energy.gov (U.S. Department of Energy (DOE))

The Work force Retention Work Group is established to support the Department’s critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOE’s national security mission are reaching retirement age.

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 23, 2013 May 23, 2013 Secretary Moniz on Natural Gas and Renewables May 17, 2013 Energy Department Authorizes Second Proposed Facility to Export Liquefied Natural Gas Freeport LNG Terminal on Quintana Island, Texas Authorized to Export Liquefied Natural Gas to Non-Free Trade Agreement Countries May 17, 2013 FE DOCKET NO. 10-161-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE FREEPORT LNG TERMINAL ON QUINTANA ISLAND, TEXAS TO NON-FREE TRADE AGREEMENT NATIONS April 24, 2013 The new hybrid solar-natural gas system from Pacific Northwest National Laboratory (PNNL) works through concentrating solar power, which uses a reflecting surface to concentrate the sun's rays like a magnifying glass. In the case of the new system from PNNL, a mirrored parabolic dish directs sunbeams to a central point, where a device absorbs the solar heat to make syngas.| Photo courtesy of PNNL.

342

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Working gas in storage is estimated to have been about 2,425 billion cubic feet at the end of November, 14% below the previous 5-year average. The current outlook for winter demand and supply suggests that storage is headed for record lows this winter if weather is normal or colder than normal. In the base case, we project that gas storage will fall to about 640 billion cubic feet at the end of the heating season (March 31, 2001). The previous record low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge to the North American gas supply system to maintain flexibility and provide additional gas in preparation for the subsequent winter season.

343

Aspects of seismic reflection prospecting for oil and gas  

Science Journals Connector (OSTI)

......filled with water, oil or gas. Colour graphics work stations are just being introduced...of sea streamers, Oil and Gas J., 70 (48), 102-109...filled with water, oil or gas. Colour graphics work stations are just being introduced......

P. N. S. O'Brien

1983-07-01T23:59:59.000Z

344

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

73,669 73,669 141,300 1.59 221,822 1.12 3 0.10 46,289 0.88 33,988 1.24 31,006 0.98 252,585 1.26 A r k a n s a s Arkansas 51. Summary Statistics for Natural Gas Arkansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,750 1,552 1,607 1,563 1,470 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,500 3,500 3,500 3,988 4,020 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 171,543 166,273 161,967 161,390 182,895 From Oil Wells ........................................... 39,364 38,279 33,446 33,979 41,551 Total.............................................................. 210,906 204,552 195,413 195,369 224,446 Repressuring ................................................

345

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-1,080,240 -1,080,240 201,024 2.27 1,734,887 8.78 133 4.54 76,629 1.46 136,436 4.99 46,152 1.46 460,373 2.30 O k l a h o m a Oklahoma 84. Summary Statistics for Natural Gas Oklahoma, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 13,926 13,289 13,487 13,438 13,074 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 28,902 29,118 29,121 29,733 29,733 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 1,674,405 1,732,997 1,626,858 1,521,857 1,467,695 From Oil Wells ........................................... 342,950 316,945 308,006 289,877 267,192 Total.............................................................. 2,017,356 2,049,942 1,934,864

346

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

7,038,115 7,038,115 3,528,911 39.78 13,646,477 69.09 183 6.24 408,861 7.80 1,461,718 53.49 281,452 8.91 5,681,125 28.40 West South Central West South Central 42. Summary Statistics for Natural Gas West South Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 87,198 84,777 88,034 88,734 62,357 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 92,212 95,288 94,233 102,525 102,864 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 11,599,913 11,749,649 11,959,444 11,824,788 12,116,665 From Oil Wells ........................................... 2,313,831 2,368,395 2,308,634 2,217,752 2,151,247 Total..............................................................

347

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

77,379 77,379 94,481 1.07 81,435 0.41 8 0.27 70,232 1.34 1,836 0.07 40,972 1.30 207,529 1.04 K e n t u c k y Kentucky 65. Summary Statistics for Natural Gas Kentucky, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,084 1,003 969 1,044 983 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 12,483 12,836 13,036 13,311 13,501 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 79,690 86,966 73,081 74,754 81,435 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 79,690 86,966 73,081 74,754 81,435 Repressuring ................................................

348

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,720 0.32 31,767 1.16 29,447 0.93 153,549 0.77 Pacific Noncontiguous Pacific Noncontiguous 45. Summary Statistics for Natural Gas Pacific Noncontiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341

349

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-310,913 -310,913 110,294 1.24 712,796 3.61 2 0.07 85,376 1.63 22,607 0.83 57,229 1.81 275,508 1.38 K a n s a s Kansas 64. Summary Statistics for Natural Gas Kansas, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,681 9,348 9,156 8,571 7,694 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,400 19,472 19,365 22,020 21,388 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 580,572 605,578 628,900 636,582 629,755 From Oil Wells ........................................... 79,169 82,579 85,759 86,807 85,876 Total.............................................................. 659,741 688,157 714,659 723,389 715,631 Repressuring ................................................

350

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

819,046 819,046 347,043 3.91 245,740 1.24 40 1.36 399,522 7.62 32,559 1.19 201,390 6.38 980,555 4.90 M i c h i g a n Michigan 70. Summary Statistics for Natural Gas Michigan, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,223 1,160 1,323 1,294 2,061 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,257 5,500 6,000 5,258 5,826 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 120,287 126,179 136,989 146,320 201,123 From Oil Wells ........................................... 80,192 84,119 91,332 97,547 50,281 Total.............................................................. 200,479 210,299 228,321 243,867 251,404 Repressuring ................................................

351

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

W W y o m i n g -775,410 50,253 0.57 666,036 3.37 14 0.48 13,534 0.26 87 0.00 9,721 0.31 73,609 0.37 Wyoming 98. Summary Statistics for Natural Gas Wyoming, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,826 10,933 10,879 12,166 12,320 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 3,111 3,615 3,942 4,196 4,510 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 751,693 880,596 949,343 988,671 981,115 From Oil Wells ........................................... 285,125 142,006 121,519 111,442 109,434 Total.............................................................. 1,036,817 1,022,602 1,070,862 1,100,113 1,090,549 Repressuring

352

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-67,648 -67,648 75,616 0.85 480,828 2.43 0 0.00 16,179 0.31 31,767 1.16 27,315 0.86 150,877 0.75 A l a s k a Alaska 49. Summary Statistics for Natural Gas Alaska, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 9,638 9,907 9,733 9,497 9,294 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 112 113 104 100 102 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 198,603 190,139 180,639 179,470 183,747 From Oil Wells ........................................... 2,427,110 2,588,202 2,905,261 3,190,433 3,189,837 Total.............................................................. 2,625,713 2,778,341 3,085,900 3,369,904 3,373,584 Repressuring

353

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

628,189 628,189 449,511 5.07 765,699 3.88 100 3.41 528,662 10.09 39,700 1.45 347,721 11.01 1,365,694 6.83 West North Central West North Central 39. Summary Statistics for Natural Gas West North Central, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 10,177 9,873 9,663 9,034 8,156 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 18,569 19,687 19,623 22,277 21,669 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 594,551 626,728 651,594 655,917 648,822 From Oil Wells ........................................... 133,335 135,565 136,468 134,776 133,390 Total.............................................................. 727,886 762,293

354

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,048,760 1,048,760 322,661 3.64 18,131 0.09 54 1.84 403,264 7.69 142,688 5.22 253,075 8.01 1,121,742 5.61 N e w Y o r k New York 80. Summary Statistics for Natural Gas New York, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 329 264 242 197 232 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5,906 5,757 5,884 6,134 6,208 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 22,697 20,587 19,937 17,677 17,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 23,521 21,197 20,476 18,400 18,134 Repressuring ................................................

355

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,554,530 1,554,530 311,229 3.51 3,094,431 15.67 442 15.08 299,923 5.72 105,479 3.86 210,381 6.66 927,454 4.64 Mountain Mountain 43. Summary Statistics for Natural Gas Mountain, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 38,711 38,987 37,366 39,275 38,944 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 30,965 34,975 38,539 38,775 41,236 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 2,352,729 2,723,393 3,046,159 3,131,205 3,166,689 From Oil Wells ........................................... 677,771 535,884 472,397 503,986 505,903 Total.............................................................. 3,030,499 3,259,277 3,518,556

356

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,592,465 1,592,465 716,648 8.08 239,415 1.21 182 6.21 457,792 8.73 334,123 12.23 320,153 10.14 1,828,898 9.14 South Atlantic South Atlantic 40. Summary Statistics for Natural Gas South Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,307 3,811 4,496 4,427 4,729 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 39,412 35,149 41,307 37,822 36,827 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 206,766 208,892 234,058 236,072 233,409 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 214,349 216,903 242,526 243,204 240,115

357

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,999,161 1,999,161 895,529 10.10 287,933 1.46 1,402 47.82 569,235 10.86 338,640 12.39 308,804 9.78 2,113,610 10.57 Pacific Contiguous Pacific Contiguous 44. Summary Statistics for Natural Gas Pacific Contiguous, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 3,896 3,781 3,572 3,508 2,082 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 1,142 1,110 1,280 1,014 996 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 156,635 124,207 117,725 96,329 88,173 From Oil Wells ........................................... 294,800 285,162 282,227 289,430 313,581 Total.............................................................. 451,435 409,370

358

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-122,394 -122,394 49,997 0.56 178,984 0.91 5 0.17 37,390 0.71 205 0.01 28,025 0.89 115,622 0.58 West Virginia West Virginia 96. Summary Statistics for Natural Gas West Virginia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 2,356 2,439 2,565 2,499 2,703 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 38,250 33,716 39,830 36,144 35,148 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... E 182,000 171,024 183,773 186,231 178,984 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. E 182,000 171,024 183,773 186,231 178,984 Repressuring ................................................

359

Gas vesicles.  

Science Journals Connector (OSTI)

...the gas vesicles simply reduce their sinking rates and...remaining suspended in the water column. A microorganism...phenomena as stratification, water- bloom formation, and...the many proteins that make up the phycobilisome (73...flagellate bacteria in natural waters. The natural selection...

A E Walsby

1994-03-01T23:59:59.000Z

360

Gas vesicles.  

Science Journals Connector (OSTI)

...these costs can be compared is in units of energy expenditure per time (joules per second...requires 7.24 x 10-18 kg of Gvp. The energy cost of making this protein, Eg, is...Eg = 2.84 x 101- o J. The rate of energy expenditure in gas vesicle synthesis then...

A E Walsby

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas sensor  

DOE Patents (OSTI)

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

362

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, April 14, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, April 6, 2011) Continuing last weekÂ’s net decline, the Henry Hub price this week fell 8 cents from $4.25 per million Btu (MMBtu) on Wednesday, March 30, to $4.17 per MMBtu on Wednesday, April 6. At the New York Mercantile Exchange, the price of the near-month (May 2011) contract fell from $4.355 per MMBtu to $4.146 per MMBtu. Working natural gas in storage fell to 1,579 billion cubic feet (Bcf) as of Friday, April 1, according to EIAÂ’s Weekly Natural Gas Storage Report.The natural gas rotary rig count, as reported by Baker Hughes Incorporated, rose by 11 to 891. A new study released by EIA estimated technically recoverable shale

363

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) November 18 (No issue Thanksgiving week; next release 2:00 p.m. on December 2) Natural gas spot and futures prices fell for a third consecutive week (Wednesday to Wednesday, November 10-17), as temperatures for most of the nation continued to be moderate to seasonal. At the Henry Hub, the spot price declined 6 cents on the week, for the smallest week-on-week decrease in the nation. Spot gas traded there yesterday (Wednesday, November 17) at $6.06 per MMBtu. Price declines at the majority of market locations ranged from around a dime to nearly 60 cents per MMBtu. On the NYMEX, the price for the near-month natural gas futures contract (for December delivery) fell by almost 40 cents on the week, settling yesterday at $7.283 per MMBtu. EIA reported that working gas inventories in underground storage were 3,321 Bcf as of Friday, November 12, which is 9 percent greater than the previous 5-year average. The spot price for West Texas Intermediate (WTI) crude oil declined for a fourth consecutive week, dropping $1.85 per barrel ($0.32 per MMBtu), or nearly 4 percent, from last Wednesday's level, to trade yesterday at $46.85 per barrel ($8.08 per MMBtu).

364

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25, 2007 (next release 2:00 p.m. on November 1, 2007) 25, 2007 (next release 2:00 p.m. on November 1, 2007) Natural gas spot and futures prices generally decreased this report week (Wednesday to Wednesday, October 17-24), as moderate weather prevailed across much of the Lower 48 States. Although tropical storms entering the Gulf of Mexico production region-evidenced by a system currently moving through the Caribbean-could still disrupt supplies, the passing of at least the most active part of the hurricane season may help explain the price declines. On the week the Henry Hub spot price decreased $1.01 per MMBtu to $6.10. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant decreases. The futures contract for November delivery declined about 49 cents per MMBtu on the week to $6.972. Working gas in storage is well above the 5-year average for this time year, indicating a healthy supply picture ahead of the winter heating season. As of Friday, October 19, working gas in storage was 3,443 Bcf, which is 7.2 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.11 per barrel, ending trading yesterday at $88.30, or $15.22 per MMBtu.

365

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, 2007 to Thursday, January 3, 2008) 26, 2007 to Thursday, January 3, 2008) Released: January 4, 2008 Next release: January 10, 2008 · Natural gas spot and futures prices increased this report week (Wednesday to Thursday, December 26, 2007, to January 3, 2008), as frigid temperatures in much of the country increased demand for space heating. During the report week, the Henry Hub spot price increased $0.90 per million Btu (MMBtu) to $7.84. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for February delivery rose about 51 cents per MMBtu on the week to $7.674. · Working gas in storage is well above the 5-year average for this time year, indicating a ready supply source to meet peak demand as the winter heating season progresses. As of Friday, December 28, working gas in storage was 2,921 Bcf, which is 8.2 percent above the 5-year (2002-2006) average.

366

Liquid Natural Gas  

Science Journals Connector (OSTI)

Liquid Natural Gas ... IN A new technique for storing natural gas at the East Ohio Gas Co. plant, Cleveland, Ohio, the gas is liquefied before passing to the gas holders. ... Natural gas contains moisture and carbon dioxide, both of which liquefy before the natural gas and are somewhat of a nuisance because upon solidification they clog the pipes. ...

W. F. SCHAPHORST

1941-04-25T23:59:59.000Z

367

EIA - Analysis of Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

Prices Prices 2010 Peaks, Plans and (Persnickety) Prices This presentation provides information about EIA's estimates of working gas peak storage capacity, and the development of the natural gas storage industry. Natural gas shale and the need for high deliverability storage are identified as key drivers in natural gas storage capacity development. The presentation also provides estimates of planned storage facilities through 2012. Categories: Prices, Storage (Released, 10/28/2010, ppt format) Natural Gas Year-In-Review 2009 This is a special report that provides an overview of the natural gas industry and markets in 2009 with special focus on the first complete set of supply and disposition data for 2009 from the Energy Information Administration. Topics discussed include natural gas end-use consumption trends, offshore and onshore production, imports and exports of pipeline and liquefied natural gas, and above-average storage inventories. Categories: Prices, Production, Consumption, Imports/Exports & Pipelines, Storage (Released, 7/9/2010, Html format)

368

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

369

NATURAL GAS MARKET ASSESSMENT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

370

,"Missouri Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)","Missouri Natural Gas Price Sold to...

371

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

372

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

requirements Pre-combustion Syngas is concentrated in CO 2combustion carbon capture involves reacting black liquor with oxygen or air to give mainly a syngas

Kong, Lingbo

2014-01-01T23:59:59.000Z

373

Shale gas is natural gas trapped inside  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of...

374

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13, 2011 at 2:00 P.M. 13, 2011 at 2:00 P.M. Next Release: Thursday, October 20, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 12, 2011) Natural gas prices posted net losses at most market locations across the lower 48 States. The Henry Hub spot price fell from $3.63 per million Btu (MMBtu) last Wednesday, October 5, to $3.54 per MMBtu yesterday, October 12. Despite overall decreases, intraweek trading showed some rallies, particularly near the end of the report week. At the New York Mercantile Exchange, the price of the near-month futures contract (November 2011) fell about 8 cents on the week from $3.570 per MMBtu last Wednesday to $3.489 per MMBtu yesterday. Working natural gas in storage rose to 3,521 billion cubic feet

375

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13, to Wednesday, February 20) 13, to Wednesday, February 20) Released: February 21, 2008 Next release: February 28, 2008 Natural gas spot and futures prices increased this report week (February 13-20), as frigid temperatures returned to regions of the country that rely on the fuel for space heating. During the report week, the Henry Hub spot price increased $0.73 per million Btu (MMBtu) to $9.08. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for March delivery rose about 58 cents per MMBtu on the week to $8.965. As of Friday, February 15, working gas in storage was 1,770 Bcf, which is 5.8 percent above the 5-year (2003-2007) average. The spot price for West Texas Intermediate (WTI) crude oil increased $7.58 per barrel, trading yesterday at $100.86 per barrel or $17.39 per MMBtu.

376

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23, 2007 to Thursday, January 30, 2008) 23, 2007 to Thursday, January 30, 2008) Released: January 31, 2008 Next release: February 7, 2008 · Natural gas spot and futures prices increased this report week (Wednesday to Wednesday, January 23-30), as frigid temperatures in much of the country increased demand for space heating. During the report week, the Henry Hub spot price increased $0.33 per million Btu (MMBtu) to $8.17. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered increases. The futures contract for March delivery rose by about 46 cents per MMBtu on the week to $8.045. · As of Friday, January 25, working gas in storage was 2,262 Bcf, which is 3.9 percent above the 5-year (2003-2007) average. For the report week, EIA recorded the largest implied net withdrawal (274 Bcf) in its 14-year database of weekly storage statistics.

377

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, July 14, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 6, 2011) Nearly all pricing points were down overall for the week, some by more than 10 cents per million Btu (MMBtu). The Henry Hub price decreased 6 cents per MMBtu over the week (1.4 percent) to close at $4.34 per MMBtu on July 6. Working natural gas in storage rose last week to 2,527 billion cubic feet (Bcf) as of Friday, July 1, according to the U.S. Energy Information AdministrationÂ’s (EIA) Weekly Natural Gas Storage Report (WNGSR). The implied increase for the week was 95 Bcf, leaving storage volumes positioned 224 Bcf under year-ago levels. At the New York Mercantile Exchange (NYMEX), the August 2011 natural

378

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, September 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, September 8, 2010) Price changes during the week were mixed, but in most areas, these changes were moderate. The Henry Hub price rose slightly from $3.73 per million Btu (MMBtu) on Wednesday, September 1, to $3.81 per MMBtu yesterday. The report week was shortened due to the Labor Day holiday. At the New York Mercantile Exchange, the price of the October 2010 futures contract rose about 5 cents, from $3.762 per MMBtu on September 1 to $3.814 per MMBtu on September 8. Working natural gas in storage as of Friday, September 3, was 3,164 Bcf, following an implied net injection of 58 Bcf, according to EIAÂ’s

379

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Thursday, March 11, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 3, 2010) Warmer weather moved into major population centers this report week, limiting demand related to space heating for much of the country. Prices declined, with the biggest decreases occurring at markets in the Rocky Mountains and the Midcontinent. During the report week, the Henry Hub spot price decreased $0.15 to $4.76 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also decreased. The futures contract for April delivery decreased by $0.10 on the week to $4.76 per MMBtu. As of Friday, February 26, working gas in underground storage was

380

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, August 11, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, August 3, 2011) Nearly all pricing points were down modestly for the week following passage of the heat wave that had earlier gripped most of the country. The Henry Hub price decreased 20 cents per million Btu (MMBtu) over the week (down 4.5 percent) to close at $4.26 per MMBtu on August 3. At the New York Mercantile Exchange (NYMEX), the downward price response was somewhat more pronounced (down 5.3 percent) with the September 2011 natural gas contract losing ground over the week, closing at $4.090 per MMBtu on Wednesday. Working natural gas in storage rose last week to 2,758 billion cubic feet (Bcf) as of Friday, July 29, according to the U.S. Energy Information

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2011 at 2:00 P.M. 4, 2011 at 2:00 P.M. Next Release: Thursday, July 21, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, July 13, 2011) Nearly all pricing points were up somewhat for the week on a heat wave that affected nearly half the countryÂ’s population according to national news reports. Despite the record heat, the Henry Hub price increased a modest 9 cents per million Btu (MMBtu) over the week (2.0 percent) to close at $4.43 per MMBtu on July 13. At the New York Mercantile Exchange (NYMEX), the price response was more robust (up 4.4 percent) with the August 2011 natural gas contract price gaining ground over the week, closing at $4.403 per MMBtu on Wednesday. Working natural gas in storage rose last week to 2,611 billion cubic

382

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2010 at 2:00 P.M. 1, 2010 at 2:00 P.M. Next Release: Thursday, January 28, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, January 20, 2010) A reprieve from the extreme cold in much of the country during this report week limited space-heating demand, resulting in price declines. The biggest decreases occurred in the Northeast. During the report week (January 13-20), the Henry Hub spot price decreased $0.07 to $5.54 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also decreased. The futures contract for February delivery decreased by $0.24 on the week to $5.496 per MMBtu. As of Friday, January 15, working gas in underground storage was 2,607 billion cubic feet (Bcf), which is 0.2 percent below the 5-year

383

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, February 24, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 16, 2011) A reprieve from extreme cold in much of the country this week limited space-heating demand, contributing to price declines. The biggest price decreases occurred in the Northeast. During the report week (February 9-16), the Henry Hub spot price decreased $0.29 to $3.93 per million Btu (MMBtu). At the New York Mercantile Exchange (NYMEX), futures prices also decreased. The futures contract for March delivery decreased by $0.12 on the week to $3.92 per MMBtu. As of Friday, February 11, working gas in underground storage was 1,911 billion cubic feet (Bcf), which is 6.3 percent below the 5-year

384

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, November 10, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 2, 2011) The previous report week's increasing prices gave way to relatively consistent declines across a large part of the country over this report week. The Henry Hub spot price showed a slight increase over the weekend, but closed down 26 cents for the week to $3.39 per million British thermal units (MMBtu) on November 2. At the New York Mercantile Exchange (NYMEX), the higher valued December 2011 natural gas contract moved into position as the near-month contract and declined by 2.6 cents per MMBtu to close the week at $3.749 per MMBtu. Working natural gas in storage rose last week to 3794 billion cubic

385

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

4, 2010 at 2:00 P.M. 4, 2010 at 2:00 P.M. Next Release: Wednesday, November 10, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, November 3, 2010) Price changes were mixed this week, with much regional variation across the country. At the Henry Hub in Erath, Louisiana, prices posted a net decline on the week of 2 cents, falling from $3.37 per million Btu (MMBtu) on Wednesday, October 27, to $3.35 per MMBtu on Wednesday, November 3. At the New York Mercantile Exchange (NYMEX), the December 2010 futures contract (which became the near-month contract on October 28) rose $0.073 from $3.763 per MMBtu last Wednesday to $3.836 yesterday. Working natural gas in storage increased to 3,821 billion cubic feet

386

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, November 3, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 26, 2011) The weathermanÂ’s promise for chillier temperatures later this week and mention of the word "snow" in some forecasts was the likely catalyst propelling prices upwards this week. In an environment of generally supportive market fundamentals, the Henry Hub price closed up 7 cents for the week to $3.65 per million British thermal units (MMBtu) on October 26. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract rose just under half a cent per MMBtu for the week to close at $3.590 per MMBtu. Working natural gas in storage rose last week to 3,716 billion cubic

387

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

25, 2001 25, 2001 The industry stock build that began in April has continued into June as the latest weekly estimate indicates that more than 100 Bcf was again added to working gas storage levels. At the same time that natural gas stocks have been increasing, prices have been generally trending down. Prices at many major spot markets moved down most days last week and ended the week between 20 and 30 cents per MMBtu below Tuesday's prices. On the NYMEX futures market, the near-month (July) contract also ended the week down 25 cents from Tuesday's high of $3.981. Much of the country continued to enjoy moderate temperatures during last week, which saw the first day of summer (June 21) prices (See Temperature Map) (See Deviation from Normal Temperatures Map).

388

Gas Chromatography  

Science Journals Connector (OSTI)

Researchers from the University of Missouri and ICx Nomadics have reported on the use of a optofluidic ring resonator (OFRR) sensor for on-column detection ?. ... Although substantial differences were noted between fresh and aged (or oxidized) oils, many of the compounds in the oxidized oil went unidentified due to lack of library mass spectral data. ... A high resolution MEMS based gas chromatography column for the analysis of benzene and toluene gaseous mixtures ...

Frank L. Dorman; Joshua J. Whiting; Jack W. Cochran; Jorge Gardea-Torresdey

2010-05-26T23:59:59.000Z

389

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

SciTech Connect

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27T23:59:59.000Z

390

OSCARS Collaborative Work  

NLE Websites -- All DOE Office Websites (Extended Search)

OSCARS Collaborative Work Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers...

391

How It Works  

NLE Websites -- All DOE Office Websites (Extended Search)

How It Works Engineering Services The Network OSCARS How It Works Who's Using OSCARS? OSCARS and Future Tech OSCARS Standard and Open Grid Forum OSCARS Developers Community Read...

392

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2007 (next release 2:00 p.m. on May 24, 2007) 7, 2007 (next release 2:00 p.m. on May 24, 2007) Natural gas spot and futures prices increased slightly this week (Wednesday-Wednesday, May 9-16), despite the usual lull in demand during this shoulder period between the winter heating and summer cooling seasons. The upward price trend likely resulted from a variety of factors, including rising prices for competing petroleum products (as evidenced by an increase in the underlying crude oil price). Additionally, concerns over current and future supplies do not appear to have eased. The official start of the hurricane season is imminent, and the first named tropical storm appeared this week. However, imports of liquefied natural gas (LNG) have increased markedly in the past few months. On the week, the Henry Hub spot price increased 16 cents per MMBtu, or 2 percent, to $7.62. At the New York Mercantile Exchange (NYMEX), the contract for June delivery increased 17.0 cents per MMBtu on the week to a daily settlement of $7.890 yesterday (May 16). EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 1,842 Bcf as of Friday, May 11, reflecting an implied net injection of 95 Bcf. This level of working gas in underground storage is 20.6 percent above the 5-year average inventory for this time of year. The spot price for West Texas Intermediate (WTI) crude oil increased $1.03 per barrel on the week to $62.57 per barrel, or $10.79 per MMBtu.

393

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2007 (next release 2:00 p.m. on August 9, 2007) 2, 2007 (next release 2:00 p.m. on August 9, 2007) Natural gas spot prices increased this week (Wednesday-Wednesday, July 25-August 1) as tropical storm activity increased and weather-related demand returned along with normal summertime heat in large market areas in the East. On the week, the Henry Hub spot price increased 62 cents per MMBtu, or 11.1 percent, to $6.19. At the New York Mercantile Exchange (NYMEX), the futures contract for August delivery expired last Friday (July 27) at $6.11 per MMBtu. Although the price of the expiring contract in the last couple days of trading rose slightly, the expiration price was still the second lowest of the year (the January 2007 contract expired at $5.838). Taking over as the near-month contract, the September 2007 contract increased in price by $0.29 per MMBtu on the week to $6.352. EIA's Weekly Natural Gas Storage Report today reported natural gas storage supplies of 2,840 Bcf as of Friday, July 27. This level of working gas in underground storage exceeds the maximum level of the previous 5 years. The spot price for West Texas Intermediate (WTI) crude oil increased $0.75 per barrel on the week to $76.49 per barrel. On a Btu basis, the crude oil price is now more than double the price of natural gas at $13.19 per MMBtu.

394

Gas Sampling Considerations  

Science Journals Connector (OSTI)

Gas sampling is carried out to measure the quality of a gas. Gas samples are sometimes acquired by in situ observation within the main gas body by using remote or visual observation for specific properties. A mor...

Alvin Lieberman

1992-01-01T23:59:59.000Z

395

Georgia Tech Dangerous Gas  

E-Print Network (OSTI)

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

396

Natural gas dehydration by desiccant materials  

Science Journals Connector (OSTI)

Water vapor in a natural gas stream can result in line plugging due to hydrate formation, reduction of line capacity due to collection of free water in the line, and increased risk of damage to the pipeline due to the corrosive effects of water. Therefore, water vapor must be removed from natural gas to prevent hydrate formation and corrosion from condensed water. Gas dehydration is the process of removing water vapor from a gas stream to lower the temperature at which water will condense from the stream; this temperature is called the “dew point” of the gas. Molecular sieves are considered as one of the most important materials that are used as desiccant materials in industrial natural gas dehydration. This work shows a study of natural gas dehydration using 3A molecular sieve as a type of solid desiccant materials, the scope of this work was to build up a pilot scale unit for a natural gas dehydration as simulation of actual existing plant for Egyptian Western Desert Gas Company (WDGC). The effect of different operating conditions (water vapor concentration and gas flow rate) on dehydration of natural gas was studied. The experimental setup consists of cylinder filled with 3A molecular sieve to form a fixed bed, then pass through this bed natural gas with different water vapor concentration, The experimental setup is fitted with facilities to control bed pressure, flow rate, measure water vapor concentration and bed temperature, a gas heater was used to activate molecular sieve bed. Increasing water vapor concentration in inlet feed gas leads to a marked decrease in dehydration efficiency. As expected, a higher inlet flow rate of natural gas decrease dehydration efficiency. Increasing feed pressure leads to higher dehydration efficiency.

Hassan A.A. Farag; Mustafa Mohamed Ezzat; Hoda Amer; Adel William Nashed

2011-01-01T23:59:59.000Z

397

Market Digest: Natural Gas  

Reports and Publications (EIA)

The Energy Information Administration's Natural Gas Market Digest provides information and analyses on all aspects of natural gas markets.

2014-01-01T23:59:59.000Z

398

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

19 19 Notes: Working gas in storage is estimated to have been below 1,800 billion cubic feet at the end of December, more than 20% below the previous 5-year average. The estimated end-year level is the lowest for the period of time that EIA has records. The current outlook for winter demand and supply suggests that storage is likely to remain very low this winter. In the base case, we project that gas storage will fall to about 470 billion cubic feet at the end of the heating season (March 31, 2001). The previous 30-year observed low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge to the North American gas supply system to maintain flexibility and provide

399

Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 25, 2013 March 25, 2013 Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Data from Alaska Test Could Help Advance Methane Hydrate R&D Methane Hydrates present an enormous energy resource. The Energy Department is working to advance technologies and reap the possible benefits for a more secure energy future. March 22, 2013 ARPA-E Announces $40 Million for Research Projects to Develop Cleaner and Cheaper Transportation Choices for Consumers Two New ARPA-E Programs Will Engage Nation's Brightest Scientists, Engineers and Entrepreneurs in Research Competition to Improve Vehicle Manufacturing Techniques and Natural Gas Conversion January 10, 2013 Today shale gas accounts for about 25 percent of our natural gas production. And experts believe this abundant supply will mean lower energy costs for millions of families; fewer greenhouse gas emissions; and more American jobs. | Photo courtesy of the EIA.

400

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gas Chromatography  

Science Journals Connector (OSTI)

He received his B.S. degree in 1970 from Rhodes College in Memphis, TN, his M.S. degree in 1973 from the University of Missouri, Columbia, MO, and his Ph.D. degree in 1975 from Dalhousie University, Halifax, Nova Scotia, Canada. ... A review (with 145 references) on the role of carrier gases on the separation process (A4) demonstrates that carrier gas interactions are integral to the chromatographic process. ... In another report, activity coefficients for refrigerants were evaluated with a polyol ester oil stationary phase (C22). ...

Gary A. Eiceman; Herbert H. Hill, Jr.; Jorge Gardea-Torresdey

2000-04-25T23:59:59.000Z

402

Underground Working Natural Gas in Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 2011-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013

403

Underground Working Natural Gas in Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 1,857,570 2,270,934 2,642,060 2,936,813 3,210,598 3,564,920 1973-2013 Alaska 14,007 15,277 16,187 17,087 18,569 20,455 2013-2013 Lower 48 States 1,843,563 2,255,657 2,625,874 2,919,726 3,192,029 3,544,465 2011-2013 Alabama 20,405 20,908 20,110 20,532 19,968 21,262 1995-2013 Arkansas 1,486 1,928 2,330 2,735 3,168 3,372 1990-2013 California 255,453 287,757 309,448 326,906 329,024 338,271 1990-2013 Colorado 15,625 19,489 25,833 32,642 40,240 46,136 1990-2013 Illinois 50,160 75,951 110,815 142,938 177,700 218,245 1990-2013

404

NC-JRA-004_Compressed_Gas_Work  

NLE Websites -- All DOE Office Websites (Extended Search)

to highly toxic gases Vented cabinets used for highly toxic gases, dedicated storage bunker Y 1 2 5 2 20 NC Job Risk Assessment Bnlnt2cfn docsESSH&QJRAs - FRAs2011...

405

AEO2014 Oil and Gas Working Group Meeting Summary  

U.S. Energy Information Administration (EIA) Indexed Site

competitiveness. Page 8 of 9 22) What is the distance of the Great Bear tight oil well test area from TAPS? EIA response: One well is off the Dalton highway, the play ranges up to...

406

First AEO2015 Oil and Gas Working Group Meeting Summary  

U.S. Energy Information Administration (EIA) Indexed Site

(EIA) Laura Singer (EIA) Michael Schaal (EIA) John Staub (EIA) Peri Ulrey (NGSA) Rob Smith (DOE) Theodore Pirog (Exxon-Mobil) David Manowitz (EIA) Chetha Phang (EIA) Phyllis...

407

ConocoPhillips Gas Hydrate Production Test  

SciTech Connect

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

2013-06-30T23:59:59.000Z

408

The Compelling Case for Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the natural gas vehicle (NGV) market, the benefits of NGVs, the growing selection of NGVs, and more.

409

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

410

Quantitative dynamic analysis of gas desorption contribution to production in shale gas reservoirs  

Science Journals Connector (OSTI)

Abstract Unlike in conventional gas reservoirs, gas in shale reservoirs is stored mainly as free gas and adsorbed gas, and a small amount of dissolved gas. Well production from shale gas reservoirs usually exhibits sharply decline trend in the early period of production and then turns to long-term stable production at a relatively low rate, for which gas desorption contribution has been considered as a possible explanation. This study aims at providing an accurate evaluation of the contribution from gas desorption to dynamic production. Through incorporation of artificial component subdivision in a numerical simulator, the production contributions of the free and adsorbed gas can be obtained separately. This analysis approach is validated firstly and then applied to two case studies based on conceptual models of Barnett and Antrim Shale. The results show that desorbed gas dominates the production in Antrim Shale, while it only plays a small role in the production in Barnett Shale. The impact of permeability and initial gas saturation are also analyzed. In previous studies, numerical and analytical simulators were used to investigate the difference between the production performances with or without desorption, attributing the production increase to gas desorption. However, our study shows this treatment overestimates the contribution from gas desorption. This work provides a simple but accurate method for the dynamic analysis of desorption contribution to total production, contributing to reservoir resource assessment, the understanding of production mechanisms, and shale gas production simulation.

Tingyun Yang; Xiang Li; Dongxiao Zhang

2014-01-01T23:59:59.000Z

411

Semantic technology in the oil and gas drilling domain.  

E-Print Network (OSTI)

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges… (more)

Overĺ, Lars

2010-01-01T23:59:59.000Z

412

Efficient Monte Carlo Simulations of Gas Molecules Inside Porous...  

NLE Websites -- All DOE Office Websites (Extended Search)

work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas molecules inside host zeolite structures used as a test system. The reciprocal...

413

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric...

414

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on August 26) 9 (next release 2:00 p.m. on August 26) Higher crude oil prices this week (Wednesday-Wednesday, August 11-18) failed to offset the downward pressure on natural gas prices from unseasonably cool weather and associated lower electric power demand. Natural gas spot prices decreased 17 to 44 cents per MMBtu at most trading locations in the Lower 48 States since Wednesday, August 11. On the week, the Henry Hub spot price decreased 29 cents to $5.35 per MMBtu. The NYMEX futures contract for September delivery dropped just over 23 cents per MMBtu to a close of $5.382 on Wednesday, August 18. Working gas in storage as of Friday, August 13, increased to 2,530 Bcf, which is 5.7 percent above the 5-year (1999-2003) average. The spot price for West Texas Intermediate (WTI) crude oil increased $2.64 per barrel on the week to $47.36, or $8.17 per MMBtu.

415

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

10 (next release 2:00 p.m. on February 17) 10 (next release 2:00 p.m. on February 17) Natural gas spot and futures prices have generally decreased for the week (Wednesday-Wednesday, February 2-9). The Henry Hub natural gas spot price fell 18 cents, or about 3 percent, while prices at most other regional markets ended the week with decreases of between 2 and 42 cents per MMBtu. The price of the NYMEX futures contract for March delivery at the Henry Hub decreased $0.211 per MMBtu, or slightly over 3 percent, settling yesterday (February 9) at $6.165 per MMBtu. The Energy Information Administration (EIA) reported working gas in underground storage of 1,906 Bcf, which reflects an implied net decrease of 176 Bcf. West Texas Intermediate crude oil on the spot market fell $1.20 per barrel, or about $0.21 per MMBtu, since last Wednesday (February 2), ending trading yesterday at $45.45 per barrel, or $7.84 per MMBtu.

416

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

29, 2007 (next release 2:00 p.m. on December 6, 2007) 29, 2007 (next release 2:00 p.m. on December 6, 2007) Since Wednesday, November 21, natural gas spot prices increased at all markets in the Lower 48 States. Prices at the Henry Hub rose 83 cents per MMBtu, or 12 percent, since Wednesday to $7.51 per MMBtu. At the NYMEX, the futures contract for December delivery at the Henry Hub expired yesterday (November 28) at $7.203 per MMBtu, falling 35 cents or 5 percent since Wednesday, November 21. Natural gas in storage was 3,528 Bcf as of November 23, which is 9 percent above the 5-year average (2002-2006), marking the fifth consecutive week that working gas stocks have exceeded 3,500 Bcf. The spot price for West Texas Intermediate (WTI) crude oil decreased $7.86 per barrel on the week (Wednesday-Wednesday) to $90.71 per barrel or $15.64 per MMBtu.

417

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2007 (next release 2:00 p.m. on November 8, 2007) 1, 2007 (next release 2:00 p.m. on November 8, 2007) Since Wednesday, October 24, natural gas spot prices increased at virtually all markets in the Lower 48 States. Prices at the Henry Hub rose $1.16 per MMBtu, or 19 percent, since Wednesday to $7.26 per MMBtu. At the NYMEX, the futures contract for December delivery at the Henry Hub settled yesterday (October 31) at $8.33 per MMBtu, rising 67 cents or 8 percent since Wednesday, October 24. Natural gas in storage was 3,509 Bcf as of October 26, which is 8.4 percent above the 5-year average (2002-2006), marking the first time working gas stocks exceeded 3,500 Bcf, and breaking a 17-year-old record. The spot price for West Texas Intermediate (WTI) crude oil increased $5.86 per barrel on the week (Wednesday-Wednesday) to $94.16 per barrel or $16.23 per MMBtu.

418

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 (next release 2:00 p.m. on November 17) 0 (next release 2:00 p.m. on November 17) Natural gas spot prices decreased at almost all market locations since Wednesday, November 2, as above normal temperatures persisted throughout the country and working gas storage injections continued. For the week (Wednesday to Wednesday), the price at the Henry Hub decreased $1.53 per MMBtu, or about 14 percent, to $9.31 per MMBtu. The NYMEX futures contract for December delivery at the Henry Hub gained about 7 cents since last Wednesday to close yesterday (November 9) at $11.669 per MMBtu. Natural gas in storage as of Friday, November 4, was 3,229 Bcf, which is 4 percent above the 5 year average. The spot price for West Texas Intermediate (WTI) crude oil decreased 10 cents per barrel, or less than 1 percent, since last Wednesday to trade yesterday at $59.65 per barrel or $10.28 per MMBtu.

419

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23, 2007 (next release 2:00 p.m. on August 30, 2007) 23, 2007 (next release 2:00 p.m. on August 30, 2007) Natural gas spot and futures prices eased this report week (Wednesday to Wednesday, August 15-22), as Hurricane Dean failed to have a significant impact on U.S. production in the Gulf of Mexico and moderate temperatures limited demand. On the week, the Henry Hub spot price declined $1.46 per MMBtu, or 20 percent, to $5.84. Trading of futures contracts at the New York Mercantile Exchange (NYMEX) also resulted in large price decreases. The NYMEX contract for September delivery decreased $1.286 per MMBtu on the week to a daily settlement of $5.578 yesterday (August 22). Working gas inventories reported in today's release of EIA's Weekly Natural Gas Storage Report were 2,926 Bcf as of Friday, August 17, which is 12.8 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $4.06 per barrel on the week to $69.30 per barrel, or $11.95 per MMBtu.

420

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on June 16) 9 (next release 2:00 p.m. on June 16) Higher demand for natural gas from power generators meeting air-conditioning needs likely contributed to natural gas spot prices climbing $0.38 to $1.28 per MMBtu at most trading locations since Wednesday, June 1. On the week (Wednesday-Wednesday, June 1-8), the Henry Hub spot price rose 86 cents per MMBtu to $7.22. The NYMEX futures contract for July delivery gained 21.1 cents per MMBtu on the week to a daily settlement price of $7.00 on Wednesday, June 8. Working gas in storage as of Friday, June 3, increased to 1,890 Bcf, which is 20.2 percent above the 5-year (2000-2004) average inventory for the week. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.89 per barrel on the week to $52.51, or $9.05 per MMBtu.

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9 (next release 2:00 p.m. on February 16, 2006) 9 (next release 2:00 p.m. on February 16, 2006) Despite the slightly colder weather that dominated the country this week, natural gas spot and futures prices generally decreased for the week (February 1-8). The Henry Hub natural gas spot price fell 83 cents, or about 10 percent, while prices at most other regional markets ended the week with decreases averaging 58 cents per MMBtu. The price of the NYMEX futures contract for March delivery at the Henry Hub decreased 99 cents per MMBtu, or slightly over 11 percent, settling yesterday (February 8) at $7.735 per MMBtu. The Energy Information Administration (EIA) reported working gas in underground storage of 2,368 Bcf as of February 3, which reflects an implied net decrease of 38 Bcf. The spot price for West Texas Intermediate (WTI) crude oil decreased $4.10 per barrel, or more than 6 percent since last Wednesday (February 1), ending trading yesterday at $62.51 per barrel, or $10.78 per MMBtu.

422

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23, to Wednesday, April 30) 23, to Wednesday, April 30) Released: May 1, 2008 Next release: May 8, 2008 · Natural gas spot prices increased in all trading regions in the Lower 48 States this report week (Wednesday-Wednesday, April 23-30). During the report week, the Henry Hub spot price increased $0.48 per million Btu (MMBtu) to $10.81. During the month of April, the Henry Hub spot price increased $0.95 per MMBtu, or 9.6 percent. · At the New York Mercantile Exchange (NYMEX), prices declined for the report week, after a string of price increases during the previous five report periods. The futures contract for June delivery declined 10.3 cents per MMBtu on the week to $10.843. · During the week ending Friday, April 25, estimated net injections of natural gas into underground storage totaled the largest volume to date this year at 86 billion cubic feet (Bcf). Working gas in underground storage as of April 25 was 1,371 Bcf, which is 0.2 percent below the 5-year (2003-2007) average.

423

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, to Wednesday, April 2) 26, to Wednesday, April 2) Released: April 3, 2008 Next release: April 10, 2008 · Natural gas spot prices increased in all trading regions in the Lower 48 States this report week (Wednesday-Wednesday, March 26-April 2). During the report week, the Henry Hub spot price increased $0.34 per million Btu (MMBtu) to $9.59. Frigid temperatures continued for a portion of the week in the Northeast and for most of the week in the West, likely boosting space-heating demand. · At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered increases, albeit less than in spot markets. The futures contract for May delivery rose about 15 cents per MMBtu on the week to $9.832. · With the traditional heating season not quite over, natural gas withdrawals from underground storage continued through last week. As of Friday, March 28, working gas in storage was 1,248 billion cubic feet (Bcf), which is 0.5 percent above the 5-year (2003-2007) average.

424

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Due to the observance of Veterans Day on Monday, November 12, the next Natural Gas Weekly Update, will be published on Tuesday, November 13, 2001. Due to the observance of Veterans Day on Monday, November 12, the next Natural Gas Weekly Update, will be published on Tuesday, November 13, 2001. Overview: Monday, November 5, 2001 Spot prices at the Henry Hub began the week up then trended down to end the week 10 cents below the previous Friday at $2.96 per MMBtu. This represents a reversal from the pattern of a week earlier when the Henry Hub price gained more than $0.70 per MMBtu on a Friday-to-Friday basis. Warmer-than-normal temperatures in most parts of the country last week along with forecasts calling for the moderate weather to continue into the weekend contributed to the decline in prices. .(See Temperature Map) (See Deviation Map) Estimates of weekly net additions to storage again were below normal levels for this time of year but the total working gas in storage remained above average and well above volumes at this time last year. The price of West Texas Intermediate (WTI) crude oil moved down $1.95 per barrel for the week to end trading on Friday at $20.20 or $3.48 per MMBtu.

425

Fuel Cell and Micro Gas Turbine Integrated Design; Integrerad Design av Bränsle cell och Mikro Gas Turbin.  

E-Print Network (OSTI)

?? This work represents the integration of a hybrid system based on Micro Gas Turbine system available at the division of Heat and Power Technology… (more)

Woldesilassie, Endale

2014-01-01T23:59:59.000Z

426

Structure and Parameters Optimization of Organic Rankine Cycle System for Natural Gas Compressor Exhaust Gas Energy Recovery  

Science Journals Connector (OSTI)

In the paper, the structure and working principle of free piston based organic rankine cycle (ORC) exhaust gas energy recovery system...

Yongqiang Han; Zhongchang Liu; Yun Xu…

2013-01-01T23:59:59.000Z

427

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

24 (next release 2:00 p.m. on March 31) 24 (next release 2:00 p.m. on March 31) Both spot and futures prices were relatively unchanged for the week (Wednesday to Wednesday, March 16-23). Colder-than-normal temperatures were offset by high volumes of working gas in storage remaining with only 8 days left in the traditional heating season. The Henry Hub spot price increased 3 cents per MMBtu since last Wednesday, trading yesterday (Wednesday, March 23) for $7.11. On the NYMEX, the settlement price for the futures contract for April delivery at the Henry Hub fell $0.054 per MMBtu from last Wednesday's level to $7.138 per MMBtu at yesterday's close of trading. Working gas in underground storage was 1,290 Bcf as of Friday, March 18, which is 21.9 percent above the previous 5-year (2000-2004) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $7.07 per barrel, or about 12 percent, on the week to $49.43 per barrel or $8.52 per MMBtu.

428

Gas Storage Technology Consortium  

SciTech Connect

The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

Joel Morrison; Elizabeth Wood; Barbara Robuck

2010-09-30T23:59:59.000Z

429

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Holiday Notice: Holiday Notice: Due to the federal holiday in observance of Martin Luther King Day on Monday, January 21, 2002, the next issue of the Natural Gas Weekly Update will be published on Tuesday, January 22, 2002. Overview: Monday, January 14, 2002 Natural gas prices were generally lower last week as the fundamentals of ample working gas in storage and very little temperature-driven swing demand dominated the market. With little in the way of market-changing developments, trading in both the spot and futures markets tended to occur in relatively small price ranges throughout the week. The warming trend begun late in the previous week continued nearly unabated through last week, with the heavy gas-consuming areas of the Midwest and Northeast recording many of the greatest deviations above daily normal temperatures. Philadelphia, New York City, and Buffalo, NY had at least 3 days of temperatures that were 10 or more degrees above normal; Chicago's temperature reached an unusually warm 26 degrees above normal on Wednesday. (See Temperature Map) (See Deviation Map) Spot prices at the Henry Hub moved down moderately from the previous week, ending trading on Friday at $2.31, down 5 cents from the previous Friday. On the NYMEX, the futures contract for February delivery at the Henry Hub declined by $0.071 from the previous Friday, settling on Friday, January 11 at $2.204 per MMBtu. The spot price for West Texas Intermediate crude oil also fell, dipping below $20 per barrel for the first time in the New Year, ending trading last Friday at $19.67 per barrel, or $3.39 per MMBtu, down $1.80 per barrel, or $0.31 per MMBtu, from Friday, January 4.

430

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8 (next release 2:00 p.m. on November 4) 8 (next release 2:00 p.m. on November 4) Natural gas spot prices spiked significantly higher for the second consecutive week, while futures prices for delivery months beyond November saw smaller, yet still substantial, increases. The November contract expired yesterday (Wednesday, October 27) at nearly the identical price of last Wednesday's settlement, up $0.003 on the week (Wednesday to Wednesday, October 21-28) to end trading at $7.626 per MMBtu. Taking over as the near-month contract, the NYMEX futures contract for December delivery settled yesterday at $8.775 per MMBtu, an increase of $0.235 per MMBtu, or almost 3 percent, since last Wednesday. The price for spot gas at the Henry Hub jumped $0.87 per MMBtu on the week, an increase of 12 percent, as spot gas traded yesterday at $8.12, topping $8 for the first time since early March 2003. Working gas inventories were 3,249 Bcf as of Friday, October 22, which is 6.9 percent greater than the 5-year average. The spot price for West Texas Intermediate crude oil reached a record-high $56.37 per barrel ($9.72 per MMBtu) on Tuesday (October 26), only to drop in yesterday's trading on news that last week's crude oil stocks build was about double the market's expectations. WTI ended trading yesterday at $52.52 per barrel ($9.06 per MMBtu), down $2.41 per barrel ($0.42 per MMBtu), or over 4 percent, from last Wednesday's level.

431

Fuel gas conditioning process  

DOE Patents (OSTI)

A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

432

Work with Biological Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

433

Electrical Safe Work Practices  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Safe Work Practices Electrical Safe Work Practices July 15, 2005 NOTE: Working hot is a last alternative All activities on or near electrically energized systems having live parts shall be conducted in accordance with the limitations and procedures specified in the latest version of NFPA 70E and with the safe work practices and conditions that follow. Only qualified personnel {as defined in NFPA 70E Article 110.6(D)} as authorized by supervisor can perform such work. Safe Work Practices: Know the equipment and potential hazards - Define the scope of work. Submit the scope of work to your supervisor for approval. Analyze the hazards use engineered methods to mitigate hazards. Establish procedures as necessary. Use barricades or other means to prevent unqualified persons crossing approach boundaries.

434

How a Geothermal Power Plant Works (Simple) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from...

435

Interagency Sustainability Working Group  

Energy.gov (U.S. Department of Energy (DOE))

The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

436

QEP WORKING GROUP CHARGES Assessment Working Group  

E-Print Network (OSTI)

. (Standard 2.12) During Phase I of the planning process, members of the Assessment Working Group with the institution's strategic plan, a review of the literature, definition of student learning appropriate related to goals. (Handbook for Review Committees, Standards 2.12 and 3.3.2) During Phase I

Liu, Paul

437

Working Group 7 Summary  

SciTech Connect

The primary subject of working group 7 at the 2012 Advanced Accelerator Concepts Workshop was muon accelerators for a muon collider or neutrino factory. Additionally, this working group included topics that did not fit well into other working groups. Two subjects were discussed by more than one speaker: lattices to create a perfectly integrable nonlinear lattice, and a Penning trap to create antihydrogen.

Nagaitsev S.; Berg J.

2012-06-10T23:59:59.000Z

438

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Permeability Gas Low Permeability Gas Design and Implementation of Energized Fracture Treatment in Tight Gas Sands DE-FC26-06NT42955 Goal The goal of this project is to develop methods and tools that can enable operators to design, optimize, and implement energized fracture treatments in a systematic way. The simulator that will result from this work would significantly expand the use and cost-effectiveness of energized fracs and improve their design and implementation in tight gas sands. Performer University of Texas-Austin, Austin, TX Background A significant portion of U.S. natural gas production comes from unconventional gas resources such as tight gas sands. Tight gas sands account for 58 percent of the total proved natural gas reserves in the United States. As many of these tight gas sand basins mature, an increasing number of wells are being drilled or completed into nearly depleted reservoirs. This includes infill wells, recompletions, and field-extension wells. When these activities are carried out, the reservoir pressures encountered are not as high as the initial reservoir pressures. In these situations, where pressure drawdowns can be less than 2,000 psi, significant reductions in well productivity are observed, often due to water blocking and insufficient clean-up of fracture-fluid residues. In addition, many tight gas sand reservoirs display water sensitivity—owing to high clay content—and readily imbibe water due both to very high capillary pressures and low initial water saturations.

439

Gas-Insulated Substation Performance in Brazilian System  

Science Journals Connector (OSTI)

This work is based on a report developed in the Working Group 23–03 of CIGRÉ-Brazil [1], about gas-insulated substations performance in the Brazilian electric system from...

H. J. A. Martins; V. R. Fernandes; R. S. Jacobsen

1991-01-01T23:59:59.000Z

440

Detecting cooking state with gas sensors during dry cooking  

Science Journals Connector (OSTI)

Gas sensors have the potential to assist cooking by providing feedback on the cooking process and by further automating cooking. In this work, we explored the potential use of gas sensors to monitor food during the cooking process. Focusing on dry cooking, ... Keywords: cooking state, electronic nose, food, gas sensors

Sen H. Hirano; Jed R. Brubaker; Donald J. Patterson; Gillian R. Hayes

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Current Status of High Resolution Column Technology for Gas Chromatography  

Science Journals Connector (OSTI)

......work in high-resolution gas-solid chromatography...developments in high- resolution gas chromatographic column...illary or high-resolution gas chromatography. Of these...column material is its high cost compared to glass columns...re sulting from column production, and requires deactivation......

Mary A. Kaiser; Matthew S. Klee

1986-09-01T23:59:59.000Z

442

Neutron Gas  

Science Journals Connector (OSTI)

We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then apply perturbation theory to find the energy per particle of a neutron gas, in the range of Fermi wave numbers 0.5

J. S. Levinger and L. M. Simmons

1961-11-01T23:59:59.000Z

443

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

SciTech Connect

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

444

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

445

Gas Kick Mechanistic Model  

E-Print Network (OSTI)

Gas kicks occur during drilling when the formation pressure is greater than the wellbore pressure causing influx of gas into the wellbore. Uncontrolled gas kicks could result in blowout of the rig causing major financial loss and possible injury...

Zubairy, Raheel

2014-04-18T23:59:59.000Z

446

Work/Life Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

Work/Life Balance Work/Life Balance /careers/_assets/images/careers-icon.jpg Work/Life Balance Explore the multiple dimensions of a career at LANL: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. What our employees say: Health & Wellness "The Lab pays 80 percent of my family's medical premiums with Blue Cross Blue Shield of New Mexico." Retirement & Savings "With the Lab matching my 401K contributions of six percent, I'm making good progress in saving for my retirement." Time Off "Like many of my colleagues here, I work nine hours on most work days so that I can take every other Friday off." Tax Savings "My flexible spending accounts allow me to set aside pre-tax dollars for

447

BioGas Project Applications for Federal Agencies and Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternate Energy Systems, Inc. Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 1 BioGas Project Applications for Federal Agencies and Utilities Wolfgang H. Driftmeier Alternate Energy Systems, Inc. 210 Prospect Park - Peachtree City, GA 30269 wdriftmeier@altenergy.com www.altenergy.com 770 - 487 - 8596 Alternate Energy Systems, Inc. Natural Gas / Air Blenders for BioGas Installations BioGas Project Applications for Federal Agencies and Utilities Federal Utility Partnership Working Group Meeting - October 20-21, 2010 Rapid City, SD 2 BioGas Project Applications for Federal Agencies and Utilities Objective

448

Photoelectrochemical Working Group  

Energy.gov (U.S. Department of Energy (DOE))

The Photoelectrochemical Working Group meets regularly to review technical progress, develop synergies, and collaboratively develop common tools and processes for photoelectrochemical (PEC) water...

449

Hydrogen Pipeline Working Group  

Energy.gov (U.S. Department of Energy (DOE))

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

450

U.S. Natural Gas -  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Working gas in storage is estimated to have been about 1,250 billion cubic feet at the end of January, about one-third below the previous 5-year average. The estimated end-year level for 2000 was the lowest for the period of time that EIA has records. The current outlook for winter demand and supply suggests that storage is likely to remain very low for the remainder of this winter. In the base case, we project that gas storage will fall to about 567 billion cubic feet at the end of the heating season (March 31, 2001). The previous 30-year observed low was 758 billion cubic feet at the end of the winter of 1995-1996. If summer gas demand next year is as strong as we currently expect it to be, the low end-winter storage levels will present a strong challenge

451

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

452

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

453

Historical Natural Gas Annual  

U.S. Energy Information Administration (EIA) Indexed Site

7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at...

454

Future of Natural Gas  

Office of Environmental Management (EM)

technology is improving - Producers are drilling in liquids rich gas and crude oil shale plays due to lower returns on dry gas production - Improved well completion time...

455

Natural Gas Industrial Price  

Annual Energy Outlook 2012 (EIA)

Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells...

456

Hydrate Control for Gas Storage Operations  

SciTech Connect

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

457

Iowa Natural Gas Summary  

U.S. Energy Information Administration (EIA) Indexed Site

4.79 5.12 5.57 4.93 4.84 4.93 1989-2013 4.79 5.12 5.57 4.93 4.84 4.93 1989-2013 Residential 8.74 10.17 13.06 14.85 16.00 NA 1989-2013 Commercial 6.66 7.31 8.29 7.93 8.02 NA 1989-2013 Industrial 5.00 5.14 5.17 4.65 4.64 4.79 2001-2013 Electric Power 6.10 4.82 4.44 4.12 3.99 4.38 2002-2013 Underground Storage (Million Cubic Feet) Total Capacity 288,210 288,210 288,210 288,210 288,210 288,210 2002-2013 Gas in Storage 209,512 215,593 221,664 230,749 245,317 261,998 1990-2013 Base Gas 197,897 197,897 197,897 197,897 197,897 197,897 1990-2013 Working Gas 11,615 17,696 23,768 32,853 47,421 64,102 1990-2013 Injections 228 6,604 6,409 9,737 15,463 16,682 1990-2013 Withdrawals 1,655 523 337 651 895 1 1990-2013 Net Withdrawals 1,427 -6,081 -6,072 -9,085 -14,568 -16,681 1990-2013

458

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

23, 2001 23, 2001 Another mid-summer week of relatively mild temperatures in many of the nation's major gas consuming market regions and a large estimate of net injections of working gas into storage put downward pressure on spot and futures prices. Some parts of New England saw high temperatures only in the 70s for several days last week, while highs in the 80s stretched down the mid-Atlantic region as far as northern Georgia and well into the Midwest. On the West Coast, highs rarely exceeded 80 degrees, with a number of locations reporting highs in the 60s. (See Temperature Map) (See Deviation from Normal Temperatures Map). Spot prices declined for the week in nearly all markets, with spot gas at the Henry Hub trading at $2.95 per MMBtu on Friday, down $0.21 from the previous Friday. The NYMEX futures contract for August delivery fell even more, ending the week down $0.295 per MMBtu at $2.955-the first sub-$3 settlement for a near-month contract since April 11 of last year. The spot price for West Texas Intermediate (WTI) crude oil fell four days in a row and traded on Wednesday and Thursday below $25 per barrel before recovering Friday to $25.60 per barrel, or $4.41 per MMBtu. This, too, is the first time since last April that WTI has fallen below $25 per barrel, and is the second week in a row of losses of $1 or more per barrel.

459

STATEMENT OF WORK  

National Nuclear Security Administration (NNSA)

PART III - SECTION J APPENDIX B STATEMENT OF WORK Table of Contents 1.0 General.................................................................................................................... 273 2.0 Laboratory Mission and Scope of Work. ................................................................ 274 3.0 Science & Technology. ........................................................................................... 275 3.1 Defense Programs. .................................................................................................. 276 3.1.1 Stewardship of United States Nuclear Weapons. ................................................ 276 3.1.1.1 Stockpile Certification. .......................................................................................

460

Work Authorization System  

Directives, Delegations, and Requirements

It establishes a work authorization and control process for work performed by designated management and operating (M&O), management and integrating (M&I), environmental restoration management contracts (ERMC) and other contracts determined by the Procurement Executive (hereafter referred to as M&O contractors). Cancels DOE O 5700.7C. Canceled by DOE O 412.1A.

1999-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Work Authorization System  

Directives, Delegations, and Requirements

To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. Cancels DOE O 412.1.

2005-04-21T23:59:59.000Z

462

Work Authorization System  

Directives, Delegations, and Requirements

To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's Planning, Programming, Budgeting, and Evaluation process. Admin Chg 1, dated 5-21-2014, cancels DOE O 412.1A.

2005-04-21T23:59:59.000Z

463

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2002 (next release 2:00 p.m. on October 17) 0, 2002 (next release 2:00 p.m. on October 17) Since Wednesday, October 2, natural gas spot prices at most Gulf Coast markets have dropped $0.20 to $0.80 per MMBtu with the passing of Hurricane Lili. Although offshore producers and pipeline companies are still working to return supply operations to normal, infrastructure damage appears minimal. For the week (Wednesday-Wednesday), prices at the Henry Hub fell 33 cents or slightly less than 8 percent to $3.91 per MMBtu. The price of the NYMEX futures contract for November delivery at the Henry Hub decreased slightly more than 24 cents since last Wednesday to settle at $3.918 per MMBtu yesterday (October 9). Natural gas in storage as of October 4 increased to 3,080 Bcf, which exceeds the 5-year average by 9 percent. The spot price for West Texas Intermediate (WTI) crude oil moved down $1.28 per barrel or more than 4 percent since last Wednesday, trading at $29.31 per barrel or $5.05 per MMBtu.

464

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Monday, January 28, 2002 Monday, January 28, 2002 Natural gas prices generally declined last week as mild temperatures continued in most of the country and working gas storage stocks remain at very high levels. Spot prices at most major markets that serve the eastern two-thirds of the country ended the week down from the previous Friday with weather forecasts for the past weekend calling for daytime temperatures to be in the mid 50s to the low 60s in an area stretching from Chicago to Boston. At the Henry Hub prices moved down 9 cents on Friday to end at $2.04 per MMBtu--$0.25 below the previous Friday. The National Weather Service's (NWS) latest 6- to 10-day forecast is calling for above normal temperatures to continue through this week in most areas east of the Mississippi River. (See Temperature Map) (See Deviation Map) At the NYMEX futures market, the February contract continued to trend down as it ended the week trading at $2.037 per MMBtu-off almost $0.20 from previous Friday. The spot price for West Texas Intermediate (WTI) crude oil gained almost $1.80 per barrel reaching $19.80 on Friday or about $3.40 per MMBtu.

465

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2003 (next release 2:00 p.m. on July 17) 0, 2003 (next release 2:00 p.m. on July 17) The threat of production interruptions from a tropical storm and increased cooling demand contributed to natural gas spot prices climbing 35 to 70 cents per MMBtu at most trading locations in the Lower 48 States since Wednesday, July 2. On the week (Wednesday-Wednesday), the Henry Hub spot price climbed 51 cents to $5.56 per MMBtu, while spot prices in the Northeast were slightly higher with gains of nearly 60 cents in response to regional cooling demand. The NYMEX futures contract for August delivery gained just over 32 cents per MMBtu to a close of $5.52 on Wednesday, July 9. Working gas in storage as of Friday, July 4 increased to 1,773 Bcf, which is 15.2 percent below the 5-year (1998-2002) average. The spot price for West Texas Intermediate (WTI) crude oil rose $0.58 per barrel on the week to $30.87, or $5.32 per MMBtu.

466

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Monday, November 19, 2001 Monday, November 19, 2001 Last week, the NYMEX futures contract price for December delivery at the Henry Hub continued the generally downward trend that began in late October. The contract ended last week's trading at $2.637 per MMBtu-nearly 55 cents lower than the $3.183 recorded when it began as the near-month contract on October 30. Spot prices also experienced a similar pattern and reportedly declined well over $1.00 per MMBtu at most major market locations. The spot price at the Henry Hub on Friday hit its lowest level in more than two and a half years. The continued warmer-than-normal weather in most parts of the country appears to be a major contributing factor in the almost 3-week decline in natural gas prices. (Temperature Map) (Temperature Deviation Map) Another factor is the relatively high stocks that continued to increase in the second week of November. Working gas in storage now stands at its highest level since November 1998. The spot price for West Texas Intermediate (WTI) crude oil dropped by more than $2.00 per barrel on Thursday and ended the week at $18.05, or $3.11 per MMBtu-its lowest level in over 2 years.

467

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2 (next release 2:00 p.m. on June 9) 2 (next release 2:00 p.m. on June 9) Natural gas spot prices fell at virtually all market locations in the Lower 48 States during the holiday-shortened trading week (Wednesday to Wednesday, May 25-June 1), while futures prices increased. The spot price at the Henry Hub, however, rose by 3 cents per MMBtu on the week, or nearly 0.5 percent, to $6.36 per MMBtu. On the New York Mercantile Exchange (NYMEX), the June contract expired at $6.123 per MMBtu on May 26 after declining 19 cents in its final day of trading. The settlement price for the futures contract for July delivery at the Henry Hub increased by 42 cents on the week, settling yesterday (June 1) at $6.789 per MMBtu. EIA reported that inventories of working gas in underground storage were 1,778 Bcf as of Friday, May 27, which is 20.6 percent higher than the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil gained $4.03 per barrel, or 8 percent, since last Wednesday (May 25), ending trading yesterday at $54.40 per barrel ($9.38 per MMBtu), which is the highest spot price since the April 6, 2005, price of $55.88 per barrel.

468

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0, 2011 at 2:00 P.M. 0, 2011 at 2:00 P.M. Next Release: Thursday, February 17, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, February 9, 2011) The Henry Hub spot price fell during the week from $4.55 per million Btu (MMBtu) on Wednesday, February 2, to $4.22 per MMBtu on Wednesday, February 9. The price decline occurred in spite of very cold weather across the United States. The West Texas Intermediate crude oil spot price fell from $89.78 per barrel, or $15.48 per MMBtu, on Thursday to $85.59 per barrel, or $14.76 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the near month futures contract (March 2011) fell by 39 cents from $4.429 per MMBtu to $4.044 per MMBtu. Working natural gas in storage fell below the 5-year average for the

469

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

22, 2007 (next release 2:00 p.m. on March 1, 2007) 22, 2007 (next release 2:00 p.m. on March 1, 2007) As the weather has made the transition from extreme cold to much more moderate conditions this week, natural gas spot prices have declined in much of the country. For the week (Wednesday to Wednesday, February 14-21), the Henry Hub spot price declined $1.40 per MMBtu to $7.51 as prices for next-day delivery responded to reduced demand for space-heating. However, the bitter and widespread cold of the first 2 weeks of February likely contributed to revised expectations of future storage levels, leading to increased futures prices this week. At the New York Mercantile Exchange (NYMEX), the price for the futures contract for March delivery at the Henry Hub increased 41 cents per MMBtu or about 5.6 percent. Generally, futures prices for delivery months through next summer increased by more than 4 percent. Working gas in storage as of Friday, February 16, was 1,865 Bcf, which is 10.8 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.40 per barrel on the week to $59.40, or $10.24 per MMBtu.

470

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

15, 2007 (next release 2:00 p.m. on March 22, 2007) 15, 2007 (next release 2:00 p.m. on March 22, 2007) Spring-like temperatures in most regions of the country this week led to lower natural gas spot and futures prices in the Lower 48 States since Wednesday, March 7. On the week (Wednesday-Wednesday, March 7-14), the Henry Hub spot price decreased 66 cents per MMBtu, or about 9 percent, to $6.86. At the New York Mercantile Exchange (NYMEX), the futures contract for April delivery fell 28 cents per MMBtu on the week to a daily settlement of $7.083 yesterday (March 14). Working gas in underground storage was 1,516 Bcf as of Friday, March 9, which is 12 percent above the 5-year average inventory for the report week. The spot price for West Texas Intermediate (WTI) crude oil decreased $3.70 per barrel on the week to $58.15 per barrel, or $10.03 per MMBtu.

471

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2007 (next release 2:00 p.m. on April 26, 2007) 9, 2007 (next release 2:00 p.m. on April 26, 2007) With winter-like conditions finally moving toward the moderate temperatures (and less heating demand) of spring, natural gas spot prices have eased across most of the country. During the report week (Wednesday-Wednesday, April 11-18), the Henry Hub spot price declined 42 cents per MMBtu to $7.54. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also were lower. The futures contract for May delivery decreased 35.8 cents per MMBtu on the week to $7.497. Working gas in storage as of Friday, April 13, was 1,546 Bcf, which is 22.1 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil increased $1.16 per barrel on the week to $63.14, or $10.89 per MMBtu.

472

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7 (next release 2:00 p.m. on June 3) 7 (next release 2:00 p.m. on June 3) High crude oil prices and increasing cooling demand contributed to natural gas spot prices climbing 20 to 55 cents per MMBtu at most trading locations in the Lower 48 States since Wednesday, May 19. On the week (Wednesday-Wednesday, May 19-26), the Henry Hub spot price rose 52 cents per MMBtu to $6.70. The NYMEX futures contract for June delivery gained 22.5 cents per MMBtu on the week to a monthly settlement price of $6.68 in its final day of trading on Wednesday, May 26. Working gas in storage as of Friday, May 21, increased to 1,477 Bcf, which is 0.1 percent below the 5-year (1999-2003) average. The spot price for West Texas Intermediate (WTI) crude oil decreased $1.01 per barrel on the week to $40.60, or $7.00 per MMBtu.

473

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

13, 2007 (next release 2:00 p.m. on September 20, 2007) 13, 2007 (next release 2:00 p.m. on September 20, 2007) Natural gas spot and futures prices generally increased this report week (Wednesday to Wednesday, September 6-13), as tropical storms threatened to disrupt supplies and pipeline explosions in Mexico stirred concerns of supply security. Hurricane Humberto is still active near the Texas-Louisiana border at the time of this writing, and Tropical Depression 8 in the South Atlantic is apparently moving toward Puerto Rico and the general direction of the Gulf of Mexico (where these storms might cause energy-producing platforms to be evacuated and supplies to be shut in). However, companies have not yet announced significant shut-in production or damage from the weather. On the week the Henry Hub spot price increased 32 cents per MMBtu to $6.13. At the New York Mercantile Exchange (NYMEX), prices for futures contracts also registered significant increases. The futures contract for October delivery rose 63.3 cents per MMBtu on the week to $6.438. Working gas in storage as of Friday, September 7, was 3,069 Bcf, which is 9.3 percent above the 5-year (2002-2006) average. The spot price for West Texas Intermediate (WTI) crude oil recorded yet another record high, increasing $4.11 per barrel on the week to $79.85, or $13.77 per MMBtu.

474

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

0 (next release 2:00 p.m. on April 27, 2006) 0 (next release 2:00 p.m. on April 27, 2006) High crude oil prices and increasing cooling demand in some regions contributed to natural gas spot prices climbing more than 10 percent at trading locations in the Lower 48 States since Wednesday, April 12. On the week (Wednesday-Wednesday, April 12-19), the Henry Hub spot price rose 93 cents per MMBtu to $7.72. At the New York Mercantile Exchange (NYMEX), the futures contract for May delivery rose in each trading session this week, gaining $1.384 per MMBtu to close at $8.192 per MMBtu yesterday (April 19). Net storage injections continued for the second week this refill season. Working gas in storage as of Friday, April 14, increased to 1,761 Bcf, which is 62.6 percent above the 5-year (2001-2005) average. The spot price for West Texas Intermediate (WTI) crude oil increased $3.54 per barrel on the week to $72.07, or $12.43 per MMBtu.

475

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

June 1 (next release 2:00 p.m. on June 8, 2006) June 1 (next release 2:00 p.m. on June 8, 2006) Natural gas spot prices were virtually unchanged at most market locations in the Lower 48 States during the holiday-shortened trading week (Wednesday to Wednesday, May 24-31), while futures prices increased. The spot price at the Henry Hub decreased by 4 cents per MMBtu on the week, or less than 1 percent, to $5.97 per MMBtu. On the New York Mercantile Exchange (NYMEX), the June contract expired at $5.925 per MMBtu on May 26, marking the lowest contract closing price since the October 2004 futures contract closed at $5.723 per MMBtu. The settlement price for the futures contract for July delivery at the Henry Hub increased 21 cents on the week, settling yesterday (May 31) at $6.384 per MMBtu. EIA reported that inventories of working gas in underground storage were 2,243 Bcf as of Friday, May 26, which is 45.9 percent higher than the 5-year average. The spot price for West Texas Intermediate (WTI) crude oil gained $1.95 per barrel, or about 3 percent, since last Wednesday (May 24), trading yesterday at $71.42 per barrel ($12.31 per MMBtu).

476

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2002 (next release 2:00 p.m. on August 29) 2, 2002 (next release 2:00 p.m. on August 29) Natural gas prices continued their upward trend for a second consecutive week with most market locations in the Lower 48 States registering gains of up to 25 cents per MMBtu since Wednesday, August 14. Continued hot temperatures across the country and an increase in oil prices resulted in prices generally ranging between $3.15 and $3.25 per MMBtu along the Gulf Coast, representing new 8-week highs. At the NYMEX, the price for the futures contract for September delivery closed on Wednesday, August 21, at $3.274 per MMBtu, an increase of just over 36 cents, or about 12.5 percent, on the week. Working gas in storage for the week ended Friday, August 16 was 2,657 Bcf, which exceeds the average for the previous 5 years by 13.1 percent. On the week (Wednesday-Wednesday), the spot price for West Texas Intermediate (WTI) crude oil gained $2.18 to end trading yesterday at $30.37 per barrel, or $5.24 per MMBtu

477

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

Thursday June 20, 2002 (next release 2:00 p.m. on June 27) Thursday June 20, 2002 (next release 2:00 p.m. on June 27) Natural gas spot prices registered gains of a dime or less at most major trading locations this week (Wednesday-Wednesday) as weather-driven demand combined with increasing oil prices to reverse a declining trend in prices. The upward price movement followed 6 weeks of declining prices until a low last Thursday, June 12, when prices at some trading locations along the Gulf Coast dipped just below $3.00 per MMBtu. Futures prices rose late last week after reaching similar lows. The NYMEX futures contract for July delivery settled Wednesday, June 19, at $3.314 per MMBtu, an increase of 26 cents for the week. EIA's estimate of total working gas inventories for the week ended June 14 was 2,096 Bcf with implied net injections of 81 Bcf. The spot price for West Texas Intermediate (WTI) crude oil recovered this week to trade at close to $26 per barrel on Monday, June 17. On Wednesday, the WTI crude oil price closed at $25.57 per barrel, or $4.41 per MMBtu.

478

Trails Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Trails Working Group Trails Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some serve as quiet and non-motorized alternatives between the Townsite and LANL or between technical areas. The Trails Working Group, established in December 2003, includes representatives from local citizen hiking groups, Los Alamos County, Forest Service, Park Service, Los Alamos National Laboratory and the NNSA Los

479

Interagency Working Groups (IWGs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) are the primary USGCRP vehicles for implementing and coordinating research activities within and across agencies. These groups are critical to Program integration and in assessing the Program's progress. The working groups span a wide range of interconnected issues of climate and global change, and address major components of the Earth's environmental and human systems, as well as cross-disciplinary approaches for addressing these issues. IWGs correspond to program functions and are designed to bring agencies together to plan and develop coordinated activities, implement joint activities, and identify and fill gaps in the Program's plans. They allow public officials to communicate with each other on emerging directions within their agencies, on their stakeholder needs, and on best practices learned from agency activities. Together, these functions allow the agencies to work in a more coordinated and effective manner.

480

ORISE: Working with ORISE  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Institute for Science Education Oak Ridge Institute for Science Education Working with ORISE If you are interested in learning about how your agency can utilize the capabilities of the Oak Ridge Institute for Science and Education (ORISE) through a Work for Others agreement or a procurement contract, or if you are looking for career opportunities, the following information provides an explanation of how to work with ORISE. If you do not see an option that applies to your needs, please contact ORISE General Information. Work for Others For organizations and agencies that are not affiliated with U.S. Department of Energy (DOE), such groups still have the opportunity to partner with the Oak Ridge Institute for Science and Education (ORISE) through the DOE Work For Others (WFO) program. DOE's WFO program allows ORISE to support

Note: This page contains sample records for the topic "liquor working gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Reliquefaction of boil-off from liquefied natural gas  

SciTech Connect

This patent describes a process for liquifying boil-off gas resulting from the evaporation of liquified natural gas contained in a storage vessel. The boil-off gas is cooled and liquified in a closed-loop refrigeration system and then returned to the storage vessel wherein. The closed-loop refrigeration system comprises the steps: compressing nitrogen as a working fluid in a compressor system to form a compressed working fluid; splitting the compressed working fluid into a first and second stream; isenthalpically expanding the first stream to produce a cooled first stream, then warming against boil-off gas and compressed working fluid; and isentropically expanding the second stream to form a cooled expanded stream which is then warmed against boil-off gas to form at least partially condensed boil-off prior to warming against the working fluid and prior to return to the compressor system.

Cook, P.J.

1989-07-11T23:59:59.000Z

482

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

17, 2003 (next release 2:00 p.m. on July 24) 17, 2003 (next release 2:00 p.m. on July 24) Spot and futures prices fell significantly during the week (Wednesday-Wednesday, July 9-16), as working gas inventories continued to grow strongly, intense summer heat was limited almost exclusively to the mountainous regions of the West, and Hurricane Claudette's immediate effect on prices was minimal. In trading at the Henry Hub, spot prices fell 56 cents from the previous Wednesday (July 9), to an even $5 per MMBtu. On the NYMEX, the settlement price of the futures contract for August delivery dipped below $5 per MMBtu, as it closed yesterday (July 16) at $4.934 per MMBtu-the first sub-$5 settlement for a near-month contract in nearly 4 months. EIA reported that working gas inventories were 1,866 Bcf as of Friday, July 11, which is 13.9 percent below the previous 5-year (1998-2002) average. The spot price for West Texas Intermediate (WTI) crude oil traded in a narrow range between $31.04 and $31.60 per barrel for the week. It ended trading yesterday with a decline of 40 cents per barrel to $31.20, or about $5.38 per MMBtu, as oil markets also reacted to Hurricane Claudette's limited impact on infrastructure and production. For the week, WTI showed a modest gain of $0.33 per barrel ($0.03 per MMBtu).

483

Raman gas analyzer for determining the composition of natural gas  

Science Journals Connector (OSTI)

We describe a prototype of a Raman gas analyzer designed for measuring the composition of natural gas. Operation of the gas analyzer was tested on a real natural gas. We show that our Raman gas analyzer prototype...

M. A. Buldakov; B. V. Korolev; I. I. Matrosov…

2013-03-01T23:59:59.000Z

484

Noble gas magnetic resonator  

DOE Patents (OSTI)

Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

2014-04-15T23:59:59.000Z

485

OIL & GAS INSTITUTE Introduction  

E-Print Network (OSTI)

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

486

Work Authorization System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Washington, D.C. DOE O 412.1A Approved: 4-21-05 This directive was reviewed and certified as current and necessary by Susan J. Grant, Director, Office of Management, Budget and Evaluation/Chief Financial Officer, 4-21-05. SUBJECT: WORK AUTHORIZATION SYSTEM 1. OBJECTIVES. To establish a work authorization and control process for work performed by designated site and facility management contractors, and other contractors as determined by the procurement executive, consistent with the budget execution and program evaluation requirements of the Department of Energy's (DOE's) Planning, Programming, Budgeting, and Evaluation process. 2. CANCELLATIONS. DOE O 412.1 Work Authorization System, dated 4-20-99. Cancellation of a directive does not, by itself, modify or otherwise affect any contractual

487

NREL: Working for NREL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working for NREL Working for NREL We're always on the lookout for talented people who believe in our mission and support our values. NREL's inclusive work environment benefits from diversity throughout the organization, values individual differences, and encourages employees to develop and contribute to their full potential. Working for NREL is a challenging and exciting experience for nearly 2,300 staff members of all backgrounds. We offer competitive salaries and excellent benefits. NREL Mission While our cultures and creeds, and lifestyles and languages may differ, we share a common desire to carry out our mission- To develop renewable energy and energy efficiency technologies and practices, To advance related science and engineering, and To transfer knowledge and innovations to address the nation's energy

488

How Hybrids Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Hybrids Work How Hybrids Work Diagram of full hybrid vehicle components, including (1) an internal combustion engine, (2) an electric motor, (3) a generator, (4) a power split device, and (5) a high-capacity battery. Flash Animation: How Hybrids Work (Requires Flash 6.0 or higher) HTML Version: How Hybrids Work Hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to o